]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/ecryptfs/crypto.c
609efc01d5c206915a4e62c9daef458adc1aecbc
[linux.git] / fs / ecryptfs / crypto.c
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *              Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <asm/unaligned.h>
38 #include "ecryptfs_kernel.h"
39
40 #define DECRYPT         0
41 #define ENCRYPT         1
42
43 static int crypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
44                              struct page *dst_page, struct page *src_page,
45                              int offset, int size, unsigned char *iv, int op);
46
47 /**
48  * ecryptfs_to_hex
49  * @dst: Buffer to take hex character representation of contents of
50  *       src; must be at least of size (src_size * 2)
51  * @src: Buffer to be converted to a hex string respresentation
52  * @src_size: number of bytes to convert
53  */
54 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
55 {
56         int x;
57
58         for (x = 0; x < src_size; x++)
59                 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
60 }
61
62 /**
63  * ecryptfs_from_hex
64  * @dst: Buffer to take the bytes from src hex; must be at least of
65  *       size (src_size / 2)
66  * @src: Buffer to be converted from a hex string respresentation to raw value
67  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
68  */
69 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
70 {
71         int x;
72         char tmp[3] = { 0, };
73
74         for (x = 0; x < dst_size; x++) {
75                 tmp[0] = src[x * 2];
76                 tmp[1] = src[x * 2 + 1];
77                 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
78         }
79 }
80
81 /**
82  * ecryptfs_calculate_md5 - calculates the md5 of @src
83  * @dst: Pointer to 16 bytes of allocated memory
84  * @crypt_stat: Pointer to crypt_stat struct for the current inode
85  * @src: Data to be md5'd
86  * @len: Length of @src
87  *
88  * Uses the allocated crypto context that crypt_stat references to
89  * generate the MD5 sum of the contents of src.
90  */
91 static int ecryptfs_calculate_md5(char *dst,
92                                   struct ecryptfs_crypt_stat *crypt_stat,
93                                   char *src, int len)
94 {
95         struct scatterlist sg;
96         struct hash_desc desc = {
97                 .tfm = crypt_stat->hash_tfm,
98                 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
99         };
100         int rc = 0;
101
102         mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
103         sg_init_one(&sg, (u8 *)src, len);
104         if (!desc.tfm) {
105                 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
106                                              CRYPTO_ALG_ASYNC);
107                 if (IS_ERR(desc.tfm)) {
108                         rc = PTR_ERR(desc.tfm);
109                         ecryptfs_printk(KERN_ERR, "Error attempting to "
110                                         "allocate crypto context; rc = [%d]\n",
111                                         rc);
112                         goto out;
113                 }
114                 crypt_stat->hash_tfm = desc.tfm;
115         }
116         rc = crypto_hash_init(&desc);
117         if (rc) {
118                 printk(KERN_ERR
119                        "%s: Error initializing crypto hash; rc = [%d]\n",
120                        __func__, rc);
121                 goto out;
122         }
123         rc = crypto_hash_update(&desc, &sg, len);
124         if (rc) {
125                 printk(KERN_ERR
126                        "%s: Error updating crypto hash; rc = [%d]\n",
127                        __func__, rc);
128                 goto out;
129         }
130         rc = crypto_hash_final(&desc, dst);
131         if (rc) {
132                 printk(KERN_ERR
133                        "%s: Error finalizing crypto hash; rc = [%d]\n",
134                        __func__, rc);
135                 goto out;
136         }
137 out:
138         mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
139         return rc;
140 }
141
142 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
143                                                   char *cipher_name,
144                                                   char *chaining_modifier)
145 {
146         int cipher_name_len = strlen(cipher_name);
147         int chaining_modifier_len = strlen(chaining_modifier);
148         int algified_name_len;
149         int rc;
150
151         algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
152         (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
153         if (!(*algified_name)) {
154                 rc = -ENOMEM;
155                 goto out;
156         }
157         snprintf((*algified_name), algified_name_len, "%s(%s)",
158                  chaining_modifier, cipher_name);
159         rc = 0;
160 out:
161         return rc;
162 }
163
164 /**
165  * ecryptfs_derive_iv
166  * @iv: destination for the derived iv vale
167  * @crypt_stat: Pointer to crypt_stat struct for the current inode
168  * @offset: Offset of the extent whose IV we are to derive
169  *
170  * Generate the initialization vector from the given root IV and page
171  * offset.
172  *
173  * Returns zero on success; non-zero on error.
174  */
175 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
176                        loff_t offset)
177 {
178         int rc = 0;
179         char dst[MD5_DIGEST_SIZE];
180         char src[ECRYPTFS_MAX_IV_BYTES + 16];
181
182         if (unlikely(ecryptfs_verbosity > 0)) {
183                 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
184                 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
185         }
186         /* TODO: It is probably secure to just cast the least
187          * significant bits of the root IV into an unsigned long and
188          * add the offset to that rather than go through all this
189          * hashing business. -Halcrow */
190         memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
191         memset((src + crypt_stat->iv_bytes), 0, 16);
192         snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
193         if (unlikely(ecryptfs_verbosity > 0)) {
194                 ecryptfs_printk(KERN_DEBUG, "source:\n");
195                 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
196         }
197         rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
198                                     (crypt_stat->iv_bytes + 16));
199         if (rc) {
200                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
201                                 "MD5 while generating IV for a page\n");
202                 goto out;
203         }
204         memcpy(iv, dst, crypt_stat->iv_bytes);
205         if (unlikely(ecryptfs_verbosity > 0)) {
206                 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
207                 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
208         }
209 out:
210         return rc;
211 }
212
213 /**
214  * ecryptfs_init_crypt_stat
215  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
216  *
217  * Initialize the crypt_stat structure.
218  */
219 void
220 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
221 {
222         memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
223         INIT_LIST_HEAD(&crypt_stat->keysig_list);
224         mutex_init(&crypt_stat->keysig_list_mutex);
225         mutex_init(&crypt_stat->cs_mutex);
226         mutex_init(&crypt_stat->cs_tfm_mutex);
227         mutex_init(&crypt_stat->cs_hash_tfm_mutex);
228         crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
229 }
230
231 /**
232  * ecryptfs_destroy_crypt_stat
233  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
234  *
235  * Releases all memory associated with a crypt_stat struct.
236  */
237 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
238 {
239         struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
240
241         if (crypt_stat->tfm)
242                 crypto_free_ablkcipher(crypt_stat->tfm);
243         if (crypt_stat->hash_tfm)
244                 crypto_free_hash(crypt_stat->hash_tfm);
245         list_for_each_entry_safe(key_sig, key_sig_tmp,
246                                  &crypt_stat->keysig_list, crypt_stat_list) {
247                 list_del(&key_sig->crypt_stat_list);
248                 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
249         }
250         memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
251 }
252
253 void ecryptfs_destroy_mount_crypt_stat(
254         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
255 {
256         struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
257
258         if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
259                 return;
260         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
261         list_for_each_entry_safe(auth_tok, auth_tok_tmp,
262                                  &mount_crypt_stat->global_auth_tok_list,
263                                  mount_crypt_stat_list) {
264                 list_del(&auth_tok->mount_crypt_stat_list);
265                 if (auth_tok->global_auth_tok_key
266                     && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
267                         key_put(auth_tok->global_auth_tok_key);
268                 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
269         }
270         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
271         memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
272 }
273
274 /**
275  * virt_to_scatterlist
276  * @addr: Virtual address
277  * @size: Size of data; should be an even multiple of the block size
278  * @sg: Pointer to scatterlist array; set to NULL to obtain only
279  *      the number of scatterlist structs required in array
280  * @sg_size: Max array size
281  *
282  * Fills in a scatterlist array with page references for a passed
283  * virtual address.
284  *
285  * Returns the number of scatterlist structs in array used
286  */
287 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
288                         int sg_size)
289 {
290         int i = 0;
291         struct page *pg;
292         int offset;
293         int remainder_of_page;
294
295         sg_init_table(sg, sg_size);
296
297         while (size > 0 && i < sg_size) {
298                 pg = virt_to_page(addr);
299                 offset = offset_in_page(addr);
300                 sg_set_page(&sg[i], pg, 0, offset);
301                 remainder_of_page = PAGE_CACHE_SIZE - offset;
302                 if (size >= remainder_of_page) {
303                         sg[i].length = remainder_of_page;
304                         addr += remainder_of_page;
305                         size -= remainder_of_page;
306                 } else {
307                         sg[i].length = size;
308                         addr += size;
309                         size = 0;
310                 }
311                 i++;
312         }
313         if (size > 0)
314                 return -ENOMEM;
315         return i;
316 }
317
318 struct extent_crypt_result {
319         struct completion completion;
320         int rc;
321 };
322
323 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
324 {
325         struct extent_crypt_result *ecr = req->data;
326
327         if (rc == -EINPROGRESS)
328                 return;
329
330         ecr->rc = rc;
331         complete(&ecr->completion);
332 }
333
334 /**
335  * crypt_scatterlist
336  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
337  * @dest_sg: Destination of the data after performing the crypto operation
338  * @src_sg: Data to be encrypted or decrypted
339  * @size: Length of data
340  * @iv: IV to use
341  * @op: ENCRYPT or DECRYPT to indicate the desired operation
342  *
343  * Returns the number of bytes encrypted or decrypted; negative value on error
344  */
345 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
346                              struct scatterlist *dest_sg,
347                              struct scatterlist *src_sg, int size,
348                              unsigned char *iv, int op)
349 {
350         struct ablkcipher_request *req = NULL;
351         struct extent_crypt_result ecr;
352         int rc = 0;
353
354         BUG_ON(!crypt_stat || !crypt_stat->tfm
355                || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
356         if (unlikely(ecryptfs_verbosity > 0)) {
357                 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
358                                 crypt_stat->key_size);
359                 ecryptfs_dump_hex(crypt_stat->key,
360                                   crypt_stat->key_size);
361         }
362
363         init_completion(&ecr.completion);
364
365         mutex_lock(&crypt_stat->cs_tfm_mutex);
366         req = ablkcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
367         if (!req) {
368                 mutex_unlock(&crypt_stat->cs_tfm_mutex);
369                 rc = -ENOMEM;
370                 goto out;
371         }
372
373         ablkcipher_request_set_callback(req,
374                         CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
375                         extent_crypt_complete, &ecr);
376         /* Consider doing this once, when the file is opened */
377         if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
378                 rc = crypto_ablkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
379                                               crypt_stat->key_size);
380                 if (rc) {
381                         ecryptfs_printk(KERN_ERR,
382                                         "Error setting key; rc = [%d]\n",
383                                         rc);
384                         mutex_unlock(&crypt_stat->cs_tfm_mutex);
385                         rc = -EINVAL;
386                         goto out;
387                 }
388                 crypt_stat->flags |= ECRYPTFS_KEY_SET;
389         }
390         mutex_unlock(&crypt_stat->cs_tfm_mutex);
391         ablkcipher_request_set_crypt(req, src_sg, dest_sg, size, iv);
392         rc = op == ENCRYPT ? crypto_ablkcipher_encrypt(req) :
393                              crypto_ablkcipher_decrypt(req);
394         if (rc == -EINPROGRESS || rc == -EBUSY) {
395                 struct extent_crypt_result *ecr = req->base.data;
396
397                 wait_for_completion(&ecr->completion);
398                 rc = ecr->rc;
399                 INIT_COMPLETION(ecr->completion);
400         }
401 out:
402         ablkcipher_request_free(req);
403         return rc;
404 }
405
406 /**
407  * lower_offset_for_page
408  *
409  * Convert an eCryptfs page index into a lower byte offset
410  */
411 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
412                                     struct page *page)
413 {
414         return ecryptfs_lower_header_size(crypt_stat) +
415                (page->index << PAGE_CACHE_SHIFT);
416 }
417
418 /**
419  * ecryptfs_encrypt_extent
420  * @enc_extent_page: Allocated page into which to encrypt the data in
421  *                   @page
422  * @crypt_stat: crypt_stat containing cryptographic context for the
423  *              encryption operation
424  * @page: Page containing plaintext data extent to encrypt
425  * @extent_offset: Page extent offset for use in generating IV
426  *
427  * Encrypts one extent of data.
428  *
429  * Return zero on success; non-zero otherwise
430  */
431 static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
432                                    struct ecryptfs_crypt_stat *crypt_stat,
433                                    struct page *page,
434                                    unsigned long extent_offset)
435 {
436         loff_t extent_base;
437         char extent_iv[ECRYPTFS_MAX_IV_BYTES];
438         int rc;
439
440         extent_base = (((loff_t)page->index)
441                        * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
442         rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
443                                 (extent_base + extent_offset));
444         if (rc) {
445                 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
446                         "extent [0x%.16llx]; rc = [%d]\n",
447                         (unsigned long long)(extent_base + extent_offset), rc);
448                 goto out;
449         }
450         rc = crypt_page_offset(crypt_stat, enc_extent_page, page,
451                                (extent_offset * crypt_stat->extent_size),
452                                crypt_stat->extent_size, extent_iv, ENCRYPT);
453         if (rc < 0) {
454                 printk(KERN_ERR "%s: Error attempting to encrypt page with "
455                        "page->index = [%ld], extent_offset = [%ld]; "
456                        "rc = [%d]\n", __func__, page->index, extent_offset,
457                        rc);
458                 goto out;
459         }
460         rc = 0;
461 out:
462         return rc;
463 }
464
465 /**
466  * ecryptfs_encrypt_page
467  * @page: Page mapped from the eCryptfs inode for the file; contains
468  *        decrypted content that needs to be encrypted (to a temporary
469  *        page; not in place) and written out to the lower file
470  *
471  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
472  * that eCryptfs pages may straddle the lower pages -- for instance,
473  * if the file was created on a machine with an 8K page size
474  * (resulting in an 8K header), and then the file is copied onto a
475  * host with a 32K page size, then when reading page 0 of the eCryptfs
476  * file, 24K of page 0 of the lower file will be read and decrypted,
477  * and then 8K of page 1 of the lower file will be read and decrypted.
478  *
479  * Returns zero on success; negative on error
480  */
481 int ecryptfs_encrypt_page(struct page *page)
482 {
483         struct inode *ecryptfs_inode;
484         struct ecryptfs_crypt_stat *crypt_stat;
485         char *enc_extent_virt;
486         struct page *enc_extent_page = NULL;
487         loff_t extent_offset;
488         loff_t lower_offset;
489         int rc = 0;
490
491         ecryptfs_inode = page->mapping->host;
492         crypt_stat =
493                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
494         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
495         enc_extent_page = alloc_page(GFP_USER);
496         if (!enc_extent_page) {
497                 rc = -ENOMEM;
498                 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
499                                 "encrypted extent\n");
500                 goto out;
501         }
502
503         for (extent_offset = 0;
504              extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
505              extent_offset++) {
506                 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
507                                              extent_offset);
508                 if (rc) {
509                         printk(KERN_ERR "%s: Error encrypting extent; "
510                                "rc = [%d]\n", __func__, rc);
511                         goto out;
512                 }
513         }
514
515         lower_offset = lower_offset_for_page(crypt_stat, page);
516         enc_extent_virt = kmap(enc_extent_page);
517         rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
518                                   PAGE_CACHE_SIZE);
519         kunmap(enc_extent_page);
520         if (rc < 0) {
521                 ecryptfs_printk(KERN_ERR,
522                         "Error attempting to write lower page; rc = [%d]\n",
523                         rc);
524                 goto out;
525         }
526         rc = 0;
527 out:
528         if (enc_extent_page) {
529                 __free_page(enc_extent_page);
530         }
531         return rc;
532 }
533
534 static int ecryptfs_decrypt_extent(struct page *page,
535                                    struct ecryptfs_crypt_stat *crypt_stat,
536                                    struct page *enc_extent_page,
537                                    unsigned long extent_offset)
538 {
539         loff_t extent_base;
540         char extent_iv[ECRYPTFS_MAX_IV_BYTES];
541         int rc;
542
543         extent_base = (((loff_t)page->index)
544                        * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
545         rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
546                                 (extent_base + extent_offset));
547         if (rc) {
548                 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
549                         "extent [0x%.16llx]; rc = [%d]\n",
550                         (unsigned long long)(extent_base + extent_offset), rc);
551                 goto out;
552         }
553         rc = crypt_page_offset(crypt_stat, page, enc_extent_page,
554                                (extent_offset * crypt_stat->extent_size),
555                                crypt_stat->extent_size, extent_iv, DECRYPT);
556         if (rc < 0) {
557                 printk(KERN_ERR "%s: Error attempting to decrypt to page with "
558                        "page->index = [%ld], extent_offset = [%ld]; "
559                        "rc = [%d]\n", __func__, page->index, extent_offset,
560                        rc);
561                 goto out;
562         }
563         rc = 0;
564 out:
565         return rc;
566 }
567
568 /**
569  * ecryptfs_decrypt_page
570  * @page: Page mapped from the eCryptfs inode for the file; data read
571  *        and decrypted from the lower file will be written into this
572  *        page
573  *
574  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
575  * that eCryptfs pages may straddle the lower pages -- for instance,
576  * if the file was created on a machine with an 8K page size
577  * (resulting in an 8K header), and then the file is copied onto a
578  * host with a 32K page size, then when reading page 0 of the eCryptfs
579  * file, 24K of page 0 of the lower file will be read and decrypted,
580  * and then 8K of page 1 of the lower file will be read and decrypted.
581  *
582  * Returns zero on success; negative on error
583  */
584 int ecryptfs_decrypt_page(struct page *page)
585 {
586         struct inode *ecryptfs_inode;
587         struct ecryptfs_crypt_stat *crypt_stat;
588         char *page_virt;
589         unsigned long extent_offset;
590         loff_t lower_offset;
591         int rc = 0;
592
593         ecryptfs_inode = page->mapping->host;
594         crypt_stat =
595                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
596         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
597
598         lower_offset = lower_offset_for_page(crypt_stat, page);
599         page_virt = kmap(page);
600         rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_CACHE_SIZE,
601                                  ecryptfs_inode);
602         kunmap(page);
603         if (rc < 0) {
604                 ecryptfs_printk(KERN_ERR,
605                         "Error attempting to read lower page; rc = [%d]\n",
606                         rc);
607                 goto out;
608         }
609
610         for (extent_offset = 0;
611              extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
612              extent_offset++) {
613                 rc = ecryptfs_decrypt_extent(page, crypt_stat, page,
614                                              extent_offset);
615                 if (rc) {
616                         printk(KERN_ERR "%s: Error encrypting extent; "
617                                "rc = [%d]\n", __func__, rc);
618                         goto out;
619                 }
620         }
621 out:
622         return rc;
623 }
624
625 /**
626  * crypt_page_offset
627  * @crypt_stat: The cryptographic context
628  * @dst_page: The page to write the result into
629  * @src_page: The page to read from
630  * @offset: The byte offset into the dst_page and src_page
631  * @size: The number of bytes of data
632  * @iv: The initialization vector to use for the crypto operation
633  * @op: ENCRYPT or DECRYPT to indicate the desired operation
634  *
635  * Returns the number of bytes encrypted or decrypted
636  */
637 static int crypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
638                              struct page *dst_page, struct page *src_page,
639                              int offset, int size, unsigned char *iv, int op)
640 {
641         struct scatterlist src_sg, dst_sg;
642
643         sg_init_table(&src_sg, 1);
644         sg_init_table(&dst_sg, 1);
645
646         sg_set_page(&src_sg, src_page, size, offset);
647         sg_set_page(&dst_sg, dst_page, size, offset);
648
649         return crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv, op);
650 }
651
652 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
653
654 /**
655  * ecryptfs_init_crypt_ctx
656  * @crypt_stat: Uninitialized crypt stats structure
657  *
658  * Initialize the crypto context.
659  *
660  * TODO: Performance: Keep a cache of initialized cipher contexts;
661  * only init if needed
662  */
663 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
664 {
665         char *full_alg_name;
666         int rc = -EINVAL;
667
668         if (!crypt_stat->cipher) {
669                 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
670                 goto out;
671         }
672         ecryptfs_printk(KERN_DEBUG,
673                         "Initializing cipher [%s]; strlen = [%d]; "
674                         "key_size_bits = [%zd]\n",
675                         crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
676                         crypt_stat->key_size << 3);
677         if (crypt_stat->tfm) {
678                 rc = 0;
679                 goto out;
680         }
681         mutex_lock(&crypt_stat->cs_tfm_mutex);
682         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
683                                                     crypt_stat->cipher, "cbc");
684         if (rc)
685                 goto out_unlock;
686         crypt_stat->tfm = crypto_alloc_ablkcipher(full_alg_name, 0, 0);
687         kfree(full_alg_name);
688         if (IS_ERR(crypt_stat->tfm)) {
689                 rc = PTR_ERR(crypt_stat->tfm);
690                 crypt_stat->tfm = NULL;
691                 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
692                                 "Error initializing cipher [%s]\n",
693                                 crypt_stat->cipher);
694                 goto out_unlock;
695         }
696         crypto_ablkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
697         rc = 0;
698 out_unlock:
699         mutex_unlock(&crypt_stat->cs_tfm_mutex);
700 out:
701         return rc;
702 }
703
704 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
705 {
706         int extent_size_tmp;
707
708         crypt_stat->extent_mask = 0xFFFFFFFF;
709         crypt_stat->extent_shift = 0;
710         if (crypt_stat->extent_size == 0)
711                 return;
712         extent_size_tmp = crypt_stat->extent_size;
713         while ((extent_size_tmp & 0x01) == 0) {
714                 extent_size_tmp >>= 1;
715                 crypt_stat->extent_mask <<= 1;
716                 crypt_stat->extent_shift++;
717         }
718 }
719
720 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
721 {
722         /* Default values; may be overwritten as we are parsing the
723          * packets. */
724         crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
725         set_extent_mask_and_shift(crypt_stat);
726         crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
727         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
728                 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
729         else {
730                 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
731                         crypt_stat->metadata_size =
732                                 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
733                 else
734                         crypt_stat->metadata_size = PAGE_CACHE_SIZE;
735         }
736 }
737
738 /**
739  * ecryptfs_compute_root_iv
740  * @crypt_stats
741  *
742  * On error, sets the root IV to all 0's.
743  */
744 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
745 {
746         int rc = 0;
747         char dst[MD5_DIGEST_SIZE];
748
749         BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
750         BUG_ON(crypt_stat->iv_bytes <= 0);
751         if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
752                 rc = -EINVAL;
753                 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
754                                 "cannot generate root IV\n");
755                 goto out;
756         }
757         rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
758                                     crypt_stat->key_size);
759         if (rc) {
760                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
761                                 "MD5 while generating root IV\n");
762                 goto out;
763         }
764         memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
765 out:
766         if (rc) {
767                 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
768                 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
769         }
770         return rc;
771 }
772
773 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
774 {
775         get_random_bytes(crypt_stat->key, crypt_stat->key_size);
776         crypt_stat->flags |= ECRYPTFS_KEY_VALID;
777         ecryptfs_compute_root_iv(crypt_stat);
778         if (unlikely(ecryptfs_verbosity > 0)) {
779                 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
780                 ecryptfs_dump_hex(crypt_stat->key,
781                                   crypt_stat->key_size);
782         }
783 }
784
785 /**
786  * ecryptfs_copy_mount_wide_flags_to_inode_flags
787  * @crypt_stat: The inode's cryptographic context
788  * @mount_crypt_stat: The mount point's cryptographic context
789  *
790  * This function propagates the mount-wide flags to individual inode
791  * flags.
792  */
793 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
794         struct ecryptfs_crypt_stat *crypt_stat,
795         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
796 {
797         if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
798                 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
799         if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
800                 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
801         if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
802                 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
803                 if (mount_crypt_stat->flags
804                     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
805                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
806                 else if (mount_crypt_stat->flags
807                          & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
808                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
809         }
810 }
811
812 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
813         struct ecryptfs_crypt_stat *crypt_stat,
814         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
815 {
816         struct ecryptfs_global_auth_tok *global_auth_tok;
817         int rc = 0;
818
819         mutex_lock(&crypt_stat->keysig_list_mutex);
820         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
821
822         list_for_each_entry(global_auth_tok,
823                             &mount_crypt_stat->global_auth_tok_list,
824                             mount_crypt_stat_list) {
825                 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
826                         continue;
827                 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
828                 if (rc) {
829                         printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
830                         goto out;
831                 }
832         }
833
834 out:
835         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
836         mutex_unlock(&crypt_stat->keysig_list_mutex);
837         return rc;
838 }
839
840 /**
841  * ecryptfs_set_default_crypt_stat_vals
842  * @crypt_stat: The inode's cryptographic context
843  * @mount_crypt_stat: The mount point's cryptographic context
844  *
845  * Default values in the event that policy does not override them.
846  */
847 static void ecryptfs_set_default_crypt_stat_vals(
848         struct ecryptfs_crypt_stat *crypt_stat,
849         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
850 {
851         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
852                                                       mount_crypt_stat);
853         ecryptfs_set_default_sizes(crypt_stat);
854         strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
855         crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
856         crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
857         crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
858         crypt_stat->mount_crypt_stat = mount_crypt_stat;
859 }
860
861 /**
862  * ecryptfs_new_file_context
863  * @ecryptfs_inode: The eCryptfs inode
864  *
865  * If the crypto context for the file has not yet been established,
866  * this is where we do that.  Establishing a new crypto context
867  * involves the following decisions:
868  *  - What cipher to use?
869  *  - What set of authentication tokens to use?
870  * Here we just worry about getting enough information into the
871  * authentication tokens so that we know that they are available.
872  * We associate the available authentication tokens with the new file
873  * via the set of signatures in the crypt_stat struct.  Later, when
874  * the headers are actually written out, we may again defer to
875  * userspace to perform the encryption of the session key; for the
876  * foreseeable future, this will be the case with public key packets.
877  *
878  * Returns zero on success; non-zero otherwise
879  */
880 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
881 {
882         struct ecryptfs_crypt_stat *crypt_stat =
883             &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
884         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
885             &ecryptfs_superblock_to_private(
886                     ecryptfs_inode->i_sb)->mount_crypt_stat;
887         int cipher_name_len;
888         int rc = 0;
889
890         ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
891         crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
892         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
893                                                       mount_crypt_stat);
894         rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
895                                                          mount_crypt_stat);
896         if (rc) {
897                 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
898                        "to the inode key sigs; rc = [%d]\n", rc);
899                 goto out;
900         }
901         cipher_name_len =
902                 strlen(mount_crypt_stat->global_default_cipher_name);
903         memcpy(crypt_stat->cipher,
904                mount_crypt_stat->global_default_cipher_name,
905                cipher_name_len);
906         crypt_stat->cipher[cipher_name_len] = '\0';
907         crypt_stat->key_size =
908                 mount_crypt_stat->global_default_cipher_key_size;
909         ecryptfs_generate_new_key(crypt_stat);
910         rc = ecryptfs_init_crypt_ctx(crypt_stat);
911         if (rc)
912                 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
913                                 "context for cipher [%s]: rc = [%d]\n",
914                                 crypt_stat->cipher, rc);
915 out:
916         return rc;
917 }
918
919 /**
920  * ecryptfs_validate_marker - check for the ecryptfs marker
921  * @data: The data block in which to check
922  *
923  * Returns zero if marker found; -EINVAL if not found
924  */
925 static int ecryptfs_validate_marker(char *data)
926 {
927         u32 m_1, m_2;
928
929         m_1 = get_unaligned_be32(data);
930         m_2 = get_unaligned_be32(data + 4);
931         if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
932                 return 0;
933         ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
934                         "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
935                         MAGIC_ECRYPTFS_MARKER);
936         ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
937                         "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
938         return -EINVAL;
939 }
940
941 struct ecryptfs_flag_map_elem {
942         u32 file_flag;
943         u32 local_flag;
944 };
945
946 /* Add support for additional flags by adding elements here. */
947 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
948         {0x00000001, ECRYPTFS_ENABLE_HMAC},
949         {0x00000002, ECRYPTFS_ENCRYPTED},
950         {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
951         {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
952 };
953
954 /**
955  * ecryptfs_process_flags
956  * @crypt_stat: The cryptographic context
957  * @page_virt: Source data to be parsed
958  * @bytes_read: Updated with the number of bytes read
959  *
960  * Returns zero on success; non-zero if the flag set is invalid
961  */
962 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
963                                   char *page_virt, int *bytes_read)
964 {
965         int rc = 0;
966         int i;
967         u32 flags;
968
969         flags = get_unaligned_be32(page_virt);
970         for (i = 0; i < ((sizeof(ecryptfs_flag_map)
971                           / sizeof(struct ecryptfs_flag_map_elem))); i++)
972                 if (flags & ecryptfs_flag_map[i].file_flag) {
973                         crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
974                 } else
975                         crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
976         /* Version is in top 8 bits of the 32-bit flag vector */
977         crypt_stat->file_version = ((flags >> 24) & 0xFF);
978         (*bytes_read) = 4;
979         return rc;
980 }
981
982 /**
983  * write_ecryptfs_marker
984  * @page_virt: The pointer to in a page to begin writing the marker
985  * @written: Number of bytes written
986  *
987  * Marker = 0x3c81b7f5
988  */
989 static void write_ecryptfs_marker(char *page_virt, size_t *written)
990 {
991         u32 m_1, m_2;
992
993         get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
994         m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
995         put_unaligned_be32(m_1, page_virt);
996         page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
997         put_unaligned_be32(m_2, page_virt);
998         (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
999 }
1000
1001 void ecryptfs_write_crypt_stat_flags(char *page_virt,
1002                                      struct ecryptfs_crypt_stat *crypt_stat,
1003                                      size_t *written)
1004 {
1005         u32 flags = 0;
1006         int i;
1007
1008         for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1009                           / sizeof(struct ecryptfs_flag_map_elem))); i++)
1010                 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1011                         flags |= ecryptfs_flag_map[i].file_flag;
1012         /* Version is in top 8 bits of the 32-bit flag vector */
1013         flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1014         put_unaligned_be32(flags, page_virt);
1015         (*written) = 4;
1016 }
1017
1018 struct ecryptfs_cipher_code_str_map_elem {
1019         char cipher_str[16];
1020         u8 cipher_code;
1021 };
1022
1023 /* Add support for additional ciphers by adding elements here. The
1024  * cipher_code is whatever OpenPGP applicatoins use to identify the
1025  * ciphers. List in order of probability. */
1026 static struct ecryptfs_cipher_code_str_map_elem
1027 ecryptfs_cipher_code_str_map[] = {
1028         {"aes",RFC2440_CIPHER_AES_128 },
1029         {"blowfish", RFC2440_CIPHER_BLOWFISH},
1030         {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1031         {"cast5", RFC2440_CIPHER_CAST_5},
1032         {"twofish", RFC2440_CIPHER_TWOFISH},
1033         {"cast6", RFC2440_CIPHER_CAST_6},
1034         {"aes", RFC2440_CIPHER_AES_192},
1035         {"aes", RFC2440_CIPHER_AES_256}
1036 };
1037
1038 /**
1039  * ecryptfs_code_for_cipher_string
1040  * @cipher_name: The string alias for the cipher
1041  * @key_bytes: Length of key in bytes; used for AES code selection
1042  *
1043  * Returns zero on no match, or the cipher code on match
1044  */
1045 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1046 {
1047         int i;
1048         u8 code = 0;
1049         struct ecryptfs_cipher_code_str_map_elem *map =
1050                 ecryptfs_cipher_code_str_map;
1051
1052         if (strcmp(cipher_name, "aes") == 0) {
1053                 switch (key_bytes) {
1054                 case 16:
1055                         code = RFC2440_CIPHER_AES_128;
1056                         break;
1057                 case 24:
1058                         code = RFC2440_CIPHER_AES_192;
1059                         break;
1060                 case 32:
1061                         code = RFC2440_CIPHER_AES_256;
1062                 }
1063         } else {
1064                 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1065                         if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1066                                 code = map[i].cipher_code;
1067                                 break;
1068                         }
1069         }
1070         return code;
1071 }
1072
1073 /**
1074  * ecryptfs_cipher_code_to_string
1075  * @str: Destination to write out the cipher name
1076  * @cipher_code: The code to convert to cipher name string
1077  *
1078  * Returns zero on success
1079  */
1080 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1081 {
1082         int rc = 0;
1083         int i;
1084
1085         str[0] = '\0';
1086         for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1087                 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1088                         strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1089         if (str[0] == '\0') {
1090                 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1091                                 "[%d]\n", cipher_code);
1092                 rc = -EINVAL;
1093         }
1094         return rc;
1095 }
1096
1097 int ecryptfs_read_and_validate_header_region(struct inode *inode)
1098 {
1099         u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1100         u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1101         int rc;
1102
1103         rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1104                                  inode);
1105         if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1106                 return rc >= 0 ? -EINVAL : rc;
1107         rc = ecryptfs_validate_marker(marker);
1108         if (!rc)
1109                 ecryptfs_i_size_init(file_size, inode);
1110         return rc;
1111 }
1112
1113 void
1114 ecryptfs_write_header_metadata(char *virt,
1115                                struct ecryptfs_crypt_stat *crypt_stat,
1116                                size_t *written)
1117 {
1118         u32 header_extent_size;
1119         u16 num_header_extents_at_front;
1120
1121         header_extent_size = (u32)crypt_stat->extent_size;
1122         num_header_extents_at_front =
1123                 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1124         put_unaligned_be32(header_extent_size, virt);
1125         virt += 4;
1126         put_unaligned_be16(num_header_extents_at_front, virt);
1127         (*written) = 6;
1128 }
1129
1130 struct kmem_cache *ecryptfs_header_cache;
1131
1132 /**
1133  * ecryptfs_write_headers_virt
1134  * @page_virt: The virtual address to write the headers to
1135  * @max: The size of memory allocated at page_virt
1136  * @size: Set to the number of bytes written by this function
1137  * @crypt_stat: The cryptographic context
1138  * @ecryptfs_dentry: The eCryptfs dentry
1139  *
1140  * Format version: 1
1141  *
1142  *   Header Extent:
1143  *     Octets 0-7:        Unencrypted file size (big-endian)
1144  *     Octets 8-15:       eCryptfs special marker
1145  *     Octets 16-19:      Flags
1146  *      Octet 16:         File format version number (between 0 and 255)
1147  *      Octets 17-18:     Reserved
1148  *      Octet 19:         Bit 1 (lsb): Reserved
1149  *                        Bit 2: Encrypted?
1150  *                        Bits 3-8: Reserved
1151  *     Octets 20-23:      Header extent size (big-endian)
1152  *     Octets 24-25:      Number of header extents at front of file
1153  *                        (big-endian)
1154  *     Octet  26:         Begin RFC 2440 authentication token packet set
1155  *   Data Extent 0:
1156  *     Lower data (CBC encrypted)
1157  *   Data Extent 1:
1158  *     Lower data (CBC encrypted)
1159  *   ...
1160  *
1161  * Returns zero on success
1162  */
1163 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1164                                        size_t *size,
1165                                        struct ecryptfs_crypt_stat *crypt_stat,
1166                                        struct dentry *ecryptfs_dentry)
1167 {
1168         int rc;
1169         size_t written;
1170         size_t offset;
1171
1172         offset = ECRYPTFS_FILE_SIZE_BYTES;
1173         write_ecryptfs_marker((page_virt + offset), &written);
1174         offset += written;
1175         ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1176                                         &written);
1177         offset += written;
1178         ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1179                                        &written);
1180         offset += written;
1181         rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1182                                               ecryptfs_dentry, &written,
1183                                               max - offset);
1184         if (rc)
1185                 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1186                                 "set; rc = [%d]\n", rc);
1187         if (size) {
1188                 offset += written;
1189                 *size = offset;
1190         }
1191         return rc;
1192 }
1193
1194 static int
1195 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1196                                     char *virt, size_t virt_len)
1197 {
1198         int rc;
1199
1200         rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1201                                   0, virt_len);
1202         if (rc < 0)
1203                 printk(KERN_ERR "%s: Error attempting to write header "
1204                        "information to lower file; rc = [%d]\n", __func__, rc);
1205         else
1206                 rc = 0;
1207         return rc;
1208 }
1209
1210 static int
1211 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1212                                  char *page_virt, size_t size)
1213 {
1214         int rc;
1215
1216         rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1217                                size, 0);
1218         return rc;
1219 }
1220
1221 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1222                                                unsigned int order)
1223 {
1224         struct page *page;
1225
1226         page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1227         if (page)
1228                 return (unsigned long) page_address(page);
1229         return 0;
1230 }
1231
1232 /**
1233  * ecryptfs_write_metadata
1234  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1235  * @ecryptfs_inode: The newly created eCryptfs inode
1236  *
1237  * Write the file headers out.  This will likely involve a userspace
1238  * callout, in which the session key is encrypted with one or more
1239  * public keys and/or the passphrase necessary to do the encryption is
1240  * retrieved via a prompt.  Exactly what happens at this point should
1241  * be policy-dependent.
1242  *
1243  * Returns zero on success; non-zero on error
1244  */
1245 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1246                             struct inode *ecryptfs_inode)
1247 {
1248         struct ecryptfs_crypt_stat *crypt_stat =
1249                 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1250         unsigned int order;
1251         char *virt;
1252         size_t virt_len;
1253         size_t size = 0;
1254         int rc = 0;
1255
1256         if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1257                 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1258                         printk(KERN_ERR "Key is invalid; bailing out\n");
1259                         rc = -EINVAL;
1260                         goto out;
1261                 }
1262         } else {
1263                 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1264                        __func__);
1265                 rc = -EINVAL;
1266                 goto out;
1267         }
1268         virt_len = crypt_stat->metadata_size;
1269         order = get_order(virt_len);
1270         /* Released in this function */
1271         virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1272         if (!virt) {
1273                 printk(KERN_ERR "%s: Out of memory\n", __func__);
1274                 rc = -ENOMEM;
1275                 goto out;
1276         }
1277         /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1278         rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1279                                          ecryptfs_dentry);
1280         if (unlikely(rc)) {
1281                 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1282                        __func__, rc);
1283                 goto out_free;
1284         }
1285         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1286                 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1287                                                       size);
1288         else
1289                 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1290                                                          virt_len);
1291         if (rc) {
1292                 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1293                        "rc = [%d]\n", __func__, rc);
1294                 goto out_free;
1295         }
1296 out_free:
1297         free_pages((unsigned long)virt, order);
1298 out:
1299         return rc;
1300 }
1301
1302 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1303 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1304 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1305                                  char *virt, int *bytes_read,
1306                                  int validate_header_size)
1307 {
1308         int rc = 0;
1309         u32 header_extent_size;
1310         u16 num_header_extents_at_front;
1311
1312         header_extent_size = get_unaligned_be32(virt);
1313         virt += sizeof(__be32);
1314         num_header_extents_at_front = get_unaligned_be16(virt);
1315         crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1316                                      * (size_t)header_extent_size));
1317         (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1318         if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1319             && (crypt_stat->metadata_size
1320                 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1321                 rc = -EINVAL;
1322                 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1323                        crypt_stat->metadata_size);
1324         }
1325         return rc;
1326 }
1327
1328 /**
1329  * set_default_header_data
1330  * @crypt_stat: The cryptographic context
1331  *
1332  * For version 0 file format; this function is only for backwards
1333  * compatibility for files created with the prior versions of
1334  * eCryptfs.
1335  */
1336 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1337 {
1338         crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1339 }
1340
1341 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1342 {
1343         struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1344         struct ecryptfs_crypt_stat *crypt_stat;
1345         u64 file_size;
1346
1347         crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1348         mount_crypt_stat =
1349                 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1350         if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1351                 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1352                 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1353                         file_size += crypt_stat->metadata_size;
1354         } else
1355                 file_size = get_unaligned_be64(page_virt);
1356         i_size_write(inode, (loff_t)file_size);
1357         crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1358 }
1359
1360 /**
1361  * ecryptfs_read_headers_virt
1362  * @page_virt: The virtual address into which to read the headers
1363  * @crypt_stat: The cryptographic context
1364  * @ecryptfs_dentry: The eCryptfs dentry
1365  * @validate_header_size: Whether to validate the header size while reading
1366  *
1367  * Read/parse the header data. The header format is detailed in the
1368  * comment block for the ecryptfs_write_headers_virt() function.
1369  *
1370  * Returns zero on success
1371  */
1372 static int ecryptfs_read_headers_virt(char *page_virt,
1373                                       struct ecryptfs_crypt_stat *crypt_stat,
1374                                       struct dentry *ecryptfs_dentry,
1375                                       int validate_header_size)
1376 {
1377         int rc = 0;
1378         int offset;
1379         int bytes_read;
1380
1381         ecryptfs_set_default_sizes(crypt_stat);
1382         crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1383                 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1384         offset = ECRYPTFS_FILE_SIZE_BYTES;
1385         rc = ecryptfs_validate_marker(page_virt + offset);
1386         if (rc)
1387                 goto out;
1388         if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1389                 ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
1390         offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1391         rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1392                                     &bytes_read);
1393         if (rc) {
1394                 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1395                 goto out;
1396         }
1397         if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1398                 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1399                                 "file version [%d] is supported by this "
1400                                 "version of eCryptfs\n",
1401                                 crypt_stat->file_version,
1402                                 ECRYPTFS_SUPPORTED_FILE_VERSION);
1403                 rc = -EINVAL;
1404                 goto out;
1405         }
1406         offset += bytes_read;
1407         if (crypt_stat->file_version >= 1) {
1408                 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1409                                            &bytes_read, validate_header_size);
1410                 if (rc) {
1411                         ecryptfs_printk(KERN_WARNING, "Error reading header "
1412                                         "metadata; rc = [%d]\n", rc);
1413                 }
1414                 offset += bytes_read;
1415         } else
1416                 set_default_header_data(crypt_stat);
1417         rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1418                                        ecryptfs_dentry);
1419 out:
1420         return rc;
1421 }
1422
1423 /**
1424  * ecryptfs_read_xattr_region
1425  * @page_virt: The vitual address into which to read the xattr data
1426  * @ecryptfs_inode: The eCryptfs inode
1427  *
1428  * Attempts to read the crypto metadata from the extended attribute
1429  * region of the lower file.
1430  *
1431  * Returns zero on success; non-zero on error
1432  */
1433 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1434 {
1435         struct dentry *lower_dentry =
1436                 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1437         ssize_t size;
1438         int rc = 0;
1439
1440         size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1441                                        page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1442         if (size < 0) {
1443                 if (unlikely(ecryptfs_verbosity > 0))
1444                         printk(KERN_INFO "Error attempting to read the [%s] "
1445                                "xattr from the lower file; return value = "
1446                                "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1447                 rc = -EINVAL;
1448                 goto out;
1449         }
1450 out:
1451         return rc;
1452 }
1453
1454 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1455                                             struct inode *inode)
1456 {
1457         u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1458         u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1459         int rc;
1460
1461         rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1462                                      ECRYPTFS_XATTR_NAME, file_size,
1463                                      ECRYPTFS_SIZE_AND_MARKER_BYTES);
1464         if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1465                 return rc >= 0 ? -EINVAL : rc;
1466         rc = ecryptfs_validate_marker(marker);
1467         if (!rc)
1468                 ecryptfs_i_size_init(file_size, inode);
1469         return rc;
1470 }
1471
1472 /**
1473  * ecryptfs_read_metadata
1474  *
1475  * Common entry point for reading file metadata. From here, we could
1476  * retrieve the header information from the header region of the file,
1477  * the xattr region of the file, or some other repostory that is
1478  * stored separately from the file itself. The current implementation
1479  * supports retrieving the metadata information from the file contents
1480  * and from the xattr region.
1481  *
1482  * Returns zero if valid headers found and parsed; non-zero otherwise
1483  */
1484 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1485 {
1486         int rc;
1487         char *page_virt;
1488         struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1489         struct ecryptfs_crypt_stat *crypt_stat =
1490             &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1491         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1492                 &ecryptfs_superblock_to_private(
1493                         ecryptfs_dentry->d_sb)->mount_crypt_stat;
1494
1495         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1496                                                       mount_crypt_stat);
1497         /* Read the first page from the underlying file */
1498         page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1499         if (!page_virt) {
1500                 rc = -ENOMEM;
1501                 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1502                        __func__);
1503                 goto out;
1504         }
1505         rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1506                                  ecryptfs_inode);
1507         if (rc >= 0)
1508                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1509                                                 ecryptfs_dentry,
1510                                                 ECRYPTFS_VALIDATE_HEADER_SIZE);
1511         if (rc) {
1512                 /* metadata is not in the file header, so try xattrs */
1513                 memset(page_virt, 0, PAGE_CACHE_SIZE);
1514                 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1515                 if (rc) {
1516                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1517                                "file header region or xattr region, inode %lu\n",
1518                                 ecryptfs_inode->i_ino);
1519                         rc = -EINVAL;
1520                         goto out;
1521                 }
1522                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1523                                                 ecryptfs_dentry,
1524                                                 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1525                 if (rc) {
1526                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1527                                "file xattr region either, inode %lu\n",
1528                                 ecryptfs_inode->i_ino);
1529                         rc = -EINVAL;
1530                 }
1531                 if (crypt_stat->mount_crypt_stat->flags
1532                     & ECRYPTFS_XATTR_METADATA_ENABLED) {
1533                         crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1534                 } else {
1535                         printk(KERN_WARNING "Attempt to access file with "
1536                                "crypto metadata only in the extended attribute "
1537                                "region, but eCryptfs was mounted without "
1538                                "xattr support enabled. eCryptfs will not treat "
1539                                "this like an encrypted file, inode %lu\n",
1540                                 ecryptfs_inode->i_ino);
1541                         rc = -EINVAL;
1542                 }
1543         }
1544 out:
1545         if (page_virt) {
1546                 memset(page_virt, 0, PAGE_CACHE_SIZE);
1547                 kmem_cache_free(ecryptfs_header_cache, page_virt);
1548         }
1549         return rc;
1550 }
1551
1552 /**
1553  * ecryptfs_encrypt_filename - encrypt filename
1554  *
1555  * CBC-encrypts the filename. We do not want to encrypt the same
1556  * filename with the same key and IV, which may happen with hard
1557  * links, so we prepend random bits to each filename.
1558  *
1559  * Returns zero on success; non-zero otherwise
1560  */
1561 static int
1562 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1563                           struct ecryptfs_crypt_stat *crypt_stat,
1564                           struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1565 {
1566         int rc = 0;
1567
1568         filename->encrypted_filename = NULL;
1569         filename->encrypted_filename_size = 0;
1570         if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1571             || (mount_crypt_stat && (mount_crypt_stat->flags
1572                                      & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1573                 size_t packet_size;
1574                 size_t remaining_bytes;
1575
1576                 rc = ecryptfs_write_tag_70_packet(
1577                         NULL, NULL,
1578                         &filename->encrypted_filename_size,
1579                         mount_crypt_stat, NULL,
1580                         filename->filename_size);
1581                 if (rc) {
1582                         printk(KERN_ERR "%s: Error attempting to get packet "
1583                                "size for tag 72; rc = [%d]\n", __func__,
1584                                rc);
1585                         filename->encrypted_filename_size = 0;
1586                         goto out;
1587                 }
1588                 filename->encrypted_filename =
1589                         kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1590                 if (!filename->encrypted_filename) {
1591                         printk(KERN_ERR "%s: Out of memory whilst attempting "
1592                                "to kmalloc [%zd] bytes\n", __func__,
1593                                filename->encrypted_filename_size);
1594                         rc = -ENOMEM;
1595                         goto out;
1596                 }
1597                 remaining_bytes = filename->encrypted_filename_size;
1598                 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1599                                                   &remaining_bytes,
1600                                                   &packet_size,
1601                                                   mount_crypt_stat,
1602                                                   filename->filename,
1603                                                   filename->filename_size);
1604                 if (rc) {
1605                         printk(KERN_ERR "%s: Error attempting to generate "
1606                                "tag 70 packet; rc = [%d]\n", __func__,
1607                                rc);
1608                         kfree(filename->encrypted_filename);
1609                         filename->encrypted_filename = NULL;
1610                         filename->encrypted_filename_size = 0;
1611                         goto out;
1612                 }
1613                 filename->encrypted_filename_size = packet_size;
1614         } else {
1615                 printk(KERN_ERR "%s: No support for requested filename "
1616                        "encryption method in this release\n", __func__);
1617                 rc = -EOPNOTSUPP;
1618                 goto out;
1619         }
1620 out:
1621         return rc;
1622 }
1623
1624 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1625                                   const char *name, size_t name_size)
1626 {
1627         int rc = 0;
1628
1629         (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1630         if (!(*copied_name)) {
1631                 rc = -ENOMEM;
1632                 goto out;
1633         }
1634         memcpy((void *)(*copied_name), (void *)name, name_size);
1635         (*copied_name)[(name_size)] = '\0';     /* Only for convenience
1636                                                  * in printing out the
1637                                                  * string in debug
1638                                                  * messages */
1639         (*copied_name_size) = name_size;
1640 out:
1641         return rc;
1642 }
1643
1644 /**
1645  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1646  * @key_tfm: Crypto context for key material, set by this function
1647  * @cipher_name: Name of the cipher
1648  * @key_size: Size of the key in bytes
1649  *
1650  * Returns zero on success. Any crypto_tfm structs allocated here
1651  * should be released by other functions, such as on a superblock put
1652  * event, regardless of whether this function succeeds for fails.
1653  */
1654 static int
1655 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1656                             char *cipher_name, size_t *key_size)
1657 {
1658         char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1659         char *full_alg_name = NULL;
1660         int rc;
1661
1662         *key_tfm = NULL;
1663         if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1664                 rc = -EINVAL;
1665                 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1666                       "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1667                 goto out;
1668         }
1669         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1670                                                     "ecb");
1671         if (rc)
1672                 goto out;
1673         *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1674         if (IS_ERR(*key_tfm)) {
1675                 rc = PTR_ERR(*key_tfm);
1676                 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1677                        "[%s]; rc = [%d]\n", full_alg_name, rc);
1678                 goto out;
1679         }
1680         crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1681         if (*key_size == 0) {
1682                 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1683
1684                 *key_size = alg->max_keysize;
1685         }
1686         get_random_bytes(dummy_key, *key_size);
1687         rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1688         if (rc) {
1689                 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1690                        "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1691                        rc);
1692                 rc = -EINVAL;
1693                 goto out;
1694         }
1695 out:
1696         kfree(full_alg_name);
1697         return rc;
1698 }
1699
1700 struct kmem_cache *ecryptfs_key_tfm_cache;
1701 static struct list_head key_tfm_list;
1702 struct mutex key_tfm_list_mutex;
1703
1704 int __init ecryptfs_init_crypto(void)
1705 {
1706         mutex_init(&key_tfm_list_mutex);
1707         INIT_LIST_HEAD(&key_tfm_list);
1708         return 0;
1709 }
1710
1711 /**
1712  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1713  *
1714  * Called only at module unload time
1715  */
1716 int ecryptfs_destroy_crypto(void)
1717 {
1718         struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1719
1720         mutex_lock(&key_tfm_list_mutex);
1721         list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1722                                  key_tfm_list) {
1723                 list_del(&key_tfm->key_tfm_list);
1724                 if (key_tfm->key_tfm)
1725                         crypto_free_blkcipher(key_tfm->key_tfm);
1726                 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1727         }
1728         mutex_unlock(&key_tfm_list_mutex);
1729         return 0;
1730 }
1731
1732 int
1733 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1734                          size_t key_size)
1735 {
1736         struct ecryptfs_key_tfm *tmp_tfm;
1737         int rc = 0;
1738
1739         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1740
1741         tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1742         if (key_tfm != NULL)
1743                 (*key_tfm) = tmp_tfm;
1744         if (!tmp_tfm) {
1745                 rc = -ENOMEM;
1746                 printk(KERN_ERR "Error attempting to allocate from "
1747                        "ecryptfs_key_tfm_cache\n");
1748                 goto out;
1749         }
1750         mutex_init(&tmp_tfm->key_tfm_mutex);
1751         strncpy(tmp_tfm->cipher_name, cipher_name,
1752                 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1753         tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1754         tmp_tfm->key_size = key_size;
1755         rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1756                                          tmp_tfm->cipher_name,
1757                                          &tmp_tfm->key_size);
1758         if (rc) {
1759                 printk(KERN_ERR "Error attempting to initialize key TFM "
1760                        "cipher with name = [%s]; rc = [%d]\n",
1761                        tmp_tfm->cipher_name, rc);
1762                 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1763                 if (key_tfm != NULL)
1764                         (*key_tfm) = NULL;
1765                 goto out;
1766         }
1767         list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1768 out:
1769         return rc;
1770 }
1771
1772 /**
1773  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1774  * @cipher_name: the name of the cipher to search for
1775  * @key_tfm: set to corresponding tfm if found
1776  *
1777  * Searches for cached key_tfm matching @cipher_name
1778  * Must be called with &key_tfm_list_mutex held
1779  * Returns 1 if found, with @key_tfm set
1780  * Returns 0 if not found, with @key_tfm set to NULL
1781  */
1782 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1783 {
1784         struct ecryptfs_key_tfm *tmp_key_tfm;
1785
1786         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1787
1788         list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1789                 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1790                         if (key_tfm)
1791                                 (*key_tfm) = tmp_key_tfm;
1792                         return 1;
1793                 }
1794         }
1795         if (key_tfm)
1796                 (*key_tfm) = NULL;
1797         return 0;
1798 }
1799
1800 /**
1801  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1802  *
1803  * @tfm: set to cached tfm found, or new tfm created
1804  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1805  * @cipher_name: the name of the cipher to search for and/or add
1806  *
1807  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1808  * Searches for cached item first, and creates new if not found.
1809  * Returns 0 on success, non-zero if adding new cipher failed
1810  */
1811 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1812                                                struct mutex **tfm_mutex,
1813                                                char *cipher_name)
1814 {
1815         struct ecryptfs_key_tfm *key_tfm;
1816         int rc = 0;
1817
1818         (*tfm) = NULL;
1819         (*tfm_mutex) = NULL;
1820
1821         mutex_lock(&key_tfm_list_mutex);
1822         if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1823                 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1824                 if (rc) {
1825                         printk(KERN_ERR "Error adding new key_tfm to list; "
1826                                         "rc = [%d]\n", rc);
1827                         goto out;
1828                 }
1829         }
1830         (*tfm) = key_tfm->key_tfm;
1831         (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1832 out:
1833         mutex_unlock(&key_tfm_list_mutex);
1834         return rc;
1835 }
1836
1837 /* 64 characters forming a 6-bit target field */
1838 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1839                                                  "EFGHIJKLMNOPQRST"
1840                                                  "UVWXYZabcdefghij"
1841                                                  "klmnopqrstuvwxyz");
1842
1843 /* We could either offset on every reverse map or just pad some 0x00's
1844  * at the front here */
1845 static const unsigned char filename_rev_map[256] = {
1846         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1847         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1848         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1849         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1850         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1851         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1852         0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1853         0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1854         0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1855         0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1856         0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1857         0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1858         0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1859         0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1860         0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1861         0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1862 };
1863
1864 /**
1865  * ecryptfs_encode_for_filename
1866  * @dst: Destination location for encoded filename
1867  * @dst_size: Size of the encoded filename in bytes
1868  * @src: Source location for the filename to encode
1869  * @src_size: Size of the source in bytes
1870  */
1871 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1872                                   unsigned char *src, size_t src_size)
1873 {
1874         size_t num_blocks;
1875         size_t block_num = 0;
1876         size_t dst_offset = 0;
1877         unsigned char last_block[3];
1878
1879         if (src_size == 0) {
1880                 (*dst_size) = 0;
1881                 goto out;
1882         }
1883         num_blocks = (src_size / 3);
1884         if ((src_size % 3) == 0) {
1885                 memcpy(last_block, (&src[src_size - 3]), 3);
1886         } else {
1887                 num_blocks++;
1888                 last_block[2] = 0x00;
1889                 switch (src_size % 3) {
1890                 case 1:
1891                         last_block[0] = src[src_size - 1];
1892                         last_block[1] = 0x00;
1893                         break;
1894                 case 2:
1895                         last_block[0] = src[src_size - 2];
1896                         last_block[1] = src[src_size - 1];
1897                 }
1898         }
1899         (*dst_size) = (num_blocks * 4);
1900         if (!dst)
1901                 goto out;
1902         while (block_num < num_blocks) {
1903                 unsigned char *src_block;
1904                 unsigned char dst_block[4];
1905
1906                 if (block_num == (num_blocks - 1))
1907                         src_block = last_block;
1908                 else
1909                         src_block = &src[block_num * 3];
1910                 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1911                 dst_block[1] = (((src_block[0] << 4) & 0x30)
1912                                 | ((src_block[1] >> 4) & 0x0F));
1913                 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1914                                 | ((src_block[2] >> 6) & 0x03));
1915                 dst_block[3] = (src_block[2] & 0x3F);
1916                 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1917                 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1918                 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1919                 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1920                 block_num++;
1921         }
1922 out:
1923         return;
1924 }
1925
1926 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1927 {
1928         /* Not exact; conservatively long. Every block of 4
1929          * encoded characters decodes into a block of 3
1930          * decoded characters. This segment of code provides
1931          * the caller with the maximum amount of allocated
1932          * space that @dst will need to point to in a
1933          * subsequent call. */
1934         return ((encoded_size + 1) * 3) / 4;
1935 }
1936
1937 /**
1938  * ecryptfs_decode_from_filename
1939  * @dst: If NULL, this function only sets @dst_size and returns. If
1940  *       non-NULL, this function decodes the encoded octets in @src
1941  *       into the memory that @dst points to.
1942  * @dst_size: Set to the size of the decoded string.
1943  * @src: The encoded set of octets to decode.
1944  * @src_size: The size of the encoded set of octets to decode.
1945  */
1946 static void
1947 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1948                               const unsigned char *src, size_t src_size)
1949 {
1950         u8 current_bit_offset = 0;
1951         size_t src_byte_offset = 0;
1952         size_t dst_byte_offset = 0;
1953
1954         if (dst == NULL) {
1955                 (*dst_size) = ecryptfs_max_decoded_size(src_size);
1956                 goto out;
1957         }
1958         while (src_byte_offset < src_size) {
1959                 unsigned char src_byte =
1960                                 filename_rev_map[(int)src[src_byte_offset]];
1961
1962                 switch (current_bit_offset) {
1963                 case 0:
1964                         dst[dst_byte_offset] = (src_byte << 2);
1965                         current_bit_offset = 6;
1966                         break;
1967                 case 6:
1968                         dst[dst_byte_offset++] |= (src_byte >> 4);
1969                         dst[dst_byte_offset] = ((src_byte & 0xF)
1970                                                  << 4);
1971                         current_bit_offset = 4;
1972                         break;
1973                 case 4:
1974                         dst[dst_byte_offset++] |= (src_byte >> 2);
1975                         dst[dst_byte_offset] = (src_byte << 6);
1976                         current_bit_offset = 2;
1977                         break;
1978                 case 2:
1979                         dst[dst_byte_offset++] |= (src_byte);
1980                         dst[dst_byte_offset] = 0;
1981                         current_bit_offset = 0;
1982                         break;
1983                 }
1984                 src_byte_offset++;
1985         }
1986         (*dst_size) = dst_byte_offset;
1987 out:
1988         return;
1989 }
1990
1991 /**
1992  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1993  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1994  * @name: The plaintext name
1995  * @length: The length of the plaintext
1996  * @encoded_name: The encypted name
1997  *
1998  * Encrypts and encodes a filename into something that constitutes a
1999  * valid filename for a filesystem, with printable characters.
2000  *
2001  * We assume that we have a properly initialized crypto context,
2002  * pointed to by crypt_stat->tfm.
2003  *
2004  * Returns zero on success; non-zero on otherwise
2005  */
2006 int ecryptfs_encrypt_and_encode_filename(
2007         char **encoded_name,
2008         size_t *encoded_name_size,
2009         struct ecryptfs_crypt_stat *crypt_stat,
2010         struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2011         const char *name, size_t name_size)
2012 {
2013         size_t encoded_name_no_prefix_size;
2014         int rc = 0;
2015
2016         (*encoded_name) = NULL;
2017         (*encoded_name_size) = 0;
2018         if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2019             || (mount_crypt_stat && (mount_crypt_stat->flags
2020                                      & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2021                 struct ecryptfs_filename *filename;
2022
2023                 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2024                 if (!filename) {
2025                         printk(KERN_ERR "%s: Out of memory whilst attempting "
2026                                "to kzalloc [%zd] bytes\n", __func__,
2027                                sizeof(*filename));
2028                         rc = -ENOMEM;
2029                         goto out;
2030                 }
2031                 filename->filename = (char *)name;
2032                 filename->filename_size = name_size;
2033                 rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2034                                                mount_crypt_stat);
2035                 if (rc) {
2036                         printk(KERN_ERR "%s: Error attempting to encrypt "
2037                                "filename; rc = [%d]\n", __func__, rc);
2038                         kfree(filename);
2039                         goto out;
2040                 }
2041                 ecryptfs_encode_for_filename(
2042                         NULL, &encoded_name_no_prefix_size,
2043                         filename->encrypted_filename,
2044                         filename->encrypted_filename_size);
2045                 if ((crypt_stat && (crypt_stat->flags
2046                                     & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2047                     || (mount_crypt_stat
2048                         && (mount_crypt_stat->flags
2049                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2050                         (*encoded_name_size) =
2051                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2052                                  + encoded_name_no_prefix_size);
2053                 else
2054                         (*encoded_name_size) =
2055                                 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2056                                  + encoded_name_no_prefix_size);
2057                 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2058                 if (!(*encoded_name)) {
2059                         printk(KERN_ERR "%s: Out of memory whilst attempting "
2060                                "to kzalloc [%zd] bytes\n", __func__,
2061                                (*encoded_name_size));
2062                         rc = -ENOMEM;
2063                         kfree(filename->encrypted_filename);
2064                         kfree(filename);
2065                         goto out;
2066                 }
2067                 if ((crypt_stat && (crypt_stat->flags
2068                                     & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2069                     || (mount_crypt_stat
2070                         && (mount_crypt_stat->flags
2071                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2072                         memcpy((*encoded_name),
2073                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2074                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2075                         ecryptfs_encode_for_filename(
2076                             ((*encoded_name)
2077                              + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2078                             &encoded_name_no_prefix_size,
2079                             filename->encrypted_filename,
2080                             filename->encrypted_filename_size);
2081                         (*encoded_name_size) =
2082                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2083                                  + encoded_name_no_prefix_size);
2084                         (*encoded_name)[(*encoded_name_size)] = '\0';
2085                 } else {
2086                         rc = -EOPNOTSUPP;
2087                 }
2088                 if (rc) {
2089                         printk(KERN_ERR "%s: Error attempting to encode "
2090                                "encrypted filename; rc = [%d]\n", __func__,
2091                                rc);
2092                         kfree((*encoded_name));
2093                         (*encoded_name) = NULL;
2094                         (*encoded_name_size) = 0;
2095                 }
2096                 kfree(filename->encrypted_filename);
2097                 kfree(filename);
2098         } else {
2099                 rc = ecryptfs_copy_filename(encoded_name,
2100                                             encoded_name_size,
2101                                             name, name_size);
2102         }
2103 out:
2104         return rc;
2105 }
2106
2107 /**
2108  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2109  * @plaintext_name: The plaintext name
2110  * @plaintext_name_size: The plaintext name size
2111  * @ecryptfs_dir_dentry: eCryptfs directory dentry
2112  * @name: The filename in cipher text
2113  * @name_size: The cipher text name size
2114  *
2115  * Decrypts and decodes the filename.
2116  *
2117  * Returns zero on error; non-zero otherwise
2118  */
2119 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2120                                          size_t *plaintext_name_size,
2121                                          struct dentry *ecryptfs_dir_dentry,
2122                                          const char *name, size_t name_size)
2123 {
2124         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2125                 &ecryptfs_superblock_to_private(
2126                         ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2127         char *decoded_name;
2128         size_t decoded_name_size;
2129         size_t packet_size;
2130         int rc = 0;
2131
2132         if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2133             && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2134             && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2135             && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2136                         ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2137                 const char *orig_name = name;
2138                 size_t orig_name_size = name_size;
2139
2140                 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2141                 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2142                 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2143                                               name, name_size);
2144                 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2145                 if (!decoded_name) {
2146                         printk(KERN_ERR "%s: Out of memory whilst attempting "
2147                                "to kmalloc [%zd] bytes\n", __func__,
2148                                decoded_name_size);
2149                         rc = -ENOMEM;
2150                         goto out;
2151                 }
2152                 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2153                                               name, name_size);
2154                 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2155                                                   plaintext_name_size,
2156                                                   &packet_size,
2157                                                   mount_crypt_stat,
2158                                                   decoded_name,
2159                                                   decoded_name_size);
2160                 if (rc) {
2161                         printk(KERN_INFO "%s: Could not parse tag 70 packet "
2162                                "from filename; copying through filename "
2163                                "as-is\n", __func__);
2164                         rc = ecryptfs_copy_filename(plaintext_name,
2165                                                     plaintext_name_size,
2166                                                     orig_name, orig_name_size);
2167                         goto out_free;
2168                 }
2169         } else {
2170                 rc = ecryptfs_copy_filename(plaintext_name,
2171                                             plaintext_name_size,
2172                                             name, name_size);
2173                 goto out;
2174         }
2175 out_free:
2176         kfree(decoded_name);
2177 out:
2178         return rc;
2179 }
2180
2181 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16   143
2182
2183 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2184                            struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2185 {
2186         struct blkcipher_desc desc;
2187         struct mutex *tfm_mutex;
2188         size_t cipher_blocksize;
2189         int rc;
2190
2191         if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2192                 (*namelen) = lower_namelen;
2193                 return 0;
2194         }
2195
2196         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2197                         mount_crypt_stat->global_default_fn_cipher_name);
2198         if (unlikely(rc)) {
2199                 (*namelen) = 0;
2200                 return rc;
2201         }
2202
2203         mutex_lock(tfm_mutex);
2204         cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
2205         mutex_unlock(tfm_mutex);
2206
2207         /* Return an exact amount for the common cases */
2208         if (lower_namelen == NAME_MAX
2209             && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2210                 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2211                 return 0;
2212         }
2213
2214         /* Return a safe estimate for the uncommon cases */
2215         (*namelen) = lower_namelen;
2216         (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2217         /* Since this is the max decoded size, subtract 1 "decoded block" len */
2218         (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2219         (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2220         (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2221         /* Worst case is that the filename is padded nearly a full block size */
2222         (*namelen) -= cipher_blocksize - 1;
2223
2224         if ((*namelen) < 0)
2225                 (*namelen) = 0;
2226
2227         return 0;
2228 }