]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/ext4/inode.c
Merge tag 'for-5.4/dm-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/devic...
[linux.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54                               struct ext4_inode_info *ei)
55 {
56         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57         __u32 csum;
58         __u16 dummy_csum = 0;
59         int offset = offsetof(struct ext4_inode, i_checksum_lo);
60         unsigned int csum_size = sizeof(dummy_csum);
61
62         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64         offset += csum_size;
65         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66                            EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69                 offset = offsetof(struct ext4_inode, i_checksum_hi);
70                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71                                    EXT4_GOOD_OLD_INODE_SIZE,
72                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
73                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75                                            csum_size);
76                         offset += csum_size;
77                 }
78                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
80         }
81
82         return csum;
83 }
84
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86                                   struct ext4_inode_info *ei)
87 {
88         __u32 provided, calculated;
89
90         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91             cpu_to_le32(EXT4_OS_LINUX) ||
92             !ext4_has_metadata_csum(inode->i_sb))
93                 return 1;
94
95         provided = le16_to_cpu(raw->i_checksum_lo);
96         calculated = ext4_inode_csum(inode, raw, ei);
97         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100         else
101                 calculated &= 0xFFFF;
102
103         return provided == calculated;
104 }
105
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107                                 struct ext4_inode_info *ei)
108 {
109         __u32 csum;
110
111         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112             cpu_to_le32(EXT4_OS_LINUX) ||
113             !ext4_has_metadata_csum(inode->i_sb))
114                 return;
115
116         csum = ext4_inode_csum(inode, raw, ei);
117         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124                                               loff_t new_size)
125 {
126         trace_ext4_begin_ordered_truncate(inode, new_size);
127         /*
128          * If jinode is zero, then we never opened the file for
129          * writing, so there's no need to call
130          * jbd2_journal_begin_ordered_truncate() since there's no
131          * outstanding writes we need to flush.
132          */
133         if (!EXT4_I(inode)->jinode)
134                 return 0;
135         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136                                                    EXT4_I(inode)->jinode,
137                                                    new_size);
138 }
139
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141                                 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145                                   int pextents);
146
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153         if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154                 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155                                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157                 if (ext4_has_inline_data(inode))
158                         return 0;
159
160                 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161         }
162         return S_ISLNK(inode->i_mode) && inode->i_size &&
163                (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172                                  int nblocks)
173 {
174         int ret;
175
176         /*
177          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
178          * moment, get_block can be called only for blocks inside i_size since
179          * page cache has been already dropped and writes are blocked by
180          * i_mutex. So we can safely drop the i_data_sem here.
181          */
182         BUG_ON(EXT4_JOURNAL(inode) == NULL);
183         jbd_debug(2, "restarting handle %p\n", handle);
184         up_write(&EXT4_I(inode)->i_data_sem);
185         ret = ext4_journal_restart(handle, nblocks);
186         down_write(&EXT4_I(inode)->i_data_sem);
187         ext4_discard_preallocations(inode);
188
189         return ret;
190 }
191
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext4_evict_inode(struct inode *inode)
196 {
197         handle_t *handle;
198         int err;
199         int extra_credits = 3;
200         struct ext4_xattr_inode_array *ea_inode_array = NULL;
201
202         trace_ext4_evict_inode(inode);
203
204         if (inode->i_nlink) {
205                 /*
206                  * When journalling data dirty buffers are tracked only in the
207                  * journal. So although mm thinks everything is clean and
208                  * ready for reaping the inode might still have some pages to
209                  * write in the running transaction or waiting to be
210                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
211                  * (via truncate_inode_pages()) to discard these buffers can
212                  * cause data loss. Also even if we did not discard these
213                  * buffers, we would have no way to find them after the inode
214                  * is reaped and thus user could see stale data if he tries to
215                  * read them before the transaction is checkpointed. So be
216                  * careful and force everything to disk here... We use
217                  * ei->i_datasync_tid to store the newest transaction
218                  * containing inode's data.
219                  *
220                  * Note that directories do not have this problem because they
221                  * don't use page cache.
222                  */
223                 if (inode->i_ino != EXT4_JOURNAL_INO &&
224                     ext4_should_journal_data(inode) &&
225                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226                     inode->i_data.nrpages) {
227                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
229
230                         jbd2_complete_transaction(journal, commit_tid);
231                         filemap_write_and_wait(&inode->i_data);
232                 }
233                 truncate_inode_pages_final(&inode->i_data);
234
235                 goto no_delete;
236         }
237
238         if (is_bad_inode(inode))
239                 goto no_delete;
240         dquot_initialize(inode);
241
242         if (ext4_should_order_data(inode))
243                 ext4_begin_ordered_truncate(inode, 0);
244         truncate_inode_pages_final(&inode->i_data);
245
246         /*
247          * Protect us against freezing - iput() caller didn't have to have any
248          * protection against it
249          */
250         sb_start_intwrite(inode->i_sb);
251
252         if (!IS_NOQUOTA(inode))
253                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
254
255         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256                                  ext4_blocks_for_truncate(inode)+extra_credits);
257         if (IS_ERR(handle)) {
258                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
259                 /*
260                  * If we're going to skip the normal cleanup, we still need to
261                  * make sure that the in-core orphan linked list is properly
262                  * cleaned up.
263                  */
264                 ext4_orphan_del(NULL, inode);
265                 sb_end_intwrite(inode->i_sb);
266                 goto no_delete;
267         }
268
269         if (IS_SYNC(inode))
270                 ext4_handle_sync(handle);
271
272         /*
273          * Set inode->i_size to 0 before calling ext4_truncate(). We need
274          * special handling of symlinks here because i_size is used to
275          * determine whether ext4_inode_info->i_data contains symlink data or
276          * block mappings. Setting i_size to 0 will remove its fast symlink
277          * status. Erase i_data so that it becomes a valid empty block map.
278          */
279         if (ext4_inode_is_fast_symlink(inode))
280                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281         inode->i_size = 0;
282         err = ext4_mark_inode_dirty(handle, inode);
283         if (err) {
284                 ext4_warning(inode->i_sb,
285                              "couldn't mark inode dirty (err %d)", err);
286                 goto stop_handle;
287         }
288         if (inode->i_blocks) {
289                 err = ext4_truncate(inode);
290                 if (err) {
291                         ext4_error(inode->i_sb,
292                                    "couldn't truncate inode %lu (err %d)",
293                                    inode->i_ino, err);
294                         goto stop_handle;
295                 }
296         }
297
298         /* Remove xattr references. */
299         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300                                       extra_credits);
301         if (err) {
302                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303 stop_handle:
304                 ext4_journal_stop(handle);
305                 ext4_orphan_del(NULL, inode);
306                 sb_end_intwrite(inode->i_sb);
307                 ext4_xattr_inode_array_free(ea_inode_array);
308                 goto no_delete;
309         }
310
311         /*
312          * Kill off the orphan record which ext4_truncate created.
313          * AKPM: I think this can be inside the above `if'.
314          * Note that ext4_orphan_del() has to be able to cope with the
315          * deletion of a non-existent orphan - this is because we don't
316          * know if ext4_truncate() actually created an orphan record.
317          * (Well, we could do this if we need to, but heck - it works)
318          */
319         ext4_orphan_del(handle, inode);
320         EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
321
322         /*
323          * One subtle ordering requirement: if anything has gone wrong
324          * (transaction abort, IO errors, whatever), then we can still
325          * do these next steps (the fs will already have been marked as
326          * having errors), but we can't free the inode if the mark_dirty
327          * fails.
328          */
329         if (ext4_mark_inode_dirty(handle, inode))
330                 /* If that failed, just do the required in-core inode clear. */
331                 ext4_clear_inode(inode);
332         else
333                 ext4_free_inode(handle, inode);
334         ext4_journal_stop(handle);
335         sb_end_intwrite(inode->i_sb);
336         ext4_xattr_inode_array_free(ea_inode_array);
337         return;
338 no_delete:
339         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
340 }
341
342 #ifdef CONFIG_QUOTA
343 qsize_t *ext4_get_reserved_space(struct inode *inode)
344 {
345         return &EXT4_I(inode)->i_reserved_quota;
346 }
347 #endif
348
349 /*
350  * Called with i_data_sem down, which is important since we can call
351  * ext4_discard_preallocations() from here.
352  */
353 void ext4_da_update_reserve_space(struct inode *inode,
354                                         int used, int quota_claim)
355 {
356         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357         struct ext4_inode_info *ei = EXT4_I(inode);
358
359         spin_lock(&ei->i_block_reservation_lock);
360         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361         if (unlikely(used > ei->i_reserved_data_blocks)) {
362                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363                          "with only %d reserved data blocks",
364                          __func__, inode->i_ino, used,
365                          ei->i_reserved_data_blocks);
366                 WARN_ON(1);
367                 used = ei->i_reserved_data_blocks;
368         }
369
370         /* Update per-inode reservations */
371         ei->i_reserved_data_blocks -= used;
372         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
373
374         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
375
376         /* Update quota subsystem for data blocks */
377         if (quota_claim)
378                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
379         else {
380                 /*
381                  * We did fallocate with an offset that is already delayed
382                  * allocated. So on delayed allocated writeback we should
383                  * not re-claim the quota for fallocated blocks.
384                  */
385                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
386         }
387
388         /*
389          * If we have done all the pending block allocations and if
390          * there aren't any writers on the inode, we can discard the
391          * inode's preallocations.
392          */
393         if ((ei->i_reserved_data_blocks == 0) &&
394             !inode_is_open_for_write(inode))
395                 ext4_discard_preallocations(inode);
396 }
397
398 static int __check_block_validity(struct inode *inode, const char *func,
399                                 unsigned int line,
400                                 struct ext4_map_blocks *map)
401 {
402         if (ext4_has_feature_journal(inode->i_sb) &&
403             (inode->i_ino ==
404              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
405                 return 0;
406         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
407                                    map->m_len)) {
408                 ext4_error_inode(inode, func, line, map->m_pblk,
409                                  "lblock %lu mapped to illegal pblock %llu "
410                                  "(length %d)", (unsigned long) map->m_lblk,
411                                  map->m_pblk, map->m_len);
412                 return -EFSCORRUPTED;
413         }
414         return 0;
415 }
416
417 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
418                        ext4_lblk_t len)
419 {
420         int ret;
421
422         if (IS_ENCRYPTED(inode))
423                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
424
425         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
426         if (ret > 0)
427                 ret = 0;
428
429         return ret;
430 }
431
432 #define check_block_validity(inode, map)        \
433         __check_block_validity((inode), __func__, __LINE__, (map))
434
435 #ifdef ES_AGGRESSIVE_TEST
436 static void ext4_map_blocks_es_recheck(handle_t *handle,
437                                        struct inode *inode,
438                                        struct ext4_map_blocks *es_map,
439                                        struct ext4_map_blocks *map,
440                                        int flags)
441 {
442         int retval;
443
444         map->m_flags = 0;
445         /*
446          * There is a race window that the result is not the same.
447          * e.g. xfstests #223 when dioread_nolock enables.  The reason
448          * is that we lookup a block mapping in extent status tree with
449          * out taking i_data_sem.  So at the time the unwritten extent
450          * could be converted.
451          */
452         down_read(&EXT4_I(inode)->i_data_sem);
453         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
454                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
455                                              EXT4_GET_BLOCKS_KEEP_SIZE);
456         } else {
457                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
458                                              EXT4_GET_BLOCKS_KEEP_SIZE);
459         }
460         up_read((&EXT4_I(inode)->i_data_sem));
461
462         /*
463          * We don't check m_len because extent will be collpased in status
464          * tree.  So the m_len might not equal.
465          */
466         if (es_map->m_lblk != map->m_lblk ||
467             es_map->m_flags != map->m_flags ||
468             es_map->m_pblk != map->m_pblk) {
469                 printk("ES cache assertion failed for inode: %lu "
470                        "es_cached ex [%d/%d/%llu/%x] != "
471                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472                        inode->i_ino, es_map->m_lblk, es_map->m_len,
473                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
474                        map->m_len, map->m_pblk, map->m_flags,
475                        retval, flags);
476         }
477 }
478 #endif /* ES_AGGRESSIVE_TEST */
479
480 /*
481  * The ext4_map_blocks() function tries to look up the requested blocks,
482  * and returns if the blocks are already mapped.
483  *
484  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485  * and store the allocated blocks in the result buffer head and mark it
486  * mapped.
487  *
488  * If file type is extents based, it will call ext4_ext_map_blocks(),
489  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490  * based files
491  *
492  * On success, it returns the number of blocks being mapped or allocated.  if
493  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
494  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, @map is returned as unmapped but we still do fill map->m_len to
498  * indicate the length of a hole starting at map->m_lblk.
499  *
500  * It returns the error in case of allocation failure.
501  */
502 int ext4_map_blocks(handle_t *handle, struct inode *inode,
503                     struct ext4_map_blocks *map, int flags)
504 {
505         struct extent_status es;
506         int retval;
507         int ret = 0;
508 #ifdef ES_AGGRESSIVE_TEST
509         struct ext4_map_blocks orig_map;
510
511         memcpy(&orig_map, map, sizeof(*map));
512 #endif
513
514         map->m_flags = 0;
515         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
516                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
517                   (unsigned long) map->m_lblk);
518
519         /*
520          * ext4_map_blocks returns an int, and m_len is an unsigned int
521          */
522         if (unlikely(map->m_len > INT_MAX))
523                 map->m_len = INT_MAX;
524
525         /* We can handle the block number less than EXT_MAX_BLOCKS */
526         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
527                 return -EFSCORRUPTED;
528
529         /* Lookup extent status tree firstly */
530         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
531                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
532                         map->m_pblk = ext4_es_pblock(&es) +
533                                         map->m_lblk - es.es_lblk;
534                         map->m_flags |= ext4_es_is_written(&es) ?
535                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
536                         retval = es.es_len - (map->m_lblk - es.es_lblk);
537                         if (retval > map->m_len)
538                                 retval = map->m_len;
539                         map->m_len = retval;
540                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
541                         map->m_pblk = 0;
542                         retval = es.es_len - (map->m_lblk - es.es_lblk);
543                         if (retval > map->m_len)
544                                 retval = map->m_len;
545                         map->m_len = retval;
546                         retval = 0;
547                 } else {
548                         BUG();
549                 }
550 #ifdef ES_AGGRESSIVE_TEST
551                 ext4_map_blocks_es_recheck(handle, inode, map,
552                                            &orig_map, flags);
553 #endif
554                 goto found;
555         }
556
557         /*
558          * Try to see if we can get the block without requesting a new
559          * file system block.
560          */
561         down_read(&EXT4_I(inode)->i_data_sem);
562         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
563                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
564                                              EXT4_GET_BLOCKS_KEEP_SIZE);
565         } else {
566                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
567                                              EXT4_GET_BLOCKS_KEEP_SIZE);
568         }
569         if (retval > 0) {
570                 unsigned int status;
571
572                 if (unlikely(retval != map->m_len)) {
573                         ext4_warning(inode->i_sb,
574                                      "ES len assertion failed for inode "
575                                      "%lu: retval %d != map->m_len %d",
576                                      inode->i_ino, retval, map->m_len);
577                         WARN_ON(1);
578                 }
579
580                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
581                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
582                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
583                     !(status & EXTENT_STATUS_WRITTEN) &&
584                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
585                                        map->m_lblk + map->m_len - 1))
586                         status |= EXTENT_STATUS_DELAYED;
587                 ret = ext4_es_insert_extent(inode, map->m_lblk,
588                                             map->m_len, map->m_pblk, status);
589                 if (ret < 0)
590                         retval = ret;
591         }
592         up_read((&EXT4_I(inode)->i_data_sem));
593
594 found:
595         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
596                 ret = check_block_validity(inode, map);
597                 if (ret != 0)
598                         return ret;
599         }
600
601         /* If it is only a block(s) look up */
602         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
603                 return retval;
604
605         /*
606          * Returns if the blocks have already allocated
607          *
608          * Note that if blocks have been preallocated
609          * ext4_ext_get_block() returns the create = 0
610          * with buffer head unmapped.
611          */
612         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
613                 /*
614                  * If we need to convert extent to unwritten
615                  * we continue and do the actual work in
616                  * ext4_ext_map_blocks()
617                  */
618                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
619                         return retval;
620
621         /*
622          * Here we clear m_flags because after allocating an new extent,
623          * it will be set again.
624          */
625         map->m_flags &= ~EXT4_MAP_FLAGS;
626
627         /*
628          * New blocks allocate and/or writing to unwritten extent
629          * will possibly result in updating i_data, so we take
630          * the write lock of i_data_sem, and call get_block()
631          * with create == 1 flag.
632          */
633         down_write(&EXT4_I(inode)->i_data_sem);
634
635         /*
636          * We need to check for EXT4 here because migrate
637          * could have changed the inode type in between
638          */
639         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
640                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
641         } else {
642                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
643
644                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
645                         /*
646                          * We allocated new blocks which will result in
647                          * i_data's format changing.  Force the migrate
648                          * to fail by clearing migrate flags
649                          */
650                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
651                 }
652
653                 /*
654                  * Update reserved blocks/metadata blocks after successful
655                  * block allocation which had been deferred till now. We don't
656                  * support fallocate for non extent files. So we can update
657                  * reserve space here.
658                  */
659                 if ((retval > 0) &&
660                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
661                         ext4_da_update_reserve_space(inode, retval, 1);
662         }
663
664         if (retval > 0) {
665                 unsigned int status;
666
667                 if (unlikely(retval != map->m_len)) {
668                         ext4_warning(inode->i_sb,
669                                      "ES len assertion failed for inode "
670                                      "%lu: retval %d != map->m_len %d",
671                                      inode->i_ino, retval, map->m_len);
672                         WARN_ON(1);
673                 }
674
675                 /*
676                  * We have to zeroout blocks before inserting them into extent
677                  * status tree. Otherwise someone could look them up there and
678                  * use them before they are really zeroed. We also have to
679                  * unmap metadata before zeroing as otherwise writeback can
680                  * overwrite zeros with stale data from block device.
681                  */
682                 if (flags & EXT4_GET_BLOCKS_ZERO &&
683                     map->m_flags & EXT4_MAP_MAPPED &&
684                     map->m_flags & EXT4_MAP_NEW) {
685                         ret = ext4_issue_zeroout(inode, map->m_lblk,
686                                                  map->m_pblk, map->m_len);
687                         if (ret) {
688                                 retval = ret;
689                                 goto out_sem;
690                         }
691                 }
692
693                 /*
694                  * If the extent has been zeroed out, we don't need to update
695                  * extent status tree.
696                  */
697                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
698                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
699                         if (ext4_es_is_written(&es))
700                                 goto out_sem;
701                 }
702                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
703                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
704                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
705                     !(status & EXTENT_STATUS_WRITTEN) &&
706                     ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
707                                        map->m_lblk + map->m_len - 1))
708                         status |= EXTENT_STATUS_DELAYED;
709                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
710                                             map->m_pblk, status);
711                 if (ret < 0) {
712                         retval = ret;
713                         goto out_sem;
714                 }
715         }
716
717 out_sem:
718         up_write((&EXT4_I(inode)->i_data_sem));
719         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
720                 ret = check_block_validity(inode, map);
721                 if (ret != 0)
722                         return ret;
723
724                 /*
725                  * Inodes with freshly allocated blocks where contents will be
726                  * visible after transaction commit must be on transaction's
727                  * ordered data list.
728                  */
729                 if (map->m_flags & EXT4_MAP_NEW &&
730                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
731                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
732                     !ext4_is_quota_file(inode) &&
733                     ext4_should_order_data(inode)) {
734                         loff_t start_byte =
735                                 (loff_t)map->m_lblk << inode->i_blkbits;
736                         loff_t length = (loff_t)map->m_len << inode->i_blkbits;
737
738                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
739                                 ret = ext4_jbd2_inode_add_wait(handle, inode,
740                                                 start_byte, length);
741                         else
742                                 ret = ext4_jbd2_inode_add_write(handle, inode,
743                                                 start_byte, length);
744                         if (ret)
745                                 return ret;
746                 }
747         }
748         return retval;
749 }
750
751 /*
752  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
753  * we have to be careful as someone else may be manipulating b_state as well.
754  */
755 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
756 {
757         unsigned long old_state;
758         unsigned long new_state;
759
760         flags &= EXT4_MAP_FLAGS;
761
762         /* Dummy buffer_head? Set non-atomically. */
763         if (!bh->b_page) {
764                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
765                 return;
766         }
767         /*
768          * Someone else may be modifying b_state. Be careful! This is ugly but
769          * once we get rid of using bh as a container for mapping information
770          * to pass to / from get_block functions, this can go away.
771          */
772         do {
773                 old_state = READ_ONCE(bh->b_state);
774                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
775         } while (unlikely(
776                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
777 }
778
779 static int _ext4_get_block(struct inode *inode, sector_t iblock,
780                            struct buffer_head *bh, int flags)
781 {
782         struct ext4_map_blocks map;
783         int ret = 0;
784
785         if (ext4_has_inline_data(inode))
786                 return -ERANGE;
787
788         map.m_lblk = iblock;
789         map.m_len = bh->b_size >> inode->i_blkbits;
790
791         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
792                               flags);
793         if (ret > 0) {
794                 map_bh(bh, inode->i_sb, map.m_pblk);
795                 ext4_update_bh_state(bh, map.m_flags);
796                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
797                 ret = 0;
798         } else if (ret == 0) {
799                 /* hole case, need to fill in bh->b_size */
800                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
801         }
802         return ret;
803 }
804
805 int ext4_get_block(struct inode *inode, sector_t iblock,
806                    struct buffer_head *bh, int create)
807 {
808         return _ext4_get_block(inode, iblock, bh,
809                                create ? EXT4_GET_BLOCKS_CREATE : 0);
810 }
811
812 /*
813  * Get block function used when preparing for buffered write if we require
814  * creating an unwritten extent if blocks haven't been allocated.  The extent
815  * will be converted to written after the IO is complete.
816  */
817 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
818                              struct buffer_head *bh_result, int create)
819 {
820         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
821                    inode->i_ino, create);
822         return _ext4_get_block(inode, iblock, bh_result,
823                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
824 }
825
826 /* Maximum number of blocks we map for direct IO at once. */
827 #define DIO_MAX_BLOCKS 4096
828
829 /*
830  * Get blocks function for the cases that need to start a transaction -
831  * generally difference cases of direct IO and DAX IO. It also handles retries
832  * in case of ENOSPC.
833  */
834 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
835                                 struct buffer_head *bh_result, int flags)
836 {
837         int dio_credits;
838         handle_t *handle;
839         int retries = 0;
840         int ret;
841
842         /* Trim mapping request to maximum we can map at once for DIO */
843         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
844                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
845         dio_credits = ext4_chunk_trans_blocks(inode,
846                                       bh_result->b_size >> inode->i_blkbits);
847 retry:
848         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
849         if (IS_ERR(handle))
850                 return PTR_ERR(handle);
851
852         ret = _ext4_get_block(inode, iblock, bh_result, flags);
853         ext4_journal_stop(handle);
854
855         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
856                 goto retry;
857         return ret;
858 }
859
860 /* Get block function for DIO reads and writes to inodes without extents */
861 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
862                        struct buffer_head *bh, int create)
863 {
864         /* We don't expect handle for direct IO */
865         WARN_ON_ONCE(ext4_journal_current_handle());
866
867         if (!create)
868                 return _ext4_get_block(inode, iblock, bh, 0);
869         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
870 }
871
872 /*
873  * Get block function for AIO DIO writes when we create unwritten extent if
874  * blocks are not allocated yet. The extent will be converted to written
875  * after IO is complete.
876  */
877 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
878                 sector_t iblock, struct buffer_head *bh_result, int create)
879 {
880         int ret;
881
882         /* We don't expect handle for direct IO */
883         WARN_ON_ONCE(ext4_journal_current_handle());
884
885         ret = ext4_get_block_trans(inode, iblock, bh_result,
886                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
887
888         /*
889          * When doing DIO using unwritten extents, we need io_end to convert
890          * unwritten extents to written on IO completion. We allocate io_end
891          * once we spot unwritten extent and store it in b_private. Generic
892          * DIO code keeps b_private set and furthermore passes the value to
893          * our completion callback in 'private' argument.
894          */
895         if (!ret && buffer_unwritten(bh_result)) {
896                 if (!bh_result->b_private) {
897                         ext4_io_end_t *io_end;
898
899                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
900                         if (!io_end)
901                                 return -ENOMEM;
902                         bh_result->b_private = io_end;
903                         ext4_set_io_unwritten_flag(inode, io_end);
904                 }
905                 set_buffer_defer_completion(bh_result);
906         }
907
908         return ret;
909 }
910
911 /*
912  * Get block function for non-AIO DIO writes when we create unwritten extent if
913  * blocks are not allocated yet. The extent will be converted to written
914  * after IO is complete by ext4_direct_IO_write().
915  */
916 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
917                 sector_t iblock, struct buffer_head *bh_result, int create)
918 {
919         int ret;
920
921         /* We don't expect handle for direct IO */
922         WARN_ON_ONCE(ext4_journal_current_handle());
923
924         ret = ext4_get_block_trans(inode, iblock, bh_result,
925                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
926
927         /*
928          * Mark inode as having pending DIO writes to unwritten extents.
929          * ext4_direct_IO_write() checks this flag and converts extents to
930          * written.
931          */
932         if (!ret && buffer_unwritten(bh_result))
933                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
934
935         return ret;
936 }
937
938 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
939                    struct buffer_head *bh_result, int create)
940 {
941         int ret;
942
943         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
944                    inode->i_ino, create);
945         /* We don't expect handle for direct IO */
946         WARN_ON_ONCE(ext4_journal_current_handle());
947
948         ret = _ext4_get_block(inode, iblock, bh_result, 0);
949         /*
950          * Blocks should have been preallocated! ext4_file_write_iter() checks
951          * that.
952          */
953         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
954
955         return ret;
956 }
957
958
959 /*
960  * `handle' can be NULL if create is zero
961  */
962 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
963                                 ext4_lblk_t block, int map_flags)
964 {
965         struct ext4_map_blocks map;
966         struct buffer_head *bh;
967         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
968         int err;
969
970         J_ASSERT(handle != NULL || create == 0);
971
972         map.m_lblk = block;
973         map.m_len = 1;
974         err = ext4_map_blocks(handle, inode, &map, map_flags);
975
976         if (err == 0)
977                 return create ? ERR_PTR(-ENOSPC) : NULL;
978         if (err < 0)
979                 return ERR_PTR(err);
980
981         bh = sb_getblk(inode->i_sb, map.m_pblk);
982         if (unlikely(!bh))
983                 return ERR_PTR(-ENOMEM);
984         if (map.m_flags & EXT4_MAP_NEW) {
985                 J_ASSERT(create != 0);
986                 J_ASSERT(handle != NULL);
987
988                 /*
989                  * Now that we do not always journal data, we should
990                  * keep in mind whether this should always journal the
991                  * new buffer as metadata.  For now, regular file
992                  * writes use ext4_get_block instead, so it's not a
993                  * problem.
994                  */
995                 lock_buffer(bh);
996                 BUFFER_TRACE(bh, "call get_create_access");
997                 err = ext4_journal_get_create_access(handle, bh);
998                 if (unlikely(err)) {
999                         unlock_buffer(bh);
1000                         goto errout;
1001                 }
1002                 if (!buffer_uptodate(bh)) {
1003                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1004                         set_buffer_uptodate(bh);
1005                 }
1006                 unlock_buffer(bh);
1007                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1008                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1009                 if (unlikely(err))
1010                         goto errout;
1011         } else
1012                 BUFFER_TRACE(bh, "not a new buffer");
1013         return bh;
1014 errout:
1015         brelse(bh);
1016         return ERR_PTR(err);
1017 }
1018
1019 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1020                                ext4_lblk_t block, int map_flags)
1021 {
1022         struct buffer_head *bh;
1023
1024         bh = ext4_getblk(handle, inode, block, map_flags);
1025         if (IS_ERR(bh))
1026                 return bh;
1027         if (!bh || buffer_uptodate(bh))
1028                 return bh;
1029         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1030         wait_on_buffer(bh);
1031         if (buffer_uptodate(bh))
1032                 return bh;
1033         put_bh(bh);
1034         return ERR_PTR(-EIO);
1035 }
1036
1037 /* Read a contiguous batch of blocks. */
1038 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1039                      bool wait, struct buffer_head **bhs)
1040 {
1041         int i, err;
1042
1043         for (i = 0; i < bh_count; i++) {
1044                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1045                 if (IS_ERR(bhs[i])) {
1046                         err = PTR_ERR(bhs[i]);
1047                         bh_count = i;
1048                         goto out_brelse;
1049                 }
1050         }
1051
1052         for (i = 0; i < bh_count; i++)
1053                 /* Note that NULL bhs[i] is valid because of holes. */
1054                 if (bhs[i] && !buffer_uptodate(bhs[i]))
1055                         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1056                                     &bhs[i]);
1057
1058         if (!wait)
1059                 return 0;
1060
1061         for (i = 0; i < bh_count; i++)
1062                 if (bhs[i])
1063                         wait_on_buffer(bhs[i]);
1064
1065         for (i = 0; i < bh_count; i++) {
1066                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1067                         err = -EIO;
1068                         goto out_brelse;
1069                 }
1070         }
1071         return 0;
1072
1073 out_brelse:
1074         for (i = 0; i < bh_count; i++) {
1075                 brelse(bhs[i]);
1076                 bhs[i] = NULL;
1077         }
1078         return err;
1079 }
1080
1081 int ext4_walk_page_buffers(handle_t *handle,
1082                            struct buffer_head *head,
1083                            unsigned from,
1084                            unsigned to,
1085                            int *partial,
1086                            int (*fn)(handle_t *handle,
1087                                      struct buffer_head *bh))
1088 {
1089         struct buffer_head *bh;
1090         unsigned block_start, block_end;
1091         unsigned blocksize = head->b_size;
1092         int err, ret = 0;
1093         struct buffer_head *next;
1094
1095         for (bh = head, block_start = 0;
1096              ret == 0 && (bh != head || !block_start);
1097              block_start = block_end, bh = next) {
1098                 next = bh->b_this_page;
1099                 block_end = block_start + blocksize;
1100                 if (block_end <= from || block_start >= to) {
1101                         if (partial && !buffer_uptodate(bh))
1102                                 *partial = 1;
1103                         continue;
1104                 }
1105                 err = (*fn)(handle, bh);
1106                 if (!ret)
1107                         ret = err;
1108         }
1109         return ret;
1110 }
1111
1112 /*
1113  * To preserve ordering, it is essential that the hole instantiation and
1114  * the data write be encapsulated in a single transaction.  We cannot
1115  * close off a transaction and start a new one between the ext4_get_block()
1116  * and the commit_write().  So doing the jbd2_journal_start at the start of
1117  * prepare_write() is the right place.
1118  *
1119  * Also, this function can nest inside ext4_writepage().  In that case, we
1120  * *know* that ext4_writepage() has generated enough buffer credits to do the
1121  * whole page.  So we won't block on the journal in that case, which is good,
1122  * because the caller may be PF_MEMALLOC.
1123  *
1124  * By accident, ext4 can be reentered when a transaction is open via
1125  * quota file writes.  If we were to commit the transaction while thus
1126  * reentered, there can be a deadlock - we would be holding a quota
1127  * lock, and the commit would never complete if another thread had a
1128  * transaction open and was blocking on the quota lock - a ranking
1129  * violation.
1130  *
1131  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1132  * will _not_ run commit under these circumstances because handle->h_ref
1133  * is elevated.  We'll still have enough credits for the tiny quotafile
1134  * write.
1135  */
1136 int do_journal_get_write_access(handle_t *handle,
1137                                 struct buffer_head *bh)
1138 {
1139         int dirty = buffer_dirty(bh);
1140         int ret;
1141
1142         if (!buffer_mapped(bh) || buffer_freed(bh))
1143                 return 0;
1144         /*
1145          * __block_write_begin() could have dirtied some buffers. Clean
1146          * the dirty bit as jbd2_journal_get_write_access() could complain
1147          * otherwise about fs integrity issues. Setting of the dirty bit
1148          * by __block_write_begin() isn't a real problem here as we clear
1149          * the bit before releasing a page lock and thus writeback cannot
1150          * ever write the buffer.
1151          */
1152         if (dirty)
1153                 clear_buffer_dirty(bh);
1154         BUFFER_TRACE(bh, "get write access");
1155         ret = ext4_journal_get_write_access(handle, bh);
1156         if (!ret && dirty)
1157                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1158         return ret;
1159 }
1160
1161 #ifdef CONFIG_FS_ENCRYPTION
1162 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1163                                   get_block_t *get_block)
1164 {
1165         unsigned from = pos & (PAGE_SIZE - 1);
1166         unsigned to = from + len;
1167         struct inode *inode = page->mapping->host;
1168         unsigned block_start, block_end;
1169         sector_t block;
1170         int err = 0;
1171         unsigned blocksize = inode->i_sb->s_blocksize;
1172         unsigned bbits;
1173         struct buffer_head *bh, *head, *wait[2];
1174         int nr_wait = 0;
1175         int i;
1176
1177         BUG_ON(!PageLocked(page));
1178         BUG_ON(from > PAGE_SIZE);
1179         BUG_ON(to > PAGE_SIZE);
1180         BUG_ON(from > to);
1181
1182         if (!page_has_buffers(page))
1183                 create_empty_buffers(page, blocksize, 0);
1184         head = page_buffers(page);
1185         bbits = ilog2(blocksize);
1186         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1187
1188         for (bh = head, block_start = 0; bh != head || !block_start;
1189             block++, block_start = block_end, bh = bh->b_this_page) {
1190                 block_end = block_start + blocksize;
1191                 if (block_end <= from || block_start >= to) {
1192                         if (PageUptodate(page)) {
1193                                 if (!buffer_uptodate(bh))
1194                                         set_buffer_uptodate(bh);
1195                         }
1196                         continue;
1197                 }
1198                 if (buffer_new(bh))
1199                         clear_buffer_new(bh);
1200                 if (!buffer_mapped(bh)) {
1201                         WARN_ON(bh->b_size != blocksize);
1202                         err = get_block(inode, block, bh, 1);
1203                         if (err)
1204                                 break;
1205                         if (buffer_new(bh)) {
1206                                 if (PageUptodate(page)) {
1207                                         clear_buffer_new(bh);
1208                                         set_buffer_uptodate(bh);
1209                                         mark_buffer_dirty(bh);
1210                                         continue;
1211                                 }
1212                                 if (block_end > to || block_start < from)
1213                                         zero_user_segments(page, to, block_end,
1214                                                            block_start, from);
1215                                 continue;
1216                         }
1217                 }
1218                 if (PageUptodate(page)) {
1219                         if (!buffer_uptodate(bh))
1220                                 set_buffer_uptodate(bh);
1221                         continue;
1222                 }
1223                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1224                     !buffer_unwritten(bh) &&
1225                     (block_start < from || block_end > to)) {
1226                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1227                         wait[nr_wait++] = bh;
1228                 }
1229         }
1230         /*
1231          * If we issued read requests, let them complete.
1232          */
1233         for (i = 0; i < nr_wait; i++) {
1234                 wait_on_buffer(wait[i]);
1235                 if (!buffer_uptodate(wait[i]))
1236                         err = -EIO;
1237         }
1238         if (unlikely(err)) {
1239                 page_zero_new_buffers(page, from, to);
1240         } else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1241                 for (i = 0; i < nr_wait; i++) {
1242                         int err2;
1243
1244                         err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1245                                                                 bh_offset(wait[i]));
1246                         if (err2) {
1247                                 clear_buffer_uptodate(wait[i]);
1248                                 err = err2;
1249                         }
1250                 }
1251         }
1252
1253         return err;
1254 }
1255 #endif
1256
1257 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1258                             loff_t pos, unsigned len, unsigned flags,
1259                             struct page **pagep, void **fsdata)
1260 {
1261         struct inode *inode = mapping->host;
1262         int ret, needed_blocks;
1263         handle_t *handle;
1264         int retries = 0;
1265         struct page *page;
1266         pgoff_t index;
1267         unsigned from, to;
1268
1269         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1270                 return -EIO;
1271
1272         trace_ext4_write_begin(inode, pos, len, flags);
1273         /*
1274          * Reserve one block more for addition to orphan list in case
1275          * we allocate blocks but write fails for some reason
1276          */
1277         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1278         index = pos >> PAGE_SHIFT;
1279         from = pos & (PAGE_SIZE - 1);
1280         to = from + len;
1281
1282         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1283                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1284                                                     flags, pagep);
1285                 if (ret < 0)
1286                         return ret;
1287                 if (ret == 1)
1288                         return 0;
1289         }
1290
1291         /*
1292          * grab_cache_page_write_begin() can take a long time if the
1293          * system is thrashing due to memory pressure, or if the page
1294          * is being written back.  So grab it first before we start
1295          * the transaction handle.  This also allows us to allocate
1296          * the page (if needed) without using GFP_NOFS.
1297          */
1298 retry_grab:
1299         page = grab_cache_page_write_begin(mapping, index, flags);
1300         if (!page)
1301                 return -ENOMEM;
1302         unlock_page(page);
1303
1304 retry_journal:
1305         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1306         if (IS_ERR(handle)) {
1307                 put_page(page);
1308                 return PTR_ERR(handle);
1309         }
1310
1311         lock_page(page);
1312         if (page->mapping != mapping) {
1313                 /* The page got truncated from under us */
1314                 unlock_page(page);
1315                 put_page(page);
1316                 ext4_journal_stop(handle);
1317                 goto retry_grab;
1318         }
1319         /* In case writeback began while the page was unlocked */
1320         wait_for_stable_page(page);
1321
1322 #ifdef CONFIG_FS_ENCRYPTION
1323         if (ext4_should_dioread_nolock(inode))
1324                 ret = ext4_block_write_begin(page, pos, len,
1325                                              ext4_get_block_unwritten);
1326         else
1327                 ret = ext4_block_write_begin(page, pos, len,
1328                                              ext4_get_block);
1329 #else
1330         if (ext4_should_dioread_nolock(inode))
1331                 ret = __block_write_begin(page, pos, len,
1332                                           ext4_get_block_unwritten);
1333         else
1334                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1335 #endif
1336         if (!ret && ext4_should_journal_data(inode)) {
1337                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1338                                              from, to, NULL,
1339                                              do_journal_get_write_access);
1340         }
1341
1342         if (ret) {
1343                 bool extended = (pos + len > inode->i_size) &&
1344                                 !ext4_verity_in_progress(inode);
1345
1346                 unlock_page(page);
1347                 /*
1348                  * __block_write_begin may have instantiated a few blocks
1349                  * outside i_size.  Trim these off again. Don't need
1350                  * i_size_read because we hold i_mutex.
1351                  *
1352                  * Add inode to orphan list in case we crash before
1353                  * truncate finishes
1354                  */
1355                 if (extended && ext4_can_truncate(inode))
1356                         ext4_orphan_add(handle, inode);
1357
1358                 ext4_journal_stop(handle);
1359                 if (extended) {
1360                         ext4_truncate_failed_write(inode);
1361                         /*
1362                          * If truncate failed early the inode might
1363                          * still be on the orphan list; we need to
1364                          * make sure the inode is removed from the
1365                          * orphan list in that case.
1366                          */
1367                         if (inode->i_nlink)
1368                                 ext4_orphan_del(NULL, inode);
1369                 }
1370
1371                 if (ret == -ENOSPC &&
1372                     ext4_should_retry_alloc(inode->i_sb, &retries))
1373                         goto retry_journal;
1374                 put_page(page);
1375                 return ret;
1376         }
1377         *pagep = page;
1378         return ret;
1379 }
1380
1381 /* For write_end() in data=journal mode */
1382 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1383 {
1384         int ret;
1385         if (!buffer_mapped(bh) || buffer_freed(bh))
1386                 return 0;
1387         set_buffer_uptodate(bh);
1388         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1389         clear_buffer_meta(bh);
1390         clear_buffer_prio(bh);
1391         return ret;
1392 }
1393
1394 /*
1395  * We need to pick up the new inode size which generic_commit_write gave us
1396  * `file' can be NULL - eg, when called from page_symlink().
1397  *
1398  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1399  * buffers are managed internally.
1400  */
1401 static int ext4_write_end(struct file *file,
1402                           struct address_space *mapping,
1403                           loff_t pos, unsigned len, unsigned copied,
1404                           struct page *page, void *fsdata)
1405 {
1406         handle_t *handle = ext4_journal_current_handle();
1407         struct inode *inode = mapping->host;
1408         loff_t old_size = inode->i_size;
1409         int ret = 0, ret2;
1410         int i_size_changed = 0;
1411         int inline_data = ext4_has_inline_data(inode);
1412         bool verity = ext4_verity_in_progress(inode);
1413
1414         trace_ext4_write_end(inode, pos, len, copied);
1415         if (inline_data) {
1416                 ret = ext4_write_inline_data_end(inode, pos, len,
1417                                                  copied, page);
1418                 if (ret < 0) {
1419                         unlock_page(page);
1420                         put_page(page);
1421                         goto errout;
1422                 }
1423                 copied = ret;
1424         } else
1425                 copied = block_write_end(file, mapping, pos,
1426                                          len, copied, page, fsdata);
1427         /*
1428          * it's important to update i_size while still holding page lock:
1429          * page writeout could otherwise come in and zero beyond i_size.
1430          *
1431          * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1432          * blocks are being written past EOF, so skip the i_size update.
1433          */
1434         if (!verity)
1435                 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1436         unlock_page(page);
1437         put_page(page);
1438
1439         if (old_size < pos && !verity)
1440                 pagecache_isize_extended(inode, old_size, pos);
1441         /*
1442          * Don't mark the inode dirty under page lock. First, it unnecessarily
1443          * makes the holding time of page lock longer. Second, it forces lock
1444          * ordering of page lock and transaction start for journaling
1445          * filesystems.
1446          */
1447         if (i_size_changed || inline_data)
1448                 ext4_mark_inode_dirty(handle, inode);
1449
1450         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1451                 /* if we have allocated more blocks and copied
1452                  * less. We will have blocks allocated outside
1453                  * inode->i_size. So truncate them
1454                  */
1455                 ext4_orphan_add(handle, inode);
1456 errout:
1457         ret2 = ext4_journal_stop(handle);
1458         if (!ret)
1459                 ret = ret2;
1460
1461         if (pos + len > inode->i_size && !verity) {
1462                 ext4_truncate_failed_write(inode);
1463                 /*
1464                  * If truncate failed early the inode might still be
1465                  * on the orphan list; we need to make sure the inode
1466                  * is removed from the orphan list in that case.
1467                  */
1468                 if (inode->i_nlink)
1469                         ext4_orphan_del(NULL, inode);
1470         }
1471
1472         return ret ? ret : copied;
1473 }
1474
1475 /*
1476  * This is a private version of page_zero_new_buffers() which doesn't
1477  * set the buffer to be dirty, since in data=journalled mode we need
1478  * to call ext4_handle_dirty_metadata() instead.
1479  */
1480 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1481                                             struct page *page,
1482                                             unsigned from, unsigned to)
1483 {
1484         unsigned int block_start = 0, block_end;
1485         struct buffer_head *head, *bh;
1486
1487         bh = head = page_buffers(page);
1488         do {
1489                 block_end = block_start + bh->b_size;
1490                 if (buffer_new(bh)) {
1491                         if (block_end > from && block_start < to) {
1492                                 if (!PageUptodate(page)) {
1493                                         unsigned start, size;
1494
1495                                         start = max(from, block_start);
1496                                         size = min(to, block_end) - start;
1497
1498                                         zero_user(page, start, size);
1499                                         write_end_fn(handle, bh);
1500                                 }
1501                                 clear_buffer_new(bh);
1502                         }
1503                 }
1504                 block_start = block_end;
1505                 bh = bh->b_this_page;
1506         } while (bh != head);
1507 }
1508
1509 static int ext4_journalled_write_end(struct file *file,
1510                                      struct address_space *mapping,
1511                                      loff_t pos, unsigned len, unsigned copied,
1512                                      struct page *page, void *fsdata)
1513 {
1514         handle_t *handle = ext4_journal_current_handle();
1515         struct inode *inode = mapping->host;
1516         loff_t old_size = inode->i_size;
1517         int ret = 0, ret2;
1518         int partial = 0;
1519         unsigned from, to;
1520         int size_changed = 0;
1521         int inline_data = ext4_has_inline_data(inode);
1522         bool verity = ext4_verity_in_progress(inode);
1523
1524         trace_ext4_journalled_write_end(inode, pos, len, copied);
1525         from = pos & (PAGE_SIZE - 1);
1526         to = from + len;
1527
1528         BUG_ON(!ext4_handle_valid(handle));
1529
1530         if (inline_data) {
1531                 ret = ext4_write_inline_data_end(inode, pos, len,
1532                                                  copied, page);
1533                 if (ret < 0) {
1534                         unlock_page(page);
1535                         put_page(page);
1536                         goto errout;
1537                 }
1538                 copied = ret;
1539         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1540                 copied = 0;
1541                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1542         } else {
1543                 if (unlikely(copied < len))
1544                         ext4_journalled_zero_new_buffers(handle, page,
1545                                                          from + copied, to);
1546                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1547                                              from + copied, &partial,
1548                                              write_end_fn);
1549                 if (!partial)
1550                         SetPageUptodate(page);
1551         }
1552         if (!verity)
1553                 size_changed = ext4_update_inode_size(inode, pos + copied);
1554         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1555         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1556         unlock_page(page);
1557         put_page(page);
1558
1559         if (old_size < pos && !verity)
1560                 pagecache_isize_extended(inode, old_size, pos);
1561
1562         if (size_changed || inline_data) {
1563                 ret2 = ext4_mark_inode_dirty(handle, inode);
1564                 if (!ret)
1565                         ret = ret2;
1566         }
1567
1568         if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1569                 /* if we have allocated more blocks and copied
1570                  * less. We will have blocks allocated outside
1571                  * inode->i_size. So truncate them
1572                  */
1573                 ext4_orphan_add(handle, inode);
1574
1575 errout:
1576         ret2 = ext4_journal_stop(handle);
1577         if (!ret)
1578                 ret = ret2;
1579         if (pos + len > inode->i_size && !verity) {
1580                 ext4_truncate_failed_write(inode);
1581                 /*
1582                  * If truncate failed early the inode might still be
1583                  * on the orphan list; we need to make sure the inode
1584                  * is removed from the orphan list in that case.
1585                  */
1586                 if (inode->i_nlink)
1587                         ext4_orphan_del(NULL, inode);
1588         }
1589
1590         return ret ? ret : copied;
1591 }
1592
1593 /*
1594  * Reserve space for a single cluster
1595  */
1596 static int ext4_da_reserve_space(struct inode *inode)
1597 {
1598         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1599         struct ext4_inode_info *ei = EXT4_I(inode);
1600         int ret;
1601
1602         /*
1603          * We will charge metadata quota at writeout time; this saves
1604          * us from metadata over-estimation, though we may go over by
1605          * a small amount in the end.  Here we just reserve for data.
1606          */
1607         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1608         if (ret)
1609                 return ret;
1610
1611         spin_lock(&ei->i_block_reservation_lock);
1612         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1613                 spin_unlock(&ei->i_block_reservation_lock);
1614                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1615                 return -ENOSPC;
1616         }
1617         ei->i_reserved_data_blocks++;
1618         trace_ext4_da_reserve_space(inode);
1619         spin_unlock(&ei->i_block_reservation_lock);
1620
1621         return 0;       /* success */
1622 }
1623
1624 void ext4_da_release_space(struct inode *inode, int to_free)
1625 {
1626         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1627         struct ext4_inode_info *ei = EXT4_I(inode);
1628
1629         if (!to_free)
1630                 return;         /* Nothing to release, exit */
1631
1632         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1633
1634         trace_ext4_da_release_space(inode, to_free);
1635         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1636                 /*
1637                  * if there aren't enough reserved blocks, then the
1638                  * counter is messed up somewhere.  Since this
1639                  * function is called from invalidate page, it's
1640                  * harmless to return without any action.
1641                  */
1642                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1643                          "ino %lu, to_free %d with only %d reserved "
1644                          "data blocks", inode->i_ino, to_free,
1645                          ei->i_reserved_data_blocks);
1646                 WARN_ON(1);
1647                 to_free = ei->i_reserved_data_blocks;
1648         }
1649         ei->i_reserved_data_blocks -= to_free;
1650
1651         /* update fs dirty data blocks counter */
1652         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1653
1654         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1655
1656         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1657 }
1658
1659 static void ext4_da_page_release_reservation(struct page *page,
1660                                              unsigned int offset,
1661                                              unsigned int length)
1662 {
1663         int contiguous_blks = 0;
1664         struct buffer_head *head, *bh;
1665         unsigned int curr_off = 0;
1666         struct inode *inode = page->mapping->host;
1667         unsigned int stop = offset + length;
1668         ext4_fsblk_t lblk;
1669
1670         BUG_ON(stop > PAGE_SIZE || stop < length);
1671
1672         head = page_buffers(page);
1673         bh = head;
1674         do {
1675                 unsigned int next_off = curr_off + bh->b_size;
1676
1677                 if (next_off > stop)
1678                         break;
1679
1680                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1681                         contiguous_blks++;
1682                         clear_buffer_delay(bh);
1683                 } else if (contiguous_blks) {
1684                         lblk = page->index <<
1685                                (PAGE_SHIFT - inode->i_blkbits);
1686                         lblk += (curr_off >> inode->i_blkbits) -
1687                                 contiguous_blks;
1688                         ext4_es_remove_blks(inode, lblk, contiguous_blks);
1689                         contiguous_blks = 0;
1690                 }
1691                 curr_off = next_off;
1692         } while ((bh = bh->b_this_page) != head);
1693
1694         if (contiguous_blks) {
1695                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1696                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1697                 ext4_es_remove_blks(inode, lblk, contiguous_blks);
1698         }
1699
1700 }
1701
1702 /*
1703  * Delayed allocation stuff
1704  */
1705
1706 struct mpage_da_data {
1707         struct inode *inode;
1708         struct writeback_control *wbc;
1709
1710         pgoff_t first_page;     /* The first page to write */
1711         pgoff_t next_page;      /* Current page to examine */
1712         pgoff_t last_page;      /* Last page to examine */
1713         /*
1714          * Extent to map - this can be after first_page because that can be
1715          * fully mapped. We somewhat abuse m_flags to store whether the extent
1716          * is delalloc or unwritten.
1717          */
1718         struct ext4_map_blocks map;
1719         struct ext4_io_submit io_submit;        /* IO submission data */
1720         unsigned int do_map:1;
1721 };
1722
1723 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1724                                        bool invalidate)
1725 {
1726         int nr_pages, i;
1727         pgoff_t index, end;
1728         struct pagevec pvec;
1729         struct inode *inode = mpd->inode;
1730         struct address_space *mapping = inode->i_mapping;
1731
1732         /* This is necessary when next_page == 0. */
1733         if (mpd->first_page >= mpd->next_page)
1734                 return;
1735
1736         index = mpd->first_page;
1737         end   = mpd->next_page - 1;
1738         if (invalidate) {
1739                 ext4_lblk_t start, last;
1740                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1741                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1742                 ext4_es_remove_extent(inode, start, last - start + 1);
1743         }
1744
1745         pagevec_init(&pvec);
1746         while (index <= end) {
1747                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1748                 if (nr_pages == 0)
1749                         break;
1750                 for (i = 0; i < nr_pages; i++) {
1751                         struct page *page = pvec.pages[i];
1752
1753                         BUG_ON(!PageLocked(page));
1754                         BUG_ON(PageWriteback(page));
1755                         if (invalidate) {
1756                                 if (page_mapped(page))
1757                                         clear_page_dirty_for_io(page);
1758                                 block_invalidatepage(page, 0, PAGE_SIZE);
1759                                 ClearPageUptodate(page);
1760                         }
1761                         unlock_page(page);
1762                 }
1763                 pagevec_release(&pvec);
1764         }
1765 }
1766
1767 static void ext4_print_free_blocks(struct inode *inode)
1768 {
1769         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1770         struct super_block *sb = inode->i_sb;
1771         struct ext4_inode_info *ei = EXT4_I(inode);
1772
1773         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1774                EXT4_C2B(EXT4_SB(inode->i_sb),
1775                         ext4_count_free_clusters(sb)));
1776         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1777         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1778                (long long) EXT4_C2B(EXT4_SB(sb),
1779                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1780         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1781                (long long) EXT4_C2B(EXT4_SB(sb),
1782                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1783         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1784         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1785                  ei->i_reserved_data_blocks);
1786         return;
1787 }
1788
1789 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1790 {
1791         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1792 }
1793
1794 /*
1795  * ext4_insert_delayed_block - adds a delayed block to the extents status
1796  *                             tree, incrementing the reserved cluster/block
1797  *                             count or making a pending reservation
1798  *                             where needed
1799  *
1800  * @inode - file containing the newly added block
1801  * @lblk - logical block to be added
1802  *
1803  * Returns 0 on success, negative error code on failure.
1804  */
1805 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1806 {
1807         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1808         int ret;
1809         bool allocated = false;
1810
1811         /*
1812          * If the cluster containing lblk is shared with a delayed,
1813          * written, or unwritten extent in a bigalloc file system, it's
1814          * already been accounted for and does not need to be reserved.
1815          * A pending reservation must be made for the cluster if it's
1816          * shared with a written or unwritten extent and doesn't already
1817          * have one.  Written and unwritten extents can be purged from the
1818          * extents status tree if the system is under memory pressure, so
1819          * it's necessary to examine the extent tree if a search of the
1820          * extents status tree doesn't get a match.
1821          */
1822         if (sbi->s_cluster_ratio == 1) {
1823                 ret = ext4_da_reserve_space(inode);
1824                 if (ret != 0)   /* ENOSPC */
1825                         goto errout;
1826         } else {   /* bigalloc */
1827                 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1828                         if (!ext4_es_scan_clu(inode,
1829                                               &ext4_es_is_mapped, lblk)) {
1830                                 ret = ext4_clu_mapped(inode,
1831                                                       EXT4_B2C(sbi, lblk));
1832                                 if (ret < 0)
1833                                         goto errout;
1834                                 if (ret == 0) {
1835                                         ret = ext4_da_reserve_space(inode);
1836                                         if (ret != 0)   /* ENOSPC */
1837                                                 goto errout;
1838                                 } else {
1839                                         allocated = true;
1840                                 }
1841                         } else {
1842                                 allocated = true;
1843                         }
1844                 }
1845         }
1846
1847         ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1848
1849 errout:
1850         return ret;
1851 }
1852
1853 /*
1854  * This function is grabs code from the very beginning of
1855  * ext4_map_blocks, but assumes that the caller is from delayed write
1856  * time. This function looks up the requested blocks and sets the
1857  * buffer delay bit under the protection of i_data_sem.
1858  */
1859 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1860                               struct ext4_map_blocks *map,
1861                               struct buffer_head *bh)
1862 {
1863         struct extent_status es;
1864         int retval;
1865         sector_t invalid_block = ~((sector_t) 0xffff);
1866 #ifdef ES_AGGRESSIVE_TEST
1867         struct ext4_map_blocks orig_map;
1868
1869         memcpy(&orig_map, map, sizeof(*map));
1870 #endif
1871
1872         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1873                 invalid_block = ~0;
1874
1875         map->m_flags = 0;
1876         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1877                   "logical block %lu\n", inode->i_ino, map->m_len,
1878                   (unsigned long) map->m_lblk);
1879
1880         /* Lookup extent status tree firstly */
1881         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1882                 if (ext4_es_is_hole(&es)) {
1883                         retval = 0;
1884                         down_read(&EXT4_I(inode)->i_data_sem);
1885                         goto add_delayed;
1886                 }
1887
1888                 /*
1889                  * Delayed extent could be allocated by fallocate.
1890                  * So we need to check it.
1891                  */
1892                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1893                         map_bh(bh, inode->i_sb, invalid_block);
1894                         set_buffer_new(bh);
1895                         set_buffer_delay(bh);
1896                         return 0;
1897                 }
1898
1899                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1900                 retval = es.es_len - (iblock - es.es_lblk);
1901                 if (retval > map->m_len)
1902                         retval = map->m_len;
1903                 map->m_len = retval;
1904                 if (ext4_es_is_written(&es))
1905                         map->m_flags |= EXT4_MAP_MAPPED;
1906                 else if (ext4_es_is_unwritten(&es))
1907                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1908                 else
1909                         BUG();
1910
1911 #ifdef ES_AGGRESSIVE_TEST
1912                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1913 #endif
1914                 return retval;
1915         }
1916
1917         /*
1918          * Try to see if we can get the block without requesting a new
1919          * file system block.
1920          */
1921         down_read(&EXT4_I(inode)->i_data_sem);
1922         if (ext4_has_inline_data(inode))
1923                 retval = 0;
1924         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1925                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1926         else
1927                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1928
1929 add_delayed:
1930         if (retval == 0) {
1931                 int ret;
1932
1933                 /*
1934                  * XXX: __block_prepare_write() unmaps passed block,
1935                  * is it OK?
1936                  */
1937
1938                 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1939                 if (ret != 0) {
1940                         retval = ret;
1941                         goto out_unlock;
1942                 }
1943
1944                 map_bh(bh, inode->i_sb, invalid_block);
1945                 set_buffer_new(bh);
1946                 set_buffer_delay(bh);
1947         } else if (retval > 0) {
1948                 int ret;
1949                 unsigned int status;
1950
1951                 if (unlikely(retval != map->m_len)) {
1952                         ext4_warning(inode->i_sb,
1953                                      "ES len assertion failed for inode "
1954                                      "%lu: retval %d != map->m_len %d",
1955                                      inode->i_ino, retval, map->m_len);
1956                         WARN_ON(1);
1957                 }
1958
1959                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1960                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1961                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1962                                             map->m_pblk, status);
1963                 if (ret != 0)
1964                         retval = ret;
1965         }
1966
1967 out_unlock:
1968         up_read((&EXT4_I(inode)->i_data_sem));
1969
1970         return retval;
1971 }
1972
1973 /*
1974  * This is a special get_block_t callback which is used by
1975  * ext4_da_write_begin().  It will either return mapped block or
1976  * reserve space for a single block.
1977  *
1978  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1979  * We also have b_blocknr = -1 and b_bdev initialized properly
1980  *
1981  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1982  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1983  * initialized properly.
1984  */
1985 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1986                            struct buffer_head *bh, int create)
1987 {
1988         struct ext4_map_blocks map;
1989         int ret = 0;
1990
1991         BUG_ON(create == 0);
1992         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1993
1994         map.m_lblk = iblock;
1995         map.m_len = 1;
1996
1997         /*
1998          * first, we need to know whether the block is allocated already
1999          * preallocated blocks are unmapped but should treated
2000          * the same as allocated blocks.
2001          */
2002         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2003         if (ret <= 0)
2004                 return ret;
2005
2006         map_bh(bh, inode->i_sb, map.m_pblk);
2007         ext4_update_bh_state(bh, map.m_flags);
2008
2009         if (buffer_unwritten(bh)) {
2010                 /* A delayed write to unwritten bh should be marked
2011                  * new and mapped.  Mapped ensures that we don't do
2012                  * get_block multiple times when we write to the same
2013                  * offset and new ensures that we do proper zero out
2014                  * for partial write.
2015                  */
2016                 set_buffer_new(bh);
2017                 set_buffer_mapped(bh);
2018         }
2019         return 0;
2020 }
2021
2022 static int bget_one(handle_t *handle, struct buffer_head *bh)
2023 {
2024         get_bh(bh);
2025         return 0;
2026 }
2027
2028 static int bput_one(handle_t *handle, struct buffer_head *bh)
2029 {
2030         put_bh(bh);
2031         return 0;
2032 }
2033
2034 static int __ext4_journalled_writepage(struct page *page,
2035                                        unsigned int len)
2036 {
2037         struct address_space *mapping = page->mapping;
2038         struct inode *inode = mapping->host;
2039         struct buffer_head *page_bufs = NULL;
2040         handle_t *handle = NULL;
2041         int ret = 0, err = 0;
2042         int inline_data = ext4_has_inline_data(inode);
2043         struct buffer_head *inode_bh = NULL;
2044
2045         ClearPageChecked(page);
2046
2047         if (inline_data) {
2048                 BUG_ON(page->index != 0);
2049                 BUG_ON(len > ext4_get_max_inline_size(inode));
2050                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2051                 if (inode_bh == NULL)
2052                         goto out;
2053         } else {
2054                 page_bufs = page_buffers(page);
2055                 if (!page_bufs) {
2056                         BUG();
2057                         goto out;
2058                 }
2059                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2060                                        NULL, bget_one);
2061         }
2062         /*
2063          * We need to release the page lock before we start the
2064          * journal, so grab a reference so the page won't disappear
2065          * out from under us.
2066          */
2067         get_page(page);
2068         unlock_page(page);
2069
2070         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2071                                     ext4_writepage_trans_blocks(inode));
2072         if (IS_ERR(handle)) {
2073                 ret = PTR_ERR(handle);
2074                 put_page(page);
2075                 goto out_no_pagelock;
2076         }
2077         BUG_ON(!ext4_handle_valid(handle));
2078
2079         lock_page(page);
2080         put_page(page);
2081         if (page->mapping != mapping) {
2082                 /* The page got truncated from under us */
2083                 ext4_journal_stop(handle);
2084                 ret = 0;
2085                 goto out;
2086         }
2087
2088         if (inline_data) {
2089                 ret = ext4_mark_inode_dirty(handle, inode);
2090         } else {
2091                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2092                                              do_journal_get_write_access);
2093
2094                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2095                                              write_end_fn);
2096         }
2097         if (ret == 0)
2098                 ret = err;
2099         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2100         err = ext4_journal_stop(handle);
2101         if (!ret)
2102                 ret = err;
2103
2104         if (!ext4_has_inline_data(inode))
2105                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2106                                        NULL, bput_one);
2107         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2108 out:
2109         unlock_page(page);
2110 out_no_pagelock:
2111         brelse(inode_bh);
2112         return ret;
2113 }
2114
2115 /*
2116  * Note that we don't need to start a transaction unless we're journaling data
2117  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2118  * need to file the inode to the transaction's list in ordered mode because if
2119  * we are writing back data added by write(), the inode is already there and if
2120  * we are writing back data modified via mmap(), no one guarantees in which
2121  * transaction the data will hit the disk. In case we are journaling data, we
2122  * cannot start transaction directly because transaction start ranks above page
2123  * lock so we have to do some magic.
2124  *
2125  * This function can get called via...
2126  *   - ext4_writepages after taking page lock (have journal handle)
2127  *   - journal_submit_inode_data_buffers (no journal handle)
2128  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2129  *   - grab_page_cache when doing write_begin (have journal handle)
2130  *
2131  * We don't do any block allocation in this function. If we have page with
2132  * multiple blocks we need to write those buffer_heads that are mapped. This
2133  * is important for mmaped based write. So if we do with blocksize 1K
2134  * truncate(f, 1024);
2135  * a = mmap(f, 0, 4096);
2136  * a[0] = 'a';
2137  * truncate(f, 4096);
2138  * we have in the page first buffer_head mapped via page_mkwrite call back
2139  * but other buffer_heads would be unmapped but dirty (dirty done via the
2140  * do_wp_page). So writepage should write the first block. If we modify
2141  * the mmap area beyond 1024 we will again get a page_fault and the
2142  * page_mkwrite callback will do the block allocation and mark the
2143  * buffer_heads mapped.
2144  *
2145  * We redirty the page if we have any buffer_heads that is either delay or
2146  * unwritten in the page.
2147  *
2148  * We can get recursively called as show below.
2149  *
2150  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2151  *              ext4_writepage()
2152  *
2153  * But since we don't do any block allocation we should not deadlock.
2154  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2155  */
2156 static int ext4_writepage(struct page *page,
2157                           struct writeback_control *wbc)
2158 {
2159         int ret = 0;
2160         loff_t size;
2161         unsigned int len;
2162         struct buffer_head *page_bufs = NULL;
2163         struct inode *inode = page->mapping->host;
2164         struct ext4_io_submit io_submit;
2165         bool keep_towrite = false;
2166
2167         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2168                 ext4_invalidatepage(page, 0, PAGE_SIZE);
2169                 unlock_page(page);
2170                 return -EIO;
2171         }
2172
2173         trace_ext4_writepage(page);
2174         size = i_size_read(inode);
2175         if (page->index == size >> PAGE_SHIFT &&
2176             !ext4_verity_in_progress(inode))
2177                 len = size & ~PAGE_MASK;
2178         else
2179                 len = PAGE_SIZE;
2180
2181         page_bufs = page_buffers(page);
2182         /*
2183          * We cannot do block allocation or other extent handling in this
2184          * function. If there are buffers needing that, we have to redirty
2185          * the page. But we may reach here when we do a journal commit via
2186          * journal_submit_inode_data_buffers() and in that case we must write
2187          * allocated buffers to achieve data=ordered mode guarantees.
2188          *
2189          * Also, if there is only one buffer per page (the fs block
2190          * size == the page size), if one buffer needs block
2191          * allocation or needs to modify the extent tree to clear the
2192          * unwritten flag, we know that the page can't be written at
2193          * all, so we might as well refuse the write immediately.
2194          * Unfortunately if the block size != page size, we can't as
2195          * easily detect this case using ext4_walk_page_buffers(), but
2196          * for the extremely common case, this is an optimization that
2197          * skips a useless round trip through ext4_bio_write_page().
2198          */
2199         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2200                                    ext4_bh_delay_or_unwritten)) {
2201                 redirty_page_for_writepage(wbc, page);
2202                 if ((current->flags & PF_MEMALLOC) ||
2203                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2204                         /*
2205                          * For memory cleaning there's no point in writing only
2206                          * some buffers. So just bail out. Warn if we came here
2207                          * from direct reclaim.
2208                          */
2209                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2210                                                         == PF_MEMALLOC);
2211                         unlock_page(page);
2212                         return 0;
2213                 }
2214                 keep_towrite = true;
2215         }
2216
2217         if (PageChecked(page) && ext4_should_journal_data(inode))
2218                 /*
2219                  * It's mmapped pagecache.  Add buffers and journal it.  There
2220                  * doesn't seem much point in redirtying the page here.
2221                  */
2222                 return __ext4_journalled_writepage(page, len);
2223
2224         ext4_io_submit_init(&io_submit, wbc);
2225         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2226         if (!io_submit.io_end) {
2227                 redirty_page_for_writepage(wbc, page);
2228                 unlock_page(page);
2229                 return -ENOMEM;
2230         }
2231         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2232         ext4_io_submit(&io_submit);
2233         /* Drop io_end reference we got from init */
2234         ext4_put_io_end_defer(io_submit.io_end);
2235         return ret;
2236 }
2237
2238 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2239 {
2240         int len;
2241         loff_t size;
2242         int err;
2243
2244         BUG_ON(page->index != mpd->first_page);
2245         clear_page_dirty_for_io(page);
2246         /*
2247          * We have to be very careful here!  Nothing protects writeback path
2248          * against i_size changes and the page can be writeably mapped into
2249          * page tables. So an application can be growing i_size and writing
2250          * data through mmap while writeback runs. clear_page_dirty_for_io()
2251          * write-protects our page in page tables and the page cannot get
2252          * written to again until we release page lock. So only after
2253          * clear_page_dirty_for_io() we are safe to sample i_size for
2254          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2255          * on the barrier provided by TestClearPageDirty in
2256          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2257          * after page tables are updated.
2258          */
2259         size = i_size_read(mpd->inode);
2260         if (page->index == size >> PAGE_SHIFT &&
2261             !ext4_verity_in_progress(mpd->inode))
2262                 len = size & ~PAGE_MASK;
2263         else
2264                 len = PAGE_SIZE;
2265         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2266         if (!err)
2267                 mpd->wbc->nr_to_write--;
2268         mpd->first_page++;
2269
2270         return err;
2271 }
2272
2273 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2274
2275 /*
2276  * mballoc gives us at most this number of blocks...
2277  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2278  * The rest of mballoc seems to handle chunks up to full group size.
2279  */
2280 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2281
2282 /*
2283  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2284  *
2285  * @mpd - extent of blocks
2286  * @lblk - logical number of the block in the file
2287  * @bh - buffer head we want to add to the extent
2288  *
2289  * The function is used to collect contig. blocks in the same state. If the
2290  * buffer doesn't require mapping for writeback and we haven't started the
2291  * extent of buffers to map yet, the function returns 'true' immediately - the
2292  * caller can write the buffer right away. Otherwise the function returns true
2293  * if the block has been added to the extent, false if the block couldn't be
2294  * added.
2295  */
2296 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2297                                    struct buffer_head *bh)
2298 {
2299         struct ext4_map_blocks *map = &mpd->map;
2300
2301         /* Buffer that doesn't need mapping for writeback? */
2302         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2303             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2304                 /* So far no extent to map => we write the buffer right away */
2305                 if (map->m_len == 0)
2306                         return true;
2307                 return false;
2308         }
2309
2310         /* First block in the extent? */
2311         if (map->m_len == 0) {
2312                 /* We cannot map unless handle is started... */
2313                 if (!mpd->do_map)
2314                         return false;
2315                 map->m_lblk = lblk;
2316                 map->m_len = 1;
2317                 map->m_flags = bh->b_state & BH_FLAGS;
2318                 return true;
2319         }
2320
2321         /* Don't go larger than mballoc is willing to allocate */
2322         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2323                 return false;
2324
2325         /* Can we merge the block to our big extent? */
2326         if (lblk == map->m_lblk + map->m_len &&
2327             (bh->b_state & BH_FLAGS) == map->m_flags) {
2328                 map->m_len++;
2329                 return true;
2330         }
2331         return false;
2332 }
2333
2334 /*
2335  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2336  *
2337  * @mpd - extent of blocks for mapping
2338  * @head - the first buffer in the page
2339  * @bh - buffer we should start processing from
2340  * @lblk - logical number of the block in the file corresponding to @bh
2341  *
2342  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2343  * the page for IO if all buffers in this page were mapped and there's no
2344  * accumulated extent of buffers to map or add buffers in the page to the
2345  * extent of buffers to map. The function returns 1 if the caller can continue
2346  * by processing the next page, 0 if it should stop adding buffers to the
2347  * extent to map because we cannot extend it anymore. It can also return value
2348  * < 0 in case of error during IO submission.
2349  */
2350 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2351                                    struct buffer_head *head,
2352                                    struct buffer_head *bh,
2353                                    ext4_lblk_t lblk)
2354 {
2355         struct inode *inode = mpd->inode;
2356         int err;
2357         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2358                                                         >> inode->i_blkbits;
2359
2360         if (ext4_verity_in_progress(inode))
2361                 blocks = EXT_MAX_BLOCKS;
2362
2363         do {
2364                 BUG_ON(buffer_locked(bh));
2365
2366                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2367                         /* Found extent to map? */
2368                         if (mpd->map.m_len)
2369                                 return 0;
2370                         /* Buffer needs mapping and handle is not started? */
2371                         if (!mpd->do_map)
2372                                 return 0;
2373                         /* Everything mapped so far and we hit EOF */
2374                         break;
2375                 }
2376         } while (lblk++, (bh = bh->b_this_page) != head);
2377         /* So far everything mapped? Submit the page for IO. */
2378         if (mpd->map.m_len == 0) {
2379                 err = mpage_submit_page(mpd, head->b_page);
2380                 if (err < 0)
2381                         return err;
2382         }
2383         return lblk < blocks;
2384 }
2385
2386 /*
2387  * mpage_map_buffers - update buffers corresponding to changed extent and
2388  *                     submit fully mapped pages for IO
2389  *
2390  * @mpd - description of extent to map, on return next extent to map
2391  *
2392  * Scan buffers corresponding to changed extent (we expect corresponding pages
2393  * to be already locked) and update buffer state according to new extent state.
2394  * We map delalloc buffers to their physical location, clear unwritten bits,
2395  * and mark buffers as uninit when we perform writes to unwritten extents
2396  * and do extent conversion after IO is finished. If the last page is not fully
2397  * mapped, we update @map to the next extent in the last page that needs
2398  * mapping. Otherwise we submit the page for IO.
2399  */
2400 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2401 {
2402         struct pagevec pvec;
2403         int nr_pages, i;
2404         struct inode *inode = mpd->inode;
2405         struct buffer_head *head, *bh;
2406         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2407         pgoff_t start, end;
2408         ext4_lblk_t lblk;
2409         sector_t pblock;
2410         int err;
2411
2412         start = mpd->map.m_lblk >> bpp_bits;
2413         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2414         lblk = start << bpp_bits;
2415         pblock = mpd->map.m_pblk;
2416
2417         pagevec_init(&pvec);
2418         while (start <= end) {
2419                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2420                                                 &start, end);
2421                 if (nr_pages == 0)
2422                         break;
2423                 for (i = 0; i < nr_pages; i++) {
2424                         struct page *page = pvec.pages[i];
2425
2426                         bh = head = page_buffers(page);
2427                         do {
2428                                 if (lblk < mpd->map.m_lblk)
2429                                         continue;
2430                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2431                                         /*
2432                                          * Buffer after end of mapped extent.
2433                                          * Find next buffer in the page to map.
2434                                          */
2435                                         mpd->map.m_len = 0;
2436                                         mpd->map.m_flags = 0;
2437                                         /*
2438                                          * FIXME: If dioread_nolock supports
2439                                          * blocksize < pagesize, we need to make
2440                                          * sure we add size mapped so far to
2441                                          * io_end->size as the following call
2442                                          * can submit the page for IO.
2443                                          */
2444                                         err = mpage_process_page_bufs(mpd, head,
2445                                                                       bh, lblk);
2446                                         pagevec_release(&pvec);
2447                                         if (err > 0)
2448                                                 err = 0;
2449                                         return err;
2450                                 }
2451                                 if (buffer_delay(bh)) {
2452                                         clear_buffer_delay(bh);
2453                                         bh->b_blocknr = pblock++;
2454                                 }
2455                                 clear_buffer_unwritten(bh);
2456                         } while (lblk++, (bh = bh->b_this_page) != head);
2457
2458                         /*
2459                          * FIXME: This is going to break if dioread_nolock
2460                          * supports blocksize < pagesize as we will try to
2461                          * convert potentially unmapped parts of inode.
2462                          */
2463                         mpd->io_submit.io_end->size += PAGE_SIZE;
2464                         /* Page fully mapped - let IO run! */
2465                         err = mpage_submit_page(mpd, page);
2466                         if (err < 0) {
2467                                 pagevec_release(&pvec);
2468                                 return err;
2469                         }
2470                 }
2471                 pagevec_release(&pvec);
2472         }
2473         /* Extent fully mapped and matches with page boundary. We are done. */
2474         mpd->map.m_len = 0;
2475         mpd->map.m_flags = 0;
2476         return 0;
2477 }
2478
2479 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2480 {
2481         struct inode *inode = mpd->inode;
2482         struct ext4_map_blocks *map = &mpd->map;
2483         int get_blocks_flags;
2484         int err, dioread_nolock;
2485
2486         trace_ext4_da_write_pages_extent(inode, map);
2487         /*
2488          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2489          * to convert an unwritten extent to be initialized (in the case
2490          * where we have written into one or more preallocated blocks).  It is
2491          * possible that we're going to need more metadata blocks than
2492          * previously reserved. However we must not fail because we're in
2493          * writeback and there is nothing we can do about it so it might result
2494          * in data loss.  So use reserved blocks to allocate metadata if
2495          * possible.
2496          *
2497          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2498          * the blocks in question are delalloc blocks.  This indicates
2499          * that the blocks and quotas has already been checked when
2500          * the data was copied into the page cache.
2501          */
2502         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2503                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2504                            EXT4_GET_BLOCKS_IO_SUBMIT;
2505         dioread_nolock = ext4_should_dioread_nolock(inode);
2506         if (dioread_nolock)
2507                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2508         if (map->m_flags & (1 << BH_Delay))
2509                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2510
2511         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2512         if (err < 0)
2513                 return err;
2514         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2515                 if (!mpd->io_submit.io_end->handle &&
2516                     ext4_handle_valid(handle)) {
2517                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2518                         handle->h_rsv_handle = NULL;
2519                 }
2520                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2521         }
2522
2523         BUG_ON(map->m_len == 0);
2524         return 0;
2525 }
2526
2527 /*
2528  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2529  *                               mpd->len and submit pages underlying it for IO
2530  *
2531  * @handle - handle for journal operations
2532  * @mpd - extent to map
2533  * @give_up_on_write - we set this to true iff there is a fatal error and there
2534  *                     is no hope of writing the data. The caller should discard
2535  *                     dirty pages to avoid infinite loops.
2536  *
2537  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2538  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2539  * them to initialized or split the described range from larger unwritten
2540  * extent. Note that we need not map all the described range since allocation
2541  * can return less blocks or the range is covered by more unwritten extents. We
2542  * cannot map more because we are limited by reserved transaction credits. On
2543  * the other hand we always make sure that the last touched page is fully
2544  * mapped so that it can be written out (and thus forward progress is
2545  * guaranteed). After mapping we submit all mapped pages for IO.
2546  */
2547 static int mpage_map_and_submit_extent(handle_t *handle,
2548                                        struct mpage_da_data *mpd,
2549                                        bool *give_up_on_write)
2550 {
2551         struct inode *inode = mpd->inode;
2552         struct ext4_map_blocks *map = &mpd->map;
2553         int err;
2554         loff_t disksize;
2555         int progress = 0;
2556
2557         mpd->io_submit.io_end->offset =
2558                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2559         do {
2560                 err = mpage_map_one_extent(handle, mpd);
2561                 if (err < 0) {
2562                         struct super_block *sb = inode->i_sb;
2563
2564                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2565                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2566                                 goto invalidate_dirty_pages;
2567                         /*
2568                          * Let the uper layers retry transient errors.
2569                          * In the case of ENOSPC, if ext4_count_free_blocks()
2570                          * is non-zero, a commit should free up blocks.
2571                          */
2572                         if ((err == -ENOMEM) ||
2573                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2574                                 if (progress)
2575                                         goto update_disksize;
2576                                 return err;
2577                         }
2578                         ext4_msg(sb, KERN_CRIT,
2579                                  "Delayed block allocation failed for "
2580                                  "inode %lu at logical offset %llu with"
2581                                  " max blocks %u with error %d",
2582                                  inode->i_ino,
2583                                  (unsigned long long)map->m_lblk,
2584                                  (unsigned)map->m_len, -err);
2585                         ext4_msg(sb, KERN_CRIT,
2586                                  "This should not happen!! Data will "
2587                                  "be lost\n");
2588                         if (err == -ENOSPC)
2589                                 ext4_print_free_blocks(inode);
2590                 invalidate_dirty_pages:
2591                         *give_up_on_write = true;
2592                         return err;
2593                 }
2594                 progress = 1;
2595                 /*
2596                  * Update buffer state, submit mapped pages, and get us new
2597                  * extent to map
2598                  */
2599                 err = mpage_map_and_submit_buffers(mpd);
2600                 if (err < 0)
2601                         goto update_disksize;
2602         } while (map->m_len);
2603
2604 update_disksize:
2605         /*
2606          * Update on-disk size after IO is submitted.  Races with
2607          * truncate are avoided by checking i_size under i_data_sem.
2608          */
2609         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2610         if (disksize > EXT4_I(inode)->i_disksize) {
2611                 int err2;
2612                 loff_t i_size;
2613
2614                 down_write(&EXT4_I(inode)->i_data_sem);
2615                 i_size = i_size_read(inode);
2616                 if (disksize > i_size)
2617                         disksize = i_size;
2618                 if (disksize > EXT4_I(inode)->i_disksize)
2619                         EXT4_I(inode)->i_disksize = disksize;
2620                 up_write(&EXT4_I(inode)->i_data_sem);
2621                 err2 = ext4_mark_inode_dirty(handle, inode);
2622                 if (err2)
2623                         ext4_error(inode->i_sb,
2624                                    "Failed to mark inode %lu dirty",
2625                                    inode->i_ino);
2626                 if (!err)
2627                         err = err2;
2628         }
2629         return err;
2630 }
2631
2632 /*
2633  * Calculate the total number of credits to reserve for one writepages
2634  * iteration. This is called from ext4_writepages(). We map an extent of
2635  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2636  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2637  * bpp - 1 blocks in bpp different extents.
2638  */
2639 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2640 {
2641         int bpp = ext4_journal_blocks_per_page(inode);
2642
2643         return ext4_meta_trans_blocks(inode,
2644                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2645 }
2646
2647 /*
2648  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2649  *                               and underlying extent to map
2650  *
2651  * @mpd - where to look for pages
2652  *
2653  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2654  * IO immediately. When we find a page which isn't mapped we start accumulating
2655  * extent of buffers underlying these pages that needs mapping (formed by
2656  * either delayed or unwritten buffers). We also lock the pages containing
2657  * these buffers. The extent found is returned in @mpd structure (starting at
2658  * mpd->lblk with length mpd->len blocks).
2659  *
2660  * Note that this function can attach bios to one io_end structure which are
2661  * neither logically nor physically contiguous. Although it may seem as an
2662  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2663  * case as we need to track IO to all buffers underlying a page in one io_end.
2664  */
2665 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2666 {
2667         struct address_space *mapping = mpd->inode->i_mapping;
2668         struct pagevec pvec;
2669         unsigned int nr_pages;
2670         long left = mpd->wbc->nr_to_write;
2671         pgoff_t index = mpd->first_page;
2672         pgoff_t end = mpd->last_page;
2673         xa_mark_t tag;
2674         int i, err = 0;
2675         int blkbits = mpd->inode->i_blkbits;
2676         ext4_lblk_t lblk;
2677         struct buffer_head *head;
2678
2679         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2680                 tag = PAGECACHE_TAG_TOWRITE;
2681         else
2682                 tag = PAGECACHE_TAG_DIRTY;
2683
2684         pagevec_init(&pvec);
2685         mpd->map.m_len = 0;
2686         mpd->next_page = index;
2687         while (index <= end) {
2688                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2689                                 tag);
2690                 if (nr_pages == 0)
2691                         goto out;
2692
2693                 for (i = 0; i < nr_pages; i++) {
2694                         struct page *page = pvec.pages[i];
2695
2696                         /*
2697                          * Accumulated enough dirty pages? This doesn't apply
2698                          * to WB_SYNC_ALL mode. For integrity sync we have to
2699                          * keep going because someone may be concurrently
2700                          * dirtying pages, and we might have synced a lot of
2701                          * newly appeared dirty pages, but have not synced all
2702                          * of the old dirty pages.
2703                          */
2704                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2705                                 goto out;
2706
2707                         /* If we can't merge this page, we are done. */
2708                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2709                                 goto out;
2710
2711                         lock_page(page);
2712                         /*
2713                          * If the page is no longer dirty, or its mapping no
2714                          * longer corresponds to inode we are writing (which
2715                          * means it has been truncated or invalidated), or the
2716                          * page is already under writeback and we are not doing
2717                          * a data integrity writeback, skip the page
2718                          */
2719                         if (!PageDirty(page) ||
2720                             (PageWriteback(page) &&
2721                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2722                             unlikely(page->mapping != mapping)) {
2723                                 unlock_page(page);
2724                                 continue;
2725                         }
2726
2727                         wait_on_page_writeback(page);
2728                         BUG_ON(PageWriteback(page));
2729
2730                         if (mpd->map.m_len == 0)
2731                                 mpd->first_page = page->index;
2732                         mpd->next_page = page->index + 1;
2733                         /* Add all dirty buffers to mpd */
2734                         lblk = ((ext4_lblk_t)page->index) <<
2735                                 (PAGE_SHIFT - blkbits);
2736                         head = page_buffers(page);
2737                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2738                         if (err <= 0)
2739                                 goto out;
2740                         err = 0;
2741                         left--;
2742                 }
2743                 pagevec_release(&pvec);
2744                 cond_resched();
2745         }
2746         return 0;
2747 out:
2748         pagevec_release(&pvec);
2749         return err;
2750 }
2751
2752 static int ext4_writepages(struct address_space *mapping,
2753                            struct writeback_control *wbc)
2754 {
2755         pgoff_t writeback_index = 0;
2756         long nr_to_write = wbc->nr_to_write;
2757         int range_whole = 0;
2758         int cycled = 1;
2759         handle_t *handle = NULL;
2760         struct mpage_da_data mpd;
2761         struct inode *inode = mapping->host;
2762         int needed_blocks, rsv_blocks = 0, ret = 0;
2763         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2764         bool done;
2765         struct blk_plug plug;
2766         bool give_up_on_write = false;
2767
2768         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2769                 return -EIO;
2770
2771         percpu_down_read(&sbi->s_journal_flag_rwsem);
2772         trace_ext4_writepages(inode, wbc);
2773
2774         /*
2775          * No pages to write? This is mainly a kludge to avoid starting
2776          * a transaction for special inodes like journal inode on last iput()
2777          * because that could violate lock ordering on umount
2778          */
2779         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2780                 goto out_writepages;
2781
2782         if (ext4_should_journal_data(inode)) {
2783                 ret = generic_writepages(mapping, wbc);
2784                 goto out_writepages;
2785         }
2786
2787         /*
2788          * If the filesystem has aborted, it is read-only, so return
2789          * right away instead of dumping stack traces later on that
2790          * will obscure the real source of the problem.  We test
2791          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2792          * the latter could be true if the filesystem is mounted
2793          * read-only, and in that case, ext4_writepages should
2794          * *never* be called, so if that ever happens, we would want
2795          * the stack trace.
2796          */
2797         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2798                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2799                 ret = -EROFS;
2800                 goto out_writepages;
2801         }
2802
2803         if (ext4_should_dioread_nolock(inode)) {
2804                 /*
2805                  * We may need to convert up to one extent per block in
2806                  * the page and we may dirty the inode.
2807                  */
2808                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2809                                                 PAGE_SIZE >> inode->i_blkbits);
2810         }
2811
2812         /*
2813          * If we have inline data and arrive here, it means that
2814          * we will soon create the block for the 1st page, so
2815          * we'd better clear the inline data here.
2816          */
2817         if (ext4_has_inline_data(inode)) {
2818                 /* Just inode will be modified... */
2819                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2820                 if (IS_ERR(handle)) {
2821                         ret = PTR_ERR(handle);
2822                         goto out_writepages;
2823                 }
2824                 BUG_ON(ext4_test_inode_state(inode,
2825                                 EXT4_STATE_MAY_INLINE_DATA));
2826                 ext4_destroy_inline_data(handle, inode);
2827                 ext4_journal_stop(handle);
2828         }
2829
2830         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2831                 range_whole = 1;
2832
2833         if (wbc->range_cyclic) {
2834                 writeback_index = mapping->writeback_index;
2835                 if (writeback_index)
2836                         cycled = 0;
2837                 mpd.first_page = writeback_index;
2838                 mpd.last_page = -1;
2839         } else {
2840                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2841                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2842         }
2843
2844         mpd.inode = inode;
2845         mpd.wbc = wbc;
2846         ext4_io_submit_init(&mpd.io_submit, wbc);
2847 retry:
2848         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2849                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2850         done = false;
2851         blk_start_plug(&plug);
2852
2853         /*
2854          * First writeback pages that don't need mapping - we can avoid
2855          * starting a transaction unnecessarily and also avoid being blocked
2856          * in the block layer on device congestion while having transaction
2857          * started.
2858          */
2859         mpd.do_map = 0;
2860         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2861         if (!mpd.io_submit.io_end) {
2862                 ret = -ENOMEM;
2863                 goto unplug;
2864         }
2865         ret = mpage_prepare_extent_to_map(&mpd);
2866         /* Unlock pages we didn't use */
2867         mpage_release_unused_pages(&mpd, false);
2868         /* Submit prepared bio */
2869         ext4_io_submit(&mpd.io_submit);
2870         ext4_put_io_end_defer(mpd.io_submit.io_end);
2871         mpd.io_submit.io_end = NULL;
2872         if (ret < 0)
2873                 goto unplug;
2874
2875         while (!done && mpd.first_page <= mpd.last_page) {
2876                 /* For each extent of pages we use new io_end */
2877                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2878                 if (!mpd.io_submit.io_end) {
2879                         ret = -ENOMEM;
2880                         break;
2881                 }
2882
2883                 /*
2884                  * We have two constraints: We find one extent to map and we
2885                  * must always write out whole page (makes a difference when
2886                  * blocksize < pagesize) so that we don't block on IO when we
2887                  * try to write out the rest of the page. Journalled mode is
2888                  * not supported by delalloc.
2889                  */
2890                 BUG_ON(ext4_should_journal_data(inode));
2891                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2892
2893                 /* start a new transaction */
2894                 handle = ext4_journal_start_with_reserve(inode,
2895                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2896                 if (IS_ERR(handle)) {
2897                         ret = PTR_ERR(handle);
2898                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2899                                "%ld pages, ino %lu; err %d", __func__,
2900                                 wbc->nr_to_write, inode->i_ino, ret);
2901                         /* Release allocated io_end */
2902                         ext4_put_io_end(mpd.io_submit.io_end);
2903                         mpd.io_submit.io_end = NULL;
2904                         break;
2905                 }
2906                 mpd.do_map = 1;
2907
2908                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2909                 ret = mpage_prepare_extent_to_map(&mpd);
2910                 if (!ret) {
2911                         if (mpd.map.m_len)
2912                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2913                                         &give_up_on_write);
2914                         else {
2915                                 /*
2916                                  * We scanned the whole range (or exhausted
2917                                  * nr_to_write), submitted what was mapped and
2918                                  * didn't find anything needing mapping. We are
2919                                  * done.
2920                                  */
2921                                 done = true;
2922                         }
2923                 }
2924                 /*
2925                  * Caution: If the handle is synchronous,
2926                  * ext4_journal_stop() can wait for transaction commit
2927                  * to finish which may depend on writeback of pages to
2928                  * complete or on page lock to be released.  In that
2929                  * case, we have to wait until after after we have
2930                  * submitted all the IO, released page locks we hold,
2931                  * and dropped io_end reference (for extent conversion
2932                  * to be able to complete) before stopping the handle.
2933                  */
2934                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2935                         ext4_journal_stop(handle);
2936                         handle = NULL;
2937                         mpd.do_map = 0;
2938                 }
2939                 /* Unlock pages we didn't use */
2940                 mpage_release_unused_pages(&mpd, give_up_on_write);
2941                 /* Submit prepared bio */
2942                 ext4_io_submit(&mpd.io_submit);
2943
2944                 /*
2945                  * Drop our io_end reference we got from init. We have
2946                  * to be careful and use deferred io_end finishing if
2947                  * we are still holding the transaction as we can
2948                  * release the last reference to io_end which may end
2949                  * up doing unwritten extent conversion.
2950                  */
2951                 if (handle) {
2952                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2953                         ext4_journal_stop(handle);
2954                 } else
2955                         ext4_put_io_end(mpd.io_submit.io_end);
2956                 mpd.io_submit.io_end = NULL;
2957
2958                 if (ret == -ENOSPC && sbi->s_journal) {
2959                         /*
2960                          * Commit the transaction which would
2961                          * free blocks released in the transaction
2962                          * and try again
2963                          */
2964                         jbd2_journal_force_commit_nested(sbi->s_journal);
2965                         ret = 0;
2966                         continue;
2967                 }
2968                 /* Fatal error - ENOMEM, EIO... */
2969                 if (ret)
2970                         break;
2971         }
2972 unplug:
2973         blk_finish_plug(&plug);
2974         if (!ret && !cycled && wbc->nr_to_write > 0) {
2975                 cycled = 1;
2976                 mpd.last_page = writeback_index - 1;
2977                 mpd.first_page = 0;
2978                 goto retry;
2979         }
2980
2981         /* Update index */
2982         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2983                 /*
2984                  * Set the writeback_index so that range_cyclic
2985                  * mode will write it back later
2986                  */
2987                 mapping->writeback_index = mpd.first_page;
2988
2989 out_writepages:
2990         trace_ext4_writepages_result(inode, wbc, ret,
2991                                      nr_to_write - wbc->nr_to_write);
2992         percpu_up_read(&sbi->s_journal_flag_rwsem);
2993         return ret;
2994 }
2995
2996 static int ext4_dax_writepages(struct address_space *mapping,
2997                                struct writeback_control *wbc)
2998 {
2999         int ret;
3000         long nr_to_write = wbc->nr_to_write;
3001         struct inode *inode = mapping->host;
3002         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
3003
3004         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3005                 return -EIO;
3006
3007         percpu_down_read(&sbi->s_journal_flag_rwsem);
3008         trace_ext4_writepages(inode, wbc);
3009
3010         ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
3011         trace_ext4_writepages_result(inode, wbc, ret,
3012                                      nr_to_write - wbc->nr_to_write);
3013         percpu_up_read(&sbi->s_journal_flag_rwsem);
3014         return ret;
3015 }
3016
3017 static int ext4_nonda_switch(struct super_block *sb)
3018 {
3019         s64 free_clusters, dirty_clusters;
3020         struct ext4_sb_info *sbi = EXT4_SB(sb);
3021
3022         /*
3023          * switch to non delalloc mode if we are running low
3024          * on free block. The free block accounting via percpu
3025          * counters can get slightly wrong with percpu_counter_batch getting
3026          * accumulated on each CPU without updating global counters
3027          * Delalloc need an accurate free block accounting. So switch
3028          * to non delalloc when we are near to error range.
3029          */
3030         free_clusters =
3031                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3032         dirty_clusters =
3033                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3034         /*
3035          * Start pushing delalloc when 1/2 of free blocks are dirty.
3036          */
3037         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3038                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3039
3040         if (2 * free_clusters < 3 * dirty_clusters ||
3041             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3042                 /*
3043                  * free block count is less than 150% of dirty blocks
3044                  * or free blocks is less than watermark
3045                  */
3046                 return 1;
3047         }
3048         return 0;
3049 }
3050
3051 /* We always reserve for an inode update; the superblock could be there too */
3052 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3053 {
3054         if (likely(ext4_has_feature_large_file(inode->i_sb)))
3055                 return 1;
3056
3057         if (pos + len <= 0x7fffffffULL)
3058                 return 1;
3059
3060         /* We might need to update the superblock to set LARGE_FILE */
3061         return 2;
3062 }
3063
3064 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3065                                loff_t pos, unsigned len, unsigned flags,
3066                                struct page **pagep, void **fsdata)
3067 {
3068         int ret, retries = 0;
3069         struct page *page;
3070         pgoff_t index;
3071         struct inode *inode = mapping->host;
3072         handle_t *handle;
3073
3074         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3075                 return -EIO;
3076
3077         index = pos >> PAGE_SHIFT;
3078
3079         if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
3080             ext4_verity_in_progress(inode)) {
3081                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3082                 return ext4_write_begin(file, mapping, pos,
3083                                         len, flags, pagep, fsdata);
3084         }
3085         *fsdata = (void *)0;
3086         trace_ext4_da_write_begin(inode, pos, len, flags);
3087
3088         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3089                 ret = ext4_da_write_inline_data_begin(mapping, inode,
3090                                                       pos, len, flags,
3091                                                       pagep, fsdata);
3092                 if (ret < 0)
3093                         return ret;
3094                 if (ret == 1)
3095                         return 0;
3096         }
3097
3098         /*
3099          * grab_cache_page_write_begin() can take a long time if the
3100          * system is thrashing due to memory pressure, or if the page
3101          * is being written back.  So grab it first before we start
3102          * the transaction handle.  This also allows us to allocate
3103          * the page (if needed) without using GFP_NOFS.
3104          */
3105 retry_grab:
3106         page = grab_cache_page_write_begin(mapping, index, flags);
3107         if (!page)
3108                 return -ENOMEM;
3109         unlock_page(page);
3110
3111         /*
3112          * With delayed allocation, we don't log the i_disksize update
3113          * if there is delayed block allocation. But we still need
3114          * to journalling the i_disksize update if writes to the end
3115          * of file which has an already mapped buffer.
3116          */
3117 retry_journal:
3118         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3119                                 ext4_da_write_credits(inode, pos, len));
3120         if (IS_ERR(handle)) {
3121                 put_page(page);
3122                 return PTR_ERR(handle);
3123         }
3124
3125         lock_page(page);
3126         if (page->mapping != mapping) {
3127                 /* The page got truncated from under us */
3128                 unlock_page(page);
3129                 put_page(page);
3130                 ext4_journal_stop(handle);
3131                 goto retry_grab;
3132         }
3133         /* In case writeback began while the page was unlocked */
3134         wait_for_stable_page(page);
3135
3136 #ifdef CONFIG_FS_ENCRYPTION
3137         ret = ext4_block_write_begin(page, pos, len,
3138                                      ext4_da_get_block_prep);
3139 #else
3140         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3141 #endif
3142         if (ret < 0) {
3143                 unlock_page(page);
3144                 ext4_journal_stop(handle);
3145                 /*
3146                  * block_write_begin may have instantiated a few blocks
3147                  * outside i_size.  Trim these off again. Don't need
3148                  * i_size_read because we hold i_mutex.
3149                  */
3150                 if (pos + len > inode->i_size)
3151                         ext4_truncate_failed_write(inode);
3152
3153                 if (ret == -ENOSPC &&
3154                     ext4_should_retry_alloc(inode->i_sb, &retries))
3155                         goto retry_journal;
3156
3157                 put_page(page);
3158                 return ret;
3159         }
3160
3161         *pagep = page;
3162         return ret;
3163 }
3164
3165 /*
3166  * Check if we should update i_disksize
3167  * when write to the end of file but not require block allocation
3168  */
3169 static int ext4_da_should_update_i_disksize(struct page *page,
3170                                             unsigned long offset)
3171 {
3172         struct buffer_head *bh;
3173         struct inode *inode = page->mapping->host;
3174         unsigned int idx;
3175         int i;
3176
3177         bh = page_buffers(page);
3178         idx = offset >> inode->i_blkbits;
3179
3180         for (i = 0; i < idx; i++)
3181                 bh = bh->b_this_page;
3182
3183         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3184                 return 0;
3185         return 1;
3186 }
3187
3188 static int ext4_da_write_end(struct file *file,
3189                              struct address_space *mapping,
3190                              loff_t pos, unsigned len, unsigned copied,
3191                              struct page *page, void *fsdata)
3192 {
3193         struct inode *inode = mapping->host;
3194         int ret = 0, ret2;
3195         handle_t *handle = ext4_journal_current_handle();
3196         loff_t new_i_size;
3197         unsigned long start, end;
3198         int write_mode = (int)(unsigned long)fsdata;
3199
3200         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3201                 return ext4_write_end(file, mapping, pos,
3202                                       len, copied, page, fsdata);
3203
3204         trace_ext4_da_write_end(inode, pos, len, copied);
3205         start = pos & (PAGE_SIZE - 1);
3206         end = start + copied - 1;
3207
3208         /*
3209          * generic_write_end() will run mark_inode_dirty() if i_size
3210          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3211          * into that.
3212          */
3213         new_i_size = pos + copied;
3214         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3215                 if (ext4_has_inline_data(inode) ||
3216                     ext4_da_should_update_i_disksize(page, end)) {
3217                         ext4_update_i_disksize(inode, new_i_size);
3218                         /* We need to mark inode dirty even if
3219                          * new_i_size is less that inode->i_size
3220                          * bu greater than i_disksize.(hint delalloc)
3221                          */
3222                         ext4_mark_inode_dirty(handle, inode);
3223                 }
3224         }
3225
3226         if (write_mode != CONVERT_INLINE_DATA &&
3227             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3228             ext4_has_inline_data(inode))
3229                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3230                                                      page);
3231         else
3232                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3233                                                         page, fsdata);
3234
3235         copied = ret2;
3236         if (ret2 < 0)
3237                 ret = ret2;
3238         ret2 = ext4_journal_stop(handle);
3239         if (!ret)
3240                 ret = ret2;
3241
3242         return ret ? ret : copied;
3243 }
3244
3245 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3246                                    unsigned int length)
3247 {
3248         /*
3249          * Drop reserved blocks
3250          */
3251         BUG_ON(!PageLocked(page));
3252         if (!page_has_buffers(page))
3253                 goto out;
3254
3255         ext4_da_page_release_reservation(page, offset, length);
3256
3257 out:
3258         ext4_invalidatepage(page, offset, length);
3259
3260         return;
3261 }
3262
3263 /*
3264  * Force all delayed allocation blocks to be allocated for a given inode.
3265  */
3266 int ext4_alloc_da_blocks(struct inode *inode)
3267 {
3268         trace_ext4_alloc_da_blocks(inode);
3269
3270         if (!EXT4_I(inode)->i_reserved_data_blocks)
3271                 return 0;
3272
3273         /*
3274          * We do something simple for now.  The filemap_flush() will
3275          * also start triggering a write of the data blocks, which is
3276          * not strictly speaking necessary (and for users of
3277          * laptop_mode, not even desirable).  However, to do otherwise
3278          * would require replicating code paths in:
3279          *
3280          * ext4_writepages() ->
3281          *    write_cache_pages() ---> (via passed in callback function)
3282          *        __mpage_da_writepage() -->
3283          *           mpage_add_bh_to_extent()
3284          *           mpage_da_map_blocks()
3285          *
3286          * The problem is that write_cache_pages(), located in
3287          * mm/page-writeback.c, marks pages clean in preparation for
3288          * doing I/O, which is not desirable if we're not planning on
3289          * doing I/O at all.
3290          *
3291          * We could call write_cache_pages(), and then redirty all of
3292          * the pages by calling redirty_page_for_writepage() but that
3293          * would be ugly in the extreme.  So instead we would need to
3294          * replicate parts of the code in the above functions,
3295          * simplifying them because we wouldn't actually intend to
3296          * write out the pages, but rather only collect contiguous
3297          * logical block extents, call the multi-block allocator, and
3298          * then update the buffer heads with the block allocations.
3299          *
3300          * For now, though, we'll cheat by calling filemap_flush(),
3301          * which will map the blocks, and start the I/O, but not
3302          * actually wait for the I/O to complete.
3303          */
3304         return filemap_flush(inode->i_mapping);
3305 }
3306
3307 /*
3308  * bmap() is special.  It gets used by applications such as lilo and by
3309  * the swapper to find the on-disk block of a specific piece of data.
3310  *
3311  * Naturally, this is dangerous if the block concerned is still in the
3312  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3313  * filesystem and enables swap, then they may get a nasty shock when the
3314  * data getting swapped to that swapfile suddenly gets overwritten by
3315  * the original zero's written out previously to the journal and
3316  * awaiting writeback in the kernel's buffer cache.
3317  *
3318  * So, if we see any bmap calls here on a modified, data-journaled file,
3319  * take extra steps to flush any blocks which might be in the cache.
3320  */
3321 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3322 {
3323         struct inode *inode = mapping->host;
3324         journal_t *journal;
3325         int err;
3326
3327         /*
3328          * We can get here for an inline file via the FIBMAP ioctl
3329          */
3330         if (ext4_has_inline_data(inode))
3331                 return 0;
3332
3333         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3334                         test_opt(inode->i_sb, DELALLOC)) {
3335                 /*
3336                  * With delalloc we want to sync the file
3337                  * so that we can make sure we allocate
3338                  * blocks for file
3339                  */
3340                 filemap_write_and_wait(mapping);
3341         }
3342
3343         if (EXT4_JOURNAL(inode) &&
3344             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3345                 /*
3346                  * This is a REALLY heavyweight approach, but the use of
3347                  * bmap on dirty files is expected to be extremely rare:
3348                  * only if we run lilo or swapon on a freshly made file
3349                  * do we expect this to happen.
3350                  *
3351                  * (bmap requires CAP_SYS_RAWIO so this does not
3352                  * represent an unprivileged user DOS attack --- we'd be
3353                  * in trouble if mortal users could trigger this path at
3354                  * will.)
3355                  *
3356                  * NB. EXT4_STATE_JDATA is not set on files other than
3357                  * regular files.  If somebody wants to bmap a directory
3358                  * or symlink and gets confused because the buffer
3359                  * hasn't yet been flushed to disk, they deserve
3360                  * everything they get.
3361                  */
3362
3363                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3364                 journal = EXT4_JOURNAL(inode);
3365                 jbd2_journal_lock_updates(journal);
3366                 err = jbd2_journal_flush(journal);
3367                 jbd2_journal_unlock_updates(journal);
3368
3369                 if (err)
3370                         return 0;
3371         }
3372
3373         return generic_block_bmap(mapping, block, ext4_get_block);
3374 }
3375
3376 static int ext4_readpage(struct file *file, struct page *page)
3377 {
3378         int ret = -EAGAIN;
3379         struct inode *inode = page->mapping->host;
3380
3381         trace_ext4_readpage(page);
3382
3383         if (ext4_has_inline_data(inode))
3384                 ret = ext4_readpage_inline(inode, page);
3385
3386         if (ret == -EAGAIN)
3387                 return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3388                                                 false);
3389
3390         return ret;
3391 }
3392
3393 static int
3394 ext4_readpages(struct file *file, struct address_space *mapping,
3395                 struct list_head *pages, unsigned nr_pages)
3396 {
3397         struct inode *inode = mapping->host;
3398
3399         /* If the file has inline data, no need to do readpages. */
3400         if (ext4_has_inline_data(inode))
3401                 return 0;
3402
3403         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3404 }
3405
3406 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3407                                 unsigned int length)
3408 {
3409         trace_ext4_invalidatepage(page, offset, length);
3410
3411         /* No journalling happens on data buffers when this function is used */
3412         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3413
3414         block_invalidatepage(page, offset, length);
3415 }
3416
3417 static int __ext4_journalled_invalidatepage(struct page *page,
3418                                             unsigned int offset,
3419                                             unsigned int length)
3420 {
3421         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3422
3423         trace_ext4_journalled_invalidatepage(page, offset, length);
3424
3425         /*
3426          * If it's a full truncate we just forget about the pending dirtying
3427          */
3428         if (offset == 0 && length == PAGE_SIZE)
3429                 ClearPageChecked(page);
3430
3431         return jbd2_journal_invalidatepage(journal, page, offset, length);
3432 }
3433
3434 /* Wrapper for aops... */
3435 static void ext4_journalled_invalidatepage(struct page *page,
3436                                            unsigned int offset,
3437                                            unsigned int length)
3438 {
3439         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3440 }
3441
3442 static int ext4_releasepage(struct page *page, gfp_t wait)
3443 {
3444         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3445
3446         trace_ext4_releasepage(page);
3447
3448         /* Page has dirty journalled data -> cannot release */
3449         if (PageChecked(page))
3450                 return 0;
3451         if (journal)
3452                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3453         else
3454                 return try_to_free_buffers(page);
3455 }
3456
3457 static bool ext4_inode_datasync_dirty(struct inode *inode)
3458 {
3459         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3460
3461         if (journal)
3462                 return !jbd2_transaction_committed(journal,
3463                                         EXT4_I(inode)->i_datasync_tid);
3464         /* Any metadata buffers to write? */
3465         if (!list_empty(&inode->i_mapping->private_list))
3466                 return true;
3467         return inode->i_state & I_DIRTY_DATASYNC;
3468 }
3469
3470 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3471                             unsigned flags, struct iomap *iomap)
3472 {
3473         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3474         unsigned int blkbits = inode->i_blkbits;
3475         unsigned long first_block, last_block;
3476         struct ext4_map_blocks map;
3477         bool delalloc = false;
3478         int ret;
3479
3480         if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3481                 return -EINVAL;
3482         first_block = offset >> blkbits;
3483         last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3484                            EXT4_MAX_LOGICAL_BLOCK);
3485
3486         if (flags & IOMAP_REPORT) {
3487                 if (ext4_has_inline_data(inode)) {
3488                         ret = ext4_inline_data_iomap(inode, iomap);
3489                         if (ret != -EAGAIN) {
3490                                 if (ret == 0 && offset >= iomap->length)
3491                                         ret = -ENOENT;
3492                                 return ret;
3493                         }
3494                 }
3495         } else {
3496                 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3497                         return -ERANGE;
3498         }
3499
3500         map.m_lblk = first_block;
3501         map.m_len = last_block - first_block + 1;
3502
3503         if (flags & IOMAP_REPORT) {
3504                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3505                 if (ret < 0)
3506                         return ret;
3507
3508                 if (ret == 0) {
3509                         ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3510                         struct extent_status es;
3511
3512                         ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3513                                                   map.m_lblk, end, &es);
3514
3515                         if (!es.es_len || es.es_lblk > end) {
3516                                 /* entire range is a hole */
3517                         } else if (es.es_lblk > map.m_lblk) {
3518                                 /* range starts with a hole */
3519                                 map.m_len = es.es_lblk - map.m_lblk;
3520                         } else {
3521                                 ext4_lblk_t offs = 0;
3522
3523                                 if (es.es_lblk < map.m_lblk)
3524                                         offs = map.m_lblk - es.es_lblk;
3525                                 map.m_lblk = es.es_lblk + offs;
3526                                 map.m_len = es.es_len - offs;
3527                                 delalloc = true;
3528                         }
3529                 }
3530         } else if (flags & IOMAP_WRITE) {
3531                 int dio_credits;
3532                 handle_t *handle;
3533                 int retries = 0;
3534
3535                 /* Trim mapping request to maximum we can map at once for DIO */
3536                 if (map.m_len > DIO_MAX_BLOCKS)
3537                         map.m_len = DIO_MAX_BLOCKS;
3538                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3539 retry:
3540                 /*
3541                  * Either we allocate blocks and then we don't get unwritten
3542                  * extent so we have reserved enough credits, or the blocks
3543                  * are already allocated and unwritten and in that case
3544                  * extent conversion fits in the credits as well.
3545                  */
3546                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3547                                             dio_credits);
3548                 if (IS_ERR(handle))
3549                         return PTR_ERR(handle);
3550
3551                 ret = ext4_map_blocks(handle, inode, &map,
3552                                       EXT4_GET_BLOCKS_CREATE_ZERO);
3553                 if (ret < 0) {
3554                         ext4_journal_stop(handle);
3555                         if (ret == -ENOSPC &&
3556                             ext4_should_retry_alloc(inode->i_sb, &retries))
3557                                 goto retry;
3558                         return ret;
3559                 }
3560
3561                 /*
3562                  * If we added blocks beyond i_size, we need to make sure they
3563                  * will get truncated if we crash before updating i_size in
3564                  * ext4_iomap_end(). For faults we don't need to do that (and
3565                  * even cannot because for orphan list operations inode_lock is
3566                  * required) - if we happen to instantiate block beyond i_size,
3567                  * it is because we race with truncate which has already added
3568                  * the inode to the orphan list.
3569                  */
3570                 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3571                     (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3572                         int err;
3573
3574                         err = ext4_orphan_add(handle, inode);
3575                         if (err < 0) {
3576                                 ext4_journal_stop(handle);
3577                                 return err;
3578                         }
3579                 }
3580                 ext4_journal_stop(handle);
3581         } else {
3582                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3583                 if (ret < 0)
3584                         return ret;
3585         }
3586
3587         iomap->flags = 0;
3588         if (ext4_inode_datasync_dirty(inode))
3589                 iomap->flags |= IOMAP_F_DIRTY;
3590         iomap->bdev = inode->i_sb->s_bdev;
3591         iomap->dax_dev = sbi->s_daxdev;
3592         iomap->offset = (u64)first_block << blkbits;
3593         iomap->length = (u64)map.m_len << blkbits;
3594
3595         if (ret == 0) {
3596                 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3597                 iomap->addr = IOMAP_NULL_ADDR;
3598         } else {
3599                 if (map.m_flags & EXT4_MAP_MAPPED) {
3600                         iomap->type = IOMAP_MAPPED;
3601                 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3602                         iomap->type = IOMAP_UNWRITTEN;
3603                 } else {
3604                         WARN_ON_ONCE(1);
3605                         return -EIO;
3606                 }
3607                 iomap->addr = (u64)map.m_pblk << blkbits;
3608         }
3609
3610         if (map.m_flags & EXT4_MAP_NEW)
3611                 iomap->flags |= IOMAP_F_NEW;
3612
3613         return 0;
3614 }
3615
3616 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3617                           ssize_t written, unsigned flags, struct iomap *iomap)
3618 {
3619         int ret = 0;
3620         handle_t *handle;
3621         int blkbits = inode->i_blkbits;
3622         bool truncate = false;
3623
3624         if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3625                 return 0;
3626
3627         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3628         if (IS_ERR(handle)) {
3629                 ret = PTR_ERR(handle);
3630                 goto orphan_del;
3631         }
3632         if (ext4_update_inode_size(inode, offset + written))
3633                 ext4_mark_inode_dirty(handle, inode);
3634         /*
3635          * We may need to truncate allocated but not written blocks beyond EOF.
3636          */
3637         if (iomap->offset + iomap->length > 
3638             ALIGN(inode->i_size, 1 << blkbits)) {
3639                 ext4_lblk_t written_blk, end_blk;
3640
3641                 written_blk = (offset + written) >> blkbits;
3642                 end_blk = (offset + length) >> blkbits;
3643                 if (written_blk < end_blk && ext4_can_truncate(inode))
3644                         truncate = true;
3645         }
3646         /*
3647          * Remove inode from orphan list if we were extending a inode and
3648          * everything went fine.
3649          */
3650         if (!truncate && inode->i_nlink &&
3651             !list_empty(&EXT4_I(inode)->i_orphan))
3652                 ext4_orphan_del(handle, inode);
3653         ext4_journal_stop(handle);
3654         if (truncate) {
3655                 ext4_truncate_failed_write(inode);
3656 orphan_del:
3657                 /*
3658                  * If truncate failed early the inode might still be on the
3659                  * orphan list; we need to make sure the inode is removed from
3660                  * the orphan list in that case.
3661                  */
3662                 if (inode->i_nlink)
3663                         ext4_orphan_del(NULL, inode);
3664         }
3665         return ret;
3666 }
3667
3668 const struct iomap_ops ext4_iomap_ops = {
3669         .iomap_begin            = ext4_iomap_begin,
3670         .iomap_end              = ext4_iomap_end,
3671 };
3672
3673 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3674                             ssize_t size, void *private)
3675 {
3676         ext4_io_end_t *io_end = private;
3677
3678         /* if not async direct IO just return */
3679         if (!io_end)
3680                 return 0;
3681
3682         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3683                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3684                   io_end, io_end->inode->i_ino, iocb, offset, size);
3685
3686         /*
3687          * Error during AIO DIO. We cannot convert unwritten extents as the
3688          * data was not written. Just clear the unwritten flag and drop io_end.
3689          */
3690         if (size <= 0) {
3691                 ext4_clear_io_unwritten_flag(io_end);
3692                 size = 0;
3693         }
3694         io_end->offset = offset;
3695         io_end->size = size;
3696         ext4_put_io_end(io_end);
3697
3698         return 0;
3699 }
3700
3701 /*
3702  * Handling of direct IO writes.
3703  *
3704  * For ext4 extent files, ext4 will do direct-io write even to holes,
3705  * preallocated extents, and those write extend the file, no need to
3706  * fall back to buffered IO.
3707  *
3708  * For holes, we fallocate those blocks, mark them as unwritten
3709  * If those blocks were preallocated, we mark sure they are split, but
3710  * still keep the range to write as unwritten.
3711  *
3712  * The unwritten extents will be converted to written when DIO is completed.
3713  * For async direct IO, since the IO may still pending when return, we
3714  * set up an end_io call back function, which will do the conversion
3715  * when async direct IO completed.
3716  *
3717  * If the O_DIRECT write will extend the file then add this inode to the
3718  * orphan list.  So recovery will truncate it back to the original size
3719  * if the machine crashes during the write.
3720  *
3721  */
3722 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3723 {
3724         struct file *file = iocb->ki_filp;
3725         struct inode *inode = file->f_mapping->host;
3726         struct ext4_inode_info *ei = EXT4_I(inode);
3727         ssize_t ret;
3728         loff_t offset = iocb->ki_pos;
3729         size_t count = iov_iter_count(iter);
3730         int overwrite = 0;
3731         get_block_t *get_block_func = NULL;
3732         int dio_flags = 0;
3733         loff_t final_size = offset + count;
3734         int orphan = 0;
3735         handle_t *handle;
3736
3737         if (final_size > inode->i_size || final_size > ei->i_disksize) {
3738                 /* Credits for sb + inode write */
3739                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3740                 if (IS_ERR(handle)) {
3741                         ret = PTR_ERR(handle);
3742                         goto out;
3743                 }
3744                 ret = ext4_orphan_add(handle, inode);
3745                 if (ret) {
3746                         ext4_journal_stop(handle);
3747                         goto out;
3748                 }
3749                 orphan = 1;
3750                 ext4_update_i_disksize(inode, inode->i_size);
3751                 ext4_journal_stop(handle);
3752         }
3753
3754         BUG_ON(iocb->private == NULL);
3755
3756         /*
3757          * Make all waiters for direct IO properly wait also for extent
3758          * conversion. This also disallows race between truncate() and
3759          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3760          */
3761         inode_dio_begin(inode);
3762
3763         /* If we do a overwrite dio, i_mutex locking can be released */
3764         overwrite = *((int *)iocb->private);
3765
3766         if (overwrite)
3767                 inode_unlock(inode);
3768
3769         /*
3770          * For extent mapped files we could direct write to holes and fallocate.
3771          *
3772          * Allocated blocks to fill the hole are marked as unwritten to prevent
3773          * parallel buffered read to expose the stale data before DIO complete
3774          * the data IO.
3775          *
3776          * As to previously fallocated extents, ext4 get_block will just simply
3777          * mark the buffer mapped but still keep the extents unwritten.
3778          *
3779          * For non AIO case, we will convert those unwritten extents to written
3780          * after return back from blockdev_direct_IO. That way we save us from
3781          * allocating io_end structure and also the overhead of offloading
3782          * the extent convertion to a workqueue.
3783          *
3784          * For async DIO, the conversion needs to be deferred when the
3785          * IO is completed. The ext4 end_io callback function will be
3786          * called to take care of the conversion work.  Here for async
3787          * case, we allocate an io_end structure to hook to the iocb.
3788          */
3789         iocb->private = NULL;
3790         if (overwrite)
3791                 get_block_func = ext4_dio_get_block_overwrite;
3792         else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3793                    round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3794                 get_block_func = ext4_dio_get_block;
3795                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3796         } else if (is_sync_kiocb(iocb)) {
3797                 get_block_func = ext4_dio_get_block_unwritten_sync;
3798                 dio_flags = DIO_LOCKING;
3799         } else {
3800                 get_block_func = ext4_dio_get_block_unwritten_async;
3801                 dio_flags = DIO_LOCKING;
3802         }
3803         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3804                                    get_block_func, ext4_end_io_dio, NULL,
3805                                    dio_flags);
3806
3807         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3808                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3809                 int err;
3810                 /*
3811                  * for non AIO case, since the IO is already
3812                  * completed, we could do the conversion right here
3813                  */
3814                 err = ext4_convert_unwritten_extents(NULL, inode,
3815                                                      offset, ret);
3816                 if (err < 0)
3817                         ret = err;
3818                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3819         }
3820
3821         inode_dio_end(inode);
3822         /* take i_mutex locking again if we do a ovewrite dio */
3823         if (overwrite)
3824                 inode_lock(inode);
3825
3826         if (ret < 0 && final_size > inode->i_size)
3827                 ext4_truncate_failed_write(inode);
3828
3829         /* Handle extending of i_size after direct IO write */
3830         if (orphan) {
3831                 int err;
3832
3833                 /* Credits for sb + inode write */
3834                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3835                 if (IS_ERR(handle)) {
3836                         /*
3837                          * We wrote the data but cannot extend
3838                          * i_size. Bail out. In async io case, we do
3839                          * not return error here because we have
3840                          * already submmitted the corresponding
3841                          * bio. Returning error here makes the caller
3842                          * think that this IO is done and failed
3843                          * resulting in race with bio's completion
3844                          * handler.
3845                          */
3846                         if (!ret)
3847                                 ret = PTR_ERR(handle);
3848                         if (inode->i_nlink)
3849                                 ext4_orphan_del(NULL, inode);
3850
3851                         goto out;
3852                 }
3853                 if (inode->i_nlink)
3854                         ext4_orphan_del(handle, inode);
3855                 if (ret > 0) {
3856                         loff_t end = offset + ret;
3857                         if (end > inode->i_size || end > ei->i_disksize) {
3858                                 ext4_update_i_disksize(inode, end);
3859                                 if (end > inode->i_size)
3860                                         i_size_write(inode, end);
3861                                 /*
3862                                  * We're going to return a positive `ret'
3863                                  * here due to non-zero-length I/O, so there's
3864                                  * no way of reporting error returns from
3865                                  * ext4_mark_inode_dirty() to userspace.  So
3866                                  * ignore it.
3867                                  */
3868                                 ext4_mark_inode_dirty(handle, inode);
3869                         }
3870                 }
3871                 err = ext4_journal_stop(handle);
3872                 if (ret == 0)
3873                         ret = err;
3874         }
3875 out:
3876         return ret;
3877 }
3878
3879 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3880 {
3881         struct address_space *mapping = iocb->ki_filp->f_mapping;
3882         struct inode *inode = mapping->host;
3883         size_t count = iov_iter_count(iter);
3884         ssize_t ret;
3885
3886         /*
3887          * Shared inode_lock is enough for us - it protects against concurrent
3888          * writes & truncates and since we take care of writing back page cache,
3889          * we are protected against page writeback as well.
3890          */
3891         inode_lock_shared(inode);
3892         ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3893                                            iocb->ki_pos + count - 1);
3894         if (ret)
3895                 goto out_unlock;
3896         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3897                                    iter, ext4_dio_get_block, NULL, NULL, 0);
3898 out_unlock:
3899         inode_unlock_shared(inode);
3900         return ret;
3901 }
3902
3903 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3904 {
3905         struct file *file = iocb->ki_filp;
3906         struct inode *inode = file->f_mapping->host;
3907         size_t count = iov_iter_count(iter);
3908         loff_t offset = iocb->ki_pos;
3909         ssize_t ret;
3910
3911 #ifdef CONFIG_FS_ENCRYPTION
3912         if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
3913                 return 0;
3914 #endif
3915         if (fsverity_active(inode))
3916                 return 0;
3917
3918         /*
3919          * If we are doing data journalling we don't support O_DIRECT
3920          */
3921         if (ext4_should_journal_data(inode))
3922                 return 0;
3923
3924         /* Let buffer I/O handle the inline data case. */
3925         if (ext4_has_inline_data(inode))
3926                 return 0;
3927
3928         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3929         if (iov_iter_rw(iter) == READ)
3930                 ret = ext4_direct_IO_read(iocb, iter);
3931         else
3932                 ret = ext4_direct_IO_write(iocb, iter);
3933         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3934         return ret;
3935 }
3936
3937 /*
3938  * Pages can be marked dirty completely asynchronously from ext4's journalling
3939  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3940  * much here because ->set_page_dirty is called under VFS locks.  The page is
3941  * not necessarily locked.
3942  *
3943  * We cannot just dirty the page and leave attached buffers clean, because the
3944  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3945  * or jbddirty because all the journalling code will explode.
3946  *
3947  * So what we do is to mark the page "pending dirty" and next time writepage
3948  * is called, propagate that into the buffers appropriately.
3949  */
3950 static int ext4_journalled_set_page_dirty(struct page *page)
3951 {
3952         SetPageChecked(page);
3953         return __set_page_dirty_nobuffers(page);
3954 }
3955
3956 static int ext4_set_page_dirty(struct page *page)
3957 {
3958         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3959         WARN_ON_ONCE(!page_has_buffers(page));
3960         return __set_page_dirty_buffers(page);
3961 }
3962
3963 static const struct address_space_operations ext4_aops = {
3964         .readpage               = ext4_readpage,
3965         .readpages              = ext4_readpages,
3966         .writepage              = ext4_writepage,
3967         .writepages             = ext4_writepages,
3968         .write_begin            = ext4_write_begin,
3969         .write_end              = ext4_write_end,
3970         .set_page_dirty         = ext4_set_page_dirty,
3971         .bmap                   = ext4_bmap,
3972         .invalidatepage         = ext4_invalidatepage,
3973         .releasepage            = ext4_releasepage,
3974         .direct_IO              = ext4_direct_IO,
3975         .migratepage            = buffer_migrate_page,
3976         .is_partially_uptodate  = block_is_partially_uptodate,
3977         .error_remove_page      = generic_error_remove_page,
3978 };
3979
3980 static const struct address_space_operations ext4_journalled_aops = {
3981         .readpage               = ext4_readpage,
3982         .readpages              = ext4_readpages,
3983         .writepage              = ext4_writepage,
3984         .writepages             = ext4_writepages,
3985         .write_begin            = ext4_write_begin,
3986         .write_end              = ext4_journalled_write_end,
3987         .set_page_dirty         = ext4_journalled_set_page_dirty,
3988         .bmap                   = ext4_bmap,
3989         .invalidatepage         = ext4_journalled_invalidatepage,
3990         .releasepage            = ext4_releasepage,
3991         .direct_IO              = ext4_direct_IO,
3992         .is_partially_uptodate  = block_is_partially_uptodate,
3993         .error_remove_page      = generic_error_remove_page,
3994 };
3995
3996 static const struct address_space_operations ext4_da_aops = {
3997         .readpage               = ext4_readpage,
3998         .readpages              = ext4_readpages,
3999         .writepage              = ext4_writepage,
4000         .writepages             = ext4_writepages,
4001         .write_begin            = ext4_da_write_begin,
4002         .write_end              = ext4_da_write_end,
4003         .set_page_dirty         = ext4_set_page_dirty,
4004         .bmap                   = ext4_bmap,
4005         .invalidatepage         = ext4_da_invalidatepage,
4006         .releasepage            = ext4_releasepage,
4007         .direct_IO              = ext4_direct_IO,
4008         .migratepage            = buffer_migrate_page,
4009         .is_partially_uptodate  = block_is_partially_uptodate,
4010         .error_remove_page      = generic_error_remove_page,
4011 };
4012
4013 static const struct address_space_operations ext4_dax_aops = {
4014         .writepages             = ext4_dax_writepages,
4015         .direct_IO              = noop_direct_IO,
4016         .set_page_dirty         = noop_set_page_dirty,
4017         .bmap                   = ext4_bmap,
4018         .invalidatepage         = noop_invalidatepage,
4019 };
4020
4021 void ext4_set_aops(struct inode *inode)
4022 {
4023         switch (ext4_inode_journal_mode(inode)) {
4024         case EXT4_INODE_ORDERED_DATA_MODE:
4025         case EXT4_INODE_WRITEBACK_DATA_MODE:
4026                 break;
4027         case EXT4_INODE_JOURNAL_DATA_MODE:
4028                 inode->i_mapping->a_ops = &ext4_journalled_aops;
4029                 return;
4030         default:
4031                 BUG();
4032         }
4033         if (IS_DAX(inode))
4034                 inode->i_mapping->a_ops = &ext4_dax_aops;
4035         else if (test_opt(inode->i_sb, DELALLOC))
4036                 inode->i_mapping->a_ops = &ext4_da_aops;
4037         else
4038                 inode->i_mapping->a_ops = &ext4_aops;
4039 }
4040
4041 static int __ext4_block_zero_page_range(handle_t *handle,
4042                 struct address_space *mapping, loff_t from, loff_t length)
4043 {
4044         ext4_fsblk_t index = from >> PAGE_SHIFT;
4045         unsigned offset = from & (PAGE_SIZE-1);
4046         unsigned blocksize, pos;
4047         ext4_lblk_t iblock;
4048         struct inode *inode = mapping->host;
4049         struct buffer_head *bh;
4050         struct page *page;
4051         int err = 0;
4052
4053         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
4054                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
4055         if (!page)
4056                 return -ENOMEM;
4057
4058         blocksize = inode->i_sb->s_blocksize;
4059
4060         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4061
4062         if (!page_has_buffers(page))
4063                 create_empty_buffers(page, blocksize, 0);
4064
4065         /* Find the buffer that contains "offset" */
4066         bh = page_buffers(page);
4067         pos = blocksize;
4068         while (offset >= pos) {
4069                 bh = bh->b_this_page;
4070                 iblock++;
4071                 pos += blocksize;
4072         }
4073         if (buffer_freed(bh)) {
4074                 BUFFER_TRACE(bh, "freed: skip");
4075                 goto unlock;
4076         }
4077         if (!buffer_mapped(bh)) {
4078                 BUFFER_TRACE(bh, "unmapped");
4079                 ext4_get_block(inode, iblock, bh, 0);
4080                 /* unmapped? It's a hole - nothing to do */
4081                 if (!buffer_mapped(bh)) {
4082                         BUFFER_TRACE(bh, "still unmapped");
4083                         goto unlock;
4084                 }
4085         }
4086
4087         /* Ok, it's mapped. Make sure it's up-to-date */
4088         if (PageUptodate(page))
4089                 set_buffer_uptodate(bh);
4090
4091         if (!buffer_uptodate(bh)) {
4092                 err = -EIO;
4093                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4094                 wait_on_buffer(bh);
4095                 /* Uhhuh. Read error. Complain and punt. */
4096                 if (!buffer_uptodate(bh))
4097                         goto unlock;
4098                 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
4099                         /* We expect the key to be set. */
4100                         BUG_ON(!fscrypt_has_encryption_key(inode));
4101                         WARN_ON_ONCE(fscrypt_decrypt_pagecache_blocks(
4102                                         page, blocksize, bh_offset(bh)));
4103                 }
4104         }
4105         if (ext4_should_journal_data(inode)) {
4106                 BUFFER_TRACE(bh, "get write access");
4107                 err = ext4_journal_get_write_access(handle, bh);
4108                 if (err)
4109                         goto unlock;
4110         }
4111         zero_user(page, offset, length);
4112         BUFFER_TRACE(bh, "zeroed end of block");
4113
4114         if (ext4_should_journal_data(inode)) {
4115                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4116         } else {
4117                 err = 0;
4118                 mark_buffer_dirty(bh);
4119                 if (ext4_should_order_data(inode))
4120                         err = ext4_jbd2_inode_add_write(handle, inode, from,
4121                                         length);
4122         }
4123
4124 unlock:
4125         unlock_page(page);
4126         put_page(page);
4127         return err;
4128 }
4129
4130 /*
4131  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4132  * starting from file offset 'from'.  The range to be zero'd must
4133  * be contained with in one block.  If the specified range exceeds
4134  * the end of the block it will be shortened to end of the block
4135  * that cooresponds to 'from'
4136  */
4137 static int ext4_block_zero_page_range(handle_t *handle,
4138                 struct address_space *mapping, loff_t from, loff_t length)
4139 {
4140         struct inode *inode = mapping->host;
4141         unsigned offset = from & (PAGE_SIZE-1);
4142         unsigned blocksize = inode->i_sb->s_blocksize;
4143         unsigned max = blocksize - (offset & (blocksize - 1));
4144
4145         /*
4146          * correct length if it does not fall between
4147          * 'from' and the end of the block
4148          */
4149         if (length > max || length < 0)
4150                 length = max;
4151
4152         if (IS_DAX(inode)) {
4153                 return iomap_zero_range(inode, from, length, NULL,
4154                                         &ext4_iomap_ops);
4155         }
4156         return __ext4_block_zero_page_range(handle, mapping, from, length);
4157 }
4158
4159 /*
4160  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4161  * up to the end of the block which corresponds to `from'.
4162  * This required during truncate. We need to physically zero the tail end
4163  * of that block so it doesn't yield old data if the file is later grown.
4164  */
4165 static int ext4_block_truncate_page(handle_t *handle,
4166                 struct address_space *mapping, loff_t from)
4167 {
4168         unsigned offset = from & (PAGE_SIZE-1);
4169         unsigned length;
4170         unsigned blocksize;
4171         struct inode *inode = mapping->host;
4172
4173         /* If we are processing an encrypted inode during orphan list handling */
4174         if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
4175                 return 0;
4176
4177         blocksize = inode->i_sb->s_blocksize;
4178         length = blocksize - (offset & (blocksize - 1));
4179
4180         return ext4_block_zero_page_range(handle, mapping, from, length);
4181 }
4182
4183 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4184                              loff_t lstart, loff_t length)
4185 {
4186         struct super_block *sb = inode->i_sb;
4187         struct address_space *mapping = inode->i_mapping;
4188         unsigned partial_start, partial_end;
4189         ext4_fsblk_t start, end;
4190         loff_t byte_end = (lstart + length - 1);
4191         int err = 0;
4192
4193         partial_start = lstart & (sb->s_blocksize - 1);
4194         partial_end = byte_end & (sb->s_blocksize - 1);
4195
4196         start = lstart >> sb->s_blocksize_bits;
4197         end = byte_end >> sb->s_blocksize_bits;
4198
4199         /* Handle partial zero within the single block */
4200         if (start == end &&
4201             (partial_start || (partial_end != sb->s_blocksize - 1))) {
4202                 err = ext4_block_zero_page_range(handle, mapping,
4203                                                  lstart, length);
4204                 return err;
4205         }
4206         /* Handle partial zero out on the start of the range */
4207         if (partial_start) {
4208                 err = ext4_block_zero_page_range(handle, mapping,
4209                                                  lstart, sb->s_blocksize);
4210                 if (err)
4211                         return err;
4212         }
4213         /* Handle partial zero out on the end of the range */
4214         if (partial_end != sb->s_blocksize - 1)
4215                 err = ext4_block_zero_page_range(handle, mapping,
4216                                                  byte_end - partial_end,
4217                                                  partial_end + 1);
4218         return err;
4219 }
4220
4221 int ext4_can_truncate(struct inode *inode)
4222 {
4223         if (S_ISREG(inode->i_mode))
4224                 return 1;
4225         if (S_ISDIR(inode->i_mode))
4226                 return 1;
4227         if (S_ISLNK(inode->i_mode))
4228                 return !ext4_inode_is_fast_symlink(inode);
4229         return 0;
4230 }
4231
4232 /*
4233  * We have to make sure i_disksize gets properly updated before we truncate
4234  * page cache due to hole punching or zero range. Otherwise i_disksize update
4235  * can get lost as it may have been postponed to submission of writeback but
4236  * that will never happen after we truncate page cache.
4237  */
4238 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4239                                       loff_t len)
4240 {
4241         handle_t *handle;
4242         loff_t size = i_size_read(inode);
4243
4244         WARN_ON(!inode_is_locked(inode));
4245         if (offset > size || offset + len < size)
4246                 return 0;
4247
4248         if (EXT4_I(inode)->i_disksize >= size)
4249                 return 0;
4250
4251         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4252         if (IS_ERR(handle))
4253                 return PTR_ERR(handle);
4254         ext4_update_i_disksize(inode, size);
4255         ext4_mark_inode_dirty(handle, inode);
4256         ext4_journal_stop(handle);
4257
4258         return 0;
4259 }
4260
4261 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
4262 {
4263         up_write(&ei->i_mmap_sem);
4264         schedule();
4265         down_write(&ei->i_mmap_sem);
4266 }
4267
4268 int ext4_break_layouts(struct inode *inode)
4269 {
4270         struct ext4_inode_info *ei = EXT4_I(inode);
4271         struct page *page;
4272         int error;
4273
4274         if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4275                 return -EINVAL;
4276
4277         do {
4278                 page = dax_layout_busy_page(inode->i_mapping);
4279                 if (!page)
4280                         return 0;
4281
4282                 error = ___wait_var_event(&page->_refcount,
4283                                 atomic_read(&page->_refcount) == 1,
4284                                 TASK_INTERRUPTIBLE, 0, 0,
4285                                 ext4_wait_dax_page(ei));
4286         } while (error == 0);
4287
4288         return error;
4289 }
4290
4291 /*
4292  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4293  * associated with the given offset and length
4294  *
4295  * @inode:  File inode
4296  * @offset: The offset where the hole will begin
4297  * @len:    The length of the hole
4298  *
4299  * Returns: 0 on success or negative on failure
4300  */
4301
4302 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4303 {
4304         struct super_block *sb = inode->i_sb;
4305         ext4_lblk_t first_block, stop_block;
4306         struct address_space *mapping = inode->i_mapping;
4307         loff_t first_block_offset, last_block_offset;
4308         handle_t *handle;
4309         unsigned int credits;
4310         int ret = 0;
4311
4312         if (!S_ISREG(inode->i_mode))
4313                 return -EOPNOTSUPP;
4314
4315         trace_ext4_punch_hole(inode, offset, length, 0);
4316
4317         /*
4318          * Write out all dirty pages to avoid race conditions
4319          * Then release them.
4320          */
4321         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4322                 ret = filemap_write_and_wait_range(mapping, offset,
4323                                                    offset + length - 1);
4324                 if (ret)
4325                         return ret;
4326         }
4327
4328         inode_lock(inode);
4329
4330         /* No need to punch hole beyond i_size */
4331         if (offset >= inode->i_size)
4332                 goto out_mutex;
4333
4334         /*
4335          * If the hole extends beyond i_size, set the hole
4336          * to end after the page that contains i_size
4337          */
4338         if (offset + length > inode->i_size) {
4339                 length = inode->i_size +
4340                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4341                    offset;
4342         }
4343
4344         if (offset & (sb->s_blocksize - 1) ||
4345             (offset + length) & (sb->s_blocksize - 1)) {
4346                 /*
4347                  * Attach jinode to inode for jbd2 if we do any zeroing of
4348                  * partial block
4349                  */
4350                 ret = ext4_inode_attach_jinode(inode);
4351                 if (ret < 0)
4352                         goto out_mutex;
4353
4354         }
4355
4356         /* Wait all existing dio workers, newcomers will block on i_mutex */
4357         inode_dio_wait(inode);
4358
4359         /*
4360          * Prevent page faults from reinstantiating pages we have released from
4361          * page cache.
4362          */
4363         down_write(&EXT4_I(inode)->i_mmap_sem);
4364
4365         ret = ext4_break_layouts(inode);
4366         if (ret)
4367                 goto out_dio;
4368
4369         first_block_offset = round_up(offset, sb->s_blocksize);
4370         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4371
4372         /* Now release the pages and zero block aligned part of pages*/
4373         if (last_block_offset > first_block_offset) {
4374                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4375                 if (ret)
4376                         goto out_dio;
4377                 truncate_pagecache_range(inode, first_block_offset,
4378                                          last_block_offset);
4379         }
4380
4381         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4382                 credits = ext4_writepage_trans_blocks(inode);
4383         else
4384                 credits = ext4_blocks_for_truncate(inode);
4385         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4386         if (IS_ERR(handle)) {
4387                 ret = PTR_ERR(handle);
4388                 ext4_std_error(sb, ret);
4389                 goto out_dio;
4390         }
4391
4392         ret = ext4_zero_partial_blocks(handle, inode, offset,
4393                                        length);
4394         if (ret)
4395                 goto out_stop;
4396
4397         first_block = (offset + sb->s_blocksize - 1) >>
4398                 EXT4_BLOCK_SIZE_BITS(sb);
4399         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4400
4401         /* If there are blocks to remove, do it */
4402         if (stop_block > first_block) {
4403
4404                 down_write(&EXT4_I(inode)->i_data_sem);
4405                 ext4_discard_preallocations(inode);
4406
4407                 ret = ext4_es_remove_extent(inode, first_block,
4408                                             stop_block - first_block);
4409                 if (ret) {
4410                         up_write(&EXT4_I(inode)->i_data_sem);
4411                         goto out_stop;
4412                 }
4413
4414                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4415                         ret = ext4_ext_remove_space(inode, first_block,
4416                                                     stop_block - 1);
4417                 else
4418                         ret = ext4_ind_remove_space(handle, inode, first_block,
4419                                                     stop_block);
4420
4421                 up_write(&EXT4_I(inode)->i_data_sem);
4422         }
4423         if (IS_SYNC(inode))
4424                 ext4_handle_sync(handle);
4425
4426         inode->i_mtime = inode->i_ctime = current_time(inode);
4427         ext4_mark_inode_dirty(handle, inode);
4428         if (ret >= 0)
4429                 ext4_update_inode_fsync_trans(handle, inode, 1);
4430 out_stop:
4431         ext4_journal_stop(handle);
4432 out_dio:
4433         up_write(&EXT4_I(inode)->i_mmap_sem);
4434 out_mutex:
4435         inode_unlock(inode);
4436         return ret;
4437 }
4438
4439 int ext4_inode_attach_jinode(struct inode *inode)
4440 {
4441         struct ext4_inode_info *ei = EXT4_I(inode);
4442         struct jbd2_inode *jinode;
4443
4444         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4445                 return 0;
4446
4447         jinode = jbd2_alloc_inode(GFP_KERNEL);
4448         spin_lock(&inode->i_lock);
4449         if (!ei->jinode) {
4450                 if (!jinode) {
4451                         spin_unlock(&inode->i_lock);
4452                         return -ENOMEM;
4453                 }
4454                 ei->jinode = jinode;
4455                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4456                 jinode = NULL;
4457         }
4458         spin_unlock(&inode->i_lock);
4459         if (unlikely(jinode != NULL))
4460                 jbd2_free_inode(jinode);
4461         return 0;
4462 }
4463
4464 /*
4465  * ext4_truncate()
4466  *
4467  * We block out ext4_get_block() block instantiations across the entire
4468  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4469  * simultaneously on behalf of the same inode.
4470  *
4471  * As we work through the truncate and commit bits of it to the journal there
4472  * is one core, guiding principle: the file's tree must always be consistent on
4473  * disk.  We must be able to restart the truncate after a crash.
4474  *
4475  * The file's tree may be transiently inconsistent in memory (although it
4476  * probably isn't), but whenever we close off and commit a journal transaction,
4477  * the contents of (the filesystem + the journal) must be consistent and
4478  * restartable.  It's pretty simple, really: bottom up, right to left (although
4479  * left-to-right works OK too).
4480  *
4481  * Note that at recovery time, journal replay occurs *before* the restart of
4482  * truncate against the orphan inode list.
4483  *
4484  * The committed inode has the new, desired i_size (which is the same as
4485  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4486  * that this inode's truncate did not complete and it will again call
4487  * ext4_truncate() to have another go.  So there will be instantiated blocks
4488  * to the right of the truncation point in a crashed ext4 filesystem.  But
4489  * that's fine - as long as they are linked from the inode, the post-crash
4490  * ext4_truncate() run will find them and release them.
4491  */
4492 int ext4_truncate(struct inode *inode)
4493 {
4494         struct ext4_inode_info *ei = EXT4_I(inode);
4495         unsigned int credits;
4496         int err = 0;
4497         handle_t *handle;
4498         struct address_space *mapping = inode->i_mapping;
4499
4500         /*
4501          * There is a possibility that we're either freeing the inode
4502          * or it's a completely new inode. In those cases we might not
4503          * have i_mutex locked because it's not necessary.
4504          */
4505         if (!(inode->i_state & (I_NEW|I_FREEING)))
4506                 WARN_ON(!inode_is_locked(inode));
4507         trace_ext4_truncate_enter(inode);
4508
4509         if (!ext4_can_truncate(inode))
4510                 return 0;
4511
4512         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4513
4514         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4515                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4516
4517         if (ext4_has_inline_data(inode)) {
4518                 int has_inline = 1;
4519
4520                 err = ext4_inline_data_truncate(inode, &has_inline);
4521                 if (err)
4522                         return err;
4523                 if (has_inline)
4524                         return 0;
4525         }
4526
4527         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4528         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4529                 if (ext4_inode_attach_jinode(inode) < 0)
4530                         return 0;
4531         }
4532
4533         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4534                 credits = ext4_writepage_trans_blocks(inode);
4535         else
4536                 credits = ext4_blocks_for_truncate(inode);
4537
4538         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4539         if (IS_ERR(handle))
4540                 return PTR_ERR(handle);
4541
4542         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4543                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4544
4545         /*
4546          * We add the inode to the orphan list, so that if this
4547          * truncate spans multiple transactions, and we crash, we will
4548          * resume the truncate when the filesystem recovers.  It also
4549          * marks the inode dirty, to catch the new size.
4550          *
4551          * Implication: the file must always be in a sane, consistent
4552          * truncatable state while each transaction commits.
4553          */
4554         err = ext4_orphan_add(handle, inode);
4555         if (err)
4556                 goto out_stop;
4557
4558         down_write(&EXT4_I(inode)->i_data_sem);
4559
4560         ext4_discard_preallocations(inode);
4561
4562         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4563                 err = ext4_ext_truncate(handle, inode);
4564         else
4565                 ext4_ind_truncate(handle, inode);
4566
4567         up_write(&ei->i_data_sem);
4568         if (err)
4569                 goto out_stop;
4570
4571         if (IS_SYNC(inode))
4572                 ext4_handle_sync(handle);
4573
4574 out_stop:
4575         /*
4576          * If this was a simple ftruncate() and the file will remain alive,
4577          * then we need to clear up the orphan record which we created above.
4578          * However, if this was a real unlink then we were called by
4579          * ext4_evict_inode(), and we allow that function to clean up the
4580          * orphan info for us.
4581          */
4582         if (inode->i_nlink)
4583                 ext4_orphan_del(handle, inode);
4584
4585         inode->i_mtime = inode->i_ctime = current_time(inode);
4586         ext4_mark_inode_dirty(handle, inode);
4587         ext4_journal_stop(handle);
4588
4589         trace_ext4_truncate_exit(inode);
4590         return err;
4591 }
4592
4593 /*
4594  * ext4_get_inode_loc returns with an extra refcount against the inode's
4595  * underlying buffer_head on success. If 'in_mem' is true, we have all
4596  * data in memory that is needed to recreate the on-disk version of this
4597  * inode.
4598  */
4599 static int __ext4_get_inode_loc(struct inode *inode,
4600                                 struct ext4_iloc *iloc, int in_mem)
4601 {
4602         struct ext4_group_desc  *gdp;
4603         struct buffer_head      *bh;
4604         struct super_block      *sb = inode->i_sb;
4605         ext4_fsblk_t            block;
4606         int                     inodes_per_block, inode_offset;
4607
4608         iloc->bh = NULL;
4609         if (inode->i_ino < EXT4_ROOT_INO ||
4610             inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4611                 return -EFSCORRUPTED;
4612
4613         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4614         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4615         if (!gdp)
4616                 return -EIO;
4617
4618         /*
4619          * Figure out the offset within the block group inode table
4620          */
4621         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4622         inode_offset = ((inode->i_ino - 1) %
4623                         EXT4_INODES_PER_GROUP(sb));
4624         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4625         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4626
4627         bh = sb_getblk(sb, block);
4628         if (unlikely(!bh))
4629                 return -ENOMEM;
4630         if (!buffer_uptodate(bh)) {
4631                 lock_buffer(bh);
4632
4633                 /*
4634                  * If the buffer has the write error flag, we have failed
4635                  * to write out another inode in the same block.  In this
4636                  * case, we don't have to read the block because we may
4637                  * read the old inode data successfully.
4638                  */
4639                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4640                         set_buffer_uptodate(bh);
4641
4642                 if (buffer_uptodate(bh)) {
4643                         /* someone brought it uptodate while we waited */
4644                         unlock_buffer(bh);
4645                         goto has_buffer;
4646                 }
4647
4648                 /*
4649                  * If we have all information of the inode in memory and this
4650                  * is the only valid inode in the block, we need not read the
4651                  * block.
4652                  */
4653                 if (in_mem) {
4654                         struct buffer_head *bitmap_bh;
4655                         int i, start;
4656
4657                         start = inode_offset & ~(inodes_per_block - 1);
4658
4659                         /* Is the inode bitmap in cache? */
4660                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4661                         if (unlikely(!bitmap_bh))
4662                                 goto make_io;
4663
4664                         /*
4665                          * If the inode bitmap isn't in cache then the
4666                          * optimisation may end up performing two reads instead
4667                          * of one, so skip it.
4668                          */
4669                         if (!buffer_uptodate(bitmap_bh)) {
4670                                 brelse(bitmap_bh);
4671                                 goto make_io;
4672                         }
4673                         for (i = start; i < start + inodes_per_block; i++) {
4674                                 if (i == inode_offset)
4675                                         continue;
4676                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4677                                         break;
4678                         }
4679                         brelse(bitmap_bh);
4680                         if (i == start + inodes_per_block) {
4681                                 /* all other inodes are free, so skip I/O */
4682                                 memset(bh->b_data, 0, bh->b_size);
4683                                 set_buffer_uptodate(bh);
4684                                 unlock_buffer(bh);
4685                                 goto has_buffer;
4686                         }
4687                 }
4688
4689 make_io:
4690                 /*
4691                  * If we need to do any I/O, try to pre-readahead extra
4692                  * blocks from the inode table.
4693                  */
4694                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4695                         ext4_fsblk_t b, end, table;
4696                         unsigned num;
4697                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4698
4699                         table = ext4_inode_table(sb, gdp);
4700                         /* s_inode_readahead_blks is always a power of 2 */
4701                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4702                         if (table > b)
4703                                 b = table;
4704                         end = b + ra_blks;
4705                         num = EXT4_INODES_PER_GROUP(sb);
4706                         if (ext4_has_group_desc_csum(sb))
4707                                 num -= ext4_itable_unused_count(sb, gdp);
4708                         table += num / inodes_per_block;
4709                         if (end > table)
4710                                 end = table;
4711                         while (b <= end)
4712                                 sb_breadahead(sb, b++);
4713                 }
4714
4715                 /*
4716                  * There are other valid inodes in the buffer, this inode
4717                  * has in-inode xattrs, or we don't have this inode in memory.
4718                  * Read the block from disk.
4719                  */
4720                 trace_ext4_load_inode(inode);
4721                 get_bh(bh);
4722                 bh->b_end_io = end_buffer_read_sync;
4723                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4724                 wait_on_buffer(bh);
4725                 if (!buffer_uptodate(bh)) {
4726                         EXT4_ERROR_INODE_BLOCK(inode, block,
4727                                                "unable to read itable block");
4728                         brelse(bh);
4729                         return -EIO;
4730                 }
4731         }
4732 has_buffer:
4733         iloc->bh = bh;
4734         return 0;
4735 }
4736
4737 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4738 {
4739         /* We have all inode data except xattrs in memory here. */
4740         return __ext4_get_inode_loc(inode, iloc,
4741                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4742 }
4743
4744 static bool ext4_should_use_dax(struct inode *inode)
4745 {
4746         if (!test_opt(inode->i_sb, DAX))
4747                 return false;
4748         if (!S_ISREG(inode->i_mode))
4749                 return false;
4750         if (ext4_should_journal_data(inode))
4751                 return false;
4752         if (ext4_has_inline_data(inode))
4753                 return false;
4754         if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4755                 return false;
4756         if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4757                 return false;
4758         return true;
4759 }
4760
4761 void ext4_set_inode_flags(struct inode *inode)
4762 {
4763         unsigned int flags = EXT4_I(inode)->i_flags;
4764         unsigned int new_fl = 0;
4765
4766         if (flags & EXT4_SYNC_FL)
4767                 new_fl |= S_SYNC;
4768         if (flags & EXT4_APPEND_FL)
4769                 new_fl |= S_APPEND;
4770         if (flags & EXT4_IMMUTABLE_FL)
4771                 new_fl |= S_IMMUTABLE;
4772         if (flags & EXT4_NOATIME_FL)
4773                 new_fl |= S_NOATIME;
4774         if (flags & EXT4_DIRSYNC_FL)
4775                 new_fl |= S_DIRSYNC;
4776         if (ext4_should_use_dax(inode))
4777                 new_fl |= S_DAX;
4778         if (flags & EXT4_ENCRYPT_FL)
4779                 new_fl |= S_ENCRYPTED;
4780         if (flags & EXT4_CASEFOLD_FL)
4781                 new_fl |= S_CASEFOLD;
4782         if (flags & EXT4_VERITY_FL)
4783                 new_fl |= S_VERITY;
4784         inode_set_flags(inode, new_fl,
4785                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4786                         S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4787 }
4788
4789 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4790                                   struct ext4_inode_info *ei)
4791 {
4792         blkcnt_t i_blocks ;
4793         struct inode *inode = &(ei->vfs_inode);
4794         struct super_block *sb = inode->i_sb;
4795
4796         if (ext4_has_feature_huge_file(sb)) {
4797                 /* we are using combined 48 bit field */
4798                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4799                                         le32_to_cpu(raw_inode->i_blocks_lo);
4800                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4801                         /* i_blocks represent file system block size */
4802                         return i_blocks  << (inode->i_blkbits - 9);
4803                 } else {
4804                         return i_blocks;
4805                 }
4806         } else {
4807                 return le32_to_cpu(raw_inode->i_blocks_lo);
4808         }
4809 }
4810
4811 static inline int ext4_iget_extra_inode(struct inode *inode,
4812                                          struct ext4_inode *raw_inode,
4813                                          struct ext4_inode_info *ei)
4814 {
4815         __le32 *magic = (void *)raw_inode +
4816                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4817
4818         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4819             EXT4_INODE_SIZE(inode->i_sb) &&
4820             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4821                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4822                 return ext4_find_inline_data_nolock(inode);
4823         } else
4824                 EXT4_I(inode)->i_inline_off = 0;
4825         return 0;
4826 }
4827
4828 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4829 {
4830         if (!ext4_has_feature_project(inode->i_sb))
4831                 return -EOPNOTSUPP;
4832         *projid = EXT4_I(inode)->i_projid;
4833         return 0;
4834 }
4835
4836 /*
4837  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4838  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4839  * set.
4840  */
4841 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4842 {
4843         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4844                 inode_set_iversion_raw(inode, val);
4845         else
4846                 inode_set_iversion_queried(inode, val);
4847 }
4848 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4849 {
4850         if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4851                 return inode_peek_iversion_raw(inode);
4852         else
4853                 return inode_peek_iversion(inode);
4854 }
4855
4856 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4857                           ext4_iget_flags flags, const char *function,
4858                           unsigned int line)
4859 {
4860         struct ext4_iloc iloc;
4861         struct ext4_inode *raw_inode;
4862         struct ext4_inode_info *ei;
4863         struct inode *inode;
4864         journal_t *journal = EXT4_SB(sb)->s_journal;
4865         long ret;
4866         loff_t size;
4867         int block;
4868         uid_t i_uid;
4869         gid_t i_gid;
4870         projid_t i_projid;
4871
4872         if ((!(flags & EXT4_IGET_SPECIAL) &&
4873              (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4874             (ino < EXT4_ROOT_INO) ||
4875             (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4876                 if (flags & EXT4_IGET_HANDLE)
4877                         return ERR_PTR(-ESTALE);
4878                 __ext4_error(sb, function, line,
4879                              "inode #%lu: comm %s: iget: illegal inode #",
4880                              ino, current->comm);
4881                 return ERR_PTR(-EFSCORRUPTED);
4882         }
4883
4884         inode = iget_locked(sb, ino);
4885         if (!inode)
4886                 return ERR_PTR(-ENOMEM);
4887         if (!(inode->i_state & I_NEW))
4888                 return inode;
4889
4890         ei = EXT4_I(inode);
4891         iloc.bh = NULL;
4892
4893         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4894         if (ret < 0)
4895                 goto bad_inode;
4896         raw_inode = ext4_raw_inode(&iloc);
4897
4898         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4899                 ext4_error_inode(inode, function, line, 0,
4900                                  "iget: root inode unallocated");
4901                 ret = -EFSCORRUPTED;
4902                 goto bad_inode;
4903         }
4904
4905         if ((flags & EXT4_IGET_HANDLE) &&
4906             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4907                 ret = -ESTALE;
4908                 goto bad_inode;
4909         }
4910
4911         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4912                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4913                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4914                         EXT4_INODE_SIZE(inode->i_sb) ||
4915                     (ei->i_extra_isize & 3)) {
4916                         ext4_error_inode(inode, function, line, 0,
4917                                          "iget: bad extra_isize %u "
4918                                          "(inode size %u)",
4919                                          ei->i_extra_isize,
4920                                          EXT4_INODE_SIZE(inode->i_sb));
4921                         ret = -EFSCORRUPTED;
4922                         goto bad_inode;
4923                 }
4924         } else
4925                 ei->i_extra_isize = 0;
4926
4927         /* Precompute checksum seed for inode metadata */
4928         if (ext4_has_metadata_csum(sb)) {
4929                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4930                 __u32 csum;
4931                 __le32 inum = cpu_to_le32(inode->i_ino);
4932                 __le32 gen = raw_inode->i_generation;
4933                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4934                                    sizeof(inum));
4935                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4936                                               sizeof(gen));
4937         }
4938
4939         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4940                 ext4_error_inode(inode, function, line, 0,
4941                                  "iget: checksum invalid");
4942                 ret = -EFSBADCRC;
4943                 goto bad_inode;
4944         }
4945
4946         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4947         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4948         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4949         if (ext4_has_feature_project(sb) &&
4950             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4951             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4952                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4953         else
4954                 i_projid = EXT4_DEF_PROJID;
4955
4956         if (!(test_opt(inode->i_sb, NO_UID32))) {
4957                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4958                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4959         }
4960         i_uid_write(inode, i_uid);
4961         i_gid_write(inode, i_gid);
4962         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4963         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4964
4965         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4966         ei->i_inline_off = 0;
4967         ei->i_dir_start_lookup = 0;
4968         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4969         /* We now have enough fields to check if the inode was active or not.
4970          * This is needed because nfsd might try to access dead inodes
4971          * the test is that same one that e2fsck uses
4972          * NeilBrown 1999oct15
4973          */
4974         if (inode->i_nlink == 0) {
4975                 if ((inode->i_mode == 0 ||
4976                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4977                     ino != EXT4_BOOT_LOADER_INO) {
4978                         /* this inode is deleted */
4979                         ret = -ESTALE;
4980                         goto bad_inode;
4981                 }
4982                 /* The only unlinked inodes we let through here have
4983                  * valid i_mode and are being read by the orphan
4984                  * recovery code: that's fine, we're about to complete
4985                  * the process of deleting those.
4986                  * OR it is the EXT4_BOOT_LOADER_INO which is
4987                  * not initialized on a new filesystem. */
4988         }
4989         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4990         ext4_set_inode_flags(inode);
4991         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4992         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4993         if (ext4_has_feature_64bit(sb))
4994                 ei->i_file_acl |=
4995                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4996         inode->i_size = ext4_isize(sb, raw_inode);
4997         if ((size = i_size_read(inode)) < 0) {
4998                 ext4_error_inode(inode, function, line, 0,
4999                                  "iget: bad i_size value: %lld", size);
5000                 ret = -EFSCORRUPTED;
5001                 goto bad_inode;
5002         }
5003         ei->i_disksize = inode->i_size;
5004 #ifdef CONFIG_QUOTA
5005         ei->i_reserved_quota = 0;
5006 #endif
5007         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5008         ei->i_block_group = iloc.block_group;
5009         ei->i_last_alloc_group = ~0;
5010         /*
5011          * NOTE! The in-memory inode i_data array is in little-endian order
5012          * even on big-endian machines: we do NOT byteswap the block numbers!
5013          */
5014         for (block = 0; block < EXT4_N_BLOCKS; block++)
5015                 ei->i_data[block] = raw_inode->i_block[block];
5016         INIT_LIST_HEAD(&ei->i_orphan);
5017
5018         /*
5019          * Set transaction id's of transactions that have to be committed
5020          * to finish f[data]sync. We set them to currently running transaction
5021          * as we cannot be sure that the inode or some of its metadata isn't
5022          * part of the transaction - the inode could have been reclaimed and
5023          * now it is reread from disk.
5024          */
5025         if (journal) {
5026                 transaction_t *transaction;
5027                 tid_t tid;
5028
5029                 read_lock(&journal->j_state_lock);
5030                 if (journal->j_running_transaction)
5031                         transaction = journal->j_running_transaction;
5032                 else
5033                         transaction = journal->j_committing_transaction;
5034                 if (transaction)
5035                         tid = transaction->t_tid;
5036                 else
5037                         tid = journal->j_commit_sequence;
5038                 read_unlock(&journal->j_state_lock);
5039                 ei->i_sync_tid = tid;
5040                 ei->i_datasync_tid = tid;
5041         }
5042
5043         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5044                 if (ei->i_extra_isize == 0) {
5045                         /* The extra space is currently unused. Use it. */
5046                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5047                         ei->i_extra_isize = sizeof(struct ext4_inode) -
5048                                             EXT4_GOOD_OLD_INODE_SIZE;
5049                 } else {
5050                         ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5051                         if (ret)
5052                                 goto bad_inode;
5053                 }
5054         }
5055
5056         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5057         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5058         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5059         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5060
5061         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5062                 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5063
5064                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5065                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5066                                 ivers |=
5067                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5068                 }
5069                 ext4_inode_set_iversion_queried(inode, ivers);
5070         }
5071
5072         ret = 0;
5073         if (ei->i_file_acl &&
5074             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5075                 ext4_error_inode(inode, function, line, 0,
5076                                  "iget: bad extended attribute block %llu",
5077                                  ei->i_file_acl);
5078                 ret = -EFSCORRUPTED;
5079                 goto bad_inode;
5080         } else if (!ext4_has_inline_data(inode)) {
5081                 /* validate the block references in the inode */
5082                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5083                    (S_ISLNK(inode->i_mode) &&
5084                     !ext4_inode_is_fast_symlink(inode))) {
5085                         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5086                                 ret = ext4_ext_check_inode(inode);
5087                         else
5088                                 ret = ext4_ind_check_inode(inode);
5089                 }
5090         }
5091         if (ret)
5092                 goto bad_inode;
5093
5094         if (S_ISREG(inode->i_mode)) {
5095                 inode->i_op = &ext4_file_inode_operations;
5096                 inode->i_fop = &ext4_file_operations;
5097                 ext4_set_aops(inode);
5098         } else if (S_ISDIR(inode->i_mode)) {
5099                 inode->i_op = &ext4_dir_inode_operations;
5100                 inode->i_fop = &ext4_dir_operations;
5101         } else if (S_ISLNK(inode->i_mode)) {
5102                 /* VFS does not allow setting these so must be corruption */
5103                 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5104                         ext4_error_inode(inode, function, line, 0,
5105                                          "iget: immutable or append flags "
5106                                          "not allowed on symlinks");
5107                         ret = -EFSCORRUPTED;
5108                         goto bad_inode;
5109                 }
5110                 if (IS_ENCRYPTED(inode)) {
5111                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
5112                         ext4_set_aops(inode);
5113                 } else if (ext4_inode_is_fast_symlink(inode)) {
5114                         inode->i_link = (char *)ei->i_data;
5115                         inode->i_op = &ext4_fast_symlink_inode_operations;
5116                         nd_terminate_link(ei->i_data, inode->i_size,
5117                                 sizeof(ei->i_data) - 1);
5118                 } else {
5119                         inode->i_op = &ext4_symlink_inode_operations;
5120                         ext4_set_aops(inode);
5121                 }
5122                 inode_nohighmem(inode);
5123         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5124               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5125                 inode->i_op = &ext4_special_inode_operations;
5126                 if (raw_inode->i_block[0])
5127                         init_special_inode(inode, inode->i_mode,
5128                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5129                 else
5130                         init_special_inode(inode, inode->i_mode,
5131                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5132         } else if (ino == EXT4_BOOT_LOADER_INO) {
5133                 make_bad_inode(inode);
5134         } else {
5135                 ret = -EFSCORRUPTED;
5136                 ext4_error_inode(inode, function, line, 0,
5137                                  "iget: bogus i_mode (%o)", inode->i_mode);
5138                 goto bad_inode;
5139         }
5140         brelse(iloc.bh);
5141
5142         unlock_new_inode(inode);
5143         return inode;
5144
5145 bad_inode:
5146         brelse(iloc.bh);
5147         iget_failed(inode);
5148         return ERR_PTR(ret);
5149 }
5150
5151 static int ext4_inode_blocks_set(handle_t *handle,
5152                                 struct ext4_inode *raw_inode,
5153                                 struct ext4_inode_info *ei)
5154 {
5155         struct inode *inode = &(ei->vfs_inode);
5156         u64 i_blocks = inode->i_blocks;
5157         struct super_block *sb = inode->i_sb;
5158
5159         if (i_blocks <= ~0U) {
5160                 /*
5161                  * i_blocks can be represented in a 32 bit variable
5162                  * as multiple of 512 bytes
5163                  */
5164                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5165                 raw_inode->i_blocks_high = 0;
5166                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5167                 return 0;
5168         }
5169         if (!ext4_has_feature_huge_file(sb))
5170                 return -EFBIG;
5171
5172         if (i_blocks <= 0xffffffffffffULL) {
5173                 /*
5174                  * i_blocks can be represented in a 48 bit variable
5175                  * as multiple of 512 bytes
5176                  */
5177                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5178                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5179                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5180         } else {
5181                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5182                 /* i_block is stored in file system block size */
5183                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5184                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5185                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5186         }
5187         return 0;
5188 }
5189
5190 struct other_inode {
5191         unsigned long           orig_ino;
5192         struct ext4_inode       *raw_inode;
5193 };
5194
5195 static int other_inode_match(struct inode * inode, unsigned long ino,
5196                              void *data)
5197 {
5198         struct other_inode *oi = (struct other_inode *) data;
5199
5200         if ((inode->i_ino != ino) ||
5201             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5202                                I_DIRTY_INODE)) ||
5203             ((inode->i_state & I_DIRTY_TIME) == 0))
5204                 return 0;
5205         spin_lock(&inode->i_lock);
5206         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5207                                 I_DIRTY_INODE)) == 0) &&
5208             (inode->i_state & I_DIRTY_TIME)) {
5209                 struct ext4_inode_info  *ei = EXT4_I(inode);
5210
5211                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5212                 spin_unlock(&inode->i_lock);
5213
5214                 spin_lock(&ei->i_raw_lock);
5215                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5216                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5217                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5218                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5219                 spin_unlock(&ei->i_raw_lock);
5220                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5221                 return -1;
5222         }
5223         spin_unlock(&inode->i_lock);
5224         return -1;
5225 }
5226
5227 /*
5228  * Opportunistically update the other time fields for other inodes in
5229  * the same inode table block.
5230  */
5231 static void ext4_update_other_inodes_time(struct super_block *sb,
5232                                           unsigned long orig_ino, char *buf)
5233 {
5234         struct other_inode oi;
5235         unsigned long ino;
5236         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5237         int inode_size = EXT4_INODE_SIZE(sb);
5238
5239         oi.orig_ino = orig_ino;
5240         /*
5241          * Calculate the first inode in the inode table block.  Inode
5242          * numbers are one-based.  That is, the first inode in a block
5243          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5244          */
5245         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5246         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5247                 if (ino == orig_ino)
5248                         continue;
5249                 oi.raw_inode = (struct ext4_inode *) buf;
5250                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5251         }
5252 }
5253
5254 /*
5255  * Post the struct inode info into an on-disk inode location in the
5256  * buffer-cache.  This gobbles the caller's reference to the
5257  * buffer_head in the inode location struct.
5258  *
5259  * The caller must have write access to iloc->bh.
5260  */
5261 static int ext4_do_update_inode(handle_t *handle,
5262                                 struct inode *inode,
5263                                 struct ext4_iloc *iloc)
5264 {
5265         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5266         struct ext4_inode_info *ei = EXT4_I(inode);
5267         struct buffer_head *bh = iloc->bh;
5268         struct super_block *sb = inode->i_sb;
5269         int err = 0, rc, block;
5270         int need_datasync = 0, set_large_file = 0;
5271         uid_t i_uid;
5272         gid_t i_gid;
5273         projid_t i_projid;
5274
5275         spin_lock(&ei->i_raw_lock);
5276
5277         /* For fields not tracked in the in-memory inode,
5278          * initialise them to zero for new inodes. */
5279         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5280                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5281
5282         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5283         i_uid = i_uid_read(inode);
5284         i_gid = i_gid_read(inode);
5285         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5286         if (!(test_opt(inode->i_sb, NO_UID32))) {
5287                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5288                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5289 /*
5290  * Fix up interoperability with old kernels. Otherwise, old inodes get
5291  * re-used with the upper 16 bits of the uid/gid intact
5292  */
5293                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5294                         raw_inode->i_uid_high = 0;
5295                         raw_inode->i_gid_high = 0;
5296                 } else {
5297                         raw_inode->i_uid_high =
5298                                 cpu_to_le16(high_16_bits(i_uid));
5299                         raw_inode->i_gid_high =
5300                                 cpu_to_le16(high_16_bits(i_gid));
5301                 }
5302         } else {
5303                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5304                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5305                 raw_inode->i_uid_high = 0;
5306                 raw_inode->i_gid_high = 0;
5307         }
5308         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5309
5310         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5311         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5312         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5313         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5314
5315         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5316         if (err) {
5317                 spin_unlock(&ei->i_raw_lock);
5318                 goto out_brelse;
5319         }
5320         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5321         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5322         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5323                 raw_inode->i_file_acl_high =
5324                         cpu_to_le16(ei->i_file_acl >> 32);
5325         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5326         if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5327                 ext4_isize_set(raw_inode, ei->i_disksize);
5328                 need_datasync = 1;
5329         }
5330         if (ei->i_disksize > 0x7fffffffULL) {
5331                 if (!ext4_has_feature_large_file(sb) ||
5332                                 EXT4_SB(sb)->s_es->s_rev_level ==
5333                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5334                         set_large_file = 1;
5335         }
5336         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5337         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5338                 if (old_valid_dev(inode->i_rdev)) {
5339                         raw_inode->i_block[0] =
5340                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5341                         raw_inode->i_block[1] = 0;
5342                 } else {
5343                         raw_inode->i_block[0] = 0;
5344                         raw_inode->i_block[1] =
5345                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5346                         raw_inode->i_block[2] = 0;
5347                 }
5348         } else if (!ext4_has_inline_data(inode)) {
5349                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5350                         raw_inode->i_block[block] = ei->i_data[block];
5351         }
5352
5353         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5354                 u64 ivers = ext4_inode_peek_iversion(inode);
5355
5356                 raw_inode->i_disk_version = cpu_to_le32(ivers);
5357                 if (ei->i_extra_isize) {
5358                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5359                                 raw_inode->i_version_hi =
5360                                         cpu_to_le32(ivers >> 32);
5361                         raw_inode->i_extra_isize =
5362                                 cpu_to_le16(ei->i_extra_isize);
5363                 }
5364         }
5365
5366         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5367                i_projid != EXT4_DEF_PROJID);
5368
5369         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5370             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5371                 raw_inode->i_projid = cpu_to_le32(i_projid);
5372
5373         ext4_inode_csum_set(inode, raw_inode, ei);
5374         spin_unlock(&ei->i_raw_lock);
5375         if (inode->i_sb->s_flags & SB_LAZYTIME)
5376                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5377                                               bh->b_data);
5378
5379         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5380         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5381         if (!err)
5382                 err = rc;
5383         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5384         if (set_large_file) {
5385                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5386                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5387                 if (err)
5388                         goto out_brelse;
5389                 ext4_set_feature_large_file(sb);
5390                 ext4_handle_sync(handle);
5391                 err = ext4_handle_dirty_super(handle, sb);
5392         }
5393         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5394 out_brelse:
5395         brelse(bh);
5396         ext4_std_error(inode->i_sb, err);
5397         return err;
5398 }
5399
5400 /*
5401  * ext4_write_inode()
5402  *
5403  * We are called from a few places:
5404  *
5405  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5406  *   Here, there will be no transaction running. We wait for any running
5407  *   transaction to commit.
5408  *
5409  * - Within flush work (sys_sync(), kupdate and such).
5410  *   We wait on commit, if told to.
5411  *
5412  * - Within iput_final() -> write_inode_now()
5413  *   We wait on commit, if told to.
5414  *
5415  * In all cases it is actually safe for us to return without doing anything,
5416  * because the inode has been copied into a raw inode buffer in
5417  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5418  * writeback.
5419  *
5420  * Note that we are absolutely dependent upon all inode dirtiers doing the
5421  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5422  * which we are interested.
5423  *
5424  * It would be a bug for them to not do this.  The code:
5425  *
5426  *      mark_inode_dirty(inode)
5427  *      stuff();
5428  *      inode->i_size = expr;
5429  *
5430  * is in error because write_inode() could occur while `stuff()' is running,
5431  * and the new i_size will be lost.  Plus the inode will no longer be on the
5432  * superblock's dirty inode list.
5433  */
5434 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5435 {
5436         int err;
5437
5438         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5439             sb_rdonly(inode->i_sb))
5440                 return 0;
5441
5442         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5443                 return -EIO;
5444
5445         if (EXT4_SB(inode->i_sb)->s_journal) {
5446                 if (ext4_journal_current_handle()) {
5447                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5448                         dump_stack();
5449                         return -EIO;
5450                 }
5451
5452                 /*
5453                  * No need to force transaction in WB_SYNC_NONE mode. Also
5454                  * ext4_sync_fs() will force the commit after everything is
5455                  * written.
5456                  */
5457                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5458                         return 0;
5459
5460                 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5461                                                 EXT4_I(inode)->i_sync_tid);
5462         } else {
5463                 struct ext4_iloc iloc;
5464
5465                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5466                 if (err)
5467                         return err;
5468                 /*
5469                  * sync(2) will flush the whole buffer cache. No need to do
5470                  * it here separately for each inode.
5471                  */
5472                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5473                         sync_dirty_buffer(iloc.bh);
5474                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5475                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5476                                          "IO error syncing inode");
5477                         err = -EIO;
5478                 }
5479                 brelse(iloc.bh);
5480         }
5481         return err;
5482 }
5483
5484 /*
5485  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5486  * buffers that are attached to a page stradding i_size and are undergoing
5487  * commit. In that case we have to wait for commit to finish and try again.
5488  */
5489 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5490 {
5491         struct page *page;
5492         unsigned offset;
5493         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5494         tid_t commit_tid = 0;
5495         int ret;
5496
5497         offset = inode->i_size & (PAGE_SIZE - 1);
5498         /*
5499          * All buffers in the last page remain valid? Then there's nothing to
5500          * do. We do the check mainly to optimize the common PAGE_SIZE ==
5501          * blocksize case
5502          */
5503         if (offset > PAGE_SIZE - i_blocksize(inode))
5504                 return;
5505         while (1) {
5506                 page = find_lock_page(inode->i_mapping,
5507                                       inode->i_size >> PAGE_SHIFT);
5508                 if (!page)
5509                         return;
5510                 ret = __ext4_journalled_invalidatepage(page, offset,
5511                                                 PAGE_SIZE - offset);
5512                 unlock_page(page);
5513                 put_page(page);
5514                 if (ret != -EBUSY)
5515                         return;
5516                 commit_tid = 0;
5517                 read_lock(&journal->j_state_lock);
5518                 if (journal->j_committing_transaction)
5519                         commit_tid = journal->j_committing_transaction->t_tid;
5520                 read_unlock(&journal->j_state_lock);
5521                 if (commit_tid)
5522                         jbd2_log_wait_commit(journal, commit_tid);
5523         }
5524 }
5525
5526 /*
5527  * ext4_setattr()
5528  *
5529  * Called from notify_change.
5530  *
5531  * We want to trap VFS attempts to truncate the file as soon as
5532  * possible.  In particular, we want to make sure that when the VFS
5533  * shrinks i_size, we put the inode on the orphan list and modify
5534  * i_disksize immediately, so that during the subsequent flushing of
5535  * dirty pages and freeing of disk blocks, we can guarantee that any
5536  * commit will leave the blocks being flushed in an unused state on
5537  * disk.  (On recovery, the inode will get truncated and the blocks will
5538  * be freed, so we have a strong guarantee that no future commit will
5539  * leave these blocks visible to the user.)
5540  *
5541  * Another thing we have to assure is that if we are in ordered mode
5542  * and inode is still attached to the committing transaction, we must
5543  * we start writeout of all the dirty pages which are being truncated.
5544  * This way we are sure that all the data written in the previous
5545  * transaction are already on disk (truncate waits for pages under
5546  * writeback).
5547  *
5548  * Called with inode->i_mutex down.
5549  */
5550 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5551 {
5552         struct inode *inode = d_inode(dentry);
5553         int error, rc = 0;
5554         int orphan = 0;
5555         const unsigned int ia_valid = attr->ia_valid;
5556
5557         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5558                 return -EIO;
5559
5560         if (unlikely(IS_IMMUTABLE(inode)))
5561                 return -EPERM;
5562
5563         if (unlikely(IS_APPEND(inode) &&
5564                      (ia_valid & (ATTR_MODE | ATTR_UID |
5565                                   ATTR_GID | ATTR_TIMES_SET))))
5566                 return -EPERM;
5567
5568         error = setattr_prepare(dentry, attr);
5569         if (error)
5570                 return error;
5571
5572         error = fscrypt_prepare_setattr(dentry, attr);
5573         if (error)
5574                 return error;
5575
5576         error = fsverity_prepare_setattr(dentry, attr);
5577         if (error)
5578                 return error;
5579
5580         if (is_quota_modification(inode, attr)) {
5581                 error = dquot_initialize(inode);
5582                 if (error)
5583                         return error;
5584         }
5585         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5586             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5587                 handle_t *handle;
5588
5589                 /* (user+group)*(old+new) structure, inode write (sb,
5590                  * inode block, ? - but truncate inode update has it) */
5591                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5592                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5593                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5594                 if (IS_ERR(handle)) {
5595                         error = PTR_ERR(handle);
5596                         goto err_out;
5597                 }
5598
5599                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5600                  * counts xattr inode references.
5601                  */
5602                 down_read(&EXT4_I(inode)->xattr_sem);
5603                 error = dquot_transfer(inode, attr);
5604                 up_read(&EXT4_I(inode)->xattr_sem);
5605
5606                 if (error) {
5607                         ext4_journal_stop(handle);
5608                         return error;
5609                 }
5610                 /* Update corresponding info in inode so that everything is in
5611                  * one transaction */
5612                 if (attr->ia_valid & ATTR_UID)
5613                         inode->i_uid = attr->ia_uid;
5614                 if (attr->ia_valid & ATTR_GID)
5615                         inode->i_gid = attr->ia_gid;
5616                 error = ext4_mark_inode_dirty(handle, inode);
5617                 ext4_journal_stop(handle);
5618         }
5619
5620         if (attr->ia_valid & ATTR_SIZE) {
5621                 handle_t *handle;
5622                 loff_t oldsize = inode->i_size;
5623                 int shrink = (attr->ia_size < inode->i_size);
5624
5625                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5626                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5627
5628                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5629                                 return -EFBIG;
5630                 }
5631                 if (!S_ISREG(inode->i_mode))
5632                         return -EINVAL;
5633
5634                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5635                         inode_inc_iversion(inode);
5636
5637                 if (shrink) {
5638                         if (ext4_should_order_data(inode)) {
5639                                 error = ext4_begin_ordered_truncate(inode,
5640                                                             attr->ia_size);
5641                                 if (error)
5642                                         goto err_out;
5643                         }
5644                         /*
5645                          * Blocks are going to be removed from the inode. Wait
5646                          * for dio in flight.
5647                          */
5648                         inode_dio_wait(inode);
5649                 }
5650
5651                 down_write(&EXT4_I(inode)->i_mmap_sem);
5652
5653                 rc = ext4_break_layouts(inode);
5654                 if (rc) {
5655                         up_write(&EXT4_I(inode)->i_mmap_sem);
5656                         return rc;
5657                 }
5658
5659                 if (attr->ia_size != inode->i_size) {
5660                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5661                         if (IS_ERR(handle)) {
5662                                 error = PTR_ERR(handle);
5663                                 goto out_mmap_sem;
5664                         }
5665                         if (ext4_handle_valid(handle) && shrink) {
5666                                 error = ext4_orphan_add(handle, inode);
5667                                 orphan = 1;
5668                         }
5669                         /*
5670                          * Update c/mtime on truncate up, ext4_truncate() will
5671                          * update c/mtime in shrink case below
5672                          */
5673                         if (!shrink) {
5674                                 inode->i_mtime = current_time(inode);
5675                                 inode->i_ctime = inode->i_mtime;
5676                         }
5677                         down_write(&EXT4_I(inode)->i_data_sem);
5678                         EXT4_I(inode)->i_disksize = attr->ia_size;
5679                         rc = ext4_mark_inode_dirty(handle, inode);
5680                         if (!error)
5681                                 error = rc;
5682                         /*
5683                          * We have to update i_size under i_data_sem together
5684                          * with i_disksize to avoid races with writeback code
5685                          * running ext4_wb_update_i_disksize().
5686                          */
5687                         if (!error)
5688                                 i_size_write(inode, attr->ia_size);
5689                         up_write(&EXT4_I(inode)->i_data_sem);
5690                         ext4_journal_stop(handle);
5691                         if (error)
5692                                 goto out_mmap_sem;
5693                         if (!shrink) {
5694                                 pagecache_isize_extended(inode, oldsize,
5695                                                          inode->i_size);
5696                         } else if (ext4_should_journal_data(inode)) {
5697                                 ext4_wait_for_tail_page_commit(inode);
5698                         }
5699                 }
5700
5701                 /*
5702                  * Truncate pagecache after we've waited for commit
5703                  * in data=journal mode to make pages freeable.
5704                  */
5705                 truncate_pagecache(inode, inode->i_size);
5706                 /*
5707                  * Call ext4_truncate() even if i_size didn't change to
5708                  * truncate possible preallocated blocks.
5709                  */
5710                 if (attr->ia_size <= oldsize) {
5711                         rc = ext4_truncate(inode);
5712                         if (rc)
5713                                 error = rc;
5714                 }
5715 out_mmap_sem:
5716                 up_write(&EXT4_I(inode)->i_mmap_sem);
5717         }
5718
5719         if (!error) {
5720                 setattr_copy(inode, attr);
5721                 mark_inode_dirty(inode);
5722         }
5723
5724         /*
5725          * If the call to ext4_truncate failed to get a transaction handle at
5726          * all, we need to clean up the in-core orphan list manually.
5727          */
5728         if (orphan && inode->i_nlink)
5729                 ext4_orphan_del(NULL, inode);
5730
5731         if (!error && (ia_valid & ATTR_MODE))
5732                 rc = posix_acl_chmod(inode, inode->i_mode);
5733
5734 err_out:
5735         ext4_std_error(inode->i_sb, error);
5736         if (!error)
5737                 error = rc;
5738         return error;
5739 }
5740
5741 int ext4_getattr(const struct path *path, struct kstat *stat,
5742                  u32 request_mask, unsigned int query_flags)
5743 {
5744         struct inode *inode = d_inode(path->dentry);
5745         struct ext4_inode *raw_inode;
5746         struct ext4_inode_info *ei = EXT4_I(inode);
5747         unsigned int flags;
5748
5749         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5750                 stat->result_mask |= STATX_BTIME;
5751                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5752                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5753         }
5754
5755         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5756         if (flags & EXT4_APPEND_FL)
5757                 stat->attributes |= STATX_ATTR_APPEND;
5758         if (flags & EXT4_COMPR_FL)
5759                 stat->attributes |= STATX_ATTR_COMPRESSED;
5760         if (flags & EXT4_ENCRYPT_FL)
5761                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5762         if (flags & EXT4_IMMUTABLE_FL)
5763                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5764         if (flags & EXT4_NODUMP_FL)
5765                 stat->attributes |= STATX_ATTR_NODUMP;
5766
5767         stat->attributes_mask |= (STATX_ATTR_APPEND |
5768                                   STATX_ATTR_COMPRESSED |
5769                                   STATX_ATTR_ENCRYPTED |
5770                                   STATX_ATTR_IMMUTABLE |
5771                                   STATX_ATTR_NODUMP);
5772
5773         generic_fillattr(inode, stat);
5774         return 0;
5775 }
5776
5777 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5778                       u32 request_mask, unsigned int query_flags)
5779 {
5780         struct inode *inode = d_inode(path->dentry);
5781         u64 delalloc_blocks;
5782
5783         ext4_getattr(path, stat, request_mask, query_flags);
5784
5785         /*
5786          * If there is inline data in the inode, the inode will normally not
5787          * have data blocks allocated (it may have an external xattr block).
5788          * Report at least one sector for such files, so tools like tar, rsync,
5789          * others don't incorrectly think the file is completely sparse.
5790          */
5791         if (unlikely(ext4_has_inline_data(inode)))
5792                 stat->blocks += (stat->size + 511) >> 9;
5793
5794         /*
5795          * We can't update i_blocks if the block allocation is delayed
5796          * otherwise in the case of system crash before the real block
5797          * allocation is done, we will have i_blocks inconsistent with
5798          * on-disk file blocks.
5799          * We always keep i_blocks updated together with real
5800          * allocation. But to not confuse with user, stat
5801          * will return the blocks that include the delayed allocation
5802          * blocks for this file.
5803          */
5804         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5805                                    EXT4_I(inode)->i_reserved_data_blocks);
5806         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5807         return 0;
5808 }
5809
5810 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5811                                    int pextents)
5812 {
5813         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5814                 return ext4_ind_trans_blocks(inode, lblocks);
5815         return ext4_ext_index_trans_blocks(inode, pextents);
5816 }
5817
5818 /*
5819  * Account for index blocks, block groups bitmaps and block group
5820  * descriptor blocks if modify datablocks and index blocks
5821  * worse case, the indexs blocks spread over different block groups
5822  *
5823  * If datablocks are discontiguous, they are possible to spread over
5824  * different block groups too. If they are contiguous, with flexbg,
5825  * they could still across block group boundary.
5826  *
5827  * Also account for superblock, inode, quota and xattr blocks
5828  */
5829 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5830                                   int pextents)
5831 {
5832         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5833         int gdpblocks;
5834         int idxblocks;
5835         int ret = 0;
5836
5837         /*
5838          * How many index blocks need to touch to map @lblocks logical blocks
5839          * to @pextents physical extents?
5840          */
5841         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5842
5843         ret = idxblocks;
5844
5845         /*
5846          * Now let's see how many group bitmaps and group descriptors need
5847          * to account
5848          */
5849         groups = idxblocks + pextents;
5850         gdpblocks = groups;
5851         if (groups > ngroups)
5852                 groups = ngroups;
5853         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5854                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5855
5856         /* bitmaps and block group descriptor blocks */
5857         ret += groups + gdpblocks;
5858
5859         /* Blocks for super block, inode, quota and xattr blocks */
5860         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5861
5862         return ret;
5863 }
5864
5865 /*
5866  * Calculate the total number of credits to reserve to fit
5867  * the modification of a single pages into a single transaction,
5868  * which may include multiple chunks of block allocations.
5869  *
5870  * This could be called via ext4_write_begin()
5871  *
5872  * We need to consider the worse case, when
5873  * one new block per extent.
5874  */
5875 int ext4_writepage_trans_blocks(struct inode *inode)
5876 {
5877         int bpp = ext4_journal_blocks_per_page(inode);
5878         int ret;
5879
5880         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5881
5882         /* Account for data blocks for journalled mode */
5883         if (ext4_should_journal_data(inode))
5884                 ret += bpp;
5885         return ret;
5886 }
5887
5888 /*
5889  * Calculate the journal credits for a chunk of data modification.
5890  *
5891  * This is called from DIO, fallocate or whoever calling
5892  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5893  *
5894  * journal buffers for data blocks are not included here, as DIO
5895  * and fallocate do no need to journal data buffers.
5896  */
5897 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5898 {
5899         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5900 }
5901
5902 /*
5903  * The caller must have previously called ext4_reserve_inode_write().
5904  * Give this, we know that the caller already has write access to iloc->bh.
5905  */
5906 int ext4_mark_iloc_dirty(handle_t *handle,
5907                          struct inode *inode, struct ext4_iloc *iloc)
5908 {
5909         int err = 0;
5910
5911         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5912                 put_bh(iloc->bh);
5913                 return -EIO;
5914         }
5915         if (IS_I_VERSION(inode))
5916                 inode_inc_iversion(inode);
5917
5918         /* the do_update_inode consumes one bh->b_count */
5919         get_bh(iloc->bh);
5920
5921         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5922         err = ext4_do_update_inode(handle, inode, iloc);
5923         put_bh(iloc->bh);
5924         return err;
5925 }
5926
5927 /*
5928  * On success, We end up with an outstanding reference count against
5929  * iloc->bh.  This _must_ be cleaned up later.
5930  */
5931
5932 int
5933 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5934                          struct ext4_iloc *iloc)
5935 {
5936         int err;
5937
5938         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5939                 return -EIO;
5940
5941         err = ext4_get_inode_loc(inode, iloc);
5942         if (!err) {
5943                 BUFFER_TRACE(iloc->bh, "get_write_access");
5944                 err = ext4_journal_get_write_access(handle, iloc->bh);
5945                 if (err) {
5946                         brelse(iloc->bh);
5947                         iloc->bh = NULL;
5948                 }
5949         }
5950         ext4_std_error(inode->i_sb, err);
5951         return err;
5952 }
5953
5954 static int __ext4_expand_extra_isize(struct inode *inode,
5955                                      unsigned int new_extra_isize,
5956                                      struct ext4_iloc *iloc,
5957                                      handle_t *handle, int *no_expand)
5958 {
5959         struct ext4_inode *raw_inode;
5960         struct ext4_xattr_ibody_header *header;
5961         int error;
5962
5963         raw_inode = ext4_raw_inode(iloc);
5964
5965         header = IHDR(inode, raw_inode);
5966
5967         /* No extended attributes present */
5968         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5969             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5970                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5971                        EXT4_I(inode)->i_extra_isize, 0,
5972                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5973                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5974                 return 0;
5975         }
5976
5977         /* try to expand with EAs present */
5978         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5979                                            raw_inode, handle);
5980         if (error) {
5981                 /*
5982                  * Inode size expansion failed; don't try again
5983                  */
5984                 *no_expand = 1;
5985         }
5986
5987         return error;
5988 }
5989
5990 /*
5991  * Expand an inode by new_extra_isize bytes.
5992  * Returns 0 on success or negative error number on failure.
5993  */
5994 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5995                                           unsigned int new_extra_isize,
5996                                           struct ext4_iloc iloc,
5997                                           handle_t *handle)
5998 {
5999         int no_expand;
6000         int error;
6001
6002         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
6003                 return -EOVERFLOW;
6004
6005         /*
6006          * In nojournal mode, we can immediately attempt to expand
6007          * the inode.  When journaled, we first need to obtain extra
6008          * buffer credits since we may write into the EA block
6009          * with this same handle. If journal_extend fails, then it will
6010          * only result in a minor loss of functionality for that inode.
6011          * If this is felt to be critical, then e2fsck should be run to
6012          * force a large enough s_min_extra_isize.
6013          */
6014         if (ext4_handle_valid(handle) &&
6015             jbd2_journal_extend(handle,
6016                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
6017                 return -ENOSPC;
6018
6019         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
6020                 return -EBUSY;
6021
6022         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
6023                                           handle, &no_expand);
6024         ext4_write_unlock_xattr(inode, &no_expand);
6025
6026         return error;
6027 }
6028
6029 int ext4_expand_extra_isize(struct inode *inode,
6030                             unsigned int new_extra_isize,
6031                             struct ext4_iloc *iloc)
6032 {
6033         handle_t *handle;
6034         int no_expand;
6035         int error, rc;
6036
6037         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6038                 brelse(iloc->bh);
6039                 return -EOVERFLOW;
6040         }
6041
6042         handle = ext4_journal_start(inode, EXT4_HT_INODE,
6043                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
6044         if (IS_ERR(handle)) {
6045                 error = PTR_ERR(handle);
6046                 brelse(iloc->bh);
6047                 return error;
6048         }
6049
6050         ext4_write_lock_xattr(inode, &no_expand);
6051
6052         BUFFER_TRACE(iloc->bh, "get_write_access");
6053         error = ext4_journal_get_write_access(handle, iloc->bh);
6054         if (error) {
6055                 brelse(iloc->bh);
6056                 goto out_stop;
6057         }
6058
6059         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6060                                           handle, &no_expand);
6061
6062         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6063         if (!error)
6064                 error = rc;
6065
6066         ext4_write_unlock_xattr(inode, &no_expand);
6067 out_stop:
6068         ext4_journal_stop(handle);
6069         return error;
6070 }
6071
6072 /*
6073  * What we do here is to mark the in-core inode as clean with respect to inode
6074  * dirtiness (it may still be data-dirty).
6075  * This means that the in-core inode may be reaped by prune_icache
6076  * without having to perform any I/O.  This is a very good thing,
6077  * because *any* task may call prune_icache - even ones which
6078  * have a transaction open against a different journal.
6079  *
6080  * Is this cheating?  Not really.  Sure, we haven't written the
6081  * inode out, but prune_icache isn't a user-visible syncing function.
6082  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6083  * we start and wait on commits.
6084  */
6085 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
6086 {
6087         struct ext4_iloc iloc;
6088         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6089         int err;
6090
6091         might_sleep();
6092         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6093         err = ext4_reserve_inode_write(handle, inode, &iloc);
6094         if (err)
6095                 return err;
6096
6097         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6098                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6099                                                iloc, handle);
6100
6101         return ext4_mark_iloc_dirty(handle, inode, &iloc);
6102 }
6103
6104 /*
6105  * ext4_dirty_inode() is called from __mark_inode_dirty()
6106  *
6107  * We're really interested in the case where a file is being extended.
6108  * i_size has been changed by generic_commit_write() and we thus need
6109  * to include the updated inode in the current transaction.
6110  *
6111  * Also, dquot_alloc_block() will always dirty the inode when blocks
6112  * are allocated to the file.
6113  *
6114  * If the inode is marked synchronous, we don't honour that here - doing
6115  * so would cause a commit on atime updates, which we don't bother doing.
6116  * We handle synchronous inodes at the highest possible level.
6117  *
6118  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
6119  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6120  * to copy into the on-disk inode structure are the timestamp files.
6121  */
6122 void ext4_dirty_inode(struct inode *inode, int flags)
6123 {
6124         handle_t *handle;
6125
6126         if (flags == I_DIRTY_TIME)
6127                 return;
6128         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6129         if (IS_ERR(handle))
6130                 goto out;
6131
6132         ext4_mark_inode_dirty(handle, inode);
6133
6134         ext4_journal_stop(handle);
6135 out:
6136         return;
6137 }
6138
6139 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6140 {
6141         journal_t *journal;
6142         handle_t *handle;
6143         int err;
6144         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6145
6146         /*
6147          * We have to be very careful here: changing a data block's
6148          * journaling status dynamically is dangerous.  If we write a
6149          * data block to the journal, change the status and then delete
6150          * that block, we risk forgetting to revoke the old log record
6151          * from the journal and so a subsequent replay can corrupt data.
6152          * So, first we make sure that the journal is empty and that
6153          * nobody is changing anything.
6154          */
6155
6156         journal = EXT4_JOURNAL(inode);
6157         if (!journal)
6158                 return 0;
6159         if (is_journal_aborted(journal))
6160                 return -EROFS;
6161
6162         /* Wait for all existing dio workers */
6163         inode_dio_wait(inode);
6164
6165         /*
6166          * Before flushing the journal and switching inode's aops, we have
6167          * to flush all dirty data the inode has. There can be outstanding
6168          * delayed allocations, there can be unwritten extents created by
6169          * fallocate or buffered writes in dioread_nolock mode covered by
6170          * dirty data which can be converted only after flushing the dirty
6171          * data (and journalled aops don't know how to handle these cases).
6172          */
6173         if (val) {
6174                 down_write(&EXT4_I(inode)->i_mmap_sem);
6175                 err = filemap_write_and_wait(inode->i_mapping);
6176                 if (err < 0) {
6177                         up_write(&EXT4_I(inode)->i_mmap_sem);
6178                         return err;
6179                 }
6180         }
6181
6182         percpu_down_write(&sbi->s_journal_flag_rwsem);
6183         jbd2_journal_lock_updates(journal);
6184
6185         /*
6186          * OK, there are no updates running now, and all cached data is
6187          * synced to disk.  We are now in a completely consistent state
6188          * which doesn't have anything in the journal, and we know that
6189          * no filesystem updates are running, so it is safe to modify
6190          * the inode's in-core data-journaling state flag now.
6191          */
6192
6193         if (val)
6194                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6195         else {
6196                 err = jbd2_journal_flush(journal);
6197                 if (err < 0) {
6198                         jbd2_journal_unlock_updates(journal);
6199                         percpu_up_write(&sbi->s_journal_flag_rwsem);
6200                         return err;
6201                 }
6202                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6203         }
6204         ext4_set_aops(inode);
6205
6206         jbd2_journal_unlock_updates(journal);
6207         percpu_up_write(&sbi->s_journal_flag_rwsem);
6208
6209         if (val)
6210                 up_write(&EXT4_I(inode)->i_mmap_sem);
6211
6212         /* Finally we can mark the inode as dirty. */
6213
6214         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6215         if (IS_ERR(handle))
6216                 return PTR_ERR(handle);
6217
6218         err = ext4_mark_inode_dirty(handle, inode);
6219         ext4_handle_sync(handle);
6220         ext4_journal_stop(handle);
6221         ext4_std_error(inode->i_sb, err);
6222
6223         return err;
6224 }
6225
6226 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6227 {
6228         return !buffer_mapped(bh);
6229 }
6230
6231 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6232 {
6233         struct vm_area_struct *vma = vmf->vma;
6234         struct page *page = vmf->page;
6235         loff_t size;
6236         unsigned long len;
6237         int err;
6238         vm_fault_t ret;
6239         struct file *file = vma->vm_file;
6240         struct inode *inode = file_inode(file);
6241         struct address_space *mapping = inode->i_mapping;
6242         handle_t *handle;
6243         get_block_t *get_block;
6244         int retries = 0;
6245
6246         if (unlikely(IS_IMMUTABLE(inode)))
6247                 return VM_FAULT_SIGBUS;
6248
6249         sb_start_pagefault(inode->i_sb);
6250         file_update_time(vma->vm_file);
6251
6252         down_read(&EXT4_I(inode)->i_mmap_sem);
6253
6254         err = ext4_convert_inline_data(inode);
6255         if (err)
6256                 goto out_ret;
6257
6258         /* Delalloc case is easy... */
6259         if (test_opt(inode->i_sb, DELALLOC) &&
6260             !ext4_should_journal_data(inode) &&
6261             !ext4_nonda_switch(inode->i_sb)) {
6262                 do {
6263                         err = block_page_mkwrite(vma, vmf,
6264                                                    ext4_da_get_block_prep);
6265                 } while (err == -ENOSPC &&
6266                        ext4_should_retry_alloc(inode->i_sb, &retries));
6267                 goto out_ret;
6268         }
6269
6270         lock_page(page);
6271         size = i_size_read(inode);
6272         /* Page got truncated from under us? */
6273         if (page->mapping != mapping || page_offset(page) > size) {
6274                 unlock_page(page);
6275                 ret = VM_FAULT_NOPAGE;
6276                 goto out;
6277         }
6278
6279         if (page->index == size >> PAGE_SHIFT)
6280                 len = size & ~PAGE_MASK;
6281         else
6282                 len = PAGE_SIZE;
6283         /*
6284          * Return if we have all the buffers mapped. This avoids the need to do
6285          * journal_start/journal_stop which can block and take a long time
6286          */
6287         if (page_has_buffers(page)) {
6288                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6289                                             0, len, NULL,
6290                                             ext4_bh_unmapped)) {
6291                         /* Wait so that we don't change page under IO */
6292                         wait_for_stable_page(page);
6293                         ret = VM_FAULT_LOCKED;
6294                         goto out;
6295                 }
6296         }
6297         unlock_page(page);
6298         /* OK, we need to fill the hole... */
6299         if (ext4_should_dioread_nolock(inode))
6300                 get_block = ext4_get_block_unwritten;
6301         else
6302                 get_block = ext4_get_block;
6303 retry_alloc:
6304         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6305                                     ext4_writepage_trans_blocks(inode));
6306         if (IS_ERR(handle)) {
6307                 ret = VM_FAULT_SIGBUS;
6308                 goto out;
6309         }
6310         err = block_page_mkwrite(vma, vmf, get_block);
6311         if (!err && ext4_should_journal_data(inode)) {
6312                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6313                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
6314                         unlock_page(page);
6315                         ret = VM_FAULT_SIGBUS;
6316                         ext4_journal_stop(handle);
6317                         goto out;
6318                 }
6319                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6320         }
6321         ext4_journal_stop(handle);
6322         if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6323                 goto retry_alloc;
6324 out_ret:
6325         ret = block_page_mkwrite_return(err);
6326 out:
6327         up_read(&EXT4_I(inode)->i_mmap_sem);
6328         sb_end_pagefault(inode->i_sb);
6329         return ret;
6330 }
6331
6332 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6333 {
6334         struct inode *inode = file_inode(vmf->vma->vm_file);
6335         vm_fault_t ret;
6336
6337         down_read(&EXT4_I(inode)->i_mmap_sem);
6338         ret = filemap_fault(vmf);
6339         up_read(&EXT4_I(inode)->i_mmap_sem);
6340
6341         return ret;
6342 }