]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/ext4/inode.c
fs: new API for handling inode->i_version
[linux.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *      (jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54                               struct ext4_inode_info *ei)
55 {
56         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57         __u32 csum;
58         __u16 dummy_csum = 0;
59         int offset = offsetof(struct ext4_inode, i_checksum_lo);
60         unsigned int csum_size = sizeof(dummy_csum);
61
62         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64         offset += csum_size;
65         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66                            EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69                 offset = offsetof(struct ext4_inode, i_checksum_hi);
70                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71                                    EXT4_GOOD_OLD_INODE_SIZE,
72                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
73                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75                                            csum_size);
76                         offset += csum_size;
77                 }
78                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
80         }
81
82         return csum;
83 }
84
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86                                   struct ext4_inode_info *ei)
87 {
88         __u32 provided, calculated;
89
90         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91             cpu_to_le32(EXT4_OS_LINUX) ||
92             !ext4_has_metadata_csum(inode->i_sb))
93                 return 1;
94
95         provided = le16_to_cpu(raw->i_checksum_lo);
96         calculated = ext4_inode_csum(inode, raw, ei);
97         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100         else
101                 calculated &= 0xFFFF;
102
103         return provided == calculated;
104 }
105
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107                                 struct ext4_inode_info *ei)
108 {
109         __u32 csum;
110
111         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112             cpu_to_le32(EXT4_OS_LINUX) ||
113             !ext4_has_metadata_csum(inode->i_sb))
114                 return;
115
116         csum = ext4_inode_csum(inode, raw, ei);
117         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124                                               loff_t new_size)
125 {
126         trace_ext4_begin_ordered_truncate(inode, new_size);
127         /*
128          * If jinode is zero, then we never opened the file for
129          * writing, so there's no need to call
130          * jbd2_journal_begin_ordered_truncate() since there's no
131          * outstanding writes we need to flush.
132          */
133         if (!EXT4_I(inode)->jinode)
134                 return 0;
135         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136                                                    EXT4_I(inode)->jinode,
137                                                    new_size);
138 }
139
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141                                 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145                                   int pextents);
146
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153         return S_ISLNK(inode->i_mode) && inode->i_size &&
154                (inode->i_size < EXT4_N_BLOCKS * 4);
155 }
156
157 /*
158  * Restart the transaction associated with *handle.  This does a commit,
159  * so before we call here everything must be consistently dirtied against
160  * this transaction.
161  */
162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163                                  int nblocks)
164 {
165         int ret;
166
167         /*
168          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
169          * moment, get_block can be called only for blocks inside i_size since
170          * page cache has been already dropped and writes are blocked by
171          * i_mutex. So we can safely drop the i_data_sem here.
172          */
173         BUG_ON(EXT4_JOURNAL(inode) == NULL);
174         jbd_debug(2, "restarting handle %p\n", handle);
175         up_write(&EXT4_I(inode)->i_data_sem);
176         ret = ext4_journal_restart(handle, nblocks);
177         down_write(&EXT4_I(inode)->i_data_sem);
178         ext4_discard_preallocations(inode);
179
180         return ret;
181 }
182
183 /*
184  * Called at the last iput() if i_nlink is zero.
185  */
186 void ext4_evict_inode(struct inode *inode)
187 {
188         handle_t *handle;
189         int err;
190         int extra_credits = 3;
191         struct ext4_xattr_inode_array *ea_inode_array = NULL;
192
193         trace_ext4_evict_inode(inode);
194
195         if (inode->i_nlink) {
196                 /*
197                  * When journalling data dirty buffers are tracked only in the
198                  * journal. So although mm thinks everything is clean and
199                  * ready for reaping the inode might still have some pages to
200                  * write in the running transaction or waiting to be
201                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
202                  * (via truncate_inode_pages()) to discard these buffers can
203                  * cause data loss. Also even if we did not discard these
204                  * buffers, we would have no way to find them after the inode
205                  * is reaped and thus user could see stale data if he tries to
206                  * read them before the transaction is checkpointed. So be
207                  * careful and force everything to disk here... We use
208                  * ei->i_datasync_tid to store the newest transaction
209                  * containing inode's data.
210                  *
211                  * Note that directories do not have this problem because they
212                  * don't use page cache.
213                  */
214                 if (inode->i_ino != EXT4_JOURNAL_INO &&
215                     ext4_should_journal_data(inode) &&
216                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
217                     inode->i_data.nrpages) {
218                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
219                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
220
221                         jbd2_complete_transaction(journal, commit_tid);
222                         filemap_write_and_wait(&inode->i_data);
223                 }
224                 truncate_inode_pages_final(&inode->i_data);
225
226                 goto no_delete;
227         }
228
229         if (is_bad_inode(inode))
230                 goto no_delete;
231         dquot_initialize(inode);
232
233         if (ext4_should_order_data(inode))
234                 ext4_begin_ordered_truncate(inode, 0);
235         truncate_inode_pages_final(&inode->i_data);
236
237         /*
238          * Protect us against freezing - iput() caller didn't have to have any
239          * protection against it
240          */
241         sb_start_intwrite(inode->i_sb);
242
243         if (!IS_NOQUOTA(inode))
244                 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
245
246         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
247                                  ext4_blocks_for_truncate(inode)+extra_credits);
248         if (IS_ERR(handle)) {
249                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
250                 /*
251                  * If we're going to skip the normal cleanup, we still need to
252                  * make sure that the in-core orphan linked list is properly
253                  * cleaned up.
254                  */
255                 ext4_orphan_del(NULL, inode);
256                 sb_end_intwrite(inode->i_sb);
257                 goto no_delete;
258         }
259
260         if (IS_SYNC(inode))
261                 ext4_handle_sync(handle);
262
263         /*
264          * Set inode->i_size to 0 before calling ext4_truncate(). We need
265          * special handling of symlinks here because i_size is used to
266          * determine whether ext4_inode_info->i_data contains symlink data or
267          * block mappings. Setting i_size to 0 will remove its fast symlink
268          * status. Erase i_data so that it becomes a valid empty block map.
269          */
270         if (ext4_inode_is_fast_symlink(inode))
271                 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
272         inode->i_size = 0;
273         err = ext4_mark_inode_dirty(handle, inode);
274         if (err) {
275                 ext4_warning(inode->i_sb,
276                              "couldn't mark inode dirty (err %d)", err);
277                 goto stop_handle;
278         }
279         if (inode->i_blocks) {
280                 err = ext4_truncate(inode);
281                 if (err) {
282                         ext4_error(inode->i_sb,
283                                    "couldn't truncate inode %lu (err %d)",
284                                    inode->i_ino, err);
285                         goto stop_handle;
286                 }
287         }
288
289         /* Remove xattr references. */
290         err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
291                                       extra_credits);
292         if (err) {
293                 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
294 stop_handle:
295                 ext4_journal_stop(handle);
296                 ext4_orphan_del(NULL, inode);
297                 sb_end_intwrite(inode->i_sb);
298                 ext4_xattr_inode_array_free(ea_inode_array);
299                 goto no_delete;
300         }
301
302         /*
303          * Kill off the orphan record which ext4_truncate created.
304          * AKPM: I think this can be inside the above `if'.
305          * Note that ext4_orphan_del() has to be able to cope with the
306          * deletion of a non-existent orphan - this is because we don't
307          * know if ext4_truncate() actually created an orphan record.
308          * (Well, we could do this if we need to, but heck - it works)
309          */
310         ext4_orphan_del(handle, inode);
311         EXT4_I(inode)->i_dtime  = get_seconds();
312
313         /*
314          * One subtle ordering requirement: if anything has gone wrong
315          * (transaction abort, IO errors, whatever), then we can still
316          * do these next steps (the fs will already have been marked as
317          * having errors), but we can't free the inode if the mark_dirty
318          * fails.
319          */
320         if (ext4_mark_inode_dirty(handle, inode))
321                 /* If that failed, just do the required in-core inode clear. */
322                 ext4_clear_inode(inode);
323         else
324                 ext4_free_inode(handle, inode);
325         ext4_journal_stop(handle);
326         sb_end_intwrite(inode->i_sb);
327         ext4_xattr_inode_array_free(ea_inode_array);
328         return;
329 no_delete:
330         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
331 }
332
333 #ifdef CONFIG_QUOTA
334 qsize_t *ext4_get_reserved_space(struct inode *inode)
335 {
336         return &EXT4_I(inode)->i_reserved_quota;
337 }
338 #endif
339
340 /*
341  * Called with i_data_sem down, which is important since we can call
342  * ext4_discard_preallocations() from here.
343  */
344 void ext4_da_update_reserve_space(struct inode *inode,
345                                         int used, int quota_claim)
346 {
347         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
348         struct ext4_inode_info *ei = EXT4_I(inode);
349
350         spin_lock(&ei->i_block_reservation_lock);
351         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
352         if (unlikely(used > ei->i_reserved_data_blocks)) {
353                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
354                          "with only %d reserved data blocks",
355                          __func__, inode->i_ino, used,
356                          ei->i_reserved_data_blocks);
357                 WARN_ON(1);
358                 used = ei->i_reserved_data_blocks;
359         }
360
361         /* Update per-inode reservations */
362         ei->i_reserved_data_blocks -= used;
363         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
364
365         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
366
367         /* Update quota subsystem for data blocks */
368         if (quota_claim)
369                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
370         else {
371                 /*
372                  * We did fallocate with an offset that is already delayed
373                  * allocated. So on delayed allocated writeback we should
374                  * not re-claim the quota for fallocated blocks.
375                  */
376                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
377         }
378
379         /*
380          * If we have done all the pending block allocations and if
381          * there aren't any writers on the inode, we can discard the
382          * inode's preallocations.
383          */
384         if ((ei->i_reserved_data_blocks == 0) &&
385             (atomic_read(&inode->i_writecount) == 0))
386                 ext4_discard_preallocations(inode);
387 }
388
389 static int __check_block_validity(struct inode *inode, const char *func,
390                                 unsigned int line,
391                                 struct ext4_map_blocks *map)
392 {
393         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
394                                    map->m_len)) {
395                 ext4_error_inode(inode, func, line, map->m_pblk,
396                                  "lblock %lu mapped to illegal pblock "
397                                  "(length %d)", (unsigned long) map->m_lblk,
398                                  map->m_len);
399                 return -EFSCORRUPTED;
400         }
401         return 0;
402 }
403
404 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
405                        ext4_lblk_t len)
406 {
407         int ret;
408
409         if (ext4_encrypted_inode(inode))
410                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
411
412         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
413         if (ret > 0)
414                 ret = 0;
415
416         return ret;
417 }
418
419 #define check_block_validity(inode, map)        \
420         __check_block_validity((inode), __func__, __LINE__, (map))
421
422 #ifdef ES_AGGRESSIVE_TEST
423 static void ext4_map_blocks_es_recheck(handle_t *handle,
424                                        struct inode *inode,
425                                        struct ext4_map_blocks *es_map,
426                                        struct ext4_map_blocks *map,
427                                        int flags)
428 {
429         int retval;
430
431         map->m_flags = 0;
432         /*
433          * There is a race window that the result is not the same.
434          * e.g. xfstests #223 when dioread_nolock enables.  The reason
435          * is that we lookup a block mapping in extent status tree with
436          * out taking i_data_sem.  So at the time the unwritten extent
437          * could be converted.
438          */
439         down_read(&EXT4_I(inode)->i_data_sem);
440         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
441                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
442                                              EXT4_GET_BLOCKS_KEEP_SIZE);
443         } else {
444                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
445                                              EXT4_GET_BLOCKS_KEEP_SIZE);
446         }
447         up_read((&EXT4_I(inode)->i_data_sem));
448
449         /*
450          * We don't check m_len because extent will be collpased in status
451          * tree.  So the m_len might not equal.
452          */
453         if (es_map->m_lblk != map->m_lblk ||
454             es_map->m_flags != map->m_flags ||
455             es_map->m_pblk != map->m_pblk) {
456                 printk("ES cache assertion failed for inode: %lu "
457                        "es_cached ex [%d/%d/%llu/%x] != "
458                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
459                        inode->i_ino, es_map->m_lblk, es_map->m_len,
460                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
461                        map->m_len, map->m_pblk, map->m_flags,
462                        retval, flags);
463         }
464 }
465 #endif /* ES_AGGRESSIVE_TEST */
466
467 /*
468  * The ext4_map_blocks() function tries to look up the requested blocks,
469  * and returns if the blocks are already mapped.
470  *
471  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
472  * and store the allocated blocks in the result buffer head and mark it
473  * mapped.
474  *
475  * If file type is extents based, it will call ext4_ext_map_blocks(),
476  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
477  * based files
478  *
479  * On success, it returns the number of blocks being mapped or allocated.  if
480  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
481  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
482  *
483  * It returns 0 if plain look up failed (blocks have not been allocated), in
484  * that case, @map is returned as unmapped but we still do fill map->m_len to
485  * indicate the length of a hole starting at map->m_lblk.
486  *
487  * It returns the error in case of allocation failure.
488  */
489 int ext4_map_blocks(handle_t *handle, struct inode *inode,
490                     struct ext4_map_blocks *map, int flags)
491 {
492         struct extent_status es;
493         int retval;
494         int ret = 0;
495 #ifdef ES_AGGRESSIVE_TEST
496         struct ext4_map_blocks orig_map;
497
498         memcpy(&orig_map, map, sizeof(*map));
499 #endif
500
501         map->m_flags = 0;
502         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
503                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
504                   (unsigned long) map->m_lblk);
505
506         /*
507          * ext4_map_blocks returns an int, and m_len is an unsigned int
508          */
509         if (unlikely(map->m_len > INT_MAX))
510                 map->m_len = INT_MAX;
511
512         /* We can handle the block number less than EXT_MAX_BLOCKS */
513         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
514                 return -EFSCORRUPTED;
515
516         /* Lookup extent status tree firstly */
517         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
518                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
519                         map->m_pblk = ext4_es_pblock(&es) +
520                                         map->m_lblk - es.es_lblk;
521                         map->m_flags |= ext4_es_is_written(&es) ?
522                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
523                         retval = es.es_len - (map->m_lblk - es.es_lblk);
524                         if (retval > map->m_len)
525                                 retval = map->m_len;
526                         map->m_len = retval;
527                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
528                         map->m_pblk = 0;
529                         retval = es.es_len - (map->m_lblk - es.es_lblk);
530                         if (retval > map->m_len)
531                                 retval = map->m_len;
532                         map->m_len = retval;
533                         retval = 0;
534                 } else {
535                         BUG_ON(1);
536                 }
537 #ifdef ES_AGGRESSIVE_TEST
538                 ext4_map_blocks_es_recheck(handle, inode, map,
539                                            &orig_map, flags);
540 #endif
541                 goto found;
542         }
543
544         /*
545          * Try to see if we can get the block without requesting a new
546          * file system block.
547          */
548         down_read(&EXT4_I(inode)->i_data_sem);
549         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
550                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
551                                              EXT4_GET_BLOCKS_KEEP_SIZE);
552         } else {
553                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
554                                              EXT4_GET_BLOCKS_KEEP_SIZE);
555         }
556         if (retval > 0) {
557                 unsigned int status;
558
559                 if (unlikely(retval != map->m_len)) {
560                         ext4_warning(inode->i_sb,
561                                      "ES len assertion failed for inode "
562                                      "%lu: retval %d != map->m_len %d",
563                                      inode->i_ino, retval, map->m_len);
564                         WARN_ON(1);
565                 }
566
567                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
568                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
569                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
570                     !(status & EXTENT_STATUS_WRITTEN) &&
571                     ext4_find_delalloc_range(inode, map->m_lblk,
572                                              map->m_lblk + map->m_len - 1))
573                         status |= EXTENT_STATUS_DELAYED;
574                 ret = ext4_es_insert_extent(inode, map->m_lblk,
575                                             map->m_len, map->m_pblk, status);
576                 if (ret < 0)
577                         retval = ret;
578         }
579         up_read((&EXT4_I(inode)->i_data_sem));
580
581 found:
582         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
583                 ret = check_block_validity(inode, map);
584                 if (ret != 0)
585                         return ret;
586         }
587
588         /* If it is only a block(s) look up */
589         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
590                 return retval;
591
592         /*
593          * Returns if the blocks have already allocated
594          *
595          * Note that if blocks have been preallocated
596          * ext4_ext_get_block() returns the create = 0
597          * with buffer head unmapped.
598          */
599         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
600                 /*
601                  * If we need to convert extent to unwritten
602                  * we continue and do the actual work in
603                  * ext4_ext_map_blocks()
604                  */
605                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
606                         return retval;
607
608         /*
609          * Here we clear m_flags because after allocating an new extent,
610          * it will be set again.
611          */
612         map->m_flags &= ~EXT4_MAP_FLAGS;
613
614         /*
615          * New blocks allocate and/or writing to unwritten extent
616          * will possibly result in updating i_data, so we take
617          * the write lock of i_data_sem, and call get_block()
618          * with create == 1 flag.
619          */
620         down_write(&EXT4_I(inode)->i_data_sem);
621
622         /*
623          * We need to check for EXT4 here because migrate
624          * could have changed the inode type in between
625          */
626         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
627                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
628         } else {
629                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
630
631                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
632                         /*
633                          * We allocated new blocks which will result in
634                          * i_data's format changing.  Force the migrate
635                          * to fail by clearing migrate flags
636                          */
637                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
638                 }
639
640                 /*
641                  * Update reserved blocks/metadata blocks after successful
642                  * block allocation which had been deferred till now. We don't
643                  * support fallocate for non extent files. So we can update
644                  * reserve space here.
645                  */
646                 if ((retval > 0) &&
647                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
648                         ext4_da_update_reserve_space(inode, retval, 1);
649         }
650
651         if (retval > 0) {
652                 unsigned int status;
653
654                 if (unlikely(retval != map->m_len)) {
655                         ext4_warning(inode->i_sb,
656                                      "ES len assertion failed for inode "
657                                      "%lu: retval %d != map->m_len %d",
658                                      inode->i_ino, retval, map->m_len);
659                         WARN_ON(1);
660                 }
661
662                 /*
663                  * We have to zeroout blocks before inserting them into extent
664                  * status tree. Otherwise someone could look them up there and
665                  * use them before they are really zeroed. We also have to
666                  * unmap metadata before zeroing as otherwise writeback can
667                  * overwrite zeros with stale data from block device.
668                  */
669                 if (flags & EXT4_GET_BLOCKS_ZERO &&
670                     map->m_flags & EXT4_MAP_MAPPED &&
671                     map->m_flags & EXT4_MAP_NEW) {
672                         clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
673                                            map->m_len);
674                         ret = ext4_issue_zeroout(inode, map->m_lblk,
675                                                  map->m_pblk, map->m_len);
676                         if (ret) {
677                                 retval = ret;
678                                 goto out_sem;
679                         }
680                 }
681
682                 /*
683                  * If the extent has been zeroed out, we don't need to update
684                  * extent status tree.
685                  */
686                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
687                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
688                         if (ext4_es_is_written(&es))
689                                 goto out_sem;
690                 }
691                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
692                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
693                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
694                     !(status & EXTENT_STATUS_WRITTEN) &&
695                     ext4_find_delalloc_range(inode, map->m_lblk,
696                                              map->m_lblk + map->m_len - 1))
697                         status |= EXTENT_STATUS_DELAYED;
698                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
699                                             map->m_pblk, status);
700                 if (ret < 0) {
701                         retval = ret;
702                         goto out_sem;
703                 }
704         }
705
706 out_sem:
707         up_write((&EXT4_I(inode)->i_data_sem));
708         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
709                 ret = check_block_validity(inode, map);
710                 if (ret != 0)
711                         return ret;
712
713                 /*
714                  * Inodes with freshly allocated blocks where contents will be
715                  * visible after transaction commit must be on transaction's
716                  * ordered data list.
717                  */
718                 if (map->m_flags & EXT4_MAP_NEW &&
719                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
720                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
721                     !ext4_is_quota_file(inode) &&
722                     ext4_should_order_data(inode)) {
723                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
724                                 ret = ext4_jbd2_inode_add_wait(handle, inode);
725                         else
726                                 ret = ext4_jbd2_inode_add_write(handle, inode);
727                         if (ret)
728                                 return ret;
729                 }
730         }
731         return retval;
732 }
733
734 /*
735  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
736  * we have to be careful as someone else may be manipulating b_state as well.
737  */
738 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
739 {
740         unsigned long old_state;
741         unsigned long new_state;
742
743         flags &= EXT4_MAP_FLAGS;
744
745         /* Dummy buffer_head? Set non-atomically. */
746         if (!bh->b_page) {
747                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
748                 return;
749         }
750         /*
751          * Someone else may be modifying b_state. Be careful! This is ugly but
752          * once we get rid of using bh as a container for mapping information
753          * to pass to / from get_block functions, this can go away.
754          */
755         do {
756                 old_state = READ_ONCE(bh->b_state);
757                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
758         } while (unlikely(
759                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
760 }
761
762 static int _ext4_get_block(struct inode *inode, sector_t iblock,
763                            struct buffer_head *bh, int flags)
764 {
765         struct ext4_map_blocks map;
766         int ret = 0;
767
768         if (ext4_has_inline_data(inode))
769                 return -ERANGE;
770
771         map.m_lblk = iblock;
772         map.m_len = bh->b_size >> inode->i_blkbits;
773
774         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
775                               flags);
776         if (ret > 0) {
777                 map_bh(bh, inode->i_sb, map.m_pblk);
778                 ext4_update_bh_state(bh, map.m_flags);
779                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
780                 ret = 0;
781         } else if (ret == 0) {
782                 /* hole case, need to fill in bh->b_size */
783                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
784         }
785         return ret;
786 }
787
788 int ext4_get_block(struct inode *inode, sector_t iblock,
789                    struct buffer_head *bh, int create)
790 {
791         return _ext4_get_block(inode, iblock, bh,
792                                create ? EXT4_GET_BLOCKS_CREATE : 0);
793 }
794
795 /*
796  * Get block function used when preparing for buffered write if we require
797  * creating an unwritten extent if blocks haven't been allocated.  The extent
798  * will be converted to written after the IO is complete.
799  */
800 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
801                              struct buffer_head *bh_result, int create)
802 {
803         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
804                    inode->i_ino, create);
805         return _ext4_get_block(inode, iblock, bh_result,
806                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
807 }
808
809 /* Maximum number of blocks we map for direct IO at once. */
810 #define DIO_MAX_BLOCKS 4096
811
812 /*
813  * Get blocks function for the cases that need to start a transaction -
814  * generally difference cases of direct IO and DAX IO. It also handles retries
815  * in case of ENOSPC.
816  */
817 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
818                                 struct buffer_head *bh_result, int flags)
819 {
820         int dio_credits;
821         handle_t *handle;
822         int retries = 0;
823         int ret;
824
825         /* Trim mapping request to maximum we can map at once for DIO */
826         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
827                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
828         dio_credits = ext4_chunk_trans_blocks(inode,
829                                       bh_result->b_size >> inode->i_blkbits);
830 retry:
831         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
832         if (IS_ERR(handle))
833                 return PTR_ERR(handle);
834
835         ret = _ext4_get_block(inode, iblock, bh_result, flags);
836         ext4_journal_stop(handle);
837
838         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
839                 goto retry;
840         return ret;
841 }
842
843 /* Get block function for DIO reads and writes to inodes without extents */
844 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
845                        struct buffer_head *bh, int create)
846 {
847         /* We don't expect handle for direct IO */
848         WARN_ON_ONCE(ext4_journal_current_handle());
849
850         if (!create)
851                 return _ext4_get_block(inode, iblock, bh, 0);
852         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
853 }
854
855 /*
856  * Get block function for AIO DIO writes when we create unwritten extent if
857  * blocks are not allocated yet. The extent will be converted to written
858  * after IO is complete.
859  */
860 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
861                 sector_t iblock, struct buffer_head *bh_result, int create)
862 {
863         int ret;
864
865         /* We don't expect handle for direct IO */
866         WARN_ON_ONCE(ext4_journal_current_handle());
867
868         ret = ext4_get_block_trans(inode, iblock, bh_result,
869                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
870
871         /*
872          * When doing DIO using unwritten extents, we need io_end to convert
873          * unwritten extents to written on IO completion. We allocate io_end
874          * once we spot unwritten extent and store it in b_private. Generic
875          * DIO code keeps b_private set and furthermore passes the value to
876          * our completion callback in 'private' argument.
877          */
878         if (!ret && buffer_unwritten(bh_result)) {
879                 if (!bh_result->b_private) {
880                         ext4_io_end_t *io_end;
881
882                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
883                         if (!io_end)
884                                 return -ENOMEM;
885                         bh_result->b_private = io_end;
886                         ext4_set_io_unwritten_flag(inode, io_end);
887                 }
888                 set_buffer_defer_completion(bh_result);
889         }
890
891         return ret;
892 }
893
894 /*
895  * Get block function for non-AIO DIO writes when we create unwritten extent if
896  * blocks are not allocated yet. The extent will be converted to written
897  * after IO is complete by ext4_direct_IO_write().
898  */
899 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
900                 sector_t iblock, struct buffer_head *bh_result, int create)
901 {
902         int ret;
903
904         /* We don't expect handle for direct IO */
905         WARN_ON_ONCE(ext4_journal_current_handle());
906
907         ret = ext4_get_block_trans(inode, iblock, bh_result,
908                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
909
910         /*
911          * Mark inode as having pending DIO writes to unwritten extents.
912          * ext4_direct_IO_write() checks this flag and converts extents to
913          * written.
914          */
915         if (!ret && buffer_unwritten(bh_result))
916                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
917
918         return ret;
919 }
920
921 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
922                    struct buffer_head *bh_result, int create)
923 {
924         int ret;
925
926         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
927                    inode->i_ino, create);
928         /* We don't expect handle for direct IO */
929         WARN_ON_ONCE(ext4_journal_current_handle());
930
931         ret = _ext4_get_block(inode, iblock, bh_result, 0);
932         /*
933          * Blocks should have been preallocated! ext4_file_write_iter() checks
934          * that.
935          */
936         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
937
938         return ret;
939 }
940
941
942 /*
943  * `handle' can be NULL if create is zero
944  */
945 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
946                                 ext4_lblk_t block, int map_flags)
947 {
948         struct ext4_map_blocks map;
949         struct buffer_head *bh;
950         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
951         int err;
952
953         J_ASSERT(handle != NULL || create == 0);
954
955         map.m_lblk = block;
956         map.m_len = 1;
957         err = ext4_map_blocks(handle, inode, &map, map_flags);
958
959         if (err == 0)
960                 return create ? ERR_PTR(-ENOSPC) : NULL;
961         if (err < 0)
962                 return ERR_PTR(err);
963
964         bh = sb_getblk(inode->i_sb, map.m_pblk);
965         if (unlikely(!bh))
966                 return ERR_PTR(-ENOMEM);
967         if (map.m_flags & EXT4_MAP_NEW) {
968                 J_ASSERT(create != 0);
969                 J_ASSERT(handle != NULL);
970
971                 /*
972                  * Now that we do not always journal data, we should
973                  * keep in mind whether this should always journal the
974                  * new buffer as metadata.  For now, regular file
975                  * writes use ext4_get_block instead, so it's not a
976                  * problem.
977                  */
978                 lock_buffer(bh);
979                 BUFFER_TRACE(bh, "call get_create_access");
980                 err = ext4_journal_get_create_access(handle, bh);
981                 if (unlikely(err)) {
982                         unlock_buffer(bh);
983                         goto errout;
984                 }
985                 if (!buffer_uptodate(bh)) {
986                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
987                         set_buffer_uptodate(bh);
988                 }
989                 unlock_buffer(bh);
990                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
991                 err = ext4_handle_dirty_metadata(handle, inode, bh);
992                 if (unlikely(err))
993                         goto errout;
994         } else
995                 BUFFER_TRACE(bh, "not a new buffer");
996         return bh;
997 errout:
998         brelse(bh);
999         return ERR_PTR(err);
1000 }
1001
1002 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1003                                ext4_lblk_t block, int map_flags)
1004 {
1005         struct buffer_head *bh;
1006
1007         bh = ext4_getblk(handle, inode, block, map_flags);
1008         if (IS_ERR(bh))
1009                 return bh;
1010         if (!bh || buffer_uptodate(bh))
1011                 return bh;
1012         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1013         wait_on_buffer(bh);
1014         if (buffer_uptodate(bh))
1015                 return bh;
1016         put_bh(bh);
1017         return ERR_PTR(-EIO);
1018 }
1019
1020 /* Read a contiguous batch of blocks. */
1021 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1022                      bool wait, struct buffer_head **bhs)
1023 {
1024         int i, err;
1025
1026         for (i = 0; i < bh_count; i++) {
1027                 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1028                 if (IS_ERR(bhs[i])) {
1029                         err = PTR_ERR(bhs[i]);
1030                         bh_count = i;
1031                         goto out_brelse;
1032                 }
1033         }
1034
1035         for (i = 0; i < bh_count; i++)
1036                 /* Note that NULL bhs[i] is valid because of holes. */
1037                 if (bhs[i] && !buffer_uptodate(bhs[i]))
1038                         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1039                                     &bhs[i]);
1040
1041         if (!wait)
1042                 return 0;
1043
1044         for (i = 0; i < bh_count; i++)
1045                 if (bhs[i])
1046                         wait_on_buffer(bhs[i]);
1047
1048         for (i = 0; i < bh_count; i++) {
1049                 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1050                         err = -EIO;
1051                         goto out_brelse;
1052                 }
1053         }
1054         return 0;
1055
1056 out_brelse:
1057         for (i = 0; i < bh_count; i++) {
1058                 brelse(bhs[i]);
1059                 bhs[i] = NULL;
1060         }
1061         return err;
1062 }
1063
1064 int ext4_walk_page_buffers(handle_t *handle,
1065                            struct buffer_head *head,
1066                            unsigned from,
1067                            unsigned to,
1068                            int *partial,
1069                            int (*fn)(handle_t *handle,
1070                                      struct buffer_head *bh))
1071 {
1072         struct buffer_head *bh;
1073         unsigned block_start, block_end;
1074         unsigned blocksize = head->b_size;
1075         int err, ret = 0;
1076         struct buffer_head *next;
1077
1078         for (bh = head, block_start = 0;
1079              ret == 0 && (bh != head || !block_start);
1080              block_start = block_end, bh = next) {
1081                 next = bh->b_this_page;
1082                 block_end = block_start + blocksize;
1083                 if (block_end <= from || block_start >= to) {
1084                         if (partial && !buffer_uptodate(bh))
1085                                 *partial = 1;
1086                         continue;
1087                 }
1088                 err = (*fn)(handle, bh);
1089                 if (!ret)
1090                         ret = err;
1091         }
1092         return ret;
1093 }
1094
1095 /*
1096  * To preserve ordering, it is essential that the hole instantiation and
1097  * the data write be encapsulated in a single transaction.  We cannot
1098  * close off a transaction and start a new one between the ext4_get_block()
1099  * and the commit_write().  So doing the jbd2_journal_start at the start of
1100  * prepare_write() is the right place.
1101  *
1102  * Also, this function can nest inside ext4_writepage().  In that case, we
1103  * *know* that ext4_writepage() has generated enough buffer credits to do the
1104  * whole page.  So we won't block on the journal in that case, which is good,
1105  * because the caller may be PF_MEMALLOC.
1106  *
1107  * By accident, ext4 can be reentered when a transaction is open via
1108  * quota file writes.  If we were to commit the transaction while thus
1109  * reentered, there can be a deadlock - we would be holding a quota
1110  * lock, and the commit would never complete if another thread had a
1111  * transaction open and was blocking on the quota lock - a ranking
1112  * violation.
1113  *
1114  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1115  * will _not_ run commit under these circumstances because handle->h_ref
1116  * is elevated.  We'll still have enough credits for the tiny quotafile
1117  * write.
1118  */
1119 int do_journal_get_write_access(handle_t *handle,
1120                                 struct buffer_head *bh)
1121 {
1122         int dirty = buffer_dirty(bh);
1123         int ret;
1124
1125         if (!buffer_mapped(bh) || buffer_freed(bh))
1126                 return 0;
1127         /*
1128          * __block_write_begin() could have dirtied some buffers. Clean
1129          * the dirty bit as jbd2_journal_get_write_access() could complain
1130          * otherwise about fs integrity issues. Setting of the dirty bit
1131          * by __block_write_begin() isn't a real problem here as we clear
1132          * the bit before releasing a page lock and thus writeback cannot
1133          * ever write the buffer.
1134          */
1135         if (dirty)
1136                 clear_buffer_dirty(bh);
1137         BUFFER_TRACE(bh, "get write access");
1138         ret = ext4_journal_get_write_access(handle, bh);
1139         if (!ret && dirty)
1140                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1141         return ret;
1142 }
1143
1144 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1145 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1146                                   get_block_t *get_block)
1147 {
1148         unsigned from = pos & (PAGE_SIZE - 1);
1149         unsigned to = from + len;
1150         struct inode *inode = page->mapping->host;
1151         unsigned block_start, block_end;
1152         sector_t block;
1153         int err = 0;
1154         unsigned blocksize = inode->i_sb->s_blocksize;
1155         unsigned bbits;
1156         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1157         bool decrypt = false;
1158
1159         BUG_ON(!PageLocked(page));
1160         BUG_ON(from > PAGE_SIZE);
1161         BUG_ON(to > PAGE_SIZE);
1162         BUG_ON(from > to);
1163
1164         if (!page_has_buffers(page))
1165                 create_empty_buffers(page, blocksize, 0);
1166         head = page_buffers(page);
1167         bbits = ilog2(blocksize);
1168         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1169
1170         for (bh = head, block_start = 0; bh != head || !block_start;
1171             block++, block_start = block_end, bh = bh->b_this_page) {
1172                 block_end = block_start + blocksize;
1173                 if (block_end <= from || block_start >= to) {
1174                         if (PageUptodate(page)) {
1175                                 if (!buffer_uptodate(bh))
1176                                         set_buffer_uptodate(bh);
1177                         }
1178                         continue;
1179                 }
1180                 if (buffer_new(bh))
1181                         clear_buffer_new(bh);
1182                 if (!buffer_mapped(bh)) {
1183                         WARN_ON(bh->b_size != blocksize);
1184                         err = get_block(inode, block, bh, 1);
1185                         if (err)
1186                                 break;
1187                         if (buffer_new(bh)) {
1188                                 clean_bdev_bh_alias(bh);
1189                                 if (PageUptodate(page)) {
1190                                         clear_buffer_new(bh);
1191                                         set_buffer_uptodate(bh);
1192                                         mark_buffer_dirty(bh);
1193                                         continue;
1194                                 }
1195                                 if (block_end > to || block_start < from)
1196                                         zero_user_segments(page, to, block_end,
1197                                                            block_start, from);
1198                                 continue;
1199                         }
1200                 }
1201                 if (PageUptodate(page)) {
1202                         if (!buffer_uptodate(bh))
1203                                 set_buffer_uptodate(bh);
1204                         continue;
1205                 }
1206                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1207                     !buffer_unwritten(bh) &&
1208                     (block_start < from || block_end > to)) {
1209                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1210                         *wait_bh++ = bh;
1211                         decrypt = ext4_encrypted_inode(inode) &&
1212                                 S_ISREG(inode->i_mode);
1213                 }
1214         }
1215         /*
1216          * If we issued read requests, let them complete.
1217          */
1218         while (wait_bh > wait) {
1219                 wait_on_buffer(*--wait_bh);
1220                 if (!buffer_uptodate(*wait_bh))
1221                         err = -EIO;
1222         }
1223         if (unlikely(err))
1224                 page_zero_new_buffers(page, from, to);
1225         else if (decrypt)
1226                 err = fscrypt_decrypt_page(page->mapping->host, page,
1227                                 PAGE_SIZE, 0, page->index);
1228         return err;
1229 }
1230 #endif
1231
1232 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1233                             loff_t pos, unsigned len, unsigned flags,
1234                             struct page **pagep, void **fsdata)
1235 {
1236         struct inode *inode = mapping->host;
1237         int ret, needed_blocks;
1238         handle_t *handle;
1239         int retries = 0;
1240         struct page *page;
1241         pgoff_t index;
1242         unsigned from, to;
1243
1244         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1245                 return -EIO;
1246
1247         trace_ext4_write_begin(inode, pos, len, flags);
1248         /*
1249          * Reserve one block more for addition to orphan list in case
1250          * we allocate blocks but write fails for some reason
1251          */
1252         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1253         index = pos >> PAGE_SHIFT;
1254         from = pos & (PAGE_SIZE - 1);
1255         to = from + len;
1256
1257         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1258                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1259                                                     flags, pagep);
1260                 if (ret < 0)
1261                         return ret;
1262                 if (ret == 1)
1263                         return 0;
1264         }
1265
1266         /*
1267          * grab_cache_page_write_begin() can take a long time if the
1268          * system is thrashing due to memory pressure, or if the page
1269          * is being written back.  So grab it first before we start
1270          * the transaction handle.  This also allows us to allocate
1271          * the page (if needed) without using GFP_NOFS.
1272          */
1273 retry_grab:
1274         page = grab_cache_page_write_begin(mapping, index, flags);
1275         if (!page)
1276                 return -ENOMEM;
1277         unlock_page(page);
1278
1279 retry_journal:
1280         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1281         if (IS_ERR(handle)) {
1282                 put_page(page);
1283                 return PTR_ERR(handle);
1284         }
1285
1286         lock_page(page);
1287         if (page->mapping != mapping) {
1288                 /* The page got truncated from under us */
1289                 unlock_page(page);
1290                 put_page(page);
1291                 ext4_journal_stop(handle);
1292                 goto retry_grab;
1293         }
1294         /* In case writeback began while the page was unlocked */
1295         wait_for_stable_page(page);
1296
1297 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1298         if (ext4_should_dioread_nolock(inode))
1299                 ret = ext4_block_write_begin(page, pos, len,
1300                                              ext4_get_block_unwritten);
1301         else
1302                 ret = ext4_block_write_begin(page, pos, len,
1303                                              ext4_get_block);
1304 #else
1305         if (ext4_should_dioread_nolock(inode))
1306                 ret = __block_write_begin(page, pos, len,
1307                                           ext4_get_block_unwritten);
1308         else
1309                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1310 #endif
1311         if (!ret && ext4_should_journal_data(inode)) {
1312                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1313                                              from, to, NULL,
1314                                              do_journal_get_write_access);
1315         }
1316
1317         if (ret) {
1318                 unlock_page(page);
1319                 /*
1320                  * __block_write_begin may have instantiated a few blocks
1321                  * outside i_size.  Trim these off again. Don't need
1322                  * i_size_read because we hold i_mutex.
1323                  *
1324                  * Add inode to orphan list in case we crash before
1325                  * truncate finishes
1326                  */
1327                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1328                         ext4_orphan_add(handle, inode);
1329
1330                 ext4_journal_stop(handle);
1331                 if (pos + len > inode->i_size) {
1332                         ext4_truncate_failed_write(inode);
1333                         /*
1334                          * If truncate failed early the inode might
1335                          * still be on the orphan list; we need to
1336                          * make sure the inode is removed from the
1337                          * orphan list in that case.
1338                          */
1339                         if (inode->i_nlink)
1340                                 ext4_orphan_del(NULL, inode);
1341                 }
1342
1343                 if (ret == -ENOSPC &&
1344                     ext4_should_retry_alloc(inode->i_sb, &retries))
1345                         goto retry_journal;
1346                 put_page(page);
1347                 return ret;
1348         }
1349         *pagep = page;
1350         return ret;
1351 }
1352
1353 /* For write_end() in data=journal mode */
1354 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1355 {
1356         int ret;
1357         if (!buffer_mapped(bh) || buffer_freed(bh))
1358                 return 0;
1359         set_buffer_uptodate(bh);
1360         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1361         clear_buffer_meta(bh);
1362         clear_buffer_prio(bh);
1363         return ret;
1364 }
1365
1366 /*
1367  * We need to pick up the new inode size which generic_commit_write gave us
1368  * `file' can be NULL - eg, when called from page_symlink().
1369  *
1370  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1371  * buffers are managed internally.
1372  */
1373 static int ext4_write_end(struct file *file,
1374                           struct address_space *mapping,
1375                           loff_t pos, unsigned len, unsigned copied,
1376                           struct page *page, void *fsdata)
1377 {
1378         handle_t *handle = ext4_journal_current_handle();
1379         struct inode *inode = mapping->host;
1380         loff_t old_size = inode->i_size;
1381         int ret = 0, ret2;
1382         int i_size_changed = 0;
1383
1384         trace_ext4_write_end(inode, pos, len, copied);
1385         if (ext4_has_inline_data(inode)) {
1386                 ret = ext4_write_inline_data_end(inode, pos, len,
1387                                                  copied, page);
1388                 if (ret < 0) {
1389                         unlock_page(page);
1390                         put_page(page);
1391                         goto errout;
1392                 }
1393                 copied = ret;
1394         } else
1395                 copied = block_write_end(file, mapping, pos,
1396                                          len, copied, page, fsdata);
1397         /*
1398          * it's important to update i_size while still holding page lock:
1399          * page writeout could otherwise come in and zero beyond i_size.
1400          */
1401         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1402         unlock_page(page);
1403         put_page(page);
1404
1405         if (old_size < pos)
1406                 pagecache_isize_extended(inode, old_size, pos);
1407         /*
1408          * Don't mark the inode dirty under page lock. First, it unnecessarily
1409          * makes the holding time of page lock longer. Second, it forces lock
1410          * ordering of page lock and transaction start for journaling
1411          * filesystems.
1412          */
1413         if (i_size_changed)
1414                 ext4_mark_inode_dirty(handle, inode);
1415
1416         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1417                 /* if we have allocated more blocks and copied
1418                  * less. We will have blocks allocated outside
1419                  * inode->i_size. So truncate them
1420                  */
1421                 ext4_orphan_add(handle, inode);
1422 errout:
1423         ret2 = ext4_journal_stop(handle);
1424         if (!ret)
1425                 ret = ret2;
1426
1427         if (pos + len > inode->i_size) {
1428                 ext4_truncate_failed_write(inode);
1429                 /*
1430                  * If truncate failed early the inode might still be
1431                  * on the orphan list; we need to make sure the inode
1432                  * is removed from the orphan list in that case.
1433                  */
1434                 if (inode->i_nlink)
1435                         ext4_orphan_del(NULL, inode);
1436         }
1437
1438         return ret ? ret : copied;
1439 }
1440
1441 /*
1442  * This is a private version of page_zero_new_buffers() which doesn't
1443  * set the buffer to be dirty, since in data=journalled mode we need
1444  * to call ext4_handle_dirty_metadata() instead.
1445  */
1446 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1447                                             struct page *page,
1448                                             unsigned from, unsigned to)
1449 {
1450         unsigned int block_start = 0, block_end;
1451         struct buffer_head *head, *bh;
1452
1453         bh = head = page_buffers(page);
1454         do {
1455                 block_end = block_start + bh->b_size;
1456                 if (buffer_new(bh)) {
1457                         if (block_end > from && block_start < to) {
1458                                 if (!PageUptodate(page)) {
1459                                         unsigned start, size;
1460
1461                                         start = max(from, block_start);
1462                                         size = min(to, block_end) - start;
1463
1464                                         zero_user(page, start, size);
1465                                         write_end_fn(handle, bh);
1466                                 }
1467                                 clear_buffer_new(bh);
1468                         }
1469                 }
1470                 block_start = block_end;
1471                 bh = bh->b_this_page;
1472         } while (bh != head);
1473 }
1474
1475 static int ext4_journalled_write_end(struct file *file,
1476                                      struct address_space *mapping,
1477                                      loff_t pos, unsigned len, unsigned copied,
1478                                      struct page *page, void *fsdata)
1479 {
1480         handle_t *handle = ext4_journal_current_handle();
1481         struct inode *inode = mapping->host;
1482         loff_t old_size = inode->i_size;
1483         int ret = 0, ret2;
1484         int partial = 0;
1485         unsigned from, to;
1486         int size_changed = 0;
1487
1488         trace_ext4_journalled_write_end(inode, pos, len, copied);
1489         from = pos & (PAGE_SIZE - 1);
1490         to = from + len;
1491
1492         BUG_ON(!ext4_handle_valid(handle));
1493
1494         if (ext4_has_inline_data(inode)) {
1495                 ret = ext4_write_inline_data_end(inode, pos, len,
1496                                                  copied, page);
1497                 if (ret < 0) {
1498                         unlock_page(page);
1499                         put_page(page);
1500                         goto errout;
1501                 }
1502                 copied = ret;
1503         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1504                 copied = 0;
1505                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1506         } else {
1507                 if (unlikely(copied < len))
1508                         ext4_journalled_zero_new_buffers(handle, page,
1509                                                          from + copied, to);
1510                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1511                                              from + copied, &partial,
1512                                              write_end_fn);
1513                 if (!partial)
1514                         SetPageUptodate(page);
1515         }
1516         size_changed = ext4_update_inode_size(inode, pos + copied);
1517         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1518         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1519         unlock_page(page);
1520         put_page(page);
1521
1522         if (old_size < pos)
1523                 pagecache_isize_extended(inode, old_size, pos);
1524
1525         if (size_changed) {
1526                 ret2 = ext4_mark_inode_dirty(handle, inode);
1527                 if (!ret)
1528                         ret = ret2;
1529         }
1530
1531         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1532                 /* if we have allocated more blocks and copied
1533                  * less. We will have blocks allocated outside
1534                  * inode->i_size. So truncate them
1535                  */
1536                 ext4_orphan_add(handle, inode);
1537
1538 errout:
1539         ret2 = ext4_journal_stop(handle);
1540         if (!ret)
1541                 ret = ret2;
1542         if (pos + len > inode->i_size) {
1543                 ext4_truncate_failed_write(inode);
1544                 /*
1545                  * If truncate failed early the inode might still be
1546                  * on the orphan list; we need to make sure the inode
1547                  * is removed from the orphan list in that case.
1548                  */
1549                 if (inode->i_nlink)
1550                         ext4_orphan_del(NULL, inode);
1551         }
1552
1553         return ret ? ret : copied;
1554 }
1555
1556 /*
1557  * Reserve space for a single cluster
1558  */
1559 static int ext4_da_reserve_space(struct inode *inode)
1560 {
1561         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1562         struct ext4_inode_info *ei = EXT4_I(inode);
1563         int ret;
1564
1565         /*
1566          * We will charge metadata quota at writeout time; this saves
1567          * us from metadata over-estimation, though we may go over by
1568          * a small amount in the end.  Here we just reserve for data.
1569          */
1570         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1571         if (ret)
1572                 return ret;
1573
1574         spin_lock(&ei->i_block_reservation_lock);
1575         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1576                 spin_unlock(&ei->i_block_reservation_lock);
1577                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1578                 return -ENOSPC;
1579         }
1580         ei->i_reserved_data_blocks++;
1581         trace_ext4_da_reserve_space(inode);
1582         spin_unlock(&ei->i_block_reservation_lock);
1583
1584         return 0;       /* success */
1585 }
1586
1587 static void ext4_da_release_space(struct inode *inode, int to_free)
1588 {
1589         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1590         struct ext4_inode_info *ei = EXT4_I(inode);
1591
1592         if (!to_free)
1593                 return;         /* Nothing to release, exit */
1594
1595         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1596
1597         trace_ext4_da_release_space(inode, to_free);
1598         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1599                 /*
1600                  * if there aren't enough reserved blocks, then the
1601                  * counter is messed up somewhere.  Since this
1602                  * function is called from invalidate page, it's
1603                  * harmless to return without any action.
1604                  */
1605                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1606                          "ino %lu, to_free %d with only %d reserved "
1607                          "data blocks", inode->i_ino, to_free,
1608                          ei->i_reserved_data_blocks);
1609                 WARN_ON(1);
1610                 to_free = ei->i_reserved_data_blocks;
1611         }
1612         ei->i_reserved_data_blocks -= to_free;
1613
1614         /* update fs dirty data blocks counter */
1615         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1616
1617         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1618
1619         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1620 }
1621
1622 static void ext4_da_page_release_reservation(struct page *page,
1623                                              unsigned int offset,
1624                                              unsigned int length)
1625 {
1626         int to_release = 0, contiguous_blks = 0;
1627         struct buffer_head *head, *bh;
1628         unsigned int curr_off = 0;
1629         struct inode *inode = page->mapping->host;
1630         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1631         unsigned int stop = offset + length;
1632         int num_clusters;
1633         ext4_fsblk_t lblk;
1634
1635         BUG_ON(stop > PAGE_SIZE || stop < length);
1636
1637         head = page_buffers(page);
1638         bh = head;
1639         do {
1640                 unsigned int next_off = curr_off + bh->b_size;
1641
1642                 if (next_off > stop)
1643                         break;
1644
1645                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1646                         to_release++;
1647                         contiguous_blks++;
1648                         clear_buffer_delay(bh);
1649                 } else if (contiguous_blks) {
1650                         lblk = page->index <<
1651                                (PAGE_SHIFT - inode->i_blkbits);
1652                         lblk += (curr_off >> inode->i_blkbits) -
1653                                 contiguous_blks;
1654                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1655                         contiguous_blks = 0;
1656                 }
1657                 curr_off = next_off;
1658         } while ((bh = bh->b_this_page) != head);
1659
1660         if (contiguous_blks) {
1661                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1662                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1663                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1664         }
1665
1666         /* If we have released all the blocks belonging to a cluster, then we
1667          * need to release the reserved space for that cluster. */
1668         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1669         while (num_clusters > 0) {
1670                 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1671                         ((num_clusters - 1) << sbi->s_cluster_bits);
1672                 if (sbi->s_cluster_ratio == 1 ||
1673                     !ext4_find_delalloc_cluster(inode, lblk))
1674                         ext4_da_release_space(inode, 1);
1675
1676                 num_clusters--;
1677         }
1678 }
1679
1680 /*
1681  * Delayed allocation stuff
1682  */
1683
1684 struct mpage_da_data {
1685         struct inode *inode;
1686         struct writeback_control *wbc;
1687
1688         pgoff_t first_page;     /* The first page to write */
1689         pgoff_t next_page;      /* Current page to examine */
1690         pgoff_t last_page;      /* Last page to examine */
1691         /*
1692          * Extent to map - this can be after first_page because that can be
1693          * fully mapped. We somewhat abuse m_flags to store whether the extent
1694          * is delalloc or unwritten.
1695          */
1696         struct ext4_map_blocks map;
1697         struct ext4_io_submit io_submit;        /* IO submission data */
1698         unsigned int do_map:1;
1699 };
1700
1701 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1702                                        bool invalidate)
1703 {
1704         int nr_pages, i;
1705         pgoff_t index, end;
1706         struct pagevec pvec;
1707         struct inode *inode = mpd->inode;
1708         struct address_space *mapping = inode->i_mapping;
1709
1710         /* This is necessary when next_page == 0. */
1711         if (mpd->first_page >= mpd->next_page)
1712                 return;
1713
1714         index = mpd->first_page;
1715         end   = mpd->next_page - 1;
1716         if (invalidate) {
1717                 ext4_lblk_t start, last;
1718                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1719                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1720                 ext4_es_remove_extent(inode, start, last - start + 1);
1721         }
1722
1723         pagevec_init(&pvec);
1724         while (index <= end) {
1725                 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1726                 if (nr_pages == 0)
1727                         break;
1728                 for (i = 0; i < nr_pages; i++) {
1729                         struct page *page = pvec.pages[i];
1730
1731                         BUG_ON(!PageLocked(page));
1732                         BUG_ON(PageWriteback(page));
1733                         if (invalidate) {
1734                                 if (page_mapped(page))
1735                                         clear_page_dirty_for_io(page);
1736                                 block_invalidatepage(page, 0, PAGE_SIZE);
1737                                 ClearPageUptodate(page);
1738                         }
1739                         unlock_page(page);
1740                 }
1741                 pagevec_release(&pvec);
1742         }
1743 }
1744
1745 static void ext4_print_free_blocks(struct inode *inode)
1746 {
1747         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1748         struct super_block *sb = inode->i_sb;
1749         struct ext4_inode_info *ei = EXT4_I(inode);
1750
1751         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1752                EXT4_C2B(EXT4_SB(inode->i_sb),
1753                         ext4_count_free_clusters(sb)));
1754         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1755         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1756                (long long) EXT4_C2B(EXT4_SB(sb),
1757                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1758         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1759                (long long) EXT4_C2B(EXT4_SB(sb),
1760                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1761         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1762         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1763                  ei->i_reserved_data_blocks);
1764         return;
1765 }
1766
1767 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1768 {
1769         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1770 }
1771
1772 /*
1773  * This function is grabs code from the very beginning of
1774  * ext4_map_blocks, but assumes that the caller is from delayed write
1775  * time. This function looks up the requested blocks and sets the
1776  * buffer delay bit under the protection of i_data_sem.
1777  */
1778 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1779                               struct ext4_map_blocks *map,
1780                               struct buffer_head *bh)
1781 {
1782         struct extent_status es;
1783         int retval;
1784         sector_t invalid_block = ~((sector_t) 0xffff);
1785 #ifdef ES_AGGRESSIVE_TEST
1786         struct ext4_map_blocks orig_map;
1787
1788         memcpy(&orig_map, map, sizeof(*map));
1789 #endif
1790
1791         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1792                 invalid_block = ~0;
1793
1794         map->m_flags = 0;
1795         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1796                   "logical block %lu\n", inode->i_ino, map->m_len,
1797                   (unsigned long) map->m_lblk);
1798
1799         /* Lookup extent status tree firstly */
1800         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1801                 if (ext4_es_is_hole(&es)) {
1802                         retval = 0;
1803                         down_read(&EXT4_I(inode)->i_data_sem);
1804                         goto add_delayed;
1805                 }
1806
1807                 /*
1808                  * Delayed extent could be allocated by fallocate.
1809                  * So we need to check it.
1810                  */
1811                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1812                         map_bh(bh, inode->i_sb, invalid_block);
1813                         set_buffer_new(bh);
1814                         set_buffer_delay(bh);
1815                         return 0;
1816                 }
1817
1818                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1819                 retval = es.es_len - (iblock - es.es_lblk);
1820                 if (retval > map->m_len)
1821                         retval = map->m_len;
1822                 map->m_len = retval;
1823                 if (ext4_es_is_written(&es))
1824                         map->m_flags |= EXT4_MAP_MAPPED;
1825                 else if (ext4_es_is_unwritten(&es))
1826                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1827                 else
1828                         BUG_ON(1);
1829
1830 #ifdef ES_AGGRESSIVE_TEST
1831                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1832 #endif
1833                 return retval;
1834         }
1835
1836         /*
1837          * Try to see if we can get the block without requesting a new
1838          * file system block.
1839          */
1840         down_read(&EXT4_I(inode)->i_data_sem);
1841         if (ext4_has_inline_data(inode))
1842                 retval = 0;
1843         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1844                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1845         else
1846                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1847
1848 add_delayed:
1849         if (retval == 0) {
1850                 int ret;
1851                 /*
1852                  * XXX: __block_prepare_write() unmaps passed block,
1853                  * is it OK?
1854                  */
1855                 /*
1856                  * If the block was allocated from previously allocated cluster,
1857                  * then we don't need to reserve it again. However we still need
1858                  * to reserve metadata for every block we're going to write.
1859                  */
1860                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1861                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1862                         ret = ext4_da_reserve_space(inode);
1863                         if (ret) {
1864                                 /* not enough space to reserve */
1865                                 retval = ret;
1866                                 goto out_unlock;
1867                         }
1868                 }
1869
1870                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1871                                             ~0, EXTENT_STATUS_DELAYED);
1872                 if (ret) {
1873                         retval = ret;
1874                         goto out_unlock;
1875                 }
1876
1877                 map_bh(bh, inode->i_sb, invalid_block);
1878                 set_buffer_new(bh);
1879                 set_buffer_delay(bh);
1880         } else if (retval > 0) {
1881                 int ret;
1882                 unsigned int status;
1883
1884                 if (unlikely(retval != map->m_len)) {
1885                         ext4_warning(inode->i_sb,
1886                                      "ES len assertion failed for inode "
1887                                      "%lu: retval %d != map->m_len %d",
1888                                      inode->i_ino, retval, map->m_len);
1889                         WARN_ON(1);
1890                 }
1891
1892                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1893                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1894                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1895                                             map->m_pblk, status);
1896                 if (ret != 0)
1897                         retval = ret;
1898         }
1899
1900 out_unlock:
1901         up_read((&EXT4_I(inode)->i_data_sem));
1902
1903         return retval;
1904 }
1905
1906 /*
1907  * This is a special get_block_t callback which is used by
1908  * ext4_da_write_begin().  It will either return mapped block or
1909  * reserve space for a single block.
1910  *
1911  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1912  * We also have b_blocknr = -1 and b_bdev initialized properly
1913  *
1914  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1915  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1916  * initialized properly.
1917  */
1918 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1919                            struct buffer_head *bh, int create)
1920 {
1921         struct ext4_map_blocks map;
1922         int ret = 0;
1923
1924         BUG_ON(create == 0);
1925         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1926
1927         map.m_lblk = iblock;
1928         map.m_len = 1;
1929
1930         /*
1931          * first, we need to know whether the block is allocated already
1932          * preallocated blocks are unmapped but should treated
1933          * the same as allocated blocks.
1934          */
1935         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1936         if (ret <= 0)
1937                 return ret;
1938
1939         map_bh(bh, inode->i_sb, map.m_pblk);
1940         ext4_update_bh_state(bh, map.m_flags);
1941
1942         if (buffer_unwritten(bh)) {
1943                 /* A delayed write to unwritten bh should be marked
1944                  * new and mapped.  Mapped ensures that we don't do
1945                  * get_block multiple times when we write to the same
1946                  * offset and new ensures that we do proper zero out
1947                  * for partial write.
1948                  */
1949                 set_buffer_new(bh);
1950                 set_buffer_mapped(bh);
1951         }
1952         return 0;
1953 }
1954
1955 static int bget_one(handle_t *handle, struct buffer_head *bh)
1956 {
1957         get_bh(bh);
1958         return 0;
1959 }
1960
1961 static int bput_one(handle_t *handle, struct buffer_head *bh)
1962 {
1963         put_bh(bh);
1964         return 0;
1965 }
1966
1967 static int __ext4_journalled_writepage(struct page *page,
1968                                        unsigned int len)
1969 {
1970         struct address_space *mapping = page->mapping;
1971         struct inode *inode = mapping->host;
1972         struct buffer_head *page_bufs = NULL;
1973         handle_t *handle = NULL;
1974         int ret = 0, err = 0;
1975         int inline_data = ext4_has_inline_data(inode);
1976         struct buffer_head *inode_bh = NULL;
1977
1978         ClearPageChecked(page);
1979
1980         if (inline_data) {
1981                 BUG_ON(page->index != 0);
1982                 BUG_ON(len > ext4_get_max_inline_size(inode));
1983                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1984                 if (inode_bh == NULL)
1985                         goto out;
1986         } else {
1987                 page_bufs = page_buffers(page);
1988                 if (!page_bufs) {
1989                         BUG();
1990                         goto out;
1991                 }
1992                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1993                                        NULL, bget_one);
1994         }
1995         /*
1996          * We need to release the page lock before we start the
1997          * journal, so grab a reference so the page won't disappear
1998          * out from under us.
1999          */
2000         get_page(page);
2001         unlock_page(page);
2002
2003         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2004                                     ext4_writepage_trans_blocks(inode));
2005         if (IS_ERR(handle)) {
2006                 ret = PTR_ERR(handle);
2007                 put_page(page);
2008                 goto out_no_pagelock;
2009         }
2010         BUG_ON(!ext4_handle_valid(handle));
2011
2012         lock_page(page);
2013         put_page(page);
2014         if (page->mapping != mapping) {
2015                 /* The page got truncated from under us */
2016                 ext4_journal_stop(handle);
2017                 ret = 0;
2018                 goto out;
2019         }
2020
2021         if (inline_data) {
2022                 BUFFER_TRACE(inode_bh, "get write access");
2023                 ret = ext4_journal_get_write_access(handle, inode_bh);
2024
2025                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2026
2027         } else {
2028                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2029                                              do_journal_get_write_access);
2030
2031                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2032                                              write_end_fn);
2033         }
2034         if (ret == 0)
2035                 ret = err;
2036         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2037         err = ext4_journal_stop(handle);
2038         if (!ret)
2039                 ret = err;
2040
2041         if (!ext4_has_inline_data(inode))
2042                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2043                                        NULL, bput_one);
2044         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2045 out:
2046         unlock_page(page);
2047 out_no_pagelock:
2048         brelse(inode_bh);
2049         return ret;
2050 }
2051
2052 /*
2053  * Note that we don't need to start a transaction unless we're journaling data
2054  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2055  * need to file the inode to the transaction's list in ordered mode because if
2056  * we are writing back data added by write(), the inode is already there and if
2057  * we are writing back data modified via mmap(), no one guarantees in which
2058  * transaction the data will hit the disk. In case we are journaling data, we
2059  * cannot start transaction directly because transaction start ranks above page
2060  * lock so we have to do some magic.
2061  *
2062  * This function can get called via...
2063  *   - ext4_writepages after taking page lock (have journal handle)
2064  *   - journal_submit_inode_data_buffers (no journal handle)
2065  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2066  *   - grab_page_cache when doing write_begin (have journal handle)
2067  *
2068  * We don't do any block allocation in this function. If we have page with
2069  * multiple blocks we need to write those buffer_heads that are mapped. This
2070  * is important for mmaped based write. So if we do with blocksize 1K
2071  * truncate(f, 1024);
2072  * a = mmap(f, 0, 4096);
2073  * a[0] = 'a';
2074  * truncate(f, 4096);
2075  * we have in the page first buffer_head mapped via page_mkwrite call back
2076  * but other buffer_heads would be unmapped but dirty (dirty done via the
2077  * do_wp_page). So writepage should write the first block. If we modify
2078  * the mmap area beyond 1024 we will again get a page_fault and the
2079  * page_mkwrite callback will do the block allocation and mark the
2080  * buffer_heads mapped.
2081  *
2082  * We redirty the page if we have any buffer_heads that is either delay or
2083  * unwritten in the page.
2084  *
2085  * We can get recursively called as show below.
2086  *
2087  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2088  *              ext4_writepage()
2089  *
2090  * But since we don't do any block allocation we should not deadlock.
2091  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2092  */
2093 static int ext4_writepage(struct page *page,
2094                           struct writeback_control *wbc)
2095 {
2096         int ret = 0;
2097         loff_t size;
2098         unsigned int len;
2099         struct buffer_head *page_bufs = NULL;
2100         struct inode *inode = page->mapping->host;
2101         struct ext4_io_submit io_submit;
2102         bool keep_towrite = false;
2103
2104         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2105                 ext4_invalidatepage(page, 0, PAGE_SIZE);
2106                 unlock_page(page);
2107                 return -EIO;
2108         }
2109
2110         trace_ext4_writepage(page);
2111         size = i_size_read(inode);
2112         if (page->index == size >> PAGE_SHIFT)
2113                 len = size & ~PAGE_MASK;
2114         else
2115                 len = PAGE_SIZE;
2116
2117         page_bufs = page_buffers(page);
2118         /*
2119          * We cannot do block allocation or other extent handling in this
2120          * function. If there are buffers needing that, we have to redirty
2121          * the page. But we may reach here when we do a journal commit via
2122          * journal_submit_inode_data_buffers() and in that case we must write
2123          * allocated buffers to achieve data=ordered mode guarantees.
2124          *
2125          * Also, if there is only one buffer per page (the fs block
2126          * size == the page size), if one buffer needs block
2127          * allocation or needs to modify the extent tree to clear the
2128          * unwritten flag, we know that the page can't be written at
2129          * all, so we might as well refuse the write immediately.
2130          * Unfortunately if the block size != page size, we can't as
2131          * easily detect this case using ext4_walk_page_buffers(), but
2132          * for the extremely common case, this is an optimization that
2133          * skips a useless round trip through ext4_bio_write_page().
2134          */
2135         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2136                                    ext4_bh_delay_or_unwritten)) {
2137                 redirty_page_for_writepage(wbc, page);
2138                 if ((current->flags & PF_MEMALLOC) ||
2139                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2140                         /*
2141                          * For memory cleaning there's no point in writing only
2142                          * some buffers. So just bail out. Warn if we came here
2143                          * from direct reclaim.
2144                          */
2145                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2146                                                         == PF_MEMALLOC);
2147                         unlock_page(page);
2148                         return 0;
2149                 }
2150                 keep_towrite = true;
2151         }
2152
2153         if (PageChecked(page) && ext4_should_journal_data(inode))
2154                 /*
2155                  * It's mmapped pagecache.  Add buffers and journal it.  There
2156                  * doesn't seem much point in redirtying the page here.
2157                  */
2158                 return __ext4_journalled_writepage(page, len);
2159
2160         ext4_io_submit_init(&io_submit, wbc);
2161         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2162         if (!io_submit.io_end) {
2163                 redirty_page_for_writepage(wbc, page);
2164                 unlock_page(page);
2165                 return -ENOMEM;
2166         }
2167         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2168         ext4_io_submit(&io_submit);
2169         /* Drop io_end reference we got from init */
2170         ext4_put_io_end_defer(io_submit.io_end);
2171         return ret;
2172 }
2173
2174 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2175 {
2176         int len;
2177         loff_t size;
2178         int err;
2179
2180         BUG_ON(page->index != mpd->first_page);
2181         clear_page_dirty_for_io(page);
2182         /*
2183          * We have to be very careful here!  Nothing protects writeback path
2184          * against i_size changes and the page can be writeably mapped into
2185          * page tables. So an application can be growing i_size and writing
2186          * data through mmap while writeback runs. clear_page_dirty_for_io()
2187          * write-protects our page in page tables and the page cannot get
2188          * written to again until we release page lock. So only after
2189          * clear_page_dirty_for_io() we are safe to sample i_size for
2190          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2191          * on the barrier provided by TestClearPageDirty in
2192          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2193          * after page tables are updated.
2194          */
2195         size = i_size_read(mpd->inode);
2196         if (page->index == size >> PAGE_SHIFT)
2197                 len = size & ~PAGE_MASK;
2198         else
2199                 len = PAGE_SIZE;
2200         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2201         if (!err)
2202                 mpd->wbc->nr_to_write--;
2203         mpd->first_page++;
2204
2205         return err;
2206 }
2207
2208 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2209
2210 /*
2211  * mballoc gives us at most this number of blocks...
2212  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2213  * The rest of mballoc seems to handle chunks up to full group size.
2214  */
2215 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2216
2217 /*
2218  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2219  *
2220  * @mpd - extent of blocks
2221  * @lblk - logical number of the block in the file
2222  * @bh - buffer head we want to add to the extent
2223  *
2224  * The function is used to collect contig. blocks in the same state. If the
2225  * buffer doesn't require mapping for writeback and we haven't started the
2226  * extent of buffers to map yet, the function returns 'true' immediately - the
2227  * caller can write the buffer right away. Otherwise the function returns true
2228  * if the block has been added to the extent, false if the block couldn't be
2229  * added.
2230  */
2231 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2232                                    struct buffer_head *bh)
2233 {
2234         struct ext4_map_blocks *map = &mpd->map;
2235
2236         /* Buffer that doesn't need mapping for writeback? */
2237         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2238             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2239                 /* So far no extent to map => we write the buffer right away */
2240                 if (map->m_len == 0)
2241                         return true;
2242                 return false;
2243         }
2244
2245         /* First block in the extent? */
2246         if (map->m_len == 0) {
2247                 /* We cannot map unless handle is started... */
2248                 if (!mpd->do_map)
2249                         return false;
2250                 map->m_lblk = lblk;
2251                 map->m_len = 1;
2252                 map->m_flags = bh->b_state & BH_FLAGS;
2253                 return true;
2254         }
2255
2256         /* Don't go larger than mballoc is willing to allocate */
2257         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2258                 return false;
2259
2260         /* Can we merge the block to our big extent? */
2261         if (lblk == map->m_lblk + map->m_len &&
2262             (bh->b_state & BH_FLAGS) == map->m_flags) {
2263                 map->m_len++;
2264                 return true;
2265         }
2266         return false;
2267 }
2268
2269 /*
2270  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2271  *
2272  * @mpd - extent of blocks for mapping
2273  * @head - the first buffer in the page
2274  * @bh - buffer we should start processing from
2275  * @lblk - logical number of the block in the file corresponding to @bh
2276  *
2277  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2278  * the page for IO if all buffers in this page were mapped and there's no
2279  * accumulated extent of buffers to map or add buffers in the page to the
2280  * extent of buffers to map. The function returns 1 if the caller can continue
2281  * by processing the next page, 0 if it should stop adding buffers to the
2282  * extent to map because we cannot extend it anymore. It can also return value
2283  * < 0 in case of error during IO submission.
2284  */
2285 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2286                                    struct buffer_head *head,
2287                                    struct buffer_head *bh,
2288                                    ext4_lblk_t lblk)
2289 {
2290         struct inode *inode = mpd->inode;
2291         int err;
2292         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2293                                                         >> inode->i_blkbits;
2294
2295         do {
2296                 BUG_ON(buffer_locked(bh));
2297
2298                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2299                         /* Found extent to map? */
2300                         if (mpd->map.m_len)
2301                                 return 0;
2302                         /* Buffer needs mapping and handle is not started? */
2303                         if (!mpd->do_map)
2304                                 return 0;
2305                         /* Everything mapped so far and we hit EOF */
2306                         break;
2307                 }
2308         } while (lblk++, (bh = bh->b_this_page) != head);
2309         /* So far everything mapped? Submit the page for IO. */
2310         if (mpd->map.m_len == 0) {
2311                 err = mpage_submit_page(mpd, head->b_page);
2312                 if (err < 0)
2313                         return err;
2314         }
2315         return lblk < blocks;
2316 }
2317
2318 /*
2319  * mpage_map_buffers - update buffers corresponding to changed extent and
2320  *                     submit fully mapped pages for IO
2321  *
2322  * @mpd - description of extent to map, on return next extent to map
2323  *
2324  * Scan buffers corresponding to changed extent (we expect corresponding pages
2325  * to be already locked) and update buffer state according to new extent state.
2326  * We map delalloc buffers to their physical location, clear unwritten bits,
2327  * and mark buffers as uninit when we perform writes to unwritten extents
2328  * and do extent conversion after IO is finished. If the last page is not fully
2329  * mapped, we update @map to the next extent in the last page that needs
2330  * mapping. Otherwise we submit the page for IO.
2331  */
2332 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2333 {
2334         struct pagevec pvec;
2335         int nr_pages, i;
2336         struct inode *inode = mpd->inode;
2337         struct buffer_head *head, *bh;
2338         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2339         pgoff_t start, end;
2340         ext4_lblk_t lblk;
2341         sector_t pblock;
2342         int err;
2343
2344         start = mpd->map.m_lblk >> bpp_bits;
2345         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2346         lblk = start << bpp_bits;
2347         pblock = mpd->map.m_pblk;
2348
2349         pagevec_init(&pvec);
2350         while (start <= end) {
2351                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2352                                                 &start, end);
2353                 if (nr_pages == 0)
2354                         break;
2355                 for (i = 0; i < nr_pages; i++) {
2356                         struct page *page = pvec.pages[i];
2357
2358                         bh = head = page_buffers(page);
2359                         do {
2360                                 if (lblk < mpd->map.m_lblk)
2361                                         continue;
2362                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2363                                         /*
2364                                          * Buffer after end of mapped extent.
2365                                          * Find next buffer in the page to map.
2366                                          */
2367                                         mpd->map.m_len = 0;
2368                                         mpd->map.m_flags = 0;
2369                                         /*
2370                                          * FIXME: If dioread_nolock supports
2371                                          * blocksize < pagesize, we need to make
2372                                          * sure we add size mapped so far to
2373                                          * io_end->size as the following call
2374                                          * can submit the page for IO.
2375                                          */
2376                                         err = mpage_process_page_bufs(mpd, head,
2377                                                                       bh, lblk);
2378                                         pagevec_release(&pvec);
2379                                         if (err > 0)
2380                                                 err = 0;
2381                                         return err;
2382                                 }
2383                                 if (buffer_delay(bh)) {
2384                                         clear_buffer_delay(bh);
2385                                         bh->b_blocknr = pblock++;
2386                                 }
2387                                 clear_buffer_unwritten(bh);
2388                         } while (lblk++, (bh = bh->b_this_page) != head);
2389
2390                         /*
2391                          * FIXME: This is going to break if dioread_nolock
2392                          * supports blocksize < pagesize as we will try to
2393                          * convert potentially unmapped parts of inode.
2394                          */
2395                         mpd->io_submit.io_end->size += PAGE_SIZE;
2396                         /* Page fully mapped - let IO run! */
2397                         err = mpage_submit_page(mpd, page);
2398                         if (err < 0) {
2399                                 pagevec_release(&pvec);
2400                                 return err;
2401                         }
2402                 }
2403                 pagevec_release(&pvec);
2404         }
2405         /* Extent fully mapped and matches with page boundary. We are done. */
2406         mpd->map.m_len = 0;
2407         mpd->map.m_flags = 0;
2408         return 0;
2409 }
2410
2411 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2412 {
2413         struct inode *inode = mpd->inode;
2414         struct ext4_map_blocks *map = &mpd->map;
2415         int get_blocks_flags;
2416         int err, dioread_nolock;
2417
2418         trace_ext4_da_write_pages_extent(inode, map);
2419         /*
2420          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2421          * to convert an unwritten extent to be initialized (in the case
2422          * where we have written into one or more preallocated blocks).  It is
2423          * possible that we're going to need more metadata blocks than
2424          * previously reserved. However we must not fail because we're in
2425          * writeback and there is nothing we can do about it so it might result
2426          * in data loss.  So use reserved blocks to allocate metadata if
2427          * possible.
2428          *
2429          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2430          * the blocks in question are delalloc blocks.  This indicates
2431          * that the blocks and quotas has already been checked when
2432          * the data was copied into the page cache.
2433          */
2434         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2435                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2436                            EXT4_GET_BLOCKS_IO_SUBMIT;
2437         dioread_nolock = ext4_should_dioread_nolock(inode);
2438         if (dioread_nolock)
2439                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2440         if (map->m_flags & (1 << BH_Delay))
2441                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2442
2443         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2444         if (err < 0)
2445                 return err;
2446         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2447                 if (!mpd->io_submit.io_end->handle &&
2448                     ext4_handle_valid(handle)) {
2449                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2450                         handle->h_rsv_handle = NULL;
2451                 }
2452                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2453         }
2454
2455         BUG_ON(map->m_len == 0);
2456         if (map->m_flags & EXT4_MAP_NEW) {
2457                 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2458                                    map->m_len);
2459         }
2460         return 0;
2461 }
2462
2463 /*
2464  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2465  *                               mpd->len and submit pages underlying it for IO
2466  *
2467  * @handle - handle for journal operations
2468  * @mpd - extent to map
2469  * @give_up_on_write - we set this to true iff there is a fatal error and there
2470  *                     is no hope of writing the data. The caller should discard
2471  *                     dirty pages to avoid infinite loops.
2472  *
2473  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2474  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2475  * them to initialized or split the described range from larger unwritten
2476  * extent. Note that we need not map all the described range since allocation
2477  * can return less blocks or the range is covered by more unwritten extents. We
2478  * cannot map more because we are limited by reserved transaction credits. On
2479  * the other hand we always make sure that the last touched page is fully
2480  * mapped so that it can be written out (and thus forward progress is
2481  * guaranteed). After mapping we submit all mapped pages for IO.
2482  */
2483 static int mpage_map_and_submit_extent(handle_t *handle,
2484                                        struct mpage_da_data *mpd,
2485                                        bool *give_up_on_write)
2486 {
2487         struct inode *inode = mpd->inode;
2488         struct ext4_map_blocks *map = &mpd->map;
2489         int err;
2490         loff_t disksize;
2491         int progress = 0;
2492
2493         mpd->io_submit.io_end->offset =
2494                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2495         do {
2496                 err = mpage_map_one_extent(handle, mpd);
2497                 if (err < 0) {
2498                         struct super_block *sb = inode->i_sb;
2499
2500                         if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2501                             EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2502                                 goto invalidate_dirty_pages;
2503                         /*
2504                          * Let the uper layers retry transient errors.
2505                          * In the case of ENOSPC, if ext4_count_free_blocks()
2506                          * is non-zero, a commit should free up blocks.
2507                          */
2508                         if ((err == -ENOMEM) ||
2509                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2510                                 if (progress)
2511                                         goto update_disksize;
2512                                 return err;
2513                         }
2514                         ext4_msg(sb, KERN_CRIT,
2515                                  "Delayed block allocation failed for "
2516                                  "inode %lu at logical offset %llu with"
2517                                  " max blocks %u with error %d",
2518                                  inode->i_ino,
2519                                  (unsigned long long)map->m_lblk,
2520                                  (unsigned)map->m_len, -err);
2521                         ext4_msg(sb, KERN_CRIT,
2522                                  "This should not happen!! Data will "
2523                                  "be lost\n");
2524                         if (err == -ENOSPC)
2525                                 ext4_print_free_blocks(inode);
2526                 invalidate_dirty_pages:
2527                         *give_up_on_write = true;
2528                         return err;
2529                 }
2530                 progress = 1;
2531                 /*
2532                  * Update buffer state, submit mapped pages, and get us new
2533                  * extent to map
2534                  */
2535                 err = mpage_map_and_submit_buffers(mpd);
2536                 if (err < 0)
2537                         goto update_disksize;
2538         } while (map->m_len);
2539
2540 update_disksize:
2541         /*
2542          * Update on-disk size after IO is submitted.  Races with
2543          * truncate are avoided by checking i_size under i_data_sem.
2544          */
2545         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2546         if (disksize > EXT4_I(inode)->i_disksize) {
2547                 int err2;
2548                 loff_t i_size;
2549
2550                 down_write(&EXT4_I(inode)->i_data_sem);
2551                 i_size = i_size_read(inode);
2552                 if (disksize > i_size)
2553                         disksize = i_size;
2554                 if (disksize > EXT4_I(inode)->i_disksize)
2555                         EXT4_I(inode)->i_disksize = disksize;
2556                 up_write(&EXT4_I(inode)->i_data_sem);
2557                 err2 = ext4_mark_inode_dirty(handle, inode);
2558                 if (err2)
2559                         ext4_error(inode->i_sb,
2560                                    "Failed to mark inode %lu dirty",
2561                                    inode->i_ino);
2562                 if (!err)
2563                         err = err2;
2564         }
2565         return err;
2566 }
2567
2568 /*
2569  * Calculate the total number of credits to reserve for one writepages
2570  * iteration. This is called from ext4_writepages(). We map an extent of
2571  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2572  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2573  * bpp - 1 blocks in bpp different extents.
2574  */
2575 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2576 {
2577         int bpp = ext4_journal_blocks_per_page(inode);
2578
2579         return ext4_meta_trans_blocks(inode,
2580                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2581 }
2582
2583 /*
2584  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2585  *                               and underlying extent to map
2586  *
2587  * @mpd - where to look for pages
2588  *
2589  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2590  * IO immediately. When we find a page which isn't mapped we start accumulating
2591  * extent of buffers underlying these pages that needs mapping (formed by
2592  * either delayed or unwritten buffers). We also lock the pages containing
2593  * these buffers. The extent found is returned in @mpd structure (starting at
2594  * mpd->lblk with length mpd->len blocks).
2595  *
2596  * Note that this function can attach bios to one io_end structure which are
2597  * neither logically nor physically contiguous. Although it may seem as an
2598  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2599  * case as we need to track IO to all buffers underlying a page in one io_end.
2600  */
2601 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2602 {
2603         struct address_space *mapping = mpd->inode->i_mapping;
2604         struct pagevec pvec;
2605         unsigned int nr_pages;
2606         long left = mpd->wbc->nr_to_write;
2607         pgoff_t index = mpd->first_page;
2608         pgoff_t end = mpd->last_page;
2609         int tag;
2610         int i, err = 0;
2611         int blkbits = mpd->inode->i_blkbits;
2612         ext4_lblk_t lblk;
2613         struct buffer_head *head;
2614
2615         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2616                 tag = PAGECACHE_TAG_TOWRITE;
2617         else
2618                 tag = PAGECACHE_TAG_DIRTY;
2619
2620         pagevec_init(&pvec);
2621         mpd->map.m_len = 0;
2622         mpd->next_page = index;
2623         while (index <= end) {
2624                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2625                                 tag);
2626                 if (nr_pages == 0)
2627                         goto out;
2628
2629                 for (i = 0; i < nr_pages; i++) {
2630                         struct page *page = pvec.pages[i];
2631
2632                         /*
2633                          * Accumulated enough dirty pages? This doesn't apply
2634                          * to WB_SYNC_ALL mode. For integrity sync we have to
2635                          * keep going because someone may be concurrently
2636                          * dirtying pages, and we might have synced a lot of
2637                          * newly appeared dirty pages, but have not synced all
2638                          * of the old dirty pages.
2639                          */
2640                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2641                                 goto out;
2642
2643                         /* If we can't merge this page, we are done. */
2644                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2645                                 goto out;
2646
2647                         lock_page(page);
2648                         /*
2649                          * If the page is no longer dirty, or its mapping no
2650                          * longer corresponds to inode we are writing (which
2651                          * means it has been truncated or invalidated), or the
2652                          * page is already under writeback and we are not doing
2653                          * a data integrity writeback, skip the page
2654                          */
2655                         if (!PageDirty(page) ||
2656                             (PageWriteback(page) &&
2657                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2658                             unlikely(page->mapping != mapping)) {
2659                                 unlock_page(page);
2660                                 continue;
2661                         }
2662
2663                         wait_on_page_writeback(page);
2664                         BUG_ON(PageWriteback(page));
2665
2666                         if (mpd->map.m_len == 0)
2667                                 mpd->first_page = page->index;
2668                         mpd->next_page = page->index + 1;
2669                         /* Add all dirty buffers to mpd */
2670                         lblk = ((ext4_lblk_t)page->index) <<
2671                                 (PAGE_SHIFT - blkbits);
2672                         head = page_buffers(page);
2673                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2674                         if (err <= 0)
2675                                 goto out;
2676                         err = 0;
2677                         left--;
2678                 }
2679                 pagevec_release(&pvec);
2680                 cond_resched();
2681         }
2682         return 0;
2683 out:
2684         pagevec_release(&pvec);
2685         return err;
2686 }
2687
2688 static int __writepage(struct page *page, struct writeback_control *wbc,
2689                        void *data)
2690 {
2691         struct address_space *mapping = data;
2692         int ret = ext4_writepage(page, wbc);
2693         mapping_set_error(mapping, ret);
2694         return ret;
2695 }
2696
2697 static int ext4_writepages(struct address_space *mapping,
2698                            struct writeback_control *wbc)
2699 {
2700         pgoff_t writeback_index = 0;
2701         long nr_to_write = wbc->nr_to_write;
2702         int range_whole = 0;
2703         int cycled = 1;
2704         handle_t *handle = NULL;
2705         struct mpage_da_data mpd;
2706         struct inode *inode = mapping->host;
2707         int needed_blocks, rsv_blocks = 0, ret = 0;
2708         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2709         bool done;
2710         struct blk_plug plug;
2711         bool give_up_on_write = false;
2712
2713         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2714                 return -EIO;
2715
2716         percpu_down_read(&sbi->s_journal_flag_rwsem);
2717         trace_ext4_writepages(inode, wbc);
2718
2719         if (dax_mapping(mapping)) {
2720                 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2721                                                   wbc);
2722                 goto out_writepages;
2723         }
2724
2725         /*
2726          * No pages to write? This is mainly a kludge to avoid starting
2727          * a transaction for special inodes like journal inode on last iput()
2728          * because that could violate lock ordering on umount
2729          */
2730         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2731                 goto out_writepages;
2732
2733         if (ext4_should_journal_data(inode)) {
2734                 struct blk_plug plug;
2735
2736                 blk_start_plug(&plug);
2737                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2738                 blk_finish_plug(&plug);
2739                 goto out_writepages;
2740         }
2741
2742         /*
2743          * If the filesystem has aborted, it is read-only, so return
2744          * right away instead of dumping stack traces later on that
2745          * will obscure the real source of the problem.  We test
2746          * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2747          * the latter could be true if the filesystem is mounted
2748          * read-only, and in that case, ext4_writepages should
2749          * *never* be called, so if that ever happens, we would want
2750          * the stack trace.
2751          */
2752         if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2753                      sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2754                 ret = -EROFS;
2755                 goto out_writepages;
2756         }
2757
2758         if (ext4_should_dioread_nolock(inode)) {
2759                 /*
2760                  * We may need to convert up to one extent per block in
2761                  * the page and we may dirty the inode.
2762                  */
2763                 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2764         }
2765
2766         /*
2767          * If we have inline data and arrive here, it means that
2768          * we will soon create the block for the 1st page, so
2769          * we'd better clear the inline data here.
2770          */
2771         if (ext4_has_inline_data(inode)) {
2772                 /* Just inode will be modified... */
2773                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2774                 if (IS_ERR(handle)) {
2775                         ret = PTR_ERR(handle);
2776                         goto out_writepages;
2777                 }
2778                 BUG_ON(ext4_test_inode_state(inode,
2779                                 EXT4_STATE_MAY_INLINE_DATA));
2780                 ext4_destroy_inline_data(handle, inode);
2781                 ext4_journal_stop(handle);
2782         }
2783
2784         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2785                 range_whole = 1;
2786
2787         if (wbc->range_cyclic) {
2788                 writeback_index = mapping->writeback_index;
2789                 if (writeback_index)
2790                         cycled = 0;
2791                 mpd.first_page = writeback_index;
2792                 mpd.last_page = -1;
2793         } else {
2794                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2795                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2796         }
2797
2798         mpd.inode = inode;
2799         mpd.wbc = wbc;
2800         ext4_io_submit_init(&mpd.io_submit, wbc);
2801 retry:
2802         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2803                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2804         done = false;
2805         blk_start_plug(&plug);
2806
2807         /*
2808          * First writeback pages that don't need mapping - we can avoid
2809          * starting a transaction unnecessarily and also avoid being blocked
2810          * in the block layer on device congestion while having transaction
2811          * started.
2812          */
2813         mpd.do_map = 0;
2814         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2815         if (!mpd.io_submit.io_end) {
2816                 ret = -ENOMEM;
2817                 goto unplug;
2818         }
2819         ret = mpage_prepare_extent_to_map(&mpd);
2820         /* Submit prepared bio */
2821         ext4_io_submit(&mpd.io_submit);
2822         ext4_put_io_end_defer(mpd.io_submit.io_end);
2823         mpd.io_submit.io_end = NULL;
2824         /* Unlock pages we didn't use */
2825         mpage_release_unused_pages(&mpd, false);
2826         if (ret < 0)
2827                 goto unplug;
2828
2829         while (!done && mpd.first_page <= mpd.last_page) {
2830                 /* For each extent of pages we use new io_end */
2831                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2832                 if (!mpd.io_submit.io_end) {
2833                         ret = -ENOMEM;
2834                         break;
2835                 }
2836
2837                 /*
2838                  * We have two constraints: We find one extent to map and we
2839                  * must always write out whole page (makes a difference when
2840                  * blocksize < pagesize) so that we don't block on IO when we
2841                  * try to write out the rest of the page. Journalled mode is
2842                  * not supported by delalloc.
2843                  */
2844                 BUG_ON(ext4_should_journal_data(inode));
2845                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2846
2847                 /* start a new transaction */
2848                 handle = ext4_journal_start_with_reserve(inode,
2849                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2850                 if (IS_ERR(handle)) {
2851                         ret = PTR_ERR(handle);
2852                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2853                                "%ld pages, ino %lu; err %d", __func__,
2854                                 wbc->nr_to_write, inode->i_ino, ret);
2855                         /* Release allocated io_end */
2856                         ext4_put_io_end(mpd.io_submit.io_end);
2857                         mpd.io_submit.io_end = NULL;
2858                         break;
2859                 }
2860                 mpd.do_map = 1;
2861
2862                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2863                 ret = mpage_prepare_extent_to_map(&mpd);
2864                 if (!ret) {
2865                         if (mpd.map.m_len)
2866                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2867                                         &give_up_on_write);
2868                         else {
2869                                 /*
2870                                  * We scanned the whole range (or exhausted
2871                                  * nr_to_write), submitted what was mapped and
2872                                  * didn't find anything needing mapping. We are
2873                                  * done.
2874                                  */
2875                                 done = true;
2876                         }
2877                 }
2878                 /*
2879                  * Caution: If the handle is synchronous,
2880                  * ext4_journal_stop() can wait for transaction commit
2881                  * to finish which may depend on writeback of pages to
2882                  * complete or on page lock to be released.  In that
2883                  * case, we have to wait until after after we have
2884                  * submitted all the IO, released page locks we hold,
2885                  * and dropped io_end reference (for extent conversion
2886                  * to be able to complete) before stopping the handle.
2887                  */
2888                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2889                         ext4_journal_stop(handle);
2890                         handle = NULL;
2891                         mpd.do_map = 0;
2892                 }
2893                 /* Submit prepared bio */
2894                 ext4_io_submit(&mpd.io_submit);
2895                 /* Unlock pages we didn't use */
2896                 mpage_release_unused_pages(&mpd, give_up_on_write);
2897                 /*
2898                  * Drop our io_end reference we got from init. We have
2899                  * to be careful and use deferred io_end finishing if
2900                  * we are still holding the transaction as we can
2901                  * release the last reference to io_end which may end
2902                  * up doing unwritten extent conversion.
2903                  */
2904                 if (handle) {
2905                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2906                         ext4_journal_stop(handle);
2907                 } else
2908                         ext4_put_io_end(mpd.io_submit.io_end);
2909                 mpd.io_submit.io_end = NULL;
2910
2911                 if (ret == -ENOSPC && sbi->s_journal) {
2912                         /*
2913                          * Commit the transaction which would
2914                          * free blocks released in the transaction
2915                          * and try again
2916                          */
2917                         jbd2_journal_force_commit_nested(sbi->s_journal);
2918                         ret = 0;
2919                         continue;
2920                 }
2921                 /* Fatal error - ENOMEM, EIO... */
2922                 if (ret)
2923                         break;
2924         }
2925 unplug:
2926         blk_finish_plug(&plug);
2927         if (!ret && !cycled && wbc->nr_to_write > 0) {
2928                 cycled = 1;
2929                 mpd.last_page = writeback_index - 1;
2930                 mpd.first_page = 0;
2931                 goto retry;
2932         }
2933
2934         /* Update index */
2935         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2936                 /*
2937                  * Set the writeback_index so that range_cyclic
2938                  * mode will write it back later
2939                  */
2940                 mapping->writeback_index = mpd.first_page;
2941
2942 out_writepages:
2943         trace_ext4_writepages_result(inode, wbc, ret,
2944                                      nr_to_write - wbc->nr_to_write);
2945         percpu_up_read(&sbi->s_journal_flag_rwsem);
2946         return ret;
2947 }
2948
2949 static int ext4_nonda_switch(struct super_block *sb)
2950 {
2951         s64 free_clusters, dirty_clusters;
2952         struct ext4_sb_info *sbi = EXT4_SB(sb);
2953
2954         /*
2955          * switch to non delalloc mode if we are running low
2956          * on free block. The free block accounting via percpu
2957          * counters can get slightly wrong with percpu_counter_batch getting
2958          * accumulated on each CPU without updating global counters
2959          * Delalloc need an accurate free block accounting. So switch
2960          * to non delalloc when we are near to error range.
2961          */
2962         free_clusters =
2963                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2964         dirty_clusters =
2965                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2966         /*
2967          * Start pushing delalloc when 1/2 of free blocks are dirty.
2968          */
2969         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2970                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2971
2972         if (2 * free_clusters < 3 * dirty_clusters ||
2973             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2974                 /*
2975                  * free block count is less than 150% of dirty blocks
2976                  * or free blocks is less than watermark
2977                  */
2978                 return 1;
2979         }
2980         return 0;
2981 }
2982
2983 /* We always reserve for an inode update; the superblock could be there too */
2984 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2985 {
2986         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2987                 return 1;
2988
2989         if (pos + len <= 0x7fffffffULL)
2990                 return 1;
2991
2992         /* We might need to update the superblock to set LARGE_FILE */
2993         return 2;
2994 }
2995
2996 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2997                                loff_t pos, unsigned len, unsigned flags,
2998                                struct page **pagep, void **fsdata)
2999 {
3000         int ret, retries = 0;
3001         struct page *page;
3002         pgoff_t index;
3003         struct inode *inode = mapping->host;
3004         handle_t *handle;
3005
3006         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3007                 return -EIO;
3008
3009         index = pos >> PAGE_SHIFT;
3010
3011         if (ext4_nonda_switch(inode->i_sb) ||
3012             S_ISLNK(inode->i_mode)) {
3013                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3014                 return ext4_write_begin(file, mapping, pos,
3015                                         len, flags, pagep, fsdata);
3016         }
3017         *fsdata = (void *)0;
3018         trace_ext4_da_write_begin(inode, pos, len, flags);
3019
3020         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3021                 ret = ext4_da_write_inline_data_begin(mapping, inode,
3022                                                       pos, len, flags,
3023                                                       pagep, fsdata);
3024                 if (ret < 0)
3025                         return ret;
3026                 if (ret == 1)
3027                         return 0;
3028         }
3029
3030         /*
3031          * grab_cache_page_write_begin() can take a long time if the
3032          * system is thrashing due to memory pressure, or if the page
3033          * is being written back.  So grab it first before we start
3034          * the transaction handle.  This also allows us to allocate
3035          * the page (if needed) without using GFP_NOFS.
3036          */
3037 retry_grab:
3038         page = grab_cache_page_write_begin(mapping, index, flags);
3039         if (!page)
3040                 return -ENOMEM;
3041         unlock_page(page);
3042
3043         /*
3044          * With delayed allocation, we don't log the i_disksize update
3045          * if there is delayed block allocation. But we still need
3046          * to journalling the i_disksize update if writes to the end
3047          * of file which has an already mapped buffer.
3048          */
3049 retry_journal:
3050         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3051                                 ext4_da_write_credits(inode, pos, len));
3052         if (IS_ERR(handle)) {
3053                 put_page(page);
3054                 return PTR_ERR(handle);
3055         }
3056
3057         lock_page(page);
3058         if (page->mapping != mapping) {
3059                 /* The page got truncated from under us */
3060                 unlock_page(page);
3061                 put_page(page);
3062                 ext4_journal_stop(handle);
3063                 goto retry_grab;
3064         }
3065         /* In case writeback began while the page was unlocked */
3066         wait_for_stable_page(page);
3067
3068 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3069         ret = ext4_block_write_begin(page, pos, len,
3070                                      ext4_da_get_block_prep);
3071 #else
3072         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3073 #endif
3074         if (ret < 0) {
3075                 unlock_page(page);
3076                 ext4_journal_stop(handle);
3077                 /*
3078                  * block_write_begin may have instantiated a few blocks
3079                  * outside i_size.  Trim these off again. Don't need
3080                  * i_size_read because we hold i_mutex.
3081                  */
3082                 if (pos + len > inode->i_size)
3083                         ext4_truncate_failed_write(inode);
3084
3085                 if (ret == -ENOSPC &&
3086                     ext4_should_retry_alloc(inode->i_sb, &retries))
3087                         goto retry_journal;
3088
3089                 put_page(page);
3090                 return ret;
3091         }
3092
3093         *pagep = page;
3094         return ret;
3095 }
3096
3097 /*
3098  * Check if we should update i_disksize
3099  * when write to the end of file but not require block allocation
3100  */
3101 static int ext4_da_should_update_i_disksize(struct page *page,
3102                                             unsigned long offset)
3103 {
3104         struct buffer_head *bh;
3105         struct inode *inode = page->mapping->host;
3106         unsigned int idx;
3107         int i;
3108
3109         bh = page_buffers(page);
3110         idx = offset >> inode->i_blkbits;
3111
3112         for (i = 0; i < idx; i++)
3113                 bh = bh->b_this_page;
3114
3115         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3116                 return 0;
3117         return 1;
3118 }
3119
3120 static int ext4_da_write_end(struct file *file,
3121                              struct address_space *mapping,
3122                              loff_t pos, unsigned len, unsigned copied,
3123                              struct page *page, void *fsdata)
3124 {
3125         struct inode *inode = mapping->host;
3126         int ret = 0, ret2;
3127         handle_t *handle = ext4_journal_current_handle();
3128         loff_t new_i_size;
3129         unsigned long start, end;
3130         int write_mode = (int)(unsigned long)fsdata;
3131
3132         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3133                 return ext4_write_end(file, mapping, pos,
3134                                       len, copied, page, fsdata);
3135
3136         trace_ext4_da_write_end(inode, pos, len, copied);
3137         start = pos & (PAGE_SIZE - 1);
3138         end = start + copied - 1;
3139
3140         /*
3141          * generic_write_end() will run mark_inode_dirty() if i_size
3142          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3143          * into that.
3144          */
3145         new_i_size = pos + copied;
3146         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3147                 if (ext4_has_inline_data(inode) ||
3148                     ext4_da_should_update_i_disksize(page, end)) {
3149                         ext4_update_i_disksize(inode, new_i_size);
3150                         /* We need to mark inode dirty even if
3151                          * new_i_size is less that inode->i_size
3152                          * bu greater than i_disksize.(hint delalloc)
3153                          */
3154                         ext4_mark_inode_dirty(handle, inode);
3155                 }
3156         }
3157
3158         if (write_mode != CONVERT_INLINE_DATA &&
3159             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3160             ext4_has_inline_data(inode))
3161                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3162                                                      page);
3163         else
3164                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3165                                                         page, fsdata);
3166
3167         copied = ret2;
3168         if (ret2 < 0)
3169                 ret = ret2;
3170         ret2 = ext4_journal_stop(handle);
3171         if (!ret)
3172                 ret = ret2;
3173
3174         return ret ? ret : copied;
3175 }
3176
3177 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3178                                    unsigned int length)
3179 {
3180         /*
3181          * Drop reserved blocks
3182          */
3183         BUG_ON(!PageLocked(page));
3184         if (!page_has_buffers(page))
3185                 goto out;
3186
3187         ext4_da_page_release_reservation(page, offset, length);
3188
3189 out:
3190         ext4_invalidatepage(page, offset, length);
3191
3192         return;
3193 }
3194
3195 /*
3196  * Force all delayed allocation blocks to be allocated for a given inode.
3197  */
3198 int ext4_alloc_da_blocks(struct inode *inode)
3199 {
3200         trace_ext4_alloc_da_blocks(inode);
3201
3202         if (!EXT4_I(inode)->i_reserved_data_blocks)
3203                 return 0;
3204
3205         /*
3206          * We do something simple for now.  The filemap_flush() will
3207          * also start triggering a write of the data blocks, which is
3208          * not strictly speaking necessary (and for users of
3209          * laptop_mode, not even desirable).  However, to do otherwise
3210          * would require replicating code paths in:
3211          *
3212          * ext4_writepages() ->
3213          *    write_cache_pages() ---> (via passed in callback function)
3214          *        __mpage_da_writepage() -->
3215          *           mpage_add_bh_to_extent()
3216          *           mpage_da_map_blocks()
3217          *
3218          * The problem is that write_cache_pages(), located in
3219          * mm/page-writeback.c, marks pages clean in preparation for
3220          * doing I/O, which is not desirable if we're not planning on
3221          * doing I/O at all.
3222          *
3223          * We could call write_cache_pages(), and then redirty all of
3224          * the pages by calling redirty_page_for_writepage() but that
3225          * would be ugly in the extreme.  So instead we would need to
3226          * replicate parts of the code in the above functions,
3227          * simplifying them because we wouldn't actually intend to
3228          * write out the pages, but rather only collect contiguous
3229          * logical block extents, call the multi-block allocator, and
3230          * then update the buffer heads with the block allocations.
3231          *
3232          * For now, though, we'll cheat by calling filemap_flush(),
3233          * which will map the blocks, and start the I/O, but not
3234          * actually wait for the I/O to complete.
3235          */
3236         return filemap_flush(inode->i_mapping);
3237 }
3238
3239 /*
3240  * bmap() is special.  It gets used by applications such as lilo and by
3241  * the swapper to find the on-disk block of a specific piece of data.
3242  *
3243  * Naturally, this is dangerous if the block concerned is still in the
3244  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3245  * filesystem and enables swap, then they may get a nasty shock when the
3246  * data getting swapped to that swapfile suddenly gets overwritten by
3247  * the original zero's written out previously to the journal and
3248  * awaiting writeback in the kernel's buffer cache.
3249  *
3250  * So, if we see any bmap calls here on a modified, data-journaled file,
3251  * take extra steps to flush any blocks which might be in the cache.
3252  */
3253 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3254 {
3255         struct inode *inode = mapping->host;
3256         journal_t *journal;
3257         int err;
3258
3259         /*
3260          * We can get here for an inline file via the FIBMAP ioctl
3261          */
3262         if (ext4_has_inline_data(inode))
3263                 return 0;
3264
3265         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3266                         test_opt(inode->i_sb, DELALLOC)) {
3267                 /*
3268                  * With delalloc we want to sync the file
3269                  * so that we can make sure we allocate
3270                  * blocks for file
3271                  */
3272                 filemap_write_and_wait(mapping);
3273         }
3274
3275         if (EXT4_JOURNAL(inode) &&
3276             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3277                 /*
3278                  * This is a REALLY heavyweight approach, but the use of
3279                  * bmap on dirty files is expected to be extremely rare:
3280                  * only if we run lilo or swapon on a freshly made file
3281                  * do we expect this to happen.
3282                  *
3283                  * (bmap requires CAP_SYS_RAWIO so this does not
3284                  * represent an unprivileged user DOS attack --- we'd be
3285                  * in trouble if mortal users could trigger this path at
3286                  * will.)
3287                  *
3288                  * NB. EXT4_STATE_JDATA is not set on files other than
3289                  * regular files.  If somebody wants to bmap a directory
3290                  * or symlink and gets confused because the buffer
3291                  * hasn't yet been flushed to disk, they deserve
3292                  * everything they get.
3293                  */
3294
3295                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3296                 journal = EXT4_JOURNAL(inode);
3297                 jbd2_journal_lock_updates(journal);
3298                 err = jbd2_journal_flush(journal);
3299                 jbd2_journal_unlock_updates(journal);
3300
3301                 if (err)
3302                         return 0;
3303         }
3304
3305         return generic_block_bmap(mapping, block, ext4_get_block);
3306 }
3307
3308 static int ext4_readpage(struct file *file, struct page *page)
3309 {
3310         int ret = -EAGAIN;
3311         struct inode *inode = page->mapping->host;
3312
3313         trace_ext4_readpage(page);
3314
3315         if (ext4_has_inline_data(inode))
3316                 ret = ext4_readpage_inline(inode, page);
3317
3318         if (ret == -EAGAIN)
3319                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3320
3321         return ret;
3322 }
3323
3324 static int
3325 ext4_readpages(struct file *file, struct address_space *mapping,
3326                 struct list_head *pages, unsigned nr_pages)
3327 {
3328         struct inode *inode = mapping->host;
3329
3330         /* If the file has inline data, no need to do readpages. */
3331         if (ext4_has_inline_data(inode))
3332                 return 0;
3333
3334         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3335 }
3336
3337 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3338                                 unsigned int length)
3339 {
3340         trace_ext4_invalidatepage(page, offset, length);
3341
3342         /* No journalling happens on data buffers when this function is used */
3343         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3344
3345         block_invalidatepage(page, offset, length);
3346 }
3347
3348 static int __ext4_journalled_invalidatepage(struct page *page,
3349                                             unsigned int offset,
3350                                             unsigned int length)
3351 {
3352         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3353
3354         trace_ext4_journalled_invalidatepage(page, offset, length);
3355
3356         /*
3357          * If it's a full truncate we just forget about the pending dirtying
3358          */
3359         if (offset == 0 && length == PAGE_SIZE)
3360                 ClearPageChecked(page);
3361
3362         return jbd2_journal_invalidatepage(journal, page, offset, length);
3363 }
3364
3365 /* Wrapper for aops... */
3366 static void ext4_journalled_invalidatepage(struct page *page,
3367                                            unsigned int offset,
3368                                            unsigned int length)
3369 {
3370         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3371 }
3372
3373 static int ext4_releasepage(struct page *page, gfp_t wait)
3374 {
3375         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3376
3377         trace_ext4_releasepage(page);
3378
3379         /* Page has dirty journalled data -> cannot release */
3380         if (PageChecked(page))
3381                 return 0;
3382         if (journal)
3383                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3384         else
3385                 return try_to_free_buffers(page);
3386 }
3387
3388 static bool ext4_inode_datasync_dirty(struct inode *inode)
3389 {
3390         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3391
3392         if (journal)
3393                 return !jbd2_transaction_committed(journal,
3394                                         EXT4_I(inode)->i_datasync_tid);
3395         /* Any metadata buffers to write? */
3396         if (!list_empty(&inode->i_mapping->private_list))
3397                 return true;
3398         return inode->i_state & I_DIRTY_DATASYNC;
3399 }
3400
3401 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3402                             unsigned flags, struct iomap *iomap)
3403 {
3404         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3405         unsigned int blkbits = inode->i_blkbits;
3406         unsigned long first_block = offset >> blkbits;
3407         unsigned long last_block = (offset + length - 1) >> blkbits;
3408         struct ext4_map_blocks map;
3409         bool delalloc = false;
3410         int ret;
3411
3412
3413         if (flags & IOMAP_REPORT) {
3414                 if (ext4_has_inline_data(inode)) {
3415                         ret = ext4_inline_data_iomap(inode, iomap);
3416                         if (ret != -EAGAIN) {
3417                                 if (ret == 0 && offset >= iomap->length)
3418                                         ret = -ENOENT;
3419                                 return ret;
3420                         }
3421                 }
3422         } else {
3423                 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3424                         return -ERANGE;
3425         }
3426
3427         map.m_lblk = first_block;
3428         map.m_len = last_block - first_block + 1;
3429
3430         if (flags & IOMAP_REPORT) {
3431                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3432                 if (ret < 0)
3433                         return ret;
3434
3435                 if (ret == 0) {
3436                         ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3437                         struct extent_status es;
3438
3439                         ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es);
3440
3441                         if (!es.es_len || es.es_lblk > end) {
3442                                 /* entire range is a hole */
3443                         } else if (es.es_lblk > map.m_lblk) {
3444                                 /* range starts with a hole */
3445                                 map.m_len = es.es_lblk - map.m_lblk;
3446                         } else {
3447                                 ext4_lblk_t offs = 0;
3448
3449                                 if (es.es_lblk < map.m_lblk)
3450                                         offs = map.m_lblk - es.es_lblk;
3451                                 map.m_lblk = es.es_lblk + offs;
3452                                 map.m_len = es.es_len - offs;
3453                                 delalloc = true;
3454                         }
3455                 }
3456         } else if (flags & IOMAP_WRITE) {
3457                 int dio_credits;
3458                 handle_t *handle;
3459                 int retries = 0;
3460
3461                 /* Trim mapping request to maximum we can map at once for DIO */
3462                 if (map.m_len > DIO_MAX_BLOCKS)
3463                         map.m_len = DIO_MAX_BLOCKS;
3464                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3465 retry:
3466                 /*
3467                  * Either we allocate blocks and then we don't get unwritten
3468                  * extent so we have reserved enough credits, or the blocks
3469                  * are already allocated and unwritten and in that case
3470                  * extent conversion fits in the credits as well.
3471                  */
3472                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3473                                             dio_credits);
3474                 if (IS_ERR(handle))
3475                         return PTR_ERR(handle);
3476
3477                 ret = ext4_map_blocks(handle, inode, &map,
3478                                       EXT4_GET_BLOCKS_CREATE_ZERO);
3479                 if (ret < 0) {
3480                         ext4_journal_stop(handle);
3481                         if (ret == -ENOSPC &&
3482                             ext4_should_retry_alloc(inode->i_sb, &retries))
3483                                 goto retry;
3484                         return ret;
3485                 }
3486
3487                 /*
3488                  * If we added blocks beyond i_size, we need to make sure they
3489                  * will get truncated if we crash before updating i_size in
3490                  * ext4_iomap_end(). For faults we don't need to do that (and
3491                  * even cannot because for orphan list operations inode_lock is
3492                  * required) - if we happen to instantiate block beyond i_size,
3493                  * it is because we race with truncate which has already added
3494                  * the inode to the orphan list.
3495                  */
3496                 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3497                     (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3498                         int err;
3499
3500                         err = ext4_orphan_add(handle, inode);
3501                         if (err < 0) {
3502                                 ext4_journal_stop(handle);
3503                                 return err;
3504                         }
3505                 }
3506                 ext4_journal_stop(handle);
3507         } else {
3508                 ret = ext4_map_blocks(NULL, inode, &map, 0);
3509                 if (ret < 0)
3510                         return ret;
3511         }
3512
3513         iomap->flags = 0;
3514         if (ext4_inode_datasync_dirty(inode))
3515                 iomap->flags |= IOMAP_F_DIRTY;
3516         iomap->bdev = inode->i_sb->s_bdev;
3517         iomap->dax_dev = sbi->s_daxdev;
3518         iomap->offset = first_block << blkbits;
3519         iomap->length = (u64)map.m_len << blkbits;
3520
3521         if (ret == 0) {
3522                 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3523                 iomap->addr = IOMAP_NULL_ADDR;
3524         } else {
3525                 if (map.m_flags & EXT4_MAP_MAPPED) {
3526                         iomap->type = IOMAP_MAPPED;
3527                 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3528                         iomap->type = IOMAP_UNWRITTEN;
3529                 } else {
3530                         WARN_ON_ONCE(1);
3531                         return -EIO;
3532                 }
3533                 iomap->addr = (u64)map.m_pblk << blkbits;
3534         }
3535
3536         if (map.m_flags & EXT4_MAP_NEW)
3537                 iomap->flags |= IOMAP_F_NEW;
3538
3539         return 0;
3540 }
3541
3542 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3543                           ssize_t written, unsigned flags, struct iomap *iomap)
3544 {
3545         int ret = 0;
3546         handle_t *handle;
3547         int blkbits = inode->i_blkbits;
3548         bool truncate = false;
3549
3550         if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3551                 return 0;
3552
3553         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3554         if (IS_ERR(handle)) {
3555                 ret = PTR_ERR(handle);
3556                 goto orphan_del;
3557         }
3558         if (ext4_update_inode_size(inode, offset + written))
3559                 ext4_mark_inode_dirty(handle, inode);
3560         /*
3561          * We may need to truncate allocated but not written blocks beyond EOF.
3562          */
3563         if (iomap->offset + iomap->length > 
3564             ALIGN(inode->i_size, 1 << blkbits)) {
3565                 ext4_lblk_t written_blk, end_blk;
3566
3567                 written_blk = (offset + written) >> blkbits;
3568                 end_blk = (offset + length) >> blkbits;
3569                 if (written_blk < end_blk && ext4_can_truncate(inode))
3570                         truncate = true;
3571         }
3572         /*
3573          * Remove inode from orphan list if we were extending a inode and
3574          * everything went fine.
3575          */
3576         if (!truncate && inode->i_nlink &&
3577             !list_empty(&EXT4_I(inode)->i_orphan))
3578                 ext4_orphan_del(handle, inode);
3579         ext4_journal_stop(handle);
3580         if (truncate) {
3581                 ext4_truncate_failed_write(inode);
3582 orphan_del:
3583                 /*
3584                  * If truncate failed early the inode might still be on the
3585                  * orphan list; we need to make sure the inode is removed from
3586                  * the orphan list in that case.
3587                  */
3588                 if (inode->i_nlink)
3589                         ext4_orphan_del(NULL, inode);
3590         }
3591         return ret;
3592 }
3593
3594 const struct iomap_ops ext4_iomap_ops = {
3595         .iomap_begin            = ext4_iomap_begin,
3596         .iomap_end              = ext4_iomap_end,
3597 };
3598
3599 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3600                             ssize_t size, void *private)
3601 {
3602         ext4_io_end_t *io_end = private;
3603
3604         /* if not async direct IO just return */
3605         if (!io_end)
3606                 return 0;
3607
3608         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3609                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3610                   io_end, io_end->inode->i_ino, iocb, offset, size);
3611
3612         /*
3613          * Error during AIO DIO. We cannot convert unwritten extents as the
3614          * data was not written. Just clear the unwritten flag and drop io_end.
3615          */
3616         if (size <= 0) {
3617                 ext4_clear_io_unwritten_flag(io_end);
3618                 size = 0;
3619         }
3620         io_end->offset = offset;
3621         io_end->size = size;
3622         ext4_put_io_end(io_end);
3623
3624         return 0;
3625 }
3626
3627 /*
3628  * Handling of direct IO writes.
3629  *
3630  * For ext4 extent files, ext4 will do direct-io write even to holes,
3631  * preallocated extents, and those write extend the file, no need to
3632  * fall back to buffered IO.
3633  *
3634  * For holes, we fallocate those blocks, mark them as unwritten
3635  * If those blocks were preallocated, we mark sure they are split, but
3636  * still keep the range to write as unwritten.
3637  *
3638  * The unwritten extents will be converted to written when DIO is completed.
3639  * For async direct IO, since the IO may still pending when return, we
3640  * set up an end_io call back function, which will do the conversion
3641  * when async direct IO completed.
3642  *
3643  * If the O_DIRECT write will extend the file then add this inode to the
3644  * orphan list.  So recovery will truncate it back to the original size
3645  * if the machine crashes during the write.
3646  *
3647  */
3648 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3649 {
3650         struct file *file = iocb->ki_filp;
3651         struct inode *inode = file->f_mapping->host;
3652         struct ext4_inode_info *ei = EXT4_I(inode);
3653         ssize_t ret;
3654         loff_t offset = iocb->ki_pos;
3655         size_t count = iov_iter_count(iter);
3656         int overwrite = 0;
3657         get_block_t *get_block_func = NULL;
3658         int dio_flags = 0;
3659         loff_t final_size = offset + count;
3660         int orphan = 0;
3661         handle_t *handle;
3662
3663         if (final_size > inode->i_size) {
3664                 /* Credits for sb + inode write */
3665                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3666                 if (IS_ERR(handle)) {
3667                         ret = PTR_ERR(handle);
3668                         goto out;
3669                 }
3670                 ret = ext4_orphan_add(handle, inode);
3671                 if (ret) {
3672                         ext4_journal_stop(handle);
3673                         goto out;
3674                 }
3675                 orphan = 1;
3676                 ei->i_disksize = inode->i_size;
3677                 ext4_journal_stop(handle);
3678         }
3679
3680         BUG_ON(iocb->private == NULL);
3681
3682         /*
3683          * Make all waiters for direct IO properly wait also for extent
3684          * conversion. This also disallows race between truncate() and
3685          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3686          */
3687         inode_dio_begin(inode);
3688
3689         /* If we do a overwrite dio, i_mutex locking can be released */
3690         overwrite = *((int *)iocb->private);
3691
3692         if (overwrite)
3693                 inode_unlock(inode);
3694
3695         /*
3696          * For extent mapped files we could direct write to holes and fallocate.
3697          *
3698          * Allocated blocks to fill the hole are marked as unwritten to prevent
3699          * parallel buffered read to expose the stale data before DIO complete
3700          * the data IO.
3701          *
3702          * As to previously fallocated extents, ext4 get_block will just simply
3703          * mark the buffer mapped but still keep the extents unwritten.
3704          *
3705          * For non AIO case, we will convert those unwritten extents to written
3706          * after return back from blockdev_direct_IO. That way we save us from
3707          * allocating io_end structure and also the overhead of offloading
3708          * the extent convertion to a workqueue.
3709          *
3710          * For async DIO, the conversion needs to be deferred when the
3711          * IO is completed. The ext4 end_io callback function will be
3712          * called to take care of the conversion work.  Here for async
3713          * case, we allocate an io_end structure to hook to the iocb.
3714          */
3715         iocb->private = NULL;
3716         if (overwrite)
3717                 get_block_func = ext4_dio_get_block_overwrite;
3718         else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3719                    round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3720                 get_block_func = ext4_dio_get_block;
3721                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3722         } else if (is_sync_kiocb(iocb)) {
3723                 get_block_func = ext4_dio_get_block_unwritten_sync;
3724                 dio_flags = DIO_LOCKING;
3725         } else {
3726                 get_block_func = ext4_dio_get_block_unwritten_async;
3727                 dio_flags = DIO_LOCKING;
3728         }
3729         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3730                                    get_block_func, ext4_end_io_dio, NULL,
3731                                    dio_flags);
3732
3733         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3734                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3735                 int err;
3736                 /*
3737                  * for non AIO case, since the IO is already
3738                  * completed, we could do the conversion right here
3739                  */
3740                 err = ext4_convert_unwritten_extents(NULL, inode,
3741                                                      offset, ret);
3742                 if (err < 0)
3743                         ret = err;
3744                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3745         }
3746
3747         inode_dio_end(inode);
3748         /* take i_mutex locking again if we do a ovewrite dio */
3749         if (overwrite)
3750                 inode_lock(inode);
3751
3752         if (ret < 0 && final_size > inode->i_size)
3753                 ext4_truncate_failed_write(inode);
3754
3755         /* Handle extending of i_size after direct IO write */
3756         if (orphan) {
3757                 int err;
3758
3759                 /* Credits for sb + inode write */
3760                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3761                 if (IS_ERR(handle)) {
3762                         /* This is really bad luck. We've written the data
3763                          * but cannot extend i_size. Bail out and pretend
3764                          * the write failed... */
3765                         ret = PTR_ERR(handle);
3766                         if (inode->i_nlink)
3767                                 ext4_orphan_del(NULL, inode);
3768
3769                         goto out;
3770                 }
3771                 if (inode->i_nlink)
3772                         ext4_orphan_del(handle, inode);
3773                 if (ret > 0) {
3774                         loff_t end = offset + ret;
3775                         if (end > inode->i_size) {
3776                                 ei->i_disksize = end;
3777                                 i_size_write(inode, end);
3778                                 /*
3779                                  * We're going to return a positive `ret'
3780                                  * here due to non-zero-length I/O, so there's
3781                                  * no way of reporting error returns from
3782                                  * ext4_mark_inode_dirty() to userspace.  So
3783                                  * ignore it.
3784                                  */
3785                                 ext4_mark_inode_dirty(handle, inode);
3786                         }
3787                 }
3788                 err = ext4_journal_stop(handle);
3789                 if (ret == 0)
3790                         ret = err;
3791         }
3792 out:
3793         return ret;
3794 }
3795
3796 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3797 {
3798         struct address_space *mapping = iocb->ki_filp->f_mapping;
3799         struct inode *inode = mapping->host;
3800         size_t count = iov_iter_count(iter);
3801         ssize_t ret;
3802
3803         /*
3804          * Shared inode_lock is enough for us - it protects against concurrent
3805          * writes & truncates and since we take care of writing back page cache,
3806          * we are protected against page writeback as well.
3807          */
3808         inode_lock_shared(inode);
3809         ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3810                                            iocb->ki_pos + count - 1);
3811         if (ret)
3812                 goto out_unlock;
3813         ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3814                                    iter, ext4_dio_get_block, NULL, NULL, 0);
3815 out_unlock:
3816         inode_unlock_shared(inode);
3817         return ret;
3818 }
3819
3820 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3821 {
3822         struct file *file = iocb->ki_filp;
3823         struct inode *inode = file->f_mapping->host;
3824         size_t count = iov_iter_count(iter);
3825         loff_t offset = iocb->ki_pos;
3826         ssize_t ret;
3827
3828 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3829         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3830                 return 0;
3831 #endif
3832
3833         /*
3834          * If we are doing data journalling we don't support O_DIRECT
3835          */
3836         if (ext4_should_journal_data(inode))
3837                 return 0;
3838
3839         /* Let buffer I/O handle the inline data case. */
3840         if (ext4_has_inline_data(inode))
3841                 return 0;
3842
3843         /* DAX uses iomap path now */
3844         if (WARN_ON_ONCE(IS_DAX(inode)))
3845                 return 0;
3846
3847         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3848         if (iov_iter_rw(iter) == READ)
3849                 ret = ext4_direct_IO_read(iocb, iter);
3850         else
3851                 ret = ext4_direct_IO_write(iocb, iter);
3852         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3853         return ret;
3854 }
3855
3856 /*
3857  * Pages can be marked dirty completely asynchronously from ext4's journalling
3858  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3859  * much here because ->set_page_dirty is called under VFS locks.  The page is
3860  * not necessarily locked.
3861  *
3862  * We cannot just dirty the page and leave attached buffers clean, because the
3863  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3864  * or jbddirty because all the journalling code will explode.
3865  *
3866  * So what we do is to mark the page "pending dirty" and next time writepage
3867  * is called, propagate that into the buffers appropriately.
3868  */
3869 static int ext4_journalled_set_page_dirty(struct page *page)
3870 {
3871         SetPageChecked(page);
3872         return __set_page_dirty_nobuffers(page);
3873 }
3874
3875 static int ext4_set_page_dirty(struct page *page)
3876 {
3877         WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3878         WARN_ON_ONCE(!page_has_buffers(page));
3879         return __set_page_dirty_buffers(page);
3880 }
3881
3882 static const struct address_space_operations ext4_aops = {
3883         .readpage               = ext4_readpage,
3884         .readpages              = ext4_readpages,
3885         .writepage              = ext4_writepage,
3886         .writepages             = ext4_writepages,
3887         .write_begin            = ext4_write_begin,
3888         .write_end              = ext4_write_end,
3889         .set_page_dirty         = ext4_set_page_dirty,
3890         .bmap                   = ext4_bmap,
3891         .invalidatepage         = ext4_invalidatepage,
3892         .releasepage            = ext4_releasepage,
3893         .direct_IO              = ext4_direct_IO,
3894         .migratepage            = buffer_migrate_page,
3895         .is_partially_uptodate  = block_is_partially_uptodate,
3896         .error_remove_page      = generic_error_remove_page,
3897 };
3898
3899 static const struct address_space_operations ext4_journalled_aops = {
3900         .readpage               = ext4_readpage,
3901         .readpages              = ext4_readpages,
3902         .writepage              = ext4_writepage,
3903         .writepages             = ext4_writepages,
3904         .write_begin            = ext4_write_begin,
3905         .write_end              = ext4_journalled_write_end,
3906         .set_page_dirty         = ext4_journalled_set_page_dirty,
3907         .bmap                   = ext4_bmap,
3908         .invalidatepage         = ext4_journalled_invalidatepage,
3909         .releasepage            = ext4_releasepage,
3910         .direct_IO              = ext4_direct_IO,
3911         .is_partially_uptodate  = block_is_partially_uptodate,
3912         .error_remove_page      = generic_error_remove_page,
3913 };
3914
3915 static const struct address_space_operations ext4_da_aops = {
3916         .readpage               = ext4_readpage,
3917         .readpages              = ext4_readpages,
3918         .writepage              = ext4_writepage,
3919         .writepages             = ext4_writepages,
3920         .write_begin            = ext4_da_write_begin,
3921         .write_end              = ext4_da_write_end,
3922         .set_page_dirty         = ext4_set_page_dirty,
3923         .bmap                   = ext4_bmap,
3924         .invalidatepage         = ext4_da_invalidatepage,
3925         .releasepage            = ext4_releasepage,
3926         .direct_IO              = ext4_direct_IO,
3927         .migratepage            = buffer_migrate_page,
3928         .is_partially_uptodate  = block_is_partially_uptodate,
3929         .error_remove_page      = generic_error_remove_page,
3930 };
3931
3932 void ext4_set_aops(struct inode *inode)
3933 {
3934         switch (ext4_inode_journal_mode(inode)) {
3935         case EXT4_INODE_ORDERED_DATA_MODE:
3936         case EXT4_INODE_WRITEBACK_DATA_MODE:
3937                 break;
3938         case EXT4_INODE_JOURNAL_DATA_MODE:
3939                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3940                 return;
3941         default:
3942                 BUG();
3943         }
3944         if (test_opt(inode->i_sb, DELALLOC))
3945                 inode->i_mapping->a_ops = &ext4_da_aops;
3946         else
3947                 inode->i_mapping->a_ops = &ext4_aops;
3948 }
3949
3950 static int __ext4_block_zero_page_range(handle_t *handle,
3951                 struct address_space *mapping, loff_t from, loff_t length)
3952 {
3953         ext4_fsblk_t index = from >> PAGE_SHIFT;
3954         unsigned offset = from & (PAGE_SIZE-1);
3955         unsigned blocksize, pos;
3956         ext4_lblk_t iblock;
3957         struct inode *inode = mapping->host;
3958         struct buffer_head *bh;
3959         struct page *page;
3960         int err = 0;
3961
3962         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3963                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3964         if (!page)
3965                 return -ENOMEM;
3966
3967         blocksize = inode->i_sb->s_blocksize;
3968
3969         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3970
3971         if (!page_has_buffers(page))
3972                 create_empty_buffers(page, blocksize, 0);
3973
3974         /* Find the buffer that contains "offset" */
3975         bh = page_buffers(page);
3976         pos = blocksize;
3977         while (offset >= pos) {
3978                 bh = bh->b_this_page;
3979                 iblock++;
3980                 pos += blocksize;
3981         }
3982         if (buffer_freed(bh)) {
3983                 BUFFER_TRACE(bh, "freed: skip");
3984                 goto unlock;
3985         }
3986         if (!buffer_mapped(bh)) {
3987                 BUFFER_TRACE(bh, "unmapped");
3988                 ext4_get_block(inode, iblock, bh, 0);
3989                 /* unmapped? It's a hole - nothing to do */
3990                 if (!buffer_mapped(bh)) {
3991                         BUFFER_TRACE(bh, "still unmapped");
3992                         goto unlock;
3993                 }
3994         }
3995
3996         /* Ok, it's mapped. Make sure it's up-to-date */
3997         if (PageUptodate(page))
3998                 set_buffer_uptodate(bh);
3999
4000         if (!buffer_uptodate(bh)) {
4001                 err = -EIO;
4002                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4003                 wait_on_buffer(bh);
4004                 /* Uhhuh. Read error. Complain and punt. */
4005                 if (!buffer_uptodate(bh))
4006                         goto unlock;
4007                 if (S_ISREG(inode->i_mode) &&
4008                     ext4_encrypted_inode(inode)) {
4009                         /* We expect the key to be set. */
4010                         BUG_ON(!fscrypt_has_encryption_key(inode));
4011                         BUG_ON(blocksize != PAGE_SIZE);
4012                         WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4013                                                 page, PAGE_SIZE, 0, page->index));
4014                 }
4015         }
4016         if (ext4_should_journal_data(inode)) {
4017                 BUFFER_TRACE(bh, "get write access");
4018                 err = ext4_journal_get_write_access(handle, bh);
4019                 if (err)
4020                         goto unlock;
4021         }
4022         zero_user(page, offset, length);
4023         BUFFER_TRACE(bh, "zeroed end of block");
4024
4025         if (ext4_should_journal_data(inode)) {
4026                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4027         } else {
4028                 err = 0;
4029                 mark_buffer_dirty(bh);
4030                 if (ext4_should_order_data(inode))
4031                         err = ext4_jbd2_inode_add_write(handle, inode);
4032         }
4033
4034 unlock:
4035         unlock_page(page);
4036         put_page(page);
4037         return err;
4038 }
4039
4040 /*
4041  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4042  * starting from file offset 'from'.  The range to be zero'd must
4043  * be contained with in one block.  If the specified range exceeds
4044  * the end of the block it will be shortened to end of the block
4045  * that cooresponds to 'from'
4046  */
4047 static int ext4_block_zero_page_range(handle_t *handle,
4048                 struct address_space *mapping, loff_t from, loff_t length)
4049 {
4050         struct inode *inode = mapping->host;
4051         unsigned offset = from & (PAGE_SIZE-1);
4052         unsigned blocksize = inode->i_sb->s_blocksize;
4053         unsigned max = blocksize - (offset & (blocksize - 1));
4054
4055         /*
4056          * correct length if it does not fall between
4057          * 'from' and the end of the block
4058          */
4059         if (length > max || length < 0)
4060                 length = max;
4061
4062         if (IS_DAX(inode)) {
4063                 return iomap_zero_range(inode, from, length, NULL,
4064                                         &ext4_iomap_ops);
4065         }
4066         return __ext4_block_zero_page_range(handle, mapping, from, length);
4067 }
4068
4069 /*
4070  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4071  * up to the end of the block which corresponds to `from'.
4072  * This required during truncate. We need to physically zero the tail end
4073  * of that block so it doesn't yield old data if the file is later grown.
4074  */
4075 static int ext4_block_truncate_page(handle_t *handle,
4076                 struct address_space *mapping, loff_t from)
4077 {
4078         unsigned offset = from & (PAGE_SIZE-1);
4079         unsigned length;
4080         unsigned blocksize;
4081         struct inode *inode = mapping->host;
4082
4083         /* If we are processing an encrypted inode during orphan list handling */
4084         if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4085                 return 0;
4086
4087         blocksize = inode->i_sb->s_blocksize;
4088         length = blocksize - (offset & (blocksize - 1));
4089
4090         return ext4_block_zero_page_range(handle, mapping, from, length);
4091 }
4092
4093 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4094                              loff_t lstart, loff_t length)
4095 {
4096         struct super_block *sb = inode->i_sb;
4097         struct address_space *mapping = inode->i_mapping;
4098         unsigned partial_start, partial_end;
4099         ext4_fsblk_t start, end;
4100         loff_t byte_end = (lstart + length - 1);
4101         int err = 0;
4102
4103         partial_start = lstart & (sb->s_blocksize - 1);
4104         partial_end = byte_end & (sb->s_blocksize - 1);
4105
4106         start = lstart >> sb->s_blocksize_bits;
4107         end = byte_end >> sb->s_blocksize_bits;
4108
4109         /* Handle partial zero within the single block */
4110         if (start == end &&
4111             (partial_start || (partial_end != sb->s_blocksize - 1))) {
4112                 err = ext4_block_zero_page_range(handle, mapping,
4113                                                  lstart, length);
4114                 return err;
4115         }
4116         /* Handle partial zero out on the start of the range */
4117         if (partial_start) {
4118                 err = ext4_block_zero_page_range(handle, mapping,
4119                                                  lstart, sb->s_blocksize);
4120                 if (err)
4121                         return err;
4122         }
4123         /* Handle partial zero out on the end of the range */
4124         if (partial_end != sb->s_blocksize - 1)
4125                 err = ext4_block_zero_page_range(handle, mapping,
4126                                                  byte_end - partial_end,
4127                                                  partial_end + 1);
4128         return err;
4129 }
4130
4131 int ext4_can_truncate(struct inode *inode)
4132 {
4133         if (S_ISREG(inode->i_mode))
4134                 return 1;
4135         if (S_ISDIR(inode->i_mode))
4136                 return 1;
4137         if (S_ISLNK(inode->i_mode))
4138                 return !ext4_inode_is_fast_symlink(inode);
4139         return 0;
4140 }
4141
4142 /*
4143  * We have to make sure i_disksize gets properly updated before we truncate
4144  * page cache due to hole punching or zero range. Otherwise i_disksize update
4145  * can get lost as it may have been postponed to submission of writeback but
4146  * that will never happen after we truncate page cache.
4147  */
4148 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4149                                       loff_t len)
4150 {
4151         handle_t *handle;
4152         loff_t size = i_size_read(inode);
4153
4154         WARN_ON(!inode_is_locked(inode));
4155         if (offset > size || offset + len < size)
4156                 return 0;
4157
4158         if (EXT4_I(inode)->i_disksize >= size)
4159                 return 0;
4160
4161         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4162         if (IS_ERR(handle))
4163                 return PTR_ERR(handle);
4164         ext4_update_i_disksize(inode, size);
4165         ext4_mark_inode_dirty(handle, inode);
4166         ext4_journal_stop(handle);
4167
4168         return 0;
4169 }
4170
4171 /*
4172  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4173  * associated with the given offset and length
4174  *
4175  * @inode:  File inode
4176  * @offset: The offset where the hole will begin
4177  * @len:    The length of the hole
4178  *
4179  * Returns: 0 on success or negative on failure
4180  */
4181
4182 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4183 {
4184         struct super_block *sb = inode->i_sb;
4185         ext4_lblk_t first_block, stop_block;
4186         struct address_space *mapping = inode->i_mapping;
4187         loff_t first_block_offset, last_block_offset;
4188         handle_t *handle;
4189         unsigned int credits;
4190         int ret = 0;
4191
4192         if (!S_ISREG(inode->i_mode))
4193                 return -EOPNOTSUPP;
4194
4195         trace_ext4_punch_hole(inode, offset, length, 0);
4196
4197         /*
4198          * Write out all dirty pages to avoid race conditions
4199          * Then release them.
4200          */
4201         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4202                 ret = filemap_write_and_wait_range(mapping, offset,
4203                                                    offset + length - 1);
4204                 if (ret)
4205                         return ret;
4206         }
4207
4208         inode_lock(inode);
4209
4210         /* No need to punch hole beyond i_size */
4211         if (offset >= inode->i_size)
4212                 goto out_mutex;
4213
4214         /*
4215          * If the hole extends beyond i_size, set the hole
4216          * to end after the page that contains i_size
4217          */
4218         if (offset + length > inode->i_size) {
4219                 length = inode->i_size +
4220                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4221                    offset;
4222         }
4223
4224         if (offset & (sb->s_blocksize - 1) ||
4225             (offset + length) & (sb->s_blocksize - 1)) {
4226                 /*
4227                  * Attach jinode to inode for jbd2 if we do any zeroing of
4228                  * partial block
4229                  */
4230                 ret = ext4_inode_attach_jinode(inode);
4231                 if (ret < 0)
4232                         goto out_mutex;
4233
4234         }
4235
4236         /* Wait all existing dio workers, newcomers will block on i_mutex */
4237         ext4_inode_block_unlocked_dio(inode);
4238         inode_dio_wait(inode);
4239
4240         /*
4241          * Prevent page faults from reinstantiating pages we have released from
4242          * page cache.
4243          */
4244         down_write(&EXT4_I(inode)->i_mmap_sem);
4245         first_block_offset = round_up(offset, sb->s_blocksize);
4246         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4247
4248         /* Now release the pages and zero block aligned part of pages*/
4249         if (last_block_offset > first_block_offset) {
4250                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4251                 if (ret)
4252                         goto out_dio;
4253                 truncate_pagecache_range(inode, first_block_offset,
4254                                          last_block_offset);
4255         }
4256
4257         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4258                 credits = ext4_writepage_trans_blocks(inode);
4259         else
4260                 credits = ext4_blocks_for_truncate(inode);
4261         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4262         if (IS_ERR(handle)) {
4263                 ret = PTR_ERR(handle);
4264                 ext4_std_error(sb, ret);
4265                 goto out_dio;
4266         }
4267
4268         ret = ext4_zero_partial_blocks(handle, inode, offset,
4269                                        length);
4270         if (ret)
4271                 goto out_stop;
4272
4273         first_block = (offset + sb->s_blocksize - 1) >>
4274                 EXT4_BLOCK_SIZE_BITS(sb);
4275         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4276
4277         /* If there are no blocks to remove, return now */
4278         if (first_block >= stop_block)
4279                 goto out_stop;
4280
4281         down_write(&EXT4_I(inode)->i_data_sem);
4282         ext4_discard_preallocations(inode);
4283
4284         ret = ext4_es_remove_extent(inode, first_block,
4285                                     stop_block - first_block);
4286         if (ret) {
4287                 up_write(&EXT4_I(inode)->i_data_sem);
4288                 goto out_stop;
4289         }
4290
4291         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4292                 ret = ext4_ext_remove_space(inode, first_block,
4293                                             stop_block - 1);
4294         else
4295                 ret = ext4_ind_remove_space(handle, inode, first_block,
4296                                             stop_block);
4297
4298         up_write(&EXT4_I(inode)->i_data_sem);
4299         if (IS_SYNC(inode))
4300                 ext4_handle_sync(handle);
4301
4302         inode->i_mtime = inode->i_ctime = current_time(inode);
4303         ext4_mark_inode_dirty(handle, inode);
4304         if (ret >= 0)
4305                 ext4_update_inode_fsync_trans(handle, inode, 1);
4306 out_stop:
4307         ext4_journal_stop(handle);
4308 out_dio:
4309         up_write(&EXT4_I(inode)->i_mmap_sem);
4310         ext4_inode_resume_unlocked_dio(inode);
4311 out_mutex:
4312         inode_unlock(inode);
4313         return ret;
4314 }
4315
4316 int ext4_inode_attach_jinode(struct inode *inode)
4317 {
4318         struct ext4_inode_info *ei = EXT4_I(inode);
4319         struct jbd2_inode *jinode;
4320
4321         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4322                 return 0;
4323
4324         jinode = jbd2_alloc_inode(GFP_KERNEL);
4325         spin_lock(&inode->i_lock);
4326         if (!ei->jinode) {
4327                 if (!jinode) {
4328                         spin_unlock(&inode->i_lock);
4329                         return -ENOMEM;
4330                 }
4331                 ei->jinode = jinode;
4332                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4333                 jinode = NULL;
4334         }
4335         spin_unlock(&inode->i_lock);
4336         if (unlikely(jinode != NULL))
4337                 jbd2_free_inode(jinode);
4338         return 0;
4339 }
4340
4341 /*
4342  * ext4_truncate()
4343  *
4344  * We block out ext4_get_block() block instantiations across the entire
4345  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4346  * simultaneously on behalf of the same inode.
4347  *
4348  * As we work through the truncate and commit bits of it to the journal there
4349  * is one core, guiding principle: the file's tree must always be consistent on
4350  * disk.  We must be able to restart the truncate after a crash.
4351  *
4352  * The file's tree may be transiently inconsistent in memory (although it
4353  * probably isn't), but whenever we close off and commit a journal transaction,
4354  * the contents of (the filesystem + the journal) must be consistent and
4355  * restartable.  It's pretty simple, really: bottom up, right to left (although
4356  * left-to-right works OK too).
4357  *
4358  * Note that at recovery time, journal replay occurs *before* the restart of
4359  * truncate against the orphan inode list.
4360  *
4361  * The committed inode has the new, desired i_size (which is the same as
4362  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4363  * that this inode's truncate did not complete and it will again call
4364  * ext4_truncate() to have another go.  So there will be instantiated blocks
4365  * to the right of the truncation point in a crashed ext4 filesystem.  But
4366  * that's fine - as long as they are linked from the inode, the post-crash
4367  * ext4_truncate() run will find them and release them.
4368  */
4369 int ext4_truncate(struct inode *inode)
4370 {
4371         struct ext4_inode_info *ei = EXT4_I(inode);
4372         unsigned int credits;
4373         int err = 0;
4374         handle_t *handle;
4375         struct address_space *mapping = inode->i_mapping;
4376
4377         /*
4378          * There is a possibility that we're either freeing the inode
4379          * or it's a completely new inode. In those cases we might not
4380          * have i_mutex locked because it's not necessary.
4381          */
4382         if (!(inode->i_state & (I_NEW|I_FREEING)))
4383                 WARN_ON(!inode_is_locked(inode));
4384         trace_ext4_truncate_enter(inode);
4385
4386         if (!ext4_can_truncate(inode))
4387                 return 0;
4388
4389         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4390
4391         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4392                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4393
4394         if (ext4_has_inline_data(inode)) {
4395                 int has_inline = 1;
4396
4397                 err = ext4_inline_data_truncate(inode, &has_inline);
4398                 if (err)
4399                         return err;
4400                 if (has_inline)
4401                         return 0;
4402         }
4403
4404         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4405         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4406                 if (ext4_inode_attach_jinode(inode) < 0)
4407                         return 0;
4408         }
4409
4410         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4411                 credits = ext4_writepage_trans_blocks(inode);
4412         else
4413                 credits = ext4_blocks_for_truncate(inode);
4414
4415         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4416         if (IS_ERR(handle))
4417                 return PTR_ERR(handle);
4418
4419         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4420                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4421
4422         /*
4423          * We add the inode to the orphan list, so that if this
4424          * truncate spans multiple transactions, and we crash, we will
4425          * resume the truncate when the filesystem recovers.  It also
4426          * marks the inode dirty, to catch the new size.
4427          *
4428          * Implication: the file must always be in a sane, consistent
4429          * truncatable state while each transaction commits.
4430          */
4431         err = ext4_orphan_add(handle, inode);
4432         if (err)
4433                 goto out_stop;
4434
4435         down_write(&EXT4_I(inode)->i_data_sem);
4436
4437         ext4_discard_preallocations(inode);
4438
4439         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4440                 err = ext4_ext_truncate(handle, inode);
4441         else
4442                 ext4_ind_truncate(handle, inode);
4443
4444         up_write(&ei->i_data_sem);
4445         if (err)
4446                 goto out_stop;
4447
4448         if (IS_SYNC(inode))
4449                 ext4_handle_sync(handle);
4450
4451 out_stop:
4452         /*
4453          * If this was a simple ftruncate() and the file will remain alive,
4454          * then we need to clear up the orphan record which we created above.
4455          * However, if this was a real unlink then we were called by
4456          * ext4_evict_inode(), and we allow that function to clean up the
4457          * orphan info for us.
4458          */
4459         if (inode->i_nlink)
4460                 ext4_orphan_del(handle, inode);
4461
4462         inode->i_mtime = inode->i_ctime = current_time(inode);
4463         ext4_mark_inode_dirty(handle, inode);
4464         ext4_journal_stop(handle);
4465
4466         trace_ext4_truncate_exit(inode);
4467         return err;
4468 }
4469
4470 /*
4471  * ext4_get_inode_loc returns with an extra refcount against the inode's
4472  * underlying buffer_head on success. If 'in_mem' is true, we have all
4473  * data in memory that is needed to recreate the on-disk version of this
4474  * inode.
4475  */
4476 static int __ext4_get_inode_loc(struct inode *inode,
4477                                 struct ext4_iloc *iloc, int in_mem)
4478 {
4479         struct ext4_group_desc  *gdp;
4480         struct buffer_head      *bh;
4481         struct super_block      *sb = inode->i_sb;
4482         ext4_fsblk_t            block;
4483         int                     inodes_per_block, inode_offset;
4484
4485         iloc->bh = NULL;
4486         if (!ext4_valid_inum(sb, inode->i_ino))
4487                 return -EFSCORRUPTED;
4488
4489         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4490         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4491         if (!gdp)
4492                 return -EIO;
4493
4494         /*
4495          * Figure out the offset within the block group inode table
4496          */
4497         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4498         inode_offset = ((inode->i_ino - 1) %
4499                         EXT4_INODES_PER_GROUP(sb));
4500         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4501         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4502
4503         bh = sb_getblk(sb, block);
4504         if (unlikely(!bh))
4505                 return -ENOMEM;
4506         if (!buffer_uptodate(bh)) {
4507                 lock_buffer(bh);
4508
4509                 /*
4510                  * If the buffer has the write error flag, we have failed
4511                  * to write out another inode in the same block.  In this
4512                  * case, we don't have to read the block because we may
4513                  * read the old inode data successfully.
4514                  */
4515                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4516                         set_buffer_uptodate(bh);
4517
4518                 if (buffer_uptodate(bh)) {
4519                         /* someone brought it uptodate while we waited */
4520                         unlock_buffer(bh);
4521                         goto has_buffer;
4522                 }
4523
4524                 /*
4525                  * If we have all information of the inode in memory and this
4526                  * is the only valid inode in the block, we need not read the
4527                  * block.
4528                  */
4529                 if (in_mem) {
4530                         struct buffer_head *bitmap_bh;
4531                         int i, start;
4532
4533                         start = inode_offset & ~(inodes_per_block - 1);
4534
4535                         /* Is the inode bitmap in cache? */
4536                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4537                         if (unlikely(!bitmap_bh))
4538                                 goto make_io;
4539
4540                         /*
4541                          * If the inode bitmap isn't in cache then the
4542                          * optimisation may end up performing two reads instead
4543                          * of one, so skip it.
4544                          */
4545                         if (!buffer_uptodate(bitmap_bh)) {
4546                                 brelse(bitmap_bh);
4547                                 goto make_io;
4548                         }
4549                         for (i = start; i < start + inodes_per_block; i++) {
4550                                 if (i == inode_offset)
4551                                         continue;
4552                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4553                                         break;
4554                         }
4555                         brelse(bitmap_bh);
4556                         if (i == start + inodes_per_block) {
4557                                 /* all other inodes are free, so skip I/O */
4558                                 memset(bh->b_data, 0, bh->b_size);
4559                                 set_buffer_uptodate(bh);
4560                                 unlock_buffer(bh);
4561                                 goto has_buffer;
4562                         }
4563                 }
4564
4565 make_io:
4566                 /*
4567                  * If we need to do any I/O, try to pre-readahead extra
4568                  * blocks from the inode table.
4569                  */
4570                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4571                         ext4_fsblk_t b, end, table;
4572                         unsigned num;
4573                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4574
4575                         table = ext4_inode_table(sb, gdp);
4576                         /* s_inode_readahead_blks is always a power of 2 */
4577                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4578                         if (table > b)
4579                                 b = table;
4580                         end = b + ra_blks;
4581                         num = EXT4_INODES_PER_GROUP(sb);
4582                         if (ext4_has_group_desc_csum(sb))
4583                                 num -= ext4_itable_unused_count(sb, gdp);
4584                         table += num / inodes_per_block;
4585                         if (end > table)
4586                                 end = table;
4587                         while (b <= end)
4588                                 sb_breadahead(sb, b++);
4589                 }
4590
4591                 /*
4592                  * There are other valid inodes in the buffer, this inode
4593                  * has in-inode xattrs, or we don't have this inode in memory.
4594                  * Read the block from disk.
4595                  */
4596                 trace_ext4_load_inode(inode);
4597                 get_bh(bh);
4598                 bh->b_end_io = end_buffer_read_sync;
4599                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4600                 wait_on_buffer(bh);
4601                 if (!buffer_uptodate(bh)) {
4602                         EXT4_ERROR_INODE_BLOCK(inode, block,
4603                                                "unable to read itable block");
4604                         brelse(bh);
4605                         return -EIO;
4606                 }
4607         }
4608 has_buffer:
4609         iloc->bh = bh;
4610         return 0;
4611 }
4612
4613 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4614 {
4615         /* We have all inode data except xattrs in memory here. */
4616         return __ext4_get_inode_loc(inode, iloc,
4617                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4618 }
4619
4620 static bool ext4_should_use_dax(struct inode *inode)
4621 {
4622         if (!test_opt(inode->i_sb, DAX))
4623                 return false;
4624         if (!S_ISREG(inode->i_mode))
4625                 return false;
4626         if (ext4_should_journal_data(inode))
4627                 return false;
4628         if (ext4_has_inline_data(inode))
4629                 return false;
4630         if (ext4_encrypted_inode(inode))
4631                 return false;
4632         return true;
4633 }
4634
4635 void ext4_set_inode_flags(struct inode *inode)
4636 {
4637         unsigned int flags = EXT4_I(inode)->i_flags;
4638         unsigned int new_fl = 0;
4639
4640         if (flags & EXT4_SYNC_FL)
4641                 new_fl |= S_SYNC;
4642         if (flags & EXT4_APPEND_FL)
4643                 new_fl |= S_APPEND;
4644         if (flags & EXT4_IMMUTABLE_FL)
4645                 new_fl |= S_IMMUTABLE;
4646         if (flags & EXT4_NOATIME_FL)
4647                 new_fl |= S_NOATIME;
4648         if (flags & EXT4_DIRSYNC_FL)
4649                 new_fl |= S_DIRSYNC;
4650         if (ext4_should_use_dax(inode))
4651                 new_fl |= S_DAX;
4652         if (flags & EXT4_ENCRYPT_FL)
4653                 new_fl |= S_ENCRYPTED;
4654         inode_set_flags(inode, new_fl,
4655                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4656                         S_ENCRYPTED);
4657 }
4658
4659 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4660                                   struct ext4_inode_info *ei)
4661 {
4662         blkcnt_t i_blocks ;
4663         struct inode *inode = &(ei->vfs_inode);
4664         struct super_block *sb = inode->i_sb;
4665
4666         if (ext4_has_feature_huge_file(sb)) {
4667                 /* we are using combined 48 bit field */
4668                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4669                                         le32_to_cpu(raw_inode->i_blocks_lo);
4670                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4671                         /* i_blocks represent file system block size */
4672                         return i_blocks  << (inode->i_blkbits - 9);
4673                 } else {
4674                         return i_blocks;
4675                 }
4676         } else {
4677                 return le32_to_cpu(raw_inode->i_blocks_lo);
4678         }
4679 }
4680
4681 static inline void ext4_iget_extra_inode(struct inode *inode,
4682                                          struct ext4_inode *raw_inode,
4683                                          struct ext4_inode_info *ei)
4684 {
4685         __le32 *magic = (void *)raw_inode +
4686                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4687         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4688             EXT4_INODE_SIZE(inode->i_sb) &&
4689             *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4690                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4691                 ext4_find_inline_data_nolock(inode);
4692         } else
4693                 EXT4_I(inode)->i_inline_off = 0;
4694 }
4695
4696 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4697 {
4698         if (!ext4_has_feature_project(inode->i_sb))
4699                 return -EOPNOTSUPP;
4700         *projid = EXT4_I(inode)->i_projid;
4701         return 0;
4702 }
4703
4704 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4705 {
4706         struct ext4_iloc iloc;
4707         struct ext4_inode *raw_inode;
4708         struct ext4_inode_info *ei;
4709         struct inode *inode;
4710         journal_t *journal = EXT4_SB(sb)->s_journal;
4711         long ret;
4712         loff_t size;
4713         int block;
4714         uid_t i_uid;
4715         gid_t i_gid;
4716         projid_t i_projid;
4717
4718         inode = iget_locked(sb, ino);
4719         if (!inode)
4720                 return ERR_PTR(-ENOMEM);
4721         if (!(inode->i_state & I_NEW))
4722                 return inode;
4723
4724         ei = EXT4_I(inode);
4725         iloc.bh = NULL;
4726
4727         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4728         if (ret < 0)
4729                 goto bad_inode;
4730         raw_inode = ext4_raw_inode(&iloc);
4731
4732         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4733                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4734                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4735                         EXT4_INODE_SIZE(inode->i_sb) ||
4736                     (ei->i_extra_isize & 3)) {
4737                         EXT4_ERROR_INODE(inode,
4738                                          "bad extra_isize %u (inode size %u)",
4739                                          ei->i_extra_isize,
4740                                          EXT4_INODE_SIZE(inode->i_sb));
4741                         ret = -EFSCORRUPTED;
4742                         goto bad_inode;
4743                 }
4744         } else
4745                 ei->i_extra_isize = 0;
4746
4747         /* Precompute checksum seed for inode metadata */
4748         if (ext4_has_metadata_csum(sb)) {
4749                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4750                 __u32 csum;
4751                 __le32 inum = cpu_to_le32(inode->i_ino);
4752                 __le32 gen = raw_inode->i_generation;
4753                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4754                                    sizeof(inum));
4755                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4756                                               sizeof(gen));
4757         }
4758
4759         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4760                 EXT4_ERROR_INODE(inode, "checksum invalid");
4761                 ret = -EFSBADCRC;
4762                 goto bad_inode;
4763         }
4764
4765         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4766         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4767         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4768         if (ext4_has_feature_project(sb) &&
4769             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4770             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4771                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4772         else
4773                 i_projid = EXT4_DEF_PROJID;
4774
4775         if (!(test_opt(inode->i_sb, NO_UID32))) {
4776                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4777                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4778         }
4779         i_uid_write(inode, i_uid);
4780         i_gid_write(inode, i_gid);
4781         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4782         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4783
4784         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4785         ei->i_inline_off = 0;
4786         ei->i_dir_start_lookup = 0;
4787         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4788         /* We now have enough fields to check if the inode was active or not.
4789          * This is needed because nfsd might try to access dead inodes
4790          * the test is that same one that e2fsck uses
4791          * NeilBrown 1999oct15
4792          */
4793         if (inode->i_nlink == 0) {
4794                 if ((inode->i_mode == 0 ||
4795                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4796                     ino != EXT4_BOOT_LOADER_INO) {
4797                         /* this inode is deleted */
4798                         ret = -ESTALE;
4799                         goto bad_inode;
4800                 }
4801                 /* The only unlinked inodes we let through here have
4802                  * valid i_mode and are being read by the orphan
4803                  * recovery code: that's fine, we're about to complete
4804                  * the process of deleting those.
4805                  * OR it is the EXT4_BOOT_LOADER_INO which is
4806                  * not initialized on a new filesystem. */
4807         }
4808         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4809         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4810         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4811         if (ext4_has_feature_64bit(sb))
4812                 ei->i_file_acl |=
4813                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4814         inode->i_size = ext4_isize(sb, raw_inode);
4815         if ((size = i_size_read(inode)) < 0) {
4816                 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4817                 ret = -EFSCORRUPTED;
4818                 goto bad_inode;
4819         }
4820         ei->i_disksize = inode->i_size;
4821 #ifdef CONFIG_QUOTA
4822         ei->i_reserved_quota = 0;
4823 #endif
4824         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4825         ei->i_block_group = iloc.block_group;
4826         ei->i_last_alloc_group = ~0;
4827         /*
4828          * NOTE! The in-memory inode i_data array is in little-endian order
4829          * even on big-endian machines: we do NOT byteswap the block numbers!
4830          */
4831         for (block = 0; block < EXT4_N_BLOCKS; block++)
4832                 ei->i_data[block] = raw_inode->i_block[block];
4833         INIT_LIST_HEAD(&ei->i_orphan);
4834
4835         /*
4836          * Set transaction id's of transactions that have to be committed
4837          * to finish f[data]sync. We set them to currently running transaction
4838          * as we cannot be sure that the inode or some of its metadata isn't
4839          * part of the transaction - the inode could have been reclaimed and
4840          * now it is reread from disk.
4841          */
4842         if (journal) {
4843                 transaction_t *transaction;
4844                 tid_t tid;
4845
4846                 read_lock(&journal->j_state_lock);
4847                 if (journal->j_running_transaction)
4848                         transaction = journal->j_running_transaction;
4849                 else
4850                         transaction = journal->j_committing_transaction;
4851                 if (transaction)
4852                         tid = transaction->t_tid;
4853                 else
4854                         tid = journal->j_commit_sequence;
4855                 read_unlock(&journal->j_state_lock);
4856                 ei->i_sync_tid = tid;
4857                 ei->i_datasync_tid = tid;
4858         }
4859
4860         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4861                 if (ei->i_extra_isize == 0) {
4862                         /* The extra space is currently unused. Use it. */
4863                         BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4864                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4865                                             EXT4_GOOD_OLD_INODE_SIZE;
4866                 } else {
4867                         ext4_iget_extra_inode(inode, raw_inode, ei);
4868                 }
4869         }
4870
4871         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4872         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4873         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4874         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4875
4876         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4877                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4878                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4879                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4880                                 inode->i_version |=
4881                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4882                 }
4883         }
4884
4885         ret = 0;
4886         if (ei->i_file_acl &&
4887             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4888                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4889                                  ei->i_file_acl);
4890                 ret = -EFSCORRUPTED;
4891                 goto bad_inode;
4892         } else if (!ext4_has_inline_data(inode)) {
4893                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4894                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4895                             (S_ISLNK(inode->i_mode) &&
4896                              !ext4_inode_is_fast_symlink(inode))))
4897                                 /* Validate extent which is part of inode */
4898                                 ret = ext4_ext_check_inode(inode);
4899                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4900                            (S_ISLNK(inode->i_mode) &&
4901                             !ext4_inode_is_fast_symlink(inode))) {
4902                         /* Validate block references which are part of inode */
4903                         ret = ext4_ind_check_inode(inode);
4904                 }
4905         }
4906         if (ret)
4907                 goto bad_inode;
4908
4909         if (S_ISREG(inode->i_mode)) {
4910                 inode->i_op = &ext4_file_inode_operations;
4911                 inode->i_fop = &ext4_file_operations;
4912                 ext4_set_aops(inode);
4913         } else if (S_ISDIR(inode->i_mode)) {
4914                 inode->i_op = &ext4_dir_inode_operations;
4915                 inode->i_fop = &ext4_dir_operations;
4916         } else if (S_ISLNK(inode->i_mode)) {
4917                 if (ext4_encrypted_inode(inode)) {
4918                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4919                         ext4_set_aops(inode);
4920                 } else if (ext4_inode_is_fast_symlink(inode)) {
4921                         inode->i_link = (char *)ei->i_data;
4922                         inode->i_op = &ext4_fast_symlink_inode_operations;
4923                         nd_terminate_link(ei->i_data, inode->i_size,
4924                                 sizeof(ei->i_data) - 1);
4925                 } else {
4926                         inode->i_op = &ext4_symlink_inode_operations;
4927                         ext4_set_aops(inode);
4928                 }
4929                 inode_nohighmem(inode);
4930         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4931               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4932                 inode->i_op = &ext4_special_inode_operations;
4933                 if (raw_inode->i_block[0])
4934                         init_special_inode(inode, inode->i_mode,
4935                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4936                 else
4937                         init_special_inode(inode, inode->i_mode,
4938                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4939         } else if (ino == EXT4_BOOT_LOADER_INO) {
4940                 make_bad_inode(inode);
4941         } else {
4942                 ret = -EFSCORRUPTED;
4943                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4944                 goto bad_inode;
4945         }
4946         brelse(iloc.bh);
4947         ext4_set_inode_flags(inode);
4948
4949         unlock_new_inode(inode);
4950         return inode;
4951
4952 bad_inode:
4953         brelse(iloc.bh);
4954         iget_failed(inode);
4955         return ERR_PTR(ret);
4956 }
4957
4958 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4959 {
4960         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4961                 return ERR_PTR(-EFSCORRUPTED);
4962         return ext4_iget(sb, ino);
4963 }
4964
4965 static int ext4_inode_blocks_set(handle_t *handle,
4966                                 struct ext4_inode *raw_inode,
4967                                 struct ext4_inode_info *ei)
4968 {
4969         struct inode *inode = &(ei->vfs_inode);
4970         u64 i_blocks = inode->i_blocks;
4971         struct super_block *sb = inode->i_sb;
4972
4973         if (i_blocks <= ~0U) {
4974                 /*
4975                  * i_blocks can be represented in a 32 bit variable
4976                  * as multiple of 512 bytes
4977                  */
4978                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4979                 raw_inode->i_blocks_high = 0;
4980                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4981                 return 0;
4982         }
4983         if (!ext4_has_feature_huge_file(sb))
4984                 return -EFBIG;
4985
4986         if (i_blocks <= 0xffffffffffffULL) {
4987                 /*
4988                  * i_blocks can be represented in a 48 bit variable
4989                  * as multiple of 512 bytes
4990                  */
4991                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4992                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4993                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4994         } else {
4995                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4996                 /* i_block is stored in file system block size */
4997                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4998                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4999                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5000         }
5001         return 0;
5002 }
5003
5004 struct other_inode {
5005         unsigned long           orig_ino;
5006         struct ext4_inode       *raw_inode;
5007 };
5008
5009 static int other_inode_match(struct inode * inode, unsigned long ino,
5010                              void *data)
5011 {
5012         struct other_inode *oi = (struct other_inode *) data;
5013
5014         if ((inode->i_ino != ino) ||
5015             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5016                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
5017             ((inode->i_state & I_DIRTY_TIME) == 0))
5018                 return 0;
5019         spin_lock(&inode->i_lock);
5020         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5021                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
5022             (inode->i_state & I_DIRTY_TIME)) {
5023                 struct ext4_inode_info  *ei = EXT4_I(inode);
5024
5025                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5026                 spin_unlock(&inode->i_lock);
5027
5028                 spin_lock(&ei->i_raw_lock);
5029                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5030                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5031                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5032                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5033                 spin_unlock(&ei->i_raw_lock);
5034                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5035                 return -1;
5036         }
5037         spin_unlock(&inode->i_lock);
5038         return -1;
5039 }
5040
5041 /*
5042  * Opportunistically update the other time fields for other inodes in
5043  * the same inode table block.
5044  */
5045 static void ext4_update_other_inodes_time(struct super_block *sb,
5046                                           unsigned long orig_ino, char *buf)
5047 {
5048         struct other_inode oi;
5049         unsigned long ino;
5050         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5051         int inode_size = EXT4_INODE_SIZE(sb);
5052
5053         oi.orig_ino = orig_ino;
5054         /*
5055          * Calculate the first inode in the inode table block.  Inode
5056          * numbers are one-based.  That is, the first inode in a block
5057          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5058          */
5059         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5060         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5061                 if (ino == orig_ino)
5062                         continue;
5063                 oi.raw_inode = (struct ext4_inode *) buf;
5064                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5065         }
5066 }
5067
5068 /*
5069  * Post the struct inode info into an on-disk inode location in the
5070  * buffer-cache.  This gobbles the caller's reference to the
5071  * buffer_head in the inode location struct.
5072  *
5073  * The caller must have write access to iloc->bh.
5074  */
5075 static int ext4_do_update_inode(handle_t *handle,
5076                                 struct inode *inode,
5077                                 struct ext4_iloc *iloc)
5078 {
5079         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5080         struct ext4_inode_info *ei = EXT4_I(inode);
5081         struct buffer_head *bh = iloc->bh;
5082         struct super_block *sb = inode->i_sb;
5083         int err = 0, rc, block;
5084         int need_datasync = 0, set_large_file = 0;
5085         uid_t i_uid;
5086         gid_t i_gid;
5087         projid_t i_projid;
5088
5089         spin_lock(&ei->i_raw_lock);
5090
5091         /* For fields not tracked in the in-memory inode,
5092          * initialise them to zero for new inodes. */
5093         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5094                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5095
5096         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5097         i_uid = i_uid_read(inode);
5098         i_gid = i_gid_read(inode);
5099         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5100         if (!(test_opt(inode->i_sb, NO_UID32))) {
5101                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5102                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5103 /*
5104  * Fix up interoperability with old kernels. Otherwise, old inodes get
5105  * re-used with the upper 16 bits of the uid/gid intact
5106  */
5107                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5108                         raw_inode->i_uid_high = 0;
5109                         raw_inode->i_gid_high = 0;
5110                 } else {
5111                         raw_inode->i_uid_high =
5112                                 cpu_to_le16(high_16_bits(i_uid));
5113                         raw_inode->i_gid_high =
5114                                 cpu_to_le16(high_16_bits(i_gid));
5115                 }
5116         } else {
5117                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5118                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5119                 raw_inode->i_uid_high = 0;
5120                 raw_inode->i_gid_high = 0;
5121         }
5122         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5123
5124         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5125         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5126         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5127         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5128
5129         err = ext4_inode_blocks_set(handle, raw_inode, ei);
5130         if (err) {
5131                 spin_unlock(&ei->i_raw_lock);
5132                 goto out_brelse;
5133         }
5134         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5135         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5136         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5137                 raw_inode->i_file_acl_high =
5138                         cpu_to_le16(ei->i_file_acl >> 32);
5139         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5140         if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5141                 ext4_isize_set(raw_inode, ei->i_disksize);
5142                 need_datasync = 1;
5143         }
5144         if (ei->i_disksize > 0x7fffffffULL) {
5145                 if (!ext4_has_feature_large_file(sb) ||
5146                                 EXT4_SB(sb)->s_es->s_rev_level ==
5147                     cpu_to_le32(EXT4_GOOD_OLD_REV))
5148                         set_large_file = 1;
5149         }
5150         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5151         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5152                 if (old_valid_dev(inode->i_rdev)) {
5153                         raw_inode->i_block[0] =
5154                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5155                         raw_inode->i_block[1] = 0;
5156                 } else {
5157                         raw_inode->i_block[0] = 0;
5158                         raw_inode->i_block[1] =
5159                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5160                         raw_inode->i_block[2] = 0;
5161                 }
5162         } else if (!ext4_has_inline_data(inode)) {
5163                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5164                         raw_inode->i_block[block] = ei->i_data[block];
5165         }
5166
5167         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5168                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5169                 if (ei->i_extra_isize) {
5170                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5171                                 raw_inode->i_version_hi =
5172                                         cpu_to_le32(inode->i_version >> 32);
5173                         raw_inode->i_extra_isize =
5174                                 cpu_to_le16(ei->i_extra_isize);
5175                 }
5176         }
5177
5178         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5179                i_projid != EXT4_DEF_PROJID);
5180
5181         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5182             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5183                 raw_inode->i_projid = cpu_to_le32(i_projid);
5184
5185         ext4_inode_csum_set(inode, raw_inode, ei);
5186         spin_unlock(&ei->i_raw_lock);
5187         if (inode->i_sb->s_flags & SB_LAZYTIME)
5188                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5189                                               bh->b_data);
5190
5191         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5192         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5193         if (!err)
5194                 err = rc;
5195         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5196         if (set_large_file) {
5197                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5198                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5199                 if (err)
5200                         goto out_brelse;
5201                 ext4_update_dynamic_rev(sb);
5202                 ext4_set_feature_large_file(sb);
5203                 ext4_handle_sync(handle);
5204                 err = ext4_handle_dirty_super(handle, sb);
5205         }
5206         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5207 out_brelse:
5208         brelse(bh);
5209         ext4_std_error(inode->i_sb, err);
5210         return err;
5211 }
5212
5213 /*
5214  * ext4_write_inode()
5215  *
5216  * We are called from a few places:
5217  *
5218  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5219  *   Here, there will be no transaction running. We wait for any running
5220  *   transaction to commit.
5221  *
5222  * - Within flush work (sys_sync(), kupdate and such).
5223  *   We wait on commit, if told to.
5224  *
5225  * - Within iput_final() -> write_inode_now()
5226  *   We wait on commit, if told to.
5227  *
5228  * In all cases it is actually safe for us to return without doing anything,
5229  * because the inode has been copied into a raw inode buffer in
5230  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5231  * writeback.
5232  *
5233  * Note that we are absolutely dependent upon all inode dirtiers doing the
5234  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5235  * which we are interested.
5236  *
5237  * It would be a bug for them to not do this.  The code:
5238  *
5239  *      mark_inode_dirty(inode)
5240  *      stuff();
5241  *      inode->i_size = expr;
5242  *
5243  * is in error because write_inode() could occur while `stuff()' is running,
5244  * and the new i_size will be lost.  Plus the inode will no longer be on the
5245  * superblock's dirty inode list.
5246  */
5247 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5248 {
5249         int err;
5250
5251         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5252                 return 0;
5253
5254         if (EXT4_SB(inode->i_sb)->s_journal) {
5255                 if (ext4_journal_current_handle()) {
5256                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5257                         dump_stack();
5258                         return -EIO;
5259                 }
5260
5261                 /*
5262                  * No need to force transaction in WB_SYNC_NONE mode. Also
5263                  * ext4_sync_fs() will force the commit after everything is
5264                  * written.
5265                  */
5266                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5267                         return 0;
5268
5269                 err = ext4_force_commit(inode->i_sb);
5270         } else {
5271                 struct ext4_iloc iloc;
5272
5273                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5274                 if (err)
5275                         return err;
5276                 /*
5277                  * sync(2) will flush the whole buffer cache. No need to do
5278                  * it here separately for each inode.
5279                  */
5280                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5281                         sync_dirty_buffer(iloc.bh);
5282                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5283                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5284                                          "IO error syncing inode");
5285                         err = -EIO;
5286                 }
5287                 brelse(iloc.bh);
5288         }
5289         return err;
5290 }
5291
5292 /*
5293  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5294  * buffers that are attached to a page stradding i_size and are undergoing
5295  * commit. In that case we have to wait for commit to finish and try again.
5296  */
5297 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5298 {
5299         struct page *page;
5300         unsigned offset;
5301         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5302         tid_t commit_tid = 0;
5303         int ret;
5304
5305         offset = inode->i_size & (PAGE_SIZE - 1);
5306         /*
5307          * All buffers in the last page remain valid? Then there's nothing to
5308          * do. We do the check mainly to optimize the common PAGE_SIZE ==
5309          * blocksize case
5310          */
5311         if (offset > PAGE_SIZE - i_blocksize(inode))
5312                 return;
5313         while (1) {
5314                 page = find_lock_page(inode->i_mapping,
5315                                       inode->i_size >> PAGE_SHIFT);
5316                 if (!page)
5317                         return;
5318                 ret = __ext4_journalled_invalidatepage(page, offset,
5319                                                 PAGE_SIZE - offset);
5320                 unlock_page(page);
5321                 put_page(page);
5322                 if (ret != -EBUSY)
5323                         return;
5324                 commit_tid = 0;
5325                 read_lock(&journal->j_state_lock);
5326                 if (journal->j_committing_transaction)
5327                         commit_tid = journal->j_committing_transaction->t_tid;
5328                 read_unlock(&journal->j_state_lock);
5329                 if (commit_tid)
5330                         jbd2_log_wait_commit(journal, commit_tid);
5331         }
5332 }
5333
5334 /*
5335  * ext4_setattr()
5336  *
5337  * Called from notify_change.
5338  *
5339  * We want to trap VFS attempts to truncate the file as soon as
5340  * possible.  In particular, we want to make sure that when the VFS
5341  * shrinks i_size, we put the inode on the orphan list and modify
5342  * i_disksize immediately, so that during the subsequent flushing of
5343  * dirty pages and freeing of disk blocks, we can guarantee that any
5344  * commit will leave the blocks being flushed in an unused state on
5345  * disk.  (On recovery, the inode will get truncated and the blocks will
5346  * be freed, so we have a strong guarantee that no future commit will
5347  * leave these blocks visible to the user.)
5348  *
5349  * Another thing we have to assure is that if we are in ordered mode
5350  * and inode is still attached to the committing transaction, we must
5351  * we start writeout of all the dirty pages which are being truncated.
5352  * This way we are sure that all the data written in the previous
5353  * transaction are already on disk (truncate waits for pages under
5354  * writeback).
5355  *
5356  * Called with inode->i_mutex down.
5357  */
5358 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5359 {
5360         struct inode *inode = d_inode(dentry);
5361         int error, rc = 0;
5362         int orphan = 0;
5363         const unsigned int ia_valid = attr->ia_valid;
5364
5365         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5366                 return -EIO;
5367
5368         error = setattr_prepare(dentry, attr);
5369         if (error)
5370                 return error;
5371
5372         error = fscrypt_prepare_setattr(dentry, attr);
5373         if (error)
5374                 return error;
5375
5376         if (is_quota_modification(inode, attr)) {
5377                 error = dquot_initialize(inode);
5378                 if (error)
5379                         return error;
5380         }
5381         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5382             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5383                 handle_t *handle;
5384
5385                 /* (user+group)*(old+new) structure, inode write (sb,
5386                  * inode block, ? - but truncate inode update has it) */
5387                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5388                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5389                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5390                 if (IS_ERR(handle)) {
5391                         error = PTR_ERR(handle);
5392                         goto err_out;
5393                 }
5394
5395                 /* dquot_transfer() calls back ext4_get_inode_usage() which
5396                  * counts xattr inode references.
5397                  */
5398                 down_read(&EXT4_I(inode)->xattr_sem);
5399                 error = dquot_transfer(inode, attr);
5400                 up_read(&EXT4_I(inode)->xattr_sem);
5401
5402                 if (error) {
5403                         ext4_journal_stop(handle);
5404                         return error;
5405                 }
5406                 /* Update corresponding info in inode so that everything is in
5407                  * one transaction */
5408                 if (attr->ia_valid & ATTR_UID)
5409                         inode->i_uid = attr->ia_uid;
5410                 if (attr->ia_valid & ATTR_GID)
5411                         inode->i_gid = attr->ia_gid;
5412                 error = ext4_mark_inode_dirty(handle, inode);
5413                 ext4_journal_stop(handle);
5414         }
5415
5416         if (attr->ia_valid & ATTR_SIZE) {
5417                 handle_t *handle;
5418                 loff_t oldsize = inode->i_size;
5419                 int shrink = (attr->ia_size <= inode->i_size);
5420
5421                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5422                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5423
5424                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5425                                 return -EFBIG;
5426                 }
5427                 if (!S_ISREG(inode->i_mode))
5428                         return -EINVAL;
5429
5430                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5431                         inode_inc_iversion(inode);
5432
5433                 if (ext4_should_order_data(inode) &&
5434                     (attr->ia_size < inode->i_size)) {
5435                         error = ext4_begin_ordered_truncate(inode,
5436                                                             attr->ia_size);
5437                         if (error)
5438                                 goto err_out;
5439                 }
5440                 if (attr->ia_size != inode->i_size) {
5441                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5442                         if (IS_ERR(handle)) {
5443                                 error = PTR_ERR(handle);
5444                                 goto err_out;
5445                         }
5446                         if (ext4_handle_valid(handle) && shrink) {
5447                                 error = ext4_orphan_add(handle, inode);
5448                                 orphan = 1;
5449                         }
5450                         /*
5451                          * Update c/mtime on truncate up, ext4_truncate() will
5452                          * update c/mtime in shrink case below
5453                          */
5454                         if (!shrink) {
5455                                 inode->i_mtime = current_time(inode);
5456                                 inode->i_ctime = inode->i_mtime;
5457                         }
5458                         down_write(&EXT4_I(inode)->i_data_sem);
5459                         EXT4_I(inode)->i_disksize = attr->ia_size;
5460                         rc = ext4_mark_inode_dirty(handle, inode);
5461                         if (!error)
5462                                 error = rc;
5463                         /*
5464                          * We have to update i_size under i_data_sem together
5465                          * with i_disksize to avoid races with writeback code
5466                          * running ext4_wb_update_i_disksize().
5467                          */
5468                         if (!error)
5469                                 i_size_write(inode, attr->ia_size);
5470                         up_write(&EXT4_I(inode)->i_data_sem);
5471                         ext4_journal_stop(handle);
5472                         if (error) {
5473                                 if (orphan)
5474                                         ext4_orphan_del(NULL, inode);
5475                                 goto err_out;
5476                         }
5477                 }
5478                 if (!shrink)
5479                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5480
5481                 /*
5482                  * Blocks are going to be removed from the inode. Wait
5483                  * for dio in flight.  Temporarily disable
5484                  * dioread_nolock to prevent livelock.
5485                  */
5486                 if (orphan) {
5487                         if (!ext4_should_journal_data(inode)) {
5488                                 ext4_inode_block_unlocked_dio(inode);
5489                                 inode_dio_wait(inode);
5490                                 ext4_inode_resume_unlocked_dio(inode);
5491                         } else
5492                                 ext4_wait_for_tail_page_commit(inode);
5493                 }
5494                 down_write(&EXT4_I(inode)->i_mmap_sem);
5495                 /*
5496                  * Truncate pagecache after we've waited for commit
5497                  * in data=journal mode to make pages freeable.
5498                  */
5499                 truncate_pagecache(inode, inode->i_size);
5500                 if (shrink) {
5501                         rc = ext4_truncate(inode);
5502                         if (rc)
5503                                 error = rc;
5504                 }
5505                 up_write(&EXT4_I(inode)->i_mmap_sem);
5506         }
5507
5508         if (!error) {
5509                 setattr_copy(inode, attr);
5510                 mark_inode_dirty(inode);
5511         }
5512
5513         /*
5514          * If the call to ext4_truncate failed to get a transaction handle at
5515          * all, we need to clean up the in-core orphan list manually.
5516          */
5517         if (orphan && inode->i_nlink)
5518                 ext4_orphan_del(NULL, inode);
5519
5520         if (!error && (ia_valid & ATTR_MODE))
5521                 rc = posix_acl_chmod(inode, inode->i_mode);
5522
5523 err_out:
5524         ext4_std_error(inode->i_sb, error);
5525         if (!error)
5526                 error = rc;
5527         return error;
5528 }
5529
5530 int ext4_getattr(const struct path *path, struct kstat *stat,
5531                  u32 request_mask, unsigned int query_flags)
5532 {
5533         struct inode *inode = d_inode(path->dentry);
5534         struct ext4_inode *raw_inode;
5535         struct ext4_inode_info *ei = EXT4_I(inode);
5536         unsigned int flags;
5537
5538         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5539                 stat->result_mask |= STATX_BTIME;
5540                 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5541                 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5542         }
5543
5544         flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5545         if (flags & EXT4_APPEND_FL)
5546                 stat->attributes |= STATX_ATTR_APPEND;
5547         if (flags & EXT4_COMPR_FL)
5548                 stat->attributes |= STATX_ATTR_COMPRESSED;
5549         if (flags & EXT4_ENCRYPT_FL)
5550                 stat->attributes |= STATX_ATTR_ENCRYPTED;
5551         if (flags & EXT4_IMMUTABLE_FL)
5552                 stat->attributes |= STATX_ATTR_IMMUTABLE;
5553         if (flags & EXT4_NODUMP_FL)
5554                 stat->attributes |= STATX_ATTR_NODUMP;
5555
5556         stat->attributes_mask |= (STATX_ATTR_APPEND |
5557                                   STATX_ATTR_COMPRESSED |
5558                                   STATX_ATTR_ENCRYPTED |
5559                                   STATX_ATTR_IMMUTABLE |
5560                                   STATX_ATTR_NODUMP);
5561
5562         generic_fillattr(inode, stat);
5563         return 0;
5564 }
5565
5566 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5567                       u32 request_mask, unsigned int query_flags)
5568 {
5569         struct inode *inode = d_inode(path->dentry);
5570         u64 delalloc_blocks;
5571
5572         ext4_getattr(path, stat, request_mask, query_flags);
5573
5574         /*
5575          * If there is inline data in the inode, the inode will normally not
5576          * have data blocks allocated (it may have an external xattr block).
5577          * Report at least one sector for such files, so tools like tar, rsync,
5578          * others don't incorrectly think the file is completely sparse.
5579          */
5580         if (unlikely(ext4_has_inline_data(inode)))
5581                 stat->blocks += (stat->size + 511) >> 9;
5582
5583         /*
5584          * We can't update i_blocks if the block allocation is delayed
5585          * otherwise in the case of system crash before the real block
5586          * allocation is done, we will have i_blocks inconsistent with
5587          * on-disk file blocks.
5588          * We always keep i_blocks updated together with real
5589          * allocation. But to not confuse with user, stat
5590          * will return the blocks that include the delayed allocation
5591          * blocks for this file.
5592          */
5593         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5594                                    EXT4_I(inode)->i_reserved_data_blocks);
5595         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5596         return 0;
5597 }
5598
5599 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5600                                    int pextents)
5601 {
5602         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5603                 return ext4_ind_trans_blocks(inode, lblocks);
5604         return ext4_ext_index_trans_blocks(inode, pextents);
5605 }
5606
5607 /*
5608  * Account for index blocks, block groups bitmaps and block group
5609  * descriptor blocks if modify datablocks and index blocks
5610  * worse case, the indexs blocks spread over different block groups
5611  *
5612  * If datablocks are discontiguous, they are possible to spread over
5613  * different block groups too. If they are contiguous, with flexbg,
5614  * they could still across block group boundary.
5615  *
5616  * Also account for superblock, inode, quota and xattr blocks
5617  */
5618 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5619                                   int pextents)
5620 {
5621         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5622         int gdpblocks;
5623         int idxblocks;
5624         int ret = 0;
5625
5626         /*
5627          * How many index blocks need to touch to map @lblocks logical blocks
5628          * to @pextents physical extents?
5629          */
5630         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5631
5632         ret = idxblocks;
5633
5634         /*
5635          * Now let's see how many group bitmaps and group descriptors need
5636          * to account
5637          */
5638         groups = idxblocks + pextents;
5639         gdpblocks = groups;
5640         if (groups > ngroups)
5641                 groups = ngroups;
5642         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5643                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5644
5645         /* bitmaps and block group descriptor blocks */
5646         ret += groups + gdpblocks;
5647
5648         /* Blocks for super block, inode, quota and xattr blocks */
5649         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5650
5651         return ret;
5652 }
5653
5654 /*
5655  * Calculate the total number of credits to reserve to fit
5656  * the modification of a single pages into a single transaction,
5657  * which may include multiple chunks of block allocations.
5658  *
5659  * This could be called via ext4_write_begin()
5660  *
5661  * We need to consider the worse case, when
5662  * one new block per extent.
5663  */
5664 int ext4_writepage_trans_blocks(struct inode *inode)
5665 {
5666         int bpp = ext4_journal_blocks_per_page(inode);
5667         int ret;
5668
5669         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5670
5671         /* Account for data blocks for journalled mode */
5672         if (ext4_should_journal_data(inode))
5673                 ret += bpp;
5674         return ret;
5675 }
5676
5677 /*
5678  * Calculate the journal credits for a chunk of data modification.
5679  *
5680  * This is called from DIO, fallocate or whoever calling
5681  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5682  *
5683  * journal buffers for data blocks are not included here, as DIO
5684  * and fallocate do no need to journal data buffers.
5685  */
5686 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5687 {
5688         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5689 }
5690
5691 /*
5692  * The caller must have previously called ext4_reserve_inode_write().
5693  * Give this, we know that the caller already has write access to iloc->bh.
5694  */
5695 int ext4_mark_iloc_dirty(handle_t *handle,
5696                          struct inode *inode, struct ext4_iloc *iloc)
5697 {
5698         int err = 0;
5699
5700         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5701                 return -EIO;
5702
5703         if (IS_I_VERSION(inode))
5704                 inode_inc_iversion(inode);
5705
5706         /* the do_update_inode consumes one bh->b_count */
5707         get_bh(iloc->bh);
5708
5709         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5710         err = ext4_do_update_inode(handle, inode, iloc);
5711         put_bh(iloc->bh);
5712         return err;
5713 }
5714
5715 /*
5716  * On success, We end up with an outstanding reference count against
5717  * iloc->bh.  This _must_ be cleaned up later.
5718  */
5719
5720 int
5721 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5722                          struct ext4_iloc *iloc)
5723 {
5724         int err;
5725
5726         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5727                 return -EIO;
5728
5729         err = ext4_get_inode_loc(inode, iloc);
5730         if (!err) {
5731                 BUFFER_TRACE(iloc->bh, "get_write_access");
5732                 err = ext4_journal_get_write_access(handle, iloc->bh);
5733                 if (err) {
5734                         brelse(iloc->bh);
5735                         iloc->bh = NULL;
5736                 }
5737         }
5738         ext4_std_error(inode->i_sb, err);
5739         return err;
5740 }
5741
5742 static int __ext4_expand_extra_isize(struct inode *inode,
5743                                      unsigned int new_extra_isize,
5744                                      struct ext4_iloc *iloc,
5745                                      handle_t *handle, int *no_expand)
5746 {
5747         struct ext4_inode *raw_inode;
5748         struct ext4_xattr_ibody_header *header;
5749         int error;
5750
5751         raw_inode = ext4_raw_inode(iloc);
5752
5753         header = IHDR(inode, raw_inode);
5754
5755         /* No extended attributes present */
5756         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5757             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5758                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5759                        EXT4_I(inode)->i_extra_isize, 0,
5760                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5761                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5762                 return 0;
5763         }
5764
5765         /* try to expand with EAs present */
5766         error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5767                                            raw_inode, handle);
5768         if (error) {
5769                 /*
5770                  * Inode size expansion failed; don't try again
5771                  */
5772                 *no_expand = 1;
5773         }
5774
5775         return error;
5776 }
5777
5778 /*
5779  * Expand an inode by new_extra_isize bytes.
5780  * Returns 0 on success or negative error number on failure.
5781  */
5782 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5783                                           unsigned int new_extra_isize,
5784                                           struct ext4_iloc iloc,
5785                                           handle_t *handle)
5786 {
5787         int no_expand;
5788         int error;
5789
5790         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5791                 return -EOVERFLOW;
5792
5793         /*
5794          * In nojournal mode, we can immediately attempt to expand
5795          * the inode.  When journaled, we first need to obtain extra
5796          * buffer credits since we may write into the EA block
5797          * with this same handle. If journal_extend fails, then it will
5798          * only result in a minor loss of functionality for that inode.
5799          * If this is felt to be critical, then e2fsck should be run to
5800          * force a large enough s_min_extra_isize.
5801          */
5802         if (ext4_handle_valid(handle) &&
5803             jbd2_journal_extend(handle,
5804                                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5805                 return -ENOSPC;
5806
5807         if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5808                 return -EBUSY;
5809
5810         error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5811                                           handle, &no_expand);
5812         ext4_write_unlock_xattr(inode, &no_expand);
5813
5814         return error;
5815 }
5816
5817 int ext4_expand_extra_isize(struct inode *inode,
5818                             unsigned int new_extra_isize,
5819                             struct ext4_iloc *iloc)
5820 {
5821         handle_t *handle;
5822         int no_expand;
5823         int error, rc;
5824
5825         if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5826                 brelse(iloc->bh);
5827                 return -EOVERFLOW;
5828         }
5829
5830         handle = ext4_journal_start(inode, EXT4_HT_INODE,
5831                                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5832         if (IS_ERR(handle)) {
5833                 error = PTR_ERR(handle);
5834                 brelse(iloc->bh);
5835                 return error;
5836         }
5837
5838         ext4_write_lock_xattr(inode, &no_expand);
5839
5840         BUFFER_TRACE(iloc.bh, "get_write_access");
5841         error = ext4_journal_get_write_access(handle, iloc->bh);
5842         if (error) {
5843                 brelse(iloc->bh);
5844                 goto out_stop;
5845         }
5846
5847         error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5848                                           handle, &no_expand);
5849
5850         rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5851         if (!error)
5852                 error = rc;
5853
5854         ext4_write_unlock_xattr(inode, &no_expand);
5855 out_stop:
5856         ext4_journal_stop(handle);
5857         return error;
5858 }
5859
5860 /*
5861  * What we do here is to mark the in-core inode as clean with respect to inode
5862  * dirtiness (it may still be data-dirty).
5863  * This means that the in-core inode may be reaped by prune_icache
5864  * without having to perform any I/O.  This is a very good thing,
5865  * because *any* task may call prune_icache - even ones which
5866  * have a transaction open against a different journal.
5867  *
5868  * Is this cheating?  Not really.  Sure, we haven't written the
5869  * inode out, but prune_icache isn't a user-visible syncing function.
5870  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5871  * we start and wait on commits.
5872  */
5873 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5874 {
5875         struct ext4_iloc iloc;
5876         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5877         int err;
5878
5879         might_sleep();
5880         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5881         err = ext4_reserve_inode_write(handle, inode, &iloc);
5882         if (err)
5883                 return err;
5884
5885         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5886                 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5887                                                iloc, handle);
5888
5889         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5890 }
5891
5892 /*
5893  * ext4_dirty_inode() is called from __mark_inode_dirty()
5894  *
5895  * We're really interested in the case where a file is being extended.
5896  * i_size has been changed by generic_commit_write() and we thus need
5897  * to include the updated inode in the current transaction.
5898  *
5899  * Also, dquot_alloc_block() will always dirty the inode when blocks
5900  * are allocated to the file.
5901  *
5902  * If the inode is marked synchronous, we don't honour that here - doing
5903  * so would cause a commit on atime updates, which we don't bother doing.
5904  * We handle synchronous inodes at the highest possible level.
5905  *
5906  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5907  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5908  * to copy into the on-disk inode structure are the timestamp files.
5909  */
5910 void ext4_dirty_inode(struct inode *inode, int flags)
5911 {
5912         handle_t *handle;
5913
5914         if (flags == I_DIRTY_TIME)
5915                 return;
5916         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5917         if (IS_ERR(handle))
5918                 goto out;
5919
5920         ext4_mark_inode_dirty(handle, inode);
5921
5922         ext4_journal_stop(handle);
5923 out:
5924         return;
5925 }
5926
5927 #if 0
5928 /*
5929  * Bind an inode's backing buffer_head into this transaction, to prevent
5930  * it from being flushed to disk early.  Unlike
5931  * ext4_reserve_inode_write, this leaves behind no bh reference and
5932  * returns no iloc structure, so the caller needs to repeat the iloc
5933  * lookup to mark the inode dirty later.
5934  */
5935 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5936 {
5937         struct ext4_iloc iloc;
5938
5939         int err = 0;
5940         if (handle) {
5941                 err = ext4_get_inode_loc(inode, &iloc);
5942                 if (!err) {
5943                         BUFFER_TRACE(iloc.bh, "get_write_access");
5944                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5945                         if (!err)
5946                                 err = ext4_handle_dirty_metadata(handle,
5947                                                                  NULL,
5948                                                                  iloc.bh);
5949                         brelse(iloc.bh);
5950                 }
5951         }
5952         ext4_std_error(inode->i_sb, err);
5953         return err;
5954 }
5955 #endif
5956
5957 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5958 {
5959         journal_t *journal;
5960         handle_t *handle;
5961         int err;
5962         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5963
5964         /*
5965          * We have to be very careful here: changing a data block's
5966          * journaling status dynamically is dangerous.  If we write a
5967          * data block to the journal, change the status and then delete
5968          * that block, we risk forgetting to revoke the old log record
5969          * from the journal and so a subsequent replay can corrupt data.
5970          * So, first we make sure that the journal is empty and that
5971          * nobody is changing anything.
5972          */
5973
5974         journal = EXT4_JOURNAL(inode);
5975         if (!journal)
5976                 return 0;
5977         if (is_journal_aborted(journal))
5978                 return -EROFS;
5979
5980         /* Wait for all existing dio workers */
5981         ext4_inode_block_unlocked_dio(inode);
5982         inode_dio_wait(inode);
5983
5984         /*
5985          * Before flushing the journal and switching inode's aops, we have
5986          * to flush all dirty data the inode has. There can be outstanding
5987          * delayed allocations, there can be unwritten extents created by
5988          * fallocate or buffered writes in dioread_nolock mode covered by
5989          * dirty data which can be converted only after flushing the dirty
5990          * data (and journalled aops don't know how to handle these cases).
5991          */
5992         if (val) {
5993                 down_write(&EXT4_I(inode)->i_mmap_sem);
5994                 err = filemap_write_and_wait(inode->i_mapping);
5995                 if (err < 0) {
5996                         up_write(&EXT4_I(inode)->i_mmap_sem);
5997                         ext4_inode_resume_unlocked_dio(inode);
5998                         return err;
5999                 }
6000         }
6001
6002         percpu_down_write(&sbi->s_journal_flag_rwsem);
6003         jbd2_journal_lock_updates(journal);
6004
6005         /*
6006          * OK, there are no updates running now, and all cached data is
6007          * synced to disk.  We are now in a completely consistent state
6008          * which doesn't have anything in the journal, and we know that
6009          * no filesystem updates are running, so it is safe to modify
6010          * the inode's in-core data-journaling state flag now.
6011          */
6012
6013         if (val)
6014                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6015         else {
6016                 err = jbd2_journal_flush(journal);
6017                 if (err < 0) {
6018                         jbd2_journal_unlock_updates(journal);
6019                         percpu_up_write(&sbi->s_journal_flag_rwsem);
6020                         ext4_inode_resume_unlocked_dio(inode);
6021                         return err;
6022                 }
6023                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6024         }
6025         ext4_set_aops(inode);
6026
6027         jbd2_journal_unlock_updates(journal);
6028         percpu_up_write(&sbi->s_journal_flag_rwsem);
6029
6030         if (val)
6031                 up_write(&EXT4_I(inode)->i_mmap_sem);
6032         ext4_inode_resume_unlocked_dio(inode);
6033
6034         /* Finally we can mark the inode as dirty. */
6035
6036         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6037         if (IS_ERR(handle))
6038                 return PTR_ERR(handle);
6039
6040         err = ext4_mark_inode_dirty(handle, inode);
6041         ext4_handle_sync(handle);
6042         ext4_journal_stop(handle);
6043         ext4_std_error(inode->i_sb, err);
6044
6045         return err;
6046 }
6047
6048 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6049 {
6050         return !buffer_mapped(bh);
6051 }
6052
6053 int ext4_page_mkwrite(struct vm_fault *vmf)
6054 {
6055         struct vm_area_struct *vma = vmf->vma;
6056         struct page *page = vmf->page;
6057         loff_t size;
6058         unsigned long len;
6059         int ret;
6060         struct file *file = vma->vm_file;
6061         struct inode *inode = file_inode(file);
6062         struct address_space *mapping = inode->i_mapping;
6063         handle_t *handle;
6064         get_block_t *get_block;
6065         int retries = 0;
6066
6067         sb_start_pagefault(inode->i_sb);
6068         file_update_time(vma->vm_file);
6069
6070         down_read(&EXT4_I(inode)->i_mmap_sem);
6071
6072         ret = ext4_convert_inline_data(inode);
6073         if (ret)
6074                 goto out_ret;
6075
6076         /* Delalloc case is easy... */
6077         if (test_opt(inode->i_sb, DELALLOC) &&
6078             !ext4_should_journal_data(inode) &&
6079             !ext4_nonda_switch(inode->i_sb)) {
6080                 do {
6081                         ret = block_page_mkwrite(vma, vmf,
6082                                                    ext4_da_get_block_prep);
6083                 } while (ret == -ENOSPC &&
6084                        ext4_should_retry_alloc(inode->i_sb, &retries));
6085                 goto out_ret;
6086         }
6087
6088         lock_page(page);
6089         size = i_size_read(inode);
6090         /* Page got truncated from under us? */
6091         if (page->mapping != mapping || page_offset(page) > size) {
6092                 unlock_page(page);
6093                 ret = VM_FAULT_NOPAGE;
6094                 goto out;
6095         }
6096
6097         if (page->index == size >> PAGE_SHIFT)
6098                 len = size & ~PAGE_MASK;
6099         else
6100                 len = PAGE_SIZE;
6101         /*
6102          * Return if we have all the buffers mapped. This avoids the need to do
6103          * journal_start/journal_stop which can block and take a long time
6104          */
6105         if (page_has_buffers(page)) {
6106                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6107                                             0, len, NULL,
6108                                             ext4_bh_unmapped)) {
6109                         /* Wait so that we don't change page under IO */
6110                         wait_for_stable_page(page);
6111                         ret = VM_FAULT_LOCKED;
6112                         goto out;
6113                 }
6114         }
6115         unlock_page(page);
6116         /* OK, we need to fill the hole... */
6117         if (ext4_should_dioread_nolock(inode))
6118                 get_block = ext4_get_block_unwritten;
6119         else
6120                 get_block = ext4_get_block;
6121 retry_alloc:
6122         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6123                                     ext4_writepage_trans_blocks(inode));
6124         if (IS_ERR(handle)) {
6125                 ret = VM_FAULT_SIGBUS;
6126                 goto out;
6127         }
6128         ret = block_page_mkwrite(vma, vmf, get_block);
6129         if (!ret && ext4_should_journal_data(inode)) {
6130                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6131                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
6132                         unlock_page(page);
6133                         ret = VM_FAULT_SIGBUS;
6134                         ext4_journal_stop(handle);
6135                         goto out;
6136                 }
6137                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6138         }
6139         ext4_journal_stop(handle);
6140         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6141                 goto retry_alloc;
6142 out_ret:
6143         ret = block_page_mkwrite_return(ret);
6144 out:
6145         up_read(&EXT4_I(inode)->i_mmap_sem);
6146         sb_end_pagefault(inode->i_sb);
6147         return ret;
6148 }
6149
6150 int ext4_filemap_fault(struct vm_fault *vmf)
6151 {
6152         struct inode *inode = file_inode(vmf->vma->vm_file);
6153         int err;
6154
6155         down_read(&EXT4_I(inode)->i_mmap_sem);
6156         err = filemap_fault(vmf);
6157         up_read(&EXT4_I(inode)->i_mmap_sem);
6158
6159         return err;
6160 }