]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/ext4/super.c
ext4: wire up new fscrypt ioctls
[linux.git] / fs / ext4 / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49
50 #include "ext4.h"
51 #include "ext4_extents.h"       /* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
60
61 static struct ext4_lazy_init *ext4_li_info;
62 static struct mutex ext4_li_mtx;
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
64
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66                              unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static int ext4_commit_super(struct super_block *sb, int sync);
69 static void ext4_mark_recovery_complete(struct super_block *sb,
70                                         struct ext4_super_block *es);
71 static void ext4_clear_journal_err(struct super_block *sb,
72                                    struct ext4_super_block *es);
73 static int ext4_sync_fs(struct super_block *sb, int wait);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static int ext4_freeze(struct super_block *sb);
78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79                        const char *dev_name, void *data);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 static struct inode *ext4_get_journal_inode(struct super_block *sb,
87                                             unsigned int journal_inum);
88
89 /*
90  * Lock ordering
91  *
92  * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
93  * i_mmap_rwsem (inode->i_mmap_rwsem)!
94  *
95  * page fault path:
96  * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
97  *   page lock -> i_data_sem (rw)
98  *
99  * buffered write path:
100  * sb_start_write -> i_mutex -> mmap_sem
101  * sb_start_write -> i_mutex -> transaction start -> page lock ->
102  *   i_data_sem (rw)
103  *
104  * truncate:
105  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
106  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
107  *   i_data_sem (rw)
108  *
109  * direct IO:
110  * sb_start_write -> i_mutex -> mmap_sem
111  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
112  *
113  * writepages:
114  * transaction start -> page lock(s) -> i_data_sem (rw)
115  */
116
117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
118 static struct file_system_type ext2_fs_type = {
119         .owner          = THIS_MODULE,
120         .name           = "ext2",
121         .mount          = ext4_mount,
122         .kill_sb        = kill_block_super,
123         .fs_flags       = FS_REQUIRES_DEV,
124 };
125 MODULE_ALIAS_FS("ext2");
126 MODULE_ALIAS("ext2");
127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
128 #else
129 #define IS_EXT2_SB(sb) (0)
130 #endif
131
132
133 static struct file_system_type ext3_fs_type = {
134         .owner          = THIS_MODULE,
135         .name           = "ext3",
136         .mount          = ext4_mount,
137         .kill_sb        = kill_block_super,
138         .fs_flags       = FS_REQUIRES_DEV,
139 };
140 MODULE_ALIAS_FS("ext3");
141 MODULE_ALIAS("ext3");
142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
143
144 /*
145  * This works like sb_bread() except it uses ERR_PTR for error
146  * returns.  Currently with sb_bread it's impossible to distinguish
147  * between ENOMEM and EIO situations (since both result in a NULL
148  * return.
149  */
150 struct buffer_head *
151 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags)
152 {
153         struct buffer_head *bh = sb_getblk(sb, block);
154
155         if (bh == NULL)
156                 return ERR_PTR(-ENOMEM);
157         if (buffer_uptodate(bh))
158                 return bh;
159         ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh);
160         wait_on_buffer(bh);
161         if (buffer_uptodate(bh))
162                 return bh;
163         put_bh(bh);
164         return ERR_PTR(-EIO);
165 }
166
167 static int ext4_verify_csum_type(struct super_block *sb,
168                                  struct ext4_super_block *es)
169 {
170         if (!ext4_has_feature_metadata_csum(sb))
171                 return 1;
172
173         return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
174 }
175
176 static __le32 ext4_superblock_csum(struct super_block *sb,
177                                    struct ext4_super_block *es)
178 {
179         struct ext4_sb_info *sbi = EXT4_SB(sb);
180         int offset = offsetof(struct ext4_super_block, s_checksum);
181         __u32 csum;
182
183         csum = ext4_chksum(sbi, ~0, (char *)es, offset);
184
185         return cpu_to_le32(csum);
186 }
187
188 static int ext4_superblock_csum_verify(struct super_block *sb,
189                                        struct ext4_super_block *es)
190 {
191         if (!ext4_has_metadata_csum(sb))
192                 return 1;
193
194         return es->s_checksum == ext4_superblock_csum(sb, es);
195 }
196
197 void ext4_superblock_csum_set(struct super_block *sb)
198 {
199         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
200
201         if (!ext4_has_metadata_csum(sb))
202                 return;
203
204         es->s_checksum = ext4_superblock_csum(sb, es);
205 }
206
207 void *ext4_kvmalloc(size_t size, gfp_t flags)
208 {
209         void *ret;
210
211         ret = kmalloc(size, flags | __GFP_NOWARN);
212         if (!ret)
213                 ret = __vmalloc(size, flags, PAGE_KERNEL);
214         return ret;
215 }
216
217 void *ext4_kvzalloc(size_t size, gfp_t flags)
218 {
219         void *ret;
220
221         ret = kzalloc(size, flags | __GFP_NOWARN);
222         if (!ret)
223                 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
224         return ret;
225 }
226
227 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
228                                struct ext4_group_desc *bg)
229 {
230         return le32_to_cpu(bg->bg_block_bitmap_lo) |
231                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232                  (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
233 }
234
235 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
236                                struct ext4_group_desc *bg)
237 {
238         return le32_to_cpu(bg->bg_inode_bitmap_lo) |
239                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240                  (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
241 }
242
243 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
244                               struct ext4_group_desc *bg)
245 {
246         return le32_to_cpu(bg->bg_inode_table_lo) |
247                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248                  (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
249 }
250
251 __u32 ext4_free_group_clusters(struct super_block *sb,
252                                struct ext4_group_desc *bg)
253 {
254         return le16_to_cpu(bg->bg_free_blocks_count_lo) |
255                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256                  (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
257 }
258
259 __u32 ext4_free_inodes_count(struct super_block *sb,
260                               struct ext4_group_desc *bg)
261 {
262         return le16_to_cpu(bg->bg_free_inodes_count_lo) |
263                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
264                  (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
265 }
266
267 __u32 ext4_used_dirs_count(struct super_block *sb,
268                               struct ext4_group_desc *bg)
269 {
270         return le16_to_cpu(bg->bg_used_dirs_count_lo) |
271                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
272                  (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
273 }
274
275 __u32 ext4_itable_unused_count(struct super_block *sb,
276                               struct ext4_group_desc *bg)
277 {
278         return le16_to_cpu(bg->bg_itable_unused_lo) |
279                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
280                  (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
281 }
282
283 void ext4_block_bitmap_set(struct super_block *sb,
284                            struct ext4_group_desc *bg, ext4_fsblk_t blk)
285 {
286         bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
287         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288                 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
289 }
290
291 void ext4_inode_bitmap_set(struct super_block *sb,
292                            struct ext4_group_desc *bg, ext4_fsblk_t blk)
293 {
294         bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
295         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296                 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
297 }
298
299 void ext4_inode_table_set(struct super_block *sb,
300                           struct ext4_group_desc *bg, ext4_fsblk_t blk)
301 {
302         bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
303         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304                 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
305 }
306
307 void ext4_free_group_clusters_set(struct super_block *sb,
308                                   struct ext4_group_desc *bg, __u32 count)
309 {
310         bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
311         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312                 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
313 }
314
315 void ext4_free_inodes_set(struct super_block *sb,
316                           struct ext4_group_desc *bg, __u32 count)
317 {
318         bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
319         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
320                 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
321 }
322
323 void ext4_used_dirs_set(struct super_block *sb,
324                           struct ext4_group_desc *bg, __u32 count)
325 {
326         bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
327         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
328                 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
329 }
330
331 void ext4_itable_unused_set(struct super_block *sb,
332                           struct ext4_group_desc *bg, __u32 count)
333 {
334         bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
335         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
336                 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
337 }
338
339 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
340 {
341         time64_t now = ktime_get_real_seconds();
342
343         now = clamp_val(now, 0, (1ull << 40) - 1);
344
345         *lo = cpu_to_le32(lower_32_bits(now));
346         *hi = upper_32_bits(now);
347 }
348
349 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
350 {
351         return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
352 }
353 #define ext4_update_tstamp(es, tstamp) \
354         __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
355 #define ext4_get_tstamp(es, tstamp) \
356         __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
357
358 static void __save_error_info(struct super_block *sb, const char *func,
359                             unsigned int line)
360 {
361         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
362
363         EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
364         if (bdev_read_only(sb->s_bdev))
365                 return;
366         es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
367         ext4_update_tstamp(es, s_last_error_time);
368         strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
369         es->s_last_error_line = cpu_to_le32(line);
370         if (!es->s_first_error_time) {
371                 es->s_first_error_time = es->s_last_error_time;
372                 es->s_first_error_time_hi = es->s_last_error_time_hi;
373                 strncpy(es->s_first_error_func, func,
374                         sizeof(es->s_first_error_func));
375                 es->s_first_error_line = cpu_to_le32(line);
376                 es->s_first_error_ino = es->s_last_error_ino;
377                 es->s_first_error_block = es->s_last_error_block;
378         }
379         /*
380          * Start the daily error reporting function if it hasn't been
381          * started already
382          */
383         if (!es->s_error_count)
384                 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
385         le32_add_cpu(&es->s_error_count, 1);
386 }
387
388 static void save_error_info(struct super_block *sb, const char *func,
389                             unsigned int line)
390 {
391         __save_error_info(sb, func, line);
392         ext4_commit_super(sb, 1);
393 }
394
395 /*
396  * The del_gendisk() function uninitializes the disk-specific data
397  * structures, including the bdi structure, without telling anyone
398  * else.  Once this happens, any attempt to call mark_buffer_dirty()
399  * (for example, by ext4_commit_super), will cause a kernel OOPS.
400  * This is a kludge to prevent these oops until we can put in a proper
401  * hook in del_gendisk() to inform the VFS and file system layers.
402  */
403 static int block_device_ejected(struct super_block *sb)
404 {
405         struct inode *bd_inode = sb->s_bdev->bd_inode;
406         struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
407
408         return bdi->dev == NULL;
409 }
410
411 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
412 {
413         struct super_block              *sb = journal->j_private;
414         struct ext4_sb_info             *sbi = EXT4_SB(sb);
415         int                             error = is_journal_aborted(journal);
416         struct ext4_journal_cb_entry    *jce;
417
418         BUG_ON(txn->t_state == T_FINISHED);
419
420         ext4_process_freed_data(sb, txn->t_tid);
421
422         spin_lock(&sbi->s_md_lock);
423         while (!list_empty(&txn->t_private_list)) {
424                 jce = list_entry(txn->t_private_list.next,
425                                  struct ext4_journal_cb_entry, jce_list);
426                 list_del_init(&jce->jce_list);
427                 spin_unlock(&sbi->s_md_lock);
428                 jce->jce_func(sb, jce, error);
429                 spin_lock(&sbi->s_md_lock);
430         }
431         spin_unlock(&sbi->s_md_lock);
432 }
433
434 static bool system_going_down(void)
435 {
436         return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
437                 || system_state == SYSTEM_RESTART;
438 }
439
440 /* Deal with the reporting of failure conditions on a filesystem such as
441  * inconsistencies detected or read IO failures.
442  *
443  * On ext2, we can store the error state of the filesystem in the
444  * superblock.  That is not possible on ext4, because we may have other
445  * write ordering constraints on the superblock which prevent us from
446  * writing it out straight away; and given that the journal is about to
447  * be aborted, we can't rely on the current, or future, transactions to
448  * write out the superblock safely.
449  *
450  * We'll just use the jbd2_journal_abort() error code to record an error in
451  * the journal instead.  On recovery, the journal will complain about
452  * that error until we've noted it down and cleared it.
453  */
454
455 static void ext4_handle_error(struct super_block *sb)
456 {
457         if (test_opt(sb, WARN_ON_ERROR))
458                 WARN_ON_ONCE(1);
459
460         if (sb_rdonly(sb))
461                 return;
462
463         if (!test_opt(sb, ERRORS_CONT)) {
464                 journal_t *journal = EXT4_SB(sb)->s_journal;
465
466                 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
467                 if (journal)
468                         jbd2_journal_abort(journal, -EIO);
469         }
470         /*
471          * We force ERRORS_RO behavior when system is rebooting. Otherwise we
472          * could panic during 'reboot -f' as the underlying device got already
473          * disabled.
474          */
475         if (test_opt(sb, ERRORS_RO) || system_going_down()) {
476                 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
477                 /*
478                  * Make sure updated value of ->s_mount_flags will be visible
479                  * before ->s_flags update
480                  */
481                 smp_wmb();
482                 sb->s_flags |= SB_RDONLY;
483         } else if (test_opt(sb, ERRORS_PANIC)) {
484                 if (EXT4_SB(sb)->s_journal &&
485                   !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
486                         return;
487                 panic("EXT4-fs (device %s): panic forced after error\n",
488                         sb->s_id);
489         }
490 }
491
492 #define ext4_error_ratelimit(sb)                                        \
493                 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),     \
494                              "EXT4-fs error")
495
496 void __ext4_error(struct super_block *sb, const char *function,
497                   unsigned int line, const char *fmt, ...)
498 {
499         struct va_format vaf;
500         va_list args;
501
502         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
503                 return;
504
505         trace_ext4_error(sb, function, line);
506         if (ext4_error_ratelimit(sb)) {
507                 va_start(args, fmt);
508                 vaf.fmt = fmt;
509                 vaf.va = &args;
510                 printk(KERN_CRIT
511                        "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
512                        sb->s_id, function, line, current->comm, &vaf);
513                 va_end(args);
514         }
515         save_error_info(sb, function, line);
516         ext4_handle_error(sb);
517 }
518
519 void __ext4_error_inode(struct inode *inode, const char *function,
520                         unsigned int line, ext4_fsblk_t block,
521                         const char *fmt, ...)
522 {
523         va_list args;
524         struct va_format vaf;
525         struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
526
527         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
528                 return;
529
530         trace_ext4_error(inode->i_sb, function, line);
531         es->s_last_error_ino = cpu_to_le32(inode->i_ino);
532         es->s_last_error_block = cpu_to_le64(block);
533         if (ext4_error_ratelimit(inode->i_sb)) {
534                 va_start(args, fmt);
535                 vaf.fmt = fmt;
536                 vaf.va = &args;
537                 if (block)
538                         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
539                                "inode #%lu: block %llu: comm %s: %pV\n",
540                                inode->i_sb->s_id, function, line, inode->i_ino,
541                                block, current->comm, &vaf);
542                 else
543                         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
544                                "inode #%lu: comm %s: %pV\n",
545                                inode->i_sb->s_id, function, line, inode->i_ino,
546                                current->comm, &vaf);
547                 va_end(args);
548         }
549         save_error_info(inode->i_sb, function, line);
550         ext4_handle_error(inode->i_sb);
551 }
552
553 void __ext4_error_file(struct file *file, const char *function,
554                        unsigned int line, ext4_fsblk_t block,
555                        const char *fmt, ...)
556 {
557         va_list args;
558         struct va_format vaf;
559         struct ext4_super_block *es;
560         struct inode *inode = file_inode(file);
561         char pathname[80], *path;
562
563         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
564                 return;
565
566         trace_ext4_error(inode->i_sb, function, line);
567         es = EXT4_SB(inode->i_sb)->s_es;
568         es->s_last_error_ino = cpu_to_le32(inode->i_ino);
569         if (ext4_error_ratelimit(inode->i_sb)) {
570                 path = file_path(file, pathname, sizeof(pathname));
571                 if (IS_ERR(path))
572                         path = "(unknown)";
573                 va_start(args, fmt);
574                 vaf.fmt = fmt;
575                 vaf.va = &args;
576                 if (block)
577                         printk(KERN_CRIT
578                                "EXT4-fs error (device %s): %s:%d: inode #%lu: "
579                                "block %llu: comm %s: path %s: %pV\n",
580                                inode->i_sb->s_id, function, line, inode->i_ino,
581                                block, current->comm, path, &vaf);
582                 else
583                         printk(KERN_CRIT
584                                "EXT4-fs error (device %s): %s:%d: inode #%lu: "
585                                "comm %s: path %s: %pV\n",
586                                inode->i_sb->s_id, function, line, inode->i_ino,
587                                current->comm, path, &vaf);
588                 va_end(args);
589         }
590         save_error_info(inode->i_sb, function, line);
591         ext4_handle_error(inode->i_sb);
592 }
593
594 const char *ext4_decode_error(struct super_block *sb, int errno,
595                               char nbuf[16])
596 {
597         char *errstr = NULL;
598
599         switch (errno) {
600         case -EFSCORRUPTED:
601                 errstr = "Corrupt filesystem";
602                 break;
603         case -EFSBADCRC:
604                 errstr = "Filesystem failed CRC";
605                 break;
606         case -EIO:
607                 errstr = "IO failure";
608                 break;
609         case -ENOMEM:
610                 errstr = "Out of memory";
611                 break;
612         case -EROFS:
613                 if (!sb || (EXT4_SB(sb)->s_journal &&
614                             EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
615                         errstr = "Journal has aborted";
616                 else
617                         errstr = "Readonly filesystem";
618                 break;
619         default:
620                 /* If the caller passed in an extra buffer for unknown
621                  * errors, textualise them now.  Else we just return
622                  * NULL. */
623                 if (nbuf) {
624                         /* Check for truncated error codes... */
625                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
626                                 errstr = nbuf;
627                 }
628                 break;
629         }
630
631         return errstr;
632 }
633
634 /* __ext4_std_error decodes expected errors from journaling functions
635  * automatically and invokes the appropriate error response.  */
636
637 void __ext4_std_error(struct super_block *sb, const char *function,
638                       unsigned int line, int errno)
639 {
640         char nbuf[16];
641         const char *errstr;
642
643         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
644                 return;
645
646         /* Special case: if the error is EROFS, and we're not already
647          * inside a transaction, then there's really no point in logging
648          * an error. */
649         if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
650                 return;
651
652         if (ext4_error_ratelimit(sb)) {
653                 errstr = ext4_decode_error(sb, errno, nbuf);
654                 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
655                        sb->s_id, function, line, errstr);
656         }
657
658         save_error_info(sb, function, line);
659         ext4_handle_error(sb);
660 }
661
662 /*
663  * ext4_abort is a much stronger failure handler than ext4_error.  The
664  * abort function may be used to deal with unrecoverable failures such
665  * as journal IO errors or ENOMEM at a critical moment in log management.
666  *
667  * We unconditionally force the filesystem into an ABORT|READONLY state,
668  * unless the error response on the fs has been set to panic in which
669  * case we take the easy way out and panic immediately.
670  */
671
672 void __ext4_abort(struct super_block *sb, const char *function,
673                 unsigned int line, const char *fmt, ...)
674 {
675         struct va_format vaf;
676         va_list args;
677
678         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
679                 return;
680
681         save_error_info(sb, function, line);
682         va_start(args, fmt);
683         vaf.fmt = fmt;
684         vaf.va = &args;
685         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
686                sb->s_id, function, line, &vaf);
687         va_end(args);
688
689         if (sb_rdonly(sb) == 0) {
690                 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
691                 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
692                 /*
693                  * Make sure updated value of ->s_mount_flags will be visible
694                  * before ->s_flags update
695                  */
696                 smp_wmb();
697                 sb->s_flags |= SB_RDONLY;
698                 if (EXT4_SB(sb)->s_journal)
699                         jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
700                 save_error_info(sb, function, line);
701         }
702         if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
703                 if (EXT4_SB(sb)->s_journal &&
704                   !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
705                         return;
706                 panic("EXT4-fs panic from previous error\n");
707         }
708 }
709
710 void __ext4_msg(struct super_block *sb,
711                 const char *prefix, const char *fmt, ...)
712 {
713         struct va_format vaf;
714         va_list args;
715
716         if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
717                 return;
718
719         va_start(args, fmt);
720         vaf.fmt = fmt;
721         vaf.va = &args;
722         printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
723         va_end(args);
724 }
725
726 #define ext4_warning_ratelimit(sb)                                      \
727                 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
728                              "EXT4-fs warning")
729
730 void __ext4_warning(struct super_block *sb, const char *function,
731                     unsigned int line, const char *fmt, ...)
732 {
733         struct va_format vaf;
734         va_list args;
735
736         if (!ext4_warning_ratelimit(sb))
737                 return;
738
739         va_start(args, fmt);
740         vaf.fmt = fmt;
741         vaf.va = &args;
742         printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
743                sb->s_id, function, line, &vaf);
744         va_end(args);
745 }
746
747 void __ext4_warning_inode(const struct inode *inode, const char *function,
748                           unsigned int line, const char *fmt, ...)
749 {
750         struct va_format vaf;
751         va_list args;
752
753         if (!ext4_warning_ratelimit(inode->i_sb))
754                 return;
755
756         va_start(args, fmt);
757         vaf.fmt = fmt;
758         vaf.va = &args;
759         printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
760                "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
761                function, line, inode->i_ino, current->comm, &vaf);
762         va_end(args);
763 }
764
765 void __ext4_grp_locked_error(const char *function, unsigned int line,
766                              struct super_block *sb, ext4_group_t grp,
767                              unsigned long ino, ext4_fsblk_t block,
768                              const char *fmt, ...)
769 __releases(bitlock)
770 __acquires(bitlock)
771 {
772         struct va_format vaf;
773         va_list args;
774         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
775
776         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
777                 return;
778
779         trace_ext4_error(sb, function, line);
780         es->s_last_error_ino = cpu_to_le32(ino);
781         es->s_last_error_block = cpu_to_le64(block);
782         __save_error_info(sb, function, line);
783
784         if (ext4_error_ratelimit(sb)) {
785                 va_start(args, fmt);
786                 vaf.fmt = fmt;
787                 vaf.va = &args;
788                 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
789                        sb->s_id, function, line, grp);
790                 if (ino)
791                         printk(KERN_CONT "inode %lu: ", ino);
792                 if (block)
793                         printk(KERN_CONT "block %llu:",
794                                (unsigned long long) block);
795                 printk(KERN_CONT "%pV\n", &vaf);
796                 va_end(args);
797         }
798
799         if (test_opt(sb, WARN_ON_ERROR))
800                 WARN_ON_ONCE(1);
801
802         if (test_opt(sb, ERRORS_CONT)) {
803                 ext4_commit_super(sb, 0);
804                 return;
805         }
806
807         ext4_unlock_group(sb, grp);
808         ext4_commit_super(sb, 1);
809         ext4_handle_error(sb);
810         /*
811          * We only get here in the ERRORS_RO case; relocking the group
812          * may be dangerous, but nothing bad will happen since the
813          * filesystem will have already been marked read/only and the
814          * journal has been aborted.  We return 1 as a hint to callers
815          * who might what to use the return value from
816          * ext4_grp_locked_error() to distinguish between the
817          * ERRORS_CONT and ERRORS_RO case, and perhaps return more
818          * aggressively from the ext4 function in question, with a
819          * more appropriate error code.
820          */
821         ext4_lock_group(sb, grp);
822         return;
823 }
824
825 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
826                                      ext4_group_t group,
827                                      unsigned int flags)
828 {
829         struct ext4_sb_info *sbi = EXT4_SB(sb);
830         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
831         struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
832         int ret;
833
834         if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
835                 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
836                                             &grp->bb_state);
837                 if (!ret)
838                         percpu_counter_sub(&sbi->s_freeclusters_counter,
839                                            grp->bb_free);
840         }
841
842         if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
843                 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
844                                             &grp->bb_state);
845                 if (!ret && gdp) {
846                         int count;
847
848                         count = ext4_free_inodes_count(sb, gdp);
849                         percpu_counter_sub(&sbi->s_freeinodes_counter,
850                                            count);
851                 }
852         }
853 }
854
855 void ext4_update_dynamic_rev(struct super_block *sb)
856 {
857         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
858
859         if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
860                 return;
861
862         ext4_warning(sb,
863                      "updating to rev %d because of new feature flag, "
864                      "running e2fsck is recommended",
865                      EXT4_DYNAMIC_REV);
866
867         es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
868         es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
869         es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
870         /* leave es->s_feature_*compat flags alone */
871         /* es->s_uuid will be set by e2fsck if empty */
872
873         /*
874          * The rest of the superblock fields should be zero, and if not it
875          * means they are likely already in use, so leave them alone.  We
876          * can leave it up to e2fsck to clean up any inconsistencies there.
877          */
878 }
879
880 /*
881  * Open the external journal device
882  */
883 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
884 {
885         struct block_device *bdev;
886         char b[BDEVNAME_SIZE];
887
888         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
889         if (IS_ERR(bdev))
890                 goto fail;
891         return bdev;
892
893 fail:
894         ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
895                         __bdevname(dev, b), PTR_ERR(bdev));
896         return NULL;
897 }
898
899 /*
900  * Release the journal device
901  */
902 static void ext4_blkdev_put(struct block_device *bdev)
903 {
904         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
905 }
906
907 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
908 {
909         struct block_device *bdev;
910         bdev = sbi->journal_bdev;
911         if (bdev) {
912                 ext4_blkdev_put(bdev);
913                 sbi->journal_bdev = NULL;
914         }
915 }
916
917 static inline struct inode *orphan_list_entry(struct list_head *l)
918 {
919         return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
920 }
921
922 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
923 {
924         struct list_head *l;
925
926         ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
927                  le32_to_cpu(sbi->s_es->s_last_orphan));
928
929         printk(KERN_ERR "sb_info orphan list:\n");
930         list_for_each(l, &sbi->s_orphan) {
931                 struct inode *inode = orphan_list_entry(l);
932                 printk(KERN_ERR "  "
933                        "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
934                        inode->i_sb->s_id, inode->i_ino, inode,
935                        inode->i_mode, inode->i_nlink,
936                        NEXT_ORPHAN(inode));
937         }
938 }
939
940 #ifdef CONFIG_QUOTA
941 static int ext4_quota_off(struct super_block *sb, int type);
942
943 static inline void ext4_quota_off_umount(struct super_block *sb)
944 {
945         int type;
946
947         /* Use our quota_off function to clear inode flags etc. */
948         for (type = 0; type < EXT4_MAXQUOTAS; type++)
949                 ext4_quota_off(sb, type);
950 }
951
952 /*
953  * This is a helper function which is used in the mount/remount
954  * codepaths (which holds s_umount) to fetch the quota file name.
955  */
956 static inline char *get_qf_name(struct super_block *sb,
957                                 struct ext4_sb_info *sbi,
958                                 int type)
959 {
960         return rcu_dereference_protected(sbi->s_qf_names[type],
961                                          lockdep_is_held(&sb->s_umount));
962 }
963 #else
964 static inline void ext4_quota_off_umount(struct super_block *sb)
965 {
966 }
967 #endif
968
969 static void ext4_put_super(struct super_block *sb)
970 {
971         struct ext4_sb_info *sbi = EXT4_SB(sb);
972         struct ext4_super_block *es = sbi->s_es;
973         int aborted = 0;
974         int i, err;
975
976         ext4_unregister_li_request(sb);
977         ext4_quota_off_umount(sb);
978
979         destroy_workqueue(sbi->rsv_conversion_wq);
980
981         if (sbi->s_journal) {
982                 aborted = is_journal_aborted(sbi->s_journal);
983                 err = jbd2_journal_destroy(sbi->s_journal);
984                 sbi->s_journal = NULL;
985                 if ((err < 0) && !aborted)
986                         ext4_abort(sb, "Couldn't clean up the journal");
987         }
988
989         ext4_unregister_sysfs(sb);
990         ext4_es_unregister_shrinker(sbi);
991         del_timer_sync(&sbi->s_err_report);
992         ext4_release_system_zone(sb);
993         ext4_mb_release(sb);
994         ext4_ext_release(sb);
995
996         if (!sb_rdonly(sb) && !aborted) {
997                 ext4_clear_feature_journal_needs_recovery(sb);
998                 es->s_state = cpu_to_le16(sbi->s_mount_state);
999         }
1000         if (!sb_rdonly(sb))
1001                 ext4_commit_super(sb, 1);
1002
1003         for (i = 0; i < sbi->s_gdb_count; i++)
1004                 brelse(sbi->s_group_desc[i]);
1005         kvfree(sbi->s_group_desc);
1006         kvfree(sbi->s_flex_groups);
1007         percpu_counter_destroy(&sbi->s_freeclusters_counter);
1008         percpu_counter_destroy(&sbi->s_freeinodes_counter);
1009         percpu_counter_destroy(&sbi->s_dirs_counter);
1010         percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1011         percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
1012 #ifdef CONFIG_QUOTA
1013         for (i = 0; i < EXT4_MAXQUOTAS; i++)
1014                 kfree(get_qf_name(sb, sbi, i));
1015 #endif
1016
1017         /* Debugging code just in case the in-memory inode orphan list
1018          * isn't empty.  The on-disk one can be non-empty if we've
1019          * detected an error and taken the fs readonly, but the
1020          * in-memory list had better be clean by this point. */
1021         if (!list_empty(&sbi->s_orphan))
1022                 dump_orphan_list(sb, sbi);
1023         J_ASSERT(list_empty(&sbi->s_orphan));
1024
1025         sync_blockdev(sb->s_bdev);
1026         invalidate_bdev(sb->s_bdev);
1027         if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
1028                 /*
1029                  * Invalidate the journal device's buffers.  We don't want them
1030                  * floating about in memory - the physical journal device may
1031                  * hotswapped, and it breaks the `ro-after' testing code.
1032                  */
1033                 sync_blockdev(sbi->journal_bdev);
1034                 invalidate_bdev(sbi->journal_bdev);
1035                 ext4_blkdev_remove(sbi);
1036         }
1037
1038         ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1039         sbi->s_ea_inode_cache = NULL;
1040
1041         ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1042         sbi->s_ea_block_cache = NULL;
1043
1044         if (sbi->s_mmp_tsk)
1045                 kthread_stop(sbi->s_mmp_tsk);
1046         brelse(sbi->s_sbh);
1047         sb->s_fs_info = NULL;
1048         /*
1049          * Now that we are completely done shutting down the
1050          * superblock, we need to actually destroy the kobject.
1051          */
1052         kobject_put(&sbi->s_kobj);
1053         wait_for_completion(&sbi->s_kobj_unregister);
1054         if (sbi->s_chksum_driver)
1055                 crypto_free_shash(sbi->s_chksum_driver);
1056         kfree(sbi->s_blockgroup_lock);
1057         fs_put_dax(sbi->s_daxdev);
1058 #ifdef CONFIG_UNICODE
1059         utf8_unload(sbi->s_encoding);
1060 #endif
1061         kfree(sbi);
1062 }
1063
1064 static struct kmem_cache *ext4_inode_cachep;
1065
1066 /*
1067  * Called inside transaction, so use GFP_NOFS
1068  */
1069 static struct inode *ext4_alloc_inode(struct super_block *sb)
1070 {
1071         struct ext4_inode_info *ei;
1072
1073         ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1074         if (!ei)
1075                 return NULL;
1076
1077         inode_set_iversion(&ei->vfs_inode, 1);
1078         spin_lock_init(&ei->i_raw_lock);
1079         INIT_LIST_HEAD(&ei->i_prealloc_list);
1080         spin_lock_init(&ei->i_prealloc_lock);
1081         ext4_es_init_tree(&ei->i_es_tree);
1082         rwlock_init(&ei->i_es_lock);
1083         INIT_LIST_HEAD(&ei->i_es_list);
1084         ei->i_es_all_nr = 0;
1085         ei->i_es_shk_nr = 0;
1086         ei->i_es_shrink_lblk = 0;
1087         ei->i_reserved_data_blocks = 0;
1088         ei->i_da_metadata_calc_len = 0;
1089         ei->i_da_metadata_calc_last_lblock = 0;
1090         spin_lock_init(&(ei->i_block_reservation_lock));
1091         ext4_init_pending_tree(&ei->i_pending_tree);
1092 #ifdef CONFIG_QUOTA
1093         ei->i_reserved_quota = 0;
1094         memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1095 #endif
1096         ei->jinode = NULL;
1097         INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1098         spin_lock_init(&ei->i_completed_io_lock);
1099         ei->i_sync_tid = 0;
1100         ei->i_datasync_tid = 0;
1101         atomic_set(&ei->i_unwritten, 0);
1102         INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1103         return &ei->vfs_inode;
1104 }
1105
1106 static int ext4_drop_inode(struct inode *inode)
1107 {
1108         int drop = generic_drop_inode(inode);
1109
1110         if (!drop)
1111                 drop = fscrypt_drop_inode(inode);
1112
1113         trace_ext4_drop_inode(inode, drop);
1114         return drop;
1115 }
1116
1117 static void ext4_free_in_core_inode(struct inode *inode)
1118 {
1119         fscrypt_free_inode(inode);
1120         kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1121 }
1122
1123 static void ext4_destroy_inode(struct inode *inode)
1124 {
1125         if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1126                 ext4_msg(inode->i_sb, KERN_ERR,
1127                          "Inode %lu (%p): orphan list check failed!",
1128                          inode->i_ino, EXT4_I(inode));
1129                 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1130                                 EXT4_I(inode), sizeof(struct ext4_inode_info),
1131                                 true);
1132                 dump_stack();
1133         }
1134 }
1135
1136 static void init_once(void *foo)
1137 {
1138         struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1139
1140         INIT_LIST_HEAD(&ei->i_orphan);
1141         init_rwsem(&ei->xattr_sem);
1142         init_rwsem(&ei->i_data_sem);
1143         init_rwsem(&ei->i_mmap_sem);
1144         inode_init_once(&ei->vfs_inode);
1145 }
1146
1147 static int __init init_inodecache(void)
1148 {
1149         ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1150                                 sizeof(struct ext4_inode_info), 0,
1151                                 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1152                                         SLAB_ACCOUNT),
1153                                 offsetof(struct ext4_inode_info, i_data),
1154                                 sizeof_field(struct ext4_inode_info, i_data),
1155                                 init_once);
1156         if (ext4_inode_cachep == NULL)
1157                 return -ENOMEM;
1158         return 0;
1159 }
1160
1161 static void destroy_inodecache(void)
1162 {
1163         /*
1164          * Make sure all delayed rcu free inodes are flushed before we
1165          * destroy cache.
1166          */
1167         rcu_barrier();
1168         kmem_cache_destroy(ext4_inode_cachep);
1169 }
1170
1171 void ext4_clear_inode(struct inode *inode)
1172 {
1173         invalidate_inode_buffers(inode);
1174         clear_inode(inode);
1175         dquot_drop(inode);
1176         ext4_discard_preallocations(inode);
1177         ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1178         if (EXT4_I(inode)->jinode) {
1179                 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1180                                                EXT4_I(inode)->jinode);
1181                 jbd2_free_inode(EXT4_I(inode)->jinode);
1182                 EXT4_I(inode)->jinode = NULL;
1183         }
1184         fscrypt_put_encryption_info(inode);
1185 }
1186
1187 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1188                                         u64 ino, u32 generation)
1189 {
1190         struct inode *inode;
1191
1192         /*
1193          * Currently we don't know the generation for parent directory, so
1194          * a generation of 0 means "accept any"
1195          */
1196         inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1197         if (IS_ERR(inode))
1198                 return ERR_CAST(inode);
1199         if (generation && inode->i_generation != generation) {
1200                 iput(inode);
1201                 return ERR_PTR(-ESTALE);
1202         }
1203
1204         return inode;
1205 }
1206
1207 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1208                                         int fh_len, int fh_type)
1209 {
1210         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1211                                     ext4_nfs_get_inode);
1212 }
1213
1214 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1215                                         int fh_len, int fh_type)
1216 {
1217         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1218                                     ext4_nfs_get_inode);
1219 }
1220
1221 static int ext4_nfs_commit_metadata(struct inode *inode)
1222 {
1223         struct writeback_control wbc = {
1224                 .sync_mode = WB_SYNC_ALL
1225         };
1226
1227         trace_ext4_nfs_commit_metadata(inode);
1228         return ext4_write_inode(inode, &wbc);
1229 }
1230
1231 /*
1232  * Try to release metadata pages (indirect blocks, directories) which are
1233  * mapped via the block device.  Since these pages could have journal heads
1234  * which would prevent try_to_free_buffers() from freeing them, we must use
1235  * jbd2 layer's try_to_free_buffers() function to release them.
1236  */
1237 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1238                                  gfp_t wait)
1239 {
1240         journal_t *journal = EXT4_SB(sb)->s_journal;
1241
1242         WARN_ON(PageChecked(page));
1243         if (!page_has_buffers(page))
1244                 return 0;
1245         if (journal)
1246                 return jbd2_journal_try_to_free_buffers(journal, page,
1247                                                 wait & ~__GFP_DIRECT_RECLAIM);
1248         return try_to_free_buffers(page);
1249 }
1250
1251 #ifdef CONFIG_FS_ENCRYPTION
1252 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1253 {
1254         return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1255                                  EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1256 }
1257
1258 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1259                                                         void *fs_data)
1260 {
1261         handle_t *handle = fs_data;
1262         int res, res2, credits, retries = 0;
1263
1264         /*
1265          * Encrypting the root directory is not allowed because e2fsck expects
1266          * lost+found to exist and be unencrypted, and encrypting the root
1267          * directory would imply encrypting the lost+found directory as well as
1268          * the filename "lost+found" itself.
1269          */
1270         if (inode->i_ino == EXT4_ROOT_INO)
1271                 return -EPERM;
1272
1273         if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1274                 return -EINVAL;
1275
1276         res = ext4_convert_inline_data(inode);
1277         if (res)
1278                 return res;
1279
1280         /*
1281          * If a journal handle was specified, then the encryption context is
1282          * being set on a new inode via inheritance and is part of a larger
1283          * transaction to create the inode.  Otherwise the encryption context is
1284          * being set on an existing inode in its own transaction.  Only in the
1285          * latter case should the "retry on ENOSPC" logic be used.
1286          */
1287
1288         if (handle) {
1289                 res = ext4_xattr_set_handle(handle, inode,
1290                                             EXT4_XATTR_INDEX_ENCRYPTION,
1291                                             EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1292                                             ctx, len, 0);
1293                 if (!res) {
1294                         ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1295                         ext4_clear_inode_state(inode,
1296                                         EXT4_STATE_MAY_INLINE_DATA);
1297                         /*
1298                          * Update inode->i_flags - S_ENCRYPTED will be enabled,
1299                          * S_DAX may be disabled
1300                          */
1301                         ext4_set_inode_flags(inode);
1302                 }
1303                 return res;
1304         }
1305
1306         res = dquot_initialize(inode);
1307         if (res)
1308                 return res;
1309 retry:
1310         res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1311                                      &credits);
1312         if (res)
1313                 return res;
1314
1315         handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1316         if (IS_ERR(handle))
1317                 return PTR_ERR(handle);
1318
1319         res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1320                                     EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1321                                     ctx, len, 0);
1322         if (!res) {
1323                 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1324                 /*
1325                  * Update inode->i_flags - S_ENCRYPTED will be enabled,
1326                  * S_DAX may be disabled
1327                  */
1328                 ext4_set_inode_flags(inode);
1329                 res = ext4_mark_inode_dirty(handle, inode);
1330                 if (res)
1331                         EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1332         }
1333         res2 = ext4_journal_stop(handle);
1334
1335         if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1336                 goto retry;
1337         if (!res)
1338                 res = res2;
1339         return res;
1340 }
1341
1342 static bool ext4_dummy_context(struct inode *inode)
1343 {
1344         return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1345 }
1346
1347 static const struct fscrypt_operations ext4_cryptops = {
1348         .key_prefix             = "ext4:",
1349         .get_context            = ext4_get_context,
1350         .set_context            = ext4_set_context,
1351         .dummy_context          = ext4_dummy_context,
1352         .empty_dir              = ext4_empty_dir,
1353         .max_namelen            = EXT4_NAME_LEN,
1354 };
1355 #endif
1356
1357 #ifdef CONFIG_QUOTA
1358 static const char * const quotatypes[] = INITQFNAMES;
1359 #define QTYPE2NAME(t) (quotatypes[t])
1360
1361 static int ext4_write_dquot(struct dquot *dquot);
1362 static int ext4_acquire_dquot(struct dquot *dquot);
1363 static int ext4_release_dquot(struct dquot *dquot);
1364 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1365 static int ext4_write_info(struct super_block *sb, int type);
1366 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1367                          const struct path *path);
1368 static int ext4_quota_on_mount(struct super_block *sb, int type);
1369 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1370                                size_t len, loff_t off);
1371 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1372                                 const char *data, size_t len, loff_t off);
1373 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1374                              unsigned int flags);
1375 static int ext4_enable_quotas(struct super_block *sb);
1376 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1377
1378 static struct dquot **ext4_get_dquots(struct inode *inode)
1379 {
1380         return EXT4_I(inode)->i_dquot;
1381 }
1382
1383 static const struct dquot_operations ext4_quota_operations = {
1384         .get_reserved_space     = ext4_get_reserved_space,
1385         .write_dquot            = ext4_write_dquot,
1386         .acquire_dquot          = ext4_acquire_dquot,
1387         .release_dquot          = ext4_release_dquot,
1388         .mark_dirty             = ext4_mark_dquot_dirty,
1389         .write_info             = ext4_write_info,
1390         .alloc_dquot            = dquot_alloc,
1391         .destroy_dquot          = dquot_destroy,
1392         .get_projid             = ext4_get_projid,
1393         .get_inode_usage        = ext4_get_inode_usage,
1394         .get_next_id            = ext4_get_next_id,
1395 };
1396
1397 static const struct quotactl_ops ext4_qctl_operations = {
1398         .quota_on       = ext4_quota_on,
1399         .quota_off      = ext4_quota_off,
1400         .quota_sync     = dquot_quota_sync,
1401         .get_state      = dquot_get_state,
1402         .set_info       = dquot_set_dqinfo,
1403         .get_dqblk      = dquot_get_dqblk,
1404         .set_dqblk      = dquot_set_dqblk,
1405         .get_nextdqblk  = dquot_get_next_dqblk,
1406 };
1407 #endif
1408
1409 static const struct super_operations ext4_sops = {
1410         .alloc_inode    = ext4_alloc_inode,
1411         .free_inode     = ext4_free_in_core_inode,
1412         .destroy_inode  = ext4_destroy_inode,
1413         .write_inode    = ext4_write_inode,
1414         .dirty_inode    = ext4_dirty_inode,
1415         .drop_inode     = ext4_drop_inode,
1416         .evict_inode    = ext4_evict_inode,
1417         .put_super      = ext4_put_super,
1418         .sync_fs        = ext4_sync_fs,
1419         .freeze_fs      = ext4_freeze,
1420         .unfreeze_fs    = ext4_unfreeze,
1421         .statfs         = ext4_statfs,
1422         .remount_fs     = ext4_remount,
1423         .show_options   = ext4_show_options,
1424 #ifdef CONFIG_QUOTA
1425         .quota_read     = ext4_quota_read,
1426         .quota_write    = ext4_quota_write,
1427         .get_dquots     = ext4_get_dquots,
1428 #endif
1429         .bdev_try_to_free_page = bdev_try_to_free_page,
1430 };
1431
1432 static const struct export_operations ext4_export_ops = {
1433         .fh_to_dentry = ext4_fh_to_dentry,
1434         .fh_to_parent = ext4_fh_to_parent,
1435         .get_parent = ext4_get_parent,
1436         .commit_metadata = ext4_nfs_commit_metadata,
1437 };
1438
1439 enum {
1440         Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1441         Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1442         Opt_nouid32, Opt_debug, Opt_removed,
1443         Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1444         Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1445         Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1446         Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1447         Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1448         Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1449         Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1450         Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1451         Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1452         Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1453         Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1454         Opt_nowarn_on_error, Opt_mblk_io_submit,
1455         Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1456         Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1457         Opt_inode_readahead_blks, Opt_journal_ioprio,
1458         Opt_dioread_nolock, Opt_dioread_lock,
1459         Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1460         Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1461 };
1462
1463 static const match_table_t tokens = {
1464         {Opt_bsd_df, "bsddf"},
1465         {Opt_minix_df, "minixdf"},
1466         {Opt_grpid, "grpid"},
1467         {Opt_grpid, "bsdgroups"},
1468         {Opt_nogrpid, "nogrpid"},
1469         {Opt_nogrpid, "sysvgroups"},
1470         {Opt_resgid, "resgid=%u"},
1471         {Opt_resuid, "resuid=%u"},
1472         {Opt_sb, "sb=%u"},
1473         {Opt_err_cont, "errors=continue"},
1474         {Opt_err_panic, "errors=panic"},
1475         {Opt_err_ro, "errors=remount-ro"},
1476         {Opt_nouid32, "nouid32"},
1477         {Opt_debug, "debug"},
1478         {Opt_removed, "oldalloc"},
1479         {Opt_removed, "orlov"},
1480         {Opt_user_xattr, "user_xattr"},
1481         {Opt_nouser_xattr, "nouser_xattr"},
1482         {Opt_acl, "acl"},
1483         {Opt_noacl, "noacl"},
1484         {Opt_noload, "norecovery"},
1485         {Opt_noload, "noload"},
1486         {Opt_removed, "nobh"},
1487         {Opt_removed, "bh"},
1488         {Opt_commit, "commit=%u"},
1489         {Opt_min_batch_time, "min_batch_time=%u"},
1490         {Opt_max_batch_time, "max_batch_time=%u"},
1491         {Opt_journal_dev, "journal_dev=%u"},
1492         {Opt_journal_path, "journal_path=%s"},
1493         {Opt_journal_checksum, "journal_checksum"},
1494         {Opt_nojournal_checksum, "nojournal_checksum"},
1495         {Opt_journal_async_commit, "journal_async_commit"},
1496         {Opt_abort, "abort"},
1497         {Opt_data_journal, "data=journal"},
1498         {Opt_data_ordered, "data=ordered"},
1499         {Opt_data_writeback, "data=writeback"},
1500         {Opt_data_err_abort, "data_err=abort"},
1501         {Opt_data_err_ignore, "data_err=ignore"},
1502         {Opt_offusrjquota, "usrjquota="},
1503         {Opt_usrjquota, "usrjquota=%s"},
1504         {Opt_offgrpjquota, "grpjquota="},
1505         {Opt_grpjquota, "grpjquota=%s"},
1506         {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1507         {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1508         {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1509         {Opt_grpquota, "grpquota"},
1510         {Opt_noquota, "noquota"},
1511         {Opt_quota, "quota"},
1512         {Opt_usrquota, "usrquota"},
1513         {Opt_prjquota, "prjquota"},
1514         {Opt_barrier, "barrier=%u"},
1515         {Opt_barrier, "barrier"},
1516         {Opt_nobarrier, "nobarrier"},
1517         {Opt_i_version, "i_version"},
1518         {Opt_dax, "dax"},
1519         {Opt_stripe, "stripe=%u"},
1520         {Opt_delalloc, "delalloc"},
1521         {Opt_warn_on_error, "warn_on_error"},
1522         {Opt_nowarn_on_error, "nowarn_on_error"},
1523         {Opt_lazytime, "lazytime"},
1524         {Opt_nolazytime, "nolazytime"},
1525         {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1526         {Opt_nodelalloc, "nodelalloc"},
1527         {Opt_removed, "mblk_io_submit"},
1528         {Opt_removed, "nomblk_io_submit"},
1529         {Opt_block_validity, "block_validity"},
1530         {Opt_noblock_validity, "noblock_validity"},
1531         {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1532         {Opt_journal_ioprio, "journal_ioprio=%u"},
1533         {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1534         {Opt_auto_da_alloc, "auto_da_alloc"},
1535         {Opt_noauto_da_alloc, "noauto_da_alloc"},
1536         {Opt_dioread_nolock, "dioread_nolock"},
1537         {Opt_dioread_lock, "dioread_lock"},
1538         {Opt_discard, "discard"},
1539         {Opt_nodiscard, "nodiscard"},
1540         {Opt_init_itable, "init_itable=%u"},
1541         {Opt_init_itable, "init_itable"},
1542         {Opt_noinit_itable, "noinit_itable"},
1543         {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1544         {Opt_test_dummy_encryption, "test_dummy_encryption"},
1545         {Opt_nombcache, "nombcache"},
1546         {Opt_nombcache, "no_mbcache"},  /* for backward compatibility */
1547         {Opt_removed, "check=none"},    /* mount option from ext2/3 */
1548         {Opt_removed, "nocheck"},       /* mount option from ext2/3 */
1549         {Opt_removed, "reservation"},   /* mount option from ext2/3 */
1550         {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1551         {Opt_removed, "journal=%u"},    /* mount option from ext2/3 */
1552         {Opt_err, NULL},
1553 };
1554
1555 static ext4_fsblk_t get_sb_block(void **data)
1556 {
1557         ext4_fsblk_t    sb_block;
1558         char            *options = (char *) *data;
1559
1560         if (!options || strncmp(options, "sb=", 3) != 0)
1561                 return 1;       /* Default location */
1562
1563         options += 3;
1564         /* TODO: use simple_strtoll with >32bit ext4 */
1565         sb_block = simple_strtoul(options, &options, 0);
1566         if (*options && *options != ',') {
1567                 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1568                        (char *) *data);
1569                 return 1;
1570         }
1571         if (*options == ',')
1572                 options++;
1573         *data = (void *) options;
1574
1575         return sb_block;
1576 }
1577
1578 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1579 static const char deprecated_msg[] =
1580         "Mount option \"%s\" will be removed by %s\n"
1581         "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1582
1583 #ifdef CONFIG_QUOTA
1584 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1585 {
1586         struct ext4_sb_info *sbi = EXT4_SB(sb);
1587         char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1588         int ret = -1;
1589
1590         if (sb_any_quota_loaded(sb) && !old_qname) {
1591                 ext4_msg(sb, KERN_ERR,
1592                         "Cannot change journaled "
1593                         "quota options when quota turned on");
1594                 return -1;
1595         }
1596         if (ext4_has_feature_quota(sb)) {
1597                 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1598                          "ignored when QUOTA feature is enabled");
1599                 return 1;
1600         }
1601         qname = match_strdup(args);
1602         if (!qname) {
1603                 ext4_msg(sb, KERN_ERR,
1604                         "Not enough memory for storing quotafile name");
1605                 return -1;
1606         }
1607         if (old_qname) {
1608                 if (strcmp(old_qname, qname) == 0)
1609                         ret = 1;
1610                 else
1611                         ext4_msg(sb, KERN_ERR,
1612                                  "%s quota file already specified",
1613                                  QTYPE2NAME(qtype));
1614                 goto errout;
1615         }
1616         if (strchr(qname, '/')) {
1617                 ext4_msg(sb, KERN_ERR,
1618                         "quotafile must be on filesystem root");
1619                 goto errout;
1620         }
1621         rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1622         set_opt(sb, QUOTA);
1623         return 1;
1624 errout:
1625         kfree(qname);
1626         return ret;
1627 }
1628
1629 static int clear_qf_name(struct super_block *sb, int qtype)
1630 {
1631
1632         struct ext4_sb_info *sbi = EXT4_SB(sb);
1633         char *old_qname = get_qf_name(sb, sbi, qtype);
1634
1635         if (sb_any_quota_loaded(sb) && old_qname) {
1636                 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1637                         " when quota turned on");
1638                 return -1;
1639         }
1640         rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1641         synchronize_rcu();
1642         kfree(old_qname);
1643         return 1;
1644 }
1645 #endif
1646
1647 #define MOPT_SET        0x0001
1648 #define MOPT_CLEAR      0x0002
1649 #define MOPT_NOSUPPORT  0x0004
1650 #define MOPT_EXPLICIT   0x0008
1651 #define MOPT_CLEAR_ERR  0x0010
1652 #define MOPT_GTE0       0x0020
1653 #ifdef CONFIG_QUOTA
1654 #define MOPT_Q          0
1655 #define MOPT_QFMT       0x0040
1656 #else
1657 #define MOPT_Q          MOPT_NOSUPPORT
1658 #define MOPT_QFMT       MOPT_NOSUPPORT
1659 #endif
1660 #define MOPT_DATAJ      0x0080
1661 #define MOPT_NO_EXT2    0x0100
1662 #define MOPT_NO_EXT3    0x0200
1663 #define MOPT_EXT4_ONLY  (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1664 #define MOPT_STRING     0x0400
1665
1666 static const struct mount_opts {
1667         int     token;
1668         int     mount_opt;
1669         int     flags;
1670 } ext4_mount_opts[] = {
1671         {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1672         {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1673         {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1674         {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1675         {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1676         {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1677         {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1678          MOPT_EXT4_ONLY | MOPT_SET},
1679         {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1680          MOPT_EXT4_ONLY | MOPT_CLEAR},
1681         {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1682         {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1683         {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1684          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1685         {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1686          MOPT_EXT4_ONLY | MOPT_CLEAR},
1687         {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1688         {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1689         {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1690          MOPT_EXT4_ONLY | MOPT_CLEAR},
1691         {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1692          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1693         {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1694                                     EXT4_MOUNT_JOURNAL_CHECKSUM),
1695          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1696         {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1697         {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1698         {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1699         {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1700         {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1701          MOPT_NO_EXT2},
1702         {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1703          MOPT_NO_EXT2},
1704         {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1705         {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1706         {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1707         {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1708         {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1709         {Opt_commit, 0, MOPT_GTE0},
1710         {Opt_max_batch_time, 0, MOPT_GTE0},
1711         {Opt_min_batch_time, 0, MOPT_GTE0},
1712         {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1713         {Opt_init_itable, 0, MOPT_GTE0},
1714         {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1715         {Opt_stripe, 0, MOPT_GTE0},
1716         {Opt_resuid, 0, MOPT_GTE0},
1717         {Opt_resgid, 0, MOPT_GTE0},
1718         {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1719         {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1720         {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1721         {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1722         {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1723         {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1724          MOPT_NO_EXT2 | MOPT_DATAJ},
1725         {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1726         {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1727 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1728         {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1729         {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1730 #else
1731         {Opt_acl, 0, MOPT_NOSUPPORT},
1732         {Opt_noacl, 0, MOPT_NOSUPPORT},
1733 #endif
1734         {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1735         {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1736         {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1737         {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1738         {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1739                                                         MOPT_SET | MOPT_Q},
1740         {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1741                                                         MOPT_SET | MOPT_Q},
1742         {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1743                                                         MOPT_SET | MOPT_Q},
1744         {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1745                        EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1746                                                         MOPT_CLEAR | MOPT_Q},
1747         {Opt_usrjquota, 0, MOPT_Q},
1748         {Opt_grpjquota, 0, MOPT_Q},
1749         {Opt_offusrjquota, 0, MOPT_Q},
1750         {Opt_offgrpjquota, 0, MOPT_Q},
1751         {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1752         {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1753         {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1754         {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1755         {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1756         {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1757         {Opt_err, 0, 0}
1758 };
1759
1760 #ifdef CONFIG_UNICODE
1761 static const struct ext4_sb_encodings {
1762         __u16 magic;
1763         char *name;
1764         char *version;
1765 } ext4_sb_encoding_map[] = {
1766         {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
1767 };
1768
1769 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
1770                                  const struct ext4_sb_encodings **encoding,
1771                                  __u16 *flags)
1772 {
1773         __u16 magic = le16_to_cpu(es->s_encoding);
1774         int i;
1775
1776         for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1777                 if (magic == ext4_sb_encoding_map[i].magic)
1778                         break;
1779
1780         if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
1781                 return -EINVAL;
1782
1783         *encoding = &ext4_sb_encoding_map[i];
1784         *flags = le16_to_cpu(es->s_encoding_flags);
1785
1786         return 0;
1787 }
1788 #endif
1789
1790 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1791                             substring_t *args, unsigned long *journal_devnum,
1792                             unsigned int *journal_ioprio, int is_remount)
1793 {
1794         struct ext4_sb_info *sbi = EXT4_SB(sb);
1795         const struct mount_opts *m;
1796         kuid_t uid;
1797         kgid_t gid;
1798         int arg = 0;
1799
1800 #ifdef CONFIG_QUOTA
1801         if (token == Opt_usrjquota)
1802                 return set_qf_name(sb, USRQUOTA, &args[0]);
1803         else if (token == Opt_grpjquota)
1804                 return set_qf_name(sb, GRPQUOTA, &args[0]);
1805         else if (token == Opt_offusrjquota)
1806                 return clear_qf_name(sb, USRQUOTA);
1807         else if (token == Opt_offgrpjquota)
1808                 return clear_qf_name(sb, GRPQUOTA);
1809 #endif
1810         switch (token) {
1811         case Opt_noacl:
1812         case Opt_nouser_xattr:
1813                 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1814                 break;
1815         case Opt_sb:
1816                 return 1;       /* handled by get_sb_block() */
1817         case Opt_removed:
1818                 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1819                 return 1;
1820         case Opt_abort:
1821                 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1822                 return 1;
1823         case Opt_i_version:
1824                 sb->s_flags |= SB_I_VERSION;
1825                 return 1;
1826         case Opt_lazytime:
1827                 sb->s_flags |= SB_LAZYTIME;
1828                 return 1;
1829         case Opt_nolazytime:
1830                 sb->s_flags &= ~SB_LAZYTIME;
1831                 return 1;
1832         }
1833
1834         for (m = ext4_mount_opts; m->token != Opt_err; m++)
1835                 if (token == m->token)
1836                         break;
1837
1838         if (m->token == Opt_err) {
1839                 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1840                          "or missing value", opt);
1841                 return -1;
1842         }
1843
1844         if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1845                 ext4_msg(sb, KERN_ERR,
1846                          "Mount option \"%s\" incompatible with ext2", opt);
1847                 return -1;
1848         }
1849         if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1850                 ext4_msg(sb, KERN_ERR,
1851                          "Mount option \"%s\" incompatible with ext3", opt);
1852                 return -1;
1853         }
1854
1855         if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1856                 return -1;
1857         if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1858                 return -1;
1859         if (m->flags & MOPT_EXPLICIT) {
1860                 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1861                         set_opt2(sb, EXPLICIT_DELALLOC);
1862                 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1863                         set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1864                 } else
1865                         return -1;
1866         }
1867         if (m->flags & MOPT_CLEAR_ERR)
1868                 clear_opt(sb, ERRORS_MASK);
1869         if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1870                 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1871                          "options when quota turned on");
1872                 return -1;
1873         }
1874
1875         if (m->flags & MOPT_NOSUPPORT) {
1876                 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1877         } else if (token == Opt_commit) {
1878                 if (arg == 0)
1879                         arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1880                 sbi->s_commit_interval = HZ * arg;
1881         } else if (token == Opt_debug_want_extra_isize) {
1882                 sbi->s_want_extra_isize = arg;
1883         } else if (token == Opt_max_batch_time) {
1884                 sbi->s_max_batch_time = arg;
1885         } else if (token == Opt_min_batch_time) {
1886                 sbi->s_min_batch_time = arg;
1887         } else if (token == Opt_inode_readahead_blks) {
1888                 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1889                         ext4_msg(sb, KERN_ERR,
1890                                  "EXT4-fs: inode_readahead_blks must be "
1891                                  "0 or a power of 2 smaller than 2^31");
1892                         return -1;
1893                 }
1894                 sbi->s_inode_readahead_blks = arg;
1895         } else if (token == Opt_init_itable) {
1896                 set_opt(sb, INIT_INODE_TABLE);
1897                 if (!args->from)
1898                         arg = EXT4_DEF_LI_WAIT_MULT;
1899                 sbi->s_li_wait_mult = arg;
1900         } else if (token == Opt_max_dir_size_kb) {
1901                 sbi->s_max_dir_size_kb = arg;
1902         } else if (token == Opt_stripe) {
1903                 sbi->s_stripe = arg;
1904         } else if (token == Opt_resuid) {
1905                 uid = make_kuid(current_user_ns(), arg);
1906                 if (!uid_valid(uid)) {
1907                         ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1908                         return -1;
1909                 }
1910                 sbi->s_resuid = uid;
1911         } else if (token == Opt_resgid) {
1912                 gid = make_kgid(current_user_ns(), arg);
1913                 if (!gid_valid(gid)) {
1914                         ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1915                         return -1;
1916                 }
1917                 sbi->s_resgid = gid;
1918         } else if (token == Opt_journal_dev) {
1919                 if (is_remount) {
1920                         ext4_msg(sb, KERN_ERR,
1921                                  "Cannot specify journal on remount");
1922                         return -1;
1923                 }
1924                 *journal_devnum = arg;
1925         } else if (token == Opt_journal_path) {
1926                 char *journal_path;
1927                 struct inode *journal_inode;
1928                 struct path path;
1929                 int error;
1930
1931                 if (is_remount) {
1932                         ext4_msg(sb, KERN_ERR,
1933                                  "Cannot specify journal on remount");
1934                         return -1;
1935                 }
1936                 journal_path = match_strdup(&args[0]);
1937                 if (!journal_path) {
1938                         ext4_msg(sb, KERN_ERR, "error: could not dup "
1939                                 "journal device string");
1940                         return -1;
1941                 }
1942
1943                 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1944                 if (error) {
1945                         ext4_msg(sb, KERN_ERR, "error: could not find "
1946                                 "journal device path: error %d", error);
1947                         kfree(journal_path);
1948                         return -1;
1949                 }
1950
1951                 journal_inode = d_inode(path.dentry);
1952                 if (!S_ISBLK(journal_inode->i_mode)) {
1953                         ext4_msg(sb, KERN_ERR, "error: journal path %s "
1954                                 "is not a block device", journal_path);
1955                         path_put(&path);
1956                         kfree(journal_path);
1957                         return -1;
1958                 }
1959
1960                 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1961                 path_put(&path);
1962                 kfree(journal_path);
1963         } else if (token == Opt_journal_ioprio) {
1964                 if (arg > 7) {
1965                         ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1966                                  " (must be 0-7)");
1967                         return -1;
1968                 }
1969                 *journal_ioprio =
1970                         IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1971         } else if (token == Opt_test_dummy_encryption) {
1972 #ifdef CONFIG_FS_ENCRYPTION
1973                 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1974                 ext4_msg(sb, KERN_WARNING,
1975                          "Test dummy encryption mode enabled");
1976 #else
1977                 ext4_msg(sb, KERN_WARNING,
1978                          "Test dummy encryption mount option ignored");
1979 #endif
1980         } else if (m->flags & MOPT_DATAJ) {
1981                 if (is_remount) {
1982                         if (!sbi->s_journal)
1983                                 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1984                         else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1985                                 ext4_msg(sb, KERN_ERR,
1986                                          "Cannot change data mode on remount");
1987                                 return -1;
1988                         }
1989                 } else {
1990                         clear_opt(sb, DATA_FLAGS);
1991                         sbi->s_mount_opt |= m->mount_opt;
1992                 }
1993 #ifdef CONFIG_QUOTA
1994         } else if (m->flags & MOPT_QFMT) {
1995                 if (sb_any_quota_loaded(sb) &&
1996                     sbi->s_jquota_fmt != m->mount_opt) {
1997                         ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1998                                  "quota options when quota turned on");
1999                         return -1;
2000                 }
2001                 if (ext4_has_feature_quota(sb)) {
2002                         ext4_msg(sb, KERN_INFO,
2003                                  "Quota format mount options ignored "
2004                                  "when QUOTA feature is enabled");
2005                         return 1;
2006                 }
2007                 sbi->s_jquota_fmt = m->mount_opt;
2008 #endif
2009         } else if (token == Opt_dax) {
2010 #ifdef CONFIG_FS_DAX
2011                 ext4_msg(sb, KERN_WARNING,
2012                 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2013                 sbi->s_mount_opt |= m->mount_opt;
2014 #else
2015                 ext4_msg(sb, KERN_INFO, "dax option not supported");
2016                 return -1;
2017 #endif
2018         } else if (token == Opt_data_err_abort) {
2019                 sbi->s_mount_opt |= m->mount_opt;
2020         } else if (token == Opt_data_err_ignore) {
2021                 sbi->s_mount_opt &= ~m->mount_opt;
2022         } else {
2023                 if (!args->from)
2024                         arg = 1;
2025                 if (m->flags & MOPT_CLEAR)
2026                         arg = !arg;
2027                 else if (unlikely(!(m->flags & MOPT_SET))) {
2028                         ext4_msg(sb, KERN_WARNING,
2029                                  "buggy handling of option %s", opt);
2030                         WARN_ON(1);
2031                         return -1;
2032                 }
2033                 if (arg != 0)
2034                         sbi->s_mount_opt |= m->mount_opt;
2035                 else
2036                         sbi->s_mount_opt &= ~m->mount_opt;
2037         }
2038         return 1;
2039 }
2040
2041 static int parse_options(char *options, struct super_block *sb,
2042                          unsigned long *journal_devnum,
2043                          unsigned int *journal_ioprio,
2044                          int is_remount)
2045 {
2046         struct ext4_sb_info *sbi = EXT4_SB(sb);
2047         char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2048         substring_t args[MAX_OPT_ARGS];
2049         int token;
2050
2051         if (!options)
2052                 return 1;
2053
2054         while ((p = strsep(&options, ",")) != NULL) {
2055                 if (!*p)
2056                         continue;
2057                 /*
2058                  * Initialize args struct so we know whether arg was
2059                  * found; some options take optional arguments.
2060                  */
2061                 args[0].to = args[0].from = NULL;
2062                 token = match_token(p, tokens, args);
2063                 if (handle_mount_opt(sb, p, token, args, journal_devnum,
2064                                      journal_ioprio, is_remount) < 0)
2065                         return 0;
2066         }
2067 #ifdef CONFIG_QUOTA
2068         /*
2069          * We do the test below only for project quotas. 'usrquota' and
2070          * 'grpquota' mount options are allowed even without quota feature
2071          * to support legacy quotas in quota files.
2072          */
2073         if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2074                 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2075                          "Cannot enable project quota enforcement.");
2076                 return 0;
2077         }
2078         usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2079         grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2080         if (usr_qf_name || grp_qf_name) {
2081                 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2082                         clear_opt(sb, USRQUOTA);
2083
2084                 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2085                         clear_opt(sb, GRPQUOTA);
2086
2087                 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2088                         ext4_msg(sb, KERN_ERR, "old and new quota "
2089                                         "format mixing");
2090                         return 0;
2091                 }
2092
2093                 if (!sbi->s_jquota_fmt) {
2094                         ext4_msg(sb, KERN_ERR, "journaled quota format "
2095                                         "not specified");
2096                         return 0;
2097                 }
2098         }
2099 #endif
2100         if (test_opt(sb, DIOREAD_NOLOCK)) {
2101                 int blocksize =
2102                         BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2103
2104                 if (blocksize < PAGE_SIZE) {
2105                         ext4_msg(sb, KERN_ERR, "can't mount with "
2106                                  "dioread_nolock if block size != PAGE_SIZE");
2107                         return 0;
2108                 }
2109         }
2110         return 1;
2111 }
2112
2113 static inline void ext4_show_quota_options(struct seq_file *seq,
2114                                            struct super_block *sb)
2115 {
2116 #if defined(CONFIG_QUOTA)
2117         struct ext4_sb_info *sbi = EXT4_SB(sb);
2118         char *usr_qf_name, *grp_qf_name;
2119
2120         if (sbi->s_jquota_fmt) {
2121                 char *fmtname = "";
2122
2123                 switch (sbi->s_jquota_fmt) {
2124                 case QFMT_VFS_OLD:
2125                         fmtname = "vfsold";
2126                         break;
2127                 case QFMT_VFS_V0:
2128                         fmtname = "vfsv0";
2129                         break;
2130                 case QFMT_VFS_V1:
2131                         fmtname = "vfsv1";
2132                         break;
2133                 }
2134                 seq_printf(seq, ",jqfmt=%s", fmtname);
2135         }
2136
2137         rcu_read_lock();
2138         usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2139         grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2140         if (usr_qf_name)
2141                 seq_show_option(seq, "usrjquota", usr_qf_name);
2142         if (grp_qf_name)
2143                 seq_show_option(seq, "grpjquota", grp_qf_name);
2144         rcu_read_unlock();
2145 #endif
2146 }
2147
2148 static const char *token2str(int token)
2149 {
2150         const struct match_token *t;
2151
2152         for (t = tokens; t->token != Opt_err; t++)
2153                 if (t->token == token && !strchr(t->pattern, '='))
2154                         break;
2155         return t->pattern;
2156 }
2157
2158 /*
2159  * Show an option if
2160  *  - it's set to a non-default value OR
2161  *  - if the per-sb default is different from the global default
2162  */
2163 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2164                               int nodefs)
2165 {
2166         struct ext4_sb_info *sbi = EXT4_SB(sb);
2167         struct ext4_super_block *es = sbi->s_es;
2168         int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2169         const struct mount_opts *m;
2170         char sep = nodefs ? '\n' : ',';
2171
2172 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2173 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2174
2175         if (sbi->s_sb_block != 1)
2176                 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2177
2178         for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2179                 int want_set = m->flags & MOPT_SET;
2180                 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2181                     (m->flags & MOPT_CLEAR_ERR))
2182                         continue;
2183                 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2184                         continue; /* skip if same as the default */
2185                 if ((want_set &&
2186                      (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2187                     (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2188                         continue; /* select Opt_noFoo vs Opt_Foo */
2189                 SEQ_OPTS_PRINT("%s", token2str(m->token));
2190         }
2191
2192         if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2193             le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2194                 SEQ_OPTS_PRINT("resuid=%u",
2195                                 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2196         if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2197             le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2198                 SEQ_OPTS_PRINT("resgid=%u",
2199                                 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2200         def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2201         if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2202                 SEQ_OPTS_PUTS("errors=remount-ro");
2203         if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2204                 SEQ_OPTS_PUTS("errors=continue");
2205         if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2206                 SEQ_OPTS_PUTS("errors=panic");
2207         if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2208                 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2209         if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2210                 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2211         if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2212                 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2213         if (sb->s_flags & SB_I_VERSION)
2214                 SEQ_OPTS_PUTS("i_version");
2215         if (nodefs || sbi->s_stripe)
2216                 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2217         if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2218                         (sbi->s_mount_opt ^ def_mount_opt)) {
2219                 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2220                         SEQ_OPTS_PUTS("data=journal");
2221                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2222                         SEQ_OPTS_PUTS("data=ordered");
2223                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2224                         SEQ_OPTS_PUTS("data=writeback");
2225         }
2226         if (nodefs ||
2227             sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2228                 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2229                                sbi->s_inode_readahead_blks);
2230
2231         if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2232                        (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2233                 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2234         if (nodefs || sbi->s_max_dir_size_kb)
2235                 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2236         if (test_opt(sb, DATA_ERR_ABORT))
2237                 SEQ_OPTS_PUTS("data_err=abort");
2238         if (DUMMY_ENCRYPTION_ENABLED(sbi))
2239                 SEQ_OPTS_PUTS("test_dummy_encryption");
2240
2241         ext4_show_quota_options(seq, sb);
2242         return 0;
2243 }
2244
2245 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2246 {
2247         return _ext4_show_options(seq, root->d_sb, 0);
2248 }
2249
2250 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2251 {
2252         struct super_block *sb = seq->private;
2253         int rc;
2254
2255         seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2256         rc = _ext4_show_options(seq, sb, 1);
2257         seq_puts(seq, "\n");
2258         return rc;
2259 }
2260
2261 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2262                             int read_only)
2263 {
2264         struct ext4_sb_info *sbi = EXT4_SB(sb);
2265         int err = 0;
2266
2267         if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2268                 ext4_msg(sb, KERN_ERR, "revision level too high, "
2269                          "forcing read-only mode");
2270                 err = -EROFS;
2271         }
2272         if (read_only)
2273                 goto done;
2274         if (!(sbi->s_mount_state & EXT4_VALID_FS))
2275                 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2276                          "running e2fsck is recommended");
2277         else if (sbi->s_mount_state & EXT4_ERROR_FS)
2278                 ext4_msg(sb, KERN_WARNING,
2279                          "warning: mounting fs with errors, "
2280                          "running e2fsck is recommended");
2281         else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2282                  le16_to_cpu(es->s_mnt_count) >=
2283                  (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2284                 ext4_msg(sb, KERN_WARNING,
2285                          "warning: maximal mount count reached, "
2286                          "running e2fsck is recommended");
2287         else if (le32_to_cpu(es->s_checkinterval) &&
2288                  (ext4_get_tstamp(es, s_lastcheck) +
2289                   le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2290                 ext4_msg(sb, KERN_WARNING,
2291                          "warning: checktime reached, "
2292                          "running e2fsck is recommended");
2293         if (!sbi->s_journal)
2294                 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2295         if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2296                 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2297         le16_add_cpu(&es->s_mnt_count, 1);
2298         ext4_update_tstamp(es, s_mtime);
2299         if (sbi->s_journal)
2300                 ext4_set_feature_journal_needs_recovery(sb);
2301
2302         err = ext4_commit_super(sb, 1);
2303 done:
2304         if (test_opt(sb, DEBUG))
2305                 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2306                                 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2307                         sb->s_blocksize,
2308                         sbi->s_groups_count,
2309                         EXT4_BLOCKS_PER_GROUP(sb),
2310                         EXT4_INODES_PER_GROUP(sb),
2311                         sbi->s_mount_opt, sbi->s_mount_opt2);
2312
2313         cleancache_init_fs(sb);
2314         return err;
2315 }
2316
2317 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2318 {
2319         struct ext4_sb_info *sbi = EXT4_SB(sb);
2320         struct flex_groups *new_groups;
2321         int size;
2322
2323         if (!sbi->s_log_groups_per_flex)
2324                 return 0;
2325
2326         size = ext4_flex_group(sbi, ngroup - 1) + 1;
2327         if (size <= sbi->s_flex_groups_allocated)
2328                 return 0;
2329
2330         size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2331         new_groups = kvzalloc(size, GFP_KERNEL);
2332         if (!new_groups) {
2333                 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2334                          size / (int) sizeof(struct flex_groups));
2335                 return -ENOMEM;
2336         }
2337
2338         if (sbi->s_flex_groups) {
2339                 memcpy(new_groups, sbi->s_flex_groups,
2340                        (sbi->s_flex_groups_allocated *
2341                         sizeof(struct flex_groups)));
2342                 kvfree(sbi->s_flex_groups);
2343         }
2344         sbi->s_flex_groups = new_groups;
2345         sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2346         return 0;
2347 }
2348
2349 static int ext4_fill_flex_info(struct super_block *sb)
2350 {
2351         struct ext4_sb_info *sbi = EXT4_SB(sb);
2352         struct ext4_group_desc *gdp = NULL;
2353         ext4_group_t flex_group;
2354         int i, err;
2355
2356         sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2357         if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2358                 sbi->s_log_groups_per_flex = 0;
2359                 return 1;
2360         }
2361
2362         err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2363         if (err)
2364                 goto failed;
2365
2366         for (i = 0; i < sbi->s_groups_count; i++) {
2367                 gdp = ext4_get_group_desc(sb, i, NULL);
2368
2369                 flex_group = ext4_flex_group(sbi, i);
2370                 atomic_add(ext4_free_inodes_count(sb, gdp),
2371                            &sbi->s_flex_groups[flex_group].free_inodes);
2372                 atomic64_add(ext4_free_group_clusters(sb, gdp),
2373                              &sbi->s_flex_groups[flex_group].free_clusters);
2374                 atomic_add(ext4_used_dirs_count(sb, gdp),
2375                            &sbi->s_flex_groups[flex_group].used_dirs);
2376         }
2377
2378         return 1;
2379 failed:
2380         return 0;
2381 }
2382
2383 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2384                                    struct ext4_group_desc *gdp)
2385 {
2386         int offset = offsetof(struct ext4_group_desc, bg_checksum);
2387         __u16 crc = 0;
2388         __le32 le_group = cpu_to_le32(block_group);
2389         struct ext4_sb_info *sbi = EXT4_SB(sb);
2390
2391         if (ext4_has_metadata_csum(sbi->s_sb)) {
2392                 /* Use new metadata_csum algorithm */
2393                 __u32 csum32;
2394                 __u16 dummy_csum = 0;
2395
2396                 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2397                                      sizeof(le_group));
2398                 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2399                 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2400                                      sizeof(dummy_csum));
2401                 offset += sizeof(dummy_csum);
2402                 if (offset < sbi->s_desc_size)
2403                         csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2404                                              sbi->s_desc_size - offset);
2405
2406                 crc = csum32 & 0xFFFF;
2407                 goto out;
2408         }
2409
2410         /* old crc16 code */
2411         if (!ext4_has_feature_gdt_csum(sb))
2412                 return 0;
2413
2414         crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2415         crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2416         crc = crc16(crc, (__u8 *)gdp, offset);
2417         offset += sizeof(gdp->bg_checksum); /* skip checksum */
2418         /* for checksum of struct ext4_group_desc do the rest...*/
2419         if (ext4_has_feature_64bit(sb) &&
2420             offset < le16_to_cpu(sbi->s_es->s_desc_size))
2421                 crc = crc16(crc, (__u8 *)gdp + offset,
2422                             le16_to_cpu(sbi->s_es->s_desc_size) -
2423                                 offset);
2424
2425 out:
2426         return cpu_to_le16(crc);
2427 }
2428
2429 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2430                                 struct ext4_group_desc *gdp)
2431 {
2432         if (ext4_has_group_desc_csum(sb) &&
2433             (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2434                 return 0;
2435
2436         return 1;
2437 }
2438
2439 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2440                               struct ext4_group_desc *gdp)
2441 {
2442         if (!ext4_has_group_desc_csum(sb))
2443                 return;
2444         gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2445 }
2446
2447 /* Called at mount-time, super-block is locked */
2448 static int ext4_check_descriptors(struct super_block *sb,
2449                                   ext4_fsblk_t sb_block,
2450                                   ext4_group_t *first_not_zeroed)
2451 {
2452         struct ext4_sb_info *sbi = EXT4_SB(sb);
2453         ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2454         ext4_fsblk_t last_block;
2455         ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2456         ext4_fsblk_t block_bitmap;
2457         ext4_fsblk_t inode_bitmap;
2458         ext4_fsblk_t inode_table;
2459         int flexbg_flag = 0;
2460         ext4_group_t i, grp = sbi->s_groups_count;
2461
2462         if (ext4_has_feature_flex_bg(sb))
2463                 flexbg_flag = 1;
2464
2465         ext4_debug("Checking group descriptors");
2466
2467         for (i = 0; i < sbi->s_groups_count; i++) {
2468                 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2469
2470                 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2471                         last_block = ext4_blocks_count(sbi->s_es) - 1;
2472                 else
2473                         last_block = first_block +
2474                                 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2475
2476                 if ((grp == sbi->s_groups_count) &&
2477                    !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2478                         grp = i;
2479
2480                 block_bitmap = ext4_block_bitmap(sb, gdp);
2481                 if (block_bitmap == sb_block) {
2482                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2483                                  "Block bitmap for group %u overlaps "
2484                                  "superblock", i);
2485                         if (!sb_rdonly(sb))
2486                                 return 0;
2487                 }
2488                 if (block_bitmap >= sb_block + 1 &&
2489                     block_bitmap <= last_bg_block) {
2490                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2491                                  "Block bitmap for group %u overlaps "
2492                                  "block group descriptors", i);
2493                         if (!sb_rdonly(sb))
2494                                 return 0;
2495                 }
2496                 if (block_bitmap < first_block || block_bitmap > last_block) {
2497                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2498                                "Block bitmap for group %u not in group "
2499                                "(block %llu)!", i, block_bitmap);
2500                         return 0;
2501                 }
2502                 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2503                 if (inode_bitmap == sb_block) {
2504                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2505                                  "Inode bitmap for group %u overlaps "
2506                                  "superblock", i);
2507                         if (!sb_rdonly(sb))
2508                                 return 0;
2509                 }
2510                 if (inode_bitmap >= sb_block + 1 &&
2511                     inode_bitmap <= last_bg_block) {
2512                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2513                                  "Inode bitmap for group %u overlaps "
2514                                  "block group descriptors", i);
2515                         if (!sb_rdonly(sb))
2516                                 return 0;
2517                 }
2518                 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2519                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2520                                "Inode bitmap for group %u not in group "
2521                                "(block %llu)!", i, inode_bitmap);
2522                         return 0;
2523                 }
2524                 inode_table = ext4_inode_table(sb, gdp);
2525                 if (inode_table == sb_block) {
2526                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2527                                  "Inode table for group %u overlaps "
2528                                  "superblock", i);
2529                         if (!sb_rdonly(sb))
2530                                 return 0;
2531                 }
2532                 if (inode_table >= sb_block + 1 &&
2533                     inode_table <= last_bg_block) {
2534                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2535                                  "Inode table for group %u overlaps "
2536                                  "block group descriptors", i);
2537                         if (!sb_rdonly(sb))
2538                                 return 0;
2539                 }
2540                 if (inode_table < first_block ||
2541                     inode_table + sbi->s_itb_per_group - 1 > last_block) {
2542                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2543                                "Inode table for group %u not in group "
2544                                "(block %llu)!", i, inode_table);
2545                         return 0;
2546                 }
2547                 ext4_lock_group(sb, i);
2548                 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2549                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2550                                  "Checksum for group %u failed (%u!=%u)",
2551                                  i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2552                                      gdp)), le16_to_cpu(gdp->bg_checksum));
2553                         if (!sb_rdonly(sb)) {
2554                                 ext4_unlock_group(sb, i);
2555                                 return 0;
2556                         }
2557                 }
2558                 ext4_unlock_group(sb, i);
2559                 if (!flexbg_flag)
2560                         first_block += EXT4_BLOCKS_PER_GROUP(sb);
2561         }
2562         if (NULL != first_not_zeroed)
2563                 *first_not_zeroed = grp;
2564         return 1;
2565 }
2566
2567 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2568  * the superblock) which were deleted from all directories, but held open by
2569  * a process at the time of a crash.  We walk the list and try to delete these
2570  * inodes at recovery time (only with a read-write filesystem).
2571  *
2572  * In order to keep the orphan inode chain consistent during traversal (in
2573  * case of crash during recovery), we link each inode into the superblock
2574  * orphan list_head and handle it the same way as an inode deletion during
2575  * normal operation (which journals the operations for us).
2576  *
2577  * We only do an iget() and an iput() on each inode, which is very safe if we
2578  * accidentally point at an in-use or already deleted inode.  The worst that
2579  * can happen in this case is that we get a "bit already cleared" message from
2580  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2581  * e2fsck was run on this filesystem, and it must have already done the orphan
2582  * inode cleanup for us, so we can safely abort without any further action.
2583  */
2584 static void ext4_orphan_cleanup(struct super_block *sb,
2585                                 struct ext4_super_block *es)
2586 {
2587         unsigned int s_flags = sb->s_flags;
2588         int ret, nr_orphans = 0, nr_truncates = 0;
2589 #ifdef CONFIG_QUOTA
2590         int quota_update = 0;
2591         int i;
2592 #endif
2593         if (!es->s_last_orphan) {
2594                 jbd_debug(4, "no orphan inodes to clean up\n");
2595                 return;
2596         }
2597
2598         if (bdev_read_only(sb->s_bdev)) {
2599                 ext4_msg(sb, KERN_ERR, "write access "
2600                         "unavailable, skipping orphan cleanup");
2601                 return;
2602         }
2603
2604         /* Check if feature set would not allow a r/w mount */
2605         if (!ext4_feature_set_ok(sb, 0)) {
2606                 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2607                          "unknown ROCOMPAT features");
2608                 return;
2609         }
2610
2611         if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2612                 /* don't clear list on RO mount w/ errors */
2613                 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2614                         ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2615                                   "clearing orphan list.\n");
2616                         es->s_last_orphan = 0;
2617                 }
2618                 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2619                 return;
2620         }
2621
2622         if (s_flags & SB_RDONLY) {
2623                 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2624                 sb->s_flags &= ~SB_RDONLY;
2625         }
2626 #ifdef CONFIG_QUOTA
2627         /* Needed for iput() to work correctly and not trash data */
2628         sb->s_flags |= SB_ACTIVE;
2629
2630         /*
2631          * Turn on quotas which were not enabled for read-only mounts if
2632          * filesystem has quota feature, so that they are updated correctly.
2633          */
2634         if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2635                 int ret = ext4_enable_quotas(sb);
2636
2637                 if (!ret)
2638                         quota_update = 1;
2639                 else
2640                         ext4_msg(sb, KERN_ERR,
2641                                 "Cannot turn on quotas: error %d", ret);
2642         }
2643
2644         /* Turn on journaled quotas used for old sytle */
2645         for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2646                 if (EXT4_SB(sb)->s_qf_names[i]) {
2647                         int ret = ext4_quota_on_mount(sb, i);
2648
2649                         if (!ret)
2650                                 quota_update = 1;
2651                         else
2652                                 ext4_msg(sb, KERN_ERR,
2653                                         "Cannot turn on journaled "
2654                                         "quota: type %d: error %d", i, ret);
2655                 }
2656         }
2657 #endif
2658
2659         while (es->s_last_orphan) {
2660                 struct inode *inode;
2661
2662                 /*
2663                  * We may have encountered an error during cleanup; if
2664                  * so, skip the rest.
2665                  */
2666                 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2667                         jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2668                         es->s_last_orphan = 0;
2669                         break;
2670                 }
2671
2672                 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2673                 if (IS_ERR(inode)) {
2674                         es->s_last_orphan = 0;
2675                         break;
2676                 }
2677
2678                 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2679                 dquot_initialize(inode);
2680                 if (inode->i_nlink) {
2681                         if (test_opt(sb, DEBUG))
2682                                 ext4_msg(sb, KERN_DEBUG,
2683                                         "%s: truncating inode %lu to %lld bytes",
2684                                         __func__, inode->i_ino, inode->i_size);
2685                         jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2686                                   inode->i_ino, inode->i_size);
2687                         inode_lock(inode);
2688                         truncate_inode_pages(inode->i_mapping, inode->i_size);
2689                         ret = ext4_truncate(inode);
2690                         if (ret)
2691                                 ext4_std_error(inode->i_sb, ret);
2692                         inode_unlock(inode);
2693                         nr_truncates++;
2694                 } else {
2695                         if (test_opt(sb, DEBUG))
2696                                 ext4_msg(sb, KERN_DEBUG,
2697                                         "%s: deleting unreferenced inode %lu",
2698                                         __func__, inode->i_ino);
2699                         jbd_debug(2, "deleting unreferenced inode %lu\n",
2700                                   inode->i_ino);
2701                         nr_orphans++;
2702                 }
2703                 iput(inode);  /* The delete magic happens here! */
2704         }
2705
2706 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2707
2708         if (nr_orphans)
2709                 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2710                        PLURAL(nr_orphans));
2711         if (nr_truncates)
2712                 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2713                        PLURAL(nr_truncates));
2714 #ifdef CONFIG_QUOTA
2715         /* Turn off quotas if they were enabled for orphan cleanup */
2716         if (quota_update) {
2717                 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2718                         if (sb_dqopt(sb)->files[i])
2719                                 dquot_quota_off(sb, i);
2720                 }
2721         }
2722 #endif
2723         sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2724 }
2725
2726 /*
2727  * Maximal extent format file size.
2728  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2729  * extent format containers, within a sector_t, and within i_blocks
2730  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2731  * so that won't be a limiting factor.
2732  *
2733  * However there is other limiting factor. We do store extents in the form
2734  * of starting block and length, hence the resulting length of the extent
2735  * covering maximum file size must fit into on-disk format containers as
2736  * well. Given that length is always by 1 unit bigger than max unit (because
2737  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2738  *
2739  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2740  */
2741 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2742 {
2743         loff_t res;
2744         loff_t upper_limit = MAX_LFS_FILESIZE;
2745
2746         BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
2747
2748         if (!has_huge_files) {
2749                 upper_limit = (1LL << 32) - 1;
2750
2751                 /* total blocks in file system block size */
2752                 upper_limit >>= (blkbits - 9);
2753                 upper_limit <<= blkbits;
2754         }
2755
2756         /*
2757          * 32-bit extent-start container, ee_block. We lower the maxbytes
2758          * by one fs block, so ee_len can cover the extent of maximum file
2759          * size
2760          */
2761         res = (1LL << 32) - 1;
2762         res <<= blkbits;
2763
2764         /* Sanity check against vm- & vfs- imposed limits */
2765         if (res > upper_limit)
2766                 res = upper_limit;
2767
2768         return res;
2769 }
2770
2771 /*
2772  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2773  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2774  * We need to be 1 filesystem block less than the 2^48 sector limit.
2775  */
2776 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2777 {
2778         loff_t res = EXT4_NDIR_BLOCKS;
2779         int meta_blocks;
2780         loff_t upper_limit;
2781         /* This is calculated to be the largest file size for a dense, block
2782          * mapped file such that the file's total number of 512-byte sectors,
2783          * including data and all indirect blocks, does not exceed (2^48 - 1).
2784          *
2785          * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2786          * number of 512-byte sectors of the file.
2787          */
2788
2789         if (!has_huge_files) {
2790                 /*
2791                  * !has_huge_files or implies that the inode i_block field
2792                  * represents total file blocks in 2^32 512-byte sectors ==
2793                  * size of vfs inode i_blocks * 8
2794                  */
2795                 upper_limit = (1LL << 32) - 1;
2796
2797                 /* total blocks in file system block size */
2798                 upper_limit >>= (bits - 9);
2799
2800         } else {
2801                 /*
2802                  * We use 48 bit ext4_inode i_blocks
2803                  * With EXT4_HUGE_FILE_FL set the i_blocks
2804                  * represent total number of blocks in
2805                  * file system block size
2806                  */
2807                 upper_limit = (1LL << 48) - 1;
2808
2809         }
2810
2811         /* indirect blocks */
2812         meta_blocks = 1;
2813         /* double indirect blocks */
2814         meta_blocks += 1 + (1LL << (bits-2));
2815         /* tripple indirect blocks */
2816         meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2817
2818         upper_limit -= meta_blocks;
2819         upper_limit <<= bits;
2820
2821         res += 1LL << (bits-2);
2822         res += 1LL << (2*(bits-2));
2823         res += 1LL << (3*(bits-2));
2824         res <<= bits;
2825         if (res > upper_limit)
2826                 res = upper_limit;
2827
2828         if (res > MAX_LFS_FILESIZE)
2829                 res = MAX_LFS_FILESIZE;
2830
2831         return res;
2832 }
2833
2834 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2835                                    ext4_fsblk_t logical_sb_block, int nr)
2836 {
2837         struct ext4_sb_info *sbi = EXT4_SB(sb);
2838         ext4_group_t bg, first_meta_bg;
2839         int has_super = 0;
2840
2841         first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2842
2843         if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2844                 return logical_sb_block + nr + 1;
2845         bg = sbi->s_desc_per_block * nr;
2846         if (ext4_bg_has_super(sb, bg))
2847                 has_super = 1;
2848
2849         /*
2850          * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2851          * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
2852          * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2853          * compensate.
2854          */
2855         if (sb->s_blocksize == 1024 && nr == 0 &&
2856             le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2857                 has_super++;
2858
2859         return (has_super + ext4_group_first_block_no(sb, bg));
2860 }
2861
2862 /**
2863  * ext4_get_stripe_size: Get the stripe size.
2864  * @sbi: In memory super block info
2865  *
2866  * If we have specified it via mount option, then
2867  * use the mount option value. If the value specified at mount time is
2868  * greater than the blocks per group use the super block value.
2869  * If the super block value is greater than blocks per group return 0.
2870  * Allocator needs it be less than blocks per group.
2871  *
2872  */
2873 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2874 {
2875         unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2876         unsigned long stripe_width =
2877                         le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2878         int ret;
2879
2880         if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2881                 ret = sbi->s_stripe;
2882         else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2883                 ret = stripe_width;
2884         else if (stride && stride <= sbi->s_blocks_per_group)
2885                 ret = stride;
2886         else
2887                 ret = 0;
2888
2889         /*
2890          * If the stripe width is 1, this makes no sense and
2891          * we set it to 0 to turn off stripe handling code.
2892          */
2893         if (ret <= 1)
2894                 ret = 0;
2895
2896         return ret;
2897 }
2898
2899 /*
2900  * Check whether this filesystem can be mounted based on
2901  * the features present and the RDONLY/RDWR mount requested.
2902  * Returns 1 if this filesystem can be mounted as requested,
2903  * 0 if it cannot be.
2904  */
2905 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2906 {
2907         if (ext4_has_unknown_ext4_incompat_features(sb)) {
2908                 ext4_msg(sb, KERN_ERR,
2909                         "Couldn't mount because of "
2910                         "unsupported optional features (%x)",
2911                         (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2912                         ~EXT4_FEATURE_INCOMPAT_SUPP));
2913                 return 0;
2914         }
2915
2916 #ifndef CONFIG_UNICODE
2917         if (ext4_has_feature_casefold(sb)) {
2918                 ext4_msg(sb, KERN_ERR,
2919                          "Filesystem with casefold feature cannot be "
2920                          "mounted without CONFIG_UNICODE");
2921                 return 0;
2922         }
2923 #endif
2924
2925         if (readonly)
2926                 return 1;
2927
2928         if (ext4_has_feature_readonly(sb)) {
2929                 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2930                 sb->s_flags |= SB_RDONLY;
2931                 return 1;
2932         }
2933
2934         /* Check that feature set is OK for a read-write mount */
2935         if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2936                 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2937                          "unsupported optional features (%x)",
2938                          (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2939                                 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2940                 return 0;
2941         }
2942         if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2943                 ext4_msg(sb, KERN_ERR,
2944                          "Can't support bigalloc feature without "
2945                          "extents feature\n");
2946                 return 0;
2947         }
2948
2949 #ifndef CONFIG_QUOTA
2950         if (ext4_has_feature_quota(sb) && !readonly) {
2951                 ext4_msg(sb, KERN_ERR,
2952                          "Filesystem with quota feature cannot be mounted RDWR "
2953                          "without CONFIG_QUOTA");
2954                 return 0;
2955         }
2956         if (ext4_has_feature_project(sb) && !readonly) {
2957                 ext4_msg(sb, KERN_ERR,
2958                          "Filesystem with project quota feature cannot be mounted RDWR "
2959                          "without CONFIG_QUOTA");
2960                 return 0;
2961         }
2962 #endif  /* CONFIG_QUOTA */
2963         return 1;
2964 }
2965
2966 /*
2967  * This function is called once a day if we have errors logged
2968  * on the file system
2969  */
2970 static void print_daily_error_info(struct timer_list *t)
2971 {
2972         struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
2973         struct super_block *sb = sbi->s_sb;
2974         struct ext4_super_block *es = sbi->s_es;
2975
2976         if (es->s_error_count)
2977                 /* fsck newer than v1.41.13 is needed to clean this condition. */
2978                 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2979                          le32_to_cpu(es->s_error_count));
2980         if (es->s_first_error_time) {
2981                 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
2982                        sb->s_id,
2983                        ext4_get_tstamp(es, s_first_error_time),
2984                        (int) sizeof(es->s_first_error_func),
2985                        es->s_first_error_func,
2986                        le32_to_cpu(es->s_first_error_line));
2987                 if (es->s_first_error_ino)
2988                         printk(KERN_CONT ": inode %u",
2989                                le32_to_cpu(es->s_first_error_ino));
2990                 if (es->s_first_error_block)
2991                         printk(KERN_CONT ": block %llu", (unsigned long long)
2992                                le64_to_cpu(es->s_first_error_block));
2993                 printk(KERN_CONT "\n");
2994         }
2995         if (es->s_last_error_time) {
2996                 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
2997                        sb->s_id,
2998                        ext4_get_tstamp(es, s_last_error_time),
2999                        (int) sizeof(es->s_last_error_func),
3000                        es->s_last_error_func,
3001                        le32_to_cpu(es->s_last_error_line));
3002                 if (es->s_last_error_ino)
3003                         printk(KERN_CONT ": inode %u",
3004                                le32_to_cpu(es->s_last_error_ino));
3005                 if (es->s_last_error_block)
3006                         printk(KERN_CONT ": block %llu", (unsigned long long)
3007                                le64_to_cpu(es->s_last_error_block));
3008                 printk(KERN_CONT "\n");
3009         }
3010         mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3011 }
3012
3013 /* Find next suitable group and run ext4_init_inode_table */
3014 static int ext4_run_li_request(struct ext4_li_request *elr)
3015 {
3016         struct ext4_group_desc *gdp = NULL;
3017         ext4_group_t group, ngroups;
3018         struct super_block *sb;
3019         unsigned long timeout = 0;
3020         int ret = 0;
3021
3022         sb = elr->lr_super;
3023         ngroups = EXT4_SB(sb)->s_groups_count;
3024
3025         for (group = elr->lr_next_group; group < ngroups; group++) {
3026                 gdp = ext4_get_group_desc(sb, group, NULL);
3027                 if (!gdp) {
3028                         ret = 1;
3029                         break;
3030                 }
3031
3032                 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3033                         break;
3034         }
3035
3036         if (group >= ngroups)
3037                 ret = 1;
3038
3039         if (!ret) {
3040                 timeout = jiffies;
3041                 ret = ext4_init_inode_table(sb, group,
3042                                             elr->lr_timeout ? 0 : 1);
3043                 if (elr->lr_timeout == 0) {
3044                         timeout = (jiffies - timeout) *
3045                                   elr->lr_sbi->s_li_wait_mult;
3046                         elr->lr_timeout = timeout;
3047                 }
3048                 elr->lr_next_sched = jiffies + elr->lr_timeout;
3049                 elr->lr_next_group = group + 1;
3050         }
3051         return ret;
3052 }
3053
3054 /*
3055  * Remove lr_request from the list_request and free the
3056  * request structure. Should be called with li_list_mtx held
3057  */
3058 static void ext4_remove_li_request(struct ext4_li_request *elr)
3059 {
3060         struct ext4_sb_info *sbi;
3061
3062         if (!elr)
3063                 return;
3064
3065         sbi = elr->lr_sbi;
3066
3067         list_del(&elr->lr_request);
3068         sbi->s_li_request = NULL;
3069         kfree(elr);
3070 }
3071
3072 static void ext4_unregister_li_request(struct super_block *sb)
3073 {
3074         mutex_lock(&ext4_li_mtx);
3075         if (!ext4_li_info) {
3076                 mutex_unlock(&ext4_li_mtx);
3077                 return;
3078         }
3079
3080         mutex_lock(&ext4_li_info->li_list_mtx);
3081         ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3082         mutex_unlock(&ext4_li_info->li_list_mtx);
3083         mutex_unlock(&ext4_li_mtx);
3084 }
3085
3086 static struct task_struct *ext4_lazyinit_task;
3087
3088 /*
3089  * This is the function where ext4lazyinit thread lives. It walks
3090  * through the request list searching for next scheduled filesystem.
3091  * When such a fs is found, run the lazy initialization request
3092  * (ext4_rn_li_request) and keep track of the time spend in this
3093  * function. Based on that time we compute next schedule time of
3094  * the request. When walking through the list is complete, compute
3095  * next waking time and put itself into sleep.
3096  */
3097 static int ext4_lazyinit_thread(void *arg)
3098 {
3099         struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3100         struct list_head *pos, *n;
3101         struct ext4_li_request *elr;
3102         unsigned long next_wakeup, cur;
3103
3104         BUG_ON(NULL == eli);
3105
3106 cont_thread:
3107         while (true) {
3108                 next_wakeup = MAX_JIFFY_OFFSET;
3109
3110                 mutex_lock(&eli->li_list_mtx);
3111                 if (list_empty(&eli->li_request_list)) {
3112                         mutex_unlock(&eli->li_list_mtx);
3113                         goto exit_thread;
3114                 }
3115                 list_for_each_safe(pos, n, &eli->li_request_list) {
3116                         int err = 0;
3117                         int progress = 0;
3118                         elr = list_entry(pos, struct ext4_li_request,
3119                                          lr_request);
3120
3121                         if (time_before(jiffies, elr->lr_next_sched)) {
3122                                 if (time_before(elr->lr_next_sched, next_wakeup))
3123                                         next_wakeup = elr->lr_next_sched;
3124                                 continue;
3125                         }
3126                         if (down_read_trylock(&elr->lr_super->s_umount)) {
3127                                 if (sb_start_write_trylock(elr->lr_super)) {
3128                                         progress = 1;
3129                                         /*
3130                                          * We hold sb->s_umount, sb can not
3131                                          * be removed from the list, it is
3132                                          * now safe to drop li_list_mtx
3133                                          */
3134                                         mutex_unlock(&eli->li_list_mtx);
3135                                         err = ext4_run_li_request(elr);
3136                                         sb_end_write(elr->lr_super);
3137                                         mutex_lock(&eli->li_list_mtx);
3138                                         n = pos->next;
3139                                 }
3140                                 up_read((&elr->lr_super->s_umount));
3141                         }
3142                         /* error, remove the lazy_init job */
3143                         if (err) {
3144                                 ext4_remove_li_request(elr);
3145                                 continue;
3146                         }
3147                         if (!progress) {
3148                                 elr->lr_next_sched = jiffies +
3149                                         (prandom_u32()
3150                                          % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3151                         }
3152                         if (time_before(elr->lr_next_sched, next_wakeup))
3153                                 next_wakeup = elr->lr_next_sched;
3154                 }
3155                 mutex_unlock(&eli->li_list_mtx);
3156
3157                 try_to_freeze();
3158
3159                 cur = jiffies;
3160                 if ((time_after_eq(cur, next_wakeup)) ||
3161                     (MAX_JIFFY_OFFSET == next_wakeup)) {
3162                         cond_resched();
3163                         continue;
3164                 }
3165
3166                 schedule_timeout_interruptible(next_wakeup - cur);
3167
3168                 if (kthread_should_stop()) {
3169                         ext4_clear_request_list();
3170                         goto exit_thread;
3171                 }
3172         }
3173
3174 exit_thread:
3175         /*
3176          * It looks like the request list is empty, but we need
3177          * to check it under the li_list_mtx lock, to prevent any
3178          * additions into it, and of course we should lock ext4_li_mtx
3179          * to atomically free the list and ext4_li_info, because at
3180          * this point another ext4 filesystem could be registering
3181          * new one.
3182          */
3183         mutex_lock(&ext4_li_mtx);
3184         mutex_lock(&eli->li_list_mtx);
3185         if (!list_empty(&eli->li_request_list)) {
3186                 mutex_unlock(&eli->li_list_mtx);
3187                 mutex_unlock(&ext4_li_mtx);
3188                 goto cont_thread;
3189         }
3190         mutex_unlock(&eli->li_list_mtx);
3191         kfree(ext4_li_info);
3192         ext4_li_info = NULL;
3193         mutex_unlock(&ext4_li_mtx);
3194
3195         return 0;
3196 }
3197
3198 static void ext4_clear_request_list(void)
3199 {
3200         struct list_head *pos, *n;
3201         struct ext4_li_request *elr;
3202
3203         mutex_lock(&ext4_li_info->li_list_mtx);
3204         list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3205                 elr = list_entry(pos, struct ext4_li_request,
3206                                  lr_request);
3207                 ext4_remove_li_request(elr);
3208         }
3209         mutex_unlock(&ext4_li_info->li_list_mtx);
3210 }
3211
3212 static int ext4_run_lazyinit_thread(void)
3213 {
3214         ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3215                                          ext4_li_info, "ext4lazyinit");
3216         if (IS_ERR(ext4_lazyinit_task)) {
3217                 int err = PTR_ERR(ext4_lazyinit_task);
3218                 ext4_clear_request_list();
3219                 kfree(ext4_li_info);
3220                 ext4_li_info = NULL;
3221                 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3222                                  "initialization thread\n",
3223                                  err);
3224                 return err;
3225         }
3226         ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3227         return 0;
3228 }
3229
3230 /*
3231  * Check whether it make sense to run itable init. thread or not.
3232  * If there is at least one uninitialized inode table, return
3233  * corresponding group number, else the loop goes through all
3234  * groups and return total number of groups.
3235  */
3236 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3237 {
3238         ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3239         struct ext4_group_desc *gdp = NULL;
3240
3241         if (!ext4_has_group_desc_csum(sb))
3242                 return ngroups;
3243
3244         for (group = 0; group < ngroups; group++) {
3245                 gdp = ext4_get_group_desc(sb, group, NULL);
3246                 if (!gdp)
3247                         continue;
3248
3249                 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3250                         break;
3251         }
3252
3253         return group;
3254 }
3255
3256 static int ext4_li_info_new(void)
3257 {
3258         struct ext4_lazy_init *eli = NULL;
3259
3260         eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3261         if (!eli)
3262                 return -ENOMEM;
3263
3264         INIT_LIST_HEAD(&eli->li_request_list);
3265         mutex_init(&eli->li_list_mtx);
3266
3267         eli->li_state |= EXT4_LAZYINIT_QUIT;
3268
3269         ext4_li_info = eli;
3270
3271         return 0;
3272 }
3273
3274 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3275                                             ext4_group_t start)
3276 {
3277         struct ext4_sb_info *sbi = EXT4_SB(sb);
3278         struct ext4_li_request *elr;
3279
3280         elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3281         if (!elr)
3282                 return NULL;
3283
3284         elr->lr_super = sb;
3285         elr->lr_sbi = sbi;
3286         elr->lr_next_group = start;
3287
3288         /*
3289          * Randomize first schedule time of the request to
3290          * spread the inode table initialization requests
3291          * better.
3292          */
3293         elr->lr_next_sched = jiffies + (prandom_u32() %
3294                                 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3295         return elr;
3296 }
3297
3298 int ext4_register_li_request(struct super_block *sb,
3299                              ext4_group_t first_not_zeroed)
3300 {
3301         struct ext4_sb_info *sbi = EXT4_SB(sb);
3302         struct ext4_li_request *elr = NULL;
3303         ext4_group_t ngroups = sbi->s_groups_count;
3304         int ret = 0;
3305
3306         mutex_lock(&ext4_li_mtx);
3307         if (sbi->s_li_request != NULL) {
3308                 /*
3309                  * Reset timeout so it can be computed again, because
3310                  * s_li_wait_mult might have changed.
3311                  */
3312                 sbi->s_li_request->lr_timeout = 0;
3313                 goto out;
3314         }
3315
3316         if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3317             !test_opt(sb, INIT_INODE_TABLE))
3318                 goto out;
3319
3320         elr = ext4_li_request_new(sb, first_not_zeroed);
3321         if (!elr) {
3322                 ret = -ENOMEM;
3323                 goto out;
3324         }
3325
3326         if (NULL == ext4_li_info) {
3327                 ret = ext4_li_info_new();
3328                 if (ret)
3329                         goto out;
3330         }
3331
3332         mutex_lock(&ext4_li_info->li_list_mtx);
3333         list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3334         mutex_unlock(&ext4_li_info->li_list_mtx);
3335
3336         sbi->s_li_request = elr;
3337         /*
3338          * set elr to NULL here since it has been inserted to
3339          * the request_list and the removal and free of it is
3340          * handled by ext4_clear_request_list from now on.
3341          */
3342         elr = NULL;
3343
3344         if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3345                 ret = ext4_run_lazyinit_thread();
3346                 if (ret)
3347                         goto out;
3348         }
3349 out:
3350         mutex_unlock(&ext4_li_mtx);
3351         if (ret)
3352                 kfree(elr);
3353         return ret;
3354 }
3355
3356 /*
3357  * We do not need to lock anything since this is called on
3358  * module unload.
3359  */
3360 static void ext4_destroy_lazyinit_thread(void)
3361 {
3362         /*
3363          * If thread exited earlier
3364          * there's nothing to be done.
3365          */
3366         if (!ext4_li_info || !ext4_lazyinit_task)
3367                 return;
3368
3369         kthread_stop(ext4_lazyinit_task);
3370 }
3371
3372 static int set_journal_csum_feature_set(struct super_block *sb)
3373 {
3374         int ret = 1;
3375         int compat, incompat;
3376         struct ext4_sb_info *sbi = EXT4_SB(sb);
3377
3378         if (ext4_has_metadata_csum(sb)) {
3379                 /* journal checksum v3 */
3380                 compat = 0;
3381                 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3382         } else {
3383                 /* journal checksum v1 */
3384                 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3385                 incompat = 0;
3386         }
3387
3388         jbd2_journal_clear_features(sbi->s_journal,
3389                         JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3390                         JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3391                         JBD2_FEATURE_INCOMPAT_CSUM_V2);
3392         if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3393                 ret = jbd2_journal_set_features(sbi->s_journal,
3394                                 compat, 0,
3395                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3396                                 incompat);
3397         } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3398                 ret = jbd2_journal_set_features(sbi->s_journal,
3399                                 compat, 0,
3400                                 incompat);
3401                 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3402                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3403         } else {
3404                 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3405                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3406         }
3407
3408         return ret;
3409 }
3410
3411 /*
3412  * Note: calculating the overhead so we can be compatible with
3413  * historical BSD practice is quite difficult in the face of
3414  * clusters/bigalloc.  This is because multiple metadata blocks from
3415  * different block group can end up in the same allocation cluster.
3416  * Calculating the exact overhead in the face of clustered allocation
3417  * requires either O(all block bitmaps) in memory or O(number of block
3418  * groups**2) in time.  We will still calculate the superblock for
3419  * older file systems --- and if we come across with a bigalloc file
3420  * system with zero in s_overhead_clusters the estimate will be close to
3421  * correct especially for very large cluster sizes --- but for newer
3422  * file systems, it's better to calculate this figure once at mkfs
3423  * time, and store it in the superblock.  If the superblock value is
3424  * present (even for non-bigalloc file systems), we will use it.
3425  */
3426 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3427                           char *buf)
3428 {
3429         struct ext4_sb_info     *sbi = EXT4_SB(sb);
3430         struct ext4_group_desc  *gdp;
3431         ext4_fsblk_t            first_block, last_block, b;
3432         ext4_group_t            i, ngroups = ext4_get_groups_count(sb);
3433         int                     s, j, count = 0;
3434
3435         if (!ext4_has_feature_bigalloc(sb))
3436                 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3437                         sbi->s_itb_per_group + 2);
3438
3439         first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3440                 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3441         last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3442         for (i = 0; i < ngroups; i++) {
3443                 gdp = ext4_get_group_desc(sb, i, NULL);
3444                 b = ext4_block_bitmap(sb, gdp);
3445                 if (b >= first_block && b <= last_block) {
3446                         ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3447                         count++;
3448                 }
3449                 b = ext4_inode_bitmap(sb, gdp);
3450                 if (b >= first_block && b <= last_block) {
3451                         ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3452                         count++;
3453                 }
3454                 b = ext4_inode_table(sb, gdp);
3455                 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3456                         for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3457                                 int c = EXT4_B2C(sbi, b - first_block);
3458                                 ext4_set_bit(c, buf);
3459                                 count++;
3460                         }
3461                 if (i != grp)
3462                         continue;
3463                 s = 0;
3464                 if (ext4_bg_has_super(sb, grp)) {
3465                         ext4_set_bit(s++, buf);
3466                         count++;
3467                 }
3468                 j = ext4_bg_num_gdb(sb, grp);
3469                 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3470                         ext4_error(sb, "Invalid number of block group "
3471                                    "descriptor blocks: %d", j);
3472                         j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3473                 }
3474                 count += j;
3475                 for (; j > 0; j--)
3476                         ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3477         }
3478         if (!count)
3479                 return 0;
3480         return EXT4_CLUSTERS_PER_GROUP(sb) -
3481                 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3482 }
3483
3484 /*
3485  * Compute the overhead and stash it in sbi->s_overhead
3486  */
3487 int ext4_calculate_overhead(struct super_block *sb)
3488 {
3489         struct ext4_sb_info *sbi = EXT4_SB(sb);
3490         struct ext4_super_block *es = sbi->s_es;
3491         struct inode *j_inode;
3492         unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3493         ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3494         ext4_fsblk_t overhead = 0;
3495         char *buf = (char *) get_zeroed_page(GFP_NOFS);
3496
3497         if (!buf)
3498                 return -ENOMEM;
3499
3500         /*
3501          * Compute the overhead (FS structures).  This is constant
3502          * for a given filesystem unless the number of block groups
3503          * changes so we cache the previous value until it does.
3504          */
3505
3506         /*
3507          * All of the blocks before first_data_block are overhead
3508          */
3509         overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3510
3511         /*
3512          * Add the overhead found in each block group
3513          */
3514         for (i = 0; i < ngroups; i++) {
3515                 int blks;
3516
3517                 blks = count_overhead(sb, i, buf);
3518                 overhead += blks;
3519                 if (blks)
3520                         memset(buf, 0, PAGE_SIZE);
3521                 cond_resched();
3522         }
3523
3524         /*
3525          * Add the internal journal blocks whether the journal has been
3526          * loaded or not
3527          */
3528         if (sbi->s_journal && !sbi->journal_bdev)
3529                 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3530         else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3531                 j_inode = ext4_get_journal_inode(sb, j_inum);
3532                 if (j_inode) {
3533                         j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3534                         overhead += EXT4_NUM_B2C(sbi, j_blocks);
3535                         iput(j_inode);
3536                 } else {
3537                         ext4_msg(sb, KERN_ERR, "can't get journal size");
3538                 }
3539         }
3540         sbi->s_overhead = overhead;
3541         smp_wmb();
3542         free_page((unsigned long) buf);
3543         return 0;
3544 }
3545
3546 static void ext4_clamp_want_extra_isize(struct super_block *sb)
3547 {
3548         struct ext4_sb_info *sbi = EXT4_SB(sb);
3549         struct ext4_super_block *es = sbi->s_es;
3550
3551         /* determine the minimum size of new large inodes, if present */
3552         if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
3553             sbi->s_want_extra_isize == 0) {
3554                 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3555                                                      EXT4_GOOD_OLD_INODE_SIZE;
3556                 if (ext4_has_feature_extra_isize(sb)) {
3557                         if (sbi->s_want_extra_isize <
3558                             le16_to_cpu(es->s_want_extra_isize))
3559                                 sbi->s_want_extra_isize =
3560                                         le16_to_cpu(es->s_want_extra_isize);
3561                         if (sbi->s_want_extra_isize <
3562                             le16_to_cpu(es->s_min_extra_isize))
3563                                 sbi->s_want_extra_isize =
3564                                         le16_to_cpu(es->s_min_extra_isize);
3565                 }
3566         }
3567         /* Check if enough inode space is available */
3568         if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3569                                                         sbi->s_inode_size) {
3570                 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3571                                                        EXT4_GOOD_OLD_INODE_SIZE;
3572                 ext4_msg(sb, KERN_INFO,
3573                          "required extra inode space not available");
3574         }
3575 }
3576
3577 static void ext4_set_resv_clusters(struct super_block *sb)
3578 {
3579         ext4_fsblk_t resv_clusters;
3580         struct ext4_sb_info *sbi = EXT4_SB(sb);
3581
3582         /*
3583          * There's no need to reserve anything when we aren't using extents.
3584          * The space estimates are exact, there are no unwritten extents,
3585          * hole punching doesn't need new metadata... This is needed especially
3586          * to keep ext2/3 backward compatibility.
3587          */
3588         if (!ext4_has_feature_extents(sb))
3589                 return;
3590         /*
3591          * By default we reserve 2% or 4096 clusters, whichever is smaller.
3592          * This should cover the situations where we can not afford to run
3593          * out of space like for example punch hole, or converting
3594          * unwritten extents in delalloc path. In most cases such
3595          * allocation would require 1, or 2 blocks, higher numbers are
3596          * very rare.
3597          */
3598         resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3599                          sbi->s_cluster_bits);
3600
3601         do_div(resv_clusters, 50);
3602         resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3603
3604         atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3605 }
3606
3607 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3608 {
3609         struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3610         char *orig_data = kstrdup(data, GFP_KERNEL);
3611         struct buffer_head *bh;
3612         struct ext4_super_block *es = NULL;
3613         struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3614         ext4_fsblk_t block;
3615         ext4_fsblk_t sb_block = get_sb_block(&data);
3616         ext4_fsblk_t logical_sb_block;
3617         unsigned long offset = 0;
3618         unsigned long journal_devnum = 0;
3619         unsigned long def_mount_opts;
3620         struct inode *root;
3621         const char *descr;
3622         int ret = -ENOMEM;
3623         int blocksize, clustersize;
3624         unsigned int db_count;
3625         unsigned int i;
3626         int needs_recovery, has_huge_files, has_bigalloc;
3627         __u64 blocks_count;
3628         int err = 0;
3629         unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3630         ext4_group_t first_not_zeroed;
3631
3632         if ((data && !orig_data) || !sbi)
3633                 goto out_free_base;
3634
3635         sbi->s_daxdev = dax_dev;
3636         sbi->s_blockgroup_lock =
3637                 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3638         if (!sbi->s_blockgroup_lock)
3639                 goto out_free_base;
3640
3641         sb->s_fs_info = sbi;
3642         sbi->s_sb = sb;
3643         sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3644         sbi->s_sb_block = sb_block;
3645         if (sb->s_bdev->bd_part)
3646                 sbi->s_sectors_written_start =
3647                         part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
3648
3649         /* Cleanup superblock name */
3650         strreplace(sb->s_id, '/', '!');
3651
3652         /* -EINVAL is default */
3653         ret = -EINVAL;
3654         blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3655         if (!blocksize) {
3656                 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3657                 goto out_fail;
3658         }
3659
3660         /*
3661          * The ext4 superblock will not be buffer aligned for other than 1kB
3662          * block sizes.  We need to calculate the offset from buffer start.
3663          */
3664         if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3665                 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3666                 offset = do_div(logical_sb_block, blocksize);
3667         } else {
3668                 logical_sb_block = sb_block;
3669         }
3670
3671         if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3672                 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3673                 goto out_fail;
3674         }
3675         /*
3676          * Note: s_es must be initialized as soon as possible because
3677          *       some ext4 macro-instructions depend on its value
3678          */
3679         es = (struct ext4_super_block *) (bh->b_data + offset);
3680         sbi->s_es = es;
3681         sb->s_magic = le16_to_cpu(es->s_magic);
3682         if (sb->s_magic != EXT4_SUPER_MAGIC)
3683                 goto cantfind_ext4;
3684         sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3685
3686         /* Warn if metadata_csum and gdt_csum are both set. */
3687         if (ext4_has_feature_metadata_csum(sb) &&
3688             ext4_has_feature_gdt_csum(sb))
3689                 ext4_warning(sb, "metadata_csum and uninit_bg are "
3690                              "redundant flags; please run fsck.");
3691
3692         /* Check for a known checksum algorithm */
3693         if (!ext4_verify_csum_type(sb, es)) {
3694                 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3695                          "unknown checksum algorithm.");
3696                 silent = 1;
3697                 goto cantfind_ext4;
3698         }
3699
3700         /* Load the checksum driver */
3701         sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3702         if (IS_ERR(sbi->s_chksum_driver)) {
3703                 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3704                 ret = PTR_ERR(sbi->s_chksum_driver);
3705                 sbi->s_chksum_driver = NULL;
3706                 goto failed_mount;
3707         }
3708
3709         /* Check superblock checksum */
3710         if (!ext4_superblock_csum_verify(sb, es)) {
3711                 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3712                          "invalid superblock checksum.  Run e2fsck?");
3713                 silent = 1;
3714                 ret = -EFSBADCRC;
3715                 goto cantfind_ext4;
3716         }
3717
3718         /* Precompute checksum seed for all metadata */
3719         if (ext4_has_feature_csum_seed(sb))
3720                 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3721         else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3722                 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3723                                                sizeof(es->s_uuid));
3724
3725         /* Set defaults before we parse the mount options */
3726         def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3727         set_opt(sb, INIT_INODE_TABLE);
3728         if (def_mount_opts & EXT4_DEFM_DEBUG)
3729                 set_opt(sb, DEBUG);
3730         if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3731                 set_opt(sb, GRPID);
3732         if (def_mount_opts & EXT4_DEFM_UID16)
3733                 set_opt(sb, NO_UID32);
3734         /* xattr user namespace & acls are now defaulted on */
3735         set_opt(sb, XATTR_USER);
3736 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3737         set_opt(sb, POSIX_ACL);
3738 #endif
3739         /* don't forget to enable journal_csum when metadata_csum is enabled. */
3740         if (ext4_has_metadata_csum(sb))
3741                 set_opt(sb, JOURNAL_CHECKSUM);
3742
3743         if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3744                 set_opt(sb, JOURNAL_DATA);
3745         else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3746                 set_opt(sb, ORDERED_DATA);
3747         else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3748                 set_opt(sb, WRITEBACK_DATA);
3749
3750         if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3751                 set_opt(sb, ERRORS_PANIC);
3752         else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3753                 set_opt(sb, ERRORS_CONT);
3754         else
3755                 set_opt(sb, ERRORS_RO);
3756         /* block_validity enabled by default; disable with noblock_validity */
3757         set_opt(sb, BLOCK_VALIDITY);
3758         if (def_mount_opts & EXT4_DEFM_DISCARD)
3759                 set_opt(sb, DISCARD);
3760
3761         sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3762         sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3763         sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3764         sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3765         sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3766
3767         if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3768                 set_opt(sb, BARRIER);
3769
3770         /*
3771          * enable delayed allocation by default
3772          * Use -o nodelalloc to turn it off
3773          */
3774         if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3775             ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3776                 set_opt(sb, DELALLOC);
3777
3778         /*
3779          * set default s_li_wait_mult for lazyinit, for the case there is
3780          * no mount option specified.
3781          */
3782         sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3783
3784         if (sbi->s_es->s_mount_opts[0]) {
3785                 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3786                                               sizeof(sbi->s_es->s_mount_opts),
3787                                               GFP_KERNEL);
3788                 if (!s_mount_opts)
3789                         goto failed_mount;
3790                 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3791                                    &journal_ioprio, 0)) {
3792                         ext4_msg(sb, KERN_WARNING,
3793                                  "failed to parse options in superblock: %s",
3794                                  s_mount_opts);
3795                 }
3796                 kfree(s_mount_opts);
3797         }
3798         sbi->s_def_mount_opt = sbi->s_mount_opt;
3799         if (!parse_options((char *) data, sb, &journal_devnum,
3800                            &journal_ioprio, 0))
3801                 goto failed_mount;
3802
3803 #ifdef CONFIG_UNICODE
3804         if (ext4_has_feature_casefold(sb) && !sbi->s_encoding) {
3805                 const struct ext4_sb_encodings *encoding_info;
3806                 struct unicode_map *encoding;
3807                 __u16 encoding_flags;
3808
3809                 if (ext4_has_feature_encrypt(sb)) {
3810                         ext4_msg(sb, KERN_ERR,
3811                                  "Can't mount with encoding and encryption");
3812                         goto failed_mount;
3813                 }
3814
3815                 if (ext4_sb_read_encoding(es, &encoding_info,
3816                                           &encoding_flags)) {
3817                         ext4_msg(sb, KERN_ERR,
3818                                  "Encoding requested by superblock is unknown");
3819                         goto failed_mount;
3820                 }
3821
3822                 encoding = utf8_load(encoding_info->version);
3823                 if (IS_ERR(encoding)) {
3824                         ext4_msg(sb, KERN_ERR,
3825                                  "can't mount with superblock charset: %s-%s "
3826                                  "not supported by the kernel. flags: 0x%x.",
3827                                  encoding_info->name, encoding_info->version,
3828                                  encoding_flags);
3829                         goto failed_mount;
3830                 }
3831                 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
3832                          "%s-%s with flags 0x%hx", encoding_info->name,
3833                          encoding_info->version?:"\b", encoding_flags);
3834
3835                 sbi->s_encoding = encoding;
3836                 sbi->s_encoding_flags = encoding_flags;
3837         }
3838 #endif
3839
3840         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3841                 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3842                             "with data=journal disables delayed "
3843                             "allocation and O_DIRECT support!\n");
3844                 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3845                         ext4_msg(sb, KERN_ERR, "can't mount with "
3846                                  "both data=journal and delalloc");
3847                         goto failed_mount;
3848                 }
3849                 if (test_opt(sb, DIOREAD_NOLOCK)) {
3850                         ext4_msg(sb, KERN_ERR, "can't mount with "
3851                                  "both data=journal and dioread_nolock");
3852                         goto failed_mount;
3853                 }
3854                 if (test_opt(sb, DAX)) {
3855                         ext4_msg(sb, KERN_ERR, "can't mount with "
3856                                  "both data=journal and dax");
3857                         goto failed_mount;
3858                 }
3859                 if (ext4_has_feature_encrypt(sb)) {
3860                         ext4_msg(sb, KERN_WARNING,
3861                                  "encrypted files will use data=ordered "
3862                                  "instead of data journaling mode");
3863                 }
3864                 if (test_opt(sb, DELALLOC))
3865                         clear_opt(sb, DELALLOC);
3866         } else {
3867                 sb->s_iflags |= SB_I_CGROUPWB;
3868         }
3869
3870         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3871                 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
3872
3873         if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3874             (ext4_has_compat_features(sb) ||
3875              ext4_has_ro_compat_features(sb) ||
3876              ext4_has_incompat_features(sb)))
3877                 ext4_msg(sb, KERN_WARNING,
3878                        "feature flags set on rev 0 fs, "
3879                        "running e2fsck is recommended");
3880
3881         if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3882                 set_opt2(sb, HURD_COMPAT);
3883                 if (ext4_has_feature_64bit(sb)) {
3884                         ext4_msg(sb, KERN_ERR,
3885                                  "The Hurd can't support 64-bit file systems");
3886                         goto failed_mount;
3887                 }
3888
3889                 /*
3890                  * ea_inode feature uses l_i_version field which is not
3891                  * available in HURD_COMPAT mode.
3892                  */
3893                 if (ext4_has_feature_ea_inode(sb)) {
3894                         ext4_msg(sb, KERN_ERR,
3895                                  "ea_inode feature is not supported for Hurd");
3896                         goto failed_mount;
3897                 }
3898         }
3899
3900         if (IS_EXT2_SB(sb)) {
3901                 if (ext2_feature_set_ok(sb))
3902                         ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3903                                  "using the ext4 subsystem");
3904                 else {
3905                         /*
3906                          * If we're probing be silent, if this looks like
3907                          * it's actually an ext[34] filesystem.
3908                          */
3909                         if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3910                                 goto failed_mount;
3911                         ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3912                                  "to feature incompatibilities");
3913                         goto failed_mount;
3914                 }
3915         }
3916
3917         if (IS_EXT3_SB(sb)) {
3918                 if (ext3_feature_set_ok(sb))
3919                         ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3920                                  "using the ext4 subsystem");
3921                 else {
3922                         /*
3923                          * If we're probing be silent, if this looks like
3924                          * it's actually an ext4 filesystem.
3925                          */
3926                         if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3927                                 goto failed_mount;
3928                         ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3929                                  "to feature incompatibilities");
3930                         goto failed_mount;
3931                 }
3932         }
3933
3934         /*
3935          * Check feature flags regardless of the revision level, since we
3936          * previously didn't change the revision level when setting the flags,
3937          * so there is a chance incompat flags are set on a rev 0 filesystem.
3938          */
3939         if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3940                 goto failed_mount;
3941
3942         blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3943         if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3944             blocksize > EXT4_MAX_BLOCK_SIZE) {
3945                 ext4_msg(sb, KERN_ERR,
3946                        "Unsupported filesystem blocksize %d (%d log_block_size)",
3947                          blocksize, le32_to_cpu(es->s_log_block_size));
3948                 goto failed_mount;
3949         }
3950         if (le32_to_cpu(es->s_log_block_size) >
3951             (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3952                 ext4_msg(sb, KERN_ERR,
3953                          "Invalid log block size: %u",
3954                          le32_to_cpu(es->s_log_block_size));
3955                 goto failed_mount;
3956         }
3957         if (le32_to_cpu(es->s_log_cluster_size) >
3958             (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3959                 ext4_msg(sb, KERN_ERR,
3960                          "Invalid log cluster size: %u",
3961                          le32_to_cpu(es->s_log_cluster_size));
3962                 goto failed_mount;
3963         }
3964
3965         if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3966                 ext4_msg(sb, KERN_ERR,
3967                          "Number of reserved GDT blocks insanely large: %d",
3968                          le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3969                 goto failed_mount;
3970         }
3971
3972         if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3973                 if (ext4_has_feature_inline_data(sb)) {
3974                         ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
3975                                         " that may contain inline data");
3976                         goto failed_mount;
3977                 }
3978                 if (!bdev_dax_supported(sb->s_bdev, blocksize)) {
3979                         ext4_msg(sb, KERN_ERR,
3980                                 "DAX unsupported by block device.");
3981                         goto failed_mount;
3982                 }
3983         }
3984
3985         if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3986                 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3987                          es->s_encryption_level);
3988                 goto failed_mount;
3989         }
3990
3991         if (sb->s_blocksize != blocksize) {
3992                 /* Validate the filesystem blocksize */
3993                 if (!sb_set_blocksize(sb, blocksize)) {
3994                         ext4_msg(sb, KERN_ERR, "bad block size %d",
3995                                         blocksize);
3996                         goto failed_mount;
3997                 }
3998
3999                 brelse(bh);
4000                 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4001                 offset = do_div(logical_sb_block, blocksize);
4002                 bh = sb_bread_unmovable(sb, logical_sb_block);
4003                 if (!bh) {
4004                         ext4_msg(sb, KERN_ERR,
4005                                "Can't read superblock on 2nd try");
4006                         goto failed_mount;
4007                 }
4008                 es = (struct ext4_super_block *)(bh->b_data + offset);
4009                 sbi->s_es = es;
4010                 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4011                         ext4_msg(sb, KERN_ERR,
4012                                "Magic mismatch, very weird!");
4013                         goto failed_mount;
4014                 }
4015         }
4016
4017         has_huge_files = ext4_has_feature_huge_file(sb);
4018         sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4019                                                       has_huge_files);
4020         sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4021
4022         if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4023                 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4024                 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4025         } else {
4026                 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4027                 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4028                 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4029                         ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4030                                  sbi->s_first_ino);
4031                         goto failed_mount;
4032                 }
4033                 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4034                     (!is_power_of_2(sbi->s_inode_size)) ||
4035                     (sbi->s_inode_size > blocksize)) {
4036                         ext4_msg(sb, KERN_ERR,
4037                                "unsupported inode size: %d",
4038                                sbi->s_inode_size);
4039                         goto failed_mount;
4040                 }
4041                 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
4042                         sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
4043         }
4044
4045         sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4046         if (ext4_has_feature_64bit(sb)) {
4047                 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4048                     sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4049                     !is_power_of_2(sbi->s_desc_size)) {
4050                         ext4_msg(sb, KERN_ERR,
4051                                "unsupported descriptor size %lu",
4052                                sbi->s_desc_size);
4053                         goto failed_mount;
4054                 }
4055         } else
4056                 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4057
4058         sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4059         sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4060
4061         sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4062         if (sbi->s_inodes_per_block == 0)
4063                 goto cantfind_ext4;
4064         if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4065             sbi->s_inodes_per_group > blocksize * 8) {
4066                 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4067                          sbi->s_blocks_per_group);
4068                 goto failed_mount;
4069         }
4070         sbi->s_itb_per_group = sbi->s_inodes_per_group /
4071                                         sbi->s_inodes_per_block;
4072         sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4073         sbi->s_sbh = bh;
4074         sbi->s_mount_state = le16_to_cpu(es->s_state);
4075         sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4076         sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4077
4078         for (i = 0; i < 4; i++)
4079                 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4080         sbi->s_def_hash_version = es->s_def_hash_version;
4081         if (ext4_has_feature_dir_index(sb)) {
4082                 i = le32_to_cpu(es->s_flags);
4083                 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4084                         sbi->s_hash_unsigned = 3;
4085                 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4086 #ifdef __CHAR_UNSIGNED__
4087                         if (!sb_rdonly(sb))
4088                                 es->s_flags |=
4089                                         cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4090                         sbi->s_hash_unsigned = 3;
4091 #else
4092                         if (!sb_rdonly(sb))
4093                                 es->s_flags |=
4094                                         cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4095 #endif
4096                 }
4097         }
4098
4099         /* Handle clustersize */
4100         clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4101         has_bigalloc = ext4_has_feature_bigalloc(sb);
4102         if (has_bigalloc) {
4103                 if (clustersize < blocksize) {
4104                         ext4_msg(sb, KERN_ERR,
4105                                  "cluster size (%d) smaller than "
4106                                  "block size (%d)", clustersize, blocksize);
4107                         goto failed_mount;
4108                 }
4109                 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4110                         le32_to_cpu(es->s_log_block_size);
4111                 sbi->s_clusters_per_group =
4112                         le32_to_cpu(es->s_clusters_per_group);
4113                 if (sbi->s_clusters_per_group > blocksize * 8) {
4114                         ext4_msg(sb, KERN_ERR,
4115                                  "#clusters per group too big: %lu",
4116                                  sbi->s_clusters_per_group);
4117                         goto failed_mount;
4118                 }
4119                 if (sbi->s_blocks_per_group !=
4120                     (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4121                         ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4122                                  "clusters per group (%lu) inconsistent",
4123                                  sbi->s_blocks_per_group,
4124                                  sbi->s_clusters_per_group);
4125                         goto failed_mount;
4126                 }
4127         } else {
4128                 if (clustersize != blocksize) {
4129                         ext4_msg(sb, KERN_ERR,
4130                                  "fragment/cluster size (%d) != "
4131                                  "block size (%d)", clustersize, blocksize);
4132                         goto failed_mount;
4133                 }
4134                 if (sbi->s_blocks_per_group > blocksize * 8) {
4135                         ext4_msg(sb, KERN_ERR,
4136                                  "#blocks per group too big: %lu",
4137                                  sbi->s_blocks_per_group);
4138                         goto failed_mount;
4139                 }
4140                 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4141                 sbi->s_cluster_bits = 0;
4142         }
4143         sbi->s_cluster_ratio = clustersize / blocksize;
4144
4145         /* Do we have standard group size of clustersize * 8 blocks ? */
4146         if (sbi->s_blocks_per_group == clustersize << 3)
4147                 set_opt2(sb, STD_GROUP_SIZE);
4148
4149         /*
4150          * Test whether we have more sectors than will fit in sector_t,
4151          * and whether the max offset is addressable by the page cache.
4152          */
4153         err = generic_check_addressable(sb->s_blocksize_bits,
4154                                         ext4_blocks_count(es));
4155         if (err) {
4156                 ext4_msg(sb, KERN_ERR, "filesystem"
4157                          " too large to mount safely on this system");
4158                 goto failed_mount;
4159         }
4160
4161         if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4162                 goto cantfind_ext4;
4163
4164         /* check blocks count against device size */
4165         blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4166         if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4167                 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4168                        "exceeds size of device (%llu blocks)",
4169                        ext4_blocks_count(es), blocks_count);
4170                 goto failed_mount;
4171         }
4172
4173         /*
4174          * It makes no sense for the first data block to be beyond the end
4175          * of the filesystem.
4176          */
4177         if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4178                 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4179                          "block %u is beyond end of filesystem (%llu)",
4180                          le32_to_cpu(es->s_first_data_block),
4181                          ext4_blocks_count(es));
4182                 goto failed_mount;
4183         }
4184         if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4185             (sbi->s_cluster_ratio == 1)) {
4186                 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4187                          "block is 0 with a 1k block and cluster size");
4188                 goto failed_mount;
4189         }
4190
4191         blocks_count = (ext4_blocks_count(es) -
4192                         le32_to_cpu(es->s_first_data_block) +
4193                         EXT4_BLOCKS_PER_GROUP(sb) - 1);
4194         do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4195         if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4196                 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
4197                        "(block count %llu, first data block %u, "
4198                        "blocks per group %lu)", sbi->s_groups_count,
4199                        ext4_blocks_count(es),
4200                        le32_to_cpu(es->s_first_data_block),
4201                        EXT4_BLOCKS_PER_GROUP(sb));
4202                 goto failed_mount;
4203         }
4204         sbi->s_groups_count = blocks_count;
4205         sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4206                         (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4207         if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4208             le32_to_cpu(es->s_inodes_count)) {
4209                 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4210                          le32_to_cpu(es->s_inodes_count),
4211                          ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4212                 ret = -EINVAL;
4213                 goto failed_mount;
4214         }
4215         db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4216                    EXT4_DESC_PER_BLOCK(sb);
4217         if (ext4_has_feature_meta_bg(sb)) {
4218                 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4219                         ext4_msg(sb, KERN_WARNING,
4220                                  "first meta block group too large: %u "
4221                                  "(group descriptor block count %u)",
4222                                  le32_to_cpu(es->s_first_meta_bg), db_count);
4223                         goto failed_mount;
4224                 }
4225         }
4226         sbi->s_group_desc = kvmalloc_array(db_count,
4227                                            sizeof(struct buffer_head *),
4228                                            GFP_KERNEL);
4229         if (sbi->s_group_desc == NULL) {
4230                 ext4_msg(sb, KERN_ERR, "not enough memory");
4231                 ret = -ENOMEM;
4232                 goto failed_mount;
4233         }
4234
4235         bgl_lock_init(sbi->s_blockgroup_lock);
4236
4237         /* Pre-read the descriptors into the buffer cache */
4238         for (i = 0; i < db_count; i++) {
4239                 block = descriptor_loc(sb, logical_sb_block, i);
4240                 sb_breadahead(sb, block);
4241         }
4242
4243         for (i = 0; i < db_count; i++) {
4244                 block = descriptor_loc(sb, logical_sb_block, i);
4245                 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
4246                 if (!sbi->s_group_desc[i]) {
4247                         ext4_msg(sb, KERN_ERR,
4248                                "can't read group descriptor %d", i);
4249                         db_count = i;
4250                         goto failed_mount2;
4251                 }
4252         }
4253         sbi->s_gdb_count = db_count;
4254         if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4255                 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4256                 ret = -EFSCORRUPTED;
4257                 goto failed_mount2;
4258         }
4259
4260         timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4261
4262         /* Register extent status tree shrinker */
4263         if (ext4_es_register_shrinker(sbi))
4264                 goto failed_mount3;
4265
4266         sbi->s_stripe = ext4_get_stripe_size(sbi);
4267         sbi->s_extent_max_zeroout_kb = 32;
4268
4269         /*
4270          * set up enough so that it can read an inode
4271          */
4272         sb->s_op = &ext4_sops;
4273         sb->s_export_op = &ext4_export_ops;
4274         sb->s_xattr = ext4_xattr_handlers;
4275 #ifdef CONFIG_FS_ENCRYPTION
4276         sb->s_cop = &ext4_cryptops;
4277 #endif
4278 #ifdef CONFIG_QUOTA
4279         sb->dq_op = &ext4_quota_operations;
4280         if (ext4_has_feature_quota(sb))
4281                 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4282         else
4283                 sb->s_qcop = &ext4_qctl_operations;
4284         sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4285 #endif
4286         memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4287
4288         INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4289         mutex_init(&sbi->s_orphan_lock);
4290
4291         sb->s_root = NULL;
4292
4293         needs_recovery = (es->s_last_orphan != 0 ||
4294                           ext4_has_feature_journal_needs_recovery(sb));
4295
4296         if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4297                 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4298                         goto failed_mount3a;
4299
4300         /*
4301          * The first inode we look at is the journal inode.  Don't try
4302          * root first: it may be modified in the journal!
4303          */
4304         if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4305                 err = ext4_load_journal(sb, es, journal_devnum);
4306                 if (err)
4307                         goto failed_mount3a;
4308         } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4309                    ext4_has_feature_journal_needs_recovery(sb)) {
4310                 ext4_msg(sb, KERN_ERR, "required journal recovery "
4311                        "suppressed and not mounted read-only");
4312                 goto failed_mount_wq;
4313         } else {
4314                 /* Nojournal mode, all journal mount options are illegal */
4315                 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4316                         ext4_msg(sb, KERN_ERR, "can't mount with "
4317                                  "journal_checksum, fs mounted w/o journal");
4318                         goto failed_mount_wq;
4319                 }
4320                 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4321                         ext4_msg(sb, KERN_ERR, "can't mount with "
4322                                  "journal_async_commit, fs mounted w/o journal");
4323                         goto failed_mount_wq;
4324                 }
4325                 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4326                         ext4_msg(sb, KERN_ERR, "can't mount with "
4327                                  "commit=%lu, fs mounted w/o journal",
4328                                  sbi->s_commit_interval / HZ);
4329                         goto failed_mount_wq;
4330                 }
4331                 if (EXT4_MOUNT_DATA_FLAGS &
4332                     (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4333                         ext4_msg(sb, KERN_ERR, "can't mount with "
4334                                  "data=, fs mounted w/o journal");
4335                         goto failed_mount_wq;
4336                 }
4337                 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4338                 clear_opt(sb, JOURNAL_CHECKSUM);
4339                 clear_opt(sb, DATA_FLAGS);
4340                 sbi->s_journal = NULL;
4341                 needs_recovery = 0;
4342                 goto no_journal;
4343         }
4344
4345         if (ext4_has_feature_64bit(sb) &&
4346             !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4347                                        JBD2_FEATURE_INCOMPAT_64BIT)) {
4348                 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4349                 goto failed_mount_wq;
4350         }
4351
4352         if (!set_journal_csum_feature_set(sb)) {
4353                 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4354                          "feature set");
4355                 goto failed_mount_wq;
4356         }
4357
4358         /* We have now updated the journal if required, so we can
4359          * validate the data journaling mode. */
4360         switch (test_opt(sb, DATA_FLAGS)) {
4361         case 0:
4362                 /* No mode set, assume a default based on the journal
4363                  * capabilities: ORDERED_DATA if the journal can
4364                  * cope, else JOURNAL_DATA
4365                  */
4366                 if (jbd2_journal_check_available_features
4367                     (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4368                         set_opt(sb, ORDERED_DATA);
4369                         sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4370                 } else {
4371                         set_opt(sb, JOURNAL_DATA);
4372                         sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4373                 }
4374                 break;
4375
4376         case EXT4_MOUNT_ORDERED_DATA:
4377         case EXT4_MOUNT_WRITEBACK_DATA:
4378                 if (!jbd2_journal_check_available_features
4379                     (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4380                         ext4_msg(sb, KERN_ERR, "Journal does not support "
4381                                "requested data journaling mode");
4382                         goto failed_mount_wq;
4383                 }
4384         default:
4385                 break;
4386         }
4387
4388         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4389             test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4390                 ext4_msg(sb, KERN_ERR, "can't mount with "
4391                         "journal_async_commit in data=ordered mode");
4392                 goto failed_mount_wq;
4393         }
4394
4395         set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4396
4397         sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4398
4399 no_journal:
4400         if (!test_opt(sb, NO_MBCACHE)) {
4401                 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4402                 if (!sbi->s_ea_block_cache) {
4403                         ext4_msg(sb, KERN_ERR,
4404                                  "Failed to create ea_block_cache");
4405                         goto failed_mount_wq;
4406                 }
4407
4408                 if (ext4_has_feature_ea_inode(sb)) {
4409                         sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4410                         if (!sbi->s_ea_inode_cache) {
4411                                 ext4_msg(sb, KERN_ERR,
4412                                          "Failed to create ea_inode_cache");
4413                                 goto failed_mount_wq;
4414                         }
4415                 }
4416         }
4417
4418         if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4419             (blocksize != PAGE_SIZE)) {
4420                 ext4_msg(sb, KERN_ERR,
4421                          "Unsupported blocksize for fs encryption");
4422                 goto failed_mount_wq;
4423         }
4424
4425         if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4426             !ext4_has_feature_encrypt(sb)) {
4427                 ext4_set_feature_encrypt(sb);
4428                 ext4_commit_super(sb, 1);
4429         }
4430
4431         /*
4432          * Get the # of file system overhead blocks from the
4433          * superblock if present.
4434          */
4435         if (es->s_overhead_clusters)
4436                 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4437         else {
4438                 err = ext4_calculate_overhead(sb);
4439                 if (err)
4440                         goto failed_mount_wq;
4441         }
4442
4443         /*
4444          * The maximum number of concurrent works can be high and
4445          * concurrency isn't really necessary.  Limit it to 1.
4446          */
4447         EXT4_SB(sb)->rsv_conversion_wq =
4448                 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4449         if (!EXT4_SB(sb)->rsv_conversion_wq) {
4450                 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4451                 ret = -ENOMEM;
4452                 goto failed_mount4;
4453         }
4454
4455         /*
4456          * The jbd2_journal_load will have done any necessary log recovery,
4457          * so we can safely mount the rest of the filesystem now.
4458          */
4459
4460         root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4461         if (IS_ERR(root)) {
4462                 ext4_msg(sb, KERN_ERR, "get root inode failed");
4463                 ret = PTR_ERR(root);
4464                 root = NULL;
4465                 goto failed_mount4;
4466         }
4467         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4468                 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4469                 iput(root);
4470                 goto failed_mount4;
4471         }
4472
4473 #ifdef CONFIG_UNICODE
4474         if (sbi->s_encoding)
4475                 sb->s_d_op = &ext4_dentry_ops;
4476 #endif
4477
4478         sb->s_root = d_make_root(root);
4479         if (!sb->s_root) {
4480                 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4481                 ret = -ENOMEM;
4482                 goto failed_mount4;
4483         }
4484
4485         ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4486         if (ret == -EROFS) {
4487                 sb->s_flags |= SB_RDONLY;
4488                 ret = 0;
4489         } else if (ret)
4490                 goto failed_mount4a;
4491
4492         ext4_clamp_want_extra_isize(sb);
4493
4494         ext4_set_resv_clusters(sb);
4495
4496         err = ext4_setup_system_zone(sb);
4497         if (err) {
4498                 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4499                          "zone (%d)", err);
4500                 goto failed_mount4a;
4501         }
4502
4503         ext4_ext_init(sb);
4504         err = ext4_mb_init(sb);
4505         if (err) {
4506                 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4507                          err);
4508                 goto failed_mount5;
4509         }
4510
4511         block = ext4_count_free_clusters(sb);
4512         ext4_free_blocks_count_set(sbi->s_es, 
4513                                    EXT4_C2B(sbi, block));
4514         ext4_superblock_csum_set(sb);
4515         err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4516                                   GFP_KERNEL);
4517         if (!err) {
4518                 unsigned long freei = ext4_count_free_inodes(sb);
4519                 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4520                 ext4_superblock_csum_set(sb);
4521                 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4522                                           GFP_KERNEL);
4523         }
4524         if (!err)
4525                 err = percpu_counter_init(&sbi->s_dirs_counter,
4526                                           ext4_count_dirs(sb), GFP_KERNEL);
4527         if (!err)
4528                 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4529                                           GFP_KERNEL);
4530         if (!err)
4531                 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4532
4533         if (err) {
4534                 ext4_msg(sb, KERN_ERR, "insufficient memory");
4535                 goto failed_mount6;
4536         }
4537
4538         if (ext4_has_feature_flex_bg(sb))
4539                 if (!ext4_fill_flex_info(sb)) {
4540                         ext4_msg(sb, KERN_ERR,
4541                                "unable to initialize "
4542                                "flex_bg meta info!");
4543                         goto failed_mount6;
4544                 }
4545
4546         err = ext4_register_li_request(sb, first_not_zeroed);
4547         if (err)
4548                 goto failed_mount6;
4549
4550         err = ext4_register_sysfs(sb);
4551         if (err)
4552                 goto failed_mount7;
4553
4554 #ifdef CONFIG_QUOTA
4555         /* Enable quota usage during mount. */
4556         if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4557                 err = ext4_enable_quotas(sb);
4558                 if (err)
4559                         goto failed_mount8;
4560         }
4561 #endif  /* CONFIG_QUOTA */
4562
4563         EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4564         ext4_orphan_cleanup(sb, es);
4565         EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4566         if (needs_recovery) {
4567                 ext4_msg(sb, KERN_INFO, "recovery complete");
4568                 ext4_mark_recovery_complete(sb, es);
4569         }
4570         if (EXT4_SB(sb)->s_journal) {
4571                 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4572                         descr = " journalled data mode";
4573                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4574                         descr = " ordered data mode";
4575                 else
4576                         descr = " writeback data mode";
4577         } else
4578                 descr = "out journal";
4579
4580         if (test_opt(sb, DISCARD)) {
4581                 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4582                 if (!blk_queue_discard(q))
4583                         ext4_msg(sb, KERN_WARNING,
4584                                  "mounting with \"discard\" option, but "
4585                                  "the device does not support discard");
4586         }
4587
4588         if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4589                 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4590                          "Opts: %.*s%s%s", descr,
4591                          (int) sizeof(sbi->s_es->s_mount_opts),
4592                          sbi->s_es->s_mount_opts,
4593                          *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4594
4595         if (es->s_error_count)
4596                 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4597
4598         /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4599         ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4600         ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4601         ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4602
4603         kfree(orig_data);
4604         return 0;
4605
4606 cantfind_ext4:
4607         if (!silent)
4608                 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4609         goto failed_mount;
4610
4611 #ifdef CONFIG_QUOTA
4612 failed_mount8:
4613         ext4_unregister_sysfs(sb);
4614 #endif
4615 failed_mount7:
4616         ext4_unregister_li_request(sb);
4617 failed_mount6:
4618         ext4_mb_release(sb);
4619         if (sbi->s_flex_groups)
4620                 kvfree(sbi->s_flex_groups);
4621         percpu_counter_destroy(&sbi->s_freeclusters_counter);
4622         percpu_counter_destroy(&sbi->s_freeinodes_counter);
4623         percpu_counter_destroy(&sbi->s_dirs_counter);
4624         percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4625         percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
4626 failed_mount5:
4627         ext4_ext_release(sb);
4628         ext4_release_system_zone(sb);
4629 failed_mount4a:
4630         dput(sb->s_root);
4631         sb->s_root = NULL;
4632 failed_mount4:
4633         ext4_msg(sb, KERN_ERR, "mount failed");
4634         if (EXT4_SB(sb)->rsv_conversion_wq)
4635                 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4636 failed_mount_wq:
4637         ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4638         sbi->s_ea_inode_cache = NULL;
4639
4640         ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4641         sbi->s_ea_block_cache = NULL;
4642
4643         if (sbi->s_journal) {
4644                 jbd2_journal_destroy(sbi->s_journal);
4645                 sbi->s_journal = NULL;
4646         }
4647 failed_mount3a:
4648         ext4_es_unregister_shrinker(sbi);
4649 failed_mount3:
4650         del_timer_sync(&sbi->s_err_report);
4651         if (sbi->s_mmp_tsk)
4652                 kthread_stop(sbi->s_mmp_tsk);
4653 failed_mount2:
4654         for (i = 0; i < db_count; i++)
4655                 brelse(sbi->s_group_desc[i]);
4656         kvfree(sbi->s_group_desc);
4657 failed_mount:
4658         if (sbi->s_chksum_driver)
4659                 crypto_free_shash(sbi->s_chksum_driver);
4660
4661 #ifdef CONFIG_UNICODE
4662         utf8_unload(sbi->s_encoding);
4663 #endif
4664
4665 #ifdef CONFIG_QUOTA
4666         for (i = 0; i < EXT4_MAXQUOTAS; i++)
4667                 kfree(get_qf_name(sb, sbi, i));
4668 #endif
4669         ext4_blkdev_remove(sbi);
4670         brelse(bh);
4671 out_fail:
4672         sb->s_fs_info = NULL;
4673         kfree(sbi->s_blockgroup_lock);
4674 out_free_base:
4675         kfree(sbi);
4676         kfree(orig_data);
4677         fs_put_dax(dax_dev);
4678         return err ? err : ret;
4679 }
4680
4681 /*
4682  * Setup any per-fs journal parameters now.  We'll do this both on
4683  * initial mount, once the journal has been initialised but before we've
4684  * done any recovery; and again on any subsequent remount.
4685  */
4686 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4687 {
4688         struct ext4_sb_info *sbi = EXT4_SB(sb);
4689
4690         journal->j_commit_interval = sbi->s_commit_interval;
4691         journal->j_min_batch_time = sbi->s_min_batch_time;
4692         journal->j_max_batch_time = sbi->s_max_batch_time;
4693
4694         write_lock(&journal->j_state_lock);
4695         if (test_opt(sb, BARRIER))
4696                 journal->j_flags |= JBD2_BARRIER;
4697         else
4698                 journal->j_flags &= ~JBD2_BARRIER;
4699         if (test_opt(sb, DATA_ERR_ABORT))
4700                 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4701         else
4702                 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4703         write_unlock(&journal->j_state_lock);
4704 }
4705
4706 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4707                                              unsigned int journal_inum)
4708 {
4709         struct inode *journal_inode;
4710
4711         /*
4712          * Test for the existence of a valid inode on disk.  Bad things
4713          * happen if we iget() an unused inode, as the subsequent iput()
4714          * will try to delete it.
4715          */
4716         journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
4717         if (IS_ERR(journal_inode)) {
4718                 ext4_msg(sb, KERN_ERR, "no journal found");
4719                 return NULL;
4720         }
4721         if (!journal_inode->i_nlink) {
4722                 make_bad_inode(journal_inode);
4723                 iput(journal_inode);
4724                 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4725                 return NULL;
4726         }
4727
4728         jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4729                   journal_inode, journal_inode->i_size);
4730         if (!S_ISREG(journal_inode->i_mode)) {
4731                 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4732                 iput(journal_inode);
4733                 return NULL;
4734         }
4735         return journal_inode;
4736 }
4737
4738 static journal_t *ext4_get_journal(struct super_block *sb,
4739                                    unsigned int journal_inum)
4740 {
4741         struct inode *journal_inode;
4742         journal_t *journal;
4743
4744         BUG_ON(!ext4_has_feature_journal(sb));
4745
4746         journal_inode = ext4_get_journal_inode(sb, journal_inum);
4747         if (!journal_inode)
4748                 return NULL;
4749
4750         journal = jbd2_journal_init_inode(journal_inode);
4751         if (!journal) {
4752                 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4753                 iput(journal_inode);
4754                 return NULL;
4755         }
4756         journal->j_private = sb;
4757         ext4_init_journal_params(sb, journal);
4758         return journal;
4759 }
4760
4761 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4762                                        dev_t j_dev)
4763 {
4764         struct buffer_head *bh;
4765         journal_t *journal;
4766         ext4_fsblk_t start;
4767         ext4_fsblk_t len;
4768         int hblock, blocksize;
4769         ext4_fsblk_t sb_block;
4770         unsigned long offset;
4771         struct ext4_super_block *es;
4772         struct block_device *bdev;
4773
4774         BUG_ON(!ext4_has_feature_journal(sb));
4775
4776         bdev = ext4_blkdev_get(j_dev, sb);
4777         if (bdev == NULL)
4778                 return NULL;
4779
4780         blocksize = sb->s_blocksize;
4781         hblock = bdev_logical_block_size(bdev);
4782         if (blocksize < hblock) {
4783                 ext4_msg(sb, KERN_ERR,
4784                         "blocksize too small for journal device");
4785                 goto out_bdev;
4786         }
4787
4788         sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4789         offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4790         set_blocksize(bdev, blocksize);
4791         if (!(bh = __bread(bdev, sb_block, blocksize))) {
4792                 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4793                        "external journal");
4794                 goto out_bdev;
4795         }
4796
4797         es = (struct ext4_super_block *) (bh->b_data + offset);
4798         if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4799             !(le32_to_cpu(es->s_feature_incompat) &
4800               EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4801                 ext4_msg(sb, KERN_ERR, "external journal has "
4802                                         "bad superblock");
4803                 brelse(bh);
4804                 goto out_bdev;
4805         }
4806
4807         if ((le32_to_cpu(es->s_feature_ro_compat) &
4808              EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4809             es->s_checksum != ext4_superblock_csum(sb, es)) {
4810                 ext4_msg(sb, KERN_ERR, "external journal has "
4811                                        "corrupt superblock");
4812                 brelse(bh);
4813                 goto out_bdev;
4814         }
4815
4816         if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4817                 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4818                 brelse(bh);
4819                 goto out_bdev;
4820         }
4821
4822         len = ext4_blocks_count(es);
4823         start = sb_block + 1;
4824         brelse(bh);     /* we're done with the superblock */
4825
4826         journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4827                                         start, len, blocksize);
4828         if (!journal) {
4829                 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4830                 goto out_bdev;
4831         }
4832         journal->j_private = sb;
4833         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4834         wait_on_buffer(journal->j_sb_buffer);
4835         if (!buffer_uptodate(journal->j_sb_buffer)) {
4836                 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4837                 goto out_journal;
4838         }
4839         if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4840                 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4841                                         "user (unsupported) - %d",
4842                         be32_to_cpu(journal->j_superblock->s_nr_users));
4843                 goto out_journal;
4844         }
4845         EXT4_SB(sb)->journal_bdev = bdev;
4846         ext4_init_journal_params(sb, journal);
4847         return journal;
4848
4849 out_journal:
4850         jbd2_journal_destroy(journal);
4851 out_bdev:
4852         ext4_blkdev_put(bdev);
4853         return NULL;
4854 }
4855
4856 static int ext4_load_journal(struct super_block *sb,
4857                              struct ext4_super_block *es,
4858                              unsigned long journal_devnum)
4859 {
4860         journal_t *journal;
4861         unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4862         dev_t journal_dev;
4863         int err = 0;
4864         int really_read_only;
4865
4866         BUG_ON(!ext4_has_feature_journal(sb));
4867
4868         if (journal_devnum &&
4869             journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4870                 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4871                         "numbers have changed");
4872                 journal_dev = new_decode_dev(journal_devnum);
4873         } else
4874                 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4875
4876         really_read_only = bdev_read_only(sb->s_bdev);
4877
4878         /*
4879          * Are we loading a blank journal or performing recovery after a
4880          * crash?  For recovery, we need to check in advance whether we
4881          * can get read-write access to the device.
4882          */
4883         if (ext4_has_feature_journal_needs_recovery(sb)) {
4884                 if (sb_rdonly(sb)) {
4885                         ext4_msg(sb, KERN_INFO, "INFO: recovery "
4886                                         "required on readonly filesystem");
4887                         if (really_read_only) {
4888                                 ext4_msg(sb, KERN_ERR, "write access "
4889                                         "unavailable, cannot proceed "
4890                                         "(try mounting with noload)");
4891                                 return -EROFS;
4892                         }
4893                         ext4_msg(sb, KERN_INFO, "write access will "
4894                                "be enabled during recovery");
4895                 }
4896         }
4897
4898         if (journal_inum && journal_dev) {
4899                 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4900                        "and inode journals!");
4901                 return -EINVAL;
4902         }
4903
4904         if (journal_inum) {
4905                 if (!(journal = ext4_get_journal(sb, journal_inum)))
4906                         return -EINVAL;
4907         } else {
4908                 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4909                         return -EINVAL;
4910         }
4911
4912         if (!(journal->j_flags & JBD2_BARRIER))
4913                 ext4_msg(sb, KERN_INFO, "barriers disabled");
4914
4915         if (!ext4_has_feature_journal_needs_recovery(sb))
4916                 err = jbd2_journal_wipe(journal, !really_read_only);
4917         if (!err) {
4918                 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4919                 if (save)
4920                         memcpy(save, ((char *) es) +
4921                                EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4922                 err = jbd2_journal_load(journal);
4923                 if (save)
4924                         memcpy(((char *) es) + EXT4_S_ERR_START,
4925                                save, EXT4_S_ERR_LEN);
4926                 kfree(save);
4927         }
4928
4929         if (err) {
4930                 ext4_msg(sb, KERN_ERR, "error loading journal");
4931                 jbd2_journal_destroy(journal);
4932                 return err;
4933         }
4934
4935         EXT4_SB(sb)->s_journal = journal;
4936         ext4_clear_journal_err(sb, es);
4937
4938         if (!really_read_only && journal_devnum &&
4939             journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4940                 es->s_journal_dev = cpu_to_le32(journal_devnum);
4941
4942                 /* Make sure we flush the recovery flag to disk. */
4943                 ext4_commit_super(sb, 1);
4944         }
4945
4946         return 0;
4947 }
4948
4949 static int ext4_commit_super(struct super_block *sb, int sync)
4950 {
4951         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4952         struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4953         int error = 0;
4954
4955         if (!sbh || block_device_ejected(sb))
4956                 return error;
4957
4958         /*
4959          * The superblock bh should be mapped, but it might not be if the
4960          * device was hot-removed. Not much we can do but fail the I/O.
4961          */
4962         if (!buffer_mapped(sbh))
4963                 return error;
4964
4965         /*
4966          * If the file system is mounted read-only, don't update the
4967          * superblock write time.  This avoids updating the superblock
4968          * write time when we are mounting the root file system
4969          * read/only but we need to replay the journal; at that point,
4970          * for people who are east of GMT and who make their clock
4971          * tick in localtime for Windows bug-for-bug compatibility,
4972          * the clock is set in the future, and this will cause e2fsck
4973          * to complain and force a full file system check.
4974          */
4975         if (!(sb->s_flags & SB_RDONLY))
4976                 ext4_update_tstamp(es, s_wtime);
4977         if (sb->s_bdev->bd_part)
4978                 es->s_kbytes_written =
4979                         cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4980                             ((part_stat_read(sb->s_bdev->bd_part,
4981                                              sectors[STAT_WRITE]) -
4982                               EXT4_SB(sb)->s_sectors_written_start) >> 1));
4983         else
4984                 es->s_kbytes_written =
4985                         cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4986         if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4987                 ext4_free_blocks_count_set(es,
4988                         EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4989                                 &EXT4_SB(sb)->s_freeclusters_counter)));
4990         if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4991                 es->s_free_inodes_count =
4992                         cpu_to_le32(percpu_counter_sum_positive(
4993                                 &EXT4_SB(sb)->s_freeinodes_counter));
4994         BUFFER_TRACE(sbh, "marking dirty");
4995         ext4_superblock_csum_set(sb);
4996         if (sync)
4997                 lock_buffer(sbh);
4998         if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
4999                 /*
5000                  * Oh, dear.  A previous attempt to write the
5001                  * superblock failed.  This could happen because the
5002                  * USB device was yanked out.  Or it could happen to
5003                  * be a transient write error and maybe the block will
5004                  * be remapped.  Nothing we can do but to retry the
5005                  * write and hope for the best.
5006                  */
5007                 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5008                        "superblock detected");
5009                 clear_buffer_write_io_error(sbh);
5010                 set_buffer_uptodate(sbh);
5011         }
5012         mark_buffer_dirty(sbh);
5013         if (sync) {
5014                 unlock_buffer(sbh);
5015                 error = __sync_dirty_buffer(sbh,
5016                         REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5017                 if (buffer_write_io_error(sbh)) {
5018                         ext4_msg(sb, KERN_ERR, "I/O error while writing "
5019                                "superblock");
5020                         clear_buffer_write_io_error(sbh);
5021                         set_buffer_uptodate(sbh);
5022                 }
5023         }
5024         return error;
5025 }
5026
5027 /*
5028  * Have we just finished recovery?  If so, and if we are mounting (or
5029  * remounting) the filesystem readonly, then we will end up with a
5030  * consistent fs on disk.  Record that fact.
5031  */
5032 static void ext4_mark_recovery_complete(struct super_block *sb,
5033                                         struct ext4_super_block *es)
5034 {
5035         journal_t *journal = EXT4_SB(sb)->s_journal;
5036
5037         if (!ext4_has_feature_journal(sb)) {
5038                 BUG_ON(journal != NULL);
5039                 return;
5040         }
5041         jbd2_journal_lock_updates(journal);
5042         if (jbd2_journal_flush(journal) < 0)
5043                 goto out;
5044
5045         if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5046                 ext4_clear_feature_journal_needs_recovery(sb);
5047                 ext4_commit_super(sb, 1);
5048         }
5049
5050 out:
5051         jbd2_journal_unlock_updates(journal);
5052 }
5053
5054 /*
5055  * If we are mounting (or read-write remounting) a filesystem whose journal
5056  * has recorded an error from a previous lifetime, move that error to the
5057  * main filesystem now.
5058  */
5059 static void ext4_clear_journal_err(struct super_block *sb,
5060                                    struct ext4_super_block *es)
5061 {
5062         journal_t *journal;
5063         int j_errno;
5064         const char *errstr;
5065
5066         BUG_ON(!ext4_has_feature_journal(sb));
5067
5068         journal = EXT4_SB(sb)->s_journal;
5069
5070         /*
5071          * Now check for any error status which may have been recorded in the
5072          * journal by a prior ext4_error() or ext4_abort()
5073          */
5074
5075         j_errno = jbd2_journal_errno(journal);
5076         if (j_errno) {
5077                 char nbuf[16];
5078
5079                 errstr = ext4_decode_error(sb, j_errno, nbuf);
5080                 ext4_warning(sb, "Filesystem error recorded "
5081                              "from previous mount: %s", errstr);
5082                 ext4_warning(sb, "Marking fs in need of filesystem check.");
5083
5084                 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5085                 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5086                 ext4_commit_super(sb, 1);
5087
5088                 jbd2_journal_clear_err(journal);
5089                 jbd2_journal_update_sb_errno(journal);
5090         }
5091 }
5092
5093 /*
5094  * Force the running and committing transactions to commit,
5095  * and wait on the commit.
5096  */
5097 int ext4_force_commit(struct super_block *sb)
5098 {
5099         journal_t *journal;
5100
5101         if (sb_rdonly(sb))
5102                 return 0;
5103
5104         journal = EXT4_SB(sb)->s_journal;
5105         return ext4_journal_force_commit(journal);
5106 }
5107
5108 static int ext4_sync_fs(struct super_block *sb, int wait)
5109 {
5110         int ret = 0;
5111         tid_t target;
5112         bool needs_barrier = false;
5113         struct ext4_sb_info *sbi = EXT4_SB(sb);
5114
5115         if (unlikely(ext4_forced_shutdown(sbi)))
5116                 return 0;
5117
5118         trace_ext4_sync_fs(sb, wait);
5119         flush_workqueue(sbi->rsv_conversion_wq);
5120         /*
5121          * Writeback quota in non-journalled quota case - journalled quota has
5122          * no dirty dquots
5123          */
5124         dquot_writeback_dquots(sb, -1);
5125         /*
5126          * Data writeback is possible w/o journal transaction, so barrier must
5127          * being sent at the end of the function. But we can skip it if
5128          * transaction_commit will do it for us.
5129          */
5130         if (sbi->s_journal) {
5131                 target = jbd2_get_latest_transaction(sbi->s_journal);
5132                 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5133                     !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5134                         needs_barrier = true;
5135
5136                 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5137                         if (wait)
5138                                 ret = jbd2_log_wait_commit(sbi->s_journal,
5139                                                            target);
5140                 }
5141         } else if (wait && test_opt(sb, BARRIER))
5142                 needs_barrier = true;
5143         if (needs_barrier) {
5144                 int err;
5145                 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
5146                 if (!ret)
5147                         ret = err;
5148         }
5149
5150         return ret;
5151 }
5152
5153 /*
5154  * LVM calls this function before a (read-only) snapshot is created.  This
5155  * gives us a chance to flush the journal completely and mark the fs clean.
5156  *
5157  * Note that only this function cannot bring a filesystem to be in a clean
5158  * state independently. It relies on upper layer to stop all data & metadata
5159  * modifications.
5160  */
5161 static int ext4_freeze(struct super_block *sb)
5162 {
5163         int error = 0;
5164         journal_t *journal;
5165
5166         if (sb_rdonly(sb))
5167                 return 0;
5168
5169         journal = EXT4_SB(sb)->s_journal;
5170
5171         if (journal) {
5172                 /* Now we set up the journal barrier. */
5173                 jbd2_journal_lock_updates(journal);
5174
5175                 /*
5176                  * Don't clear the needs_recovery flag if we failed to
5177                  * flush the journal.
5178                  */
5179                 error = jbd2_journal_flush(journal);
5180                 if (error < 0)
5181                         goto out;
5182
5183                 /* Journal blocked and flushed, clear needs_recovery flag. */
5184                 ext4_clear_feature_journal_needs_recovery(sb);
5185         }
5186
5187         error = ext4_commit_super(sb, 1);
5188 out:
5189         if (journal)
5190                 /* we rely on upper layer to stop further updates */
5191                 jbd2_journal_unlock_updates(journal);
5192         return error;
5193 }
5194
5195 /*
5196  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
5197  * flag here, even though the filesystem is not technically dirty yet.
5198  */
5199 static int ext4_unfreeze(struct super_block *sb)
5200 {
5201         if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5202                 return 0;
5203
5204         if (EXT4_SB(sb)->s_journal) {
5205                 /* Reset the needs_recovery flag before the fs is unlocked. */
5206                 ext4_set_feature_journal_needs_recovery(sb);
5207         }
5208
5209         ext4_commit_super(sb, 1);
5210         return 0;
5211 }
5212
5213 /*
5214  * Structure to save mount options for ext4_remount's benefit
5215  */
5216 struct ext4_mount_options {
5217         unsigned long s_mount_opt;
5218         unsigned long s_mount_opt2;
5219         kuid_t s_resuid;
5220         kgid_t s_resgid;
5221         unsigned long s_commit_interval;
5222         u32 s_min_batch_time, s_max_batch_time;
5223 #ifdef CONFIG_QUOTA
5224         int s_jquota_fmt;
5225         char *s_qf_names[EXT4_MAXQUOTAS];
5226 #endif
5227 };
5228
5229 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5230 {
5231         struct ext4_super_block *es;
5232         struct ext4_sb_info *sbi = EXT4_SB(sb);
5233         unsigned long old_sb_flags;
5234         struct ext4_mount_options old_opts;
5235         int enable_quota = 0;
5236         ext4_group_t g;
5237         unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5238         int err = 0;
5239 #ifdef CONFIG_QUOTA
5240         int i, j;
5241         char *to_free[EXT4_MAXQUOTAS];
5242 #endif
5243         char *orig_data = kstrdup(data, GFP_KERNEL);
5244
5245         if (data && !orig_data)
5246                 return -ENOMEM;
5247
5248         /* Store the original options */
5249         old_sb_flags = sb->s_flags;
5250         old_opts.s_mount_opt = sbi->s_mount_opt;
5251         old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5252         old_opts.s_resuid = sbi->s_resuid;
5253         old_opts.s_resgid = sbi->s_resgid;
5254         old_opts.s_commit_interval = sbi->s_commit_interval;
5255         old_opts.s_min_batch_time = sbi->s_min_batch_time;
5256         old_opts.s_max_batch_time = sbi->s_max_batch_time;
5257 #ifdef CONFIG_QUOTA
5258         old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5259         for (i = 0; i < EXT4_MAXQUOTAS; i++)
5260                 if (sbi->s_qf_names[i]) {
5261                         char *qf_name = get_qf_name(sb, sbi, i);
5262
5263                         old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5264                         if (!old_opts.s_qf_names[i]) {
5265                                 for (j = 0; j < i; j++)
5266                                         kfree(old_opts.s_qf_names[j]);
5267                                 kfree(orig_data);
5268                                 return -ENOMEM;
5269                         }
5270                 } else
5271                         old_opts.s_qf_names[i] = NULL;
5272 #endif
5273         if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5274                 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5275
5276         if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5277                 err = -EINVAL;
5278                 goto restore_opts;
5279         }
5280
5281         ext4_clamp_want_extra_isize(sb);
5282
5283         if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5284             test_opt(sb, JOURNAL_CHECKSUM)) {
5285                 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5286                          "during remount not supported; ignoring");
5287                 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5288         }
5289
5290         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5291                 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5292                         ext4_msg(sb, KERN_ERR, "can't mount with "
5293                                  "both data=journal and delalloc");
5294                         err = -EINVAL;
5295                         goto restore_opts;
5296                 }
5297                 if (test_opt(sb, DIOREAD_NOLOCK)) {
5298                         ext4_msg(sb, KERN_ERR, "can't mount with "
5299                                  "both data=journal and dioread_nolock");
5300                         err = -EINVAL;
5301                         goto restore_opts;
5302                 }
5303                 if (test_opt(sb, DAX)) {
5304                         ext4_msg(sb, KERN_ERR, "can't mount with "
5305                                  "both data=journal and dax");
5306                         err = -EINVAL;
5307                         goto restore_opts;
5308                 }
5309         } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5310                 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5311                         ext4_msg(sb, KERN_ERR, "can't mount with "
5312                                 "journal_async_commit in data=ordered mode");
5313                         err = -EINVAL;
5314                         goto restore_opts;
5315                 }
5316         }
5317
5318         if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5319                 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5320                 err = -EINVAL;
5321                 goto restore_opts;
5322         }
5323
5324         if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5325                 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5326                         "dax flag with busy inodes while remounting");
5327                 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5328         }
5329
5330         if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5331                 ext4_abort(sb, "Abort forced by user");
5332
5333         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5334                 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5335
5336         es = sbi->s_es;
5337
5338         if (sbi->s_journal) {
5339                 ext4_init_journal_params(sb, sbi->s_journal);
5340                 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5341         }
5342
5343         if (*flags & SB_LAZYTIME)
5344                 sb->s_flags |= SB_LAZYTIME;
5345
5346         if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5347                 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5348                         err = -EROFS;
5349                         goto restore_opts;
5350                 }
5351
5352                 if (*flags & SB_RDONLY) {
5353                         err = sync_filesystem(sb);
5354                         if (err < 0)
5355                                 goto restore_opts;
5356                         err = dquot_suspend(sb, -1);
5357                         if (err < 0)
5358                                 goto restore_opts;
5359
5360                         /*
5361                          * First of all, the unconditional stuff we have to do
5362                          * to disable replay of the journal when we next remount
5363                          */
5364                         sb->s_flags |= SB_RDONLY;
5365
5366                         /*
5367                          * OK, test if we are remounting a valid rw partition
5368                          * readonly, and if so set the rdonly flag and then
5369                          * mark the partition as valid again.
5370                          */
5371                         if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5372                             (sbi->s_mount_state & EXT4_VALID_FS))
5373                                 es->s_state = cpu_to_le16(sbi->s_mount_state);
5374
5375                         if (sbi->s_journal)
5376                                 ext4_mark_recovery_complete(sb, es);
5377                         if (sbi->s_mmp_tsk)
5378                                 kthread_stop(sbi->s_mmp_tsk);
5379                 } else {
5380                         /* Make sure we can mount this feature set readwrite */
5381                         if (ext4_has_feature_readonly(sb) ||
5382                             !ext4_feature_set_ok(sb, 0)) {
5383                                 err = -EROFS;
5384                                 goto restore_opts;
5385                         }
5386                         /*
5387                          * Make sure the group descriptor checksums
5388                          * are sane.  If they aren't, refuse to remount r/w.
5389                          */
5390                         for (g = 0; g < sbi->s_groups_count; g++) {
5391                                 struct ext4_group_desc *gdp =
5392                                         ext4_get_group_desc(sb, g, NULL);
5393
5394                                 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5395                                         ext4_msg(sb, KERN_ERR,
5396                "ext4_remount: Checksum for group %u failed (%u!=%u)",
5397                 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5398                                                le16_to_cpu(gdp->bg_checksum));
5399                                         err = -EFSBADCRC;
5400                                         goto restore_opts;
5401                                 }
5402                         }
5403
5404                         /*
5405                          * If we have an unprocessed orphan list hanging
5406                          * around from a previously readonly bdev mount,
5407                          * require a full umount/remount for now.
5408                          */
5409                         if (es->s_last_orphan) {
5410                                 ext4_msg(sb, KERN_WARNING, "Couldn't "
5411                                        "remount RDWR because of unprocessed "
5412                                        "orphan inode list.  Please "
5413                                        "umount/remount instead");
5414                                 err = -EINVAL;
5415                                 goto restore_opts;
5416                         }
5417
5418                         /*
5419                          * Mounting a RDONLY partition read-write, so reread
5420                          * and store the current valid flag.  (It may have
5421                          * been changed by e2fsck since we originally mounted
5422                          * the partition.)
5423                          */
5424                         if (sbi->s_journal)
5425                                 ext4_clear_journal_err(sb, es);
5426                         sbi->s_mount_state = le16_to_cpu(es->s_state);
5427
5428                         err = ext4_setup_super(sb, es, 0);
5429                         if (err)
5430                                 goto restore_opts;
5431
5432                         sb->s_flags &= ~SB_RDONLY;
5433                         if (ext4_has_feature_mmp(sb))
5434                                 if (ext4_multi_mount_protect(sb,
5435                                                 le64_to_cpu(es->s_mmp_block))) {
5436                                         err = -EROFS;
5437                                         goto restore_opts;
5438                                 }
5439                         enable_quota = 1;
5440                 }
5441         }
5442
5443         /*
5444          * Reinitialize lazy itable initialization thread based on
5445          * current settings
5446          */
5447         if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5448                 ext4_unregister_li_request(sb);
5449         else {
5450                 ext4_group_t first_not_zeroed;
5451                 first_not_zeroed = ext4_has_uninit_itable(sb);
5452                 ext4_register_li_request(sb, first_not_zeroed);
5453         }
5454
5455         ext4_setup_system_zone(sb);
5456         if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5457                 err = ext4_commit_super(sb, 1);
5458                 if (err)
5459                         goto restore_opts;
5460         }
5461
5462 #ifdef CONFIG_QUOTA
5463         /* Release old quota file names */
5464         for (i = 0; i < EXT4_MAXQUOTAS; i++)
5465                 kfree(old_opts.s_qf_names[i]);
5466         if (enable_quota) {
5467                 if (sb_any_quota_suspended(sb))
5468                         dquot_resume(sb, -1);
5469                 else if (ext4_has_feature_quota(sb)) {
5470                         err = ext4_enable_quotas(sb);
5471                         if (err)
5472                                 goto restore_opts;
5473                 }
5474         }
5475 #endif
5476
5477         *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5478         ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5479         kfree(orig_data);
5480         return 0;
5481
5482 restore_opts:
5483         sb->s_flags = old_sb_flags;
5484         sbi->s_mount_opt = old_opts.s_mount_opt;
5485         sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5486         sbi->s_resuid = old_opts.s_resuid;
5487         sbi->s_resgid = old_opts.s_resgid;
5488         sbi->s_commit_interval = old_opts.s_commit_interval;
5489         sbi->s_min_batch_time = old_opts.s_min_batch_time;
5490         sbi->s_max_batch_time = old_opts.s_max_batch_time;
5491 #ifdef CONFIG_QUOTA
5492         sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5493         for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5494                 to_free[i] = get_qf_name(sb, sbi, i);
5495                 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
5496         }
5497         synchronize_rcu();
5498         for (i = 0; i < EXT4_MAXQUOTAS; i++)
5499                 kfree(to_free[i]);
5500 #endif
5501         kfree(orig_data);
5502         return err;
5503 }
5504
5505 #ifdef CONFIG_QUOTA
5506 static int ext4_statfs_project(struct super_block *sb,
5507                                kprojid_t projid, struct kstatfs *buf)
5508 {
5509         struct kqid qid;
5510         struct dquot *dquot;
5511         u64 limit;
5512         u64 curblock;
5513
5514         qid = make_kqid_projid(projid);
5515         dquot = dqget(sb, qid);
5516         if (IS_ERR(dquot))
5517                 return PTR_ERR(dquot);
5518         spin_lock(&dquot->dq_dqb_lock);
5519
5520         limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5521                  dquot->dq_dqb.dqb_bsoftlimit :
5522                  dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5523         if (limit && buf->f_blocks > limit) {
5524                 curblock = (dquot->dq_dqb.dqb_curspace +
5525                             dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5526                 buf->f_blocks = limit;
5527                 buf->f_bfree = buf->f_bavail =
5528                         (buf->f_blocks > curblock) ?
5529                          (buf->f_blocks - curblock) : 0;
5530         }
5531
5532         limit = dquot->dq_dqb.dqb_isoftlimit ?
5533                 dquot->dq_dqb.dqb_isoftlimit :
5534                 dquot->dq_dqb.dqb_ihardlimit;
5535         if (limit && buf->f_files > limit) {
5536                 buf->f_files = limit;
5537                 buf->f_ffree =
5538                         (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5539                          (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5540         }
5541
5542         spin_unlock(&dquot->dq_dqb_lock);
5543         dqput(dquot);
5544         return 0;
5545 }
5546 #endif
5547
5548 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5549 {
5550         struct super_block *sb = dentry->d_sb;
5551         struct ext4_sb_info *sbi = EXT4_SB(sb);
5552         struct ext4_super_block *es = sbi->s_es;
5553         ext4_fsblk_t overhead = 0, resv_blocks;
5554         u64 fsid;
5555         s64 bfree;
5556         resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5557
5558         if (!test_opt(sb, MINIX_DF))
5559                 overhead = sbi->s_overhead;
5560
5561         buf->f_type = EXT4_SUPER_MAGIC;
5562         buf->f_bsize = sb->s_blocksize;
5563         buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5564         bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5565                 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5566         /* prevent underflow in case that few free space is available */
5567         buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5568         buf->f_bavail = buf->f_bfree -
5569                         (ext4_r_blocks_count(es) + resv_blocks);
5570         if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5571                 buf->f_bavail = 0;
5572         buf->f_files = le32_to_cpu(es->s_inodes_count);
5573         buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5574         buf->f_namelen = EXT4_NAME_LEN;
5575         fsid = le64_to_cpup((void *)es->s_uuid) ^
5576                le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5577         buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5578         buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5579
5580 #ifdef CONFIG_QUOTA
5581         if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5582             sb_has_quota_limits_enabled(sb, PRJQUOTA))
5583                 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5584 #endif
5585         return 0;
5586 }
5587
5588
5589 #ifdef CONFIG_QUOTA
5590
5591 /*
5592  * Helper functions so that transaction is started before we acquire dqio_sem
5593  * to keep correct lock ordering of transaction > dqio_sem
5594  */
5595 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5596 {
5597         return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5598 }
5599
5600 static int ext4_write_dquot(struct dquot *dquot)
5601 {
5602         int ret, err;
5603         handle_t *handle;
5604         struct inode *inode;
5605
5606         inode = dquot_to_inode(dquot);
5607         handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5608                                     EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5609         if (IS_ERR(handle))
5610                 return PTR_ERR(handle);
5611         ret = dquot_commit(dquot);
5612         err = ext4_journal_stop(handle);
5613         if (!ret)
5614                 ret = err;
5615         return ret;
5616 }
5617
5618 static int ext4_acquire_dquot(struct dquot *dquot)
5619 {
5620         int ret, err;
5621         handle_t *handle;
5622
5623         handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5624                                     EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5625         if (IS_ERR(handle))
5626                 return PTR_ERR(handle);
5627         ret = dquot_acquire(dquot);
5628         err = ext4_journal_stop(handle);
5629         if (!ret)
5630                 ret = err;
5631         return ret;
5632 }
5633
5634 static int ext4_release_dquot(struct dquot *dquot)
5635 {
5636         int ret, err;
5637         handle_t *handle;
5638
5639         handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5640                                     EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5641         if (IS_ERR(handle)) {
5642                 /* Release dquot anyway to avoid endless cycle in dqput() */
5643                 dquot_release(dquot);
5644                 return PTR_ERR(handle);
5645         }
5646         ret = dquot_release(dquot);
5647         err = ext4_journal_stop(handle);
5648         if (!ret)
5649                 ret = err;
5650         return ret;
5651 }
5652
5653 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5654 {
5655         struct super_block *sb = dquot->dq_sb;
5656         struct ext4_sb_info *sbi = EXT4_SB(sb);
5657
5658         /* Are we journaling quotas? */
5659         if (ext4_has_feature_quota(sb) ||
5660             sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5661                 dquot_mark_dquot_dirty(dquot);
5662                 return ext4_write_dquot(dquot);
5663         } else {
5664                 return dquot_mark_dquot_dirty(dquot);
5665         }
5666 }
5667
5668 static int ext4_write_info(struct super_block *sb, int type)
5669 {
5670         int ret, err;
5671         handle_t *handle;
5672
5673         /* Data block + inode block */
5674         handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5675         if (IS_ERR(handle))
5676                 return PTR_ERR(handle);
5677         ret = dquot_commit_info(sb, type);
5678         err = ext4_journal_stop(handle);
5679         if (!ret)
5680                 ret = err;
5681         return ret;
5682 }
5683
5684 /*
5685  * Turn on quotas during mount time - we need to find
5686  * the quota file and such...
5687  */
5688 static int ext4_quota_on_mount(struct super_block *sb, int type)
5689 {
5690         return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
5691                                         EXT4_SB(sb)->s_jquota_fmt, type);
5692 }
5693
5694 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5695 {
5696         struct ext4_inode_info *ei = EXT4_I(inode);
5697
5698         /* The first argument of lockdep_set_subclass has to be
5699          * *exactly* the same as the argument to init_rwsem() --- in
5700          * this case, in init_once() --- or lockdep gets unhappy
5701          * because the name of the lock is set using the
5702          * stringification of the argument to init_rwsem().
5703          */
5704         (void) ei;      /* shut up clang warning if !CONFIG_LOCKDEP */
5705         lockdep_set_subclass(&ei->i_data_sem, subclass);
5706 }
5707
5708 /*
5709  * Standard function to be called on quota_on
5710  */
5711 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5712                          const struct path *path)
5713 {
5714         int err;
5715
5716         if (!test_opt(sb, QUOTA))
5717                 return -EINVAL;
5718
5719         /* Quotafile not on the same filesystem? */
5720         if (path->dentry->d_sb != sb)
5721                 return -EXDEV;
5722         /* Journaling quota? */
5723         if (EXT4_SB(sb)->s_qf_names[type]) {
5724                 /* Quotafile not in fs root? */
5725                 if (path->dentry->d_parent != sb->s_root)
5726                         ext4_msg(sb, KERN_WARNING,
5727                                 "Quota file not on filesystem root. "
5728                                 "Journaled quota will not work");
5729                 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5730         } else {
5731                 /*
5732                  * Clear the flag just in case mount options changed since
5733                  * last time.
5734                  */
5735                 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5736         }
5737
5738         /*
5739          * When we journal data on quota file, we have to flush journal to see
5740          * all updates to the file when we bypass pagecache...
5741          */
5742         if (EXT4_SB(sb)->s_journal &&
5743             ext4_should_journal_data(d_inode(path->dentry))) {
5744                 /*
5745                  * We don't need to lock updates but journal_flush() could
5746                  * otherwise be livelocked...
5747                  */
5748                 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5749                 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5750                 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5751                 if (err)
5752                         return err;
5753         }
5754
5755         lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5756         err = dquot_quota_on(sb, type, format_id, path);
5757         if (err) {
5758                 lockdep_set_quota_inode(path->dentry->d_inode,
5759                                              I_DATA_SEM_NORMAL);
5760         } else {
5761                 struct inode *inode = d_inode(path->dentry);
5762                 handle_t *handle;
5763
5764                 /*
5765                  * Set inode flags to prevent userspace from messing with quota
5766                  * files. If this fails, we return success anyway since quotas
5767                  * are already enabled and this is not a hard failure.
5768                  */
5769                 inode_lock(inode);
5770                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5771                 if (IS_ERR(handle))
5772                         goto unlock_inode;
5773                 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5774                 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5775                                 S_NOATIME | S_IMMUTABLE);
5776                 ext4_mark_inode_dirty(handle, inode);
5777                 ext4_journal_stop(handle);
5778         unlock_inode:
5779                 inode_unlock(inode);
5780         }
5781         return err;
5782 }
5783
5784 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5785                              unsigned int flags)
5786 {
5787         int err;
5788         struct inode *qf_inode;
5789         unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5790                 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5791                 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5792                 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5793         };
5794
5795         BUG_ON(!ext4_has_feature_quota(sb));
5796
5797         if (!qf_inums[type])
5798                 return -EPERM;
5799
5800         qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
5801         if (IS_ERR(qf_inode)) {
5802                 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5803                 return PTR_ERR(qf_inode);
5804         }
5805
5806         /* Don't account quota for quota files to avoid recursion */
5807         qf_inode->i_flags |= S_NOQUOTA;
5808         lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5809         err = dquot_enable(qf_inode, type, format_id, flags);
5810         if (err)
5811                 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5812         iput(qf_inode);
5813
5814         return err;
5815 }
5816
5817 /* Enable usage tracking for all quota types. */
5818 static int ext4_enable_quotas(struct super_block *sb)
5819 {
5820         int type, err = 0;
5821         unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5822                 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5823                 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5824                 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5825         };
5826         bool quota_mopt[EXT4_MAXQUOTAS] = {
5827                 test_opt(sb, USRQUOTA),
5828                 test_opt(sb, GRPQUOTA),
5829                 test_opt(sb, PRJQUOTA),
5830         };
5831
5832         sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5833         for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5834                 if (qf_inums[type]) {
5835                         err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5836                                 DQUOT_USAGE_ENABLED |
5837                                 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5838                         if (err) {
5839                                 ext4_warning(sb,
5840                                         "Failed to enable quota tracking "
5841                                         "(type=%d, err=%d). Please run "
5842                                         "e2fsck to fix.", type, err);
5843                                 for (type--; type >= 0; type--)
5844                                         dquot_quota_off(sb, type);
5845
5846                                 return err;
5847                         }
5848                 }
5849         }
5850         return 0;
5851 }
5852
5853 static int ext4_quota_off(struct super_block *sb, int type)
5854 {
5855         struct inode *inode = sb_dqopt(sb)->files[type];
5856         handle_t *handle;
5857         int err;
5858
5859         /* Force all delayed allocation blocks to be allocated.
5860          * Caller already holds s_umount sem */
5861         if (test_opt(sb, DELALLOC))
5862                 sync_filesystem(sb);
5863
5864         if (!inode || !igrab(inode))
5865                 goto out;
5866
5867         err = dquot_quota_off(sb, type);
5868         if (err || ext4_has_feature_quota(sb))
5869                 goto out_put;
5870
5871         inode_lock(inode);
5872         /*
5873          * Update modification times of quota files when userspace can
5874          * start looking at them. If we fail, we return success anyway since
5875          * this is not a hard failure and quotas are already disabled.
5876          */
5877         handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5878         if (IS_ERR(handle))
5879                 goto out_unlock;
5880         EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5881         inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5882         inode->i_mtime = inode->i_ctime = current_time(inode);
5883         ext4_mark_inode_dirty(handle, inode);
5884         ext4_journal_stop(handle);
5885 out_unlock:
5886         inode_unlock(inode);
5887 out_put:
5888         lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5889         iput(inode);
5890         return err;
5891 out:
5892         return dquot_quota_off(sb, type);
5893 }
5894
5895 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5896  * acquiring the locks... As quota files are never truncated and quota code
5897  * itself serializes the operations (and no one else should touch the files)
5898  * we don't have to be afraid of races */
5899 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5900                                size_t len, loff_t off)
5901 {
5902         struct inode *inode = sb_dqopt(sb)->files[type];
5903         ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5904         int offset = off & (sb->s_blocksize - 1);
5905         int tocopy;
5906         size_t toread;
5907         struct buffer_head *bh;
5908         loff_t i_size = i_size_read(inode);
5909
5910         if (off > i_size)
5911                 return 0;
5912         if (off+len > i_size)
5913                 len = i_size-off;
5914         toread = len;
5915         while (toread > 0) {
5916                 tocopy = sb->s_blocksize - offset < toread ?
5917                                 sb->s_blocksize - offset : toread;
5918                 bh = ext4_bread(NULL, inode, blk, 0);
5919                 if (IS_ERR(bh))
5920                         return PTR_ERR(bh);
5921                 if (!bh)        /* A hole? */
5922                         memset(data, 0, tocopy);
5923                 else
5924                         memcpy(data, bh->b_data+offset, tocopy);
5925                 brelse(bh);
5926                 offset = 0;
5927                 toread -= tocopy;
5928                 data += tocopy;
5929                 blk++;
5930         }
5931         return len;
5932 }
5933
5934 /* Write to quotafile (we know the transaction is already started and has
5935  * enough credits) */
5936 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5937                                 const char *data, size_t len, loff_t off)
5938 {
5939         struct inode *inode = sb_dqopt(sb)->files[type];
5940         ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5941         int err, offset = off & (sb->s_blocksize - 1);
5942         int retries = 0;
5943         struct buffer_head *bh;
5944         handle_t *handle = journal_current_handle();
5945
5946         if (EXT4_SB(sb)->s_journal && !handle) {
5947                 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5948                         " cancelled because transaction is not started",
5949                         (unsigned long long)off, (unsigned long long)len);
5950                 return -EIO;
5951         }
5952         /*
5953          * Since we account only one data block in transaction credits,
5954          * then it is impossible to cross a block boundary.
5955          */
5956         if (sb->s_blocksize - offset < len) {
5957                 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5958                         " cancelled because not block aligned",
5959                         (unsigned long long)off, (unsigned long long)len);
5960                 return -EIO;
5961         }
5962
5963         do {
5964                 bh = ext4_bread(handle, inode, blk,
5965                                 EXT4_GET_BLOCKS_CREATE |
5966                                 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5967         } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5968                  ext4_should_retry_alloc(inode->i_sb, &retries));
5969         if (IS_ERR(bh))
5970                 return PTR_ERR(bh);
5971         if (!bh)
5972                 goto out;
5973         BUFFER_TRACE(bh, "get write access");
5974         err = ext4_journal_get_write_access(handle, bh);
5975         if (err) {
5976                 brelse(bh);
5977                 return err;
5978         }
5979         lock_buffer(bh);
5980         memcpy(bh->b_data+offset, data, len);
5981         flush_dcache_page(bh->b_page);
5982         unlock_buffer(bh);
5983         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5984         brelse(bh);
5985 out:
5986         if (inode->i_size < off + len) {
5987                 i_size_write(inode, off + len);
5988                 EXT4_I(inode)->i_disksize = inode->i_size;
5989                 ext4_mark_inode_dirty(handle, inode);
5990         }
5991         return len;
5992 }
5993
5994 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5995 {
5996         const struct quota_format_ops   *ops;
5997
5998         if (!sb_has_quota_loaded(sb, qid->type))
5999                 return -ESRCH;
6000         ops = sb_dqopt(sb)->ops[qid->type];
6001         if (!ops || !ops->get_next_id)
6002                 return -ENOSYS;
6003         return dquot_get_next_id(sb, qid);
6004 }
6005 #endif
6006
6007 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6008                        const char *dev_name, void *data)
6009 {
6010         return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6011 }
6012
6013 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6014 static inline void register_as_ext2(void)
6015 {
6016         int err = register_filesystem(&ext2_fs_type);
6017         if (err)
6018                 printk(KERN_WARNING
6019                        "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6020 }
6021
6022 static inline void unregister_as_ext2(void)
6023 {
6024         unregister_filesystem(&ext2_fs_type);
6025 }
6026
6027 static inline int ext2_feature_set_ok(struct super_block *sb)
6028 {
6029         if (ext4_has_unknown_ext2_incompat_features(sb))
6030                 return 0;
6031         if (sb_rdonly(sb))
6032                 return 1;
6033         if (ext4_has_unknown_ext2_ro_compat_features(sb))
6034                 return 0;
6035         return 1;
6036 }
6037 #else
6038 static inline void register_as_ext2(void) { }
6039 static inline void unregister_as_ext2(void) { }
6040 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6041 #endif
6042
6043 static inline void register_as_ext3(void)
6044 {
6045         int err = register_filesystem(&ext3_fs_type);
6046         if (err)
6047                 printk(KERN_WARNING
6048                        "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6049 }
6050
6051 static inline void unregister_as_ext3(void)
6052 {
6053         unregister_filesystem(&ext3_fs_type);
6054 }
6055
6056 static inline int ext3_feature_set_ok(struct super_block *sb)
6057 {
6058         if (ext4_has_unknown_ext3_incompat_features(sb))
6059                 return 0;
6060         if (!ext4_has_feature_journal(sb))
6061                 return 0;
6062         if (sb_rdonly(sb))
6063                 return 1;
6064         if (ext4_has_unknown_ext3_ro_compat_features(sb))
6065                 return 0;
6066         return 1;
6067 }
6068
6069 static struct file_system_type ext4_fs_type = {
6070         .owner          = THIS_MODULE,
6071         .name           = "ext4",
6072         .mount          = ext4_mount,
6073         .kill_sb        = kill_block_super,
6074         .fs_flags       = FS_REQUIRES_DEV,
6075 };
6076 MODULE_ALIAS_FS("ext4");
6077
6078 /* Shared across all ext4 file systems */
6079 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6080
6081 static int __init ext4_init_fs(void)
6082 {
6083         int i, err;
6084
6085         ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6086         ext4_li_info = NULL;
6087         mutex_init(&ext4_li_mtx);
6088
6089         /* Build-time check for flags consistency */
6090         ext4_check_flag_values();
6091
6092         for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6093                 init_waitqueue_head(&ext4__ioend_wq[i]);
6094
6095         err = ext4_init_es();
6096         if (err)
6097                 return err;
6098
6099         err = ext4_init_pending();
6100         if (err)
6101                 goto out6;
6102
6103         err = ext4_init_pageio();
6104         if (err)
6105                 goto out5;
6106
6107         err = ext4_init_system_zone();
6108         if (err)
6109                 goto out4;
6110
6111         err = ext4_init_sysfs();
6112         if (err)
6113                 goto out3;
6114
6115         err = ext4_init_mballoc();
6116         if (err)
6117                 goto out2;
6118         err = init_inodecache();
6119         if (err)
6120                 goto out1;
6121         register_as_ext3();
6122         register_as_ext2();
6123         err = register_filesystem(&ext4_fs_type);
6124         if (err)
6125                 goto out;
6126
6127         return 0;
6128 out:
6129         unregister_as_ext2();
6130         unregister_as_ext3();
6131         destroy_inodecache();
6132 out1:
6133         ext4_exit_mballoc();
6134 out2:
6135         ext4_exit_sysfs();
6136 out3:
6137         ext4_exit_system_zone();
6138 out4:
6139         ext4_exit_pageio();
6140 out5:
6141         ext4_exit_pending();
6142 out6:
6143         ext4_exit_es();
6144
6145         return err;
6146 }
6147
6148 static void __exit ext4_exit_fs(void)
6149 {
6150         ext4_destroy_lazyinit_thread();
6151         unregister_as_ext2();
6152         unregister_as_ext3();
6153         unregister_filesystem(&ext4_fs_type);
6154         destroy_inodecache();
6155         ext4_exit_mballoc();
6156         ext4_exit_sysfs();
6157         ext4_exit_system_zone();
6158         ext4_exit_pageio();
6159         ext4_exit_es();
6160         ext4_exit_pending();
6161 }
6162
6163 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6164 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6165 MODULE_LICENSE("GPL");
6166 MODULE_SOFTDEP("pre: crc32c");
6167 module_init(ext4_init_fs)
6168 module_exit(ext4_exit_fs)