]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/ext4/super.c
ext4: fix integer overflow when calculating commit interval
[linux.git] / fs / ext4 / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/super.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  Big-endian to little-endian byte-swapping/bitmaps by
17  *        David S. Miller (davem@caip.rutgers.edu), 1995
18  */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49
50 #include "ext4.h"
51 #include "ext4_extents.h"       /* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
60
61 static struct ext4_lazy_init *ext4_li_info;
62 static struct mutex ext4_li_mtx;
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
64
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66                              unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static int ext4_commit_super(struct super_block *sb, int sync);
69 static void ext4_mark_recovery_complete(struct super_block *sb,
70                                         struct ext4_super_block *es);
71 static void ext4_clear_journal_err(struct super_block *sb,
72                                    struct ext4_super_block *es);
73 static int ext4_sync_fs(struct super_block *sb, int wait);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static int ext4_freeze(struct super_block *sb);
78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79                        const char *dev_name, void *data);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 static struct inode *ext4_get_journal_inode(struct super_block *sb,
87                                             unsigned int journal_inum);
88
89 /*
90  * Lock ordering
91  *
92  * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
93  * i_mmap_rwsem (inode->i_mmap_rwsem)!
94  *
95  * page fault path:
96  * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
97  *   page lock -> i_data_sem (rw)
98  *
99  * buffered write path:
100  * sb_start_write -> i_mutex -> mmap_sem
101  * sb_start_write -> i_mutex -> transaction start -> page lock ->
102  *   i_data_sem (rw)
103  *
104  * truncate:
105  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
106  * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
107  *   i_data_sem (rw)
108  *
109  * direct IO:
110  * sb_start_write -> i_mutex -> mmap_sem
111  * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
112  *
113  * writepages:
114  * transaction start -> page lock(s) -> i_data_sem (rw)
115  */
116
117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
118 static struct file_system_type ext2_fs_type = {
119         .owner          = THIS_MODULE,
120         .name           = "ext2",
121         .mount          = ext4_mount,
122         .kill_sb        = kill_block_super,
123         .fs_flags       = FS_REQUIRES_DEV,
124 };
125 MODULE_ALIAS_FS("ext2");
126 MODULE_ALIAS("ext2");
127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
128 #else
129 #define IS_EXT2_SB(sb) (0)
130 #endif
131
132
133 static struct file_system_type ext3_fs_type = {
134         .owner          = THIS_MODULE,
135         .name           = "ext3",
136         .mount          = ext4_mount,
137         .kill_sb        = kill_block_super,
138         .fs_flags       = FS_REQUIRES_DEV,
139 };
140 MODULE_ALIAS_FS("ext3");
141 MODULE_ALIAS("ext3");
142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
143
144 /*
145  * This works like sb_bread() except it uses ERR_PTR for error
146  * returns.  Currently with sb_bread it's impossible to distinguish
147  * between ENOMEM and EIO situations (since both result in a NULL
148  * return.
149  */
150 struct buffer_head *
151 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags)
152 {
153         struct buffer_head *bh = sb_getblk(sb, block);
154
155         if (bh == NULL)
156                 return ERR_PTR(-ENOMEM);
157         if (buffer_uptodate(bh))
158                 return bh;
159         ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh);
160         wait_on_buffer(bh);
161         if (buffer_uptodate(bh))
162                 return bh;
163         put_bh(bh);
164         return ERR_PTR(-EIO);
165 }
166
167 static int ext4_verify_csum_type(struct super_block *sb,
168                                  struct ext4_super_block *es)
169 {
170         if (!ext4_has_feature_metadata_csum(sb))
171                 return 1;
172
173         return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
174 }
175
176 static __le32 ext4_superblock_csum(struct super_block *sb,
177                                    struct ext4_super_block *es)
178 {
179         struct ext4_sb_info *sbi = EXT4_SB(sb);
180         int offset = offsetof(struct ext4_super_block, s_checksum);
181         __u32 csum;
182
183         csum = ext4_chksum(sbi, ~0, (char *)es, offset);
184
185         return cpu_to_le32(csum);
186 }
187
188 static int ext4_superblock_csum_verify(struct super_block *sb,
189                                        struct ext4_super_block *es)
190 {
191         if (!ext4_has_metadata_csum(sb))
192                 return 1;
193
194         return es->s_checksum == ext4_superblock_csum(sb, es);
195 }
196
197 void ext4_superblock_csum_set(struct super_block *sb)
198 {
199         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
200
201         if (!ext4_has_metadata_csum(sb))
202                 return;
203
204         es->s_checksum = ext4_superblock_csum(sb, es);
205 }
206
207 void *ext4_kvmalloc(size_t size, gfp_t flags)
208 {
209         void *ret;
210
211         ret = kmalloc(size, flags | __GFP_NOWARN);
212         if (!ret)
213                 ret = __vmalloc(size, flags, PAGE_KERNEL);
214         return ret;
215 }
216
217 void *ext4_kvzalloc(size_t size, gfp_t flags)
218 {
219         void *ret;
220
221         ret = kzalloc(size, flags | __GFP_NOWARN);
222         if (!ret)
223                 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
224         return ret;
225 }
226
227 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
228                                struct ext4_group_desc *bg)
229 {
230         return le32_to_cpu(bg->bg_block_bitmap_lo) |
231                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232                  (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
233 }
234
235 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
236                                struct ext4_group_desc *bg)
237 {
238         return le32_to_cpu(bg->bg_inode_bitmap_lo) |
239                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240                  (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
241 }
242
243 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
244                               struct ext4_group_desc *bg)
245 {
246         return le32_to_cpu(bg->bg_inode_table_lo) |
247                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248                  (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
249 }
250
251 __u32 ext4_free_group_clusters(struct super_block *sb,
252                                struct ext4_group_desc *bg)
253 {
254         return le16_to_cpu(bg->bg_free_blocks_count_lo) |
255                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256                  (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
257 }
258
259 __u32 ext4_free_inodes_count(struct super_block *sb,
260                               struct ext4_group_desc *bg)
261 {
262         return le16_to_cpu(bg->bg_free_inodes_count_lo) |
263                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
264                  (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
265 }
266
267 __u32 ext4_used_dirs_count(struct super_block *sb,
268                               struct ext4_group_desc *bg)
269 {
270         return le16_to_cpu(bg->bg_used_dirs_count_lo) |
271                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
272                  (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
273 }
274
275 __u32 ext4_itable_unused_count(struct super_block *sb,
276                               struct ext4_group_desc *bg)
277 {
278         return le16_to_cpu(bg->bg_itable_unused_lo) |
279                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
280                  (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
281 }
282
283 void ext4_block_bitmap_set(struct super_block *sb,
284                            struct ext4_group_desc *bg, ext4_fsblk_t blk)
285 {
286         bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
287         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288                 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
289 }
290
291 void ext4_inode_bitmap_set(struct super_block *sb,
292                            struct ext4_group_desc *bg, ext4_fsblk_t blk)
293 {
294         bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
295         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296                 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
297 }
298
299 void ext4_inode_table_set(struct super_block *sb,
300                           struct ext4_group_desc *bg, ext4_fsblk_t blk)
301 {
302         bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
303         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304                 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
305 }
306
307 void ext4_free_group_clusters_set(struct super_block *sb,
308                                   struct ext4_group_desc *bg, __u32 count)
309 {
310         bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
311         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312                 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
313 }
314
315 void ext4_free_inodes_set(struct super_block *sb,
316                           struct ext4_group_desc *bg, __u32 count)
317 {
318         bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
319         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
320                 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
321 }
322
323 void ext4_used_dirs_set(struct super_block *sb,
324                           struct ext4_group_desc *bg, __u32 count)
325 {
326         bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
327         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
328                 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
329 }
330
331 void ext4_itable_unused_set(struct super_block *sb,
332                           struct ext4_group_desc *bg, __u32 count)
333 {
334         bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
335         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
336                 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
337 }
338
339 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
340 {
341         time64_t now = ktime_get_real_seconds();
342
343         now = clamp_val(now, 0, (1ull << 40) - 1);
344
345         *lo = cpu_to_le32(lower_32_bits(now));
346         *hi = upper_32_bits(now);
347 }
348
349 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
350 {
351         return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
352 }
353 #define ext4_update_tstamp(es, tstamp) \
354         __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
355 #define ext4_get_tstamp(es, tstamp) \
356         __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
357
358 static void __save_error_info(struct super_block *sb, const char *func,
359                             unsigned int line)
360 {
361         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
362
363         EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
364         if (bdev_read_only(sb->s_bdev))
365                 return;
366         es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
367         ext4_update_tstamp(es, s_last_error_time);
368         strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
369         es->s_last_error_line = cpu_to_le32(line);
370         if (!es->s_first_error_time) {
371                 es->s_first_error_time = es->s_last_error_time;
372                 es->s_first_error_time_hi = es->s_last_error_time_hi;
373                 strncpy(es->s_first_error_func, func,
374                         sizeof(es->s_first_error_func));
375                 es->s_first_error_line = cpu_to_le32(line);
376                 es->s_first_error_ino = es->s_last_error_ino;
377                 es->s_first_error_block = es->s_last_error_block;
378         }
379         /*
380          * Start the daily error reporting function if it hasn't been
381          * started already
382          */
383         if (!es->s_error_count)
384                 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
385         le32_add_cpu(&es->s_error_count, 1);
386 }
387
388 static void save_error_info(struct super_block *sb, const char *func,
389                             unsigned int line)
390 {
391         __save_error_info(sb, func, line);
392         ext4_commit_super(sb, 1);
393 }
394
395 /*
396  * The del_gendisk() function uninitializes the disk-specific data
397  * structures, including the bdi structure, without telling anyone
398  * else.  Once this happens, any attempt to call mark_buffer_dirty()
399  * (for example, by ext4_commit_super), will cause a kernel OOPS.
400  * This is a kludge to prevent these oops until we can put in a proper
401  * hook in del_gendisk() to inform the VFS and file system layers.
402  */
403 static int block_device_ejected(struct super_block *sb)
404 {
405         struct inode *bd_inode = sb->s_bdev->bd_inode;
406         struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
407
408         return bdi->dev == NULL;
409 }
410
411 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
412 {
413         struct super_block              *sb = journal->j_private;
414         struct ext4_sb_info             *sbi = EXT4_SB(sb);
415         int                             error = is_journal_aborted(journal);
416         struct ext4_journal_cb_entry    *jce;
417
418         BUG_ON(txn->t_state == T_FINISHED);
419
420         ext4_process_freed_data(sb, txn->t_tid);
421
422         spin_lock(&sbi->s_md_lock);
423         while (!list_empty(&txn->t_private_list)) {
424                 jce = list_entry(txn->t_private_list.next,
425                                  struct ext4_journal_cb_entry, jce_list);
426                 list_del_init(&jce->jce_list);
427                 spin_unlock(&sbi->s_md_lock);
428                 jce->jce_func(sb, jce, error);
429                 spin_lock(&sbi->s_md_lock);
430         }
431         spin_unlock(&sbi->s_md_lock);
432 }
433
434 static bool system_going_down(void)
435 {
436         return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
437                 || system_state == SYSTEM_RESTART;
438 }
439
440 /* Deal with the reporting of failure conditions on a filesystem such as
441  * inconsistencies detected or read IO failures.
442  *
443  * On ext2, we can store the error state of the filesystem in the
444  * superblock.  That is not possible on ext4, because we may have other
445  * write ordering constraints on the superblock which prevent us from
446  * writing it out straight away; and given that the journal is about to
447  * be aborted, we can't rely on the current, or future, transactions to
448  * write out the superblock safely.
449  *
450  * We'll just use the jbd2_journal_abort() error code to record an error in
451  * the journal instead.  On recovery, the journal will complain about
452  * that error until we've noted it down and cleared it.
453  */
454
455 static void ext4_handle_error(struct super_block *sb)
456 {
457         if (test_opt(sb, WARN_ON_ERROR))
458                 WARN_ON_ONCE(1);
459
460         if (sb_rdonly(sb))
461                 return;
462
463         if (!test_opt(sb, ERRORS_CONT)) {
464                 journal_t *journal = EXT4_SB(sb)->s_journal;
465
466                 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
467                 if (journal)
468                         jbd2_journal_abort(journal, -EIO);
469         }
470         /*
471          * We force ERRORS_RO behavior when system is rebooting. Otherwise we
472          * could panic during 'reboot -f' as the underlying device got already
473          * disabled.
474          */
475         if (test_opt(sb, ERRORS_RO) || system_going_down()) {
476                 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
477                 /*
478                  * Make sure updated value of ->s_mount_flags will be visible
479                  * before ->s_flags update
480                  */
481                 smp_wmb();
482                 sb->s_flags |= SB_RDONLY;
483         } else if (test_opt(sb, ERRORS_PANIC)) {
484                 if (EXT4_SB(sb)->s_journal &&
485                   !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
486                         return;
487                 panic("EXT4-fs (device %s): panic forced after error\n",
488                         sb->s_id);
489         }
490 }
491
492 #define ext4_error_ratelimit(sb)                                        \
493                 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),     \
494                              "EXT4-fs error")
495
496 void __ext4_error(struct super_block *sb, const char *function,
497                   unsigned int line, const char *fmt, ...)
498 {
499         struct va_format vaf;
500         va_list args;
501
502         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
503                 return;
504
505         trace_ext4_error(sb, function, line);
506         if (ext4_error_ratelimit(sb)) {
507                 va_start(args, fmt);
508                 vaf.fmt = fmt;
509                 vaf.va = &args;
510                 printk(KERN_CRIT
511                        "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
512                        sb->s_id, function, line, current->comm, &vaf);
513                 va_end(args);
514         }
515         save_error_info(sb, function, line);
516         ext4_handle_error(sb);
517 }
518
519 void __ext4_error_inode(struct inode *inode, const char *function,
520                         unsigned int line, ext4_fsblk_t block,
521                         const char *fmt, ...)
522 {
523         va_list args;
524         struct va_format vaf;
525         struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
526
527         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
528                 return;
529
530         trace_ext4_error(inode->i_sb, function, line);
531         es->s_last_error_ino = cpu_to_le32(inode->i_ino);
532         es->s_last_error_block = cpu_to_le64(block);
533         if (ext4_error_ratelimit(inode->i_sb)) {
534                 va_start(args, fmt);
535                 vaf.fmt = fmt;
536                 vaf.va = &args;
537                 if (block)
538                         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
539                                "inode #%lu: block %llu: comm %s: %pV\n",
540                                inode->i_sb->s_id, function, line, inode->i_ino,
541                                block, current->comm, &vaf);
542                 else
543                         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
544                                "inode #%lu: comm %s: %pV\n",
545                                inode->i_sb->s_id, function, line, inode->i_ino,
546                                current->comm, &vaf);
547                 va_end(args);
548         }
549         save_error_info(inode->i_sb, function, line);
550         ext4_handle_error(inode->i_sb);
551 }
552
553 void __ext4_error_file(struct file *file, const char *function,
554                        unsigned int line, ext4_fsblk_t block,
555                        const char *fmt, ...)
556 {
557         va_list args;
558         struct va_format vaf;
559         struct ext4_super_block *es;
560         struct inode *inode = file_inode(file);
561         char pathname[80], *path;
562
563         if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
564                 return;
565
566         trace_ext4_error(inode->i_sb, function, line);
567         es = EXT4_SB(inode->i_sb)->s_es;
568         es->s_last_error_ino = cpu_to_le32(inode->i_ino);
569         if (ext4_error_ratelimit(inode->i_sb)) {
570                 path = file_path(file, pathname, sizeof(pathname));
571                 if (IS_ERR(path))
572                         path = "(unknown)";
573                 va_start(args, fmt);
574                 vaf.fmt = fmt;
575                 vaf.va = &args;
576                 if (block)
577                         printk(KERN_CRIT
578                                "EXT4-fs error (device %s): %s:%d: inode #%lu: "
579                                "block %llu: comm %s: path %s: %pV\n",
580                                inode->i_sb->s_id, function, line, inode->i_ino,
581                                block, current->comm, path, &vaf);
582                 else
583                         printk(KERN_CRIT
584                                "EXT4-fs error (device %s): %s:%d: inode #%lu: "
585                                "comm %s: path %s: %pV\n",
586                                inode->i_sb->s_id, function, line, inode->i_ino,
587                                current->comm, path, &vaf);
588                 va_end(args);
589         }
590         save_error_info(inode->i_sb, function, line);
591         ext4_handle_error(inode->i_sb);
592 }
593
594 const char *ext4_decode_error(struct super_block *sb, int errno,
595                               char nbuf[16])
596 {
597         char *errstr = NULL;
598
599         switch (errno) {
600         case -EFSCORRUPTED:
601                 errstr = "Corrupt filesystem";
602                 break;
603         case -EFSBADCRC:
604                 errstr = "Filesystem failed CRC";
605                 break;
606         case -EIO:
607                 errstr = "IO failure";
608                 break;
609         case -ENOMEM:
610                 errstr = "Out of memory";
611                 break;
612         case -EROFS:
613                 if (!sb || (EXT4_SB(sb)->s_journal &&
614                             EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
615                         errstr = "Journal has aborted";
616                 else
617                         errstr = "Readonly filesystem";
618                 break;
619         default:
620                 /* If the caller passed in an extra buffer for unknown
621                  * errors, textualise them now.  Else we just return
622                  * NULL. */
623                 if (nbuf) {
624                         /* Check for truncated error codes... */
625                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
626                                 errstr = nbuf;
627                 }
628                 break;
629         }
630
631         return errstr;
632 }
633
634 /* __ext4_std_error decodes expected errors from journaling functions
635  * automatically and invokes the appropriate error response.  */
636
637 void __ext4_std_error(struct super_block *sb, const char *function,
638                       unsigned int line, int errno)
639 {
640         char nbuf[16];
641         const char *errstr;
642
643         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
644                 return;
645
646         /* Special case: if the error is EROFS, and we're not already
647          * inside a transaction, then there's really no point in logging
648          * an error. */
649         if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
650                 return;
651
652         if (ext4_error_ratelimit(sb)) {
653                 errstr = ext4_decode_error(sb, errno, nbuf);
654                 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
655                        sb->s_id, function, line, errstr);
656         }
657
658         save_error_info(sb, function, line);
659         ext4_handle_error(sb);
660 }
661
662 /*
663  * ext4_abort is a much stronger failure handler than ext4_error.  The
664  * abort function may be used to deal with unrecoverable failures such
665  * as journal IO errors or ENOMEM at a critical moment in log management.
666  *
667  * We unconditionally force the filesystem into an ABORT|READONLY state,
668  * unless the error response on the fs has been set to panic in which
669  * case we take the easy way out and panic immediately.
670  */
671
672 void __ext4_abort(struct super_block *sb, const char *function,
673                 unsigned int line, const char *fmt, ...)
674 {
675         struct va_format vaf;
676         va_list args;
677
678         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
679                 return;
680
681         save_error_info(sb, function, line);
682         va_start(args, fmt);
683         vaf.fmt = fmt;
684         vaf.va = &args;
685         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
686                sb->s_id, function, line, &vaf);
687         va_end(args);
688
689         if (sb_rdonly(sb) == 0) {
690                 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
691                 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
692                 /*
693                  * Make sure updated value of ->s_mount_flags will be visible
694                  * before ->s_flags update
695                  */
696                 smp_wmb();
697                 sb->s_flags |= SB_RDONLY;
698                 if (EXT4_SB(sb)->s_journal)
699                         jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
700                 save_error_info(sb, function, line);
701         }
702         if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
703                 if (EXT4_SB(sb)->s_journal &&
704                   !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
705                         return;
706                 panic("EXT4-fs panic from previous error\n");
707         }
708 }
709
710 void __ext4_msg(struct super_block *sb,
711                 const char *prefix, const char *fmt, ...)
712 {
713         struct va_format vaf;
714         va_list args;
715
716         if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
717                 return;
718
719         va_start(args, fmt);
720         vaf.fmt = fmt;
721         vaf.va = &args;
722         printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
723         va_end(args);
724 }
725
726 #define ext4_warning_ratelimit(sb)                                      \
727                 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
728                              "EXT4-fs warning")
729
730 void __ext4_warning(struct super_block *sb, const char *function,
731                     unsigned int line, const char *fmt, ...)
732 {
733         struct va_format vaf;
734         va_list args;
735
736         if (!ext4_warning_ratelimit(sb))
737                 return;
738
739         va_start(args, fmt);
740         vaf.fmt = fmt;
741         vaf.va = &args;
742         printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
743                sb->s_id, function, line, &vaf);
744         va_end(args);
745 }
746
747 void __ext4_warning_inode(const struct inode *inode, const char *function,
748                           unsigned int line, const char *fmt, ...)
749 {
750         struct va_format vaf;
751         va_list args;
752
753         if (!ext4_warning_ratelimit(inode->i_sb))
754                 return;
755
756         va_start(args, fmt);
757         vaf.fmt = fmt;
758         vaf.va = &args;
759         printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
760                "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
761                function, line, inode->i_ino, current->comm, &vaf);
762         va_end(args);
763 }
764
765 void __ext4_grp_locked_error(const char *function, unsigned int line,
766                              struct super_block *sb, ext4_group_t grp,
767                              unsigned long ino, ext4_fsblk_t block,
768                              const char *fmt, ...)
769 __releases(bitlock)
770 __acquires(bitlock)
771 {
772         struct va_format vaf;
773         va_list args;
774         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
775
776         if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
777                 return;
778
779         trace_ext4_error(sb, function, line);
780         es->s_last_error_ino = cpu_to_le32(ino);
781         es->s_last_error_block = cpu_to_le64(block);
782         __save_error_info(sb, function, line);
783
784         if (ext4_error_ratelimit(sb)) {
785                 va_start(args, fmt);
786                 vaf.fmt = fmt;
787                 vaf.va = &args;
788                 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
789                        sb->s_id, function, line, grp);
790                 if (ino)
791                         printk(KERN_CONT "inode %lu: ", ino);
792                 if (block)
793                         printk(KERN_CONT "block %llu:",
794                                (unsigned long long) block);
795                 printk(KERN_CONT "%pV\n", &vaf);
796                 va_end(args);
797         }
798
799         if (test_opt(sb, WARN_ON_ERROR))
800                 WARN_ON_ONCE(1);
801
802         if (test_opt(sb, ERRORS_CONT)) {
803                 ext4_commit_super(sb, 0);
804                 return;
805         }
806
807         ext4_unlock_group(sb, grp);
808         ext4_commit_super(sb, 1);
809         ext4_handle_error(sb);
810         /*
811          * We only get here in the ERRORS_RO case; relocking the group
812          * may be dangerous, but nothing bad will happen since the
813          * filesystem will have already been marked read/only and the
814          * journal has been aborted.  We return 1 as a hint to callers
815          * who might what to use the return value from
816          * ext4_grp_locked_error() to distinguish between the
817          * ERRORS_CONT and ERRORS_RO case, and perhaps return more
818          * aggressively from the ext4 function in question, with a
819          * more appropriate error code.
820          */
821         ext4_lock_group(sb, grp);
822         return;
823 }
824
825 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
826                                      ext4_group_t group,
827                                      unsigned int flags)
828 {
829         struct ext4_sb_info *sbi = EXT4_SB(sb);
830         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
831         struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
832         int ret;
833
834         if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
835                 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
836                                             &grp->bb_state);
837                 if (!ret)
838                         percpu_counter_sub(&sbi->s_freeclusters_counter,
839                                            grp->bb_free);
840         }
841
842         if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
843                 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
844                                             &grp->bb_state);
845                 if (!ret && gdp) {
846                         int count;
847
848                         count = ext4_free_inodes_count(sb, gdp);
849                         percpu_counter_sub(&sbi->s_freeinodes_counter,
850                                            count);
851                 }
852         }
853 }
854
855 void ext4_update_dynamic_rev(struct super_block *sb)
856 {
857         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
858
859         if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
860                 return;
861
862         ext4_warning(sb,
863                      "updating to rev %d because of new feature flag, "
864                      "running e2fsck is recommended",
865                      EXT4_DYNAMIC_REV);
866
867         es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
868         es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
869         es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
870         /* leave es->s_feature_*compat flags alone */
871         /* es->s_uuid will be set by e2fsck if empty */
872
873         /*
874          * The rest of the superblock fields should be zero, and if not it
875          * means they are likely already in use, so leave them alone.  We
876          * can leave it up to e2fsck to clean up any inconsistencies there.
877          */
878 }
879
880 /*
881  * Open the external journal device
882  */
883 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
884 {
885         struct block_device *bdev;
886         char b[BDEVNAME_SIZE];
887
888         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
889         if (IS_ERR(bdev))
890                 goto fail;
891         return bdev;
892
893 fail:
894         ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
895                         __bdevname(dev, b), PTR_ERR(bdev));
896         return NULL;
897 }
898
899 /*
900  * Release the journal device
901  */
902 static void ext4_blkdev_put(struct block_device *bdev)
903 {
904         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
905 }
906
907 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
908 {
909         struct block_device *bdev;
910         bdev = sbi->journal_bdev;
911         if (bdev) {
912                 ext4_blkdev_put(bdev);
913                 sbi->journal_bdev = NULL;
914         }
915 }
916
917 static inline struct inode *orphan_list_entry(struct list_head *l)
918 {
919         return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
920 }
921
922 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
923 {
924         struct list_head *l;
925
926         ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
927                  le32_to_cpu(sbi->s_es->s_last_orphan));
928
929         printk(KERN_ERR "sb_info orphan list:\n");
930         list_for_each(l, &sbi->s_orphan) {
931                 struct inode *inode = orphan_list_entry(l);
932                 printk(KERN_ERR "  "
933                        "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
934                        inode->i_sb->s_id, inode->i_ino, inode,
935                        inode->i_mode, inode->i_nlink,
936                        NEXT_ORPHAN(inode));
937         }
938 }
939
940 #ifdef CONFIG_QUOTA
941 static int ext4_quota_off(struct super_block *sb, int type);
942
943 static inline void ext4_quota_off_umount(struct super_block *sb)
944 {
945         int type;
946
947         /* Use our quota_off function to clear inode flags etc. */
948         for (type = 0; type < EXT4_MAXQUOTAS; type++)
949                 ext4_quota_off(sb, type);
950 }
951
952 /*
953  * This is a helper function which is used in the mount/remount
954  * codepaths (which holds s_umount) to fetch the quota file name.
955  */
956 static inline char *get_qf_name(struct super_block *sb,
957                                 struct ext4_sb_info *sbi,
958                                 int type)
959 {
960         return rcu_dereference_protected(sbi->s_qf_names[type],
961                                          lockdep_is_held(&sb->s_umount));
962 }
963 #else
964 static inline void ext4_quota_off_umount(struct super_block *sb)
965 {
966 }
967 #endif
968
969 static void ext4_put_super(struct super_block *sb)
970 {
971         struct ext4_sb_info *sbi = EXT4_SB(sb);
972         struct ext4_super_block *es = sbi->s_es;
973         int aborted = 0;
974         int i, err;
975
976         ext4_unregister_li_request(sb);
977         ext4_quota_off_umount(sb);
978
979         destroy_workqueue(sbi->rsv_conversion_wq);
980
981         if (sbi->s_journal) {
982                 aborted = is_journal_aborted(sbi->s_journal);
983                 err = jbd2_journal_destroy(sbi->s_journal);
984                 sbi->s_journal = NULL;
985                 if ((err < 0) && !aborted)
986                         ext4_abort(sb, "Couldn't clean up the journal");
987         }
988
989         ext4_unregister_sysfs(sb);
990         ext4_es_unregister_shrinker(sbi);
991         del_timer_sync(&sbi->s_err_report);
992         ext4_release_system_zone(sb);
993         ext4_mb_release(sb);
994         ext4_ext_release(sb);
995
996         if (!sb_rdonly(sb) && !aborted) {
997                 ext4_clear_feature_journal_needs_recovery(sb);
998                 es->s_state = cpu_to_le16(sbi->s_mount_state);
999         }
1000         if (!sb_rdonly(sb))
1001                 ext4_commit_super(sb, 1);
1002
1003         for (i = 0; i < sbi->s_gdb_count; i++)
1004                 brelse(sbi->s_group_desc[i]);
1005         kvfree(sbi->s_group_desc);
1006         kvfree(sbi->s_flex_groups);
1007         percpu_counter_destroy(&sbi->s_freeclusters_counter);
1008         percpu_counter_destroy(&sbi->s_freeinodes_counter);
1009         percpu_counter_destroy(&sbi->s_dirs_counter);
1010         percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1011         percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
1012 #ifdef CONFIG_QUOTA
1013         for (i = 0; i < EXT4_MAXQUOTAS; i++)
1014                 kfree(get_qf_name(sb, sbi, i));
1015 #endif
1016
1017         /* Debugging code just in case the in-memory inode orphan list
1018          * isn't empty.  The on-disk one can be non-empty if we've
1019          * detected an error and taken the fs readonly, but the
1020          * in-memory list had better be clean by this point. */
1021         if (!list_empty(&sbi->s_orphan))
1022                 dump_orphan_list(sb, sbi);
1023         J_ASSERT(list_empty(&sbi->s_orphan));
1024
1025         sync_blockdev(sb->s_bdev);
1026         invalidate_bdev(sb->s_bdev);
1027         if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
1028                 /*
1029                  * Invalidate the journal device's buffers.  We don't want them
1030                  * floating about in memory - the physical journal device may
1031                  * hotswapped, and it breaks the `ro-after' testing code.
1032                  */
1033                 sync_blockdev(sbi->journal_bdev);
1034                 invalidate_bdev(sbi->journal_bdev);
1035                 ext4_blkdev_remove(sbi);
1036         }
1037
1038         ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1039         sbi->s_ea_inode_cache = NULL;
1040
1041         ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1042         sbi->s_ea_block_cache = NULL;
1043
1044         if (sbi->s_mmp_tsk)
1045                 kthread_stop(sbi->s_mmp_tsk);
1046         brelse(sbi->s_sbh);
1047         sb->s_fs_info = NULL;
1048         /*
1049          * Now that we are completely done shutting down the
1050          * superblock, we need to actually destroy the kobject.
1051          */
1052         kobject_put(&sbi->s_kobj);
1053         wait_for_completion(&sbi->s_kobj_unregister);
1054         if (sbi->s_chksum_driver)
1055                 crypto_free_shash(sbi->s_chksum_driver);
1056         kfree(sbi->s_blockgroup_lock);
1057         fs_put_dax(sbi->s_daxdev);
1058 #ifdef CONFIG_UNICODE
1059         utf8_unload(sbi->s_encoding);
1060 #endif
1061         kfree(sbi);
1062 }
1063
1064 static struct kmem_cache *ext4_inode_cachep;
1065
1066 /*
1067  * Called inside transaction, so use GFP_NOFS
1068  */
1069 static struct inode *ext4_alloc_inode(struct super_block *sb)
1070 {
1071         struct ext4_inode_info *ei;
1072
1073         ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1074         if (!ei)
1075                 return NULL;
1076
1077         inode_set_iversion(&ei->vfs_inode, 1);
1078         spin_lock_init(&ei->i_raw_lock);
1079         INIT_LIST_HEAD(&ei->i_prealloc_list);
1080         spin_lock_init(&ei->i_prealloc_lock);
1081         ext4_es_init_tree(&ei->i_es_tree);
1082         rwlock_init(&ei->i_es_lock);
1083         INIT_LIST_HEAD(&ei->i_es_list);
1084         ei->i_es_all_nr = 0;
1085         ei->i_es_shk_nr = 0;
1086         ei->i_es_shrink_lblk = 0;
1087         ei->i_reserved_data_blocks = 0;
1088         ei->i_da_metadata_calc_len = 0;
1089         ei->i_da_metadata_calc_last_lblock = 0;
1090         spin_lock_init(&(ei->i_block_reservation_lock));
1091         ext4_init_pending_tree(&ei->i_pending_tree);
1092 #ifdef CONFIG_QUOTA
1093         ei->i_reserved_quota = 0;
1094         memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1095 #endif
1096         ei->jinode = NULL;
1097         INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1098         spin_lock_init(&ei->i_completed_io_lock);
1099         ei->i_sync_tid = 0;
1100         ei->i_datasync_tid = 0;
1101         atomic_set(&ei->i_unwritten, 0);
1102         INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1103         return &ei->vfs_inode;
1104 }
1105
1106 static int ext4_drop_inode(struct inode *inode)
1107 {
1108         int drop = generic_drop_inode(inode);
1109
1110         trace_ext4_drop_inode(inode, drop);
1111         return drop;
1112 }
1113
1114 static void ext4_free_in_core_inode(struct inode *inode)
1115 {
1116         fscrypt_free_inode(inode);
1117         kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1118 }
1119
1120 static void ext4_destroy_inode(struct inode *inode)
1121 {
1122         if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1123                 ext4_msg(inode->i_sb, KERN_ERR,
1124                          "Inode %lu (%p): orphan list check failed!",
1125                          inode->i_ino, EXT4_I(inode));
1126                 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1127                                 EXT4_I(inode), sizeof(struct ext4_inode_info),
1128                                 true);
1129                 dump_stack();
1130         }
1131 }
1132
1133 static void init_once(void *foo)
1134 {
1135         struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1136
1137         INIT_LIST_HEAD(&ei->i_orphan);
1138         init_rwsem(&ei->xattr_sem);
1139         init_rwsem(&ei->i_data_sem);
1140         init_rwsem(&ei->i_mmap_sem);
1141         inode_init_once(&ei->vfs_inode);
1142 }
1143
1144 static int __init init_inodecache(void)
1145 {
1146         ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1147                                 sizeof(struct ext4_inode_info), 0,
1148                                 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1149                                         SLAB_ACCOUNT),
1150                                 offsetof(struct ext4_inode_info, i_data),
1151                                 sizeof_field(struct ext4_inode_info, i_data),
1152                                 init_once);
1153         if (ext4_inode_cachep == NULL)
1154                 return -ENOMEM;
1155         return 0;
1156 }
1157
1158 static void destroy_inodecache(void)
1159 {
1160         /*
1161          * Make sure all delayed rcu free inodes are flushed before we
1162          * destroy cache.
1163          */
1164         rcu_barrier();
1165         kmem_cache_destroy(ext4_inode_cachep);
1166 }
1167
1168 void ext4_clear_inode(struct inode *inode)
1169 {
1170         invalidate_inode_buffers(inode);
1171         clear_inode(inode);
1172         dquot_drop(inode);
1173         ext4_discard_preallocations(inode);
1174         ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1175         if (EXT4_I(inode)->jinode) {
1176                 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1177                                                EXT4_I(inode)->jinode);
1178                 jbd2_free_inode(EXT4_I(inode)->jinode);
1179                 EXT4_I(inode)->jinode = NULL;
1180         }
1181         fscrypt_put_encryption_info(inode);
1182 }
1183
1184 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1185                                         u64 ino, u32 generation)
1186 {
1187         struct inode *inode;
1188
1189         /*
1190          * Currently we don't know the generation for parent directory, so
1191          * a generation of 0 means "accept any"
1192          */
1193         inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1194         if (IS_ERR(inode))
1195                 return ERR_CAST(inode);
1196         if (generation && inode->i_generation != generation) {
1197                 iput(inode);
1198                 return ERR_PTR(-ESTALE);
1199         }
1200
1201         return inode;
1202 }
1203
1204 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1205                                         int fh_len, int fh_type)
1206 {
1207         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1208                                     ext4_nfs_get_inode);
1209 }
1210
1211 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1212                                         int fh_len, int fh_type)
1213 {
1214         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1215                                     ext4_nfs_get_inode);
1216 }
1217
1218 static int ext4_nfs_commit_metadata(struct inode *inode)
1219 {
1220         struct writeback_control wbc = {
1221                 .sync_mode = WB_SYNC_ALL
1222         };
1223
1224         trace_ext4_nfs_commit_metadata(inode);
1225         return ext4_write_inode(inode, &wbc);
1226 }
1227
1228 /*
1229  * Try to release metadata pages (indirect blocks, directories) which are
1230  * mapped via the block device.  Since these pages could have journal heads
1231  * which would prevent try_to_free_buffers() from freeing them, we must use
1232  * jbd2 layer's try_to_free_buffers() function to release them.
1233  */
1234 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1235                                  gfp_t wait)
1236 {
1237         journal_t *journal = EXT4_SB(sb)->s_journal;
1238
1239         WARN_ON(PageChecked(page));
1240         if (!page_has_buffers(page))
1241                 return 0;
1242         if (journal)
1243                 return jbd2_journal_try_to_free_buffers(journal, page,
1244                                                 wait & ~__GFP_DIRECT_RECLAIM);
1245         return try_to_free_buffers(page);
1246 }
1247
1248 #ifdef CONFIG_FS_ENCRYPTION
1249 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1250 {
1251         return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1252                                  EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1253 }
1254
1255 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1256                                                         void *fs_data)
1257 {
1258         handle_t *handle = fs_data;
1259         int res, res2, credits, retries = 0;
1260
1261         /*
1262          * Encrypting the root directory is not allowed because e2fsck expects
1263          * lost+found to exist and be unencrypted, and encrypting the root
1264          * directory would imply encrypting the lost+found directory as well as
1265          * the filename "lost+found" itself.
1266          */
1267         if (inode->i_ino == EXT4_ROOT_INO)
1268                 return -EPERM;
1269
1270         if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1271                 return -EINVAL;
1272
1273         res = ext4_convert_inline_data(inode);
1274         if (res)
1275                 return res;
1276
1277         /*
1278          * If a journal handle was specified, then the encryption context is
1279          * being set on a new inode via inheritance and is part of a larger
1280          * transaction to create the inode.  Otherwise the encryption context is
1281          * being set on an existing inode in its own transaction.  Only in the
1282          * latter case should the "retry on ENOSPC" logic be used.
1283          */
1284
1285         if (handle) {
1286                 res = ext4_xattr_set_handle(handle, inode,
1287                                             EXT4_XATTR_INDEX_ENCRYPTION,
1288                                             EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1289                                             ctx, len, 0);
1290                 if (!res) {
1291                         ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1292                         ext4_clear_inode_state(inode,
1293                                         EXT4_STATE_MAY_INLINE_DATA);
1294                         /*
1295                          * Update inode->i_flags - S_ENCRYPTED will be enabled,
1296                          * S_DAX may be disabled
1297                          */
1298                         ext4_set_inode_flags(inode);
1299                 }
1300                 return res;
1301         }
1302
1303         res = dquot_initialize(inode);
1304         if (res)
1305                 return res;
1306 retry:
1307         res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1308                                      &credits);
1309         if (res)
1310                 return res;
1311
1312         handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1313         if (IS_ERR(handle))
1314                 return PTR_ERR(handle);
1315
1316         res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1317                                     EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1318                                     ctx, len, 0);
1319         if (!res) {
1320                 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1321                 /*
1322                  * Update inode->i_flags - S_ENCRYPTED will be enabled,
1323                  * S_DAX may be disabled
1324                  */
1325                 ext4_set_inode_flags(inode);
1326                 res = ext4_mark_inode_dirty(handle, inode);
1327                 if (res)
1328                         EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1329         }
1330         res2 = ext4_journal_stop(handle);
1331
1332         if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1333                 goto retry;
1334         if (!res)
1335                 res = res2;
1336         return res;
1337 }
1338
1339 static bool ext4_dummy_context(struct inode *inode)
1340 {
1341         return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1342 }
1343
1344 static const struct fscrypt_operations ext4_cryptops = {
1345         .key_prefix             = "ext4:",
1346         .get_context            = ext4_get_context,
1347         .set_context            = ext4_set_context,
1348         .dummy_context          = ext4_dummy_context,
1349         .empty_dir              = ext4_empty_dir,
1350         .max_namelen            = EXT4_NAME_LEN,
1351 };
1352 #endif
1353
1354 #ifdef CONFIG_QUOTA
1355 static const char * const quotatypes[] = INITQFNAMES;
1356 #define QTYPE2NAME(t) (quotatypes[t])
1357
1358 static int ext4_write_dquot(struct dquot *dquot);
1359 static int ext4_acquire_dquot(struct dquot *dquot);
1360 static int ext4_release_dquot(struct dquot *dquot);
1361 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1362 static int ext4_write_info(struct super_block *sb, int type);
1363 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1364                          const struct path *path);
1365 static int ext4_quota_on_mount(struct super_block *sb, int type);
1366 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1367                                size_t len, loff_t off);
1368 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1369                                 const char *data, size_t len, loff_t off);
1370 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1371                              unsigned int flags);
1372 static int ext4_enable_quotas(struct super_block *sb);
1373 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1374
1375 static struct dquot **ext4_get_dquots(struct inode *inode)
1376 {
1377         return EXT4_I(inode)->i_dquot;
1378 }
1379
1380 static const struct dquot_operations ext4_quota_operations = {
1381         .get_reserved_space     = ext4_get_reserved_space,
1382         .write_dquot            = ext4_write_dquot,
1383         .acquire_dquot          = ext4_acquire_dquot,
1384         .release_dquot          = ext4_release_dquot,
1385         .mark_dirty             = ext4_mark_dquot_dirty,
1386         .write_info             = ext4_write_info,
1387         .alloc_dquot            = dquot_alloc,
1388         .destroy_dquot          = dquot_destroy,
1389         .get_projid             = ext4_get_projid,
1390         .get_inode_usage        = ext4_get_inode_usage,
1391         .get_next_id            = ext4_get_next_id,
1392 };
1393
1394 static const struct quotactl_ops ext4_qctl_operations = {
1395         .quota_on       = ext4_quota_on,
1396         .quota_off      = ext4_quota_off,
1397         .quota_sync     = dquot_quota_sync,
1398         .get_state      = dquot_get_state,
1399         .set_info       = dquot_set_dqinfo,
1400         .get_dqblk      = dquot_get_dqblk,
1401         .set_dqblk      = dquot_set_dqblk,
1402         .get_nextdqblk  = dquot_get_next_dqblk,
1403 };
1404 #endif
1405
1406 static const struct super_operations ext4_sops = {
1407         .alloc_inode    = ext4_alloc_inode,
1408         .free_inode     = ext4_free_in_core_inode,
1409         .destroy_inode  = ext4_destroy_inode,
1410         .write_inode    = ext4_write_inode,
1411         .dirty_inode    = ext4_dirty_inode,
1412         .drop_inode     = ext4_drop_inode,
1413         .evict_inode    = ext4_evict_inode,
1414         .put_super      = ext4_put_super,
1415         .sync_fs        = ext4_sync_fs,
1416         .freeze_fs      = ext4_freeze,
1417         .unfreeze_fs    = ext4_unfreeze,
1418         .statfs         = ext4_statfs,
1419         .remount_fs     = ext4_remount,
1420         .show_options   = ext4_show_options,
1421 #ifdef CONFIG_QUOTA
1422         .quota_read     = ext4_quota_read,
1423         .quota_write    = ext4_quota_write,
1424         .get_dquots     = ext4_get_dquots,
1425 #endif
1426         .bdev_try_to_free_page = bdev_try_to_free_page,
1427 };
1428
1429 static const struct export_operations ext4_export_ops = {
1430         .fh_to_dentry = ext4_fh_to_dentry,
1431         .fh_to_parent = ext4_fh_to_parent,
1432         .get_parent = ext4_get_parent,
1433         .commit_metadata = ext4_nfs_commit_metadata,
1434 };
1435
1436 enum {
1437         Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1438         Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1439         Opt_nouid32, Opt_debug, Opt_removed,
1440         Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1441         Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1442         Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1443         Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1444         Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1445         Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1446         Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1447         Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1448         Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1449         Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1450         Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1451         Opt_nowarn_on_error, Opt_mblk_io_submit,
1452         Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1453         Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1454         Opt_inode_readahead_blks, Opt_journal_ioprio,
1455         Opt_dioread_nolock, Opt_dioread_lock,
1456         Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1457         Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1458 };
1459
1460 static const match_table_t tokens = {
1461         {Opt_bsd_df, "bsddf"},
1462         {Opt_minix_df, "minixdf"},
1463         {Opt_grpid, "grpid"},
1464         {Opt_grpid, "bsdgroups"},
1465         {Opt_nogrpid, "nogrpid"},
1466         {Opt_nogrpid, "sysvgroups"},
1467         {Opt_resgid, "resgid=%u"},
1468         {Opt_resuid, "resuid=%u"},
1469         {Opt_sb, "sb=%u"},
1470         {Opt_err_cont, "errors=continue"},
1471         {Opt_err_panic, "errors=panic"},
1472         {Opt_err_ro, "errors=remount-ro"},
1473         {Opt_nouid32, "nouid32"},
1474         {Opt_debug, "debug"},
1475         {Opt_removed, "oldalloc"},
1476         {Opt_removed, "orlov"},
1477         {Opt_user_xattr, "user_xattr"},
1478         {Opt_nouser_xattr, "nouser_xattr"},
1479         {Opt_acl, "acl"},
1480         {Opt_noacl, "noacl"},
1481         {Opt_noload, "norecovery"},
1482         {Opt_noload, "noload"},
1483         {Opt_removed, "nobh"},
1484         {Opt_removed, "bh"},
1485         {Opt_commit, "commit=%u"},
1486         {Opt_min_batch_time, "min_batch_time=%u"},
1487         {Opt_max_batch_time, "max_batch_time=%u"},
1488         {Opt_journal_dev, "journal_dev=%u"},
1489         {Opt_journal_path, "journal_path=%s"},
1490         {Opt_journal_checksum, "journal_checksum"},
1491         {Opt_nojournal_checksum, "nojournal_checksum"},
1492         {Opt_journal_async_commit, "journal_async_commit"},
1493         {Opt_abort, "abort"},
1494         {Opt_data_journal, "data=journal"},
1495         {Opt_data_ordered, "data=ordered"},
1496         {Opt_data_writeback, "data=writeback"},
1497         {Opt_data_err_abort, "data_err=abort"},
1498         {Opt_data_err_ignore, "data_err=ignore"},
1499         {Opt_offusrjquota, "usrjquota="},
1500         {Opt_usrjquota, "usrjquota=%s"},
1501         {Opt_offgrpjquota, "grpjquota="},
1502         {Opt_grpjquota, "grpjquota=%s"},
1503         {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1504         {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1505         {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1506         {Opt_grpquota, "grpquota"},
1507         {Opt_noquota, "noquota"},
1508         {Opt_quota, "quota"},
1509         {Opt_usrquota, "usrquota"},
1510         {Opt_prjquota, "prjquota"},
1511         {Opt_barrier, "barrier=%u"},
1512         {Opt_barrier, "barrier"},
1513         {Opt_nobarrier, "nobarrier"},
1514         {Opt_i_version, "i_version"},
1515         {Opt_dax, "dax"},
1516         {Opt_stripe, "stripe=%u"},
1517         {Opt_delalloc, "delalloc"},
1518         {Opt_warn_on_error, "warn_on_error"},
1519         {Opt_nowarn_on_error, "nowarn_on_error"},
1520         {Opt_lazytime, "lazytime"},
1521         {Opt_nolazytime, "nolazytime"},
1522         {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1523         {Opt_nodelalloc, "nodelalloc"},
1524         {Opt_removed, "mblk_io_submit"},
1525         {Opt_removed, "nomblk_io_submit"},
1526         {Opt_block_validity, "block_validity"},
1527         {Opt_noblock_validity, "noblock_validity"},
1528         {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1529         {Opt_journal_ioprio, "journal_ioprio=%u"},
1530         {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1531         {Opt_auto_da_alloc, "auto_da_alloc"},
1532         {Opt_noauto_da_alloc, "noauto_da_alloc"},
1533         {Opt_dioread_nolock, "dioread_nolock"},
1534         {Opt_dioread_lock, "dioread_lock"},
1535         {Opt_discard, "discard"},
1536         {Opt_nodiscard, "nodiscard"},
1537         {Opt_init_itable, "init_itable=%u"},
1538         {Opt_init_itable, "init_itable"},
1539         {Opt_noinit_itable, "noinit_itable"},
1540         {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1541         {Opt_test_dummy_encryption, "test_dummy_encryption"},
1542         {Opt_nombcache, "nombcache"},
1543         {Opt_nombcache, "no_mbcache"},  /* for backward compatibility */
1544         {Opt_removed, "check=none"},    /* mount option from ext2/3 */
1545         {Opt_removed, "nocheck"},       /* mount option from ext2/3 */
1546         {Opt_removed, "reservation"},   /* mount option from ext2/3 */
1547         {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1548         {Opt_removed, "journal=%u"},    /* mount option from ext2/3 */
1549         {Opt_err, NULL},
1550 };
1551
1552 static ext4_fsblk_t get_sb_block(void **data)
1553 {
1554         ext4_fsblk_t    sb_block;
1555         char            *options = (char *) *data;
1556
1557         if (!options || strncmp(options, "sb=", 3) != 0)
1558                 return 1;       /* Default location */
1559
1560         options += 3;
1561         /* TODO: use simple_strtoll with >32bit ext4 */
1562         sb_block = simple_strtoul(options, &options, 0);
1563         if (*options && *options != ',') {
1564                 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1565                        (char *) *data);
1566                 return 1;
1567         }
1568         if (*options == ',')
1569                 options++;
1570         *data = (void *) options;
1571
1572         return sb_block;
1573 }
1574
1575 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1576 static const char deprecated_msg[] =
1577         "Mount option \"%s\" will be removed by %s\n"
1578         "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1579
1580 #ifdef CONFIG_QUOTA
1581 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1582 {
1583         struct ext4_sb_info *sbi = EXT4_SB(sb);
1584         char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1585         int ret = -1;
1586
1587         if (sb_any_quota_loaded(sb) && !old_qname) {
1588                 ext4_msg(sb, KERN_ERR,
1589                         "Cannot change journaled "
1590                         "quota options when quota turned on");
1591                 return -1;
1592         }
1593         if (ext4_has_feature_quota(sb)) {
1594                 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1595                          "ignored when QUOTA feature is enabled");
1596                 return 1;
1597         }
1598         qname = match_strdup(args);
1599         if (!qname) {
1600                 ext4_msg(sb, KERN_ERR,
1601                         "Not enough memory for storing quotafile name");
1602                 return -1;
1603         }
1604         if (old_qname) {
1605                 if (strcmp(old_qname, qname) == 0)
1606                         ret = 1;
1607                 else
1608                         ext4_msg(sb, KERN_ERR,
1609                                  "%s quota file already specified",
1610                                  QTYPE2NAME(qtype));
1611                 goto errout;
1612         }
1613         if (strchr(qname, '/')) {
1614                 ext4_msg(sb, KERN_ERR,
1615                         "quotafile must be on filesystem root");
1616                 goto errout;
1617         }
1618         rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1619         set_opt(sb, QUOTA);
1620         return 1;
1621 errout:
1622         kfree(qname);
1623         return ret;
1624 }
1625
1626 static int clear_qf_name(struct super_block *sb, int qtype)
1627 {
1628
1629         struct ext4_sb_info *sbi = EXT4_SB(sb);
1630         char *old_qname = get_qf_name(sb, sbi, qtype);
1631
1632         if (sb_any_quota_loaded(sb) && old_qname) {
1633                 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1634                         " when quota turned on");
1635                 return -1;
1636         }
1637         rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1638         synchronize_rcu();
1639         kfree(old_qname);
1640         return 1;
1641 }
1642 #endif
1643
1644 #define MOPT_SET        0x0001
1645 #define MOPT_CLEAR      0x0002
1646 #define MOPT_NOSUPPORT  0x0004
1647 #define MOPT_EXPLICIT   0x0008
1648 #define MOPT_CLEAR_ERR  0x0010
1649 #define MOPT_GTE0       0x0020
1650 #ifdef CONFIG_QUOTA
1651 #define MOPT_Q          0
1652 #define MOPT_QFMT       0x0040
1653 #else
1654 #define MOPT_Q          MOPT_NOSUPPORT
1655 #define MOPT_QFMT       MOPT_NOSUPPORT
1656 #endif
1657 #define MOPT_DATAJ      0x0080
1658 #define MOPT_NO_EXT2    0x0100
1659 #define MOPT_NO_EXT3    0x0200
1660 #define MOPT_EXT4_ONLY  (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1661 #define MOPT_STRING     0x0400
1662
1663 static const struct mount_opts {
1664         int     token;
1665         int     mount_opt;
1666         int     flags;
1667 } ext4_mount_opts[] = {
1668         {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1669         {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1670         {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1671         {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1672         {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1673         {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1674         {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1675          MOPT_EXT4_ONLY | MOPT_SET},
1676         {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1677          MOPT_EXT4_ONLY | MOPT_CLEAR},
1678         {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1679         {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1680         {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1681          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1682         {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1683          MOPT_EXT4_ONLY | MOPT_CLEAR},
1684         {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1685         {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1686         {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1687          MOPT_EXT4_ONLY | MOPT_CLEAR},
1688         {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1689          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1690         {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1691                                     EXT4_MOUNT_JOURNAL_CHECKSUM),
1692          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1693         {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1694         {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1695         {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1696         {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1697         {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1698          MOPT_NO_EXT2},
1699         {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1700          MOPT_NO_EXT2},
1701         {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1702         {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1703         {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1704         {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1705         {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1706         {Opt_commit, 0, MOPT_GTE0},
1707         {Opt_max_batch_time, 0, MOPT_GTE0},
1708         {Opt_min_batch_time, 0, MOPT_GTE0},
1709         {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1710         {Opt_init_itable, 0, MOPT_GTE0},
1711         {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1712         {Opt_stripe, 0, MOPT_GTE0},
1713         {Opt_resuid, 0, MOPT_GTE0},
1714         {Opt_resgid, 0, MOPT_GTE0},
1715         {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1716         {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1717         {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1718         {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1719         {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1720         {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1721          MOPT_NO_EXT2 | MOPT_DATAJ},
1722         {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1723         {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1724 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1725         {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1726         {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1727 #else
1728         {Opt_acl, 0, MOPT_NOSUPPORT},
1729         {Opt_noacl, 0, MOPT_NOSUPPORT},
1730 #endif
1731         {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1732         {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1733         {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1734         {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1735         {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1736                                                         MOPT_SET | MOPT_Q},
1737         {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1738                                                         MOPT_SET | MOPT_Q},
1739         {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1740                                                         MOPT_SET | MOPT_Q},
1741         {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1742                        EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1743                                                         MOPT_CLEAR | MOPT_Q},
1744         {Opt_usrjquota, 0, MOPT_Q},
1745         {Opt_grpjquota, 0, MOPT_Q},
1746         {Opt_offusrjquota, 0, MOPT_Q},
1747         {Opt_offgrpjquota, 0, MOPT_Q},
1748         {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1749         {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1750         {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1751         {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1752         {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1753         {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1754         {Opt_err, 0, 0}
1755 };
1756
1757 #ifdef CONFIG_UNICODE
1758 static const struct ext4_sb_encodings {
1759         __u16 magic;
1760         char *name;
1761         char *version;
1762 } ext4_sb_encoding_map[] = {
1763         {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
1764 };
1765
1766 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
1767                                  const struct ext4_sb_encodings **encoding,
1768                                  __u16 *flags)
1769 {
1770         __u16 magic = le16_to_cpu(es->s_encoding);
1771         int i;
1772
1773         for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1774                 if (magic == ext4_sb_encoding_map[i].magic)
1775                         break;
1776
1777         if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
1778                 return -EINVAL;
1779
1780         *encoding = &ext4_sb_encoding_map[i];
1781         *flags = le16_to_cpu(es->s_encoding_flags);
1782
1783         return 0;
1784 }
1785 #endif
1786
1787 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1788                             substring_t *args, unsigned long *journal_devnum,
1789                             unsigned int *journal_ioprio, int is_remount)
1790 {
1791         struct ext4_sb_info *sbi = EXT4_SB(sb);
1792         const struct mount_opts *m;
1793         kuid_t uid;
1794         kgid_t gid;
1795         int arg = 0;
1796
1797 #ifdef CONFIG_QUOTA
1798         if (token == Opt_usrjquota)
1799                 return set_qf_name(sb, USRQUOTA, &args[0]);
1800         else if (token == Opt_grpjquota)
1801                 return set_qf_name(sb, GRPQUOTA, &args[0]);
1802         else if (token == Opt_offusrjquota)
1803                 return clear_qf_name(sb, USRQUOTA);
1804         else if (token == Opt_offgrpjquota)
1805                 return clear_qf_name(sb, GRPQUOTA);
1806 #endif
1807         switch (token) {
1808         case Opt_noacl:
1809         case Opt_nouser_xattr:
1810                 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1811                 break;
1812         case Opt_sb:
1813                 return 1;       /* handled by get_sb_block() */
1814         case Opt_removed:
1815                 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1816                 return 1;
1817         case Opt_abort:
1818                 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1819                 return 1;
1820         case Opt_i_version:
1821                 sb->s_flags |= SB_I_VERSION;
1822                 return 1;
1823         case Opt_lazytime:
1824                 sb->s_flags |= SB_LAZYTIME;
1825                 return 1;
1826         case Opt_nolazytime:
1827                 sb->s_flags &= ~SB_LAZYTIME;
1828                 return 1;
1829         }
1830
1831         for (m = ext4_mount_opts; m->token != Opt_err; m++)
1832                 if (token == m->token)
1833                         break;
1834
1835         if (m->token == Opt_err) {
1836                 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1837                          "or missing value", opt);
1838                 return -1;
1839         }
1840
1841         if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1842                 ext4_msg(sb, KERN_ERR,
1843                          "Mount option \"%s\" incompatible with ext2", opt);
1844                 return -1;
1845         }
1846         if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1847                 ext4_msg(sb, KERN_ERR,
1848                          "Mount option \"%s\" incompatible with ext3", opt);
1849                 return -1;
1850         }
1851
1852         if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1853                 return -1;
1854         if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1855                 return -1;
1856         if (m->flags & MOPT_EXPLICIT) {
1857                 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1858                         set_opt2(sb, EXPLICIT_DELALLOC);
1859                 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1860                         set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1861                 } else
1862                         return -1;
1863         }
1864         if (m->flags & MOPT_CLEAR_ERR)
1865                 clear_opt(sb, ERRORS_MASK);
1866         if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1867                 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1868                          "options when quota turned on");
1869                 return -1;
1870         }
1871
1872         if (m->flags & MOPT_NOSUPPORT) {
1873                 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1874         } else if (token == Opt_commit) {
1875                 if (arg == 0)
1876                         arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1877                 else if (arg > INT_MAX / HZ) {
1878                         ext4_msg(sb, KERN_ERR,
1879                                  "Invalid commit interval %d, "
1880                                  "must be smaller than %d",
1881                                  arg, INT_MAX / HZ);
1882                         return -1;
1883                 }
1884                 sbi->s_commit_interval = HZ * arg;
1885         } else if (token == Opt_debug_want_extra_isize) {
1886                 sbi->s_want_extra_isize = arg;
1887         } else if (token == Opt_max_batch_time) {
1888                 sbi->s_max_batch_time = arg;
1889         } else if (token == Opt_min_batch_time) {
1890                 sbi->s_min_batch_time = arg;
1891         } else if (token == Opt_inode_readahead_blks) {
1892                 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1893                         ext4_msg(sb, KERN_ERR,
1894                                  "EXT4-fs: inode_readahead_blks must be "
1895                                  "0 or a power of 2 smaller than 2^31");
1896                         return -1;
1897                 }
1898                 sbi->s_inode_readahead_blks = arg;
1899         } else if (token == Opt_init_itable) {
1900                 set_opt(sb, INIT_INODE_TABLE);
1901                 if (!args->from)
1902                         arg = EXT4_DEF_LI_WAIT_MULT;
1903                 sbi->s_li_wait_mult = arg;
1904         } else if (token == Opt_max_dir_size_kb) {
1905                 sbi->s_max_dir_size_kb = arg;
1906         } else if (token == Opt_stripe) {
1907                 sbi->s_stripe = arg;
1908         } else if (token == Opt_resuid) {
1909                 uid = make_kuid(current_user_ns(), arg);
1910                 if (!uid_valid(uid)) {
1911                         ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1912                         return -1;
1913                 }
1914                 sbi->s_resuid = uid;
1915         } else if (token == Opt_resgid) {
1916                 gid = make_kgid(current_user_ns(), arg);
1917                 if (!gid_valid(gid)) {
1918                         ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1919                         return -1;
1920                 }
1921                 sbi->s_resgid = gid;
1922         } else if (token == Opt_journal_dev) {
1923                 if (is_remount) {
1924                         ext4_msg(sb, KERN_ERR,
1925                                  "Cannot specify journal on remount");
1926                         return -1;
1927                 }
1928                 *journal_devnum = arg;
1929         } else if (token == Opt_journal_path) {
1930                 char *journal_path;
1931                 struct inode *journal_inode;
1932                 struct path path;
1933                 int error;
1934
1935                 if (is_remount) {
1936                         ext4_msg(sb, KERN_ERR,
1937                                  "Cannot specify journal on remount");
1938                         return -1;
1939                 }
1940                 journal_path = match_strdup(&args[0]);
1941                 if (!journal_path) {
1942                         ext4_msg(sb, KERN_ERR, "error: could not dup "
1943                                 "journal device string");
1944                         return -1;
1945                 }
1946
1947                 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1948                 if (error) {
1949                         ext4_msg(sb, KERN_ERR, "error: could not find "
1950                                 "journal device path: error %d", error);
1951                         kfree(journal_path);
1952                         return -1;
1953                 }
1954
1955                 journal_inode = d_inode(path.dentry);
1956                 if (!S_ISBLK(journal_inode->i_mode)) {
1957                         ext4_msg(sb, KERN_ERR, "error: journal path %s "
1958                                 "is not a block device", journal_path);
1959                         path_put(&path);
1960                         kfree(journal_path);
1961                         return -1;
1962                 }
1963
1964                 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1965                 path_put(&path);
1966                 kfree(journal_path);
1967         } else if (token == Opt_journal_ioprio) {
1968                 if (arg > 7) {
1969                         ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1970                                  " (must be 0-7)");
1971                         return -1;
1972                 }
1973                 *journal_ioprio =
1974                         IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1975         } else if (token == Opt_test_dummy_encryption) {
1976 #ifdef CONFIG_FS_ENCRYPTION
1977                 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1978                 ext4_msg(sb, KERN_WARNING,
1979                          "Test dummy encryption mode enabled");
1980 #else
1981                 ext4_msg(sb, KERN_WARNING,
1982                          "Test dummy encryption mount option ignored");
1983 #endif
1984         } else if (m->flags & MOPT_DATAJ) {
1985                 if (is_remount) {
1986                         if (!sbi->s_journal)
1987                                 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1988                         else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1989                                 ext4_msg(sb, KERN_ERR,
1990                                          "Cannot change data mode on remount");
1991                                 return -1;
1992                         }
1993                 } else {
1994                         clear_opt(sb, DATA_FLAGS);
1995                         sbi->s_mount_opt |= m->mount_opt;
1996                 }
1997 #ifdef CONFIG_QUOTA
1998         } else if (m->flags & MOPT_QFMT) {
1999                 if (sb_any_quota_loaded(sb) &&
2000                     sbi->s_jquota_fmt != m->mount_opt) {
2001                         ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2002                                  "quota options when quota turned on");
2003                         return -1;
2004                 }
2005                 if (ext4_has_feature_quota(sb)) {
2006                         ext4_msg(sb, KERN_INFO,
2007                                  "Quota format mount options ignored "
2008                                  "when QUOTA feature is enabled");
2009                         return 1;
2010                 }
2011                 sbi->s_jquota_fmt = m->mount_opt;
2012 #endif
2013         } else if (token == Opt_dax) {
2014 #ifdef CONFIG_FS_DAX
2015                 ext4_msg(sb, KERN_WARNING,
2016                 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2017                 sbi->s_mount_opt |= m->mount_opt;
2018 #else
2019                 ext4_msg(sb, KERN_INFO, "dax option not supported");
2020                 return -1;
2021 #endif
2022         } else if (token == Opt_data_err_abort) {
2023                 sbi->s_mount_opt |= m->mount_opt;
2024         } else if (token == Opt_data_err_ignore) {
2025                 sbi->s_mount_opt &= ~m->mount_opt;
2026         } else {
2027                 if (!args->from)
2028                         arg = 1;
2029                 if (m->flags & MOPT_CLEAR)
2030                         arg = !arg;
2031                 else if (unlikely(!(m->flags & MOPT_SET))) {
2032                         ext4_msg(sb, KERN_WARNING,
2033                                  "buggy handling of option %s", opt);
2034                         WARN_ON(1);
2035                         return -1;
2036                 }
2037                 if (arg != 0)
2038                         sbi->s_mount_opt |= m->mount_opt;
2039                 else
2040                         sbi->s_mount_opt &= ~m->mount_opt;
2041         }
2042         return 1;
2043 }
2044
2045 static int parse_options(char *options, struct super_block *sb,
2046                          unsigned long *journal_devnum,
2047                          unsigned int *journal_ioprio,
2048                          int is_remount)
2049 {
2050         struct ext4_sb_info *sbi = EXT4_SB(sb);
2051         char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2052         substring_t args[MAX_OPT_ARGS];
2053         int token;
2054
2055         if (!options)
2056                 return 1;
2057
2058         while ((p = strsep(&options, ",")) != NULL) {
2059                 if (!*p)
2060                         continue;
2061                 /*
2062                  * Initialize args struct so we know whether arg was
2063                  * found; some options take optional arguments.
2064                  */
2065                 args[0].to = args[0].from = NULL;
2066                 token = match_token(p, tokens, args);
2067                 if (handle_mount_opt(sb, p, token, args, journal_devnum,
2068                                      journal_ioprio, is_remount) < 0)
2069                         return 0;
2070         }
2071 #ifdef CONFIG_QUOTA
2072         /*
2073          * We do the test below only for project quotas. 'usrquota' and
2074          * 'grpquota' mount options are allowed even without quota feature
2075          * to support legacy quotas in quota files.
2076          */
2077         if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2078                 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2079                          "Cannot enable project quota enforcement.");
2080                 return 0;
2081         }
2082         usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2083         grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2084         if (usr_qf_name || grp_qf_name) {
2085                 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2086                         clear_opt(sb, USRQUOTA);
2087
2088                 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2089                         clear_opt(sb, GRPQUOTA);
2090
2091                 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2092                         ext4_msg(sb, KERN_ERR, "old and new quota "
2093                                         "format mixing");
2094                         return 0;
2095                 }
2096
2097                 if (!sbi->s_jquota_fmt) {
2098                         ext4_msg(sb, KERN_ERR, "journaled quota format "
2099                                         "not specified");
2100                         return 0;
2101                 }
2102         }
2103 #endif
2104         if (test_opt(sb, DIOREAD_NOLOCK)) {
2105                 int blocksize =
2106                         BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2107
2108                 if (blocksize < PAGE_SIZE) {
2109                         ext4_msg(sb, KERN_ERR, "can't mount with "
2110                                  "dioread_nolock if block size != PAGE_SIZE");
2111                         return 0;
2112                 }
2113         }
2114         return 1;
2115 }
2116
2117 static inline void ext4_show_quota_options(struct seq_file *seq,
2118                                            struct super_block *sb)
2119 {
2120 #if defined(CONFIG_QUOTA)
2121         struct ext4_sb_info *sbi = EXT4_SB(sb);
2122         char *usr_qf_name, *grp_qf_name;
2123
2124         if (sbi->s_jquota_fmt) {
2125                 char *fmtname = "";
2126
2127                 switch (sbi->s_jquota_fmt) {
2128                 case QFMT_VFS_OLD:
2129                         fmtname = "vfsold";
2130                         break;
2131                 case QFMT_VFS_V0:
2132                         fmtname = "vfsv0";
2133                         break;
2134                 case QFMT_VFS_V1:
2135                         fmtname = "vfsv1";
2136                         break;
2137                 }
2138                 seq_printf(seq, ",jqfmt=%s", fmtname);
2139         }
2140
2141         rcu_read_lock();
2142         usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2143         grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2144         if (usr_qf_name)
2145                 seq_show_option(seq, "usrjquota", usr_qf_name);
2146         if (grp_qf_name)
2147                 seq_show_option(seq, "grpjquota", grp_qf_name);
2148         rcu_read_unlock();
2149 #endif
2150 }
2151
2152 static const char *token2str(int token)
2153 {
2154         const struct match_token *t;
2155
2156         for (t = tokens; t->token != Opt_err; t++)
2157                 if (t->token == token && !strchr(t->pattern, '='))
2158                         break;
2159         return t->pattern;
2160 }
2161
2162 /*
2163  * Show an option if
2164  *  - it's set to a non-default value OR
2165  *  - if the per-sb default is different from the global default
2166  */
2167 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2168                               int nodefs)
2169 {
2170         struct ext4_sb_info *sbi = EXT4_SB(sb);
2171         struct ext4_super_block *es = sbi->s_es;
2172         int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2173         const struct mount_opts *m;
2174         char sep = nodefs ? '\n' : ',';
2175
2176 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2177 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2178
2179         if (sbi->s_sb_block != 1)
2180                 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2181
2182         for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2183                 int want_set = m->flags & MOPT_SET;
2184                 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2185                     (m->flags & MOPT_CLEAR_ERR))
2186                         continue;
2187                 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2188                         continue; /* skip if same as the default */
2189                 if ((want_set &&
2190                      (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2191                     (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2192                         continue; /* select Opt_noFoo vs Opt_Foo */
2193                 SEQ_OPTS_PRINT("%s", token2str(m->token));
2194         }
2195
2196         if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2197             le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2198                 SEQ_OPTS_PRINT("resuid=%u",
2199                                 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2200         if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2201             le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2202                 SEQ_OPTS_PRINT("resgid=%u",
2203                                 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2204         def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2205         if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2206                 SEQ_OPTS_PUTS("errors=remount-ro");
2207         if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2208                 SEQ_OPTS_PUTS("errors=continue");
2209         if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2210                 SEQ_OPTS_PUTS("errors=panic");
2211         if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2212                 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2213         if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2214                 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2215         if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2216                 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2217         if (sb->s_flags & SB_I_VERSION)
2218                 SEQ_OPTS_PUTS("i_version");
2219         if (nodefs || sbi->s_stripe)
2220                 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2221         if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2222                         (sbi->s_mount_opt ^ def_mount_opt)) {
2223                 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2224                         SEQ_OPTS_PUTS("data=journal");
2225                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2226                         SEQ_OPTS_PUTS("data=ordered");
2227                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2228                         SEQ_OPTS_PUTS("data=writeback");
2229         }
2230         if (nodefs ||
2231             sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2232                 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2233                                sbi->s_inode_readahead_blks);
2234
2235         if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2236                        (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2237                 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2238         if (nodefs || sbi->s_max_dir_size_kb)
2239                 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2240         if (test_opt(sb, DATA_ERR_ABORT))
2241                 SEQ_OPTS_PUTS("data_err=abort");
2242         if (DUMMY_ENCRYPTION_ENABLED(sbi))
2243                 SEQ_OPTS_PUTS("test_dummy_encryption");
2244
2245         ext4_show_quota_options(seq, sb);
2246         return 0;
2247 }
2248
2249 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2250 {
2251         return _ext4_show_options(seq, root->d_sb, 0);
2252 }
2253
2254 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2255 {
2256         struct super_block *sb = seq->private;
2257         int rc;
2258
2259         seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2260         rc = _ext4_show_options(seq, sb, 1);
2261         seq_puts(seq, "\n");
2262         return rc;
2263 }
2264
2265 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2266                             int read_only)
2267 {
2268         struct ext4_sb_info *sbi = EXT4_SB(sb);
2269         int err = 0;
2270
2271         if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2272                 ext4_msg(sb, KERN_ERR, "revision level too high, "
2273                          "forcing read-only mode");
2274                 err = -EROFS;
2275         }
2276         if (read_only)
2277                 goto done;
2278         if (!(sbi->s_mount_state & EXT4_VALID_FS))
2279                 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2280                          "running e2fsck is recommended");
2281         else if (sbi->s_mount_state & EXT4_ERROR_FS)
2282                 ext4_msg(sb, KERN_WARNING,
2283                          "warning: mounting fs with errors, "
2284                          "running e2fsck is recommended");
2285         else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2286                  le16_to_cpu(es->s_mnt_count) >=
2287                  (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2288                 ext4_msg(sb, KERN_WARNING,
2289                          "warning: maximal mount count reached, "
2290                          "running e2fsck is recommended");
2291         else if (le32_to_cpu(es->s_checkinterval) &&
2292                  (ext4_get_tstamp(es, s_lastcheck) +
2293                   le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2294                 ext4_msg(sb, KERN_WARNING,
2295                          "warning: checktime reached, "
2296                          "running e2fsck is recommended");
2297         if (!sbi->s_journal)
2298                 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2299         if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2300                 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2301         le16_add_cpu(&es->s_mnt_count, 1);
2302         ext4_update_tstamp(es, s_mtime);
2303         if (sbi->s_journal)
2304                 ext4_set_feature_journal_needs_recovery(sb);
2305
2306         err = ext4_commit_super(sb, 1);
2307 done:
2308         if (test_opt(sb, DEBUG))
2309                 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2310                                 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2311                         sb->s_blocksize,
2312                         sbi->s_groups_count,
2313                         EXT4_BLOCKS_PER_GROUP(sb),
2314                         EXT4_INODES_PER_GROUP(sb),
2315                         sbi->s_mount_opt, sbi->s_mount_opt2);
2316
2317         cleancache_init_fs(sb);
2318         return err;
2319 }
2320
2321 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2322 {
2323         struct ext4_sb_info *sbi = EXT4_SB(sb);
2324         struct flex_groups *new_groups;
2325         int size;
2326
2327         if (!sbi->s_log_groups_per_flex)
2328                 return 0;
2329
2330         size = ext4_flex_group(sbi, ngroup - 1) + 1;
2331         if (size <= sbi->s_flex_groups_allocated)
2332                 return 0;
2333
2334         size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2335         new_groups = kvzalloc(size, GFP_KERNEL);
2336         if (!new_groups) {
2337                 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2338                          size / (int) sizeof(struct flex_groups));
2339                 return -ENOMEM;
2340         }
2341
2342         if (sbi->s_flex_groups) {
2343                 memcpy(new_groups, sbi->s_flex_groups,
2344                        (sbi->s_flex_groups_allocated *
2345                         sizeof(struct flex_groups)));
2346                 kvfree(sbi->s_flex_groups);
2347         }
2348         sbi->s_flex_groups = new_groups;
2349         sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2350         return 0;
2351 }
2352
2353 static int ext4_fill_flex_info(struct super_block *sb)
2354 {
2355         struct ext4_sb_info *sbi = EXT4_SB(sb);
2356         struct ext4_group_desc *gdp = NULL;
2357         ext4_group_t flex_group;
2358         int i, err;
2359
2360         sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2361         if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2362                 sbi->s_log_groups_per_flex = 0;
2363                 return 1;
2364         }
2365
2366         err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2367         if (err)
2368                 goto failed;
2369
2370         for (i = 0; i < sbi->s_groups_count; i++) {
2371                 gdp = ext4_get_group_desc(sb, i, NULL);
2372
2373                 flex_group = ext4_flex_group(sbi, i);
2374                 atomic_add(ext4_free_inodes_count(sb, gdp),
2375                            &sbi->s_flex_groups[flex_group].free_inodes);
2376                 atomic64_add(ext4_free_group_clusters(sb, gdp),
2377                              &sbi->s_flex_groups[flex_group].free_clusters);
2378                 atomic_add(ext4_used_dirs_count(sb, gdp),
2379                            &sbi->s_flex_groups[flex_group].used_dirs);
2380         }
2381
2382         return 1;
2383 failed:
2384         return 0;
2385 }
2386
2387 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2388                                    struct ext4_group_desc *gdp)
2389 {
2390         int offset = offsetof(struct ext4_group_desc, bg_checksum);
2391         __u16 crc = 0;
2392         __le32 le_group = cpu_to_le32(block_group);
2393         struct ext4_sb_info *sbi = EXT4_SB(sb);
2394
2395         if (ext4_has_metadata_csum(sbi->s_sb)) {
2396                 /* Use new metadata_csum algorithm */
2397                 __u32 csum32;
2398                 __u16 dummy_csum = 0;
2399
2400                 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2401                                      sizeof(le_group));
2402                 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2403                 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2404                                      sizeof(dummy_csum));
2405                 offset += sizeof(dummy_csum);
2406                 if (offset < sbi->s_desc_size)
2407                         csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2408                                              sbi->s_desc_size - offset);
2409
2410                 crc = csum32 & 0xFFFF;
2411                 goto out;
2412         }
2413
2414         /* old crc16 code */
2415         if (!ext4_has_feature_gdt_csum(sb))
2416                 return 0;
2417
2418         crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2419         crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2420         crc = crc16(crc, (__u8 *)gdp, offset);
2421         offset += sizeof(gdp->bg_checksum); /* skip checksum */
2422         /* for checksum of struct ext4_group_desc do the rest...*/
2423         if (ext4_has_feature_64bit(sb) &&
2424             offset < le16_to_cpu(sbi->s_es->s_desc_size))
2425                 crc = crc16(crc, (__u8 *)gdp + offset,
2426                             le16_to_cpu(sbi->s_es->s_desc_size) -
2427                                 offset);
2428
2429 out:
2430         return cpu_to_le16(crc);
2431 }
2432
2433 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2434                                 struct ext4_group_desc *gdp)
2435 {
2436         if (ext4_has_group_desc_csum(sb) &&
2437             (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2438                 return 0;
2439
2440         return 1;
2441 }
2442
2443 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2444                               struct ext4_group_desc *gdp)
2445 {
2446         if (!ext4_has_group_desc_csum(sb))
2447                 return;
2448         gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2449 }
2450
2451 /* Called at mount-time, super-block is locked */
2452 static int ext4_check_descriptors(struct super_block *sb,
2453                                   ext4_fsblk_t sb_block,
2454                                   ext4_group_t *first_not_zeroed)
2455 {
2456         struct ext4_sb_info *sbi = EXT4_SB(sb);
2457         ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2458         ext4_fsblk_t last_block;
2459         ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2460         ext4_fsblk_t block_bitmap;
2461         ext4_fsblk_t inode_bitmap;
2462         ext4_fsblk_t inode_table;
2463         int flexbg_flag = 0;
2464         ext4_group_t i, grp = sbi->s_groups_count;
2465
2466         if (ext4_has_feature_flex_bg(sb))
2467                 flexbg_flag = 1;
2468
2469         ext4_debug("Checking group descriptors");
2470
2471         for (i = 0; i < sbi->s_groups_count; i++) {
2472                 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2473
2474                 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2475                         last_block = ext4_blocks_count(sbi->s_es) - 1;
2476                 else
2477                         last_block = first_block +
2478                                 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2479
2480                 if ((grp == sbi->s_groups_count) &&
2481                    !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2482                         grp = i;
2483
2484                 block_bitmap = ext4_block_bitmap(sb, gdp);
2485                 if (block_bitmap == sb_block) {
2486                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2487                                  "Block bitmap for group %u overlaps "
2488                                  "superblock", i);
2489                         if (!sb_rdonly(sb))
2490                                 return 0;
2491                 }
2492                 if (block_bitmap >= sb_block + 1 &&
2493                     block_bitmap <= last_bg_block) {
2494                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2495                                  "Block bitmap for group %u overlaps "
2496                                  "block group descriptors", i);
2497                         if (!sb_rdonly(sb))
2498                                 return 0;
2499                 }
2500                 if (block_bitmap < first_block || block_bitmap > last_block) {
2501                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2502                                "Block bitmap for group %u not in group "
2503                                "(block %llu)!", i, block_bitmap);
2504                         return 0;
2505                 }
2506                 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2507                 if (inode_bitmap == sb_block) {
2508                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2509                                  "Inode bitmap for group %u overlaps "
2510                                  "superblock", i);
2511                         if (!sb_rdonly(sb))
2512                                 return 0;
2513                 }
2514                 if (inode_bitmap >= sb_block + 1 &&
2515                     inode_bitmap <= last_bg_block) {
2516                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2517                                  "Inode bitmap for group %u overlaps "
2518                                  "block group descriptors", i);
2519                         if (!sb_rdonly(sb))
2520                                 return 0;
2521                 }
2522                 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2523                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2524                                "Inode bitmap for group %u not in group "
2525                                "(block %llu)!", i, inode_bitmap);
2526                         return 0;
2527                 }
2528                 inode_table = ext4_inode_table(sb, gdp);
2529                 if (inode_table == sb_block) {
2530                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2531                                  "Inode table for group %u overlaps "
2532                                  "superblock", i);
2533                         if (!sb_rdonly(sb))
2534                                 return 0;
2535                 }
2536                 if (inode_table >= sb_block + 1 &&
2537                     inode_table <= last_bg_block) {
2538                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2539                                  "Inode table for group %u overlaps "
2540                                  "block group descriptors", i);
2541                         if (!sb_rdonly(sb))
2542                                 return 0;
2543                 }
2544                 if (inode_table < first_block ||
2545                     inode_table + sbi->s_itb_per_group - 1 > last_block) {
2546                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2547                                "Inode table for group %u not in group "
2548                                "(block %llu)!", i, inode_table);
2549                         return 0;
2550                 }
2551                 ext4_lock_group(sb, i);
2552                 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2553                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2554                                  "Checksum for group %u failed (%u!=%u)",
2555                                  i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2556                                      gdp)), le16_to_cpu(gdp->bg_checksum));
2557                         if (!sb_rdonly(sb)) {
2558                                 ext4_unlock_group(sb, i);
2559                                 return 0;
2560                         }
2561                 }
2562                 ext4_unlock_group(sb, i);
2563                 if (!flexbg_flag)
2564                         first_block += EXT4_BLOCKS_PER_GROUP(sb);
2565         }
2566         if (NULL != first_not_zeroed)
2567                 *first_not_zeroed = grp;
2568         return 1;
2569 }
2570
2571 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2572  * the superblock) which were deleted from all directories, but held open by
2573  * a process at the time of a crash.  We walk the list and try to delete these
2574  * inodes at recovery time (only with a read-write filesystem).
2575  *
2576  * In order to keep the orphan inode chain consistent during traversal (in
2577  * case of crash during recovery), we link each inode into the superblock
2578  * orphan list_head and handle it the same way as an inode deletion during
2579  * normal operation (which journals the operations for us).
2580  *
2581  * We only do an iget() and an iput() on each inode, which is very safe if we
2582  * accidentally point at an in-use or already deleted inode.  The worst that
2583  * can happen in this case is that we get a "bit already cleared" message from
2584  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2585  * e2fsck was run on this filesystem, and it must have already done the orphan
2586  * inode cleanup for us, so we can safely abort without any further action.
2587  */
2588 static void ext4_orphan_cleanup(struct super_block *sb,
2589                                 struct ext4_super_block *es)
2590 {
2591         unsigned int s_flags = sb->s_flags;
2592         int ret, nr_orphans = 0, nr_truncates = 0;
2593 #ifdef CONFIG_QUOTA
2594         int quota_update = 0;
2595         int i;
2596 #endif
2597         if (!es->s_last_orphan) {
2598                 jbd_debug(4, "no orphan inodes to clean up\n");
2599                 return;
2600         }
2601
2602         if (bdev_read_only(sb->s_bdev)) {
2603                 ext4_msg(sb, KERN_ERR, "write access "
2604                         "unavailable, skipping orphan cleanup");
2605                 return;
2606         }
2607
2608         /* Check if feature set would not allow a r/w mount */
2609         if (!ext4_feature_set_ok(sb, 0)) {
2610                 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2611                          "unknown ROCOMPAT features");
2612                 return;
2613         }
2614
2615         if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2616                 /* don't clear list on RO mount w/ errors */
2617                 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2618                         ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2619                                   "clearing orphan list.\n");
2620                         es->s_last_orphan = 0;
2621                 }
2622                 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2623                 return;
2624         }
2625
2626         if (s_flags & SB_RDONLY) {
2627                 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2628                 sb->s_flags &= ~SB_RDONLY;
2629         }
2630 #ifdef CONFIG_QUOTA
2631         /* Needed for iput() to work correctly and not trash data */
2632         sb->s_flags |= SB_ACTIVE;
2633
2634         /*
2635          * Turn on quotas which were not enabled for read-only mounts if
2636          * filesystem has quota feature, so that they are updated correctly.
2637          */
2638         if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2639                 int ret = ext4_enable_quotas(sb);
2640
2641                 if (!ret)
2642                         quota_update = 1;
2643                 else
2644                         ext4_msg(sb, KERN_ERR,
2645                                 "Cannot turn on quotas: error %d", ret);
2646         }
2647
2648         /* Turn on journaled quotas used for old sytle */
2649         for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2650                 if (EXT4_SB(sb)->s_qf_names[i]) {
2651                         int ret = ext4_quota_on_mount(sb, i);
2652
2653                         if (!ret)
2654                                 quota_update = 1;
2655                         else
2656                                 ext4_msg(sb, KERN_ERR,
2657                                         "Cannot turn on journaled "
2658                                         "quota: type %d: error %d", i, ret);
2659                 }
2660         }
2661 #endif
2662
2663         while (es->s_last_orphan) {
2664                 struct inode *inode;
2665
2666                 /*
2667                  * We may have encountered an error during cleanup; if
2668                  * so, skip the rest.
2669                  */
2670                 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2671                         jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2672                         es->s_last_orphan = 0;
2673                         break;
2674                 }
2675
2676                 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2677                 if (IS_ERR(inode)) {
2678                         es->s_last_orphan = 0;
2679                         break;
2680                 }
2681
2682                 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2683                 dquot_initialize(inode);
2684                 if (inode->i_nlink) {
2685                         if (test_opt(sb, DEBUG))
2686                                 ext4_msg(sb, KERN_DEBUG,
2687                                         "%s: truncating inode %lu to %lld bytes",
2688                                         __func__, inode->i_ino, inode->i_size);
2689                         jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2690                                   inode->i_ino, inode->i_size);
2691                         inode_lock(inode);
2692                         truncate_inode_pages(inode->i_mapping, inode->i_size);
2693                         ret = ext4_truncate(inode);
2694                         if (ret)
2695                                 ext4_std_error(inode->i_sb, ret);
2696                         inode_unlock(inode);
2697                         nr_truncates++;
2698                 } else {
2699                         if (test_opt(sb, DEBUG))
2700                                 ext4_msg(sb, KERN_DEBUG,
2701                                         "%s: deleting unreferenced inode %lu",
2702                                         __func__, inode->i_ino);
2703                         jbd_debug(2, "deleting unreferenced inode %lu\n",
2704                                   inode->i_ino);
2705                         nr_orphans++;
2706                 }
2707                 iput(inode);  /* The delete magic happens here! */
2708         }
2709
2710 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2711
2712         if (nr_orphans)
2713                 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2714                        PLURAL(nr_orphans));
2715         if (nr_truncates)
2716                 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2717                        PLURAL(nr_truncates));
2718 #ifdef CONFIG_QUOTA
2719         /* Turn off quotas if they were enabled for orphan cleanup */
2720         if (quota_update) {
2721                 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2722                         if (sb_dqopt(sb)->files[i])
2723                                 dquot_quota_off(sb, i);
2724                 }
2725         }
2726 #endif
2727         sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2728 }
2729
2730 /*
2731  * Maximal extent format file size.
2732  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2733  * extent format containers, within a sector_t, and within i_blocks
2734  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2735  * so that won't be a limiting factor.
2736  *
2737  * However there is other limiting factor. We do store extents in the form
2738  * of starting block and length, hence the resulting length of the extent
2739  * covering maximum file size must fit into on-disk format containers as
2740  * well. Given that length is always by 1 unit bigger than max unit (because
2741  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2742  *
2743  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2744  */
2745 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2746 {
2747         loff_t res;
2748         loff_t upper_limit = MAX_LFS_FILESIZE;
2749
2750         BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
2751
2752         if (!has_huge_files) {
2753                 upper_limit = (1LL << 32) - 1;
2754
2755                 /* total blocks in file system block size */
2756                 upper_limit >>= (blkbits - 9);
2757                 upper_limit <<= blkbits;
2758         }
2759
2760         /*
2761          * 32-bit extent-start container, ee_block. We lower the maxbytes
2762          * by one fs block, so ee_len can cover the extent of maximum file
2763          * size
2764          */
2765         res = (1LL << 32) - 1;
2766         res <<= blkbits;
2767
2768         /* Sanity check against vm- & vfs- imposed limits */
2769         if (res > upper_limit)
2770                 res = upper_limit;
2771
2772         return res;
2773 }
2774
2775 /*
2776  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2777  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2778  * We need to be 1 filesystem block less than the 2^48 sector limit.
2779  */
2780 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2781 {
2782         loff_t res = EXT4_NDIR_BLOCKS;
2783         int meta_blocks;
2784         loff_t upper_limit;
2785         /* This is calculated to be the largest file size for a dense, block
2786          * mapped file such that the file's total number of 512-byte sectors,
2787          * including data and all indirect blocks, does not exceed (2^48 - 1).
2788          *
2789          * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2790          * number of 512-byte sectors of the file.
2791          */
2792
2793         if (!has_huge_files) {
2794                 /*
2795                  * !has_huge_files or implies that the inode i_block field
2796                  * represents total file blocks in 2^32 512-byte sectors ==
2797                  * size of vfs inode i_blocks * 8
2798                  */
2799                 upper_limit = (1LL << 32) - 1;
2800
2801                 /* total blocks in file system block size */
2802                 upper_limit >>= (bits - 9);
2803
2804         } else {
2805                 /*
2806                  * We use 48 bit ext4_inode i_blocks
2807                  * With EXT4_HUGE_FILE_FL set the i_blocks
2808                  * represent total number of blocks in
2809                  * file system block size
2810                  */
2811                 upper_limit = (1LL << 48) - 1;
2812
2813         }
2814
2815         /* indirect blocks */
2816         meta_blocks = 1;
2817         /* double indirect blocks */
2818         meta_blocks += 1 + (1LL << (bits-2));
2819         /* tripple indirect blocks */
2820         meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2821
2822         upper_limit -= meta_blocks;
2823         upper_limit <<= bits;
2824
2825         res += 1LL << (bits-2);
2826         res += 1LL << (2*(bits-2));
2827         res += 1LL << (3*(bits-2));
2828         res <<= bits;
2829         if (res > upper_limit)
2830                 res = upper_limit;
2831
2832         if (res > MAX_LFS_FILESIZE)
2833                 res = MAX_LFS_FILESIZE;
2834
2835         return res;
2836 }
2837
2838 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2839                                    ext4_fsblk_t logical_sb_block, int nr)
2840 {
2841         struct ext4_sb_info *sbi = EXT4_SB(sb);
2842         ext4_group_t bg, first_meta_bg;
2843         int has_super = 0;
2844
2845         first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2846
2847         if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2848                 return logical_sb_block + nr + 1;
2849         bg = sbi->s_desc_per_block * nr;
2850         if (ext4_bg_has_super(sb, bg))
2851                 has_super = 1;
2852
2853         /*
2854          * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2855          * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
2856          * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2857          * compensate.
2858          */
2859         if (sb->s_blocksize == 1024 && nr == 0 &&
2860             le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2861                 has_super++;
2862
2863         return (has_super + ext4_group_first_block_no(sb, bg));
2864 }
2865
2866 /**
2867  * ext4_get_stripe_size: Get the stripe size.
2868  * @sbi: In memory super block info
2869  *
2870  * If we have specified it via mount option, then
2871  * use the mount option value. If the value specified at mount time is
2872  * greater than the blocks per group use the super block value.
2873  * If the super block value is greater than blocks per group return 0.
2874  * Allocator needs it be less than blocks per group.
2875  *
2876  */
2877 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2878 {
2879         unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2880         unsigned long stripe_width =
2881                         le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2882         int ret;
2883
2884         if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2885                 ret = sbi->s_stripe;
2886         else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2887                 ret = stripe_width;
2888         else if (stride && stride <= sbi->s_blocks_per_group)
2889                 ret = stride;
2890         else
2891                 ret = 0;
2892
2893         /*
2894          * If the stripe width is 1, this makes no sense and
2895          * we set it to 0 to turn off stripe handling code.
2896          */
2897         if (ret <= 1)
2898                 ret = 0;
2899
2900         return ret;
2901 }
2902
2903 /*
2904  * Check whether this filesystem can be mounted based on
2905  * the features present and the RDONLY/RDWR mount requested.
2906  * Returns 1 if this filesystem can be mounted as requested,
2907  * 0 if it cannot be.
2908  */
2909 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2910 {
2911         if (ext4_has_unknown_ext4_incompat_features(sb)) {
2912                 ext4_msg(sb, KERN_ERR,
2913                         "Couldn't mount because of "
2914                         "unsupported optional features (%x)",
2915                         (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2916                         ~EXT4_FEATURE_INCOMPAT_SUPP));
2917                 return 0;
2918         }
2919
2920 #ifndef CONFIG_UNICODE
2921         if (ext4_has_feature_casefold(sb)) {
2922                 ext4_msg(sb, KERN_ERR,
2923                          "Filesystem with casefold feature cannot be "
2924                          "mounted without CONFIG_UNICODE");
2925                 return 0;
2926         }
2927 #endif
2928
2929         if (readonly)
2930                 return 1;
2931
2932         if (ext4_has_feature_readonly(sb)) {
2933                 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2934                 sb->s_flags |= SB_RDONLY;
2935                 return 1;
2936         }
2937
2938         /* Check that feature set is OK for a read-write mount */
2939         if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2940                 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2941                          "unsupported optional features (%x)",
2942                          (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2943                                 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2944                 return 0;
2945         }
2946         if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2947                 ext4_msg(sb, KERN_ERR,
2948                          "Can't support bigalloc feature without "
2949                          "extents feature\n");
2950                 return 0;
2951         }
2952
2953 #ifndef CONFIG_QUOTA
2954         if (ext4_has_feature_quota(sb) && !readonly) {
2955                 ext4_msg(sb, KERN_ERR,
2956                          "Filesystem with quota feature cannot be mounted RDWR "
2957                          "without CONFIG_QUOTA");
2958                 return 0;
2959         }
2960         if (ext4_has_feature_project(sb) && !readonly) {
2961                 ext4_msg(sb, KERN_ERR,
2962                          "Filesystem with project quota feature cannot be mounted RDWR "
2963                          "without CONFIG_QUOTA");
2964                 return 0;
2965         }
2966 #endif  /* CONFIG_QUOTA */
2967         return 1;
2968 }
2969
2970 /*
2971  * This function is called once a day if we have errors logged
2972  * on the file system
2973  */
2974 static void print_daily_error_info(struct timer_list *t)
2975 {
2976         struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
2977         struct super_block *sb = sbi->s_sb;
2978         struct ext4_super_block *es = sbi->s_es;
2979
2980         if (es->s_error_count)
2981                 /* fsck newer than v1.41.13 is needed to clean this condition. */
2982                 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2983                          le32_to_cpu(es->s_error_count));
2984         if (es->s_first_error_time) {
2985                 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
2986                        sb->s_id,
2987                        ext4_get_tstamp(es, s_first_error_time),
2988                        (int) sizeof(es->s_first_error_func),
2989                        es->s_first_error_func,
2990                        le32_to_cpu(es->s_first_error_line));
2991                 if (es->s_first_error_ino)
2992                         printk(KERN_CONT ": inode %u",
2993                                le32_to_cpu(es->s_first_error_ino));
2994                 if (es->s_first_error_block)
2995                         printk(KERN_CONT ": block %llu", (unsigned long long)
2996                                le64_to_cpu(es->s_first_error_block));
2997                 printk(KERN_CONT "\n");
2998         }
2999         if (es->s_last_error_time) {
3000                 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3001                        sb->s_id,
3002                        ext4_get_tstamp(es, s_last_error_time),
3003                        (int) sizeof(es->s_last_error_func),
3004                        es->s_last_error_func,
3005                        le32_to_cpu(es->s_last_error_line));
3006                 if (es->s_last_error_ino)
3007                         printk(KERN_CONT ": inode %u",
3008                                le32_to_cpu(es->s_last_error_ino));
3009                 if (es->s_last_error_block)
3010                         printk(KERN_CONT ": block %llu", (unsigned long long)
3011                                le64_to_cpu(es->s_last_error_block));
3012                 printk(KERN_CONT "\n");
3013         }
3014         mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3015 }
3016
3017 /* Find next suitable group and run ext4_init_inode_table */
3018 static int ext4_run_li_request(struct ext4_li_request *elr)
3019 {
3020         struct ext4_group_desc *gdp = NULL;
3021         ext4_group_t group, ngroups;
3022         struct super_block *sb;
3023         unsigned long timeout = 0;
3024         int ret = 0;
3025
3026         sb = elr->lr_super;
3027         ngroups = EXT4_SB(sb)->s_groups_count;
3028
3029         for (group = elr->lr_next_group; group < ngroups; group++) {
3030                 gdp = ext4_get_group_desc(sb, group, NULL);
3031                 if (!gdp) {
3032                         ret = 1;
3033                         break;
3034                 }
3035
3036                 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3037                         break;
3038         }
3039
3040         if (group >= ngroups)
3041                 ret = 1;
3042
3043         if (!ret) {
3044                 timeout = jiffies;
3045                 ret = ext4_init_inode_table(sb, group,
3046                                             elr->lr_timeout ? 0 : 1);
3047                 if (elr->lr_timeout == 0) {
3048                         timeout = (jiffies - timeout) *
3049                                   elr->lr_sbi->s_li_wait_mult;
3050                         elr->lr_timeout = timeout;
3051                 }
3052                 elr->lr_next_sched = jiffies + elr->lr_timeout;
3053                 elr->lr_next_group = group + 1;
3054         }
3055         return ret;
3056 }
3057
3058 /*
3059  * Remove lr_request from the list_request and free the
3060  * request structure. Should be called with li_list_mtx held
3061  */
3062 static void ext4_remove_li_request(struct ext4_li_request *elr)
3063 {
3064         struct ext4_sb_info *sbi;
3065
3066         if (!elr)
3067                 return;
3068
3069         sbi = elr->lr_sbi;
3070
3071         list_del(&elr->lr_request);
3072         sbi->s_li_request = NULL;
3073         kfree(elr);
3074 }
3075
3076 static void ext4_unregister_li_request(struct super_block *sb)
3077 {
3078         mutex_lock(&ext4_li_mtx);
3079         if (!ext4_li_info) {
3080                 mutex_unlock(&ext4_li_mtx);
3081                 return;
3082         }
3083
3084         mutex_lock(&ext4_li_info->li_list_mtx);
3085         ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3086         mutex_unlock(&ext4_li_info->li_list_mtx);
3087         mutex_unlock(&ext4_li_mtx);
3088 }
3089
3090 static struct task_struct *ext4_lazyinit_task;
3091
3092 /*
3093  * This is the function where ext4lazyinit thread lives. It walks
3094  * through the request list searching for next scheduled filesystem.
3095  * When such a fs is found, run the lazy initialization request
3096  * (ext4_rn_li_request) and keep track of the time spend in this
3097  * function. Based on that time we compute next schedule time of
3098  * the request. When walking through the list is complete, compute
3099  * next waking time and put itself into sleep.
3100  */
3101 static int ext4_lazyinit_thread(void *arg)
3102 {
3103         struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3104         struct list_head *pos, *n;
3105         struct ext4_li_request *elr;
3106         unsigned long next_wakeup, cur;
3107
3108         BUG_ON(NULL == eli);
3109
3110 cont_thread:
3111         while (true) {
3112                 next_wakeup = MAX_JIFFY_OFFSET;
3113
3114                 mutex_lock(&eli->li_list_mtx);
3115                 if (list_empty(&eli->li_request_list)) {
3116                         mutex_unlock(&eli->li_list_mtx);
3117                         goto exit_thread;
3118                 }
3119                 list_for_each_safe(pos, n, &eli->li_request_list) {
3120                         int err = 0;
3121                         int progress = 0;
3122                         elr = list_entry(pos, struct ext4_li_request,
3123                                          lr_request);
3124
3125                         if (time_before(jiffies, elr->lr_next_sched)) {
3126                                 if (time_before(elr->lr_next_sched, next_wakeup))
3127                                         next_wakeup = elr->lr_next_sched;
3128                                 continue;
3129                         }
3130                         if (down_read_trylock(&elr->lr_super->s_umount)) {
3131                                 if (sb_start_write_trylock(elr->lr_super)) {
3132                                         progress = 1;
3133                                         /*
3134                                          * We hold sb->s_umount, sb can not
3135                                          * be removed from the list, it is
3136                                          * now safe to drop li_list_mtx
3137                                          */
3138                                         mutex_unlock(&eli->li_list_mtx);
3139                                         err = ext4_run_li_request(elr);
3140                                         sb_end_write(elr->lr_super);
3141                                         mutex_lock(&eli->li_list_mtx);
3142                                         n = pos->next;
3143                                 }
3144                                 up_read((&elr->lr_super->s_umount));
3145                         }
3146                         /* error, remove the lazy_init job */
3147                         if (err) {
3148                                 ext4_remove_li_request(elr);
3149                                 continue;
3150                         }
3151                         if (!progress) {
3152                                 elr->lr_next_sched = jiffies +
3153                                         (prandom_u32()
3154                                          % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3155                         }
3156                         if (time_before(elr->lr_next_sched, next_wakeup))
3157                                 next_wakeup = elr->lr_next_sched;
3158                 }
3159                 mutex_unlock(&eli->li_list_mtx);
3160
3161                 try_to_freeze();
3162
3163                 cur = jiffies;
3164                 if ((time_after_eq(cur, next_wakeup)) ||
3165                     (MAX_JIFFY_OFFSET == next_wakeup)) {
3166                         cond_resched();
3167                         continue;
3168                 }
3169
3170                 schedule_timeout_interruptible(next_wakeup - cur);
3171
3172                 if (kthread_should_stop()) {
3173                         ext4_clear_request_list();
3174                         goto exit_thread;
3175                 }
3176         }
3177
3178 exit_thread:
3179         /*
3180          * It looks like the request list is empty, but we need
3181          * to check it under the li_list_mtx lock, to prevent any
3182          * additions into it, and of course we should lock ext4_li_mtx
3183          * to atomically free the list and ext4_li_info, because at
3184          * this point another ext4 filesystem could be registering
3185          * new one.
3186          */
3187         mutex_lock(&ext4_li_mtx);
3188         mutex_lock(&eli->li_list_mtx);
3189         if (!list_empty(&eli->li_request_list)) {
3190                 mutex_unlock(&eli->li_list_mtx);
3191                 mutex_unlock(&ext4_li_mtx);
3192                 goto cont_thread;
3193         }
3194         mutex_unlock(&eli->li_list_mtx);
3195         kfree(ext4_li_info);
3196         ext4_li_info = NULL;
3197         mutex_unlock(&ext4_li_mtx);
3198
3199         return 0;
3200 }
3201
3202 static void ext4_clear_request_list(void)
3203 {
3204         struct list_head *pos, *n;
3205         struct ext4_li_request *elr;
3206
3207         mutex_lock(&ext4_li_info->li_list_mtx);
3208         list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3209                 elr = list_entry(pos, struct ext4_li_request,
3210                                  lr_request);
3211                 ext4_remove_li_request(elr);
3212         }
3213         mutex_unlock(&ext4_li_info->li_list_mtx);
3214 }
3215
3216 static int ext4_run_lazyinit_thread(void)
3217 {
3218         ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3219                                          ext4_li_info, "ext4lazyinit");
3220         if (IS_ERR(ext4_lazyinit_task)) {
3221                 int err = PTR_ERR(ext4_lazyinit_task);
3222                 ext4_clear_request_list();
3223                 kfree(ext4_li_info);
3224                 ext4_li_info = NULL;
3225                 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3226                                  "initialization thread\n",
3227                                  err);
3228                 return err;
3229         }
3230         ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3231         return 0;
3232 }
3233
3234 /*
3235  * Check whether it make sense to run itable init. thread or not.
3236  * If there is at least one uninitialized inode table, return
3237  * corresponding group number, else the loop goes through all
3238  * groups and return total number of groups.
3239  */
3240 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3241 {
3242         ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3243         struct ext4_group_desc *gdp = NULL;
3244
3245         if (!ext4_has_group_desc_csum(sb))
3246                 return ngroups;
3247
3248         for (group = 0; group < ngroups; group++) {
3249                 gdp = ext4_get_group_desc(sb, group, NULL);
3250                 if (!gdp)
3251                         continue;
3252
3253                 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3254                         break;
3255         }
3256
3257         return group;
3258 }
3259
3260 static int ext4_li_info_new(void)
3261 {
3262         struct ext4_lazy_init *eli = NULL;
3263
3264         eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3265         if (!eli)
3266                 return -ENOMEM;
3267
3268         INIT_LIST_HEAD(&eli->li_request_list);
3269         mutex_init(&eli->li_list_mtx);
3270
3271         eli->li_state |= EXT4_LAZYINIT_QUIT;
3272
3273         ext4_li_info = eli;
3274
3275         return 0;
3276 }
3277
3278 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3279                                             ext4_group_t start)
3280 {
3281         struct ext4_sb_info *sbi = EXT4_SB(sb);
3282         struct ext4_li_request *elr;
3283
3284         elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3285         if (!elr)
3286                 return NULL;
3287
3288         elr->lr_super = sb;
3289         elr->lr_sbi = sbi;
3290         elr->lr_next_group = start;
3291
3292         /*
3293          * Randomize first schedule time of the request to
3294          * spread the inode table initialization requests
3295          * better.
3296          */
3297         elr->lr_next_sched = jiffies + (prandom_u32() %
3298                                 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3299         return elr;
3300 }
3301
3302 int ext4_register_li_request(struct super_block *sb,
3303                              ext4_group_t first_not_zeroed)
3304 {
3305         struct ext4_sb_info *sbi = EXT4_SB(sb);
3306         struct ext4_li_request *elr = NULL;
3307         ext4_group_t ngroups = sbi->s_groups_count;
3308         int ret = 0;
3309
3310         mutex_lock(&ext4_li_mtx);
3311         if (sbi->s_li_request != NULL) {
3312                 /*
3313                  * Reset timeout so it can be computed again, because
3314                  * s_li_wait_mult might have changed.
3315                  */
3316                 sbi->s_li_request->lr_timeout = 0;
3317                 goto out;
3318         }
3319
3320         if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3321             !test_opt(sb, INIT_INODE_TABLE))
3322                 goto out;
3323
3324         elr = ext4_li_request_new(sb, first_not_zeroed);
3325         if (!elr) {
3326                 ret = -ENOMEM;
3327                 goto out;
3328         }
3329
3330         if (NULL == ext4_li_info) {
3331                 ret = ext4_li_info_new();
3332                 if (ret)
3333                         goto out;
3334         }
3335
3336         mutex_lock(&ext4_li_info->li_list_mtx);
3337         list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3338         mutex_unlock(&ext4_li_info->li_list_mtx);
3339
3340         sbi->s_li_request = elr;
3341         /*
3342          * set elr to NULL here since it has been inserted to
3343          * the request_list and the removal and free of it is
3344          * handled by ext4_clear_request_list from now on.
3345          */
3346         elr = NULL;
3347
3348         if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3349                 ret = ext4_run_lazyinit_thread();
3350                 if (ret)
3351                         goto out;
3352         }
3353 out:
3354         mutex_unlock(&ext4_li_mtx);
3355         if (ret)
3356                 kfree(elr);
3357         return ret;
3358 }
3359
3360 /*
3361  * We do not need to lock anything since this is called on
3362  * module unload.
3363  */
3364 static void ext4_destroy_lazyinit_thread(void)
3365 {
3366         /*
3367          * If thread exited earlier
3368          * there's nothing to be done.
3369          */
3370         if (!ext4_li_info || !ext4_lazyinit_task)
3371                 return;
3372
3373         kthread_stop(ext4_lazyinit_task);
3374 }
3375
3376 static int set_journal_csum_feature_set(struct super_block *sb)
3377 {
3378         int ret = 1;
3379         int compat, incompat;
3380         struct ext4_sb_info *sbi = EXT4_SB(sb);
3381
3382         if (ext4_has_metadata_csum(sb)) {
3383                 /* journal checksum v3 */
3384                 compat = 0;
3385                 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3386         } else {
3387                 /* journal checksum v1 */
3388                 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3389                 incompat = 0;
3390         }
3391
3392         jbd2_journal_clear_features(sbi->s_journal,
3393                         JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3394                         JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3395                         JBD2_FEATURE_INCOMPAT_CSUM_V2);
3396         if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3397                 ret = jbd2_journal_set_features(sbi->s_journal,
3398                                 compat, 0,
3399                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3400                                 incompat);
3401         } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3402                 ret = jbd2_journal_set_features(sbi->s_journal,
3403                                 compat, 0,
3404                                 incompat);
3405                 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3406                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3407         } else {
3408                 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3409                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3410         }
3411
3412         return ret;
3413 }
3414
3415 /*
3416  * Note: calculating the overhead so we can be compatible with
3417  * historical BSD practice is quite difficult in the face of
3418  * clusters/bigalloc.  This is because multiple metadata blocks from
3419  * different block group can end up in the same allocation cluster.
3420  * Calculating the exact overhead in the face of clustered allocation
3421  * requires either O(all block bitmaps) in memory or O(number of block
3422  * groups**2) in time.  We will still calculate the superblock for
3423  * older file systems --- and if we come across with a bigalloc file
3424  * system with zero in s_overhead_clusters the estimate will be close to
3425  * correct especially for very large cluster sizes --- but for newer
3426  * file systems, it's better to calculate this figure once at mkfs
3427  * time, and store it in the superblock.  If the superblock value is
3428  * present (even for non-bigalloc file systems), we will use it.
3429  */
3430 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3431                           char *buf)
3432 {
3433         struct ext4_sb_info     *sbi = EXT4_SB(sb);
3434         struct ext4_group_desc  *gdp;
3435         ext4_fsblk_t            first_block, last_block, b;
3436         ext4_group_t            i, ngroups = ext4_get_groups_count(sb);
3437         int                     s, j, count = 0;
3438
3439         if (!ext4_has_feature_bigalloc(sb))
3440                 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3441                         sbi->s_itb_per_group + 2);
3442
3443         first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3444                 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3445         last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3446         for (i = 0; i < ngroups; i++) {
3447                 gdp = ext4_get_group_desc(sb, i, NULL);
3448                 b = ext4_block_bitmap(sb, gdp);
3449                 if (b >= first_block && b <= last_block) {
3450                         ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3451                         count++;
3452                 }
3453                 b = ext4_inode_bitmap(sb, gdp);
3454                 if (b >= first_block && b <= last_block) {
3455                         ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3456                         count++;
3457                 }
3458                 b = ext4_inode_table(sb, gdp);
3459                 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3460                         for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3461                                 int c = EXT4_B2C(sbi, b - first_block);
3462                                 ext4_set_bit(c, buf);
3463                                 count++;
3464                         }
3465                 if (i != grp)
3466                         continue;
3467                 s = 0;
3468                 if (ext4_bg_has_super(sb, grp)) {
3469                         ext4_set_bit(s++, buf);
3470                         count++;
3471                 }
3472                 j = ext4_bg_num_gdb(sb, grp);
3473                 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3474                         ext4_error(sb, "Invalid number of block group "
3475                                    "descriptor blocks: %d", j);
3476                         j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3477                 }
3478                 count += j;
3479                 for (; j > 0; j--)
3480                         ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3481         }
3482         if (!count)
3483                 return 0;
3484         return EXT4_CLUSTERS_PER_GROUP(sb) -
3485                 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3486 }
3487
3488 /*
3489  * Compute the overhead and stash it in sbi->s_overhead
3490  */
3491 int ext4_calculate_overhead(struct super_block *sb)
3492 {
3493         struct ext4_sb_info *sbi = EXT4_SB(sb);
3494         struct ext4_super_block *es = sbi->s_es;
3495         struct inode *j_inode;
3496         unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3497         ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3498         ext4_fsblk_t overhead = 0;
3499         char *buf = (char *) get_zeroed_page(GFP_NOFS);
3500
3501         if (!buf)
3502                 return -ENOMEM;
3503
3504         /*
3505          * Compute the overhead (FS structures).  This is constant
3506          * for a given filesystem unless the number of block groups
3507          * changes so we cache the previous value until it does.
3508          */
3509
3510         /*
3511          * All of the blocks before first_data_block are overhead
3512          */
3513         overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3514
3515         /*
3516          * Add the overhead found in each block group
3517          */
3518         for (i = 0; i < ngroups; i++) {
3519                 int blks;
3520
3521                 blks = count_overhead(sb, i, buf);
3522                 overhead += blks;
3523                 if (blks)
3524                         memset(buf, 0, PAGE_SIZE);
3525                 cond_resched();
3526         }
3527
3528         /*
3529          * Add the internal journal blocks whether the journal has been
3530          * loaded or not
3531          */
3532         if (sbi->s_journal && !sbi->journal_bdev)
3533                 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3534         else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3535                 j_inode = ext4_get_journal_inode(sb, j_inum);
3536                 if (j_inode) {
3537                         j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3538                         overhead += EXT4_NUM_B2C(sbi, j_blocks);
3539                         iput(j_inode);
3540                 } else {
3541                         ext4_msg(sb, KERN_ERR, "can't get journal size");
3542                 }
3543         }
3544         sbi->s_overhead = overhead;
3545         smp_wmb();
3546         free_page((unsigned long) buf);
3547         return 0;
3548 }
3549
3550 static void ext4_clamp_want_extra_isize(struct super_block *sb)
3551 {
3552         struct ext4_sb_info *sbi = EXT4_SB(sb);
3553         struct ext4_super_block *es = sbi->s_es;
3554
3555         /* determine the minimum size of new large inodes, if present */
3556         if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
3557             sbi->s_want_extra_isize == 0) {
3558                 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3559                                                      EXT4_GOOD_OLD_INODE_SIZE;
3560                 if (ext4_has_feature_extra_isize(sb)) {
3561                         if (sbi->s_want_extra_isize <
3562                             le16_to_cpu(es->s_want_extra_isize))
3563                                 sbi->s_want_extra_isize =
3564                                         le16_to_cpu(es->s_want_extra_isize);
3565                         if (sbi->s_want_extra_isize <
3566                             le16_to_cpu(es->s_min_extra_isize))
3567                                 sbi->s_want_extra_isize =
3568                                         le16_to_cpu(es->s_min_extra_isize);
3569                 }
3570         }
3571         /* Check if enough inode space is available */
3572         if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3573                                                         sbi->s_inode_size) {
3574                 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3575                                                        EXT4_GOOD_OLD_INODE_SIZE;
3576                 ext4_msg(sb, KERN_INFO,
3577                          "required extra inode space not available");
3578         }
3579 }
3580
3581 static void ext4_set_resv_clusters(struct super_block *sb)
3582 {
3583         ext4_fsblk_t resv_clusters;
3584         struct ext4_sb_info *sbi = EXT4_SB(sb);
3585
3586         /*
3587          * There's no need to reserve anything when we aren't using extents.
3588          * The space estimates are exact, there are no unwritten extents,
3589          * hole punching doesn't need new metadata... This is needed especially
3590          * to keep ext2/3 backward compatibility.
3591          */
3592         if (!ext4_has_feature_extents(sb))
3593                 return;
3594         /*
3595          * By default we reserve 2% or 4096 clusters, whichever is smaller.
3596          * This should cover the situations where we can not afford to run
3597          * out of space like for example punch hole, or converting
3598          * unwritten extents in delalloc path. In most cases such
3599          * allocation would require 1, or 2 blocks, higher numbers are
3600          * very rare.
3601          */
3602         resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3603                          sbi->s_cluster_bits);
3604
3605         do_div(resv_clusters, 50);
3606         resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3607
3608         atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3609 }
3610
3611 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3612 {
3613         struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3614         char *orig_data = kstrdup(data, GFP_KERNEL);
3615         struct buffer_head *bh;
3616         struct ext4_super_block *es = NULL;
3617         struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3618         ext4_fsblk_t block;
3619         ext4_fsblk_t sb_block = get_sb_block(&data);
3620         ext4_fsblk_t logical_sb_block;
3621         unsigned long offset = 0;
3622         unsigned long journal_devnum = 0;
3623         unsigned long def_mount_opts;
3624         struct inode *root;
3625         const char *descr;
3626         int ret = -ENOMEM;
3627         int blocksize, clustersize;
3628         unsigned int db_count;
3629         unsigned int i;
3630         int needs_recovery, has_huge_files, has_bigalloc;
3631         __u64 blocks_count;
3632         int err = 0;
3633         unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3634         ext4_group_t first_not_zeroed;
3635
3636         if ((data && !orig_data) || !sbi)
3637                 goto out_free_base;
3638
3639         sbi->s_daxdev = dax_dev;
3640         sbi->s_blockgroup_lock =
3641                 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3642         if (!sbi->s_blockgroup_lock)
3643                 goto out_free_base;
3644
3645         sb->s_fs_info = sbi;
3646         sbi->s_sb = sb;
3647         sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3648         sbi->s_sb_block = sb_block;
3649         if (sb->s_bdev->bd_part)
3650                 sbi->s_sectors_written_start =
3651                         part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
3652
3653         /* Cleanup superblock name */
3654         strreplace(sb->s_id, '/', '!');
3655
3656         /* -EINVAL is default */
3657         ret = -EINVAL;
3658         blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3659         if (!blocksize) {
3660                 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3661                 goto out_fail;
3662         }
3663
3664         /*
3665          * The ext4 superblock will not be buffer aligned for other than 1kB
3666          * block sizes.  We need to calculate the offset from buffer start.
3667          */
3668         if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3669                 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3670                 offset = do_div(logical_sb_block, blocksize);
3671         } else {
3672                 logical_sb_block = sb_block;
3673         }
3674
3675         if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3676                 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3677                 goto out_fail;
3678         }
3679         /*
3680          * Note: s_es must be initialized as soon as possible because
3681          *       some ext4 macro-instructions depend on its value
3682          */
3683         es = (struct ext4_super_block *) (bh->b_data + offset);
3684         sbi->s_es = es;
3685         sb->s_magic = le16_to_cpu(es->s_magic);
3686         if (sb->s_magic != EXT4_SUPER_MAGIC)
3687                 goto cantfind_ext4;
3688         sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3689
3690         /* Warn if metadata_csum and gdt_csum are both set. */
3691         if (ext4_has_feature_metadata_csum(sb) &&
3692             ext4_has_feature_gdt_csum(sb))
3693                 ext4_warning(sb, "metadata_csum and uninit_bg are "
3694                              "redundant flags; please run fsck.");
3695
3696         /* Check for a known checksum algorithm */
3697         if (!ext4_verify_csum_type(sb, es)) {
3698                 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3699                          "unknown checksum algorithm.");
3700                 silent = 1;
3701                 goto cantfind_ext4;
3702         }
3703
3704         /* Load the checksum driver */
3705         sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3706         if (IS_ERR(sbi->s_chksum_driver)) {
3707                 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3708                 ret = PTR_ERR(sbi->s_chksum_driver);
3709                 sbi->s_chksum_driver = NULL;
3710                 goto failed_mount;
3711         }
3712
3713         /* Check superblock checksum */
3714         if (!ext4_superblock_csum_verify(sb, es)) {
3715                 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3716                          "invalid superblock checksum.  Run e2fsck?");
3717                 silent = 1;
3718                 ret = -EFSBADCRC;
3719                 goto cantfind_ext4;
3720         }
3721
3722         /* Precompute checksum seed for all metadata */
3723         if (ext4_has_feature_csum_seed(sb))
3724                 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3725         else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3726                 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3727                                                sizeof(es->s_uuid));
3728
3729         /* Set defaults before we parse the mount options */
3730         def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3731         set_opt(sb, INIT_INODE_TABLE);
3732         if (def_mount_opts & EXT4_DEFM_DEBUG)
3733                 set_opt(sb, DEBUG);
3734         if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3735                 set_opt(sb, GRPID);
3736         if (def_mount_opts & EXT4_DEFM_UID16)
3737                 set_opt(sb, NO_UID32);
3738         /* xattr user namespace & acls are now defaulted on */
3739         set_opt(sb, XATTR_USER);
3740 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3741         set_opt(sb, POSIX_ACL);
3742 #endif
3743         /* don't forget to enable journal_csum when metadata_csum is enabled. */
3744         if (ext4_has_metadata_csum(sb))
3745                 set_opt(sb, JOURNAL_CHECKSUM);
3746
3747         if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3748                 set_opt(sb, JOURNAL_DATA);
3749         else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3750                 set_opt(sb, ORDERED_DATA);
3751         else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3752                 set_opt(sb, WRITEBACK_DATA);
3753
3754         if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3755                 set_opt(sb, ERRORS_PANIC);
3756         else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3757                 set_opt(sb, ERRORS_CONT);
3758         else
3759                 set_opt(sb, ERRORS_RO);
3760         /* block_validity enabled by default; disable with noblock_validity */
3761         set_opt(sb, BLOCK_VALIDITY);
3762         if (def_mount_opts & EXT4_DEFM_DISCARD)
3763                 set_opt(sb, DISCARD);
3764
3765         sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3766         sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3767         sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3768         sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3769         sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3770
3771         if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3772                 set_opt(sb, BARRIER);
3773
3774         /*
3775          * enable delayed allocation by default
3776          * Use -o nodelalloc to turn it off
3777          */
3778         if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3779             ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3780                 set_opt(sb, DELALLOC);
3781
3782         /*
3783          * set default s_li_wait_mult for lazyinit, for the case there is
3784          * no mount option specified.
3785          */
3786         sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3787
3788         if (sbi->s_es->s_mount_opts[0]) {
3789                 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3790                                               sizeof(sbi->s_es->s_mount_opts),
3791                                               GFP_KERNEL);
3792                 if (!s_mount_opts)
3793                         goto failed_mount;
3794                 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3795                                    &journal_ioprio, 0)) {
3796                         ext4_msg(sb, KERN_WARNING,
3797                                  "failed to parse options in superblock: %s",
3798                                  s_mount_opts);
3799                 }
3800                 kfree(s_mount_opts);
3801         }
3802         sbi->s_def_mount_opt = sbi->s_mount_opt;
3803         if (!parse_options((char *) data, sb, &journal_devnum,
3804                            &journal_ioprio, 0))
3805                 goto failed_mount;
3806
3807 #ifdef CONFIG_UNICODE
3808         if (ext4_has_feature_casefold(sb) && !sbi->s_encoding) {
3809                 const struct ext4_sb_encodings *encoding_info;
3810                 struct unicode_map *encoding;
3811                 __u16 encoding_flags;
3812
3813                 if (ext4_has_feature_encrypt(sb)) {
3814                         ext4_msg(sb, KERN_ERR,
3815                                  "Can't mount with encoding and encryption");
3816                         goto failed_mount;
3817                 }
3818
3819                 if (ext4_sb_read_encoding(es, &encoding_info,
3820                                           &encoding_flags)) {
3821                         ext4_msg(sb, KERN_ERR,
3822                                  "Encoding requested by superblock is unknown");
3823                         goto failed_mount;
3824                 }
3825
3826                 encoding = utf8_load(encoding_info->version);
3827                 if (IS_ERR(encoding)) {
3828                         ext4_msg(sb, KERN_ERR,
3829                                  "can't mount with superblock charset: %s-%s "
3830                                  "not supported by the kernel. flags: 0x%x.",
3831                                  encoding_info->name, encoding_info->version,
3832                                  encoding_flags);
3833                         goto failed_mount;
3834                 }
3835                 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
3836                          "%s-%s with flags 0x%hx", encoding_info->name,
3837                          encoding_info->version?:"\b", encoding_flags);
3838
3839                 sbi->s_encoding = encoding;
3840                 sbi->s_encoding_flags = encoding_flags;
3841         }
3842 #endif
3843
3844         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3845                 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3846                             "with data=journal disables delayed "
3847                             "allocation and O_DIRECT support!\n");
3848                 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3849                         ext4_msg(sb, KERN_ERR, "can't mount with "
3850                                  "both data=journal and delalloc");
3851                         goto failed_mount;
3852                 }
3853                 if (test_opt(sb, DIOREAD_NOLOCK)) {
3854                         ext4_msg(sb, KERN_ERR, "can't mount with "
3855                                  "both data=journal and dioread_nolock");
3856                         goto failed_mount;
3857                 }
3858                 if (test_opt(sb, DAX)) {
3859                         ext4_msg(sb, KERN_ERR, "can't mount with "
3860                                  "both data=journal and dax");
3861                         goto failed_mount;
3862                 }
3863                 if (ext4_has_feature_encrypt(sb)) {
3864                         ext4_msg(sb, KERN_WARNING,
3865                                  "encrypted files will use data=ordered "
3866                                  "instead of data journaling mode");
3867                 }
3868                 if (test_opt(sb, DELALLOC))
3869                         clear_opt(sb, DELALLOC);
3870         } else {
3871                 sb->s_iflags |= SB_I_CGROUPWB;
3872         }
3873
3874         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3875                 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
3876
3877         if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3878             (ext4_has_compat_features(sb) ||
3879              ext4_has_ro_compat_features(sb) ||
3880              ext4_has_incompat_features(sb)))
3881                 ext4_msg(sb, KERN_WARNING,
3882                        "feature flags set on rev 0 fs, "
3883                        "running e2fsck is recommended");
3884
3885         if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3886                 set_opt2(sb, HURD_COMPAT);
3887                 if (ext4_has_feature_64bit(sb)) {
3888                         ext4_msg(sb, KERN_ERR,
3889                                  "The Hurd can't support 64-bit file systems");
3890                         goto failed_mount;
3891                 }
3892
3893                 /*
3894                  * ea_inode feature uses l_i_version field which is not
3895                  * available in HURD_COMPAT mode.
3896                  */
3897                 if (ext4_has_feature_ea_inode(sb)) {
3898                         ext4_msg(sb, KERN_ERR,
3899                                  "ea_inode feature is not supported for Hurd");
3900                         goto failed_mount;
3901                 }
3902         }
3903
3904         if (IS_EXT2_SB(sb)) {
3905                 if (ext2_feature_set_ok(sb))
3906                         ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3907                                  "using the ext4 subsystem");
3908                 else {
3909                         /*
3910                          * If we're probing be silent, if this looks like
3911                          * it's actually an ext[34] filesystem.
3912                          */
3913                         if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3914                                 goto failed_mount;
3915                         ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3916                                  "to feature incompatibilities");
3917                         goto failed_mount;
3918                 }
3919         }
3920
3921         if (IS_EXT3_SB(sb)) {
3922                 if (ext3_feature_set_ok(sb))
3923                         ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3924                                  "using the ext4 subsystem");
3925                 else {
3926                         /*
3927                          * If we're probing be silent, if this looks like
3928                          * it's actually an ext4 filesystem.
3929                          */
3930                         if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3931                                 goto failed_mount;
3932                         ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3933                                  "to feature incompatibilities");
3934                         goto failed_mount;
3935                 }
3936         }
3937
3938         /*
3939          * Check feature flags regardless of the revision level, since we
3940          * previously didn't change the revision level when setting the flags,
3941          * so there is a chance incompat flags are set on a rev 0 filesystem.
3942          */
3943         if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3944                 goto failed_mount;
3945
3946         blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3947         if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3948             blocksize > EXT4_MAX_BLOCK_SIZE) {
3949                 ext4_msg(sb, KERN_ERR,
3950                        "Unsupported filesystem blocksize %d (%d log_block_size)",
3951                          blocksize, le32_to_cpu(es->s_log_block_size));
3952                 goto failed_mount;
3953         }
3954         if (le32_to_cpu(es->s_log_block_size) >
3955             (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3956                 ext4_msg(sb, KERN_ERR,
3957                          "Invalid log block size: %u",
3958                          le32_to_cpu(es->s_log_block_size));
3959                 goto failed_mount;
3960         }
3961         if (le32_to_cpu(es->s_log_cluster_size) >
3962             (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3963                 ext4_msg(sb, KERN_ERR,
3964                          "Invalid log cluster size: %u",
3965                          le32_to_cpu(es->s_log_cluster_size));
3966                 goto failed_mount;
3967         }
3968
3969         if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3970                 ext4_msg(sb, KERN_ERR,
3971                          "Number of reserved GDT blocks insanely large: %d",
3972                          le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3973                 goto failed_mount;
3974         }
3975
3976         if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3977                 if (ext4_has_feature_inline_data(sb)) {
3978                         ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
3979                                         " that may contain inline data");
3980                         goto failed_mount;
3981                 }
3982                 if (!bdev_dax_supported(sb->s_bdev, blocksize)) {
3983                         ext4_msg(sb, KERN_ERR,
3984                                 "DAX unsupported by block device.");
3985                         goto failed_mount;
3986                 }
3987         }
3988
3989         if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3990                 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3991                          es->s_encryption_level);
3992                 goto failed_mount;
3993         }
3994
3995         if (sb->s_blocksize != blocksize) {
3996                 /* Validate the filesystem blocksize */
3997                 if (!sb_set_blocksize(sb, blocksize)) {
3998                         ext4_msg(sb, KERN_ERR, "bad block size %d",
3999                                         blocksize);
4000                         goto failed_mount;
4001                 }
4002
4003                 brelse(bh);
4004                 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4005                 offset = do_div(logical_sb_block, blocksize);
4006                 bh = sb_bread_unmovable(sb, logical_sb_block);
4007                 if (!bh) {
4008                         ext4_msg(sb, KERN_ERR,
4009                                "Can't read superblock on 2nd try");
4010                         goto failed_mount;
4011                 }
4012                 es = (struct ext4_super_block *)(bh->b_data + offset);
4013                 sbi->s_es = es;
4014                 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4015                         ext4_msg(sb, KERN_ERR,
4016                                "Magic mismatch, very weird!");
4017                         goto failed_mount;
4018                 }
4019         }
4020
4021         has_huge_files = ext4_has_feature_huge_file(sb);
4022         sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4023                                                       has_huge_files);
4024         sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4025
4026         if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4027                 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4028                 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4029         } else {
4030                 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4031                 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4032                 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4033                         ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4034                                  sbi->s_first_ino);
4035                         goto failed_mount;
4036                 }
4037                 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4038                     (!is_power_of_2(sbi->s_inode_size)) ||
4039                     (sbi->s_inode_size > blocksize)) {
4040                         ext4_msg(sb, KERN_ERR,
4041                                "unsupported inode size: %d",
4042                                sbi->s_inode_size);
4043                         goto failed_mount;
4044                 }
4045                 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
4046                         sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
4047         }
4048
4049         sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4050         if (ext4_has_feature_64bit(sb)) {
4051                 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4052                     sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4053                     !is_power_of_2(sbi->s_desc_size)) {
4054                         ext4_msg(sb, KERN_ERR,
4055                                "unsupported descriptor size %lu",
4056                                sbi->s_desc_size);
4057                         goto failed_mount;
4058                 }
4059         } else
4060                 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4061
4062         sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4063         sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4064
4065         sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4066         if (sbi->s_inodes_per_block == 0)
4067                 goto cantfind_ext4;
4068         if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4069             sbi->s_inodes_per_group > blocksize * 8) {
4070                 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4071                          sbi->s_blocks_per_group);
4072                 goto failed_mount;
4073         }
4074         sbi->s_itb_per_group = sbi->s_inodes_per_group /
4075                                         sbi->s_inodes_per_block;
4076         sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4077         sbi->s_sbh = bh;
4078         sbi->s_mount_state = le16_to_cpu(es->s_state);
4079         sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4080         sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4081
4082         for (i = 0; i < 4; i++)
4083                 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4084         sbi->s_def_hash_version = es->s_def_hash_version;
4085         if (ext4_has_feature_dir_index(sb)) {
4086                 i = le32_to_cpu(es->s_flags);
4087                 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4088                         sbi->s_hash_unsigned = 3;
4089                 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4090 #ifdef __CHAR_UNSIGNED__
4091                         if (!sb_rdonly(sb))
4092                                 es->s_flags |=
4093                                         cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4094                         sbi->s_hash_unsigned = 3;
4095 #else
4096                         if (!sb_rdonly(sb))
4097                                 es->s_flags |=
4098                                         cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4099 #endif
4100                 }
4101         }
4102
4103         /* Handle clustersize */
4104         clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4105         has_bigalloc = ext4_has_feature_bigalloc(sb);
4106         if (has_bigalloc) {
4107                 if (clustersize < blocksize) {
4108                         ext4_msg(sb, KERN_ERR,
4109                                  "cluster size (%d) smaller than "
4110                                  "block size (%d)", clustersize, blocksize);
4111                         goto failed_mount;
4112                 }
4113                 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4114                         le32_to_cpu(es->s_log_block_size);
4115                 sbi->s_clusters_per_group =
4116                         le32_to_cpu(es->s_clusters_per_group);
4117                 if (sbi->s_clusters_per_group > blocksize * 8) {
4118                         ext4_msg(sb, KERN_ERR,
4119                                  "#clusters per group too big: %lu",
4120                                  sbi->s_clusters_per_group);
4121                         goto failed_mount;
4122                 }
4123                 if (sbi->s_blocks_per_group !=
4124                     (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4125                         ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4126                                  "clusters per group (%lu) inconsistent",
4127                                  sbi->s_blocks_per_group,
4128                                  sbi->s_clusters_per_group);
4129                         goto failed_mount;
4130                 }
4131         } else {
4132                 if (clustersize != blocksize) {
4133                         ext4_msg(sb, KERN_ERR,
4134                                  "fragment/cluster size (%d) != "
4135                                  "block size (%d)", clustersize, blocksize);
4136                         goto failed_mount;
4137                 }
4138                 if (sbi->s_blocks_per_group > blocksize * 8) {
4139                         ext4_msg(sb, KERN_ERR,
4140                                  "#blocks per group too big: %lu",
4141                                  sbi->s_blocks_per_group);
4142                         goto failed_mount;
4143                 }
4144                 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4145                 sbi->s_cluster_bits = 0;
4146         }
4147         sbi->s_cluster_ratio = clustersize / blocksize;
4148
4149         /* Do we have standard group size of clustersize * 8 blocks ? */
4150         if (sbi->s_blocks_per_group == clustersize << 3)
4151                 set_opt2(sb, STD_GROUP_SIZE);
4152
4153         /*
4154          * Test whether we have more sectors than will fit in sector_t,
4155          * and whether the max offset is addressable by the page cache.
4156          */
4157         err = generic_check_addressable(sb->s_blocksize_bits,
4158                                         ext4_blocks_count(es));
4159         if (err) {
4160                 ext4_msg(sb, KERN_ERR, "filesystem"
4161                          " too large to mount safely on this system");
4162                 goto failed_mount;
4163         }
4164
4165         if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4166                 goto cantfind_ext4;
4167
4168         /* check blocks count against device size */
4169         blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4170         if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4171                 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4172                        "exceeds size of device (%llu blocks)",
4173                        ext4_blocks_count(es), blocks_count);
4174                 goto failed_mount;
4175         }
4176
4177         /*
4178          * It makes no sense for the first data block to be beyond the end
4179          * of the filesystem.
4180          */
4181         if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4182                 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4183                          "block %u is beyond end of filesystem (%llu)",
4184                          le32_to_cpu(es->s_first_data_block),
4185                          ext4_blocks_count(es));
4186                 goto failed_mount;
4187         }
4188         if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4189             (sbi->s_cluster_ratio == 1)) {
4190                 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4191                          "block is 0 with a 1k block and cluster size");
4192                 goto failed_mount;
4193         }
4194
4195         blocks_count = (ext4_blocks_count(es) -
4196                         le32_to_cpu(es->s_first_data_block) +
4197                         EXT4_BLOCKS_PER_GROUP(sb) - 1);
4198         do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4199         if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4200                 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
4201                        "(block count %llu, first data block %u, "
4202                        "blocks per group %lu)", sbi->s_groups_count,
4203                        ext4_blocks_count(es),
4204                        le32_to_cpu(es->s_first_data_block),
4205                        EXT4_BLOCKS_PER_GROUP(sb));
4206                 goto failed_mount;
4207         }
4208         sbi->s_groups_count = blocks_count;
4209         sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4210                         (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4211         if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4212             le32_to_cpu(es->s_inodes_count)) {
4213                 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4214                          le32_to_cpu(es->s_inodes_count),
4215                          ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4216                 ret = -EINVAL;
4217                 goto failed_mount;
4218         }
4219         db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4220                    EXT4_DESC_PER_BLOCK(sb);
4221         if (ext4_has_feature_meta_bg(sb)) {
4222                 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4223                         ext4_msg(sb, KERN_WARNING,
4224                                  "first meta block group too large: %u "
4225                                  "(group descriptor block count %u)",
4226                                  le32_to_cpu(es->s_first_meta_bg), db_count);
4227                         goto failed_mount;
4228                 }
4229         }
4230         sbi->s_group_desc = kvmalloc_array(db_count,
4231                                            sizeof(struct buffer_head *),
4232                                            GFP_KERNEL);
4233         if (sbi->s_group_desc == NULL) {
4234                 ext4_msg(sb, KERN_ERR, "not enough memory");
4235                 ret = -ENOMEM;
4236                 goto failed_mount;
4237         }
4238
4239         bgl_lock_init(sbi->s_blockgroup_lock);
4240
4241         /* Pre-read the descriptors into the buffer cache */
4242         for (i = 0; i < db_count; i++) {
4243                 block = descriptor_loc(sb, logical_sb_block, i);
4244                 sb_breadahead(sb, block);
4245         }
4246
4247         for (i = 0; i < db_count; i++) {
4248                 block = descriptor_loc(sb, logical_sb_block, i);
4249                 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
4250                 if (!sbi->s_group_desc[i]) {
4251                         ext4_msg(sb, KERN_ERR,
4252                                "can't read group descriptor %d", i);
4253                         db_count = i;
4254                         goto failed_mount2;
4255                 }
4256         }
4257         sbi->s_gdb_count = db_count;
4258         if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4259                 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4260                 ret = -EFSCORRUPTED;
4261                 goto failed_mount2;
4262         }
4263
4264         timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4265
4266         /* Register extent status tree shrinker */
4267         if (ext4_es_register_shrinker(sbi))
4268                 goto failed_mount3;
4269
4270         sbi->s_stripe = ext4_get_stripe_size(sbi);
4271         sbi->s_extent_max_zeroout_kb = 32;
4272
4273         /*
4274          * set up enough so that it can read an inode
4275          */
4276         sb->s_op = &ext4_sops;
4277         sb->s_export_op = &ext4_export_ops;
4278         sb->s_xattr = ext4_xattr_handlers;
4279 #ifdef CONFIG_FS_ENCRYPTION
4280         sb->s_cop = &ext4_cryptops;
4281 #endif
4282 #ifdef CONFIG_QUOTA
4283         sb->dq_op = &ext4_quota_operations;
4284         if (ext4_has_feature_quota(sb))
4285                 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4286         else
4287                 sb->s_qcop = &ext4_qctl_operations;
4288         sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4289 #endif
4290         memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4291
4292         INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4293         mutex_init(&sbi->s_orphan_lock);
4294
4295         sb->s_root = NULL;
4296
4297         needs_recovery = (es->s_last_orphan != 0 ||
4298                           ext4_has_feature_journal_needs_recovery(sb));
4299
4300         if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4301                 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4302                         goto failed_mount3a;
4303
4304         /*
4305          * The first inode we look at is the journal inode.  Don't try
4306          * root first: it may be modified in the journal!
4307          */
4308         if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4309                 err = ext4_load_journal(sb, es, journal_devnum);
4310                 if (err)
4311                         goto failed_mount3a;
4312         } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4313                    ext4_has_feature_journal_needs_recovery(sb)) {
4314                 ext4_msg(sb, KERN_ERR, "required journal recovery "
4315                        "suppressed and not mounted read-only");
4316                 goto failed_mount_wq;
4317         } else {
4318                 /* Nojournal mode, all journal mount options are illegal */
4319                 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4320                         ext4_msg(sb, KERN_ERR, "can't mount with "
4321                                  "journal_checksum, fs mounted w/o journal");
4322                         goto failed_mount_wq;
4323                 }
4324                 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4325                         ext4_msg(sb, KERN_ERR, "can't mount with "
4326                                  "journal_async_commit, fs mounted w/o journal");
4327                         goto failed_mount_wq;
4328                 }
4329                 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4330                         ext4_msg(sb, KERN_ERR, "can't mount with "
4331                                  "commit=%lu, fs mounted w/o journal",
4332                                  sbi->s_commit_interval / HZ);
4333                         goto failed_mount_wq;
4334                 }
4335                 if (EXT4_MOUNT_DATA_FLAGS &
4336                     (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4337                         ext4_msg(sb, KERN_ERR, "can't mount with "
4338                                  "data=, fs mounted w/o journal");
4339                         goto failed_mount_wq;
4340                 }
4341                 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4342                 clear_opt(sb, JOURNAL_CHECKSUM);
4343                 clear_opt(sb, DATA_FLAGS);
4344                 sbi->s_journal = NULL;
4345                 needs_recovery = 0;
4346                 goto no_journal;
4347         }
4348
4349         if (ext4_has_feature_64bit(sb) &&
4350             !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4351                                        JBD2_FEATURE_INCOMPAT_64BIT)) {
4352                 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4353                 goto failed_mount_wq;
4354         }
4355
4356         if (!set_journal_csum_feature_set(sb)) {
4357                 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4358                          "feature set");
4359                 goto failed_mount_wq;
4360         }
4361
4362         /* We have now updated the journal if required, so we can
4363          * validate the data journaling mode. */
4364         switch (test_opt(sb, DATA_FLAGS)) {
4365         case 0:
4366                 /* No mode set, assume a default based on the journal
4367                  * capabilities: ORDERED_DATA if the journal can
4368                  * cope, else JOURNAL_DATA
4369                  */
4370                 if (jbd2_journal_check_available_features
4371                     (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4372                         set_opt(sb, ORDERED_DATA);
4373                         sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4374                 } else {
4375                         set_opt(sb, JOURNAL_DATA);
4376                         sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4377                 }
4378                 break;
4379
4380         case EXT4_MOUNT_ORDERED_DATA:
4381         case EXT4_MOUNT_WRITEBACK_DATA:
4382                 if (!jbd2_journal_check_available_features
4383                     (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4384                         ext4_msg(sb, KERN_ERR, "Journal does not support "
4385                                "requested data journaling mode");
4386                         goto failed_mount_wq;
4387                 }
4388         default:
4389                 break;
4390         }
4391
4392         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4393             test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4394                 ext4_msg(sb, KERN_ERR, "can't mount with "
4395                         "journal_async_commit in data=ordered mode");
4396                 goto failed_mount_wq;
4397         }
4398
4399         set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4400
4401         sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4402
4403 no_journal:
4404         if (!test_opt(sb, NO_MBCACHE)) {
4405                 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4406                 if (!sbi->s_ea_block_cache) {
4407                         ext4_msg(sb, KERN_ERR,
4408                                  "Failed to create ea_block_cache");
4409                         goto failed_mount_wq;
4410                 }
4411
4412                 if (ext4_has_feature_ea_inode(sb)) {
4413                         sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4414                         if (!sbi->s_ea_inode_cache) {
4415                                 ext4_msg(sb, KERN_ERR,
4416                                          "Failed to create ea_inode_cache");
4417                                 goto failed_mount_wq;
4418                         }
4419                 }
4420         }
4421
4422         if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4423             (blocksize != PAGE_SIZE)) {
4424                 ext4_msg(sb, KERN_ERR,
4425                          "Unsupported blocksize for fs encryption");
4426                 goto failed_mount_wq;
4427         }
4428
4429         if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4430             !ext4_has_feature_encrypt(sb)) {
4431                 ext4_set_feature_encrypt(sb);
4432                 ext4_commit_super(sb, 1);
4433         }
4434
4435         /*
4436          * Get the # of file system overhead blocks from the
4437          * superblock if present.
4438          */
4439         if (es->s_overhead_clusters)
4440                 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4441         else {
4442                 err = ext4_calculate_overhead(sb);
4443                 if (err)
4444                         goto failed_mount_wq;
4445         }
4446
4447         /*
4448          * The maximum number of concurrent works can be high and
4449          * concurrency isn't really necessary.  Limit it to 1.
4450          */
4451         EXT4_SB(sb)->rsv_conversion_wq =
4452                 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4453         if (!EXT4_SB(sb)->rsv_conversion_wq) {
4454                 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4455                 ret = -ENOMEM;
4456                 goto failed_mount4;
4457         }
4458
4459         /*
4460          * The jbd2_journal_load will have done any necessary log recovery,
4461          * so we can safely mount the rest of the filesystem now.
4462          */
4463
4464         root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4465         if (IS_ERR(root)) {
4466                 ext4_msg(sb, KERN_ERR, "get root inode failed");
4467                 ret = PTR_ERR(root);
4468                 root = NULL;
4469                 goto failed_mount4;
4470         }
4471         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4472                 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4473                 iput(root);
4474                 goto failed_mount4;
4475         }
4476
4477 #ifdef CONFIG_UNICODE
4478         if (sbi->s_encoding)
4479                 sb->s_d_op = &ext4_dentry_ops;
4480 #endif
4481
4482         sb->s_root = d_make_root(root);
4483         if (!sb->s_root) {
4484                 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4485                 ret = -ENOMEM;
4486                 goto failed_mount4;
4487         }
4488
4489         ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4490         if (ret == -EROFS) {
4491                 sb->s_flags |= SB_RDONLY;
4492                 ret = 0;
4493         } else if (ret)
4494                 goto failed_mount4a;
4495
4496         ext4_clamp_want_extra_isize(sb);
4497
4498         ext4_set_resv_clusters(sb);
4499
4500         err = ext4_setup_system_zone(sb);
4501         if (err) {
4502                 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4503                          "zone (%d)", err);
4504                 goto failed_mount4a;
4505         }
4506
4507         ext4_ext_init(sb);
4508         err = ext4_mb_init(sb);
4509         if (err) {
4510                 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4511                          err);
4512                 goto failed_mount5;
4513         }
4514
4515         block = ext4_count_free_clusters(sb);
4516         ext4_free_blocks_count_set(sbi->s_es, 
4517                                    EXT4_C2B(sbi, block));
4518         ext4_superblock_csum_set(sb);
4519         err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4520                                   GFP_KERNEL);
4521         if (!err) {
4522                 unsigned long freei = ext4_count_free_inodes(sb);
4523                 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4524                 ext4_superblock_csum_set(sb);
4525                 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4526                                           GFP_KERNEL);
4527         }
4528         if (!err)
4529                 err = percpu_counter_init(&sbi->s_dirs_counter,
4530                                           ext4_count_dirs(sb), GFP_KERNEL);
4531         if (!err)
4532                 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4533                                           GFP_KERNEL);
4534         if (!err)
4535                 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4536
4537         if (err) {
4538                 ext4_msg(sb, KERN_ERR, "insufficient memory");
4539                 goto failed_mount6;
4540         }
4541
4542         if (ext4_has_feature_flex_bg(sb))
4543                 if (!ext4_fill_flex_info(sb)) {
4544                         ext4_msg(sb, KERN_ERR,
4545                                "unable to initialize "
4546                                "flex_bg meta info!");
4547                         goto failed_mount6;
4548                 }
4549
4550         err = ext4_register_li_request(sb, first_not_zeroed);
4551         if (err)
4552                 goto failed_mount6;
4553
4554         err = ext4_register_sysfs(sb);
4555         if (err)
4556                 goto failed_mount7;
4557
4558 #ifdef CONFIG_QUOTA
4559         /* Enable quota usage during mount. */
4560         if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4561                 err = ext4_enable_quotas(sb);
4562                 if (err)
4563                         goto failed_mount8;
4564         }
4565 #endif  /* CONFIG_QUOTA */
4566
4567         EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4568         ext4_orphan_cleanup(sb, es);
4569         EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4570         if (needs_recovery) {
4571                 ext4_msg(sb, KERN_INFO, "recovery complete");
4572                 ext4_mark_recovery_complete(sb, es);
4573         }
4574         if (EXT4_SB(sb)->s_journal) {
4575                 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4576                         descr = " journalled data mode";
4577                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4578                         descr = " ordered data mode";
4579                 else
4580                         descr = " writeback data mode";
4581         } else
4582                 descr = "out journal";
4583
4584         if (test_opt(sb, DISCARD)) {
4585                 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4586                 if (!blk_queue_discard(q))
4587                         ext4_msg(sb, KERN_WARNING,
4588                                  "mounting with \"discard\" option, but "
4589                                  "the device does not support discard");
4590         }
4591
4592         if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4593                 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4594                          "Opts: %.*s%s%s", descr,
4595                          (int) sizeof(sbi->s_es->s_mount_opts),
4596                          sbi->s_es->s_mount_opts,
4597                          *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4598
4599         if (es->s_error_count)
4600                 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4601
4602         /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4603         ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4604         ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4605         ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4606
4607         kfree(orig_data);
4608         return 0;
4609
4610 cantfind_ext4:
4611         if (!silent)
4612                 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4613         goto failed_mount;
4614
4615 #ifdef CONFIG_QUOTA
4616 failed_mount8:
4617         ext4_unregister_sysfs(sb);
4618 #endif
4619 failed_mount7:
4620         ext4_unregister_li_request(sb);
4621 failed_mount6:
4622         ext4_mb_release(sb);
4623         if (sbi->s_flex_groups)
4624                 kvfree(sbi->s_flex_groups);
4625         percpu_counter_destroy(&sbi->s_freeclusters_counter);
4626         percpu_counter_destroy(&sbi->s_freeinodes_counter);
4627         percpu_counter_destroy(&sbi->s_dirs_counter);
4628         percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4629         percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
4630 failed_mount5:
4631         ext4_ext_release(sb);
4632         ext4_release_system_zone(sb);
4633 failed_mount4a:
4634         dput(sb->s_root);
4635         sb->s_root = NULL;
4636 failed_mount4:
4637         ext4_msg(sb, KERN_ERR, "mount failed");
4638         if (EXT4_SB(sb)->rsv_conversion_wq)
4639                 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4640 failed_mount_wq:
4641         ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4642         sbi->s_ea_inode_cache = NULL;
4643
4644         ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4645         sbi->s_ea_block_cache = NULL;
4646
4647         if (sbi->s_journal) {
4648                 jbd2_journal_destroy(sbi->s_journal);
4649                 sbi->s_journal = NULL;
4650         }
4651 failed_mount3a:
4652         ext4_es_unregister_shrinker(sbi);
4653 failed_mount3:
4654         del_timer_sync(&sbi->s_err_report);
4655         if (sbi->s_mmp_tsk)
4656                 kthread_stop(sbi->s_mmp_tsk);
4657 failed_mount2:
4658         for (i = 0; i < db_count; i++)
4659                 brelse(sbi->s_group_desc[i]);
4660         kvfree(sbi->s_group_desc);
4661 failed_mount:
4662         if (sbi->s_chksum_driver)
4663                 crypto_free_shash(sbi->s_chksum_driver);
4664
4665 #ifdef CONFIG_UNICODE
4666         utf8_unload(sbi->s_encoding);
4667 #endif
4668
4669 #ifdef CONFIG_QUOTA
4670         for (i = 0; i < EXT4_MAXQUOTAS; i++)
4671                 kfree(get_qf_name(sb, sbi, i));
4672 #endif
4673         ext4_blkdev_remove(sbi);
4674         brelse(bh);
4675 out_fail:
4676         sb->s_fs_info = NULL;
4677         kfree(sbi->s_blockgroup_lock);
4678 out_free_base:
4679         kfree(sbi);
4680         kfree(orig_data);
4681         fs_put_dax(dax_dev);
4682         return err ? err : ret;
4683 }
4684
4685 /*
4686  * Setup any per-fs journal parameters now.  We'll do this both on
4687  * initial mount, once the journal has been initialised but before we've
4688  * done any recovery; and again on any subsequent remount.
4689  */
4690 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4691 {
4692         struct ext4_sb_info *sbi = EXT4_SB(sb);
4693
4694         journal->j_commit_interval = sbi->s_commit_interval;
4695         journal->j_min_batch_time = sbi->s_min_batch_time;
4696         journal->j_max_batch_time = sbi->s_max_batch_time;
4697
4698         write_lock(&journal->j_state_lock);
4699         if (test_opt(sb, BARRIER))
4700                 journal->j_flags |= JBD2_BARRIER;
4701         else
4702                 journal->j_flags &= ~JBD2_BARRIER;
4703         if (test_opt(sb, DATA_ERR_ABORT))
4704                 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4705         else
4706                 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4707         write_unlock(&journal->j_state_lock);
4708 }
4709
4710 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4711                                              unsigned int journal_inum)
4712 {
4713         struct inode *journal_inode;
4714
4715         /*
4716          * Test for the existence of a valid inode on disk.  Bad things
4717          * happen if we iget() an unused inode, as the subsequent iput()
4718          * will try to delete it.
4719          */
4720         journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
4721         if (IS_ERR(journal_inode)) {
4722                 ext4_msg(sb, KERN_ERR, "no journal found");
4723                 return NULL;
4724         }
4725         if (!journal_inode->i_nlink) {
4726                 make_bad_inode(journal_inode);
4727                 iput(journal_inode);
4728                 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4729                 return NULL;
4730         }
4731
4732         jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4733                   journal_inode, journal_inode->i_size);
4734         if (!S_ISREG(journal_inode->i_mode)) {
4735                 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4736                 iput(journal_inode);
4737                 return NULL;
4738         }
4739         return journal_inode;
4740 }
4741
4742 static journal_t *ext4_get_journal(struct super_block *sb,
4743                                    unsigned int journal_inum)
4744 {
4745         struct inode *journal_inode;
4746         journal_t *journal;
4747
4748         BUG_ON(!ext4_has_feature_journal(sb));
4749
4750         journal_inode = ext4_get_journal_inode(sb, journal_inum);
4751         if (!journal_inode)
4752                 return NULL;
4753
4754         journal = jbd2_journal_init_inode(journal_inode);
4755         if (!journal) {
4756                 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4757                 iput(journal_inode);
4758                 return NULL;
4759         }
4760         journal->j_private = sb;
4761         ext4_init_journal_params(sb, journal);
4762         return journal;
4763 }
4764
4765 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4766                                        dev_t j_dev)
4767 {
4768         struct buffer_head *bh;
4769         journal_t *journal;
4770         ext4_fsblk_t start;
4771         ext4_fsblk_t len;
4772         int hblock, blocksize;
4773         ext4_fsblk_t sb_block;
4774         unsigned long offset;
4775         struct ext4_super_block *es;
4776         struct block_device *bdev;
4777
4778         BUG_ON(!ext4_has_feature_journal(sb));
4779
4780         bdev = ext4_blkdev_get(j_dev, sb);
4781         if (bdev == NULL)
4782                 return NULL;
4783
4784         blocksize = sb->s_blocksize;
4785         hblock = bdev_logical_block_size(bdev);
4786         if (blocksize < hblock) {
4787                 ext4_msg(sb, KERN_ERR,
4788                         "blocksize too small for journal device");
4789                 goto out_bdev;
4790         }
4791
4792         sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4793         offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4794         set_blocksize(bdev, blocksize);
4795         if (!(bh = __bread(bdev, sb_block, blocksize))) {
4796                 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4797                        "external journal");
4798                 goto out_bdev;
4799         }
4800
4801         es = (struct ext4_super_block *) (bh->b_data + offset);
4802         if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4803             !(le32_to_cpu(es->s_feature_incompat) &
4804               EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4805                 ext4_msg(sb, KERN_ERR, "external journal has "
4806                                         "bad superblock");
4807                 brelse(bh);
4808                 goto out_bdev;
4809         }
4810
4811         if ((le32_to_cpu(es->s_feature_ro_compat) &
4812              EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4813             es->s_checksum != ext4_superblock_csum(sb, es)) {
4814                 ext4_msg(sb, KERN_ERR, "external journal has "
4815                                        "corrupt superblock");
4816                 brelse(bh);
4817                 goto out_bdev;
4818         }
4819
4820         if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4821                 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4822                 brelse(bh);
4823                 goto out_bdev;
4824         }
4825
4826         len = ext4_blocks_count(es);
4827         start = sb_block + 1;
4828         brelse(bh);     /* we're done with the superblock */
4829
4830         journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4831                                         start, len, blocksize);
4832         if (!journal) {
4833                 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4834                 goto out_bdev;
4835         }
4836         journal->j_private = sb;
4837         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4838         wait_on_buffer(journal->j_sb_buffer);
4839         if (!buffer_uptodate(journal->j_sb_buffer)) {
4840                 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4841                 goto out_journal;
4842         }
4843         if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4844                 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4845                                         "user (unsupported) - %d",
4846                         be32_to_cpu(journal->j_superblock->s_nr_users));
4847                 goto out_journal;
4848         }
4849         EXT4_SB(sb)->journal_bdev = bdev;
4850         ext4_init_journal_params(sb, journal);
4851         return journal;
4852
4853 out_journal:
4854         jbd2_journal_destroy(journal);
4855 out_bdev:
4856         ext4_blkdev_put(bdev);
4857         return NULL;
4858 }
4859
4860 static int ext4_load_journal(struct super_block *sb,
4861                              struct ext4_super_block *es,
4862                              unsigned long journal_devnum)
4863 {
4864         journal_t *journal;
4865         unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4866         dev_t journal_dev;
4867         int err = 0;
4868         int really_read_only;
4869
4870         BUG_ON(!ext4_has_feature_journal(sb));
4871
4872         if (journal_devnum &&
4873             journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4874                 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4875                         "numbers have changed");
4876                 journal_dev = new_decode_dev(journal_devnum);
4877         } else
4878                 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4879
4880         really_read_only = bdev_read_only(sb->s_bdev);
4881
4882         /*
4883          * Are we loading a blank journal or performing recovery after a
4884          * crash?  For recovery, we need to check in advance whether we
4885          * can get read-write access to the device.
4886          */
4887         if (ext4_has_feature_journal_needs_recovery(sb)) {
4888                 if (sb_rdonly(sb)) {
4889                         ext4_msg(sb, KERN_INFO, "INFO: recovery "
4890                                         "required on readonly filesystem");
4891                         if (really_read_only) {
4892                                 ext4_msg(sb, KERN_ERR, "write access "
4893                                         "unavailable, cannot proceed "
4894                                         "(try mounting with noload)");
4895                                 return -EROFS;
4896                         }
4897                         ext4_msg(sb, KERN_INFO, "write access will "
4898                                "be enabled during recovery");
4899                 }
4900         }
4901
4902         if (journal_inum && journal_dev) {
4903                 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4904                        "and inode journals!");
4905                 return -EINVAL;
4906         }
4907
4908         if (journal_inum) {
4909                 if (!(journal = ext4_get_journal(sb, journal_inum)))
4910                         return -EINVAL;
4911         } else {
4912                 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4913                         return -EINVAL;
4914         }
4915
4916         if (!(journal->j_flags & JBD2_BARRIER))
4917                 ext4_msg(sb, KERN_INFO, "barriers disabled");
4918
4919         if (!ext4_has_feature_journal_needs_recovery(sb))
4920                 err = jbd2_journal_wipe(journal, !really_read_only);
4921         if (!err) {
4922                 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4923                 if (save)
4924                         memcpy(save, ((char *) es) +
4925                                EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4926                 err = jbd2_journal_load(journal);
4927                 if (save)
4928                         memcpy(((char *) es) + EXT4_S_ERR_START,
4929                                save, EXT4_S_ERR_LEN);
4930                 kfree(save);
4931         }
4932
4933         if (err) {
4934                 ext4_msg(sb, KERN_ERR, "error loading journal");
4935                 jbd2_journal_destroy(journal);
4936                 return err;
4937         }
4938
4939         EXT4_SB(sb)->s_journal = journal;
4940         ext4_clear_journal_err(sb, es);
4941
4942         if (!really_read_only && journal_devnum &&
4943             journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4944                 es->s_journal_dev = cpu_to_le32(journal_devnum);
4945
4946                 /* Make sure we flush the recovery flag to disk. */
4947                 ext4_commit_super(sb, 1);
4948         }
4949
4950         return 0;
4951 }
4952
4953 static int ext4_commit_super(struct super_block *sb, int sync)
4954 {
4955         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4956         struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4957         int error = 0;
4958
4959         if (!sbh || block_device_ejected(sb))
4960                 return error;
4961
4962         /*
4963          * The superblock bh should be mapped, but it might not be if the
4964          * device was hot-removed. Not much we can do but fail the I/O.
4965          */
4966         if (!buffer_mapped(sbh))
4967                 return error;
4968
4969         /*
4970          * If the file system is mounted read-only, don't update the
4971          * superblock write time.  This avoids updating the superblock
4972          * write time when we are mounting the root file system
4973          * read/only but we need to replay the journal; at that point,
4974          * for people who are east of GMT and who make their clock
4975          * tick in localtime for Windows bug-for-bug compatibility,
4976          * the clock is set in the future, and this will cause e2fsck
4977          * to complain and force a full file system check.
4978          */
4979         if (!(sb->s_flags & SB_RDONLY))
4980                 ext4_update_tstamp(es, s_wtime);
4981         if (sb->s_bdev->bd_part)
4982                 es->s_kbytes_written =
4983                         cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4984                             ((part_stat_read(sb->s_bdev->bd_part,
4985                                              sectors[STAT_WRITE]) -
4986                               EXT4_SB(sb)->s_sectors_written_start) >> 1));
4987         else
4988                 es->s_kbytes_written =
4989                         cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4990         if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4991                 ext4_free_blocks_count_set(es,
4992                         EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4993                                 &EXT4_SB(sb)->s_freeclusters_counter)));
4994         if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4995                 es->s_free_inodes_count =
4996                         cpu_to_le32(percpu_counter_sum_positive(
4997                                 &EXT4_SB(sb)->s_freeinodes_counter));
4998         BUFFER_TRACE(sbh, "marking dirty");
4999         ext4_superblock_csum_set(sb);
5000         if (sync)
5001                 lock_buffer(sbh);
5002         if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5003                 /*
5004                  * Oh, dear.  A previous attempt to write the
5005                  * superblock failed.  This could happen because the
5006                  * USB device was yanked out.  Or it could happen to
5007                  * be a transient write error and maybe the block will
5008                  * be remapped.  Nothing we can do but to retry the
5009                  * write and hope for the best.
5010                  */
5011                 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5012                        "superblock detected");
5013                 clear_buffer_write_io_error(sbh);
5014                 set_buffer_uptodate(sbh);
5015         }
5016         mark_buffer_dirty(sbh);
5017         if (sync) {
5018                 unlock_buffer(sbh);
5019                 error = __sync_dirty_buffer(sbh,
5020                         REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5021                 if (buffer_write_io_error(sbh)) {
5022                         ext4_msg(sb, KERN_ERR, "I/O error while writing "
5023                                "superblock");
5024                         clear_buffer_write_io_error(sbh);
5025                         set_buffer_uptodate(sbh);
5026                 }
5027         }
5028         return error;
5029 }
5030
5031 /*
5032  * Have we just finished recovery?  If so, and if we are mounting (or
5033  * remounting) the filesystem readonly, then we will end up with a
5034  * consistent fs on disk.  Record that fact.
5035  */
5036 static void ext4_mark_recovery_complete(struct super_block *sb,
5037                                         struct ext4_super_block *es)
5038 {
5039         journal_t *journal = EXT4_SB(sb)->s_journal;
5040
5041         if (!ext4_has_feature_journal(sb)) {
5042                 BUG_ON(journal != NULL);
5043                 return;
5044         }
5045         jbd2_journal_lock_updates(journal);
5046         if (jbd2_journal_flush(journal) < 0)
5047                 goto out;
5048
5049         if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5050                 ext4_clear_feature_journal_needs_recovery(sb);
5051                 ext4_commit_super(sb, 1);
5052         }
5053
5054 out:
5055         jbd2_journal_unlock_updates(journal);
5056 }
5057
5058 /*
5059  * If we are mounting (or read-write remounting) a filesystem whose journal
5060  * has recorded an error from a previous lifetime, move that error to the
5061  * main filesystem now.
5062  */
5063 static void ext4_clear_journal_err(struct super_block *sb,
5064                                    struct ext4_super_block *es)
5065 {
5066         journal_t *journal;
5067         int j_errno;
5068         const char *errstr;
5069
5070         BUG_ON(!ext4_has_feature_journal(sb));
5071
5072         journal = EXT4_SB(sb)->s_journal;
5073
5074         /*
5075          * Now check for any error status which may have been recorded in the
5076          * journal by a prior ext4_error() or ext4_abort()
5077          */
5078
5079         j_errno = jbd2_journal_errno(journal);
5080         if (j_errno) {
5081                 char nbuf[16];
5082
5083                 errstr = ext4_decode_error(sb, j_errno, nbuf);
5084                 ext4_warning(sb, "Filesystem error recorded "
5085                              "from previous mount: %s", errstr);
5086                 ext4_warning(sb, "Marking fs in need of filesystem check.");
5087
5088                 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5089                 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5090                 ext4_commit_super(sb, 1);
5091
5092                 jbd2_journal_clear_err(journal);
5093                 jbd2_journal_update_sb_errno(journal);
5094         }
5095 }
5096
5097 /*
5098  * Force the running and committing transactions to commit,
5099  * and wait on the commit.
5100  */
5101 int ext4_force_commit(struct super_block *sb)
5102 {
5103         journal_t *journal;
5104
5105         if (sb_rdonly(sb))
5106                 return 0;
5107
5108         journal = EXT4_SB(sb)->s_journal;
5109         return ext4_journal_force_commit(journal);
5110 }
5111
5112 static int ext4_sync_fs(struct super_block *sb, int wait)
5113 {
5114         int ret = 0;
5115         tid_t target;
5116         bool needs_barrier = false;
5117         struct ext4_sb_info *sbi = EXT4_SB(sb);
5118
5119         if (unlikely(ext4_forced_shutdown(sbi)))
5120                 return 0;
5121
5122         trace_ext4_sync_fs(sb, wait);
5123         flush_workqueue(sbi->rsv_conversion_wq);
5124         /*
5125          * Writeback quota in non-journalled quota case - journalled quota has
5126          * no dirty dquots
5127          */
5128         dquot_writeback_dquots(sb, -1);
5129         /*
5130          * Data writeback is possible w/o journal transaction, so barrier must
5131          * being sent at the end of the function. But we can skip it if
5132          * transaction_commit will do it for us.
5133          */
5134         if (sbi->s_journal) {
5135                 target = jbd2_get_latest_transaction(sbi->s_journal);
5136                 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5137                     !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5138                         needs_barrier = true;
5139
5140                 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5141                         if (wait)
5142                                 ret = jbd2_log_wait_commit(sbi->s_journal,
5143                                                            target);
5144                 }
5145         } else if (wait && test_opt(sb, BARRIER))
5146                 needs_barrier = true;
5147         if (needs_barrier) {
5148                 int err;
5149                 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
5150                 if (!ret)
5151                         ret = err;
5152         }
5153
5154         return ret;
5155 }
5156
5157 /*
5158  * LVM calls this function before a (read-only) snapshot is created.  This
5159  * gives us a chance to flush the journal completely and mark the fs clean.
5160  *
5161  * Note that only this function cannot bring a filesystem to be in a clean
5162  * state independently. It relies on upper layer to stop all data & metadata
5163  * modifications.
5164  */
5165 static int ext4_freeze(struct super_block *sb)
5166 {
5167         int error = 0;
5168         journal_t *journal;
5169
5170         if (sb_rdonly(sb))
5171                 return 0;
5172
5173         journal = EXT4_SB(sb)->s_journal;
5174
5175         if (journal) {
5176                 /* Now we set up the journal barrier. */
5177                 jbd2_journal_lock_updates(journal);
5178
5179                 /*
5180                  * Don't clear the needs_recovery flag if we failed to
5181                  * flush the journal.
5182                  */
5183                 error = jbd2_journal_flush(journal);
5184                 if (error < 0)
5185                         goto out;
5186
5187                 /* Journal blocked and flushed, clear needs_recovery flag. */
5188                 ext4_clear_feature_journal_needs_recovery(sb);
5189         }
5190
5191         error = ext4_commit_super(sb, 1);
5192 out:
5193         if (journal)
5194                 /* we rely on upper layer to stop further updates */
5195                 jbd2_journal_unlock_updates(journal);
5196         return error;
5197 }
5198
5199 /*
5200  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
5201  * flag here, even though the filesystem is not technically dirty yet.
5202  */
5203 static int ext4_unfreeze(struct super_block *sb)
5204 {
5205         if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5206                 return 0;
5207
5208         if (EXT4_SB(sb)->s_journal) {
5209                 /* Reset the needs_recovery flag before the fs is unlocked. */
5210                 ext4_set_feature_journal_needs_recovery(sb);
5211         }
5212
5213         ext4_commit_super(sb, 1);
5214         return 0;
5215 }
5216
5217 /*
5218  * Structure to save mount options for ext4_remount's benefit
5219  */
5220 struct ext4_mount_options {
5221         unsigned long s_mount_opt;
5222         unsigned long s_mount_opt2;
5223         kuid_t s_resuid;
5224         kgid_t s_resgid;
5225         unsigned long s_commit_interval;
5226         u32 s_min_batch_time, s_max_batch_time;
5227 #ifdef CONFIG_QUOTA
5228         int s_jquota_fmt;
5229         char *s_qf_names[EXT4_MAXQUOTAS];
5230 #endif
5231 };
5232
5233 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5234 {
5235         struct ext4_super_block *es;
5236         struct ext4_sb_info *sbi = EXT4_SB(sb);
5237         unsigned long old_sb_flags;
5238         struct ext4_mount_options old_opts;
5239         int enable_quota = 0;
5240         ext4_group_t g;
5241         unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5242         int err = 0;
5243 #ifdef CONFIG_QUOTA
5244         int i, j;
5245         char *to_free[EXT4_MAXQUOTAS];
5246 #endif
5247         char *orig_data = kstrdup(data, GFP_KERNEL);
5248
5249         if (data && !orig_data)
5250                 return -ENOMEM;
5251
5252         /* Store the original options */
5253         old_sb_flags = sb->s_flags;
5254         old_opts.s_mount_opt = sbi->s_mount_opt;
5255         old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5256         old_opts.s_resuid = sbi->s_resuid;
5257         old_opts.s_resgid = sbi->s_resgid;
5258         old_opts.s_commit_interval = sbi->s_commit_interval;
5259         old_opts.s_min_batch_time = sbi->s_min_batch_time;
5260         old_opts.s_max_batch_time = sbi->s_max_batch_time;
5261 #ifdef CONFIG_QUOTA
5262         old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5263         for (i = 0; i < EXT4_MAXQUOTAS; i++)
5264                 if (sbi->s_qf_names[i]) {
5265                         char *qf_name = get_qf_name(sb, sbi, i);
5266
5267                         old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5268                         if (!old_opts.s_qf_names[i]) {
5269                                 for (j = 0; j < i; j++)
5270                                         kfree(old_opts.s_qf_names[j]);
5271                                 kfree(orig_data);
5272                                 return -ENOMEM;
5273                         }
5274                 } else
5275                         old_opts.s_qf_names[i] = NULL;
5276 #endif
5277         if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5278                 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5279
5280         if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5281                 err = -EINVAL;
5282                 goto restore_opts;
5283         }
5284
5285         ext4_clamp_want_extra_isize(sb);
5286
5287         if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5288             test_opt(sb, JOURNAL_CHECKSUM)) {
5289                 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5290                          "during remount not supported; ignoring");
5291                 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5292         }
5293
5294         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5295                 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5296                         ext4_msg(sb, KERN_ERR, "can't mount with "
5297                                  "both data=journal and delalloc");
5298                         err = -EINVAL;
5299                         goto restore_opts;
5300                 }
5301                 if (test_opt(sb, DIOREAD_NOLOCK)) {
5302                         ext4_msg(sb, KERN_ERR, "can't mount with "
5303                                  "both data=journal and dioread_nolock");
5304                         err = -EINVAL;
5305                         goto restore_opts;
5306                 }
5307                 if (test_opt(sb, DAX)) {
5308                         ext4_msg(sb, KERN_ERR, "can't mount with "
5309                                  "both data=journal and dax");
5310                         err = -EINVAL;
5311                         goto restore_opts;
5312                 }
5313         } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5314                 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5315                         ext4_msg(sb, KERN_ERR, "can't mount with "
5316                                 "journal_async_commit in data=ordered mode");
5317                         err = -EINVAL;
5318                         goto restore_opts;
5319                 }
5320         }
5321
5322         if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5323                 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5324                 err = -EINVAL;
5325                 goto restore_opts;
5326         }
5327
5328         if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5329                 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5330                         "dax flag with busy inodes while remounting");
5331                 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5332         }
5333
5334         if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5335                 ext4_abort(sb, "Abort forced by user");
5336
5337         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5338                 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5339
5340         es = sbi->s_es;
5341
5342         if (sbi->s_journal) {
5343                 ext4_init_journal_params(sb, sbi->s_journal);
5344                 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5345         }
5346
5347         if (*flags & SB_LAZYTIME)
5348                 sb->s_flags |= SB_LAZYTIME;
5349
5350         if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5351                 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5352                         err = -EROFS;
5353                         goto restore_opts;
5354                 }
5355
5356                 if (*flags & SB_RDONLY) {
5357                         err = sync_filesystem(sb);
5358                         if (err < 0)
5359                                 goto restore_opts;
5360                         err = dquot_suspend(sb, -1);
5361                         if (err < 0)
5362                                 goto restore_opts;
5363
5364                         /*
5365                          * First of all, the unconditional stuff we have to do
5366                          * to disable replay of the journal when we next remount
5367                          */
5368                         sb->s_flags |= SB_RDONLY;
5369
5370                         /*
5371                          * OK, test if we are remounting a valid rw partition
5372                          * readonly, and if so set the rdonly flag and then
5373                          * mark the partition as valid again.
5374                          */
5375                         if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5376                             (sbi->s_mount_state & EXT4_VALID_FS))
5377                                 es->s_state = cpu_to_le16(sbi->s_mount_state);
5378
5379                         if (sbi->s_journal)
5380                                 ext4_mark_recovery_complete(sb, es);
5381                         if (sbi->s_mmp_tsk)
5382                                 kthread_stop(sbi->s_mmp_tsk);
5383                 } else {
5384                         /* Make sure we can mount this feature set readwrite */
5385                         if (ext4_has_feature_readonly(sb) ||
5386                             !ext4_feature_set_ok(sb, 0)) {
5387                                 err = -EROFS;
5388                                 goto restore_opts;
5389                         }
5390                         /*
5391                          * Make sure the group descriptor checksums
5392                          * are sane.  If they aren't, refuse to remount r/w.
5393                          */
5394                         for (g = 0; g < sbi->s_groups_count; g++) {
5395                                 struct ext4_group_desc *gdp =
5396                                         ext4_get_group_desc(sb, g, NULL);
5397
5398                                 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5399                                         ext4_msg(sb, KERN_ERR,
5400                "ext4_remount: Checksum for group %u failed (%u!=%u)",
5401                 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5402                                                le16_to_cpu(gdp->bg_checksum));
5403                                         err = -EFSBADCRC;
5404                                         goto restore_opts;
5405                                 }
5406                         }
5407
5408                         /*
5409                          * If we have an unprocessed orphan list hanging
5410                          * around from a previously readonly bdev mount,
5411                          * require a full umount/remount for now.
5412                          */
5413                         if (es->s_last_orphan) {
5414                                 ext4_msg(sb, KERN_WARNING, "Couldn't "
5415                                        "remount RDWR because of unprocessed "
5416                                        "orphan inode list.  Please "
5417                                        "umount/remount instead");
5418                                 err = -EINVAL;
5419                                 goto restore_opts;
5420                         }
5421
5422                         /*
5423                          * Mounting a RDONLY partition read-write, so reread
5424                          * and store the current valid flag.  (It may have
5425                          * been changed by e2fsck since we originally mounted
5426                          * the partition.)
5427                          */
5428                         if (sbi->s_journal)
5429                                 ext4_clear_journal_err(sb, es);
5430                         sbi->s_mount_state = le16_to_cpu(es->s_state);
5431
5432                         err = ext4_setup_super(sb, es, 0);
5433                         if (err)
5434                                 goto restore_opts;
5435
5436                         sb->s_flags &= ~SB_RDONLY;
5437                         if (ext4_has_feature_mmp(sb))
5438                                 if (ext4_multi_mount_protect(sb,
5439                                                 le64_to_cpu(es->s_mmp_block))) {
5440                                         err = -EROFS;
5441                                         goto restore_opts;
5442                                 }
5443                         enable_quota = 1;
5444                 }
5445         }
5446
5447         /*
5448          * Reinitialize lazy itable initialization thread based on
5449          * current settings
5450          */
5451         if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5452                 ext4_unregister_li_request(sb);
5453         else {
5454                 ext4_group_t first_not_zeroed;
5455                 first_not_zeroed = ext4_has_uninit_itable(sb);
5456                 ext4_register_li_request(sb, first_not_zeroed);
5457         }
5458
5459         ext4_setup_system_zone(sb);
5460         if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5461                 err = ext4_commit_super(sb, 1);
5462                 if (err)
5463                         goto restore_opts;
5464         }
5465
5466 #ifdef CONFIG_QUOTA
5467         /* Release old quota file names */
5468         for (i = 0; i < EXT4_MAXQUOTAS; i++)
5469                 kfree(old_opts.s_qf_names[i]);
5470         if (enable_quota) {
5471                 if (sb_any_quota_suspended(sb))
5472                         dquot_resume(sb, -1);
5473                 else if (ext4_has_feature_quota(sb)) {
5474                         err = ext4_enable_quotas(sb);
5475                         if (err)
5476                                 goto restore_opts;
5477                 }
5478         }
5479 #endif
5480
5481         *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5482         ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5483         kfree(orig_data);
5484         return 0;
5485
5486 restore_opts:
5487         sb->s_flags = old_sb_flags;
5488         sbi->s_mount_opt = old_opts.s_mount_opt;
5489         sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5490         sbi->s_resuid = old_opts.s_resuid;
5491         sbi->s_resgid = old_opts.s_resgid;
5492         sbi->s_commit_interval = old_opts.s_commit_interval;
5493         sbi->s_min_batch_time = old_opts.s_min_batch_time;
5494         sbi->s_max_batch_time = old_opts.s_max_batch_time;
5495 #ifdef CONFIG_QUOTA
5496         sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5497         for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5498                 to_free[i] = get_qf_name(sb, sbi, i);
5499                 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
5500         }
5501         synchronize_rcu();
5502         for (i = 0; i < EXT4_MAXQUOTAS; i++)
5503                 kfree(to_free[i]);
5504 #endif
5505         kfree(orig_data);
5506         return err;
5507 }
5508
5509 #ifdef CONFIG_QUOTA
5510 static int ext4_statfs_project(struct super_block *sb,
5511                                kprojid_t projid, struct kstatfs *buf)
5512 {
5513         struct kqid qid;
5514         struct dquot *dquot;
5515         u64 limit;
5516         u64 curblock;
5517
5518         qid = make_kqid_projid(projid);
5519         dquot = dqget(sb, qid);
5520         if (IS_ERR(dquot))
5521                 return PTR_ERR(dquot);
5522         spin_lock(&dquot->dq_dqb_lock);
5523
5524         limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5525                  dquot->dq_dqb.dqb_bsoftlimit :
5526                  dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5527         if (limit && buf->f_blocks > limit) {
5528                 curblock = (dquot->dq_dqb.dqb_curspace +
5529                             dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5530                 buf->f_blocks = limit;
5531                 buf->f_bfree = buf->f_bavail =
5532                         (buf->f_blocks > curblock) ?
5533                          (buf->f_blocks - curblock) : 0;
5534         }
5535
5536         limit = dquot->dq_dqb.dqb_isoftlimit ?
5537                 dquot->dq_dqb.dqb_isoftlimit :
5538                 dquot->dq_dqb.dqb_ihardlimit;
5539         if (limit && buf->f_files > limit) {
5540                 buf->f_files = limit;
5541                 buf->f_ffree =
5542                         (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5543                          (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5544         }
5545
5546         spin_unlock(&dquot->dq_dqb_lock);
5547         dqput(dquot);
5548         return 0;
5549 }
5550 #endif
5551
5552 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5553 {
5554         struct super_block *sb = dentry->d_sb;
5555         struct ext4_sb_info *sbi = EXT4_SB(sb);
5556         struct ext4_super_block *es = sbi->s_es;
5557         ext4_fsblk_t overhead = 0, resv_blocks;
5558         u64 fsid;
5559         s64 bfree;
5560         resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5561
5562         if (!test_opt(sb, MINIX_DF))
5563                 overhead = sbi->s_overhead;
5564
5565         buf->f_type = EXT4_SUPER_MAGIC;
5566         buf->f_bsize = sb->s_blocksize;
5567         buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5568         bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5569                 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5570         /* prevent underflow in case that few free space is available */
5571         buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5572         buf->f_bavail = buf->f_bfree -
5573                         (ext4_r_blocks_count(es) + resv_blocks);
5574         if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5575                 buf->f_bavail = 0;
5576         buf->f_files = le32_to_cpu(es->s_inodes_count);
5577         buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5578         buf->f_namelen = EXT4_NAME_LEN;
5579         fsid = le64_to_cpup((void *)es->s_uuid) ^
5580                le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5581         buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5582         buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5583
5584 #ifdef CONFIG_QUOTA
5585         if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5586             sb_has_quota_limits_enabled(sb, PRJQUOTA))
5587                 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5588 #endif
5589         return 0;
5590 }
5591
5592
5593 #ifdef CONFIG_QUOTA
5594
5595 /*
5596  * Helper functions so that transaction is started before we acquire dqio_sem
5597  * to keep correct lock ordering of transaction > dqio_sem
5598  */
5599 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5600 {
5601         return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5602 }
5603
5604 static int ext4_write_dquot(struct dquot *dquot)
5605 {
5606         int ret, err;
5607         handle_t *handle;
5608         struct inode *inode;
5609
5610         inode = dquot_to_inode(dquot);
5611         handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5612                                     EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5613         if (IS_ERR(handle))
5614                 return PTR_ERR(handle);
5615         ret = dquot_commit(dquot);
5616         err = ext4_journal_stop(handle);
5617         if (!ret)
5618                 ret = err;
5619         return ret;
5620 }
5621
5622 static int ext4_acquire_dquot(struct dquot *dquot)
5623 {
5624         int ret, err;
5625         handle_t *handle;
5626
5627         handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5628                                     EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5629         if (IS_ERR(handle))
5630                 return PTR_ERR(handle);
5631         ret = dquot_acquire(dquot);
5632         err = ext4_journal_stop(handle);
5633         if (!ret)
5634                 ret = err;
5635         return ret;
5636 }
5637
5638 static int ext4_release_dquot(struct dquot *dquot)
5639 {
5640         int ret, err;
5641         handle_t *handle;
5642
5643         handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5644                                     EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5645         if (IS_ERR(handle)) {
5646                 /* Release dquot anyway to avoid endless cycle in dqput() */
5647                 dquot_release(dquot);
5648                 return PTR_ERR(handle);
5649         }
5650         ret = dquot_release(dquot);
5651         err = ext4_journal_stop(handle);
5652         if (!ret)
5653                 ret = err;
5654         return ret;
5655 }
5656
5657 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5658 {
5659         struct super_block *sb = dquot->dq_sb;
5660         struct ext4_sb_info *sbi = EXT4_SB(sb);
5661
5662         /* Are we journaling quotas? */
5663         if (ext4_has_feature_quota(sb) ||
5664             sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5665                 dquot_mark_dquot_dirty(dquot);
5666                 return ext4_write_dquot(dquot);
5667         } else {
5668                 return dquot_mark_dquot_dirty(dquot);
5669         }
5670 }
5671
5672 static int ext4_write_info(struct super_block *sb, int type)
5673 {
5674         int ret, err;
5675         handle_t *handle;
5676
5677         /* Data block + inode block */
5678         handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5679         if (IS_ERR(handle))
5680                 return PTR_ERR(handle);
5681         ret = dquot_commit_info(sb, type);
5682         err = ext4_journal_stop(handle);
5683         if (!ret)
5684                 ret = err;
5685         return ret;
5686 }
5687
5688 /*
5689  * Turn on quotas during mount time - we need to find
5690  * the quota file and such...
5691  */
5692 static int ext4_quota_on_mount(struct super_block *sb, int type)
5693 {
5694         return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
5695                                         EXT4_SB(sb)->s_jquota_fmt, type);
5696 }
5697
5698 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5699 {
5700         struct ext4_inode_info *ei = EXT4_I(inode);
5701
5702         /* The first argument of lockdep_set_subclass has to be
5703          * *exactly* the same as the argument to init_rwsem() --- in
5704          * this case, in init_once() --- or lockdep gets unhappy
5705          * because the name of the lock is set using the
5706          * stringification of the argument to init_rwsem().
5707          */
5708         (void) ei;      /* shut up clang warning if !CONFIG_LOCKDEP */
5709         lockdep_set_subclass(&ei->i_data_sem, subclass);
5710 }
5711
5712 /*
5713  * Standard function to be called on quota_on
5714  */
5715 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5716                          const struct path *path)
5717 {
5718         int err;
5719
5720         if (!test_opt(sb, QUOTA))
5721                 return -EINVAL;
5722
5723         /* Quotafile not on the same filesystem? */
5724         if (path->dentry->d_sb != sb)
5725                 return -EXDEV;
5726         /* Journaling quota? */
5727         if (EXT4_SB(sb)->s_qf_names[type]) {
5728                 /* Quotafile not in fs root? */
5729                 if (path->dentry->d_parent != sb->s_root)
5730                         ext4_msg(sb, KERN_WARNING,
5731                                 "Quota file not on filesystem root. "
5732                                 "Journaled quota will not work");
5733                 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5734         } else {
5735                 /*
5736                  * Clear the flag just in case mount options changed since
5737                  * last time.
5738                  */
5739                 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5740         }
5741
5742         /*
5743          * When we journal data on quota file, we have to flush journal to see
5744          * all updates to the file when we bypass pagecache...
5745          */
5746         if (EXT4_SB(sb)->s_journal &&
5747             ext4_should_journal_data(d_inode(path->dentry))) {
5748                 /*
5749                  * We don't need to lock updates but journal_flush() could
5750                  * otherwise be livelocked...
5751                  */
5752                 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5753                 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5754                 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5755                 if (err)
5756                         return err;
5757         }
5758
5759         lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5760         err = dquot_quota_on(sb, type, format_id, path);
5761         if (err) {
5762                 lockdep_set_quota_inode(path->dentry->d_inode,
5763                                              I_DATA_SEM_NORMAL);
5764         } else {
5765                 struct inode *inode = d_inode(path->dentry);
5766                 handle_t *handle;
5767
5768                 /*
5769                  * Set inode flags to prevent userspace from messing with quota
5770                  * files. If this fails, we return success anyway since quotas
5771                  * are already enabled and this is not a hard failure.
5772                  */
5773                 inode_lock(inode);
5774                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5775                 if (IS_ERR(handle))
5776                         goto unlock_inode;
5777                 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5778                 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5779                                 S_NOATIME | S_IMMUTABLE);
5780                 ext4_mark_inode_dirty(handle, inode);
5781                 ext4_journal_stop(handle);
5782         unlock_inode:
5783                 inode_unlock(inode);
5784         }
5785         return err;
5786 }
5787
5788 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5789                              unsigned int flags)
5790 {
5791         int err;
5792         struct inode *qf_inode;
5793         unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5794                 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5795                 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5796                 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5797         };
5798
5799         BUG_ON(!ext4_has_feature_quota(sb));
5800
5801         if (!qf_inums[type])
5802                 return -EPERM;
5803
5804         qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
5805         if (IS_ERR(qf_inode)) {
5806                 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5807                 return PTR_ERR(qf_inode);
5808         }
5809
5810         /* Don't account quota for quota files to avoid recursion */
5811         qf_inode->i_flags |= S_NOQUOTA;
5812         lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5813         err = dquot_enable(qf_inode, type, format_id, flags);
5814         if (err)
5815                 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5816         iput(qf_inode);
5817
5818         return err;
5819 }
5820
5821 /* Enable usage tracking for all quota types. */
5822 static int ext4_enable_quotas(struct super_block *sb)
5823 {
5824         int type, err = 0;
5825         unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5826                 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5827                 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5828                 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5829         };
5830         bool quota_mopt[EXT4_MAXQUOTAS] = {
5831                 test_opt(sb, USRQUOTA),
5832                 test_opt(sb, GRPQUOTA),
5833                 test_opt(sb, PRJQUOTA),
5834         };
5835
5836         sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5837         for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5838                 if (qf_inums[type]) {
5839                         err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5840                                 DQUOT_USAGE_ENABLED |
5841                                 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5842                         if (err) {
5843                                 ext4_warning(sb,
5844                                         "Failed to enable quota tracking "
5845                                         "(type=%d, err=%d). Please run "
5846                                         "e2fsck to fix.", type, err);
5847                                 for (type--; type >= 0; type--)
5848                                         dquot_quota_off(sb, type);
5849
5850                                 return err;
5851                         }
5852                 }
5853         }
5854         return 0;
5855 }
5856
5857 static int ext4_quota_off(struct super_block *sb, int type)
5858 {
5859         struct inode *inode = sb_dqopt(sb)->files[type];
5860         handle_t *handle;
5861         int err;
5862
5863         /* Force all delayed allocation blocks to be allocated.
5864          * Caller already holds s_umount sem */
5865         if (test_opt(sb, DELALLOC))
5866                 sync_filesystem(sb);
5867
5868         if (!inode || !igrab(inode))
5869                 goto out;
5870
5871         err = dquot_quota_off(sb, type);
5872         if (err || ext4_has_feature_quota(sb))
5873                 goto out_put;
5874
5875         inode_lock(inode);
5876         /*
5877          * Update modification times of quota files when userspace can
5878          * start looking at them. If we fail, we return success anyway since
5879          * this is not a hard failure and quotas are already disabled.
5880          */
5881         handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5882         if (IS_ERR(handle))
5883                 goto out_unlock;
5884         EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5885         inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5886         inode->i_mtime = inode->i_ctime = current_time(inode);
5887         ext4_mark_inode_dirty(handle, inode);
5888         ext4_journal_stop(handle);
5889 out_unlock:
5890         inode_unlock(inode);
5891 out_put:
5892         lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5893         iput(inode);
5894         return err;
5895 out:
5896         return dquot_quota_off(sb, type);
5897 }
5898
5899 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5900  * acquiring the locks... As quota files are never truncated and quota code
5901  * itself serializes the operations (and no one else should touch the files)
5902  * we don't have to be afraid of races */
5903 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5904                                size_t len, loff_t off)
5905 {
5906         struct inode *inode = sb_dqopt(sb)->files[type];
5907         ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5908         int offset = off & (sb->s_blocksize - 1);
5909         int tocopy;
5910         size_t toread;
5911         struct buffer_head *bh;
5912         loff_t i_size = i_size_read(inode);
5913
5914         if (off > i_size)
5915                 return 0;
5916         if (off+len > i_size)
5917                 len = i_size-off;
5918         toread = len;
5919         while (toread > 0) {
5920                 tocopy = sb->s_blocksize - offset < toread ?
5921                                 sb->s_blocksize - offset : toread;
5922                 bh = ext4_bread(NULL, inode, blk, 0);
5923                 if (IS_ERR(bh))
5924                         return PTR_ERR(bh);
5925                 if (!bh)        /* A hole? */
5926                         memset(data, 0, tocopy);
5927                 else
5928                         memcpy(data, bh->b_data+offset, tocopy);
5929                 brelse(bh);
5930                 offset = 0;
5931                 toread -= tocopy;
5932                 data += tocopy;
5933                 blk++;
5934         }
5935         return len;
5936 }
5937
5938 /* Write to quotafile (we know the transaction is already started and has
5939  * enough credits) */
5940 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5941                                 const char *data, size_t len, loff_t off)
5942 {
5943         struct inode *inode = sb_dqopt(sb)->files[type];
5944         ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5945         int err, offset = off & (sb->s_blocksize - 1);
5946         int retries = 0;
5947         struct buffer_head *bh;
5948         handle_t *handle = journal_current_handle();
5949
5950         if (EXT4_SB(sb)->s_journal && !handle) {
5951                 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5952                         " cancelled because transaction is not started",
5953                         (unsigned long long)off, (unsigned long long)len);
5954                 return -EIO;
5955         }
5956         /*
5957          * Since we account only one data block in transaction credits,
5958          * then it is impossible to cross a block boundary.
5959          */
5960         if (sb->s_blocksize - offset < len) {
5961                 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5962                         " cancelled because not block aligned",
5963                         (unsigned long long)off, (unsigned long long)len);
5964                 return -EIO;
5965         }
5966
5967         do {
5968                 bh = ext4_bread(handle, inode, blk,
5969                                 EXT4_GET_BLOCKS_CREATE |
5970                                 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5971         } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5972                  ext4_should_retry_alloc(inode->i_sb, &retries));
5973         if (IS_ERR(bh))
5974                 return PTR_ERR(bh);
5975         if (!bh)
5976                 goto out;
5977         BUFFER_TRACE(bh, "get write access");
5978         err = ext4_journal_get_write_access(handle, bh);
5979         if (err) {
5980                 brelse(bh);
5981                 return err;
5982         }
5983         lock_buffer(bh);
5984         memcpy(bh->b_data+offset, data, len);
5985         flush_dcache_page(bh->b_page);
5986         unlock_buffer(bh);
5987         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5988         brelse(bh);
5989 out:
5990         if (inode->i_size < off + len) {
5991                 i_size_write(inode, off + len);
5992                 EXT4_I(inode)->i_disksize = inode->i_size;
5993                 ext4_mark_inode_dirty(handle, inode);
5994         }
5995         return len;
5996 }
5997
5998 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5999 {
6000         const struct quota_format_ops   *ops;
6001
6002         if (!sb_has_quota_loaded(sb, qid->type))
6003                 return -ESRCH;
6004         ops = sb_dqopt(sb)->ops[qid->type];
6005         if (!ops || !ops->get_next_id)
6006                 return -ENOSYS;
6007         return dquot_get_next_id(sb, qid);
6008 }
6009 #endif
6010
6011 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6012                        const char *dev_name, void *data)
6013 {
6014         return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6015 }
6016
6017 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6018 static inline void register_as_ext2(void)
6019 {
6020         int err = register_filesystem(&ext2_fs_type);
6021         if (err)
6022                 printk(KERN_WARNING
6023                        "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6024 }
6025
6026 static inline void unregister_as_ext2(void)
6027 {
6028         unregister_filesystem(&ext2_fs_type);
6029 }
6030
6031 static inline int ext2_feature_set_ok(struct super_block *sb)
6032 {
6033         if (ext4_has_unknown_ext2_incompat_features(sb))
6034                 return 0;
6035         if (sb_rdonly(sb))
6036                 return 1;
6037         if (ext4_has_unknown_ext2_ro_compat_features(sb))
6038                 return 0;
6039         return 1;
6040 }
6041 #else
6042 static inline void register_as_ext2(void) { }
6043 static inline void unregister_as_ext2(void) { }
6044 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6045 #endif
6046
6047 static inline void register_as_ext3(void)
6048 {
6049         int err = register_filesystem(&ext3_fs_type);
6050         if (err)
6051                 printk(KERN_WARNING
6052                        "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6053 }
6054
6055 static inline void unregister_as_ext3(void)
6056 {
6057         unregister_filesystem(&ext3_fs_type);
6058 }
6059
6060 static inline int ext3_feature_set_ok(struct super_block *sb)
6061 {
6062         if (ext4_has_unknown_ext3_incompat_features(sb))
6063                 return 0;
6064         if (!ext4_has_feature_journal(sb))
6065                 return 0;
6066         if (sb_rdonly(sb))
6067                 return 1;
6068         if (ext4_has_unknown_ext3_ro_compat_features(sb))
6069                 return 0;
6070         return 1;
6071 }
6072
6073 static struct file_system_type ext4_fs_type = {
6074         .owner          = THIS_MODULE,
6075         .name           = "ext4",
6076         .mount          = ext4_mount,
6077         .kill_sb        = kill_block_super,
6078         .fs_flags       = FS_REQUIRES_DEV,
6079 };
6080 MODULE_ALIAS_FS("ext4");
6081
6082 /* Shared across all ext4 file systems */
6083 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6084
6085 static int __init ext4_init_fs(void)
6086 {
6087         int i, err;
6088
6089         ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6090         ext4_li_info = NULL;
6091         mutex_init(&ext4_li_mtx);
6092
6093         /* Build-time check for flags consistency */
6094         ext4_check_flag_values();
6095
6096         for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6097                 init_waitqueue_head(&ext4__ioend_wq[i]);
6098
6099         err = ext4_init_es();
6100         if (err)
6101                 return err;
6102
6103         err = ext4_init_pending();
6104         if (err)
6105                 goto out6;
6106
6107         err = ext4_init_pageio();
6108         if (err)
6109                 goto out5;
6110
6111         err = ext4_init_system_zone();
6112         if (err)
6113                 goto out4;
6114
6115         err = ext4_init_sysfs();
6116         if (err)
6117                 goto out3;
6118
6119         err = ext4_init_mballoc();
6120         if (err)
6121                 goto out2;
6122         err = init_inodecache();
6123         if (err)
6124                 goto out1;
6125         register_as_ext3();
6126         register_as_ext2();
6127         err = register_filesystem(&ext4_fs_type);
6128         if (err)
6129                 goto out;
6130
6131         return 0;
6132 out:
6133         unregister_as_ext2();
6134         unregister_as_ext3();
6135         destroy_inodecache();
6136 out1:
6137         ext4_exit_mballoc();
6138 out2:
6139         ext4_exit_sysfs();
6140 out3:
6141         ext4_exit_system_zone();
6142 out4:
6143         ext4_exit_pageio();
6144 out5:
6145         ext4_exit_pending();
6146 out6:
6147         ext4_exit_es();
6148
6149         return err;
6150 }
6151
6152 static void __exit ext4_exit_fs(void)
6153 {
6154         ext4_destroy_lazyinit_thread();
6155         unregister_as_ext2();
6156         unregister_as_ext3();
6157         unregister_filesystem(&ext4_fs_type);
6158         destroy_inodecache();
6159         ext4_exit_mballoc();
6160         ext4_exit_sysfs();
6161         ext4_exit_system_zone();
6162         ext4_exit_pageio();
6163         ext4_exit_es();
6164         ext4_exit_pending();
6165 }
6166
6167 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6168 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6169 MODULE_LICENSE("GPL");
6170 MODULE_SOFTDEP("pre: crc32c");
6171 module_init(ext4_init_fs)
6172 module_exit(ext4_exit_fs)