]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/f2fs/checkpoint.c
Merge tag 'f2fs-for-4.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeu...
[linux.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31         set_ckpt_flags(sbi, CP_ERROR_FLAG);
32         if (!end_io)
33                 f2fs_flush_merged_writes(sbi);
34 }
35
36 /*
37  * We guarantee no failure on the returned page.
38  */
39 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
40 {
41         struct address_space *mapping = META_MAPPING(sbi);
42         struct page *page = NULL;
43 repeat:
44         page = f2fs_grab_cache_page(mapping, index, false);
45         if (!page) {
46                 cond_resched();
47                 goto repeat;
48         }
49         f2fs_wait_on_page_writeback(page, META, true);
50         if (!PageUptodate(page))
51                 SetPageUptodate(page);
52         return page;
53 }
54
55 /*
56  * We guarantee no failure on the returned page.
57  */
58 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
59                                                         bool is_meta)
60 {
61         struct address_space *mapping = META_MAPPING(sbi);
62         struct page *page;
63         struct f2fs_io_info fio = {
64                 .sbi = sbi,
65                 .type = META,
66                 .op = REQ_OP_READ,
67                 .op_flags = REQ_META | REQ_PRIO,
68                 .old_blkaddr = index,
69                 .new_blkaddr = index,
70                 .encrypted_page = NULL,
71         };
72
73         if (unlikely(!is_meta))
74                 fio.op_flags &= ~REQ_META;
75 repeat:
76         page = f2fs_grab_cache_page(mapping, index, false);
77         if (!page) {
78                 cond_resched();
79                 goto repeat;
80         }
81         if (PageUptodate(page))
82                 goto out;
83
84         fio.page = page;
85
86         if (f2fs_submit_page_bio(&fio)) {
87                 f2fs_put_page(page, 1);
88                 goto repeat;
89         }
90
91         lock_page(page);
92         if (unlikely(page->mapping != mapping)) {
93                 f2fs_put_page(page, 1);
94                 goto repeat;
95         }
96
97         /*
98          * if there is any IO error when accessing device, make our filesystem
99          * readonly and make sure do not write checkpoint with non-uptodate
100          * meta page.
101          */
102         if (unlikely(!PageUptodate(page)))
103                 f2fs_stop_checkpoint(sbi, false);
104 out:
105         return page;
106 }
107
108 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
109 {
110         return __get_meta_page(sbi, index, true);
111 }
112
113 /* for POR only */
114 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
115 {
116         return __get_meta_page(sbi, index, false);
117 }
118
119 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
120 {
121         switch (type) {
122         case META_NAT:
123                 break;
124         case META_SIT:
125                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
126                         return false;
127                 break;
128         case META_SSA:
129                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
130                         blkaddr < SM_I(sbi)->ssa_blkaddr))
131                         return false;
132                 break;
133         case META_CP:
134                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
135                         blkaddr < __start_cp_addr(sbi)))
136                         return false;
137                 break;
138         case META_POR:
139                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
140                         blkaddr < MAIN_BLKADDR(sbi)))
141                         return false;
142                 break;
143         default:
144                 BUG();
145         }
146
147         return true;
148 }
149
150 /*
151  * Readahead CP/NAT/SIT/SSA pages
152  */
153 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
154                                                         int type, bool sync)
155 {
156         struct page *page;
157         block_t blkno = start;
158         struct f2fs_io_info fio = {
159                 .sbi = sbi,
160                 .type = META,
161                 .op = REQ_OP_READ,
162                 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
163                 .encrypted_page = NULL,
164                 .in_list = false,
165         };
166         struct blk_plug plug;
167
168         if (unlikely(type == META_POR))
169                 fio.op_flags &= ~REQ_META;
170
171         blk_start_plug(&plug);
172         for (; nrpages-- > 0; blkno++) {
173
174                 if (!is_valid_blkaddr(sbi, blkno, type))
175                         goto out;
176
177                 switch (type) {
178                 case META_NAT:
179                         if (unlikely(blkno >=
180                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
181                                 blkno = 0;
182                         /* get nat block addr */
183                         fio.new_blkaddr = current_nat_addr(sbi,
184                                         blkno * NAT_ENTRY_PER_BLOCK);
185                         break;
186                 case META_SIT:
187                         /* get sit block addr */
188                         fio.new_blkaddr = current_sit_addr(sbi,
189                                         blkno * SIT_ENTRY_PER_BLOCK);
190                         break;
191                 case META_SSA:
192                 case META_CP:
193                 case META_POR:
194                         fio.new_blkaddr = blkno;
195                         break;
196                 default:
197                         BUG();
198                 }
199
200                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
201                                                 fio.new_blkaddr, false);
202                 if (!page)
203                         continue;
204                 if (PageUptodate(page)) {
205                         f2fs_put_page(page, 1);
206                         continue;
207                 }
208
209                 fio.page = page;
210                 f2fs_submit_page_bio(&fio);
211                 f2fs_put_page(page, 0);
212         }
213 out:
214         blk_finish_plug(&plug);
215         return blkno - start;
216 }
217
218 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
219 {
220         struct page *page;
221         bool readahead = false;
222
223         page = find_get_page(META_MAPPING(sbi), index);
224         if (!page || !PageUptodate(page))
225                 readahead = true;
226         f2fs_put_page(page, 0);
227
228         if (readahead)
229                 ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
230 }
231
232 static int __f2fs_write_meta_page(struct page *page,
233                                 struct writeback_control *wbc,
234                                 enum iostat_type io_type)
235 {
236         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
237
238         trace_f2fs_writepage(page, META);
239
240         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
241                 goto redirty_out;
242         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
243                 goto redirty_out;
244         if (unlikely(f2fs_cp_error(sbi)))
245                 goto redirty_out;
246
247         write_meta_page(sbi, page, io_type);
248         dec_page_count(sbi, F2FS_DIRTY_META);
249
250         if (wbc->for_reclaim)
251                 f2fs_submit_merged_write_cond(sbi, page->mapping->host,
252                                                 0, page->index, META);
253
254         unlock_page(page);
255
256         if (unlikely(f2fs_cp_error(sbi)))
257                 f2fs_submit_merged_write(sbi, META);
258
259         return 0;
260
261 redirty_out:
262         redirty_page_for_writepage(wbc, page);
263         return AOP_WRITEPAGE_ACTIVATE;
264 }
265
266 static int f2fs_write_meta_page(struct page *page,
267                                 struct writeback_control *wbc)
268 {
269         return __f2fs_write_meta_page(page, wbc, FS_META_IO);
270 }
271
272 static int f2fs_write_meta_pages(struct address_space *mapping,
273                                 struct writeback_control *wbc)
274 {
275         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
276         long diff, written;
277
278         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
279                 goto skip_write;
280
281         /* collect a number of dirty meta pages and write together */
282         if (wbc->for_kupdate ||
283                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
284                 goto skip_write;
285
286         /* if locked failed, cp will flush dirty pages instead */
287         if (!mutex_trylock(&sbi->cp_mutex))
288                 goto skip_write;
289
290         trace_f2fs_writepages(mapping->host, wbc, META);
291         diff = nr_pages_to_write(sbi, META, wbc);
292         written = sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
293         mutex_unlock(&sbi->cp_mutex);
294         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
295         return 0;
296
297 skip_write:
298         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
299         trace_f2fs_writepages(mapping->host, wbc, META);
300         return 0;
301 }
302
303 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
304                                 long nr_to_write, enum iostat_type io_type)
305 {
306         struct address_space *mapping = META_MAPPING(sbi);
307         pgoff_t index = 0, prev = ULONG_MAX;
308         struct pagevec pvec;
309         long nwritten = 0;
310         int nr_pages;
311         struct writeback_control wbc = {
312                 .for_reclaim = 0,
313         };
314         struct blk_plug plug;
315
316         pagevec_init(&pvec);
317
318         blk_start_plug(&plug);
319
320         while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
321                                 PAGECACHE_TAG_DIRTY))) {
322                 int i;
323
324                 for (i = 0; i < nr_pages; i++) {
325                         struct page *page = pvec.pages[i];
326
327                         if (prev == ULONG_MAX)
328                                 prev = page->index - 1;
329                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
330                                 pagevec_release(&pvec);
331                                 goto stop;
332                         }
333
334                         lock_page(page);
335
336                         if (unlikely(page->mapping != mapping)) {
337 continue_unlock:
338                                 unlock_page(page);
339                                 continue;
340                         }
341                         if (!PageDirty(page)) {
342                                 /* someone wrote it for us */
343                                 goto continue_unlock;
344                         }
345
346                         f2fs_wait_on_page_writeback(page, META, true);
347
348                         BUG_ON(PageWriteback(page));
349                         if (!clear_page_dirty_for_io(page))
350                                 goto continue_unlock;
351
352                         if (__f2fs_write_meta_page(page, &wbc, io_type)) {
353                                 unlock_page(page);
354                                 break;
355                         }
356                         nwritten++;
357                         prev = page->index;
358                         if (unlikely(nwritten >= nr_to_write))
359                                 break;
360                 }
361                 pagevec_release(&pvec);
362                 cond_resched();
363         }
364 stop:
365         if (nwritten)
366                 f2fs_submit_merged_write(sbi, type);
367
368         blk_finish_plug(&plug);
369
370         return nwritten;
371 }
372
373 static int f2fs_set_meta_page_dirty(struct page *page)
374 {
375         trace_f2fs_set_page_dirty(page, META);
376
377         if (!PageUptodate(page))
378                 SetPageUptodate(page);
379         if (!PageDirty(page)) {
380                 f2fs_set_page_dirty_nobuffers(page);
381                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
382                 SetPagePrivate(page);
383                 f2fs_trace_pid(page);
384                 return 1;
385         }
386         return 0;
387 }
388
389 const struct address_space_operations f2fs_meta_aops = {
390         .writepage      = f2fs_write_meta_page,
391         .writepages     = f2fs_write_meta_pages,
392         .set_page_dirty = f2fs_set_meta_page_dirty,
393         .invalidatepage = f2fs_invalidate_page,
394         .releasepage    = f2fs_release_page,
395 #ifdef CONFIG_MIGRATION
396         .migratepage    = f2fs_migrate_page,
397 #endif
398 };
399
400 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
401                                                 unsigned int devidx, int type)
402 {
403         struct inode_management *im = &sbi->im[type];
404         struct ino_entry *e, *tmp;
405
406         tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
407
408         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
409
410         spin_lock(&im->ino_lock);
411         e = radix_tree_lookup(&im->ino_root, ino);
412         if (!e) {
413                 e = tmp;
414                 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
415                         f2fs_bug_on(sbi, 1);
416
417                 memset(e, 0, sizeof(struct ino_entry));
418                 e->ino = ino;
419
420                 list_add_tail(&e->list, &im->ino_list);
421                 if (type != ORPHAN_INO)
422                         im->ino_num++;
423         }
424
425         if (type == FLUSH_INO)
426                 f2fs_set_bit(devidx, (char *)&e->dirty_device);
427
428         spin_unlock(&im->ino_lock);
429         radix_tree_preload_end();
430
431         if (e != tmp)
432                 kmem_cache_free(ino_entry_slab, tmp);
433 }
434
435 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
436 {
437         struct inode_management *im = &sbi->im[type];
438         struct ino_entry *e;
439
440         spin_lock(&im->ino_lock);
441         e = radix_tree_lookup(&im->ino_root, ino);
442         if (e) {
443                 list_del(&e->list);
444                 radix_tree_delete(&im->ino_root, ino);
445                 im->ino_num--;
446                 spin_unlock(&im->ino_lock);
447                 kmem_cache_free(ino_entry_slab, e);
448                 return;
449         }
450         spin_unlock(&im->ino_lock);
451 }
452
453 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
454 {
455         /* add new dirty ino entry into list */
456         __add_ino_entry(sbi, ino, 0, type);
457 }
458
459 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
460 {
461         /* remove dirty ino entry from list */
462         __remove_ino_entry(sbi, ino, type);
463 }
464
465 /* mode should be APPEND_INO or UPDATE_INO */
466 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
467 {
468         struct inode_management *im = &sbi->im[mode];
469         struct ino_entry *e;
470
471         spin_lock(&im->ino_lock);
472         e = radix_tree_lookup(&im->ino_root, ino);
473         spin_unlock(&im->ino_lock);
474         return e ? true : false;
475 }
476
477 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
478 {
479         struct ino_entry *e, *tmp;
480         int i;
481
482         for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
483                 struct inode_management *im = &sbi->im[i];
484
485                 spin_lock(&im->ino_lock);
486                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
487                         list_del(&e->list);
488                         radix_tree_delete(&im->ino_root, e->ino);
489                         kmem_cache_free(ino_entry_slab, e);
490                         im->ino_num--;
491                 }
492                 spin_unlock(&im->ino_lock);
493         }
494 }
495
496 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
497                                         unsigned int devidx, int type)
498 {
499         __add_ino_entry(sbi, ino, devidx, type);
500 }
501
502 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
503                                         unsigned int devidx, int type)
504 {
505         struct inode_management *im = &sbi->im[type];
506         struct ino_entry *e;
507         bool is_dirty = false;
508
509         spin_lock(&im->ino_lock);
510         e = radix_tree_lookup(&im->ino_root, ino);
511         if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
512                 is_dirty = true;
513         spin_unlock(&im->ino_lock);
514         return is_dirty;
515 }
516
517 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
518 {
519         struct inode_management *im = &sbi->im[ORPHAN_INO];
520         int err = 0;
521
522         spin_lock(&im->ino_lock);
523
524 #ifdef CONFIG_F2FS_FAULT_INJECTION
525         if (time_to_inject(sbi, FAULT_ORPHAN)) {
526                 spin_unlock(&im->ino_lock);
527                 f2fs_show_injection_info(FAULT_ORPHAN);
528                 return -ENOSPC;
529         }
530 #endif
531         if (unlikely(im->ino_num >= sbi->max_orphans))
532                 err = -ENOSPC;
533         else
534                 im->ino_num++;
535         spin_unlock(&im->ino_lock);
536
537         return err;
538 }
539
540 void release_orphan_inode(struct f2fs_sb_info *sbi)
541 {
542         struct inode_management *im = &sbi->im[ORPHAN_INO];
543
544         spin_lock(&im->ino_lock);
545         f2fs_bug_on(sbi, im->ino_num == 0);
546         im->ino_num--;
547         spin_unlock(&im->ino_lock);
548 }
549
550 void add_orphan_inode(struct inode *inode)
551 {
552         /* add new orphan ino entry into list */
553         __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
554         update_inode_page(inode);
555 }
556
557 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
558 {
559         /* remove orphan entry from orphan list */
560         __remove_ino_entry(sbi, ino, ORPHAN_INO);
561 }
562
563 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
564 {
565         struct inode *inode;
566         struct node_info ni;
567         int err = acquire_orphan_inode(sbi);
568
569         if (err) {
570                 set_sbi_flag(sbi, SBI_NEED_FSCK);
571                 f2fs_msg(sbi->sb, KERN_WARNING,
572                                 "%s: orphan failed (ino=%x), run fsck to fix.",
573                                 __func__, ino);
574                 return err;
575         }
576
577         __add_ino_entry(sbi, ino, 0, ORPHAN_INO);
578
579         inode = f2fs_iget_retry(sbi->sb, ino);
580         if (IS_ERR(inode)) {
581                 /*
582                  * there should be a bug that we can't find the entry
583                  * to orphan inode.
584                  */
585                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
586                 return PTR_ERR(inode);
587         }
588
589         clear_nlink(inode);
590
591         /* truncate all the data during iput */
592         iput(inode);
593
594         get_node_info(sbi, ino, &ni);
595
596         /* ENOMEM was fully retried in f2fs_evict_inode. */
597         if (ni.blk_addr != NULL_ADDR) {
598                 set_sbi_flag(sbi, SBI_NEED_FSCK);
599                 f2fs_msg(sbi->sb, KERN_WARNING,
600                         "%s: orphan failed (ino=%x) by kernel, retry mount.",
601                                 __func__, ino);
602                 return -EIO;
603         }
604         __remove_ino_entry(sbi, ino, ORPHAN_INO);
605         return 0;
606 }
607
608 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
609 {
610         block_t start_blk, orphan_blocks, i, j;
611         unsigned int s_flags = sbi->sb->s_flags;
612         int err = 0;
613 #ifdef CONFIG_QUOTA
614         int quota_enabled;
615 #endif
616
617         if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
618                 return 0;
619
620         if (s_flags & MS_RDONLY) {
621                 f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
622                 sbi->sb->s_flags &= ~MS_RDONLY;
623         }
624
625 #ifdef CONFIG_QUOTA
626         /* Needed for iput() to work correctly and not trash data */
627         sbi->sb->s_flags |= MS_ACTIVE;
628
629         /* Turn on quotas so that they are updated correctly */
630         quota_enabled = f2fs_enable_quota_files(sbi, s_flags & MS_RDONLY);
631 #endif
632
633         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
634         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
635
636         ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
637
638         for (i = 0; i < orphan_blocks; i++) {
639                 struct page *page = get_meta_page(sbi, start_blk + i);
640                 struct f2fs_orphan_block *orphan_blk;
641
642                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
643                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
644                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
645                         err = recover_orphan_inode(sbi, ino);
646                         if (err) {
647                                 f2fs_put_page(page, 1);
648                                 goto out;
649                         }
650                 }
651                 f2fs_put_page(page, 1);
652         }
653         /* clear Orphan Flag */
654         clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
655 out:
656 #ifdef CONFIG_QUOTA
657         /* Turn quotas off */
658         if (quota_enabled)
659                 f2fs_quota_off_umount(sbi->sb);
660 #endif
661         sbi->sb->s_flags = s_flags; /* Restore MS_RDONLY status */
662
663         return err;
664 }
665
666 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
667 {
668         struct list_head *head;
669         struct f2fs_orphan_block *orphan_blk = NULL;
670         unsigned int nentries = 0;
671         unsigned short index = 1;
672         unsigned short orphan_blocks;
673         struct page *page = NULL;
674         struct ino_entry *orphan = NULL;
675         struct inode_management *im = &sbi->im[ORPHAN_INO];
676
677         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
678
679         /*
680          * we don't need to do spin_lock(&im->ino_lock) here, since all the
681          * orphan inode operations are covered under f2fs_lock_op().
682          * And, spin_lock should be avoided due to page operations below.
683          */
684         head = &im->ino_list;
685
686         /* loop for each orphan inode entry and write them in Jornal block */
687         list_for_each_entry(orphan, head, list) {
688                 if (!page) {
689                         page = grab_meta_page(sbi, start_blk++);
690                         orphan_blk =
691                                 (struct f2fs_orphan_block *)page_address(page);
692                         memset(orphan_blk, 0, sizeof(*orphan_blk));
693                 }
694
695                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
696
697                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
698                         /*
699                          * an orphan block is full of 1020 entries,
700                          * then we need to flush current orphan blocks
701                          * and bring another one in memory
702                          */
703                         orphan_blk->blk_addr = cpu_to_le16(index);
704                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
705                         orphan_blk->entry_count = cpu_to_le32(nentries);
706                         set_page_dirty(page);
707                         f2fs_put_page(page, 1);
708                         index++;
709                         nentries = 0;
710                         page = NULL;
711                 }
712         }
713
714         if (page) {
715                 orphan_blk->blk_addr = cpu_to_le16(index);
716                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
717                 orphan_blk->entry_count = cpu_to_le32(nentries);
718                 set_page_dirty(page);
719                 f2fs_put_page(page, 1);
720         }
721 }
722
723 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
724                 struct f2fs_checkpoint **cp_block, struct page **cp_page,
725                 unsigned long long *version)
726 {
727         unsigned long blk_size = sbi->blocksize;
728         size_t crc_offset = 0;
729         __u32 crc = 0;
730
731         *cp_page = get_meta_page(sbi, cp_addr);
732         *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
733
734         crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
735         if (crc_offset > (blk_size - sizeof(__le32))) {
736                 f2fs_msg(sbi->sb, KERN_WARNING,
737                         "invalid crc_offset: %zu", crc_offset);
738                 return -EINVAL;
739         }
740
741         crc = cur_cp_crc(*cp_block);
742         if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
743                 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
744                 return -EINVAL;
745         }
746
747         *version = cur_cp_version(*cp_block);
748         return 0;
749 }
750
751 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
752                                 block_t cp_addr, unsigned long long *version)
753 {
754         struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
755         struct f2fs_checkpoint *cp_block = NULL;
756         unsigned long long cur_version = 0, pre_version = 0;
757         int err;
758
759         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
760                                         &cp_page_1, version);
761         if (err)
762                 goto invalid_cp1;
763         pre_version = *version;
764
765         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
766         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
767                                         &cp_page_2, version);
768         if (err)
769                 goto invalid_cp2;
770         cur_version = *version;
771
772         if (cur_version == pre_version) {
773                 *version = cur_version;
774                 f2fs_put_page(cp_page_2, 1);
775                 return cp_page_1;
776         }
777 invalid_cp2:
778         f2fs_put_page(cp_page_2, 1);
779 invalid_cp1:
780         f2fs_put_page(cp_page_1, 1);
781         return NULL;
782 }
783
784 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
785 {
786         struct f2fs_checkpoint *cp_block;
787         struct f2fs_super_block *fsb = sbi->raw_super;
788         struct page *cp1, *cp2, *cur_page;
789         unsigned long blk_size = sbi->blocksize;
790         unsigned long long cp1_version = 0, cp2_version = 0;
791         unsigned long long cp_start_blk_no;
792         unsigned int cp_blks = 1 + __cp_payload(sbi);
793         block_t cp_blk_no;
794         int i;
795
796         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
797         if (!sbi->ckpt)
798                 return -ENOMEM;
799         /*
800          * Finding out valid cp block involves read both
801          * sets( cp pack1 and cp pack 2)
802          */
803         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
804         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
805
806         /* The second checkpoint pack should start at the next segment */
807         cp_start_blk_no += ((unsigned long long)1) <<
808                                 le32_to_cpu(fsb->log_blocks_per_seg);
809         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
810
811         if (cp1 && cp2) {
812                 if (ver_after(cp2_version, cp1_version))
813                         cur_page = cp2;
814                 else
815                         cur_page = cp1;
816         } else if (cp1) {
817                 cur_page = cp1;
818         } else if (cp2) {
819                 cur_page = cp2;
820         } else {
821                 goto fail_no_cp;
822         }
823
824         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
825         memcpy(sbi->ckpt, cp_block, blk_size);
826
827         /* Sanity checking of checkpoint */
828         if (sanity_check_ckpt(sbi))
829                 goto free_fail_no_cp;
830
831         if (cur_page == cp1)
832                 sbi->cur_cp_pack = 1;
833         else
834                 sbi->cur_cp_pack = 2;
835
836         if (cp_blks <= 1)
837                 goto done;
838
839         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
840         if (cur_page == cp2)
841                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
842
843         for (i = 1; i < cp_blks; i++) {
844                 void *sit_bitmap_ptr;
845                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
846
847                 cur_page = get_meta_page(sbi, cp_blk_no + i);
848                 sit_bitmap_ptr = page_address(cur_page);
849                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
850                 f2fs_put_page(cur_page, 1);
851         }
852 done:
853         f2fs_put_page(cp1, 1);
854         f2fs_put_page(cp2, 1);
855         return 0;
856
857 free_fail_no_cp:
858         f2fs_put_page(cp1, 1);
859         f2fs_put_page(cp2, 1);
860 fail_no_cp:
861         kfree(sbi->ckpt);
862         return -EINVAL;
863 }
864
865 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
866 {
867         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
868         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
869
870         if (is_inode_flag_set(inode, flag))
871                 return;
872
873         set_inode_flag(inode, flag);
874         if (!f2fs_is_volatile_file(inode))
875                 list_add_tail(&F2FS_I(inode)->dirty_list,
876                                                 &sbi->inode_list[type]);
877         stat_inc_dirty_inode(sbi, type);
878 }
879
880 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
881 {
882         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
883
884         if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
885                 return;
886
887         list_del_init(&F2FS_I(inode)->dirty_list);
888         clear_inode_flag(inode, flag);
889         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
890 }
891
892 void update_dirty_page(struct inode *inode, struct page *page)
893 {
894         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
895         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
896
897         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
898                         !S_ISLNK(inode->i_mode))
899                 return;
900
901         spin_lock(&sbi->inode_lock[type]);
902         if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
903                 __add_dirty_inode(inode, type);
904         inode_inc_dirty_pages(inode);
905         spin_unlock(&sbi->inode_lock[type]);
906
907         SetPagePrivate(page);
908         f2fs_trace_pid(page);
909 }
910
911 void remove_dirty_inode(struct inode *inode)
912 {
913         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
914         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
915
916         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
917                         !S_ISLNK(inode->i_mode))
918                 return;
919
920         if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
921                 return;
922
923         spin_lock(&sbi->inode_lock[type]);
924         __remove_dirty_inode(inode, type);
925         spin_unlock(&sbi->inode_lock[type]);
926 }
927
928 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
929 {
930         struct list_head *head;
931         struct inode *inode;
932         struct f2fs_inode_info *fi;
933         bool is_dir = (type == DIR_INODE);
934         unsigned long ino = 0;
935
936         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
937                                 get_pages(sbi, is_dir ?
938                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
939 retry:
940         if (unlikely(f2fs_cp_error(sbi)))
941                 return -EIO;
942
943         spin_lock(&sbi->inode_lock[type]);
944
945         head = &sbi->inode_list[type];
946         if (list_empty(head)) {
947                 spin_unlock(&sbi->inode_lock[type]);
948                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
949                                 get_pages(sbi, is_dir ?
950                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
951                 return 0;
952         }
953         fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
954         inode = igrab(&fi->vfs_inode);
955         spin_unlock(&sbi->inode_lock[type]);
956         if (inode) {
957                 unsigned long cur_ino = inode->i_ino;
958
959                 if (is_dir)
960                         F2FS_I(inode)->cp_task = current;
961
962                 filemap_fdatawrite(inode->i_mapping);
963
964                 if (is_dir)
965                         F2FS_I(inode)->cp_task = NULL;
966
967                 iput(inode);
968                 /* We need to give cpu to another writers. */
969                 if (ino == cur_ino) {
970                         congestion_wait(BLK_RW_ASYNC, HZ/50);
971                         cond_resched();
972                 } else {
973                         ino = cur_ino;
974                 }
975         } else {
976                 /*
977                  * We should submit bio, since it exists several
978                  * wribacking dentry pages in the freeing inode.
979                  */
980                 f2fs_submit_merged_write(sbi, DATA);
981                 cond_resched();
982         }
983         goto retry;
984 }
985
986 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
987 {
988         struct list_head *head = &sbi->inode_list[DIRTY_META];
989         struct inode *inode;
990         struct f2fs_inode_info *fi;
991         s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
992
993         while (total--) {
994                 if (unlikely(f2fs_cp_error(sbi)))
995                         return -EIO;
996
997                 spin_lock(&sbi->inode_lock[DIRTY_META]);
998                 if (list_empty(head)) {
999                         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1000                         return 0;
1001                 }
1002                 fi = list_first_entry(head, struct f2fs_inode_info,
1003                                                         gdirty_list);
1004                 inode = igrab(&fi->vfs_inode);
1005                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1006                 if (inode) {
1007                         sync_inode_metadata(inode, 0);
1008
1009                         /* it's on eviction */
1010                         if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1011                                 update_inode_page(inode);
1012                         iput(inode);
1013                 }
1014         }
1015         return 0;
1016 }
1017
1018 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1019 {
1020         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1021         struct f2fs_nm_info *nm_i = NM_I(sbi);
1022         nid_t last_nid = nm_i->next_scan_nid;
1023
1024         next_free_nid(sbi, &last_nid);
1025         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1026         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1027         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1028         ckpt->next_free_nid = cpu_to_le32(last_nid);
1029 }
1030
1031 /*
1032  * Freeze all the FS-operations for checkpoint.
1033  */
1034 static int block_operations(struct f2fs_sb_info *sbi)
1035 {
1036         struct writeback_control wbc = {
1037                 .sync_mode = WB_SYNC_ALL,
1038                 .nr_to_write = LONG_MAX,
1039                 .for_reclaim = 0,
1040         };
1041         struct blk_plug plug;
1042         int err = 0;
1043
1044         blk_start_plug(&plug);
1045
1046 retry_flush_dents:
1047         f2fs_lock_all(sbi);
1048         /* write all the dirty dentry pages */
1049         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1050                 f2fs_unlock_all(sbi);
1051                 err = sync_dirty_inodes(sbi, DIR_INODE);
1052                 if (err)
1053                         goto out;
1054                 cond_resched();
1055                 goto retry_flush_dents;
1056         }
1057
1058         /*
1059          * POR: we should ensure that there are no dirty node pages
1060          * until finishing nat/sit flush. inode->i_blocks can be updated.
1061          */
1062         down_write(&sbi->node_change);
1063
1064         if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1065                 up_write(&sbi->node_change);
1066                 f2fs_unlock_all(sbi);
1067                 err = f2fs_sync_inode_meta(sbi);
1068                 if (err)
1069                         goto out;
1070                 cond_resched();
1071                 goto retry_flush_dents;
1072         }
1073
1074 retry_flush_nodes:
1075         down_write(&sbi->node_write);
1076
1077         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1078                 up_write(&sbi->node_write);
1079                 err = sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1080                 if (err) {
1081                         up_write(&sbi->node_change);
1082                         f2fs_unlock_all(sbi);
1083                         goto out;
1084                 }
1085                 cond_resched();
1086                 goto retry_flush_nodes;
1087         }
1088
1089         /*
1090          * sbi->node_change is used only for AIO write_begin path which produces
1091          * dirty node blocks and some checkpoint values by block allocation.
1092          */
1093         __prepare_cp_block(sbi);
1094         up_write(&sbi->node_change);
1095 out:
1096         blk_finish_plug(&plug);
1097         return err;
1098 }
1099
1100 static void unblock_operations(struct f2fs_sb_info *sbi)
1101 {
1102         up_write(&sbi->node_write);
1103         f2fs_unlock_all(sbi);
1104 }
1105
1106 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1107 {
1108         DEFINE_WAIT(wait);
1109
1110         for (;;) {
1111                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1112
1113                 if (!get_pages(sbi, F2FS_WB_CP_DATA))
1114                         break;
1115
1116                 io_schedule_timeout(5*HZ);
1117         }
1118         finish_wait(&sbi->cp_wait, &wait);
1119 }
1120
1121 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1122 {
1123         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1124         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1125         unsigned long flags;
1126
1127         spin_lock_irqsave(&sbi->cp_lock, flags);
1128
1129         if ((cpc->reason & CP_UMOUNT) &&
1130                         le32_to_cpu(ckpt->cp_pack_total_block_count) >
1131                         sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1132                 disable_nat_bits(sbi, false);
1133
1134         if (cpc->reason & CP_TRIMMED)
1135                 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1136
1137         if (cpc->reason & CP_UMOUNT)
1138                 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1139         else
1140                 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1141
1142         if (cpc->reason & CP_FASTBOOT)
1143                 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1144         else
1145                 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1146
1147         if (orphan_num)
1148                 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1149         else
1150                 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1151
1152         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1153                 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1154
1155         /* set this flag to activate crc|cp_ver for recovery */
1156         __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1157
1158         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1159 }
1160
1161 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1162 {
1163         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1164         struct f2fs_nm_info *nm_i = NM_I(sbi);
1165         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1166         block_t start_blk;
1167         unsigned int data_sum_blocks, orphan_blocks;
1168         __u32 crc32 = 0;
1169         int i;
1170         int cp_payload_blks = __cp_payload(sbi);
1171         struct super_block *sb = sbi->sb;
1172         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1173         u64 kbytes_written;
1174         int err;
1175
1176         /* Flush all the NAT/SIT pages */
1177         while (get_pages(sbi, F2FS_DIRTY_META)) {
1178                 sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1179                 if (unlikely(f2fs_cp_error(sbi)))
1180                         return -EIO;
1181         }
1182
1183         /*
1184          * modify checkpoint
1185          * version number is already updated
1186          */
1187         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1188         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1189         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1190                 ckpt->cur_node_segno[i] =
1191                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1192                 ckpt->cur_node_blkoff[i] =
1193                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1194                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1195                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1196         }
1197         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1198                 ckpt->cur_data_segno[i] =
1199                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1200                 ckpt->cur_data_blkoff[i] =
1201                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1202                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1203                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1204         }
1205
1206         /* 2 cp  + n data seg summary + orphan inode blocks */
1207         data_sum_blocks = npages_for_summary_flush(sbi, false);
1208         spin_lock_irqsave(&sbi->cp_lock, flags);
1209         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1210                 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1211         else
1212                 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1213         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1214
1215         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1216         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1217                         orphan_blocks);
1218
1219         if (__remain_node_summaries(cpc->reason))
1220                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1221                                 cp_payload_blks + data_sum_blocks +
1222                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1223         else
1224                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1225                                 cp_payload_blks + data_sum_blocks +
1226                                 orphan_blocks);
1227
1228         /* update ckpt flag for checkpoint */
1229         update_ckpt_flags(sbi, cpc);
1230
1231         /* update SIT/NAT bitmap */
1232         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1233         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1234
1235         crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1236         *((__le32 *)((unsigned char *)ckpt +
1237                                 le32_to_cpu(ckpt->checksum_offset)))
1238                                 = cpu_to_le32(crc32);
1239
1240         start_blk = __start_cp_next_addr(sbi);
1241
1242         /* write nat bits */
1243         if (enabled_nat_bits(sbi, cpc)) {
1244                 __u64 cp_ver = cur_cp_version(ckpt);
1245                 block_t blk;
1246
1247                 cp_ver |= ((__u64)crc32 << 32);
1248                 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1249
1250                 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1251                 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1252                         update_meta_page(sbi, nm_i->nat_bits +
1253                                         (i << F2FS_BLKSIZE_BITS), blk + i);
1254
1255                 /* Flush all the NAT BITS pages */
1256                 while (get_pages(sbi, F2FS_DIRTY_META)) {
1257                         sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1258                         if (unlikely(f2fs_cp_error(sbi)))
1259                                 return -EIO;
1260                 }
1261         }
1262
1263         /* need to wait for end_io results */
1264         wait_on_all_pages_writeback(sbi);
1265         if (unlikely(f2fs_cp_error(sbi)))
1266                 return -EIO;
1267
1268         /* flush all device cache */
1269         err = f2fs_flush_device_cache(sbi);
1270         if (err)
1271                 return err;
1272
1273         /* write out checkpoint buffer at block 0 */
1274         update_meta_page(sbi, ckpt, start_blk++);
1275
1276         for (i = 1; i < 1 + cp_payload_blks; i++)
1277                 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1278                                                         start_blk++);
1279
1280         if (orphan_num) {
1281                 write_orphan_inodes(sbi, start_blk);
1282                 start_blk += orphan_blocks;
1283         }
1284
1285         write_data_summaries(sbi, start_blk);
1286         start_blk += data_sum_blocks;
1287
1288         /* Record write statistics in the hot node summary */
1289         kbytes_written = sbi->kbytes_written;
1290         if (sb->s_bdev->bd_part)
1291                 kbytes_written += BD_PART_WRITTEN(sbi);
1292
1293         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1294
1295         if (__remain_node_summaries(cpc->reason)) {
1296                 write_node_summaries(sbi, start_blk);
1297                 start_blk += NR_CURSEG_NODE_TYPE;
1298         }
1299
1300         /* writeout checkpoint block */
1301         update_meta_page(sbi, ckpt, start_blk);
1302
1303         /* wait for previous submitted node/meta pages writeback */
1304         wait_on_all_pages_writeback(sbi);
1305
1306         if (unlikely(f2fs_cp_error(sbi)))
1307                 return -EIO;
1308
1309         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1310         filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1311
1312         /* update user_block_counts */
1313         sbi->last_valid_block_count = sbi->total_valid_block_count;
1314         percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1315
1316         /* Here, we only have one bio having CP pack */
1317         sync_meta_pages(sbi, META_FLUSH, LONG_MAX, FS_CP_META_IO);
1318
1319         /* wait for previous submitted meta pages writeback */
1320         wait_on_all_pages_writeback(sbi);
1321
1322         release_ino_entry(sbi, false);
1323
1324         if (unlikely(f2fs_cp_error(sbi)))
1325                 return -EIO;
1326
1327         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1328         clear_sbi_flag(sbi, SBI_NEED_CP);
1329         __set_cp_next_pack(sbi);
1330
1331         /*
1332          * redirty superblock if metadata like node page or inode cache is
1333          * updated during writing checkpoint.
1334          */
1335         if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1336                         get_pages(sbi, F2FS_DIRTY_IMETA))
1337                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1338
1339         f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1340
1341         return 0;
1342 }
1343
1344 /*
1345  * We guarantee that this checkpoint procedure will not fail.
1346  */
1347 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1348 {
1349         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1350         unsigned long long ckpt_ver;
1351         int err = 0;
1352
1353         mutex_lock(&sbi->cp_mutex);
1354
1355         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1356                 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1357                 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1358                 goto out;
1359         if (unlikely(f2fs_cp_error(sbi))) {
1360                 err = -EIO;
1361                 goto out;
1362         }
1363         if (f2fs_readonly(sbi->sb)) {
1364                 err = -EROFS;
1365                 goto out;
1366         }
1367
1368         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1369
1370         err = block_operations(sbi);
1371         if (err)
1372                 goto out;
1373
1374         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1375
1376         f2fs_flush_merged_writes(sbi);
1377
1378         /* this is the case of multiple fstrims without any changes */
1379         if (cpc->reason & CP_DISCARD) {
1380                 if (!exist_trim_candidates(sbi, cpc)) {
1381                         unblock_operations(sbi);
1382                         goto out;
1383                 }
1384
1385                 if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1386                                 SIT_I(sbi)->dirty_sentries == 0 &&
1387                                 prefree_segments(sbi) == 0) {
1388                         flush_sit_entries(sbi, cpc);
1389                         clear_prefree_segments(sbi, cpc);
1390                         unblock_operations(sbi);
1391                         goto out;
1392                 }
1393         }
1394
1395         /*
1396          * update checkpoint pack index
1397          * Increase the version number so that
1398          * SIT entries and seg summaries are written at correct place
1399          */
1400         ckpt_ver = cur_cp_version(ckpt);
1401         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1402
1403         /* write cached NAT/SIT entries to NAT/SIT area */
1404         flush_nat_entries(sbi, cpc);
1405         flush_sit_entries(sbi, cpc);
1406
1407         /* unlock all the fs_lock[] in do_checkpoint() */
1408         err = do_checkpoint(sbi, cpc);
1409         if (err)
1410                 release_discard_addrs(sbi);
1411         else
1412                 clear_prefree_segments(sbi, cpc);
1413
1414         unblock_operations(sbi);
1415         stat_inc_cp_count(sbi->stat_info);
1416
1417         if (cpc->reason & CP_RECOVERY)
1418                 f2fs_msg(sbi->sb, KERN_NOTICE,
1419                         "checkpoint: version = %llx", ckpt_ver);
1420
1421         /* do checkpoint periodically */
1422         f2fs_update_time(sbi, CP_TIME);
1423         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1424 out:
1425         mutex_unlock(&sbi->cp_mutex);
1426         return err;
1427 }
1428
1429 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1430 {
1431         int i;
1432
1433         for (i = 0; i < MAX_INO_ENTRY; i++) {
1434                 struct inode_management *im = &sbi->im[i];
1435
1436                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1437                 spin_lock_init(&im->ino_lock);
1438                 INIT_LIST_HEAD(&im->ino_list);
1439                 im->ino_num = 0;
1440         }
1441
1442         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1443                         NR_CURSEG_TYPE - __cp_payload(sbi)) *
1444                                 F2FS_ORPHANS_PER_BLOCK;
1445 }
1446
1447 int __init create_checkpoint_caches(void)
1448 {
1449         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1450                         sizeof(struct ino_entry));
1451         if (!ino_entry_slab)
1452                 return -ENOMEM;
1453         inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1454                         sizeof(struct inode_entry));
1455         if (!inode_entry_slab) {
1456                 kmem_cache_destroy(ino_entry_slab);
1457                 return -ENOMEM;
1458         }
1459         return 0;
1460 }
1461
1462 void destroy_checkpoint_caches(void)
1463 {
1464         kmem_cache_destroy(ino_entry_slab);
1465         kmem_cache_destroy(inode_entry_slab);
1466 }