]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/f2fs/data.c
Merge branch 'next' into for-linus
[linux.git] / fs / f2fs / data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/swap.h>
18 #include <linux/prefetch.h>
19 #include <linux/uio.h>
20 #include <linux/cleancache.h>
21 #include <linux/sched/signal.h>
22
23 #include "f2fs.h"
24 #include "node.h"
25 #include "segment.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
28
29 #define NUM_PREALLOC_POST_READ_CTXS     128
30
31 static struct kmem_cache *bio_post_read_ctx_cache;
32 static struct kmem_cache *bio_entry_slab;
33 static mempool_t *bio_post_read_ctx_pool;
34
35 static bool __is_cp_guaranteed(struct page *page)
36 {
37         struct address_space *mapping = page->mapping;
38         struct inode *inode;
39         struct f2fs_sb_info *sbi;
40
41         if (!mapping)
42                 return false;
43
44         inode = mapping->host;
45         sbi = F2FS_I_SB(inode);
46
47         if (inode->i_ino == F2FS_META_INO(sbi) ||
48                         inode->i_ino ==  F2FS_NODE_INO(sbi) ||
49                         S_ISDIR(inode->i_mode) ||
50                         (S_ISREG(inode->i_mode) &&
51                         (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
52                         is_cold_data(page))
53                 return true;
54         return false;
55 }
56
57 static enum count_type __read_io_type(struct page *page)
58 {
59         struct address_space *mapping = page_file_mapping(page);
60
61         if (mapping) {
62                 struct inode *inode = mapping->host;
63                 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
64
65                 if (inode->i_ino == F2FS_META_INO(sbi))
66                         return F2FS_RD_META;
67
68                 if (inode->i_ino == F2FS_NODE_INO(sbi))
69                         return F2FS_RD_NODE;
70         }
71         return F2FS_RD_DATA;
72 }
73
74 /* postprocessing steps for read bios */
75 enum bio_post_read_step {
76         STEP_INITIAL = 0,
77         STEP_DECRYPT,
78         STEP_VERITY,
79 };
80
81 struct bio_post_read_ctx {
82         struct bio *bio;
83         struct work_struct work;
84         unsigned int cur_step;
85         unsigned int enabled_steps;
86 };
87
88 static void __read_end_io(struct bio *bio)
89 {
90         struct page *page;
91         struct bio_vec *bv;
92         struct bvec_iter_all iter_all;
93
94         bio_for_each_segment_all(bv, bio, iter_all) {
95                 page = bv->bv_page;
96
97                 /* PG_error was set if any post_read step failed */
98                 if (bio->bi_status || PageError(page)) {
99                         ClearPageUptodate(page);
100                         /* will re-read again later */
101                         ClearPageError(page);
102                 } else {
103                         SetPageUptodate(page);
104                 }
105                 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
106                 unlock_page(page);
107         }
108         if (bio->bi_private)
109                 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
110         bio_put(bio);
111 }
112
113 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
114
115 static void decrypt_work(struct work_struct *work)
116 {
117         struct bio_post_read_ctx *ctx =
118                 container_of(work, struct bio_post_read_ctx, work);
119
120         fscrypt_decrypt_bio(ctx->bio);
121
122         bio_post_read_processing(ctx);
123 }
124
125 static void verity_work(struct work_struct *work)
126 {
127         struct bio_post_read_ctx *ctx =
128                 container_of(work, struct bio_post_read_ctx, work);
129
130         fsverity_verify_bio(ctx->bio);
131
132         bio_post_read_processing(ctx);
133 }
134
135 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
136 {
137         /*
138          * We use different work queues for decryption and for verity because
139          * verity may require reading metadata pages that need decryption, and
140          * we shouldn't recurse to the same workqueue.
141          */
142         switch (++ctx->cur_step) {
143         case STEP_DECRYPT:
144                 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
145                         INIT_WORK(&ctx->work, decrypt_work);
146                         fscrypt_enqueue_decrypt_work(&ctx->work);
147                         return;
148                 }
149                 ctx->cur_step++;
150                 /* fall-through */
151         case STEP_VERITY:
152                 if (ctx->enabled_steps & (1 << STEP_VERITY)) {
153                         INIT_WORK(&ctx->work, verity_work);
154                         fsverity_enqueue_verify_work(&ctx->work);
155                         return;
156                 }
157                 ctx->cur_step++;
158                 /* fall-through */
159         default:
160                 __read_end_io(ctx->bio);
161         }
162 }
163
164 static bool f2fs_bio_post_read_required(struct bio *bio)
165 {
166         return bio->bi_private && !bio->bi_status;
167 }
168
169 static void f2fs_read_end_io(struct bio *bio)
170 {
171         struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
172
173         if (time_to_inject(sbi, FAULT_READ_IO)) {
174                 f2fs_show_injection_info(sbi, FAULT_READ_IO);
175                 bio->bi_status = BLK_STS_IOERR;
176         }
177
178         if (f2fs_bio_post_read_required(bio)) {
179                 struct bio_post_read_ctx *ctx = bio->bi_private;
180
181                 ctx->cur_step = STEP_INITIAL;
182                 bio_post_read_processing(ctx);
183                 return;
184         }
185
186         __read_end_io(bio);
187 }
188
189 static void f2fs_write_end_io(struct bio *bio)
190 {
191         struct f2fs_sb_info *sbi = bio->bi_private;
192         struct bio_vec *bvec;
193         struct bvec_iter_all iter_all;
194
195         if (time_to_inject(sbi, FAULT_WRITE_IO)) {
196                 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
197                 bio->bi_status = BLK_STS_IOERR;
198         }
199
200         bio_for_each_segment_all(bvec, bio, iter_all) {
201                 struct page *page = bvec->bv_page;
202                 enum count_type type = WB_DATA_TYPE(page);
203
204                 if (IS_DUMMY_WRITTEN_PAGE(page)) {
205                         set_page_private(page, (unsigned long)NULL);
206                         ClearPagePrivate(page);
207                         unlock_page(page);
208                         mempool_free(page, sbi->write_io_dummy);
209
210                         if (unlikely(bio->bi_status))
211                                 f2fs_stop_checkpoint(sbi, true);
212                         continue;
213                 }
214
215                 fscrypt_finalize_bounce_page(&page);
216
217                 if (unlikely(bio->bi_status)) {
218                         mapping_set_error(page->mapping, -EIO);
219                         if (type == F2FS_WB_CP_DATA)
220                                 f2fs_stop_checkpoint(sbi, true);
221                 }
222
223                 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
224                                         page->index != nid_of_node(page));
225
226                 dec_page_count(sbi, type);
227                 if (f2fs_in_warm_node_list(sbi, page))
228                         f2fs_del_fsync_node_entry(sbi, page);
229                 clear_cold_data(page);
230                 end_page_writeback(page);
231         }
232         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
233                                 wq_has_sleeper(&sbi->cp_wait))
234                 wake_up(&sbi->cp_wait);
235
236         bio_put(bio);
237 }
238
239 /*
240  * Return true, if pre_bio's bdev is same as its target device.
241  */
242 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
243                                 block_t blk_addr, struct bio *bio)
244 {
245         struct block_device *bdev = sbi->sb->s_bdev;
246         int i;
247
248         if (f2fs_is_multi_device(sbi)) {
249                 for (i = 0; i < sbi->s_ndevs; i++) {
250                         if (FDEV(i).start_blk <= blk_addr &&
251                             FDEV(i).end_blk >= blk_addr) {
252                                 blk_addr -= FDEV(i).start_blk;
253                                 bdev = FDEV(i).bdev;
254                                 break;
255                         }
256                 }
257         }
258         if (bio) {
259                 bio_set_dev(bio, bdev);
260                 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
261         }
262         return bdev;
263 }
264
265 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
266 {
267         int i;
268
269         if (!f2fs_is_multi_device(sbi))
270                 return 0;
271
272         for (i = 0; i < sbi->s_ndevs; i++)
273                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
274                         return i;
275         return 0;
276 }
277
278 static bool __same_bdev(struct f2fs_sb_info *sbi,
279                                 block_t blk_addr, struct bio *bio)
280 {
281         struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
282         return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
283 }
284
285 /*
286  * Low-level block read/write IO operations.
287  */
288 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
289 {
290         struct f2fs_sb_info *sbi = fio->sbi;
291         struct bio *bio;
292
293         bio = f2fs_bio_alloc(sbi, npages, true);
294
295         f2fs_target_device(sbi, fio->new_blkaddr, bio);
296         if (is_read_io(fio->op)) {
297                 bio->bi_end_io = f2fs_read_end_io;
298                 bio->bi_private = NULL;
299         } else {
300                 bio->bi_end_io = f2fs_write_end_io;
301                 bio->bi_private = sbi;
302                 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
303                                                 fio->type, fio->temp);
304         }
305         if (fio->io_wbc)
306                 wbc_init_bio(fio->io_wbc, bio);
307
308         return bio;
309 }
310
311 static inline void __submit_bio(struct f2fs_sb_info *sbi,
312                                 struct bio *bio, enum page_type type)
313 {
314         if (!is_read_io(bio_op(bio))) {
315                 unsigned int start;
316
317                 if (type != DATA && type != NODE)
318                         goto submit_io;
319
320                 if (test_opt(sbi, LFS) && current->plug)
321                         blk_finish_plug(current->plug);
322
323                 if (F2FS_IO_ALIGNED(sbi))
324                         goto submit_io;
325
326                 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
327                 start %= F2FS_IO_SIZE(sbi);
328
329                 if (start == 0)
330                         goto submit_io;
331
332                 /* fill dummy pages */
333                 for (; start < F2FS_IO_SIZE(sbi); start++) {
334                         struct page *page =
335                                 mempool_alloc(sbi->write_io_dummy,
336                                               GFP_NOIO | __GFP_NOFAIL);
337                         f2fs_bug_on(sbi, !page);
338
339                         zero_user_segment(page, 0, PAGE_SIZE);
340                         SetPagePrivate(page);
341                         set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
342                         lock_page(page);
343                         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
344                                 f2fs_bug_on(sbi, 1);
345                 }
346                 /*
347                  * In the NODE case, we lose next block address chain. So, we
348                  * need to do checkpoint in f2fs_sync_file.
349                  */
350                 if (type == NODE)
351                         set_sbi_flag(sbi, SBI_NEED_CP);
352         }
353 submit_io:
354         if (is_read_io(bio_op(bio)))
355                 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
356         else
357                 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
358         submit_bio(bio);
359 }
360
361 static void __submit_merged_bio(struct f2fs_bio_info *io)
362 {
363         struct f2fs_io_info *fio = &io->fio;
364
365         if (!io->bio)
366                 return;
367
368         bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
369
370         if (is_read_io(fio->op))
371                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
372         else
373                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
374
375         __submit_bio(io->sbi, io->bio, fio->type);
376         io->bio = NULL;
377 }
378
379 static bool __has_merged_page(struct bio *bio, struct inode *inode,
380                                                 struct page *page, nid_t ino)
381 {
382         struct bio_vec *bvec;
383         struct page *target;
384         struct bvec_iter_all iter_all;
385
386         if (!bio)
387                 return false;
388
389         if (!inode && !page && !ino)
390                 return true;
391
392         bio_for_each_segment_all(bvec, bio, iter_all) {
393
394                 target = bvec->bv_page;
395                 if (fscrypt_is_bounce_page(target))
396                         target = fscrypt_pagecache_page(target);
397
398                 if (inode && inode == target->mapping->host)
399                         return true;
400                 if (page && page == target)
401                         return true;
402                 if (ino && ino == ino_of_node(target))
403                         return true;
404         }
405
406         return false;
407 }
408
409 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
410                                 enum page_type type, enum temp_type temp)
411 {
412         enum page_type btype = PAGE_TYPE_OF_BIO(type);
413         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
414
415         down_write(&io->io_rwsem);
416
417         /* change META to META_FLUSH in the checkpoint procedure */
418         if (type >= META_FLUSH) {
419                 io->fio.type = META_FLUSH;
420                 io->fio.op = REQ_OP_WRITE;
421                 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
422                 if (!test_opt(sbi, NOBARRIER))
423                         io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
424         }
425         __submit_merged_bio(io);
426         up_write(&io->io_rwsem);
427 }
428
429 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
430                                 struct inode *inode, struct page *page,
431                                 nid_t ino, enum page_type type, bool force)
432 {
433         enum temp_type temp;
434         bool ret = true;
435
436         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
437                 if (!force)     {
438                         enum page_type btype = PAGE_TYPE_OF_BIO(type);
439                         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
440
441                         down_read(&io->io_rwsem);
442                         ret = __has_merged_page(io->bio, inode, page, ino);
443                         up_read(&io->io_rwsem);
444                 }
445                 if (ret)
446                         __f2fs_submit_merged_write(sbi, type, temp);
447
448                 /* TODO: use HOT temp only for meta pages now. */
449                 if (type >= META)
450                         break;
451         }
452 }
453
454 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
455 {
456         __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
457 }
458
459 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
460                                 struct inode *inode, struct page *page,
461                                 nid_t ino, enum page_type type)
462 {
463         __submit_merged_write_cond(sbi, inode, page, ino, type, false);
464 }
465
466 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
467 {
468         f2fs_submit_merged_write(sbi, DATA);
469         f2fs_submit_merged_write(sbi, NODE);
470         f2fs_submit_merged_write(sbi, META);
471 }
472
473 /*
474  * Fill the locked page with data located in the block address.
475  * A caller needs to unlock the page on failure.
476  */
477 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
478 {
479         struct bio *bio;
480         struct page *page = fio->encrypted_page ?
481                         fio->encrypted_page : fio->page;
482
483         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
484                         fio->is_por ? META_POR : (__is_meta_io(fio) ?
485                         META_GENERIC : DATA_GENERIC_ENHANCE)))
486                 return -EFSCORRUPTED;
487
488         trace_f2fs_submit_page_bio(page, fio);
489         f2fs_trace_ios(fio, 0);
490
491         /* Allocate a new bio */
492         bio = __bio_alloc(fio, 1);
493
494         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
495                 bio_put(bio);
496                 return -EFAULT;
497         }
498
499         if (fio->io_wbc && !is_read_io(fio->op))
500                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
501
502         bio_set_op_attrs(bio, fio->op, fio->op_flags);
503
504         inc_page_count(fio->sbi, is_read_io(fio->op) ?
505                         __read_io_type(page): WB_DATA_TYPE(fio->page));
506
507         __submit_bio(fio->sbi, bio, fio->type);
508         return 0;
509 }
510
511 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
512                                 block_t last_blkaddr, block_t cur_blkaddr)
513 {
514         if (last_blkaddr + 1 != cur_blkaddr)
515                 return false;
516         return __same_bdev(sbi, cur_blkaddr, bio);
517 }
518
519 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
520                                                 struct f2fs_io_info *fio)
521 {
522         if (io->fio.op != fio->op)
523                 return false;
524         return io->fio.op_flags == fio->op_flags;
525 }
526
527 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
528                                         struct f2fs_bio_info *io,
529                                         struct f2fs_io_info *fio,
530                                         block_t last_blkaddr,
531                                         block_t cur_blkaddr)
532 {
533         if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
534                 unsigned int filled_blocks =
535                                 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
536                 unsigned int io_size = F2FS_IO_SIZE(sbi);
537                 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
538
539                 /* IOs in bio is aligned and left space of vectors is not enough */
540                 if (!(filled_blocks % io_size) && left_vecs < io_size)
541                         return false;
542         }
543         if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
544                 return false;
545         return io_type_is_mergeable(io, fio);
546 }
547
548 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
549                                 struct page *page, enum temp_type temp)
550 {
551         struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
552         struct bio_entry *be;
553
554         be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
555         be->bio = bio;
556         bio_get(bio);
557
558         if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
559                 f2fs_bug_on(sbi, 1);
560
561         down_write(&io->bio_list_lock);
562         list_add_tail(&be->list, &io->bio_list);
563         up_write(&io->bio_list_lock);
564 }
565
566 static void del_bio_entry(struct bio_entry *be)
567 {
568         list_del(&be->list);
569         kmem_cache_free(bio_entry_slab, be);
570 }
571
572 static int add_ipu_page(struct f2fs_sb_info *sbi, struct bio **bio,
573                                                         struct page *page)
574 {
575         enum temp_type temp;
576         bool found = false;
577         int ret = -EAGAIN;
578
579         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
580                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
581                 struct list_head *head = &io->bio_list;
582                 struct bio_entry *be;
583
584                 down_write(&io->bio_list_lock);
585                 list_for_each_entry(be, head, list) {
586                         if (be->bio != *bio)
587                                 continue;
588
589                         found = true;
590
591                         if (bio_add_page(*bio, page, PAGE_SIZE, 0) == PAGE_SIZE) {
592                                 ret = 0;
593                                 break;
594                         }
595
596                         /* bio is full */
597                         del_bio_entry(be);
598                         __submit_bio(sbi, *bio, DATA);
599                         break;
600                 }
601                 up_write(&io->bio_list_lock);
602         }
603
604         if (ret) {
605                 bio_put(*bio);
606                 *bio = NULL;
607         }
608
609         return ret;
610 }
611
612 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
613                                         struct bio **bio, struct page *page)
614 {
615         enum temp_type temp;
616         bool found = false;
617         struct bio *target = bio ? *bio : NULL;
618
619         for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
620                 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
621                 struct list_head *head = &io->bio_list;
622                 struct bio_entry *be;
623
624                 if (list_empty(head))
625                         continue;
626
627                 down_read(&io->bio_list_lock);
628                 list_for_each_entry(be, head, list) {
629                         if (target)
630                                 found = (target == be->bio);
631                         else
632                                 found = __has_merged_page(be->bio, NULL,
633                                                                 page, 0);
634                         if (found)
635                                 break;
636                 }
637                 up_read(&io->bio_list_lock);
638
639                 if (!found)
640                         continue;
641
642                 found = false;
643
644                 down_write(&io->bio_list_lock);
645                 list_for_each_entry(be, head, list) {
646                         if (target)
647                                 found = (target == be->bio);
648                         else
649                                 found = __has_merged_page(be->bio, NULL,
650                                                                 page, 0);
651                         if (found) {
652                                 target = be->bio;
653                                 del_bio_entry(be);
654                                 break;
655                         }
656                 }
657                 up_write(&io->bio_list_lock);
658         }
659
660         if (found)
661                 __submit_bio(sbi, target, DATA);
662         if (bio && *bio) {
663                 bio_put(*bio);
664                 *bio = NULL;
665         }
666 }
667
668 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
669 {
670         struct bio *bio = *fio->bio;
671         struct page *page = fio->encrypted_page ?
672                         fio->encrypted_page : fio->page;
673
674         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
675                         __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
676                 return -EFSCORRUPTED;
677
678         trace_f2fs_submit_page_bio(page, fio);
679         f2fs_trace_ios(fio, 0);
680
681         if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
682                                                 fio->new_blkaddr))
683                 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
684 alloc_new:
685         if (!bio) {
686                 bio = __bio_alloc(fio, BIO_MAX_PAGES);
687                 bio_set_op_attrs(bio, fio->op, fio->op_flags);
688
689                 add_bio_entry(fio->sbi, bio, page, fio->temp);
690         } else {
691                 if (add_ipu_page(fio->sbi, &bio, page))
692                         goto alloc_new;
693         }
694
695         if (fio->io_wbc)
696                 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
697
698         inc_page_count(fio->sbi, WB_DATA_TYPE(page));
699
700         *fio->last_block = fio->new_blkaddr;
701         *fio->bio = bio;
702
703         return 0;
704 }
705
706 void f2fs_submit_page_write(struct f2fs_io_info *fio)
707 {
708         struct f2fs_sb_info *sbi = fio->sbi;
709         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
710         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
711         struct page *bio_page;
712
713         f2fs_bug_on(sbi, is_read_io(fio->op));
714
715         down_write(&io->io_rwsem);
716 next:
717         if (fio->in_list) {
718                 spin_lock(&io->io_lock);
719                 if (list_empty(&io->io_list)) {
720                         spin_unlock(&io->io_lock);
721                         goto out;
722                 }
723                 fio = list_first_entry(&io->io_list,
724                                                 struct f2fs_io_info, list);
725                 list_del(&fio->list);
726                 spin_unlock(&io->io_lock);
727         }
728
729         verify_fio_blkaddr(fio);
730
731         bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
732
733         /* set submitted = true as a return value */
734         fio->submitted = true;
735
736         inc_page_count(sbi, WB_DATA_TYPE(bio_page));
737
738         if (io->bio && !io_is_mergeable(sbi, io->bio, io, fio,
739                         io->last_block_in_bio, fio->new_blkaddr))
740                 __submit_merged_bio(io);
741 alloc_new:
742         if (io->bio == NULL) {
743                 if (F2FS_IO_ALIGNED(sbi) &&
744                                 (fio->type == DATA || fio->type == NODE) &&
745                                 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
746                         dec_page_count(sbi, WB_DATA_TYPE(bio_page));
747                         fio->retry = true;
748                         goto skip;
749                 }
750                 io->bio = __bio_alloc(fio, BIO_MAX_PAGES);
751                 io->fio = *fio;
752         }
753
754         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
755                 __submit_merged_bio(io);
756                 goto alloc_new;
757         }
758
759         if (fio->io_wbc)
760                 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
761
762         io->last_block_in_bio = fio->new_blkaddr;
763         f2fs_trace_ios(fio, 0);
764
765         trace_f2fs_submit_page_write(fio->page, fio);
766 skip:
767         if (fio->in_list)
768                 goto next;
769 out:
770         if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
771                                 !f2fs_is_checkpoint_ready(sbi))
772                 __submit_merged_bio(io);
773         up_write(&io->io_rwsem);
774 }
775
776 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
777 {
778         return fsverity_active(inode) &&
779                idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
780 }
781
782 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
783                                       unsigned nr_pages, unsigned op_flag,
784                                       pgoff_t first_idx)
785 {
786         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
787         struct bio *bio;
788         struct bio_post_read_ctx *ctx;
789         unsigned int post_read_steps = 0;
790
791         bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
792         if (!bio)
793                 return ERR_PTR(-ENOMEM);
794         f2fs_target_device(sbi, blkaddr, bio);
795         bio->bi_end_io = f2fs_read_end_io;
796         bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
797
798         if (f2fs_encrypted_file(inode))
799                 post_read_steps |= 1 << STEP_DECRYPT;
800
801         if (f2fs_need_verity(inode, first_idx))
802                 post_read_steps |= 1 << STEP_VERITY;
803
804         if (post_read_steps) {
805                 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
806                 if (!ctx) {
807                         bio_put(bio);
808                         return ERR_PTR(-ENOMEM);
809                 }
810                 ctx->bio = bio;
811                 ctx->enabled_steps = post_read_steps;
812                 bio->bi_private = ctx;
813         }
814
815         return bio;
816 }
817
818 /* This can handle encryption stuffs */
819 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
820                                                         block_t blkaddr)
821 {
822         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
823         struct bio *bio;
824
825         bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0, page->index);
826         if (IS_ERR(bio))
827                 return PTR_ERR(bio);
828
829         /* wait for GCed page writeback via META_MAPPING */
830         f2fs_wait_on_block_writeback(inode, blkaddr);
831
832         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
833                 bio_put(bio);
834                 return -EFAULT;
835         }
836         ClearPageError(page);
837         inc_page_count(sbi, F2FS_RD_DATA);
838         __submit_bio(sbi, bio, DATA);
839         return 0;
840 }
841
842 static void __set_data_blkaddr(struct dnode_of_data *dn)
843 {
844         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
845         __le32 *addr_array;
846         int base = 0;
847
848         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
849                 base = get_extra_isize(dn->inode);
850
851         /* Get physical address of data block */
852         addr_array = blkaddr_in_node(rn);
853         addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
854 }
855
856 /*
857  * Lock ordering for the change of data block address:
858  * ->data_page
859  *  ->node_page
860  *    update block addresses in the node page
861  */
862 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
863 {
864         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
865         __set_data_blkaddr(dn);
866         if (set_page_dirty(dn->node_page))
867                 dn->node_changed = true;
868 }
869
870 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
871 {
872         dn->data_blkaddr = blkaddr;
873         f2fs_set_data_blkaddr(dn);
874         f2fs_update_extent_cache(dn);
875 }
876
877 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
878 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
879 {
880         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
881         int err;
882
883         if (!count)
884                 return 0;
885
886         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
887                 return -EPERM;
888         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
889                 return err;
890
891         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
892                                                 dn->ofs_in_node, count);
893
894         f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
895
896         for (; count > 0; dn->ofs_in_node++) {
897                 block_t blkaddr = datablock_addr(dn->inode,
898                                         dn->node_page, dn->ofs_in_node);
899                 if (blkaddr == NULL_ADDR) {
900                         dn->data_blkaddr = NEW_ADDR;
901                         __set_data_blkaddr(dn);
902                         count--;
903                 }
904         }
905
906         if (set_page_dirty(dn->node_page))
907                 dn->node_changed = true;
908         return 0;
909 }
910
911 /* Should keep dn->ofs_in_node unchanged */
912 int f2fs_reserve_new_block(struct dnode_of_data *dn)
913 {
914         unsigned int ofs_in_node = dn->ofs_in_node;
915         int ret;
916
917         ret = f2fs_reserve_new_blocks(dn, 1);
918         dn->ofs_in_node = ofs_in_node;
919         return ret;
920 }
921
922 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
923 {
924         bool need_put = dn->inode_page ? false : true;
925         int err;
926
927         err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
928         if (err)
929                 return err;
930
931         if (dn->data_blkaddr == NULL_ADDR)
932                 err = f2fs_reserve_new_block(dn);
933         if (err || need_put)
934                 f2fs_put_dnode(dn);
935         return err;
936 }
937
938 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
939 {
940         struct extent_info ei  = {0,0,0};
941         struct inode *inode = dn->inode;
942
943         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
944                 dn->data_blkaddr = ei.blk + index - ei.fofs;
945                 return 0;
946         }
947
948         return f2fs_reserve_block(dn, index);
949 }
950
951 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
952                                                 int op_flags, bool for_write)
953 {
954         struct address_space *mapping = inode->i_mapping;
955         struct dnode_of_data dn;
956         struct page *page;
957         struct extent_info ei = {0,0,0};
958         int err;
959
960         page = f2fs_grab_cache_page(mapping, index, for_write);
961         if (!page)
962                 return ERR_PTR(-ENOMEM);
963
964         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
965                 dn.data_blkaddr = ei.blk + index - ei.fofs;
966                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
967                                                 DATA_GENERIC_ENHANCE_READ)) {
968                         err = -EFSCORRUPTED;
969                         goto put_err;
970                 }
971                 goto got_it;
972         }
973
974         set_new_dnode(&dn, inode, NULL, NULL, 0);
975         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
976         if (err)
977                 goto put_err;
978         f2fs_put_dnode(&dn);
979
980         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
981                 err = -ENOENT;
982                 goto put_err;
983         }
984         if (dn.data_blkaddr != NEW_ADDR &&
985                         !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
986                                                 dn.data_blkaddr,
987                                                 DATA_GENERIC_ENHANCE)) {
988                 err = -EFSCORRUPTED;
989                 goto put_err;
990         }
991 got_it:
992         if (PageUptodate(page)) {
993                 unlock_page(page);
994                 return page;
995         }
996
997         /*
998          * A new dentry page is allocated but not able to be written, since its
999          * new inode page couldn't be allocated due to -ENOSPC.
1000          * In such the case, its blkaddr can be remained as NEW_ADDR.
1001          * see, f2fs_add_link -> f2fs_get_new_data_page ->
1002          * f2fs_init_inode_metadata.
1003          */
1004         if (dn.data_blkaddr == NEW_ADDR) {
1005                 zero_user_segment(page, 0, PAGE_SIZE);
1006                 if (!PageUptodate(page))
1007                         SetPageUptodate(page);
1008                 unlock_page(page);
1009                 return page;
1010         }
1011
1012         err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
1013         if (err)
1014                 goto put_err;
1015         return page;
1016
1017 put_err:
1018         f2fs_put_page(page, 1);
1019         return ERR_PTR(err);
1020 }
1021
1022 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1023 {
1024         struct address_space *mapping = inode->i_mapping;
1025         struct page *page;
1026
1027         page = find_get_page(mapping, index);
1028         if (page && PageUptodate(page))
1029                 return page;
1030         f2fs_put_page(page, 0);
1031
1032         page = f2fs_get_read_data_page(inode, index, 0, false);
1033         if (IS_ERR(page))
1034                 return page;
1035
1036         if (PageUptodate(page))
1037                 return page;
1038
1039         wait_on_page_locked(page);
1040         if (unlikely(!PageUptodate(page))) {
1041                 f2fs_put_page(page, 0);
1042                 return ERR_PTR(-EIO);
1043         }
1044         return page;
1045 }
1046
1047 /*
1048  * If it tries to access a hole, return an error.
1049  * Because, the callers, functions in dir.c and GC, should be able to know
1050  * whether this page exists or not.
1051  */
1052 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1053                                                         bool for_write)
1054 {
1055         struct address_space *mapping = inode->i_mapping;
1056         struct page *page;
1057 repeat:
1058         page = f2fs_get_read_data_page(inode, index, 0, for_write);
1059         if (IS_ERR(page))
1060                 return page;
1061
1062         /* wait for read completion */
1063         lock_page(page);
1064         if (unlikely(page->mapping != mapping)) {
1065                 f2fs_put_page(page, 1);
1066                 goto repeat;
1067         }
1068         if (unlikely(!PageUptodate(page))) {
1069                 f2fs_put_page(page, 1);
1070                 return ERR_PTR(-EIO);
1071         }
1072         return page;
1073 }
1074
1075 /*
1076  * Caller ensures that this data page is never allocated.
1077  * A new zero-filled data page is allocated in the page cache.
1078  *
1079  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1080  * f2fs_unlock_op().
1081  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1082  * ipage should be released by this function.
1083  */
1084 struct page *f2fs_get_new_data_page(struct inode *inode,
1085                 struct page *ipage, pgoff_t index, bool new_i_size)
1086 {
1087         struct address_space *mapping = inode->i_mapping;
1088         struct page *page;
1089         struct dnode_of_data dn;
1090         int err;
1091
1092         page = f2fs_grab_cache_page(mapping, index, true);
1093         if (!page) {
1094                 /*
1095                  * before exiting, we should make sure ipage will be released
1096                  * if any error occur.
1097                  */
1098                 f2fs_put_page(ipage, 1);
1099                 return ERR_PTR(-ENOMEM);
1100         }
1101
1102         set_new_dnode(&dn, inode, ipage, NULL, 0);
1103         err = f2fs_reserve_block(&dn, index);
1104         if (err) {
1105                 f2fs_put_page(page, 1);
1106                 return ERR_PTR(err);
1107         }
1108         if (!ipage)
1109                 f2fs_put_dnode(&dn);
1110
1111         if (PageUptodate(page))
1112                 goto got_it;
1113
1114         if (dn.data_blkaddr == NEW_ADDR) {
1115                 zero_user_segment(page, 0, PAGE_SIZE);
1116                 if (!PageUptodate(page))
1117                         SetPageUptodate(page);
1118         } else {
1119                 f2fs_put_page(page, 1);
1120
1121                 /* if ipage exists, blkaddr should be NEW_ADDR */
1122                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1123                 page = f2fs_get_lock_data_page(inode, index, true);
1124                 if (IS_ERR(page))
1125                         return page;
1126         }
1127 got_it:
1128         if (new_i_size && i_size_read(inode) <
1129                                 ((loff_t)(index + 1) << PAGE_SHIFT))
1130                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1131         return page;
1132 }
1133
1134 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1135 {
1136         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1137         struct f2fs_summary sum;
1138         struct node_info ni;
1139         block_t old_blkaddr;
1140         blkcnt_t count = 1;
1141         int err;
1142
1143         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1144                 return -EPERM;
1145
1146         err = f2fs_get_node_info(sbi, dn->nid, &ni);
1147         if (err)
1148                 return err;
1149
1150         dn->data_blkaddr = datablock_addr(dn->inode,
1151                                 dn->node_page, dn->ofs_in_node);
1152         if (dn->data_blkaddr != NULL_ADDR)
1153                 goto alloc;
1154
1155         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1156                 return err;
1157
1158 alloc:
1159         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1160         old_blkaddr = dn->data_blkaddr;
1161         f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1162                                         &sum, seg_type, NULL, false);
1163         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1164                 invalidate_mapping_pages(META_MAPPING(sbi),
1165                                         old_blkaddr, old_blkaddr);
1166         f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1167
1168         /*
1169          * i_size will be updated by direct_IO. Otherwise, we'll get stale
1170          * data from unwritten block via dio_read.
1171          */
1172         return 0;
1173 }
1174
1175 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1176 {
1177         struct inode *inode = file_inode(iocb->ki_filp);
1178         struct f2fs_map_blocks map;
1179         int flag;
1180         int err = 0;
1181         bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1182
1183         /* convert inline data for Direct I/O*/
1184         if (direct_io) {
1185                 err = f2fs_convert_inline_inode(inode);
1186                 if (err)
1187                         return err;
1188         }
1189
1190         if (direct_io && allow_outplace_dio(inode, iocb, from))
1191                 return 0;
1192
1193         if (is_inode_flag_set(inode, FI_NO_PREALLOC))
1194                 return 0;
1195
1196         map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1197         map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1198         if (map.m_len > map.m_lblk)
1199                 map.m_len -= map.m_lblk;
1200         else
1201                 map.m_len = 0;
1202
1203         map.m_next_pgofs = NULL;
1204         map.m_next_extent = NULL;
1205         map.m_seg_type = NO_CHECK_TYPE;
1206         map.m_may_create = true;
1207
1208         if (direct_io) {
1209                 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1210                 flag = f2fs_force_buffered_io(inode, iocb, from) ?
1211                                         F2FS_GET_BLOCK_PRE_AIO :
1212                                         F2FS_GET_BLOCK_PRE_DIO;
1213                 goto map_blocks;
1214         }
1215         if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1216                 err = f2fs_convert_inline_inode(inode);
1217                 if (err)
1218                         return err;
1219         }
1220         if (f2fs_has_inline_data(inode))
1221                 return err;
1222
1223         flag = F2FS_GET_BLOCK_PRE_AIO;
1224
1225 map_blocks:
1226         err = f2fs_map_blocks(inode, &map, 1, flag);
1227         if (map.m_len > 0 && err == -ENOSPC) {
1228                 if (!direct_io)
1229                         set_inode_flag(inode, FI_NO_PREALLOC);
1230                 err = 0;
1231         }
1232         return err;
1233 }
1234
1235 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1236 {
1237         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1238                 if (lock)
1239                         down_read(&sbi->node_change);
1240                 else
1241                         up_read(&sbi->node_change);
1242         } else {
1243                 if (lock)
1244                         f2fs_lock_op(sbi);
1245                 else
1246                         f2fs_unlock_op(sbi);
1247         }
1248 }
1249
1250 /*
1251  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1252  * f2fs_map_blocks structure.
1253  * If original data blocks are allocated, then give them to blockdev.
1254  * Otherwise,
1255  *     a. preallocate requested block addresses
1256  *     b. do not use extent cache for better performance
1257  *     c. give the block addresses to blockdev
1258  */
1259 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1260                                                 int create, int flag)
1261 {
1262         unsigned int maxblocks = map->m_len;
1263         struct dnode_of_data dn;
1264         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1265         int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1266         pgoff_t pgofs, end_offset, end;
1267         int err = 0, ofs = 1;
1268         unsigned int ofs_in_node, last_ofs_in_node;
1269         blkcnt_t prealloc;
1270         struct extent_info ei = {0,0,0};
1271         block_t blkaddr;
1272         unsigned int start_pgofs;
1273
1274         if (!maxblocks)
1275                 return 0;
1276
1277         map->m_len = 0;
1278         map->m_flags = 0;
1279
1280         /* it only supports block size == page size */
1281         pgofs = (pgoff_t)map->m_lblk;
1282         end = pgofs + maxblocks;
1283
1284         if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1285                 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1286                                                         map->m_may_create)
1287                         goto next_dnode;
1288
1289                 map->m_pblk = ei.blk + pgofs - ei.fofs;
1290                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1291                 map->m_flags = F2FS_MAP_MAPPED;
1292                 if (map->m_next_extent)
1293                         *map->m_next_extent = pgofs + map->m_len;
1294
1295                 /* for hardware encryption, but to avoid potential issue in future */
1296                 if (flag == F2FS_GET_BLOCK_DIO)
1297                         f2fs_wait_on_block_writeback_range(inode,
1298                                                 map->m_pblk, map->m_len);
1299                 goto out;
1300         }
1301
1302 next_dnode:
1303         if (map->m_may_create)
1304                 __do_map_lock(sbi, flag, true);
1305
1306         /* When reading holes, we need its node page */
1307         set_new_dnode(&dn, inode, NULL, NULL, 0);
1308         err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1309         if (err) {
1310                 if (flag == F2FS_GET_BLOCK_BMAP)
1311                         map->m_pblk = 0;
1312                 if (err == -ENOENT) {
1313                         err = 0;
1314                         if (map->m_next_pgofs)
1315                                 *map->m_next_pgofs =
1316                                         f2fs_get_next_page_offset(&dn, pgofs);
1317                         if (map->m_next_extent)
1318                                 *map->m_next_extent =
1319                                         f2fs_get_next_page_offset(&dn, pgofs);
1320                 }
1321                 goto unlock_out;
1322         }
1323
1324         start_pgofs = pgofs;
1325         prealloc = 0;
1326         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1327         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1328
1329 next_block:
1330         blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
1331
1332         if (__is_valid_data_blkaddr(blkaddr) &&
1333                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1334                 err = -EFSCORRUPTED;
1335                 goto sync_out;
1336         }
1337
1338         if (__is_valid_data_blkaddr(blkaddr)) {
1339                 /* use out-place-update for driect IO under LFS mode */
1340                 if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1341                                                         map->m_may_create) {
1342                         err = __allocate_data_block(&dn, map->m_seg_type);
1343                         if (err)
1344                                 goto sync_out;
1345                         blkaddr = dn.data_blkaddr;
1346                         set_inode_flag(inode, FI_APPEND_WRITE);
1347                 }
1348         } else {
1349                 if (create) {
1350                         if (unlikely(f2fs_cp_error(sbi))) {
1351                                 err = -EIO;
1352                                 goto sync_out;
1353                         }
1354                         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1355                                 if (blkaddr == NULL_ADDR) {
1356                                         prealloc++;
1357                                         last_ofs_in_node = dn.ofs_in_node;
1358                                 }
1359                         } else {
1360                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1361                                         flag != F2FS_GET_BLOCK_DIO);
1362                                 err = __allocate_data_block(&dn,
1363                                                         map->m_seg_type);
1364                                 if (!err)
1365                                         set_inode_flag(inode, FI_APPEND_WRITE);
1366                         }
1367                         if (err)
1368                                 goto sync_out;
1369                         map->m_flags |= F2FS_MAP_NEW;
1370                         blkaddr = dn.data_blkaddr;
1371                 } else {
1372                         if (flag == F2FS_GET_BLOCK_BMAP) {
1373                                 map->m_pblk = 0;
1374                                 goto sync_out;
1375                         }
1376                         if (flag == F2FS_GET_BLOCK_PRECACHE)
1377                                 goto sync_out;
1378                         if (flag == F2FS_GET_BLOCK_FIEMAP &&
1379                                                 blkaddr == NULL_ADDR) {
1380                                 if (map->m_next_pgofs)
1381                                         *map->m_next_pgofs = pgofs + 1;
1382                                 goto sync_out;
1383                         }
1384                         if (flag != F2FS_GET_BLOCK_FIEMAP) {
1385                                 /* for defragment case */
1386                                 if (map->m_next_pgofs)
1387                                         *map->m_next_pgofs = pgofs + 1;
1388                                 goto sync_out;
1389                         }
1390                 }
1391         }
1392
1393         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1394                 goto skip;
1395
1396         if (map->m_len == 0) {
1397                 /* preallocated unwritten block should be mapped for fiemap. */
1398                 if (blkaddr == NEW_ADDR)
1399                         map->m_flags |= F2FS_MAP_UNWRITTEN;
1400                 map->m_flags |= F2FS_MAP_MAPPED;
1401
1402                 map->m_pblk = blkaddr;
1403                 map->m_len = 1;
1404         } else if ((map->m_pblk != NEW_ADDR &&
1405                         blkaddr == (map->m_pblk + ofs)) ||
1406                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1407                         flag == F2FS_GET_BLOCK_PRE_DIO) {
1408                 ofs++;
1409                 map->m_len++;
1410         } else {
1411                 goto sync_out;
1412         }
1413
1414 skip:
1415         dn.ofs_in_node++;
1416         pgofs++;
1417
1418         /* preallocate blocks in batch for one dnode page */
1419         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1420                         (pgofs == end || dn.ofs_in_node == end_offset)) {
1421
1422                 dn.ofs_in_node = ofs_in_node;
1423                 err = f2fs_reserve_new_blocks(&dn, prealloc);
1424                 if (err)
1425                         goto sync_out;
1426
1427                 map->m_len += dn.ofs_in_node - ofs_in_node;
1428                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1429                         err = -ENOSPC;
1430                         goto sync_out;
1431                 }
1432                 dn.ofs_in_node = end_offset;
1433         }
1434
1435         if (pgofs >= end)
1436                 goto sync_out;
1437         else if (dn.ofs_in_node < end_offset)
1438                 goto next_block;
1439
1440         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1441                 if (map->m_flags & F2FS_MAP_MAPPED) {
1442                         unsigned int ofs = start_pgofs - map->m_lblk;
1443
1444                         f2fs_update_extent_cache_range(&dn,
1445                                 start_pgofs, map->m_pblk + ofs,
1446                                 map->m_len - ofs);
1447                 }
1448         }
1449
1450         f2fs_put_dnode(&dn);
1451
1452         if (map->m_may_create) {
1453                 __do_map_lock(sbi, flag, false);
1454                 f2fs_balance_fs(sbi, dn.node_changed);
1455         }
1456         goto next_dnode;
1457
1458 sync_out:
1459
1460         /* for hardware encryption, but to avoid potential issue in future */
1461         if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1462                 f2fs_wait_on_block_writeback_range(inode,
1463                                                 map->m_pblk, map->m_len);
1464
1465         if (flag == F2FS_GET_BLOCK_PRECACHE) {
1466                 if (map->m_flags & F2FS_MAP_MAPPED) {
1467                         unsigned int ofs = start_pgofs - map->m_lblk;
1468
1469                         f2fs_update_extent_cache_range(&dn,
1470                                 start_pgofs, map->m_pblk + ofs,
1471                                 map->m_len - ofs);
1472                 }
1473                 if (map->m_next_extent)
1474                         *map->m_next_extent = pgofs + 1;
1475         }
1476         f2fs_put_dnode(&dn);
1477 unlock_out:
1478         if (map->m_may_create) {
1479                 __do_map_lock(sbi, flag, false);
1480                 f2fs_balance_fs(sbi, dn.node_changed);
1481         }
1482 out:
1483         trace_f2fs_map_blocks(inode, map, err);
1484         return err;
1485 }
1486
1487 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1488 {
1489         struct f2fs_map_blocks map;
1490         block_t last_lblk;
1491         int err;
1492
1493         if (pos + len > i_size_read(inode))
1494                 return false;
1495
1496         map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1497         map.m_next_pgofs = NULL;
1498         map.m_next_extent = NULL;
1499         map.m_seg_type = NO_CHECK_TYPE;
1500         map.m_may_create = false;
1501         last_lblk = F2FS_BLK_ALIGN(pos + len);
1502
1503         while (map.m_lblk < last_lblk) {
1504                 map.m_len = last_lblk - map.m_lblk;
1505                 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1506                 if (err || map.m_len == 0)
1507                         return false;
1508                 map.m_lblk += map.m_len;
1509         }
1510         return true;
1511 }
1512
1513 static int __get_data_block(struct inode *inode, sector_t iblock,
1514                         struct buffer_head *bh, int create, int flag,
1515                         pgoff_t *next_pgofs, int seg_type, bool may_write)
1516 {
1517         struct f2fs_map_blocks map;
1518         int err;
1519
1520         map.m_lblk = iblock;
1521         map.m_len = bh->b_size >> inode->i_blkbits;
1522         map.m_next_pgofs = next_pgofs;
1523         map.m_next_extent = NULL;
1524         map.m_seg_type = seg_type;
1525         map.m_may_create = may_write;
1526
1527         err = f2fs_map_blocks(inode, &map, create, flag);
1528         if (!err) {
1529                 map_bh(bh, inode->i_sb, map.m_pblk);
1530                 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1531                 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1532         }
1533         return err;
1534 }
1535
1536 static int get_data_block(struct inode *inode, sector_t iblock,
1537                         struct buffer_head *bh_result, int create, int flag,
1538                         pgoff_t *next_pgofs)
1539 {
1540         return __get_data_block(inode, iblock, bh_result, create,
1541                                                         flag, next_pgofs,
1542                                                         NO_CHECK_TYPE, create);
1543 }
1544
1545 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1546                         struct buffer_head *bh_result, int create)
1547 {
1548         return __get_data_block(inode, iblock, bh_result, create,
1549                                 F2FS_GET_BLOCK_DIO, NULL,
1550                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1551                                 IS_SWAPFILE(inode) ? false : true);
1552 }
1553
1554 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1555                         struct buffer_head *bh_result, int create)
1556 {
1557         return __get_data_block(inode, iblock, bh_result, create,
1558                                 F2FS_GET_BLOCK_DIO, NULL,
1559                                 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1560                                 false);
1561 }
1562
1563 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1564                         struct buffer_head *bh_result, int create)
1565 {
1566         /* Block number less than F2FS MAX BLOCKS */
1567         if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1568                 return -EFBIG;
1569
1570         return __get_data_block(inode, iblock, bh_result, create,
1571                                                 F2FS_GET_BLOCK_BMAP, NULL,
1572                                                 NO_CHECK_TYPE, create);
1573 }
1574
1575 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1576 {
1577         return (offset >> inode->i_blkbits);
1578 }
1579
1580 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1581 {
1582         return (blk << inode->i_blkbits);
1583 }
1584
1585 static int f2fs_xattr_fiemap(struct inode *inode,
1586                                 struct fiemap_extent_info *fieinfo)
1587 {
1588         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1589         struct page *page;
1590         struct node_info ni;
1591         __u64 phys = 0, len;
1592         __u32 flags;
1593         nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1594         int err = 0;
1595
1596         if (f2fs_has_inline_xattr(inode)) {
1597                 int offset;
1598
1599                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1600                                                 inode->i_ino, false);
1601                 if (!page)
1602                         return -ENOMEM;
1603
1604                 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1605                 if (err) {
1606                         f2fs_put_page(page, 1);
1607                         return err;
1608                 }
1609
1610                 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1611                 offset = offsetof(struct f2fs_inode, i_addr) +
1612                                         sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1613                                         get_inline_xattr_addrs(inode));
1614
1615                 phys += offset;
1616                 len = inline_xattr_size(inode);
1617
1618                 f2fs_put_page(page, 1);
1619
1620                 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1621
1622                 if (!xnid)
1623                         flags |= FIEMAP_EXTENT_LAST;
1624
1625                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1626                 if (err || err == 1)
1627                         return err;
1628         }
1629
1630         if (xnid) {
1631                 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1632                 if (!page)
1633                         return -ENOMEM;
1634
1635                 err = f2fs_get_node_info(sbi, xnid, &ni);
1636                 if (err) {
1637                         f2fs_put_page(page, 1);
1638                         return err;
1639                 }
1640
1641                 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1642                 len = inode->i_sb->s_blocksize;
1643
1644                 f2fs_put_page(page, 1);
1645
1646                 flags = FIEMAP_EXTENT_LAST;
1647         }
1648
1649         if (phys)
1650                 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1651
1652         return (err < 0 ? err : 0);
1653 }
1654
1655 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1656                 u64 start, u64 len)
1657 {
1658         struct buffer_head map_bh;
1659         sector_t start_blk, last_blk;
1660         pgoff_t next_pgofs;
1661         u64 logical = 0, phys = 0, size = 0;
1662         u32 flags = 0;
1663         int ret = 0;
1664
1665         if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1666                 ret = f2fs_precache_extents(inode);
1667                 if (ret)
1668                         return ret;
1669         }
1670
1671         ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1672         if (ret)
1673                 return ret;
1674
1675         inode_lock(inode);
1676
1677         if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1678                 ret = f2fs_xattr_fiemap(inode, fieinfo);
1679                 goto out;
1680         }
1681
1682         if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1683                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1684                 if (ret != -EAGAIN)
1685                         goto out;
1686         }
1687
1688         if (logical_to_blk(inode, len) == 0)
1689                 len = blk_to_logical(inode, 1);
1690
1691         start_blk = logical_to_blk(inode, start);
1692         last_blk = logical_to_blk(inode, start + len - 1);
1693
1694 next:
1695         memset(&map_bh, 0, sizeof(struct buffer_head));
1696         map_bh.b_size = len;
1697
1698         ret = get_data_block(inode, start_blk, &map_bh, 0,
1699                                         F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1700         if (ret)
1701                 goto out;
1702
1703         /* HOLE */
1704         if (!buffer_mapped(&map_bh)) {
1705                 start_blk = next_pgofs;
1706
1707                 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1708                                         F2FS_I_SB(inode)->max_file_blocks))
1709                         goto prep_next;
1710
1711                 flags |= FIEMAP_EXTENT_LAST;
1712         }
1713
1714         if (size) {
1715                 if (IS_ENCRYPTED(inode))
1716                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1717
1718                 ret = fiemap_fill_next_extent(fieinfo, logical,
1719                                 phys, size, flags);
1720         }
1721
1722         if (start_blk > last_blk || ret)
1723                 goto out;
1724
1725         logical = blk_to_logical(inode, start_blk);
1726         phys = blk_to_logical(inode, map_bh.b_blocknr);
1727         size = map_bh.b_size;
1728         flags = 0;
1729         if (buffer_unwritten(&map_bh))
1730                 flags = FIEMAP_EXTENT_UNWRITTEN;
1731
1732         start_blk += logical_to_blk(inode, size);
1733
1734 prep_next:
1735         cond_resched();
1736         if (fatal_signal_pending(current))
1737                 ret = -EINTR;
1738         else
1739                 goto next;
1740 out:
1741         if (ret == 1)
1742                 ret = 0;
1743
1744         inode_unlock(inode);
1745         return ret;
1746 }
1747
1748 static inline loff_t f2fs_readpage_limit(struct inode *inode)
1749 {
1750         if (IS_ENABLED(CONFIG_FS_VERITY) &&
1751             (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
1752                 return inode->i_sb->s_maxbytes;
1753
1754         return i_size_read(inode);
1755 }
1756
1757 static int f2fs_read_single_page(struct inode *inode, struct page *page,
1758                                         unsigned nr_pages,
1759                                         struct f2fs_map_blocks *map,
1760                                         struct bio **bio_ret,
1761                                         sector_t *last_block_in_bio,
1762                                         bool is_readahead)
1763 {
1764         struct bio *bio = *bio_ret;
1765         const unsigned blkbits = inode->i_blkbits;
1766         const unsigned blocksize = 1 << blkbits;
1767         sector_t block_in_file;
1768         sector_t last_block;
1769         sector_t last_block_in_file;
1770         sector_t block_nr;
1771         int ret = 0;
1772
1773         block_in_file = (sector_t)page_index(page);
1774         last_block = block_in_file + nr_pages;
1775         last_block_in_file = (f2fs_readpage_limit(inode) + blocksize - 1) >>
1776                                                         blkbits;
1777         if (last_block > last_block_in_file)
1778                 last_block = last_block_in_file;
1779
1780         /* just zeroing out page which is beyond EOF */
1781         if (block_in_file >= last_block)
1782                 goto zero_out;
1783         /*
1784          * Map blocks using the previous result first.
1785          */
1786         if ((map->m_flags & F2FS_MAP_MAPPED) &&
1787                         block_in_file > map->m_lblk &&
1788                         block_in_file < (map->m_lblk + map->m_len))
1789                 goto got_it;
1790
1791         /*
1792          * Then do more f2fs_map_blocks() calls until we are
1793          * done with this page.
1794          */
1795         map->m_lblk = block_in_file;
1796         map->m_len = last_block - block_in_file;
1797
1798         ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
1799         if (ret)
1800                 goto out;
1801 got_it:
1802         if ((map->m_flags & F2FS_MAP_MAPPED)) {
1803                 block_nr = map->m_pblk + block_in_file - map->m_lblk;
1804                 SetPageMappedToDisk(page);
1805
1806                 if (!PageUptodate(page) && (!PageSwapCache(page) &&
1807                                         !cleancache_get_page(page))) {
1808                         SetPageUptodate(page);
1809                         goto confused;
1810                 }
1811
1812                 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1813                                                 DATA_GENERIC_ENHANCE_READ)) {
1814                         ret = -EFSCORRUPTED;
1815                         goto out;
1816                 }
1817         } else {
1818 zero_out:
1819                 zero_user_segment(page, 0, PAGE_SIZE);
1820                 if (f2fs_need_verity(inode, page->index) &&
1821                     !fsverity_verify_page(page)) {
1822                         ret = -EIO;
1823                         goto out;
1824                 }
1825                 if (!PageUptodate(page))
1826                         SetPageUptodate(page);
1827                 unlock_page(page);
1828                 goto out;
1829         }
1830
1831         /*
1832          * This page will go to BIO.  Do we need to send this
1833          * BIO off first?
1834          */
1835         if (bio && !page_is_mergeable(F2FS_I_SB(inode), bio,
1836                                 *last_block_in_bio, block_nr)) {
1837 submit_and_realloc:
1838                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1839                 bio = NULL;
1840         }
1841         if (bio == NULL) {
1842                 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
1843                                 is_readahead ? REQ_RAHEAD : 0, page->index);
1844                 if (IS_ERR(bio)) {
1845                         ret = PTR_ERR(bio);
1846                         bio = NULL;
1847                         goto out;
1848                 }
1849         }
1850
1851         /*
1852          * If the page is under writeback, we need to wait for
1853          * its completion to see the correct decrypted data.
1854          */
1855         f2fs_wait_on_block_writeback(inode, block_nr);
1856
1857         if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1858                 goto submit_and_realloc;
1859
1860         inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
1861         ClearPageError(page);
1862         *last_block_in_bio = block_nr;
1863         goto out;
1864 confused:
1865         if (bio) {
1866                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1867                 bio = NULL;
1868         }
1869         unlock_page(page);
1870 out:
1871         *bio_ret = bio;
1872         return ret;
1873 }
1874
1875 /*
1876  * This function was originally taken from fs/mpage.c, and customized for f2fs.
1877  * Major change was from block_size == page_size in f2fs by default.
1878  *
1879  * Note that the aops->readpages() function is ONLY used for read-ahead. If
1880  * this function ever deviates from doing just read-ahead, it should either
1881  * use ->readpage() or do the necessary surgery to decouple ->readpages()
1882  * from read-ahead.
1883  */
1884 static int f2fs_mpage_readpages(struct address_space *mapping,
1885                         struct list_head *pages, struct page *page,
1886                         unsigned nr_pages, bool is_readahead)
1887 {
1888         struct bio *bio = NULL;
1889         sector_t last_block_in_bio = 0;
1890         struct inode *inode = mapping->host;
1891         struct f2fs_map_blocks map;
1892         int ret = 0;
1893
1894         map.m_pblk = 0;
1895         map.m_lblk = 0;
1896         map.m_len = 0;
1897         map.m_flags = 0;
1898         map.m_next_pgofs = NULL;
1899         map.m_next_extent = NULL;
1900         map.m_seg_type = NO_CHECK_TYPE;
1901         map.m_may_create = false;
1902
1903         for (; nr_pages; nr_pages--) {
1904                 if (pages) {
1905                         page = list_last_entry(pages, struct page, lru);
1906
1907                         prefetchw(&page->flags);
1908                         list_del(&page->lru);
1909                         if (add_to_page_cache_lru(page, mapping,
1910                                                   page_index(page),
1911                                                   readahead_gfp_mask(mapping)))
1912                                 goto next_page;
1913                 }
1914
1915                 ret = f2fs_read_single_page(inode, page, nr_pages, &map, &bio,
1916                                         &last_block_in_bio, is_readahead);
1917                 if (ret) {
1918                         SetPageError(page);
1919                         zero_user_segment(page, 0, PAGE_SIZE);
1920                         unlock_page(page);
1921                 }
1922 next_page:
1923                 if (pages)
1924                         put_page(page);
1925         }
1926         BUG_ON(pages && !list_empty(pages));
1927         if (bio)
1928                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1929         return pages ? 0 : ret;
1930 }
1931
1932 static int f2fs_read_data_page(struct file *file, struct page *page)
1933 {
1934         struct inode *inode = page_file_mapping(page)->host;
1935         int ret = -EAGAIN;
1936
1937         trace_f2fs_readpage(page, DATA);
1938
1939         /* If the file has inline data, try to read it directly */
1940         if (f2fs_has_inline_data(inode))
1941                 ret = f2fs_read_inline_data(inode, page);
1942         if (ret == -EAGAIN)
1943                 ret = f2fs_mpage_readpages(page_file_mapping(page),
1944                                                 NULL, page, 1, false);
1945         return ret;
1946 }
1947
1948 static int f2fs_read_data_pages(struct file *file,
1949                         struct address_space *mapping,
1950                         struct list_head *pages, unsigned nr_pages)
1951 {
1952         struct inode *inode = mapping->host;
1953         struct page *page = list_last_entry(pages, struct page, lru);
1954
1955         trace_f2fs_readpages(inode, page, nr_pages);
1956
1957         /* If the file has inline data, skip readpages */
1958         if (f2fs_has_inline_data(inode))
1959                 return 0;
1960
1961         return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
1962 }
1963
1964 static int encrypt_one_page(struct f2fs_io_info *fio)
1965 {
1966         struct inode *inode = fio->page->mapping->host;
1967         struct page *mpage;
1968         gfp_t gfp_flags = GFP_NOFS;
1969
1970         if (!f2fs_encrypted_file(inode))
1971                 return 0;
1972
1973         /* wait for GCed page writeback via META_MAPPING */
1974         f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
1975
1976 retry_encrypt:
1977         fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(fio->page,
1978                                                                PAGE_SIZE, 0,
1979                                                                gfp_flags);
1980         if (IS_ERR(fio->encrypted_page)) {
1981                 /* flush pending IOs and wait for a while in the ENOMEM case */
1982                 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1983                         f2fs_flush_merged_writes(fio->sbi);
1984                         congestion_wait(BLK_RW_ASYNC, HZ/50);
1985                         gfp_flags |= __GFP_NOFAIL;
1986                         goto retry_encrypt;
1987                 }
1988                 return PTR_ERR(fio->encrypted_page);
1989         }
1990
1991         mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
1992         if (mpage) {
1993                 if (PageUptodate(mpage))
1994                         memcpy(page_address(mpage),
1995                                 page_address(fio->encrypted_page), PAGE_SIZE);
1996                 f2fs_put_page(mpage, 1);
1997         }
1998         return 0;
1999 }
2000
2001 static inline bool check_inplace_update_policy(struct inode *inode,
2002                                 struct f2fs_io_info *fio)
2003 {
2004         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2005         unsigned int policy = SM_I(sbi)->ipu_policy;
2006
2007         if (policy & (0x1 << F2FS_IPU_FORCE))
2008                 return true;
2009         if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2010                 return true;
2011         if (policy & (0x1 << F2FS_IPU_UTIL) &&
2012                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2013                 return true;
2014         if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2015                         utilization(sbi) > SM_I(sbi)->min_ipu_util)
2016                 return true;
2017
2018         /*
2019          * IPU for rewrite async pages
2020          */
2021         if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2022                         fio && fio->op == REQ_OP_WRITE &&
2023                         !(fio->op_flags & REQ_SYNC) &&
2024                         !IS_ENCRYPTED(inode))
2025                 return true;
2026
2027         /* this is only set during fdatasync */
2028         if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2029                         is_inode_flag_set(inode, FI_NEED_IPU))
2030                 return true;
2031
2032         if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2033                         !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2034                 return true;
2035
2036         return false;
2037 }
2038
2039 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2040 {
2041         if (f2fs_is_pinned_file(inode))
2042                 return true;
2043
2044         /* if this is cold file, we should overwrite to avoid fragmentation */
2045         if (file_is_cold(inode))
2046                 return true;
2047
2048         return check_inplace_update_policy(inode, fio);
2049 }
2050
2051 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2052 {
2053         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2054
2055         if (test_opt(sbi, LFS))
2056                 return true;
2057         if (S_ISDIR(inode->i_mode))
2058                 return true;
2059         if (IS_NOQUOTA(inode))
2060                 return true;
2061         if (f2fs_is_atomic_file(inode))
2062                 return true;
2063         if (fio) {
2064                 if (is_cold_data(fio->page))
2065                         return true;
2066                 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
2067                         return true;
2068                 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2069                         f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2070                         return true;
2071         }
2072         return false;
2073 }
2074
2075 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2076 {
2077         struct inode *inode = fio->page->mapping->host;
2078
2079         if (f2fs_should_update_outplace(inode, fio))
2080                 return false;
2081
2082         return f2fs_should_update_inplace(inode, fio);
2083 }
2084
2085 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2086 {
2087         struct page *page = fio->page;
2088         struct inode *inode = page->mapping->host;
2089         struct dnode_of_data dn;
2090         struct extent_info ei = {0,0,0};
2091         struct node_info ni;
2092         bool ipu_force = false;
2093         int err = 0;
2094
2095         set_new_dnode(&dn, inode, NULL, NULL, 0);
2096         if (need_inplace_update(fio) &&
2097                         f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2098                 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2099
2100                 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2101                                                 DATA_GENERIC_ENHANCE))
2102                         return -EFSCORRUPTED;
2103
2104                 ipu_force = true;
2105                 fio->need_lock = LOCK_DONE;
2106                 goto got_it;
2107         }
2108
2109         /* Deadlock due to between page->lock and f2fs_lock_op */
2110         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2111                 return -EAGAIN;
2112
2113         err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2114         if (err)
2115                 goto out;
2116
2117         fio->old_blkaddr = dn.data_blkaddr;
2118
2119         /* This page is already truncated */
2120         if (fio->old_blkaddr == NULL_ADDR) {
2121                 ClearPageUptodate(page);
2122                 clear_cold_data(page);
2123                 goto out_writepage;
2124         }
2125 got_it:
2126         if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2127                 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2128                                                 DATA_GENERIC_ENHANCE)) {
2129                 err = -EFSCORRUPTED;
2130                 goto out_writepage;
2131         }
2132         /*
2133          * If current allocation needs SSR,
2134          * it had better in-place writes for updated data.
2135          */
2136         if (ipu_force ||
2137                 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2138                                         need_inplace_update(fio))) {
2139                 err = encrypt_one_page(fio);
2140                 if (err)
2141                         goto out_writepage;
2142
2143                 set_page_writeback(page);
2144                 ClearPageError(page);
2145                 f2fs_put_dnode(&dn);
2146                 if (fio->need_lock == LOCK_REQ)
2147                         f2fs_unlock_op(fio->sbi);
2148                 err = f2fs_inplace_write_data(fio);
2149                 if (err) {
2150                         if (f2fs_encrypted_file(inode))
2151                                 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2152                         if (PageWriteback(page))
2153                                 end_page_writeback(page);
2154                 } else {
2155                         set_inode_flag(inode, FI_UPDATE_WRITE);
2156                 }
2157                 trace_f2fs_do_write_data_page(fio->page, IPU);
2158                 return err;
2159         }
2160
2161         if (fio->need_lock == LOCK_RETRY) {
2162                 if (!f2fs_trylock_op(fio->sbi)) {
2163                         err = -EAGAIN;
2164                         goto out_writepage;
2165                 }
2166                 fio->need_lock = LOCK_REQ;
2167         }
2168
2169         err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2170         if (err)
2171                 goto out_writepage;
2172
2173         fio->version = ni.version;
2174
2175         err = encrypt_one_page(fio);
2176         if (err)
2177                 goto out_writepage;
2178
2179         set_page_writeback(page);
2180         ClearPageError(page);
2181
2182         /* LFS mode write path */
2183         f2fs_outplace_write_data(&dn, fio);
2184         trace_f2fs_do_write_data_page(page, OPU);
2185         set_inode_flag(inode, FI_APPEND_WRITE);
2186         if (page->index == 0)
2187                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2188 out_writepage:
2189         f2fs_put_dnode(&dn);
2190 out:
2191         if (fio->need_lock == LOCK_REQ)
2192                 f2fs_unlock_op(fio->sbi);
2193         return err;
2194 }
2195
2196 static int __write_data_page(struct page *page, bool *submitted,
2197                                 struct bio **bio,
2198                                 sector_t *last_block,
2199                                 struct writeback_control *wbc,
2200                                 enum iostat_type io_type)
2201 {
2202         struct inode *inode = page->mapping->host;
2203         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2204         loff_t i_size = i_size_read(inode);
2205         const pgoff_t end_index = ((unsigned long long) i_size)
2206                                                         >> PAGE_SHIFT;
2207         loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2208         unsigned offset = 0;
2209         bool need_balance_fs = false;
2210         int err = 0;
2211         struct f2fs_io_info fio = {
2212                 .sbi = sbi,
2213                 .ino = inode->i_ino,
2214                 .type = DATA,
2215                 .op = REQ_OP_WRITE,
2216                 .op_flags = wbc_to_write_flags(wbc),
2217                 .old_blkaddr = NULL_ADDR,
2218                 .page = page,
2219                 .encrypted_page = NULL,
2220                 .submitted = false,
2221                 .need_lock = LOCK_RETRY,
2222                 .io_type = io_type,
2223                 .io_wbc = wbc,
2224                 .bio = bio,
2225                 .last_block = last_block,
2226         };
2227
2228         trace_f2fs_writepage(page, DATA);
2229
2230         /* we should bypass data pages to proceed the kworkder jobs */
2231         if (unlikely(f2fs_cp_error(sbi))) {
2232                 mapping_set_error(page->mapping, -EIO);
2233                 /*
2234                  * don't drop any dirty dentry pages for keeping lastest
2235                  * directory structure.
2236                  */
2237                 if (S_ISDIR(inode->i_mode))
2238                         goto redirty_out;
2239                 goto out;
2240         }
2241
2242         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2243                 goto redirty_out;
2244
2245         if (page->index < end_index || f2fs_verity_in_progress(inode))
2246                 goto write;
2247
2248         /*
2249          * If the offset is out-of-range of file size,
2250          * this page does not have to be written to disk.
2251          */
2252         offset = i_size & (PAGE_SIZE - 1);
2253         if ((page->index >= end_index + 1) || !offset)
2254                 goto out;
2255
2256         zero_user_segment(page, offset, PAGE_SIZE);
2257 write:
2258         if (f2fs_is_drop_cache(inode))
2259                 goto out;
2260         /* we should not write 0'th page having journal header */
2261         if (f2fs_is_volatile_file(inode) && (!page->index ||
2262                         (!wbc->for_reclaim &&
2263                         f2fs_available_free_memory(sbi, BASE_CHECK))))
2264                 goto redirty_out;
2265
2266         /* Dentry blocks are controlled by checkpoint */
2267         if (S_ISDIR(inode->i_mode)) {
2268                 fio.need_lock = LOCK_DONE;
2269                 err = f2fs_do_write_data_page(&fio);
2270                 goto done;
2271         }
2272
2273         if (!wbc->for_reclaim)
2274                 need_balance_fs = true;
2275         else if (has_not_enough_free_secs(sbi, 0, 0))
2276                 goto redirty_out;
2277         else
2278                 set_inode_flag(inode, FI_HOT_DATA);
2279
2280         err = -EAGAIN;
2281         if (f2fs_has_inline_data(inode)) {
2282                 err = f2fs_write_inline_data(inode, page);
2283                 if (!err)
2284                         goto out;
2285         }
2286
2287         if (err == -EAGAIN) {
2288                 err = f2fs_do_write_data_page(&fio);
2289                 if (err == -EAGAIN) {
2290                         fio.need_lock = LOCK_REQ;
2291                         err = f2fs_do_write_data_page(&fio);
2292                 }
2293         }
2294
2295         if (err) {
2296                 file_set_keep_isize(inode);
2297         } else {
2298                 down_write(&F2FS_I(inode)->i_sem);
2299                 if (F2FS_I(inode)->last_disk_size < psize)
2300                         F2FS_I(inode)->last_disk_size = psize;
2301                 up_write(&F2FS_I(inode)->i_sem);
2302         }
2303
2304 done:
2305         if (err && err != -ENOENT)
2306                 goto redirty_out;
2307
2308 out:
2309         inode_dec_dirty_pages(inode);
2310         if (err) {
2311                 ClearPageUptodate(page);
2312                 clear_cold_data(page);
2313         }
2314
2315         if (wbc->for_reclaim) {
2316                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2317                 clear_inode_flag(inode, FI_HOT_DATA);
2318                 f2fs_remove_dirty_inode(inode);
2319                 submitted = NULL;
2320         }
2321
2322         unlock_page(page);
2323         if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2324                                         !F2FS_I(inode)->cp_task)
2325                 f2fs_balance_fs(sbi, need_balance_fs);
2326
2327         if (unlikely(f2fs_cp_error(sbi))) {
2328                 f2fs_submit_merged_write(sbi, DATA);
2329                 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2330                 submitted = NULL;
2331         }
2332
2333         if (submitted)
2334                 *submitted = fio.submitted;
2335
2336         return 0;
2337
2338 redirty_out:
2339         redirty_page_for_writepage(wbc, page);
2340         /*
2341          * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2342          * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2343          * file_write_and_wait_range() will see EIO error, which is critical
2344          * to return value of fsync() followed by atomic_write failure to user.
2345          */
2346         if (!err || wbc->for_reclaim)
2347                 return AOP_WRITEPAGE_ACTIVATE;
2348         unlock_page(page);
2349         return err;
2350 }
2351
2352 static int f2fs_write_data_page(struct page *page,
2353                                         struct writeback_control *wbc)
2354 {
2355         return __write_data_page(page, NULL, NULL, NULL, wbc, FS_DATA_IO);
2356 }
2357
2358 /*
2359  * This function was copied from write_cche_pages from mm/page-writeback.c.
2360  * The major change is making write step of cold data page separately from
2361  * warm/hot data page.
2362  */
2363 static int f2fs_write_cache_pages(struct address_space *mapping,
2364                                         struct writeback_control *wbc,
2365                                         enum iostat_type io_type)
2366 {
2367         int ret = 0;
2368         int done = 0;
2369         struct pagevec pvec;
2370         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2371         struct bio *bio = NULL;
2372         sector_t last_block;
2373         int nr_pages;
2374         pgoff_t uninitialized_var(writeback_index);
2375         pgoff_t index;
2376         pgoff_t end;            /* Inclusive */
2377         pgoff_t done_index;
2378         int cycled;
2379         int range_whole = 0;
2380         xa_mark_t tag;
2381         int nwritten = 0;
2382
2383         pagevec_init(&pvec);
2384
2385         if (get_dirty_pages(mapping->host) <=
2386                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2387                 set_inode_flag(mapping->host, FI_HOT_DATA);
2388         else
2389                 clear_inode_flag(mapping->host, FI_HOT_DATA);
2390
2391         if (wbc->range_cyclic) {
2392                 writeback_index = mapping->writeback_index; /* prev offset */
2393                 index = writeback_index;
2394                 if (index == 0)
2395                         cycled = 1;
2396                 else
2397                         cycled = 0;
2398                 end = -1;
2399         } else {
2400                 index = wbc->range_start >> PAGE_SHIFT;
2401                 end = wbc->range_end >> PAGE_SHIFT;
2402                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2403                         range_whole = 1;
2404                 cycled = 1; /* ignore range_cyclic tests */
2405         }
2406         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2407                 tag = PAGECACHE_TAG_TOWRITE;
2408         else
2409                 tag = PAGECACHE_TAG_DIRTY;
2410 retry:
2411         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2412                 tag_pages_for_writeback(mapping, index, end);
2413         done_index = index;
2414         while (!done && (index <= end)) {
2415                 int i;
2416
2417                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2418                                 tag);
2419                 if (nr_pages == 0)
2420                         break;
2421
2422                 for (i = 0; i < nr_pages; i++) {
2423                         struct page *page = pvec.pages[i];
2424                         bool submitted = false;
2425
2426                         /* give a priority to WB_SYNC threads */
2427                         if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2428                                         wbc->sync_mode == WB_SYNC_NONE) {
2429                                 done = 1;
2430                                 break;
2431                         }
2432
2433                         done_index = page->index;
2434 retry_write:
2435                         lock_page(page);
2436
2437                         if (unlikely(page->mapping != mapping)) {
2438 continue_unlock:
2439                                 unlock_page(page);
2440                                 continue;
2441                         }
2442
2443                         if (!PageDirty(page)) {
2444                                 /* someone wrote it for us */
2445                                 goto continue_unlock;
2446                         }
2447
2448                         if (PageWriteback(page)) {
2449                                 if (wbc->sync_mode != WB_SYNC_NONE)
2450                                         f2fs_wait_on_page_writeback(page,
2451                                                         DATA, true, true);
2452                                 else
2453                                         goto continue_unlock;
2454                         }
2455
2456                         if (!clear_page_dirty_for_io(page))
2457                                 goto continue_unlock;
2458
2459                         ret = __write_data_page(page, &submitted, &bio,
2460                                         &last_block, wbc, io_type);
2461                         if (unlikely(ret)) {
2462                                 /*
2463                                  * keep nr_to_write, since vfs uses this to
2464                                  * get # of written pages.
2465                                  */
2466                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2467                                         unlock_page(page);
2468                                         ret = 0;
2469                                         continue;
2470                                 } else if (ret == -EAGAIN) {
2471                                         ret = 0;
2472                                         if (wbc->sync_mode == WB_SYNC_ALL) {
2473                                                 cond_resched();
2474                                                 congestion_wait(BLK_RW_ASYNC,
2475                                                                         HZ/50);
2476                                                 goto retry_write;
2477                                         }
2478                                         continue;
2479                                 }
2480                                 done_index = page->index + 1;
2481                                 done = 1;
2482                                 break;
2483                         } else if (submitted) {
2484                                 nwritten++;
2485                         }
2486
2487                         if (--wbc->nr_to_write <= 0 &&
2488                                         wbc->sync_mode == WB_SYNC_NONE) {
2489                                 done = 1;
2490                                 break;
2491                         }
2492                 }
2493                 pagevec_release(&pvec);
2494                 cond_resched();
2495         }
2496
2497         if (!cycled && !done) {
2498                 cycled = 1;
2499                 index = 0;
2500                 end = writeback_index - 1;
2501                 goto retry;
2502         }
2503         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2504                 mapping->writeback_index = done_index;
2505
2506         if (nwritten)
2507                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2508                                                                 NULL, 0, DATA);
2509         /* submit cached bio of IPU write */
2510         if (bio)
2511                 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
2512
2513         return ret;
2514 }
2515
2516 static inline bool __should_serialize_io(struct inode *inode,
2517                                         struct writeback_control *wbc)
2518 {
2519         if (!S_ISREG(inode->i_mode))
2520                 return false;
2521         if (IS_NOQUOTA(inode))
2522                 return false;
2523         /* to avoid deadlock in path of data flush */
2524         if (F2FS_I(inode)->cp_task)
2525                 return false;
2526         if (wbc->sync_mode != WB_SYNC_ALL)
2527                 return true;
2528         if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
2529                 return true;
2530         return false;
2531 }
2532
2533 static int __f2fs_write_data_pages(struct address_space *mapping,
2534                                                 struct writeback_control *wbc,
2535                                                 enum iostat_type io_type)
2536 {
2537         struct inode *inode = mapping->host;
2538         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2539         struct blk_plug plug;
2540         int ret;
2541         bool locked = false;
2542
2543         /* deal with chardevs and other special file */
2544         if (!mapping->a_ops->writepage)
2545                 return 0;
2546
2547         /* skip writing if there is no dirty page in this inode */
2548         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
2549                 return 0;
2550
2551         /* during POR, we don't need to trigger writepage at all. */
2552         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2553                 goto skip_write;
2554
2555         if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
2556                         wbc->sync_mode == WB_SYNC_NONE &&
2557                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
2558                         f2fs_available_free_memory(sbi, DIRTY_DENTS))
2559                 goto skip_write;
2560
2561         /* skip writing during file defragment */
2562         if (is_inode_flag_set(inode, FI_DO_DEFRAG))
2563                 goto skip_write;
2564
2565         trace_f2fs_writepages(mapping->host, wbc, DATA);
2566
2567         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
2568         if (wbc->sync_mode == WB_SYNC_ALL)
2569                 atomic_inc(&sbi->wb_sync_req[DATA]);
2570         else if (atomic_read(&sbi->wb_sync_req[DATA]))
2571                 goto skip_write;
2572
2573         if (__should_serialize_io(inode, wbc)) {
2574                 mutex_lock(&sbi->writepages);
2575                 locked = true;
2576         }
2577
2578         blk_start_plug(&plug);
2579         ret = f2fs_write_cache_pages(mapping, wbc, io_type);
2580         blk_finish_plug(&plug);
2581
2582         if (locked)
2583                 mutex_unlock(&sbi->writepages);
2584
2585         if (wbc->sync_mode == WB_SYNC_ALL)
2586                 atomic_dec(&sbi->wb_sync_req[DATA]);
2587         /*
2588          * if some pages were truncated, we cannot guarantee its mapping->host
2589          * to detect pending bios.
2590          */
2591
2592         f2fs_remove_dirty_inode(inode);
2593         return ret;
2594
2595 skip_write:
2596         wbc->pages_skipped += get_dirty_pages(inode);
2597         trace_f2fs_writepages(mapping->host, wbc, DATA);
2598         return 0;
2599 }
2600
2601 static int f2fs_write_data_pages(struct address_space *mapping,
2602                             struct writeback_control *wbc)
2603 {
2604         struct inode *inode = mapping->host;
2605
2606         return __f2fs_write_data_pages(mapping, wbc,
2607                         F2FS_I(inode)->cp_task == current ?
2608                         FS_CP_DATA_IO : FS_DATA_IO);
2609 }
2610
2611 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
2612 {
2613         struct inode *inode = mapping->host;
2614         loff_t i_size = i_size_read(inode);
2615
2616         /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
2617         if (to > i_size && !f2fs_verity_in_progress(inode)) {
2618                 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2619                 down_write(&F2FS_I(inode)->i_mmap_sem);
2620
2621                 truncate_pagecache(inode, i_size);
2622                 if (!IS_NOQUOTA(inode))
2623                         f2fs_truncate_blocks(inode, i_size, true);
2624
2625                 up_write(&F2FS_I(inode)->i_mmap_sem);
2626                 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2627         }
2628 }
2629
2630 static int prepare_write_begin(struct f2fs_sb_info *sbi,
2631                         struct page *page, loff_t pos, unsigned len,
2632                         block_t *blk_addr, bool *node_changed)
2633 {
2634         struct inode *inode = page->mapping->host;
2635         pgoff_t index = page->index;
2636         struct dnode_of_data dn;
2637         struct page *ipage;
2638         bool locked = false;
2639         struct extent_info ei = {0,0,0};
2640         int err = 0;
2641         int flag;
2642
2643         /*
2644          * we already allocated all the blocks, so we don't need to get
2645          * the block addresses when there is no need to fill the page.
2646          */
2647         if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
2648             !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
2649             !f2fs_verity_in_progress(inode))
2650                 return 0;
2651
2652         /* f2fs_lock_op avoids race between write CP and convert_inline_page */
2653         if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
2654                 flag = F2FS_GET_BLOCK_DEFAULT;
2655         else
2656                 flag = F2FS_GET_BLOCK_PRE_AIO;
2657
2658         if (f2fs_has_inline_data(inode) ||
2659                         (pos & PAGE_MASK) >= i_size_read(inode)) {
2660                 __do_map_lock(sbi, flag, true);
2661                 locked = true;
2662         }
2663 restart:
2664         /* check inline_data */
2665         ipage = f2fs_get_node_page(sbi, inode->i_ino);
2666         if (IS_ERR(ipage)) {
2667                 err = PTR_ERR(ipage);
2668                 goto unlock_out;
2669         }
2670
2671         set_new_dnode(&dn, inode, ipage, ipage, 0);
2672
2673         if (f2fs_has_inline_data(inode)) {
2674                 if (pos + len <= MAX_INLINE_DATA(inode)) {
2675                         f2fs_do_read_inline_data(page, ipage);
2676                         set_inode_flag(inode, FI_DATA_EXIST);
2677                         if (inode->i_nlink)
2678                                 set_inline_node(ipage);
2679                 } else {
2680                         err = f2fs_convert_inline_page(&dn, page);
2681                         if (err)
2682                                 goto out;
2683                         if (dn.data_blkaddr == NULL_ADDR)
2684                                 err = f2fs_get_block(&dn, index);
2685                 }
2686         } else if (locked) {
2687                 err = f2fs_get_block(&dn, index);
2688         } else {
2689                 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
2690                         dn.data_blkaddr = ei.blk + index - ei.fofs;
2691                 } else {
2692                         /* hole case */
2693                         err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
2694                         if (err || dn.data_blkaddr == NULL_ADDR) {
2695                                 f2fs_put_dnode(&dn);
2696                                 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
2697                                                                 true);
2698                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
2699                                 locked = true;
2700                                 goto restart;
2701                         }
2702                 }
2703         }
2704
2705         /* convert_inline_page can make node_changed */
2706         *blk_addr = dn.data_blkaddr;
2707         *node_changed = dn.node_changed;
2708 out:
2709         f2fs_put_dnode(&dn);
2710 unlock_out:
2711         if (locked)
2712                 __do_map_lock(sbi, flag, false);
2713         return err;
2714 }
2715
2716 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
2717                 loff_t pos, unsigned len, unsigned flags,
2718                 struct page **pagep, void **fsdata)
2719 {
2720         struct inode *inode = mapping->host;
2721         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2722         struct page *page = NULL;
2723         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
2724         bool need_balance = false, drop_atomic = false;
2725         block_t blkaddr = NULL_ADDR;
2726         int err = 0;
2727
2728         trace_f2fs_write_begin(inode, pos, len, flags);
2729
2730         if (!f2fs_is_checkpoint_ready(sbi)) {
2731                 err = -ENOSPC;
2732                 goto fail;
2733         }
2734
2735         if ((f2fs_is_atomic_file(inode) &&
2736                         !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
2737                         is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2738                 err = -ENOMEM;
2739                 drop_atomic = true;
2740                 goto fail;
2741         }
2742
2743         /*
2744          * We should check this at this moment to avoid deadlock on inode page
2745          * and #0 page. The locking rule for inline_data conversion should be:
2746          * lock_page(page #0) -> lock_page(inode_page)
2747          */
2748         if (index != 0) {
2749                 err = f2fs_convert_inline_inode(inode);
2750                 if (err)
2751                         goto fail;
2752         }
2753 repeat:
2754         /*
2755          * Do not use grab_cache_page_write_begin() to avoid deadlock due to
2756          * wait_for_stable_page. Will wait that below with our IO control.
2757          */
2758         page = f2fs_pagecache_get_page(mapping, index,
2759                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
2760         if (!page) {
2761                 err = -ENOMEM;
2762                 goto fail;
2763         }
2764
2765         *pagep = page;
2766
2767         err = prepare_write_begin(sbi, page, pos, len,
2768                                         &blkaddr, &need_balance);
2769         if (err)
2770                 goto fail;
2771
2772         if (need_balance && !IS_NOQUOTA(inode) &&
2773                         has_not_enough_free_secs(sbi, 0, 0)) {
2774                 unlock_page(page);
2775                 f2fs_balance_fs(sbi, true);
2776                 lock_page(page);
2777                 if (page->mapping != mapping) {
2778                         /* The page got truncated from under us */
2779                         f2fs_put_page(page, 1);
2780                         goto repeat;
2781                 }
2782         }
2783
2784         f2fs_wait_on_page_writeback(page, DATA, false, true);
2785
2786         if (len == PAGE_SIZE || PageUptodate(page))
2787                 return 0;
2788
2789         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
2790             !f2fs_verity_in_progress(inode)) {
2791                 zero_user_segment(page, len, PAGE_SIZE);
2792                 return 0;
2793         }
2794
2795         if (blkaddr == NEW_ADDR) {
2796                 zero_user_segment(page, 0, PAGE_SIZE);
2797                 SetPageUptodate(page);
2798         } else {
2799                 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
2800                                 DATA_GENERIC_ENHANCE_READ)) {
2801                         err = -EFSCORRUPTED;
2802                         goto fail;
2803                 }
2804                 err = f2fs_submit_page_read(inode, page, blkaddr);
2805                 if (err)
2806                         goto fail;
2807
2808                 lock_page(page);
2809                 if (unlikely(page->mapping != mapping)) {
2810                         f2fs_put_page(page, 1);
2811                         goto repeat;
2812                 }
2813                 if (unlikely(!PageUptodate(page))) {
2814                         err = -EIO;
2815                         goto fail;
2816                 }
2817         }
2818         return 0;
2819
2820 fail:
2821         f2fs_put_page(page, 1);
2822         f2fs_write_failed(mapping, pos + len);
2823         if (drop_atomic)
2824                 f2fs_drop_inmem_pages_all(sbi, false);
2825         return err;
2826 }
2827
2828 static int f2fs_write_end(struct file *file,
2829                         struct address_space *mapping,
2830                         loff_t pos, unsigned len, unsigned copied,
2831                         struct page *page, void *fsdata)
2832 {
2833         struct inode *inode = page->mapping->host;
2834
2835         trace_f2fs_write_end(inode, pos, len, copied);
2836
2837         /*
2838          * This should be come from len == PAGE_SIZE, and we expect copied
2839          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2840          * let generic_perform_write() try to copy data again through copied=0.
2841          */
2842         if (!PageUptodate(page)) {
2843                 if (unlikely(copied != len))
2844                         copied = 0;
2845                 else
2846                         SetPageUptodate(page);
2847         }
2848         if (!copied)
2849                 goto unlock_out;
2850
2851         set_page_dirty(page);
2852
2853         if (pos + copied > i_size_read(inode) &&
2854             !f2fs_verity_in_progress(inode))
2855                 f2fs_i_size_write(inode, pos + copied);
2856 unlock_out:
2857         f2fs_put_page(page, 1);
2858         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2859         return copied;
2860 }
2861
2862 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2863                            loff_t offset)
2864 {
2865         unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
2866         unsigned blkbits = i_blkbits;
2867         unsigned blocksize_mask = (1 << blkbits) - 1;
2868         unsigned long align = offset | iov_iter_alignment(iter);
2869         struct block_device *bdev = inode->i_sb->s_bdev;
2870
2871         if (align & blocksize_mask) {
2872                 if (bdev)
2873                         blkbits = blksize_bits(bdev_logical_block_size(bdev));
2874                 blocksize_mask = (1 << blkbits) - 1;
2875                 if (align & blocksize_mask)
2876                         return -EINVAL;
2877                 return 1;
2878         }
2879         return 0;
2880 }
2881
2882 static void f2fs_dio_end_io(struct bio *bio)
2883 {
2884         struct f2fs_private_dio *dio = bio->bi_private;
2885
2886         dec_page_count(F2FS_I_SB(dio->inode),
2887                         dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2888
2889         bio->bi_private = dio->orig_private;
2890         bio->bi_end_io = dio->orig_end_io;
2891
2892         kvfree(dio);
2893
2894         bio_endio(bio);
2895 }
2896
2897 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
2898                                                         loff_t file_offset)
2899 {
2900         struct f2fs_private_dio *dio;
2901         bool write = (bio_op(bio) == REQ_OP_WRITE);
2902
2903         dio = f2fs_kzalloc(F2FS_I_SB(inode),
2904                         sizeof(struct f2fs_private_dio), GFP_NOFS);
2905         if (!dio)
2906                 goto out;
2907
2908         dio->inode = inode;
2909         dio->orig_end_io = bio->bi_end_io;
2910         dio->orig_private = bio->bi_private;
2911         dio->write = write;
2912
2913         bio->bi_end_io = f2fs_dio_end_io;
2914         bio->bi_private = dio;
2915
2916         inc_page_count(F2FS_I_SB(inode),
2917                         write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2918
2919         submit_bio(bio);
2920         return;
2921 out:
2922         bio->bi_status = BLK_STS_IOERR;
2923         bio_endio(bio);
2924 }
2925
2926 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2927 {
2928         struct address_space *mapping = iocb->ki_filp->f_mapping;
2929         struct inode *inode = mapping->host;
2930         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2931         struct f2fs_inode_info *fi = F2FS_I(inode);
2932         size_t count = iov_iter_count(iter);
2933         loff_t offset = iocb->ki_pos;
2934         int rw = iov_iter_rw(iter);
2935         int err;
2936         enum rw_hint hint = iocb->ki_hint;
2937         int whint_mode = F2FS_OPTION(sbi).whint_mode;
2938         bool do_opu;
2939
2940         err = check_direct_IO(inode, iter, offset);
2941         if (err)
2942                 return err < 0 ? err : 0;
2943
2944         if (f2fs_force_buffered_io(inode, iocb, iter))
2945                 return 0;
2946
2947         do_opu = allow_outplace_dio(inode, iocb, iter);
2948
2949         trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2950
2951         if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
2952                 iocb->ki_hint = WRITE_LIFE_NOT_SET;
2953
2954         if (iocb->ki_flags & IOCB_NOWAIT) {
2955                 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
2956                         iocb->ki_hint = hint;
2957                         err = -EAGAIN;
2958                         goto out;
2959                 }
2960                 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
2961                         up_read(&fi->i_gc_rwsem[rw]);
2962                         iocb->ki_hint = hint;
2963                         err = -EAGAIN;
2964                         goto out;
2965                 }
2966         } else {
2967                 down_read(&fi->i_gc_rwsem[rw]);
2968                 if (do_opu)
2969                         down_read(&fi->i_gc_rwsem[READ]);
2970         }
2971
2972         err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2973                         iter, rw == WRITE ? get_data_block_dio_write :
2974                         get_data_block_dio, NULL, f2fs_dio_submit_bio,
2975                         DIO_LOCKING | DIO_SKIP_HOLES);
2976
2977         if (do_opu)
2978                 up_read(&fi->i_gc_rwsem[READ]);
2979
2980         up_read(&fi->i_gc_rwsem[rw]);
2981
2982         if (rw == WRITE) {
2983                 if (whint_mode == WHINT_MODE_OFF)
2984                         iocb->ki_hint = hint;
2985                 if (err > 0) {
2986                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2987                                                                         err);
2988                         if (!do_opu)
2989                                 set_inode_flag(inode, FI_UPDATE_WRITE);
2990                 } else if (err < 0) {
2991                         f2fs_write_failed(mapping, offset + count);
2992                 }
2993         }
2994
2995 out:
2996         trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2997
2998         return err;
2999 }
3000
3001 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3002                                                         unsigned int length)
3003 {
3004         struct inode *inode = page->mapping->host;
3005         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3006
3007         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3008                 (offset % PAGE_SIZE || length != PAGE_SIZE))
3009                 return;
3010
3011         if (PageDirty(page)) {
3012                 if (inode->i_ino == F2FS_META_INO(sbi)) {
3013                         dec_page_count(sbi, F2FS_DIRTY_META);
3014                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3015                         dec_page_count(sbi, F2FS_DIRTY_NODES);
3016                 } else {
3017                         inode_dec_dirty_pages(inode);
3018                         f2fs_remove_dirty_inode(inode);
3019                 }
3020         }
3021
3022         clear_cold_data(page);
3023
3024         if (IS_ATOMIC_WRITTEN_PAGE(page))
3025                 return f2fs_drop_inmem_page(inode, page);
3026
3027         f2fs_clear_page_private(page);
3028 }
3029
3030 int f2fs_release_page(struct page *page, gfp_t wait)
3031 {
3032         /* If this is dirty page, keep PagePrivate */
3033         if (PageDirty(page))
3034                 return 0;
3035
3036         /* This is atomic written page, keep Private */
3037         if (IS_ATOMIC_WRITTEN_PAGE(page))
3038                 return 0;
3039
3040         clear_cold_data(page);
3041         f2fs_clear_page_private(page);
3042         return 1;
3043 }
3044
3045 static int f2fs_set_data_page_dirty(struct page *page)
3046 {
3047         struct inode *inode = page_file_mapping(page)->host;
3048
3049         trace_f2fs_set_page_dirty(page, DATA);
3050
3051         if (!PageUptodate(page))
3052                 SetPageUptodate(page);
3053         if (PageSwapCache(page))
3054                 return __set_page_dirty_nobuffers(page);
3055
3056         if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3057                 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
3058                         f2fs_register_inmem_page(inode, page);
3059                         return 1;
3060                 }
3061                 /*
3062                  * Previously, this page has been registered, we just
3063                  * return here.
3064                  */
3065                 return 0;
3066         }
3067
3068         if (!PageDirty(page)) {
3069                 __set_page_dirty_nobuffers(page);
3070                 f2fs_update_dirty_page(inode, page);
3071                 return 1;
3072         }
3073         return 0;
3074 }
3075
3076 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3077 {
3078         struct inode *inode = mapping->host;
3079
3080         if (f2fs_has_inline_data(inode))
3081                 return 0;
3082
3083         /* make sure allocating whole blocks */
3084         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3085                 filemap_write_and_wait(mapping);
3086
3087         return generic_block_bmap(mapping, block, get_data_block_bmap);
3088 }
3089
3090 #ifdef CONFIG_MIGRATION
3091 #include <linux/migrate.h>
3092
3093 int f2fs_migrate_page(struct address_space *mapping,
3094                 struct page *newpage, struct page *page, enum migrate_mode mode)
3095 {
3096         int rc, extra_count;
3097         struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3098         bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
3099
3100         BUG_ON(PageWriteback(page));
3101
3102         /* migrating an atomic written page is safe with the inmem_lock hold */
3103         if (atomic_written) {
3104                 if (mode != MIGRATE_SYNC)
3105                         return -EBUSY;
3106                 if (!mutex_trylock(&fi->inmem_lock))
3107                         return -EAGAIN;
3108         }
3109
3110         /* one extra reference was held for atomic_write page */
3111         extra_count = atomic_written ? 1 : 0;
3112         rc = migrate_page_move_mapping(mapping, newpage,
3113                                 page, extra_count);
3114         if (rc != MIGRATEPAGE_SUCCESS) {
3115                 if (atomic_written)
3116                         mutex_unlock(&fi->inmem_lock);
3117                 return rc;
3118         }
3119
3120         if (atomic_written) {
3121                 struct inmem_pages *cur;
3122                 list_for_each_entry(cur, &fi->inmem_pages, list)
3123                         if (cur->page == page) {
3124                                 cur->page = newpage;
3125                                 break;
3126                         }
3127                 mutex_unlock(&fi->inmem_lock);
3128                 put_page(page);
3129                 get_page(newpage);
3130         }
3131
3132         if (PagePrivate(page)) {
3133                 f2fs_set_page_private(newpage, page_private(page));
3134                 f2fs_clear_page_private(page);
3135         }
3136
3137         if (mode != MIGRATE_SYNC_NO_COPY)
3138                 migrate_page_copy(newpage, page);
3139         else
3140                 migrate_page_states(newpage, page);
3141
3142         return MIGRATEPAGE_SUCCESS;
3143 }
3144 #endif
3145
3146 #ifdef CONFIG_SWAP
3147 /* Copied from generic_swapfile_activate() to check any holes */
3148 static int check_swap_activate(struct file *swap_file, unsigned int max)
3149 {
3150         struct address_space *mapping = swap_file->f_mapping;
3151         struct inode *inode = mapping->host;
3152         unsigned blocks_per_page;
3153         unsigned long page_no;
3154         unsigned blkbits;
3155         sector_t probe_block;
3156         sector_t last_block;
3157         sector_t lowest_block = -1;
3158         sector_t highest_block = 0;
3159
3160         blkbits = inode->i_blkbits;
3161         blocks_per_page = PAGE_SIZE >> blkbits;
3162
3163         /*
3164          * Map all the blocks into the extent list.  This code doesn't try
3165          * to be very smart.
3166          */
3167         probe_block = 0;
3168         page_no = 0;
3169         last_block = i_size_read(inode) >> blkbits;
3170         while ((probe_block + blocks_per_page) <= last_block && page_no < max) {
3171                 unsigned block_in_page;
3172                 sector_t first_block;
3173
3174                 cond_resched();
3175
3176                 first_block = bmap(inode, probe_block);
3177                 if (first_block == 0)
3178                         goto bad_bmap;
3179
3180                 /*
3181                  * It must be PAGE_SIZE aligned on-disk
3182                  */
3183                 if (first_block & (blocks_per_page - 1)) {
3184                         probe_block++;
3185                         goto reprobe;
3186                 }
3187
3188                 for (block_in_page = 1; block_in_page < blocks_per_page;
3189                                         block_in_page++) {
3190                         sector_t block;
3191
3192                         block = bmap(inode, probe_block + block_in_page);
3193                         if (block == 0)
3194                                 goto bad_bmap;
3195                         if (block != first_block + block_in_page) {
3196                                 /* Discontiguity */
3197                                 probe_block++;
3198                                 goto reprobe;
3199                         }
3200                 }
3201
3202                 first_block >>= (PAGE_SHIFT - blkbits);
3203                 if (page_no) {  /* exclude the header page */
3204                         if (first_block < lowest_block)
3205                                 lowest_block = first_block;
3206                         if (first_block > highest_block)
3207                                 highest_block = first_block;
3208                 }
3209
3210                 page_no++;
3211                 probe_block += blocks_per_page;
3212 reprobe:
3213                 continue;
3214         }
3215         return 0;
3216
3217 bad_bmap:
3218         pr_err("swapon: swapfile has holes\n");
3219         return -EINVAL;
3220 }
3221
3222 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3223                                 sector_t *span)
3224 {
3225         struct inode *inode = file_inode(file);
3226         int ret;
3227
3228         if (!S_ISREG(inode->i_mode))
3229                 return -EINVAL;
3230
3231         if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3232                 return -EROFS;
3233
3234         ret = f2fs_convert_inline_inode(inode);
3235         if (ret)
3236                 return ret;
3237
3238         ret = check_swap_activate(file, sis->max);
3239         if (ret)
3240                 return ret;
3241
3242         set_inode_flag(inode, FI_PIN_FILE);
3243         f2fs_precache_extents(inode);
3244         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3245         return 0;
3246 }
3247
3248 static void f2fs_swap_deactivate(struct file *file)
3249 {
3250         struct inode *inode = file_inode(file);
3251
3252         clear_inode_flag(inode, FI_PIN_FILE);
3253 }
3254 #else
3255 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3256                                 sector_t *span)
3257 {
3258         return -EOPNOTSUPP;
3259 }
3260
3261 static void f2fs_swap_deactivate(struct file *file)
3262 {
3263 }
3264 #endif
3265
3266 const struct address_space_operations f2fs_dblock_aops = {
3267         .readpage       = f2fs_read_data_page,
3268         .readpages      = f2fs_read_data_pages,
3269         .writepage      = f2fs_write_data_page,
3270         .writepages     = f2fs_write_data_pages,
3271         .write_begin    = f2fs_write_begin,
3272         .write_end      = f2fs_write_end,
3273         .set_page_dirty = f2fs_set_data_page_dirty,
3274         .invalidatepage = f2fs_invalidate_page,
3275         .releasepage    = f2fs_release_page,
3276         .direct_IO      = f2fs_direct_IO,
3277         .bmap           = f2fs_bmap,
3278         .swap_activate  = f2fs_swap_activate,
3279         .swap_deactivate = f2fs_swap_deactivate,
3280 #ifdef CONFIG_MIGRATION
3281         .migratepage    = f2fs_migrate_page,
3282 #endif
3283 };
3284
3285 void f2fs_clear_page_cache_dirty_tag(struct page *page)
3286 {
3287         struct address_space *mapping = page_mapping(page);
3288         unsigned long flags;
3289
3290         xa_lock_irqsave(&mapping->i_pages, flags);
3291         __xa_clear_mark(&mapping->i_pages, page_index(page),
3292                                                 PAGECACHE_TAG_DIRTY);
3293         xa_unlock_irqrestore(&mapping->i_pages, flags);
3294 }
3295
3296 int __init f2fs_init_post_read_processing(void)
3297 {
3298         bio_post_read_ctx_cache =
3299                 kmem_cache_create("f2fs_bio_post_read_ctx",
3300                                   sizeof(struct bio_post_read_ctx), 0, 0, NULL);
3301         if (!bio_post_read_ctx_cache)
3302                 goto fail;
3303         bio_post_read_ctx_pool =
3304                 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
3305                                          bio_post_read_ctx_cache);
3306         if (!bio_post_read_ctx_pool)
3307                 goto fail_free_cache;
3308         return 0;
3309
3310 fail_free_cache:
3311         kmem_cache_destroy(bio_post_read_ctx_cache);
3312 fail:
3313         return -ENOMEM;
3314 }
3315
3316 void f2fs_destroy_post_read_processing(void)
3317 {
3318         mempool_destroy(bio_post_read_ctx_pool);
3319         kmem_cache_destroy(bio_post_read_ctx_cache);
3320 }
3321
3322 int __init f2fs_init_bio_entry_cache(void)
3323 {
3324         bio_entry_slab = f2fs_kmem_cache_create("bio_entry_slab",
3325                         sizeof(struct bio_entry));
3326         if (!bio_entry_slab)
3327                 return -ENOMEM;
3328         return 0;
3329 }
3330
3331 void __exit f2fs_destroy_bio_entry_cache(void)
3332 {
3333         kmem_cache_destroy(bio_entry_slab);
3334 }