]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/f2fs/node.c
Merge tag 'socfpga_dts_updates_for_v5.4' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / fs / f2fs / node.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31  * Check whether the given nid is within node id range.
32  */
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35         if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36                 set_sbi_flag(sbi, SBI_NEED_FSCK);
37                 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38                           __func__, nid);
39                 return -EFSCORRUPTED;
40         }
41         return 0;
42 }
43
44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45 {
46         struct f2fs_nm_info *nm_i = NM_I(sbi);
47         struct sysinfo val;
48         unsigned long avail_ram;
49         unsigned long mem_size = 0;
50         bool res = false;
51
52         si_meminfo(&val);
53
54         /* only uses low memory */
55         avail_ram = val.totalram - val.totalhigh;
56
57         /*
58          * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
59          */
60         if (type == FREE_NIDS) {
61                 mem_size = (nm_i->nid_cnt[FREE_NID] *
62                                 sizeof(struct free_nid)) >> PAGE_SHIFT;
63                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
64         } else if (type == NAT_ENTRIES) {
65                 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
66                                                         PAGE_SHIFT;
67                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68                 if (excess_cached_nats(sbi))
69                         res = false;
70         } else if (type == DIRTY_DENTS) {
71                 if (sbi->sb->s_bdi->wb.dirty_exceeded)
72                         return false;
73                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
74                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75         } else if (type == INO_ENTRIES) {
76                 int i;
77
78                 for (i = 0; i < MAX_INO_ENTRY; i++)
79                         mem_size += sbi->im[i].ino_num *
80                                                 sizeof(struct ino_entry);
81                 mem_size >>= PAGE_SHIFT;
82                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
83         } else if (type == EXTENT_CACHE) {
84                 mem_size = (atomic_read(&sbi->total_ext_tree) *
85                                 sizeof(struct extent_tree) +
86                                 atomic_read(&sbi->total_ext_node) *
87                                 sizeof(struct extent_node)) >> PAGE_SHIFT;
88                 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
89         } else if (type == INMEM_PAGES) {
90                 /* it allows 20% / total_ram for inmemory pages */
91                 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
92                 res = mem_size < (val.totalram / 5);
93         } else {
94                 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
95                         return true;
96         }
97         return res;
98 }
99
100 static void clear_node_page_dirty(struct page *page)
101 {
102         if (PageDirty(page)) {
103                 f2fs_clear_page_cache_dirty_tag(page);
104                 clear_page_dirty_for_io(page);
105                 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
106         }
107         ClearPageUptodate(page);
108 }
109
110 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
111 {
112         return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
113 }
114
115 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
116 {
117         struct page *src_page;
118         struct page *dst_page;
119         pgoff_t dst_off;
120         void *src_addr;
121         void *dst_addr;
122         struct f2fs_nm_info *nm_i = NM_I(sbi);
123
124         dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
125
126         /* get current nat block page with lock */
127         src_page = get_current_nat_page(sbi, nid);
128         if (IS_ERR(src_page))
129                 return src_page;
130         dst_page = f2fs_grab_meta_page(sbi, dst_off);
131         f2fs_bug_on(sbi, PageDirty(src_page));
132
133         src_addr = page_address(src_page);
134         dst_addr = page_address(dst_page);
135         memcpy(dst_addr, src_addr, PAGE_SIZE);
136         set_page_dirty(dst_page);
137         f2fs_put_page(src_page, 1);
138
139         set_to_next_nat(nm_i, nid);
140
141         return dst_page;
142 }
143
144 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
145 {
146         struct nat_entry *new;
147
148         if (no_fail)
149                 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
150         else
151                 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152         if (new) {
153                 nat_set_nid(new, nid);
154                 nat_reset_flag(new);
155         }
156         return new;
157 }
158
159 static void __free_nat_entry(struct nat_entry *e)
160 {
161         kmem_cache_free(nat_entry_slab, e);
162 }
163
164 /* must be locked by nat_tree_lock */
165 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166         struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
167 {
168         if (no_fail)
169                 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170         else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
171                 return NULL;
172
173         if (raw_ne)
174                 node_info_from_raw_nat(&ne->ni, raw_ne);
175
176         spin_lock(&nm_i->nat_list_lock);
177         list_add_tail(&ne->list, &nm_i->nat_entries);
178         spin_unlock(&nm_i->nat_list_lock);
179
180         nm_i->nat_cnt++;
181         return ne;
182 }
183
184 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
185 {
186         struct nat_entry *ne;
187
188         ne = radix_tree_lookup(&nm_i->nat_root, n);
189
190         /* for recent accessed nat entry, move it to tail of lru list */
191         if (ne && !get_nat_flag(ne, IS_DIRTY)) {
192                 spin_lock(&nm_i->nat_list_lock);
193                 if (!list_empty(&ne->list))
194                         list_move_tail(&ne->list, &nm_i->nat_entries);
195                 spin_unlock(&nm_i->nat_list_lock);
196         }
197
198         return ne;
199 }
200
201 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
202                 nid_t start, unsigned int nr, struct nat_entry **ep)
203 {
204         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
205 }
206
207 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
208 {
209         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
210         nm_i->nat_cnt--;
211         __free_nat_entry(e);
212 }
213
214 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
215                                                         struct nat_entry *ne)
216 {
217         nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
218         struct nat_entry_set *head;
219
220         head = radix_tree_lookup(&nm_i->nat_set_root, set);
221         if (!head) {
222                 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
223
224                 INIT_LIST_HEAD(&head->entry_list);
225                 INIT_LIST_HEAD(&head->set_list);
226                 head->set = set;
227                 head->entry_cnt = 0;
228                 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
229         }
230         return head;
231 }
232
233 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
234                                                 struct nat_entry *ne)
235 {
236         struct nat_entry_set *head;
237         bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
238
239         if (!new_ne)
240                 head = __grab_nat_entry_set(nm_i, ne);
241
242         /*
243          * update entry_cnt in below condition:
244          * 1. update NEW_ADDR to valid block address;
245          * 2. update old block address to new one;
246          */
247         if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
248                                 !get_nat_flag(ne, IS_DIRTY)))
249                 head->entry_cnt++;
250
251         set_nat_flag(ne, IS_PREALLOC, new_ne);
252
253         if (get_nat_flag(ne, IS_DIRTY))
254                 goto refresh_list;
255
256         nm_i->dirty_nat_cnt++;
257         set_nat_flag(ne, IS_DIRTY, true);
258 refresh_list:
259         spin_lock(&nm_i->nat_list_lock);
260         if (new_ne)
261                 list_del_init(&ne->list);
262         else
263                 list_move_tail(&ne->list, &head->entry_list);
264         spin_unlock(&nm_i->nat_list_lock);
265 }
266
267 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
268                 struct nat_entry_set *set, struct nat_entry *ne)
269 {
270         spin_lock(&nm_i->nat_list_lock);
271         list_move_tail(&ne->list, &nm_i->nat_entries);
272         spin_unlock(&nm_i->nat_list_lock);
273
274         set_nat_flag(ne, IS_DIRTY, false);
275         set->entry_cnt--;
276         nm_i->dirty_nat_cnt--;
277 }
278
279 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
280                 nid_t start, unsigned int nr, struct nat_entry_set **ep)
281 {
282         return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
283                                                         start, nr);
284 }
285
286 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
287 {
288         return NODE_MAPPING(sbi) == page->mapping &&
289                         IS_DNODE(page) && is_cold_node(page);
290 }
291
292 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
293 {
294         spin_lock_init(&sbi->fsync_node_lock);
295         INIT_LIST_HEAD(&sbi->fsync_node_list);
296         sbi->fsync_seg_id = 0;
297         sbi->fsync_node_num = 0;
298 }
299
300 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
301                                                         struct page *page)
302 {
303         struct fsync_node_entry *fn;
304         unsigned long flags;
305         unsigned int seq_id;
306
307         fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
308
309         get_page(page);
310         fn->page = page;
311         INIT_LIST_HEAD(&fn->list);
312
313         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
314         list_add_tail(&fn->list, &sbi->fsync_node_list);
315         fn->seq_id = sbi->fsync_seg_id++;
316         seq_id = fn->seq_id;
317         sbi->fsync_node_num++;
318         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
319
320         return seq_id;
321 }
322
323 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
324 {
325         struct fsync_node_entry *fn;
326         unsigned long flags;
327
328         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
329         list_for_each_entry(fn, &sbi->fsync_node_list, list) {
330                 if (fn->page == page) {
331                         list_del(&fn->list);
332                         sbi->fsync_node_num--;
333                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
334                         kmem_cache_free(fsync_node_entry_slab, fn);
335                         put_page(page);
336                         return;
337                 }
338         }
339         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
340         f2fs_bug_on(sbi, 1);
341 }
342
343 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
344 {
345         unsigned long flags;
346
347         spin_lock_irqsave(&sbi->fsync_node_lock, flags);
348         sbi->fsync_seg_id = 0;
349         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
350 }
351
352 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
353 {
354         struct f2fs_nm_info *nm_i = NM_I(sbi);
355         struct nat_entry *e;
356         bool need = false;
357
358         down_read(&nm_i->nat_tree_lock);
359         e = __lookup_nat_cache(nm_i, nid);
360         if (e) {
361                 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
362                                 !get_nat_flag(e, HAS_FSYNCED_INODE))
363                         need = true;
364         }
365         up_read(&nm_i->nat_tree_lock);
366         return need;
367 }
368
369 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
370 {
371         struct f2fs_nm_info *nm_i = NM_I(sbi);
372         struct nat_entry *e;
373         bool is_cp = true;
374
375         down_read(&nm_i->nat_tree_lock);
376         e = __lookup_nat_cache(nm_i, nid);
377         if (e && !get_nat_flag(e, IS_CHECKPOINTED))
378                 is_cp = false;
379         up_read(&nm_i->nat_tree_lock);
380         return is_cp;
381 }
382
383 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
384 {
385         struct f2fs_nm_info *nm_i = NM_I(sbi);
386         struct nat_entry *e;
387         bool need_update = true;
388
389         down_read(&nm_i->nat_tree_lock);
390         e = __lookup_nat_cache(nm_i, ino);
391         if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
392                         (get_nat_flag(e, IS_CHECKPOINTED) ||
393                          get_nat_flag(e, HAS_FSYNCED_INODE)))
394                 need_update = false;
395         up_read(&nm_i->nat_tree_lock);
396         return need_update;
397 }
398
399 /* must be locked by nat_tree_lock */
400 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
401                                                 struct f2fs_nat_entry *ne)
402 {
403         struct f2fs_nm_info *nm_i = NM_I(sbi);
404         struct nat_entry *new, *e;
405
406         new = __alloc_nat_entry(nid, false);
407         if (!new)
408                 return;
409
410         down_write(&nm_i->nat_tree_lock);
411         e = __lookup_nat_cache(nm_i, nid);
412         if (!e)
413                 e = __init_nat_entry(nm_i, new, ne, false);
414         else
415                 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
416                                 nat_get_blkaddr(e) !=
417                                         le32_to_cpu(ne->block_addr) ||
418                                 nat_get_version(e) != ne->version);
419         up_write(&nm_i->nat_tree_lock);
420         if (e != new)
421                 __free_nat_entry(new);
422 }
423
424 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
425                         block_t new_blkaddr, bool fsync_done)
426 {
427         struct f2fs_nm_info *nm_i = NM_I(sbi);
428         struct nat_entry *e;
429         struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
430
431         down_write(&nm_i->nat_tree_lock);
432         e = __lookup_nat_cache(nm_i, ni->nid);
433         if (!e) {
434                 e = __init_nat_entry(nm_i, new, NULL, true);
435                 copy_node_info(&e->ni, ni);
436                 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
437         } else if (new_blkaddr == NEW_ADDR) {
438                 /*
439                  * when nid is reallocated,
440                  * previous nat entry can be remained in nat cache.
441                  * So, reinitialize it with new information.
442                  */
443                 copy_node_info(&e->ni, ni);
444                 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
445         }
446         /* let's free early to reduce memory consumption */
447         if (e != new)
448                 __free_nat_entry(new);
449
450         /* sanity check */
451         f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
452         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
453                         new_blkaddr == NULL_ADDR);
454         f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
455                         new_blkaddr == NEW_ADDR);
456         f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
457                         new_blkaddr == NEW_ADDR);
458
459         /* increment version no as node is removed */
460         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
461                 unsigned char version = nat_get_version(e);
462                 nat_set_version(e, inc_node_version(version));
463         }
464
465         /* change address */
466         nat_set_blkaddr(e, new_blkaddr);
467         if (!__is_valid_data_blkaddr(new_blkaddr))
468                 set_nat_flag(e, IS_CHECKPOINTED, false);
469         __set_nat_cache_dirty(nm_i, e);
470
471         /* update fsync_mark if its inode nat entry is still alive */
472         if (ni->nid != ni->ino)
473                 e = __lookup_nat_cache(nm_i, ni->ino);
474         if (e) {
475                 if (fsync_done && ni->nid == ni->ino)
476                         set_nat_flag(e, HAS_FSYNCED_INODE, true);
477                 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
478         }
479         up_write(&nm_i->nat_tree_lock);
480 }
481
482 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
483 {
484         struct f2fs_nm_info *nm_i = NM_I(sbi);
485         int nr = nr_shrink;
486
487         if (!down_write_trylock(&nm_i->nat_tree_lock))
488                 return 0;
489
490         spin_lock(&nm_i->nat_list_lock);
491         while (nr_shrink) {
492                 struct nat_entry *ne;
493
494                 if (list_empty(&nm_i->nat_entries))
495                         break;
496
497                 ne = list_first_entry(&nm_i->nat_entries,
498                                         struct nat_entry, list);
499                 list_del(&ne->list);
500                 spin_unlock(&nm_i->nat_list_lock);
501
502                 __del_from_nat_cache(nm_i, ne);
503                 nr_shrink--;
504
505                 spin_lock(&nm_i->nat_list_lock);
506         }
507         spin_unlock(&nm_i->nat_list_lock);
508
509         up_write(&nm_i->nat_tree_lock);
510         return nr - nr_shrink;
511 }
512
513 /*
514  * This function always returns success
515  */
516 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
517                                                 struct node_info *ni)
518 {
519         struct f2fs_nm_info *nm_i = NM_I(sbi);
520         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
521         struct f2fs_journal *journal = curseg->journal;
522         nid_t start_nid = START_NID(nid);
523         struct f2fs_nat_block *nat_blk;
524         struct page *page = NULL;
525         struct f2fs_nat_entry ne;
526         struct nat_entry *e;
527         pgoff_t index;
528         block_t blkaddr;
529         int i;
530
531         ni->nid = nid;
532
533         /* Check nat cache */
534         down_read(&nm_i->nat_tree_lock);
535         e = __lookup_nat_cache(nm_i, nid);
536         if (e) {
537                 ni->ino = nat_get_ino(e);
538                 ni->blk_addr = nat_get_blkaddr(e);
539                 ni->version = nat_get_version(e);
540                 up_read(&nm_i->nat_tree_lock);
541                 return 0;
542         }
543
544         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
545
546         /* Check current segment summary */
547         down_read(&curseg->journal_rwsem);
548         i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
549         if (i >= 0) {
550                 ne = nat_in_journal(journal, i);
551                 node_info_from_raw_nat(ni, &ne);
552         }
553         up_read(&curseg->journal_rwsem);
554         if (i >= 0) {
555                 up_read(&nm_i->nat_tree_lock);
556                 goto cache;
557         }
558
559         /* Fill node_info from nat page */
560         index = current_nat_addr(sbi, nid);
561         up_read(&nm_i->nat_tree_lock);
562
563         page = f2fs_get_meta_page(sbi, index);
564         if (IS_ERR(page))
565                 return PTR_ERR(page);
566
567         nat_blk = (struct f2fs_nat_block *)page_address(page);
568         ne = nat_blk->entries[nid - start_nid];
569         node_info_from_raw_nat(ni, &ne);
570         f2fs_put_page(page, 1);
571 cache:
572         blkaddr = le32_to_cpu(ne.block_addr);
573         if (__is_valid_data_blkaddr(blkaddr) &&
574                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
575                 return -EFAULT;
576
577         /* cache nat entry */
578         cache_nat_entry(sbi, nid, &ne);
579         return 0;
580 }
581
582 /*
583  * readahead MAX_RA_NODE number of node pages.
584  */
585 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
586 {
587         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
588         struct blk_plug plug;
589         int i, end;
590         nid_t nid;
591
592         blk_start_plug(&plug);
593
594         /* Then, try readahead for siblings of the desired node */
595         end = start + n;
596         end = min(end, NIDS_PER_BLOCK);
597         for (i = start; i < end; i++) {
598                 nid = get_nid(parent, i, false);
599                 f2fs_ra_node_page(sbi, nid);
600         }
601
602         blk_finish_plug(&plug);
603 }
604
605 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
606 {
607         const long direct_index = ADDRS_PER_INODE(dn->inode);
608         const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
609         const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
610         unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
611         int cur_level = dn->cur_level;
612         int max_level = dn->max_level;
613         pgoff_t base = 0;
614
615         if (!dn->max_level)
616                 return pgofs + 1;
617
618         while (max_level-- > cur_level)
619                 skipped_unit *= NIDS_PER_BLOCK;
620
621         switch (dn->max_level) {
622         case 3:
623                 base += 2 * indirect_blks;
624                 /* fall through */
625         case 2:
626                 base += 2 * direct_blks;
627                 /* fall through */
628         case 1:
629                 base += direct_index;
630                 break;
631         default:
632                 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
633         }
634
635         return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
636 }
637
638 /*
639  * The maximum depth is four.
640  * Offset[0] will have raw inode offset.
641  */
642 static int get_node_path(struct inode *inode, long block,
643                                 int offset[4], unsigned int noffset[4])
644 {
645         const long direct_index = ADDRS_PER_INODE(inode);
646         const long direct_blks = ADDRS_PER_BLOCK(inode);
647         const long dptrs_per_blk = NIDS_PER_BLOCK;
648         const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
649         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
650         int n = 0;
651         int level = 0;
652
653         noffset[0] = 0;
654
655         if (block < direct_index) {
656                 offset[n] = block;
657                 goto got;
658         }
659         block -= direct_index;
660         if (block < direct_blks) {
661                 offset[n++] = NODE_DIR1_BLOCK;
662                 noffset[n] = 1;
663                 offset[n] = block;
664                 level = 1;
665                 goto got;
666         }
667         block -= direct_blks;
668         if (block < direct_blks) {
669                 offset[n++] = NODE_DIR2_BLOCK;
670                 noffset[n] = 2;
671                 offset[n] = block;
672                 level = 1;
673                 goto got;
674         }
675         block -= direct_blks;
676         if (block < indirect_blks) {
677                 offset[n++] = NODE_IND1_BLOCK;
678                 noffset[n] = 3;
679                 offset[n++] = block / direct_blks;
680                 noffset[n] = 4 + offset[n - 1];
681                 offset[n] = block % direct_blks;
682                 level = 2;
683                 goto got;
684         }
685         block -= indirect_blks;
686         if (block < indirect_blks) {
687                 offset[n++] = NODE_IND2_BLOCK;
688                 noffset[n] = 4 + dptrs_per_blk;
689                 offset[n++] = block / direct_blks;
690                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
691                 offset[n] = block % direct_blks;
692                 level = 2;
693                 goto got;
694         }
695         block -= indirect_blks;
696         if (block < dindirect_blks) {
697                 offset[n++] = NODE_DIND_BLOCK;
698                 noffset[n] = 5 + (dptrs_per_blk * 2);
699                 offset[n++] = block / indirect_blks;
700                 noffset[n] = 6 + (dptrs_per_blk * 2) +
701                               offset[n - 1] * (dptrs_per_blk + 1);
702                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
703                 noffset[n] = 7 + (dptrs_per_blk * 2) +
704                               offset[n - 2] * (dptrs_per_blk + 1) +
705                               offset[n - 1];
706                 offset[n] = block % direct_blks;
707                 level = 3;
708                 goto got;
709         } else {
710                 return -E2BIG;
711         }
712 got:
713         return level;
714 }
715
716 /*
717  * Caller should call f2fs_put_dnode(dn).
718  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
719  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
720  * In the case of RDONLY_NODE, we don't need to care about mutex.
721  */
722 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
723 {
724         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
725         struct page *npage[4];
726         struct page *parent = NULL;
727         int offset[4];
728         unsigned int noffset[4];
729         nid_t nids[4];
730         int level, i = 0;
731         int err = 0;
732
733         level = get_node_path(dn->inode, index, offset, noffset);
734         if (level < 0)
735                 return level;
736
737         nids[0] = dn->inode->i_ino;
738         npage[0] = dn->inode_page;
739
740         if (!npage[0]) {
741                 npage[0] = f2fs_get_node_page(sbi, nids[0]);
742                 if (IS_ERR(npage[0]))
743                         return PTR_ERR(npage[0]);
744         }
745
746         /* if inline_data is set, should not report any block indices */
747         if (f2fs_has_inline_data(dn->inode) && index) {
748                 err = -ENOENT;
749                 f2fs_put_page(npage[0], 1);
750                 goto release_out;
751         }
752
753         parent = npage[0];
754         if (level != 0)
755                 nids[1] = get_nid(parent, offset[0], true);
756         dn->inode_page = npage[0];
757         dn->inode_page_locked = true;
758
759         /* get indirect or direct nodes */
760         for (i = 1; i <= level; i++) {
761                 bool done = false;
762
763                 if (!nids[i] && mode == ALLOC_NODE) {
764                         /* alloc new node */
765                         if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
766                                 err = -ENOSPC;
767                                 goto release_pages;
768                         }
769
770                         dn->nid = nids[i];
771                         npage[i] = f2fs_new_node_page(dn, noffset[i]);
772                         if (IS_ERR(npage[i])) {
773                                 f2fs_alloc_nid_failed(sbi, nids[i]);
774                                 err = PTR_ERR(npage[i]);
775                                 goto release_pages;
776                         }
777
778                         set_nid(parent, offset[i - 1], nids[i], i == 1);
779                         f2fs_alloc_nid_done(sbi, nids[i]);
780                         done = true;
781                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
782                         npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
783                         if (IS_ERR(npage[i])) {
784                                 err = PTR_ERR(npage[i]);
785                                 goto release_pages;
786                         }
787                         done = true;
788                 }
789                 if (i == 1) {
790                         dn->inode_page_locked = false;
791                         unlock_page(parent);
792                 } else {
793                         f2fs_put_page(parent, 1);
794                 }
795
796                 if (!done) {
797                         npage[i] = f2fs_get_node_page(sbi, nids[i]);
798                         if (IS_ERR(npage[i])) {
799                                 err = PTR_ERR(npage[i]);
800                                 f2fs_put_page(npage[0], 0);
801                                 goto release_out;
802                         }
803                 }
804                 if (i < level) {
805                         parent = npage[i];
806                         nids[i + 1] = get_nid(parent, offset[i], false);
807                 }
808         }
809         dn->nid = nids[level];
810         dn->ofs_in_node = offset[level];
811         dn->node_page = npage[level];
812         dn->data_blkaddr = datablock_addr(dn->inode,
813                                 dn->node_page, dn->ofs_in_node);
814         return 0;
815
816 release_pages:
817         f2fs_put_page(parent, 1);
818         if (i > 1)
819                 f2fs_put_page(npage[0], 0);
820 release_out:
821         dn->inode_page = NULL;
822         dn->node_page = NULL;
823         if (err == -ENOENT) {
824                 dn->cur_level = i;
825                 dn->max_level = level;
826                 dn->ofs_in_node = offset[level];
827         }
828         return err;
829 }
830
831 static int truncate_node(struct dnode_of_data *dn)
832 {
833         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
834         struct node_info ni;
835         int err;
836         pgoff_t index;
837
838         err = f2fs_get_node_info(sbi, dn->nid, &ni);
839         if (err)
840                 return err;
841
842         /* Deallocate node address */
843         f2fs_invalidate_blocks(sbi, ni.blk_addr);
844         dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
845         set_node_addr(sbi, &ni, NULL_ADDR, false);
846
847         if (dn->nid == dn->inode->i_ino) {
848                 f2fs_remove_orphan_inode(sbi, dn->nid);
849                 dec_valid_inode_count(sbi);
850                 f2fs_inode_synced(dn->inode);
851         }
852
853         clear_node_page_dirty(dn->node_page);
854         set_sbi_flag(sbi, SBI_IS_DIRTY);
855
856         index = dn->node_page->index;
857         f2fs_put_page(dn->node_page, 1);
858
859         invalidate_mapping_pages(NODE_MAPPING(sbi),
860                         index, index);
861
862         dn->node_page = NULL;
863         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
864
865         return 0;
866 }
867
868 static int truncate_dnode(struct dnode_of_data *dn)
869 {
870         struct page *page;
871         int err;
872
873         if (dn->nid == 0)
874                 return 1;
875
876         /* get direct node */
877         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
878         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
879                 return 1;
880         else if (IS_ERR(page))
881                 return PTR_ERR(page);
882
883         /* Make dnode_of_data for parameter */
884         dn->node_page = page;
885         dn->ofs_in_node = 0;
886         f2fs_truncate_data_blocks(dn);
887         err = truncate_node(dn);
888         if (err)
889                 return err;
890
891         return 1;
892 }
893
894 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
895                                                 int ofs, int depth)
896 {
897         struct dnode_of_data rdn = *dn;
898         struct page *page;
899         struct f2fs_node *rn;
900         nid_t child_nid;
901         unsigned int child_nofs;
902         int freed = 0;
903         int i, ret;
904
905         if (dn->nid == 0)
906                 return NIDS_PER_BLOCK + 1;
907
908         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
909
910         page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
911         if (IS_ERR(page)) {
912                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
913                 return PTR_ERR(page);
914         }
915
916         f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
917
918         rn = F2FS_NODE(page);
919         if (depth < 3) {
920                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
921                         child_nid = le32_to_cpu(rn->in.nid[i]);
922                         if (child_nid == 0)
923                                 continue;
924                         rdn.nid = child_nid;
925                         ret = truncate_dnode(&rdn);
926                         if (ret < 0)
927                                 goto out_err;
928                         if (set_nid(page, i, 0, false))
929                                 dn->node_changed = true;
930                 }
931         } else {
932                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
933                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
934                         child_nid = le32_to_cpu(rn->in.nid[i]);
935                         if (child_nid == 0) {
936                                 child_nofs += NIDS_PER_BLOCK + 1;
937                                 continue;
938                         }
939                         rdn.nid = child_nid;
940                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
941                         if (ret == (NIDS_PER_BLOCK + 1)) {
942                                 if (set_nid(page, i, 0, false))
943                                         dn->node_changed = true;
944                                 child_nofs += ret;
945                         } else if (ret < 0 && ret != -ENOENT) {
946                                 goto out_err;
947                         }
948                 }
949                 freed = child_nofs;
950         }
951
952         if (!ofs) {
953                 /* remove current indirect node */
954                 dn->node_page = page;
955                 ret = truncate_node(dn);
956                 if (ret)
957                         goto out_err;
958                 freed++;
959         } else {
960                 f2fs_put_page(page, 1);
961         }
962         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
963         return freed;
964
965 out_err:
966         f2fs_put_page(page, 1);
967         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
968         return ret;
969 }
970
971 static int truncate_partial_nodes(struct dnode_of_data *dn,
972                         struct f2fs_inode *ri, int *offset, int depth)
973 {
974         struct page *pages[2];
975         nid_t nid[3];
976         nid_t child_nid;
977         int err = 0;
978         int i;
979         int idx = depth - 2;
980
981         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
982         if (!nid[0])
983                 return 0;
984
985         /* get indirect nodes in the path */
986         for (i = 0; i < idx + 1; i++) {
987                 /* reference count'll be increased */
988                 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
989                 if (IS_ERR(pages[i])) {
990                         err = PTR_ERR(pages[i]);
991                         idx = i - 1;
992                         goto fail;
993                 }
994                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
995         }
996
997         f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
998
999         /* free direct nodes linked to a partial indirect node */
1000         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1001                 child_nid = get_nid(pages[idx], i, false);
1002                 if (!child_nid)
1003                         continue;
1004                 dn->nid = child_nid;
1005                 err = truncate_dnode(dn);
1006                 if (err < 0)
1007                         goto fail;
1008                 if (set_nid(pages[idx], i, 0, false))
1009                         dn->node_changed = true;
1010         }
1011
1012         if (offset[idx + 1] == 0) {
1013                 dn->node_page = pages[idx];
1014                 dn->nid = nid[idx];
1015                 err = truncate_node(dn);
1016                 if (err)
1017                         goto fail;
1018         } else {
1019                 f2fs_put_page(pages[idx], 1);
1020         }
1021         offset[idx]++;
1022         offset[idx + 1] = 0;
1023         idx--;
1024 fail:
1025         for (i = idx; i >= 0; i--)
1026                 f2fs_put_page(pages[i], 1);
1027
1028         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1029
1030         return err;
1031 }
1032
1033 /*
1034  * All the block addresses of data and nodes should be nullified.
1035  */
1036 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1037 {
1038         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1039         int err = 0, cont = 1;
1040         int level, offset[4], noffset[4];
1041         unsigned int nofs = 0;
1042         struct f2fs_inode *ri;
1043         struct dnode_of_data dn;
1044         struct page *page;
1045
1046         trace_f2fs_truncate_inode_blocks_enter(inode, from);
1047
1048         level = get_node_path(inode, from, offset, noffset);
1049         if (level < 0)
1050                 return level;
1051
1052         page = f2fs_get_node_page(sbi, inode->i_ino);
1053         if (IS_ERR(page)) {
1054                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1055                 return PTR_ERR(page);
1056         }
1057
1058         set_new_dnode(&dn, inode, page, NULL, 0);
1059         unlock_page(page);
1060
1061         ri = F2FS_INODE(page);
1062         switch (level) {
1063         case 0:
1064         case 1:
1065                 nofs = noffset[1];
1066                 break;
1067         case 2:
1068                 nofs = noffset[1];
1069                 if (!offset[level - 1])
1070                         goto skip_partial;
1071                 err = truncate_partial_nodes(&dn, ri, offset, level);
1072                 if (err < 0 && err != -ENOENT)
1073                         goto fail;
1074                 nofs += 1 + NIDS_PER_BLOCK;
1075                 break;
1076         case 3:
1077                 nofs = 5 + 2 * NIDS_PER_BLOCK;
1078                 if (!offset[level - 1])
1079                         goto skip_partial;
1080                 err = truncate_partial_nodes(&dn, ri, offset, level);
1081                 if (err < 0 && err != -ENOENT)
1082                         goto fail;
1083                 break;
1084         default:
1085                 BUG();
1086         }
1087
1088 skip_partial:
1089         while (cont) {
1090                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1091                 switch (offset[0]) {
1092                 case NODE_DIR1_BLOCK:
1093                 case NODE_DIR2_BLOCK:
1094                         err = truncate_dnode(&dn);
1095                         break;
1096
1097                 case NODE_IND1_BLOCK:
1098                 case NODE_IND2_BLOCK:
1099                         err = truncate_nodes(&dn, nofs, offset[1], 2);
1100                         break;
1101
1102                 case NODE_DIND_BLOCK:
1103                         err = truncate_nodes(&dn, nofs, offset[1], 3);
1104                         cont = 0;
1105                         break;
1106
1107                 default:
1108                         BUG();
1109                 }
1110                 if (err < 0 && err != -ENOENT)
1111                         goto fail;
1112                 if (offset[1] == 0 &&
1113                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1114                         lock_page(page);
1115                         BUG_ON(page->mapping != NODE_MAPPING(sbi));
1116                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1117                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1118                         set_page_dirty(page);
1119                         unlock_page(page);
1120                 }
1121                 offset[1] = 0;
1122                 offset[0]++;
1123                 nofs += err;
1124         }
1125 fail:
1126         f2fs_put_page(page, 0);
1127         trace_f2fs_truncate_inode_blocks_exit(inode, err);
1128         return err > 0 ? 0 : err;
1129 }
1130
1131 /* caller must lock inode page */
1132 int f2fs_truncate_xattr_node(struct inode *inode)
1133 {
1134         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1135         nid_t nid = F2FS_I(inode)->i_xattr_nid;
1136         struct dnode_of_data dn;
1137         struct page *npage;
1138         int err;
1139
1140         if (!nid)
1141                 return 0;
1142
1143         npage = f2fs_get_node_page(sbi, nid);
1144         if (IS_ERR(npage))
1145                 return PTR_ERR(npage);
1146
1147         set_new_dnode(&dn, inode, NULL, npage, nid);
1148         err = truncate_node(&dn);
1149         if (err) {
1150                 f2fs_put_page(npage, 1);
1151                 return err;
1152         }
1153
1154         f2fs_i_xnid_write(inode, 0);
1155
1156         return 0;
1157 }
1158
1159 /*
1160  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1161  * f2fs_unlock_op().
1162  */
1163 int f2fs_remove_inode_page(struct inode *inode)
1164 {
1165         struct dnode_of_data dn;
1166         int err;
1167
1168         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1169         err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1170         if (err)
1171                 return err;
1172
1173         err = f2fs_truncate_xattr_node(inode);
1174         if (err) {
1175                 f2fs_put_dnode(&dn);
1176                 return err;
1177         }
1178
1179         /* remove potential inline_data blocks */
1180         if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1181                                 S_ISLNK(inode->i_mode))
1182                 f2fs_truncate_data_blocks_range(&dn, 1);
1183
1184         /* 0 is possible, after f2fs_new_inode() has failed */
1185         if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1186                 f2fs_put_dnode(&dn);
1187                 return -EIO;
1188         }
1189
1190         if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1191                 f2fs_warn(F2FS_I_SB(inode), "Inconsistent i_blocks, ino:%lu, iblocks:%llu",
1192                           inode->i_ino, (unsigned long long)inode->i_blocks);
1193                 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1194         }
1195
1196         /* will put inode & node pages */
1197         err = truncate_node(&dn);
1198         if (err) {
1199                 f2fs_put_dnode(&dn);
1200                 return err;
1201         }
1202         return 0;
1203 }
1204
1205 struct page *f2fs_new_inode_page(struct inode *inode)
1206 {
1207         struct dnode_of_data dn;
1208
1209         /* allocate inode page for new inode */
1210         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1211
1212         /* caller should f2fs_put_page(page, 1); */
1213         return f2fs_new_node_page(&dn, 0);
1214 }
1215
1216 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1217 {
1218         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1219         struct node_info new_ni;
1220         struct page *page;
1221         int err;
1222
1223         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1224                 return ERR_PTR(-EPERM);
1225
1226         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1227         if (!page)
1228                 return ERR_PTR(-ENOMEM);
1229
1230         if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1231                 goto fail;
1232
1233 #ifdef CONFIG_F2FS_CHECK_FS
1234         err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1235         if (err) {
1236                 dec_valid_node_count(sbi, dn->inode, !ofs);
1237                 goto fail;
1238         }
1239         f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1240 #endif
1241         new_ni.nid = dn->nid;
1242         new_ni.ino = dn->inode->i_ino;
1243         new_ni.blk_addr = NULL_ADDR;
1244         new_ni.flag = 0;
1245         new_ni.version = 0;
1246         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1247
1248         f2fs_wait_on_page_writeback(page, NODE, true, true);
1249         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1250         set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1251         if (!PageUptodate(page))
1252                 SetPageUptodate(page);
1253         if (set_page_dirty(page))
1254                 dn->node_changed = true;
1255
1256         if (f2fs_has_xattr_block(ofs))
1257                 f2fs_i_xnid_write(dn->inode, dn->nid);
1258
1259         if (ofs == 0)
1260                 inc_valid_inode_count(sbi);
1261         return page;
1262
1263 fail:
1264         clear_node_page_dirty(page);
1265         f2fs_put_page(page, 1);
1266         return ERR_PTR(err);
1267 }
1268
1269 /*
1270  * Caller should do after getting the following values.
1271  * 0: f2fs_put_page(page, 0)
1272  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1273  */
1274 static int read_node_page(struct page *page, int op_flags)
1275 {
1276         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1277         struct node_info ni;
1278         struct f2fs_io_info fio = {
1279                 .sbi = sbi,
1280                 .type = NODE,
1281                 .op = REQ_OP_READ,
1282                 .op_flags = op_flags,
1283                 .page = page,
1284                 .encrypted_page = NULL,
1285         };
1286         int err;
1287
1288         if (PageUptodate(page)) {
1289                 if (!f2fs_inode_chksum_verify(sbi, page)) {
1290                         ClearPageUptodate(page);
1291                         return -EFSBADCRC;
1292                 }
1293                 return LOCKED_PAGE;
1294         }
1295
1296         err = f2fs_get_node_info(sbi, page->index, &ni);
1297         if (err)
1298                 return err;
1299
1300         if (unlikely(ni.blk_addr == NULL_ADDR) ||
1301                         is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1302                 ClearPageUptodate(page);
1303                 return -ENOENT;
1304         }
1305
1306         fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1307         return f2fs_submit_page_bio(&fio);
1308 }
1309
1310 /*
1311  * Readahead a node page
1312  */
1313 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1314 {
1315         struct page *apage;
1316         int err;
1317
1318         if (!nid)
1319                 return;
1320         if (f2fs_check_nid_range(sbi, nid))
1321                 return;
1322
1323         apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1324         if (apage)
1325                 return;
1326
1327         apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1328         if (!apage)
1329                 return;
1330
1331         err = read_node_page(apage, REQ_RAHEAD);
1332         f2fs_put_page(apage, err ? 1 : 0);
1333 }
1334
1335 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1336                                         struct page *parent, int start)
1337 {
1338         struct page *page;
1339         int err;
1340
1341         if (!nid)
1342                 return ERR_PTR(-ENOENT);
1343         if (f2fs_check_nid_range(sbi, nid))
1344                 return ERR_PTR(-EINVAL);
1345 repeat:
1346         page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1347         if (!page)
1348                 return ERR_PTR(-ENOMEM);
1349
1350         err = read_node_page(page, 0);
1351         if (err < 0) {
1352                 f2fs_put_page(page, 1);
1353                 return ERR_PTR(err);
1354         } else if (err == LOCKED_PAGE) {
1355                 err = 0;
1356                 goto page_hit;
1357         }
1358
1359         if (parent)
1360                 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1361
1362         lock_page(page);
1363
1364         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1365                 f2fs_put_page(page, 1);
1366                 goto repeat;
1367         }
1368
1369         if (unlikely(!PageUptodate(page))) {
1370                 err = -EIO;
1371                 goto out_err;
1372         }
1373
1374         if (!f2fs_inode_chksum_verify(sbi, page)) {
1375                 err = -EFSBADCRC;
1376                 goto out_err;
1377         }
1378 page_hit:
1379         if(unlikely(nid != nid_of_node(page))) {
1380                 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1381                           nid, nid_of_node(page), ino_of_node(page),
1382                           ofs_of_node(page), cpver_of_node(page),
1383                           next_blkaddr_of_node(page));
1384                 err = -EINVAL;
1385 out_err:
1386                 ClearPageUptodate(page);
1387                 f2fs_put_page(page, 1);
1388                 return ERR_PTR(err);
1389         }
1390         return page;
1391 }
1392
1393 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1394 {
1395         return __get_node_page(sbi, nid, NULL, 0);
1396 }
1397
1398 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1399 {
1400         struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1401         nid_t nid = get_nid(parent, start, false);
1402
1403         return __get_node_page(sbi, nid, parent, start);
1404 }
1405
1406 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1407 {
1408         struct inode *inode;
1409         struct page *page;
1410         int ret;
1411
1412         /* should flush inline_data before evict_inode */
1413         inode = ilookup(sbi->sb, ino);
1414         if (!inode)
1415                 return;
1416
1417         page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1418                                         FGP_LOCK|FGP_NOWAIT, 0);
1419         if (!page)
1420                 goto iput_out;
1421
1422         if (!PageUptodate(page))
1423                 goto page_out;
1424
1425         if (!PageDirty(page))
1426                 goto page_out;
1427
1428         if (!clear_page_dirty_for_io(page))
1429                 goto page_out;
1430
1431         ret = f2fs_write_inline_data(inode, page);
1432         inode_dec_dirty_pages(inode);
1433         f2fs_remove_dirty_inode(inode);
1434         if (ret)
1435                 set_page_dirty(page);
1436 page_out:
1437         f2fs_put_page(page, 1);
1438 iput_out:
1439         iput(inode);
1440 }
1441
1442 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1443 {
1444         pgoff_t index;
1445         struct pagevec pvec;
1446         struct page *last_page = NULL;
1447         int nr_pages;
1448
1449         pagevec_init(&pvec);
1450         index = 0;
1451
1452         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1453                                 PAGECACHE_TAG_DIRTY))) {
1454                 int i;
1455
1456                 for (i = 0; i < nr_pages; i++) {
1457                         struct page *page = pvec.pages[i];
1458
1459                         if (unlikely(f2fs_cp_error(sbi))) {
1460                                 f2fs_put_page(last_page, 0);
1461                                 pagevec_release(&pvec);
1462                                 return ERR_PTR(-EIO);
1463                         }
1464
1465                         if (!IS_DNODE(page) || !is_cold_node(page))
1466                                 continue;
1467                         if (ino_of_node(page) != ino)
1468                                 continue;
1469
1470                         lock_page(page);
1471
1472                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1473 continue_unlock:
1474                                 unlock_page(page);
1475                                 continue;
1476                         }
1477                         if (ino_of_node(page) != ino)
1478                                 goto continue_unlock;
1479
1480                         if (!PageDirty(page)) {
1481                                 /* someone wrote it for us */
1482                                 goto continue_unlock;
1483                         }
1484
1485                         if (last_page)
1486                                 f2fs_put_page(last_page, 0);
1487
1488                         get_page(page);
1489                         last_page = page;
1490                         unlock_page(page);
1491                 }
1492                 pagevec_release(&pvec);
1493                 cond_resched();
1494         }
1495         return last_page;
1496 }
1497
1498 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1499                                 struct writeback_control *wbc, bool do_balance,
1500                                 enum iostat_type io_type, unsigned int *seq_id)
1501 {
1502         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1503         nid_t nid;
1504         struct node_info ni;
1505         struct f2fs_io_info fio = {
1506                 .sbi = sbi,
1507                 .ino = ino_of_node(page),
1508                 .type = NODE,
1509                 .op = REQ_OP_WRITE,
1510                 .op_flags = wbc_to_write_flags(wbc),
1511                 .page = page,
1512                 .encrypted_page = NULL,
1513                 .submitted = false,
1514                 .io_type = io_type,
1515                 .io_wbc = wbc,
1516         };
1517         unsigned int seq;
1518
1519         trace_f2fs_writepage(page, NODE);
1520
1521         if (unlikely(f2fs_cp_error(sbi)))
1522                 goto redirty_out;
1523
1524         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1525                 goto redirty_out;
1526
1527         if (wbc->sync_mode == WB_SYNC_NONE &&
1528                         IS_DNODE(page) && is_cold_node(page))
1529                 goto redirty_out;
1530
1531         /* get old block addr of this node page */
1532         nid = nid_of_node(page);
1533         f2fs_bug_on(sbi, page->index != nid);
1534
1535         if (f2fs_get_node_info(sbi, nid, &ni))
1536                 goto redirty_out;
1537
1538         if (wbc->for_reclaim) {
1539                 if (!down_read_trylock(&sbi->node_write))
1540                         goto redirty_out;
1541         } else {
1542                 down_read(&sbi->node_write);
1543         }
1544
1545         /* This page is already truncated */
1546         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1547                 ClearPageUptodate(page);
1548                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1549                 up_read(&sbi->node_write);
1550                 unlock_page(page);
1551                 return 0;
1552         }
1553
1554         if (__is_valid_data_blkaddr(ni.blk_addr) &&
1555                 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1556                                         DATA_GENERIC_ENHANCE)) {
1557                 up_read(&sbi->node_write);
1558                 goto redirty_out;
1559         }
1560
1561         if (atomic && !test_opt(sbi, NOBARRIER))
1562                 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1563
1564         set_page_writeback(page);
1565         ClearPageError(page);
1566
1567         if (f2fs_in_warm_node_list(sbi, page)) {
1568                 seq = f2fs_add_fsync_node_entry(sbi, page);
1569                 if (seq_id)
1570                         *seq_id = seq;
1571         }
1572
1573         fio.old_blkaddr = ni.blk_addr;
1574         f2fs_do_write_node_page(nid, &fio);
1575         set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1576         dec_page_count(sbi, F2FS_DIRTY_NODES);
1577         up_read(&sbi->node_write);
1578
1579         if (wbc->for_reclaim) {
1580                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1581                 submitted = NULL;
1582         }
1583
1584         unlock_page(page);
1585
1586         if (unlikely(f2fs_cp_error(sbi))) {
1587                 f2fs_submit_merged_write(sbi, NODE);
1588                 submitted = NULL;
1589         }
1590         if (submitted)
1591                 *submitted = fio.submitted;
1592
1593         if (do_balance)
1594                 f2fs_balance_fs(sbi, false);
1595         return 0;
1596
1597 redirty_out:
1598         redirty_page_for_writepage(wbc, page);
1599         return AOP_WRITEPAGE_ACTIVATE;
1600 }
1601
1602 int f2fs_move_node_page(struct page *node_page, int gc_type)
1603 {
1604         int err = 0;
1605
1606         if (gc_type == FG_GC) {
1607                 struct writeback_control wbc = {
1608                         .sync_mode = WB_SYNC_ALL,
1609                         .nr_to_write = 1,
1610                         .for_reclaim = 0,
1611                 };
1612
1613                 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1614
1615                 set_page_dirty(node_page);
1616
1617                 if (!clear_page_dirty_for_io(node_page)) {
1618                         err = -EAGAIN;
1619                         goto out_page;
1620                 }
1621
1622                 if (__write_node_page(node_page, false, NULL,
1623                                         &wbc, false, FS_GC_NODE_IO, NULL)) {
1624                         err = -EAGAIN;
1625                         unlock_page(node_page);
1626                 }
1627                 goto release_page;
1628         } else {
1629                 /* set page dirty and write it */
1630                 if (!PageWriteback(node_page))
1631                         set_page_dirty(node_page);
1632         }
1633 out_page:
1634         unlock_page(node_page);
1635 release_page:
1636         f2fs_put_page(node_page, 0);
1637         return err;
1638 }
1639
1640 static int f2fs_write_node_page(struct page *page,
1641                                 struct writeback_control *wbc)
1642 {
1643         return __write_node_page(page, false, NULL, wbc, false,
1644                                                 FS_NODE_IO, NULL);
1645 }
1646
1647 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1648                         struct writeback_control *wbc, bool atomic,
1649                         unsigned int *seq_id)
1650 {
1651         pgoff_t index;
1652         struct pagevec pvec;
1653         int ret = 0;
1654         struct page *last_page = NULL;
1655         bool marked = false;
1656         nid_t ino = inode->i_ino;
1657         int nr_pages;
1658         int nwritten = 0;
1659
1660         if (atomic) {
1661                 last_page = last_fsync_dnode(sbi, ino);
1662                 if (IS_ERR_OR_NULL(last_page))
1663                         return PTR_ERR_OR_ZERO(last_page);
1664         }
1665 retry:
1666         pagevec_init(&pvec);
1667         index = 0;
1668
1669         while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1670                                 PAGECACHE_TAG_DIRTY))) {
1671                 int i;
1672
1673                 for (i = 0; i < nr_pages; i++) {
1674                         struct page *page = pvec.pages[i];
1675                         bool submitted = false;
1676
1677                         if (unlikely(f2fs_cp_error(sbi))) {
1678                                 f2fs_put_page(last_page, 0);
1679                                 pagevec_release(&pvec);
1680                                 ret = -EIO;
1681                                 goto out;
1682                         }
1683
1684                         if (!IS_DNODE(page) || !is_cold_node(page))
1685                                 continue;
1686                         if (ino_of_node(page) != ino)
1687                                 continue;
1688
1689                         lock_page(page);
1690
1691                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1692 continue_unlock:
1693                                 unlock_page(page);
1694                                 continue;
1695                         }
1696                         if (ino_of_node(page) != ino)
1697                                 goto continue_unlock;
1698
1699                         if (!PageDirty(page) && page != last_page) {
1700                                 /* someone wrote it for us */
1701                                 goto continue_unlock;
1702                         }
1703
1704                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1705
1706                         set_fsync_mark(page, 0);
1707                         set_dentry_mark(page, 0);
1708
1709                         if (!atomic || page == last_page) {
1710                                 set_fsync_mark(page, 1);
1711                                 if (IS_INODE(page)) {
1712                                         if (is_inode_flag_set(inode,
1713                                                                 FI_DIRTY_INODE))
1714                                                 f2fs_update_inode(inode, page);
1715                                         set_dentry_mark(page,
1716                                                 f2fs_need_dentry_mark(sbi, ino));
1717                                 }
1718                                 /*  may be written by other thread */
1719                                 if (!PageDirty(page))
1720                                         set_page_dirty(page);
1721                         }
1722
1723                         if (!clear_page_dirty_for_io(page))
1724                                 goto continue_unlock;
1725
1726                         ret = __write_node_page(page, atomic &&
1727                                                 page == last_page,
1728                                                 &submitted, wbc, true,
1729                                                 FS_NODE_IO, seq_id);
1730                         if (ret) {
1731                                 unlock_page(page);
1732                                 f2fs_put_page(last_page, 0);
1733                                 break;
1734                         } else if (submitted) {
1735                                 nwritten++;
1736                         }
1737
1738                         if (page == last_page) {
1739                                 f2fs_put_page(page, 0);
1740                                 marked = true;
1741                                 break;
1742                         }
1743                 }
1744                 pagevec_release(&pvec);
1745                 cond_resched();
1746
1747                 if (ret || marked)
1748                         break;
1749         }
1750         if (!ret && atomic && !marked) {
1751                 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1752                            ino, last_page->index);
1753                 lock_page(last_page);
1754                 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1755                 set_page_dirty(last_page);
1756                 unlock_page(last_page);
1757                 goto retry;
1758         }
1759 out:
1760         if (nwritten)
1761                 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1762         return ret ? -EIO: 0;
1763 }
1764
1765 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1766                                 struct writeback_control *wbc,
1767                                 bool do_balance, enum iostat_type io_type)
1768 {
1769         pgoff_t index;
1770         struct pagevec pvec;
1771         int step = 0;
1772         int nwritten = 0;
1773         int ret = 0;
1774         int nr_pages, done = 0;
1775
1776         pagevec_init(&pvec);
1777
1778 next_step:
1779         index = 0;
1780
1781         while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1782                         NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1783                 int i;
1784
1785                 for (i = 0; i < nr_pages; i++) {
1786                         struct page *page = pvec.pages[i];
1787                         bool submitted = false;
1788
1789                         /* give a priority to WB_SYNC threads */
1790                         if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1791                                         wbc->sync_mode == WB_SYNC_NONE) {
1792                                 done = 1;
1793                                 break;
1794                         }
1795
1796                         /*
1797                          * flushing sequence with step:
1798                          * 0. indirect nodes
1799                          * 1. dentry dnodes
1800                          * 2. file dnodes
1801                          */
1802                         if (step == 0 && IS_DNODE(page))
1803                                 continue;
1804                         if (step == 1 && (!IS_DNODE(page) ||
1805                                                 is_cold_node(page)))
1806                                 continue;
1807                         if (step == 2 && (!IS_DNODE(page) ||
1808                                                 !is_cold_node(page)))
1809                                 continue;
1810 lock_node:
1811                         if (wbc->sync_mode == WB_SYNC_ALL)
1812                                 lock_page(page);
1813                         else if (!trylock_page(page))
1814                                 continue;
1815
1816                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1817 continue_unlock:
1818                                 unlock_page(page);
1819                                 continue;
1820                         }
1821
1822                         if (!PageDirty(page)) {
1823                                 /* someone wrote it for us */
1824                                 goto continue_unlock;
1825                         }
1826
1827                         /* flush inline_data */
1828                         if (is_inline_node(page)) {
1829                                 clear_inline_node(page);
1830                                 unlock_page(page);
1831                                 flush_inline_data(sbi, ino_of_node(page));
1832                                 goto lock_node;
1833                         }
1834
1835                         f2fs_wait_on_page_writeback(page, NODE, true, true);
1836
1837                         if (!clear_page_dirty_for_io(page))
1838                                 goto continue_unlock;
1839
1840                         set_fsync_mark(page, 0);
1841                         set_dentry_mark(page, 0);
1842
1843                         ret = __write_node_page(page, false, &submitted,
1844                                                 wbc, do_balance, io_type, NULL);
1845                         if (ret)
1846                                 unlock_page(page);
1847                         else if (submitted)
1848                                 nwritten++;
1849
1850                         if (--wbc->nr_to_write == 0)
1851                                 break;
1852                 }
1853                 pagevec_release(&pvec);
1854                 cond_resched();
1855
1856                 if (wbc->nr_to_write == 0) {
1857                         step = 2;
1858                         break;
1859                 }
1860         }
1861
1862         if (step < 2) {
1863                 if (wbc->sync_mode == WB_SYNC_NONE && step == 1)
1864                         goto out;
1865                 step++;
1866                 goto next_step;
1867         }
1868 out:
1869         if (nwritten)
1870                 f2fs_submit_merged_write(sbi, NODE);
1871
1872         if (unlikely(f2fs_cp_error(sbi)))
1873                 return -EIO;
1874         return ret;
1875 }
1876
1877 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1878                                                 unsigned int seq_id)
1879 {
1880         struct fsync_node_entry *fn;
1881         struct page *page;
1882         struct list_head *head = &sbi->fsync_node_list;
1883         unsigned long flags;
1884         unsigned int cur_seq_id = 0;
1885         int ret2, ret = 0;
1886
1887         while (seq_id && cur_seq_id < seq_id) {
1888                 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1889                 if (list_empty(head)) {
1890                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1891                         break;
1892                 }
1893                 fn = list_first_entry(head, struct fsync_node_entry, list);
1894                 if (fn->seq_id > seq_id) {
1895                         spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1896                         break;
1897                 }
1898                 cur_seq_id = fn->seq_id;
1899                 page = fn->page;
1900                 get_page(page);
1901                 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1902
1903                 f2fs_wait_on_page_writeback(page, NODE, true, false);
1904                 if (TestClearPageError(page))
1905                         ret = -EIO;
1906
1907                 put_page(page);
1908
1909                 if (ret)
1910                         break;
1911         }
1912
1913         ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1914         if (!ret)
1915                 ret = ret2;
1916
1917         return ret;
1918 }
1919
1920 static int f2fs_write_node_pages(struct address_space *mapping,
1921                             struct writeback_control *wbc)
1922 {
1923         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1924         struct blk_plug plug;
1925         long diff;
1926
1927         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1928                 goto skip_write;
1929
1930         /* balancing f2fs's metadata in background */
1931         f2fs_balance_fs_bg(sbi);
1932
1933         /* collect a number of dirty node pages and write together */
1934         if (wbc->sync_mode != WB_SYNC_ALL &&
1935                         get_pages(sbi, F2FS_DIRTY_NODES) <
1936                                         nr_pages_to_skip(sbi, NODE))
1937                 goto skip_write;
1938
1939         if (wbc->sync_mode == WB_SYNC_ALL)
1940                 atomic_inc(&sbi->wb_sync_req[NODE]);
1941         else if (atomic_read(&sbi->wb_sync_req[NODE]))
1942                 goto skip_write;
1943
1944         trace_f2fs_writepages(mapping->host, wbc, NODE);
1945
1946         diff = nr_pages_to_write(sbi, NODE, wbc);
1947         blk_start_plug(&plug);
1948         f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1949         blk_finish_plug(&plug);
1950         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1951
1952         if (wbc->sync_mode == WB_SYNC_ALL)
1953                 atomic_dec(&sbi->wb_sync_req[NODE]);
1954         return 0;
1955
1956 skip_write:
1957         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1958         trace_f2fs_writepages(mapping->host, wbc, NODE);
1959         return 0;
1960 }
1961
1962 static int f2fs_set_node_page_dirty(struct page *page)
1963 {
1964         trace_f2fs_set_page_dirty(page, NODE);
1965
1966         if (!PageUptodate(page))
1967                 SetPageUptodate(page);
1968 #ifdef CONFIG_F2FS_CHECK_FS
1969         if (IS_INODE(page))
1970                 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
1971 #endif
1972         if (!PageDirty(page)) {
1973                 __set_page_dirty_nobuffers(page);
1974                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1975                 f2fs_set_page_private(page, 0);
1976                 f2fs_trace_pid(page);
1977                 return 1;
1978         }
1979         return 0;
1980 }
1981
1982 /*
1983  * Structure of the f2fs node operations
1984  */
1985 const struct address_space_operations f2fs_node_aops = {
1986         .writepage      = f2fs_write_node_page,
1987         .writepages     = f2fs_write_node_pages,
1988         .set_page_dirty = f2fs_set_node_page_dirty,
1989         .invalidatepage = f2fs_invalidate_page,
1990         .releasepage    = f2fs_release_page,
1991 #ifdef CONFIG_MIGRATION
1992         .migratepage    = f2fs_migrate_page,
1993 #endif
1994 };
1995
1996 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1997                                                 nid_t n)
1998 {
1999         return radix_tree_lookup(&nm_i->free_nid_root, n);
2000 }
2001
2002 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2003                         struct free_nid *i, enum nid_state state)
2004 {
2005         struct f2fs_nm_info *nm_i = NM_I(sbi);
2006
2007         int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2008         if (err)
2009                 return err;
2010
2011         f2fs_bug_on(sbi, state != i->state);
2012         nm_i->nid_cnt[state]++;
2013         if (state == FREE_NID)
2014                 list_add_tail(&i->list, &nm_i->free_nid_list);
2015         return 0;
2016 }
2017
2018 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2019                         struct free_nid *i, enum nid_state state)
2020 {
2021         struct f2fs_nm_info *nm_i = NM_I(sbi);
2022
2023         f2fs_bug_on(sbi, state != i->state);
2024         nm_i->nid_cnt[state]--;
2025         if (state == FREE_NID)
2026                 list_del(&i->list);
2027         radix_tree_delete(&nm_i->free_nid_root, i->nid);
2028 }
2029
2030 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2031                         enum nid_state org_state, enum nid_state dst_state)
2032 {
2033         struct f2fs_nm_info *nm_i = NM_I(sbi);
2034
2035         f2fs_bug_on(sbi, org_state != i->state);
2036         i->state = dst_state;
2037         nm_i->nid_cnt[org_state]--;
2038         nm_i->nid_cnt[dst_state]++;
2039
2040         switch (dst_state) {
2041         case PREALLOC_NID:
2042                 list_del(&i->list);
2043                 break;
2044         case FREE_NID:
2045                 list_add_tail(&i->list, &nm_i->free_nid_list);
2046                 break;
2047         default:
2048                 BUG_ON(1);
2049         }
2050 }
2051
2052 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2053                                                         bool set, bool build)
2054 {
2055         struct f2fs_nm_info *nm_i = NM_I(sbi);
2056         unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2057         unsigned int nid_ofs = nid - START_NID(nid);
2058
2059         if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2060                 return;
2061
2062         if (set) {
2063                 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2064                         return;
2065                 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2066                 nm_i->free_nid_count[nat_ofs]++;
2067         } else {
2068                 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2069                         return;
2070                 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2071                 if (!build)
2072                         nm_i->free_nid_count[nat_ofs]--;
2073         }
2074 }
2075
2076 /* return if the nid is recognized as free */
2077 static bool add_free_nid(struct f2fs_sb_info *sbi,
2078                                 nid_t nid, bool build, bool update)
2079 {
2080         struct f2fs_nm_info *nm_i = NM_I(sbi);
2081         struct free_nid *i, *e;
2082         struct nat_entry *ne;
2083         int err = -EINVAL;
2084         bool ret = false;
2085
2086         /* 0 nid should not be used */
2087         if (unlikely(nid == 0))
2088                 return false;
2089
2090         if (unlikely(f2fs_check_nid_range(sbi, nid)))
2091                 return false;
2092
2093         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2094         i->nid = nid;
2095         i->state = FREE_NID;
2096
2097         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2098
2099         spin_lock(&nm_i->nid_list_lock);
2100
2101         if (build) {
2102                 /*
2103                  *   Thread A             Thread B
2104                  *  - f2fs_create
2105                  *   - f2fs_new_inode
2106                  *    - f2fs_alloc_nid
2107                  *     - __insert_nid_to_list(PREALLOC_NID)
2108                  *                     - f2fs_balance_fs_bg
2109                  *                      - f2fs_build_free_nids
2110                  *                       - __f2fs_build_free_nids
2111                  *                        - scan_nat_page
2112                  *                         - add_free_nid
2113                  *                          - __lookup_nat_cache
2114                  *  - f2fs_add_link
2115                  *   - f2fs_init_inode_metadata
2116                  *    - f2fs_new_inode_page
2117                  *     - f2fs_new_node_page
2118                  *      - set_node_addr
2119                  *  - f2fs_alloc_nid_done
2120                  *   - __remove_nid_from_list(PREALLOC_NID)
2121                  *                         - __insert_nid_to_list(FREE_NID)
2122                  */
2123                 ne = __lookup_nat_cache(nm_i, nid);
2124                 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2125                                 nat_get_blkaddr(ne) != NULL_ADDR))
2126                         goto err_out;
2127
2128                 e = __lookup_free_nid_list(nm_i, nid);
2129                 if (e) {
2130                         if (e->state == FREE_NID)
2131                                 ret = true;
2132                         goto err_out;
2133                 }
2134         }
2135         ret = true;
2136         err = __insert_free_nid(sbi, i, FREE_NID);
2137 err_out:
2138         if (update) {
2139                 update_free_nid_bitmap(sbi, nid, ret, build);
2140                 if (!build)
2141                         nm_i->available_nids++;
2142         }
2143         spin_unlock(&nm_i->nid_list_lock);
2144         radix_tree_preload_end();
2145
2146         if (err)
2147                 kmem_cache_free(free_nid_slab, i);
2148         return ret;
2149 }
2150
2151 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2152 {
2153         struct f2fs_nm_info *nm_i = NM_I(sbi);
2154         struct free_nid *i;
2155         bool need_free = false;
2156
2157         spin_lock(&nm_i->nid_list_lock);
2158         i = __lookup_free_nid_list(nm_i, nid);
2159         if (i && i->state == FREE_NID) {
2160                 __remove_free_nid(sbi, i, FREE_NID);
2161                 need_free = true;
2162         }
2163         spin_unlock(&nm_i->nid_list_lock);
2164
2165         if (need_free)
2166                 kmem_cache_free(free_nid_slab, i);
2167 }
2168
2169 static int scan_nat_page(struct f2fs_sb_info *sbi,
2170                         struct page *nat_page, nid_t start_nid)
2171 {
2172         struct f2fs_nm_info *nm_i = NM_I(sbi);
2173         struct f2fs_nat_block *nat_blk = page_address(nat_page);
2174         block_t blk_addr;
2175         unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2176         int i;
2177
2178         __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2179
2180         i = start_nid % NAT_ENTRY_PER_BLOCK;
2181
2182         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2183                 if (unlikely(start_nid >= nm_i->max_nid))
2184                         break;
2185
2186                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2187
2188                 if (blk_addr == NEW_ADDR)
2189                         return -EINVAL;
2190
2191                 if (blk_addr == NULL_ADDR) {
2192                         add_free_nid(sbi, start_nid, true, true);
2193                 } else {
2194                         spin_lock(&NM_I(sbi)->nid_list_lock);
2195                         update_free_nid_bitmap(sbi, start_nid, false, true);
2196                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2197                 }
2198         }
2199
2200         return 0;
2201 }
2202
2203 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2204 {
2205         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2206         struct f2fs_journal *journal = curseg->journal;
2207         int i;
2208
2209         down_read(&curseg->journal_rwsem);
2210         for (i = 0; i < nats_in_cursum(journal); i++) {
2211                 block_t addr;
2212                 nid_t nid;
2213
2214                 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2215                 nid = le32_to_cpu(nid_in_journal(journal, i));
2216                 if (addr == NULL_ADDR)
2217                         add_free_nid(sbi, nid, true, false);
2218                 else
2219                         remove_free_nid(sbi, nid);
2220         }
2221         up_read(&curseg->journal_rwsem);
2222 }
2223
2224 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2225 {
2226         struct f2fs_nm_info *nm_i = NM_I(sbi);
2227         unsigned int i, idx;
2228         nid_t nid;
2229
2230         down_read(&nm_i->nat_tree_lock);
2231
2232         for (i = 0; i < nm_i->nat_blocks; i++) {
2233                 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2234                         continue;
2235                 if (!nm_i->free_nid_count[i])
2236                         continue;
2237                 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2238                         idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2239                                                 NAT_ENTRY_PER_BLOCK, idx);
2240                         if (idx >= NAT_ENTRY_PER_BLOCK)
2241                                 break;
2242
2243                         nid = i * NAT_ENTRY_PER_BLOCK + idx;
2244                         add_free_nid(sbi, nid, true, false);
2245
2246                         if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2247                                 goto out;
2248                 }
2249         }
2250 out:
2251         scan_curseg_cache(sbi);
2252
2253         up_read(&nm_i->nat_tree_lock);
2254 }
2255
2256 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2257                                                 bool sync, bool mount)
2258 {
2259         struct f2fs_nm_info *nm_i = NM_I(sbi);
2260         int i = 0, ret;
2261         nid_t nid = nm_i->next_scan_nid;
2262
2263         if (unlikely(nid >= nm_i->max_nid))
2264                 nid = 0;
2265
2266         /* Enough entries */
2267         if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2268                 return 0;
2269
2270         if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2271                 return 0;
2272
2273         if (!mount) {
2274                 /* try to find free nids in free_nid_bitmap */
2275                 scan_free_nid_bits(sbi);
2276
2277                 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2278                         return 0;
2279         }
2280
2281         /* readahead nat pages to be scanned */
2282         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2283                                                         META_NAT, true);
2284
2285         down_read(&nm_i->nat_tree_lock);
2286
2287         while (1) {
2288                 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2289                                                 nm_i->nat_block_bitmap)) {
2290                         struct page *page = get_current_nat_page(sbi, nid);
2291
2292                         if (IS_ERR(page)) {
2293                                 ret = PTR_ERR(page);
2294                         } else {
2295                                 ret = scan_nat_page(sbi, page, nid);
2296                                 f2fs_put_page(page, 1);
2297                         }
2298
2299                         if (ret) {
2300                                 up_read(&nm_i->nat_tree_lock);
2301                                 f2fs_bug_on(sbi, !mount);
2302                                 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2303                                 return ret;
2304                         }
2305                 }
2306
2307                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2308                 if (unlikely(nid >= nm_i->max_nid))
2309                         nid = 0;
2310
2311                 if (++i >= FREE_NID_PAGES)
2312                         break;
2313         }
2314
2315         /* go to the next free nat pages to find free nids abundantly */
2316         nm_i->next_scan_nid = nid;
2317
2318         /* find free nids from current sum_pages */
2319         scan_curseg_cache(sbi);
2320
2321         up_read(&nm_i->nat_tree_lock);
2322
2323         f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2324                                         nm_i->ra_nid_pages, META_NAT, false);
2325
2326         return 0;
2327 }
2328
2329 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2330 {
2331         int ret;
2332
2333         mutex_lock(&NM_I(sbi)->build_lock);
2334         ret = __f2fs_build_free_nids(sbi, sync, mount);
2335         mutex_unlock(&NM_I(sbi)->build_lock);
2336
2337         return ret;
2338 }
2339
2340 /*
2341  * If this function returns success, caller can obtain a new nid
2342  * from second parameter of this function.
2343  * The returned nid could be used ino as well as nid when inode is created.
2344  */
2345 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2346 {
2347         struct f2fs_nm_info *nm_i = NM_I(sbi);
2348         struct free_nid *i = NULL;
2349 retry:
2350         if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2351                 f2fs_show_injection_info(FAULT_ALLOC_NID);
2352                 return false;
2353         }
2354
2355         spin_lock(&nm_i->nid_list_lock);
2356
2357         if (unlikely(nm_i->available_nids == 0)) {
2358                 spin_unlock(&nm_i->nid_list_lock);
2359                 return false;
2360         }
2361
2362         /* We should not use stale free nids created by f2fs_build_free_nids */
2363         if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2364                 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2365                 i = list_first_entry(&nm_i->free_nid_list,
2366                                         struct free_nid, list);
2367                 *nid = i->nid;
2368
2369                 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2370                 nm_i->available_nids--;
2371
2372                 update_free_nid_bitmap(sbi, *nid, false, false);
2373
2374                 spin_unlock(&nm_i->nid_list_lock);
2375                 return true;
2376         }
2377         spin_unlock(&nm_i->nid_list_lock);
2378
2379         /* Let's scan nat pages and its caches to get free nids */
2380         if (!f2fs_build_free_nids(sbi, true, false))
2381                 goto retry;
2382         return false;
2383 }
2384
2385 /*
2386  * f2fs_alloc_nid() should be called prior to this function.
2387  */
2388 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2389 {
2390         struct f2fs_nm_info *nm_i = NM_I(sbi);
2391         struct free_nid *i;
2392
2393         spin_lock(&nm_i->nid_list_lock);
2394         i = __lookup_free_nid_list(nm_i, nid);
2395         f2fs_bug_on(sbi, !i);
2396         __remove_free_nid(sbi, i, PREALLOC_NID);
2397         spin_unlock(&nm_i->nid_list_lock);
2398
2399         kmem_cache_free(free_nid_slab, i);
2400 }
2401
2402 /*
2403  * f2fs_alloc_nid() should be called prior to this function.
2404  */
2405 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2406 {
2407         struct f2fs_nm_info *nm_i = NM_I(sbi);
2408         struct free_nid *i;
2409         bool need_free = false;
2410
2411         if (!nid)
2412                 return;
2413
2414         spin_lock(&nm_i->nid_list_lock);
2415         i = __lookup_free_nid_list(nm_i, nid);
2416         f2fs_bug_on(sbi, !i);
2417
2418         if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2419                 __remove_free_nid(sbi, i, PREALLOC_NID);
2420                 need_free = true;
2421         } else {
2422                 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2423         }
2424
2425         nm_i->available_nids++;
2426
2427         update_free_nid_bitmap(sbi, nid, true, false);
2428
2429         spin_unlock(&nm_i->nid_list_lock);
2430
2431         if (need_free)
2432                 kmem_cache_free(free_nid_slab, i);
2433 }
2434
2435 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2436 {
2437         struct f2fs_nm_info *nm_i = NM_I(sbi);
2438         struct free_nid *i, *next;
2439         int nr = nr_shrink;
2440
2441         if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2442                 return 0;
2443
2444         if (!mutex_trylock(&nm_i->build_lock))
2445                 return 0;
2446
2447         spin_lock(&nm_i->nid_list_lock);
2448         list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2449                 if (nr_shrink <= 0 ||
2450                                 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2451                         break;
2452
2453                 __remove_free_nid(sbi, i, FREE_NID);
2454                 kmem_cache_free(free_nid_slab, i);
2455                 nr_shrink--;
2456         }
2457         spin_unlock(&nm_i->nid_list_lock);
2458         mutex_unlock(&nm_i->build_lock);
2459
2460         return nr - nr_shrink;
2461 }
2462
2463 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2464 {
2465         void *src_addr, *dst_addr;
2466         size_t inline_size;
2467         struct page *ipage;
2468         struct f2fs_inode *ri;
2469
2470         ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2471         f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2472
2473         ri = F2FS_INODE(page);
2474         if (ri->i_inline & F2FS_INLINE_XATTR) {
2475                 set_inode_flag(inode, FI_INLINE_XATTR);
2476         } else {
2477                 clear_inode_flag(inode, FI_INLINE_XATTR);
2478                 goto update_inode;
2479         }
2480
2481         dst_addr = inline_xattr_addr(inode, ipage);
2482         src_addr = inline_xattr_addr(inode, page);
2483         inline_size = inline_xattr_size(inode);
2484
2485         f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2486         memcpy(dst_addr, src_addr, inline_size);
2487 update_inode:
2488         f2fs_update_inode(inode, ipage);
2489         f2fs_put_page(ipage, 1);
2490 }
2491
2492 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2493 {
2494         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2495         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2496         nid_t new_xnid;
2497         struct dnode_of_data dn;
2498         struct node_info ni;
2499         struct page *xpage;
2500         int err;
2501
2502         if (!prev_xnid)
2503                 goto recover_xnid;
2504
2505         /* 1: invalidate the previous xattr nid */
2506         err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2507         if (err)
2508                 return err;
2509
2510         f2fs_invalidate_blocks(sbi, ni.blk_addr);
2511         dec_valid_node_count(sbi, inode, false);
2512         set_node_addr(sbi, &ni, NULL_ADDR, false);
2513
2514 recover_xnid:
2515         /* 2: update xattr nid in inode */
2516         if (!f2fs_alloc_nid(sbi, &new_xnid))
2517                 return -ENOSPC;
2518
2519         set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2520         xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2521         if (IS_ERR(xpage)) {
2522                 f2fs_alloc_nid_failed(sbi, new_xnid);
2523                 return PTR_ERR(xpage);
2524         }
2525
2526         f2fs_alloc_nid_done(sbi, new_xnid);
2527         f2fs_update_inode_page(inode);
2528
2529         /* 3: update and set xattr node page dirty */
2530         memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2531
2532         set_page_dirty(xpage);
2533         f2fs_put_page(xpage, 1);
2534
2535         return 0;
2536 }
2537
2538 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2539 {
2540         struct f2fs_inode *src, *dst;
2541         nid_t ino = ino_of_node(page);
2542         struct node_info old_ni, new_ni;
2543         struct page *ipage;
2544         int err;
2545
2546         err = f2fs_get_node_info(sbi, ino, &old_ni);
2547         if (err)
2548                 return err;
2549
2550         if (unlikely(old_ni.blk_addr != NULL_ADDR))
2551                 return -EINVAL;
2552 retry:
2553         ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2554         if (!ipage) {
2555                 congestion_wait(BLK_RW_ASYNC, HZ/50);
2556                 goto retry;
2557         }
2558
2559         /* Should not use this inode from free nid list */
2560         remove_free_nid(sbi, ino);
2561
2562         if (!PageUptodate(ipage))
2563                 SetPageUptodate(ipage);
2564         fill_node_footer(ipage, ino, ino, 0, true);
2565         set_cold_node(ipage, false);
2566
2567         src = F2FS_INODE(page);
2568         dst = F2FS_INODE(ipage);
2569
2570         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2571         dst->i_size = 0;
2572         dst->i_blocks = cpu_to_le64(1);
2573         dst->i_links = cpu_to_le32(1);
2574         dst->i_xattr_nid = 0;
2575         dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2576         if (dst->i_inline & F2FS_EXTRA_ATTR) {
2577                 dst->i_extra_isize = src->i_extra_isize;
2578
2579                 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2580                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2581                                                         i_inline_xattr_size))
2582                         dst->i_inline_xattr_size = src->i_inline_xattr_size;
2583
2584                 if (f2fs_sb_has_project_quota(sbi) &&
2585                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2586                                                                 i_projid))
2587                         dst->i_projid = src->i_projid;
2588
2589                 if (f2fs_sb_has_inode_crtime(sbi) &&
2590                         F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2591                                                         i_crtime_nsec)) {
2592                         dst->i_crtime = src->i_crtime;
2593                         dst->i_crtime_nsec = src->i_crtime_nsec;
2594                 }
2595         }
2596
2597         new_ni = old_ni;
2598         new_ni.ino = ino;
2599
2600         if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2601                 WARN_ON(1);
2602         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2603         inc_valid_inode_count(sbi);
2604         set_page_dirty(ipage);
2605         f2fs_put_page(ipage, 1);
2606         return 0;
2607 }
2608
2609 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2610                         unsigned int segno, struct f2fs_summary_block *sum)
2611 {
2612         struct f2fs_node *rn;
2613         struct f2fs_summary *sum_entry;
2614         block_t addr;
2615         int i, idx, last_offset, nrpages;
2616
2617         /* scan the node segment */
2618         last_offset = sbi->blocks_per_seg;
2619         addr = START_BLOCK(sbi, segno);
2620         sum_entry = &sum->entries[0];
2621
2622         for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2623                 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2624
2625                 /* readahead node pages */
2626                 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2627
2628                 for (idx = addr; idx < addr + nrpages; idx++) {
2629                         struct page *page = f2fs_get_tmp_page(sbi, idx);
2630
2631                         if (IS_ERR(page))
2632                                 return PTR_ERR(page);
2633
2634                         rn = F2FS_NODE(page);
2635                         sum_entry->nid = rn->footer.nid;
2636                         sum_entry->version = 0;
2637                         sum_entry->ofs_in_node = 0;
2638                         sum_entry++;
2639                         f2fs_put_page(page, 1);
2640                 }
2641
2642                 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2643                                                         addr + nrpages);
2644         }
2645         return 0;
2646 }
2647
2648 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2649 {
2650         struct f2fs_nm_info *nm_i = NM_I(sbi);
2651         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2652         struct f2fs_journal *journal = curseg->journal;
2653         int i;
2654
2655         down_write(&curseg->journal_rwsem);
2656         for (i = 0; i < nats_in_cursum(journal); i++) {
2657                 struct nat_entry *ne;
2658                 struct f2fs_nat_entry raw_ne;
2659                 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2660
2661                 raw_ne = nat_in_journal(journal, i);
2662
2663                 ne = __lookup_nat_cache(nm_i, nid);
2664                 if (!ne) {
2665                         ne = __alloc_nat_entry(nid, true);
2666                         __init_nat_entry(nm_i, ne, &raw_ne, true);
2667                 }
2668
2669                 /*
2670                  * if a free nat in journal has not been used after last
2671                  * checkpoint, we should remove it from available nids,
2672                  * since later we will add it again.
2673                  */
2674                 if (!get_nat_flag(ne, IS_DIRTY) &&
2675                                 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2676                         spin_lock(&nm_i->nid_list_lock);
2677                         nm_i->available_nids--;
2678                         spin_unlock(&nm_i->nid_list_lock);
2679                 }
2680
2681                 __set_nat_cache_dirty(nm_i, ne);
2682         }
2683         update_nats_in_cursum(journal, -i);
2684         up_write(&curseg->journal_rwsem);
2685 }
2686
2687 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2688                                                 struct list_head *head, int max)
2689 {
2690         struct nat_entry_set *cur;
2691
2692         if (nes->entry_cnt >= max)
2693                 goto add_out;
2694
2695         list_for_each_entry(cur, head, set_list) {
2696                 if (cur->entry_cnt >= nes->entry_cnt) {
2697                         list_add(&nes->set_list, cur->set_list.prev);
2698                         return;
2699                 }
2700         }
2701 add_out:
2702         list_add_tail(&nes->set_list, head);
2703 }
2704
2705 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2706                                                 struct page *page)
2707 {
2708         struct f2fs_nm_info *nm_i = NM_I(sbi);
2709         unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2710         struct f2fs_nat_block *nat_blk = page_address(page);
2711         int valid = 0;
2712         int i = 0;
2713
2714         if (!enabled_nat_bits(sbi, NULL))
2715                 return;
2716
2717         if (nat_index == 0) {
2718                 valid = 1;
2719                 i = 1;
2720         }
2721         for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2722                 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2723                         valid++;
2724         }
2725         if (valid == 0) {
2726                 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2727                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2728                 return;
2729         }
2730
2731         __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2732         if (valid == NAT_ENTRY_PER_BLOCK)
2733                 __set_bit_le(nat_index, nm_i->full_nat_bits);
2734         else
2735                 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2736 }
2737
2738 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2739                 struct nat_entry_set *set, struct cp_control *cpc)
2740 {
2741         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2742         struct f2fs_journal *journal = curseg->journal;
2743         nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2744         bool to_journal = true;
2745         struct f2fs_nat_block *nat_blk;
2746         struct nat_entry *ne, *cur;
2747         struct page *page = NULL;
2748
2749         /*
2750          * there are two steps to flush nat entries:
2751          * #1, flush nat entries to journal in current hot data summary block.
2752          * #2, flush nat entries to nat page.
2753          */
2754         if (enabled_nat_bits(sbi, cpc) ||
2755                 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2756                 to_journal = false;
2757
2758         if (to_journal) {
2759                 down_write(&curseg->journal_rwsem);
2760         } else {
2761                 page = get_next_nat_page(sbi, start_nid);
2762                 if (IS_ERR(page))
2763                         return PTR_ERR(page);
2764
2765                 nat_blk = page_address(page);
2766                 f2fs_bug_on(sbi, !nat_blk);
2767         }
2768
2769         /* flush dirty nats in nat entry set */
2770         list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2771                 struct f2fs_nat_entry *raw_ne;
2772                 nid_t nid = nat_get_nid(ne);
2773                 int offset;
2774
2775                 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2776
2777                 if (to_journal) {
2778                         offset = f2fs_lookup_journal_in_cursum(journal,
2779                                                         NAT_JOURNAL, nid, 1);
2780                         f2fs_bug_on(sbi, offset < 0);
2781                         raw_ne = &nat_in_journal(journal, offset);
2782                         nid_in_journal(journal, offset) = cpu_to_le32(nid);
2783                 } else {
2784                         raw_ne = &nat_blk->entries[nid - start_nid];
2785                 }
2786                 raw_nat_from_node_info(raw_ne, &ne->ni);
2787                 nat_reset_flag(ne);
2788                 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2789                 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2790                         add_free_nid(sbi, nid, false, true);
2791                 } else {
2792                         spin_lock(&NM_I(sbi)->nid_list_lock);
2793                         update_free_nid_bitmap(sbi, nid, false, false);
2794                         spin_unlock(&NM_I(sbi)->nid_list_lock);
2795                 }
2796         }
2797
2798         if (to_journal) {
2799                 up_write(&curseg->journal_rwsem);
2800         } else {
2801                 __update_nat_bits(sbi, start_nid, page);
2802                 f2fs_put_page(page, 1);
2803         }
2804
2805         /* Allow dirty nats by node block allocation in write_begin */
2806         if (!set->entry_cnt) {
2807                 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2808                 kmem_cache_free(nat_entry_set_slab, set);
2809         }
2810         return 0;
2811 }
2812
2813 /*
2814  * This function is called during the checkpointing process.
2815  */
2816 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2817 {
2818         struct f2fs_nm_info *nm_i = NM_I(sbi);
2819         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2820         struct f2fs_journal *journal = curseg->journal;
2821         struct nat_entry_set *setvec[SETVEC_SIZE];
2822         struct nat_entry_set *set, *tmp;
2823         unsigned int found;
2824         nid_t set_idx = 0;
2825         LIST_HEAD(sets);
2826         int err = 0;
2827
2828         /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2829         if (enabled_nat_bits(sbi, cpc)) {
2830                 down_write(&nm_i->nat_tree_lock);
2831                 remove_nats_in_journal(sbi);
2832                 up_write(&nm_i->nat_tree_lock);
2833         }
2834
2835         if (!nm_i->dirty_nat_cnt)
2836                 return 0;
2837
2838         down_write(&nm_i->nat_tree_lock);
2839
2840         /*
2841          * if there are no enough space in journal to store dirty nat
2842          * entries, remove all entries from journal and merge them
2843          * into nat entry set.
2844          */
2845         if (enabled_nat_bits(sbi, cpc) ||
2846                 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2847                 remove_nats_in_journal(sbi);
2848
2849         while ((found = __gang_lookup_nat_set(nm_i,
2850                                         set_idx, SETVEC_SIZE, setvec))) {
2851                 unsigned idx;
2852                 set_idx = setvec[found - 1]->set + 1;
2853                 for (idx = 0; idx < found; idx++)
2854                         __adjust_nat_entry_set(setvec[idx], &sets,
2855                                                 MAX_NAT_JENTRIES(journal));
2856         }
2857
2858         /* flush dirty nats in nat entry set */
2859         list_for_each_entry_safe(set, tmp, &sets, set_list) {
2860                 err = __flush_nat_entry_set(sbi, set, cpc);
2861                 if (err)
2862                         break;
2863         }
2864
2865         up_write(&nm_i->nat_tree_lock);
2866         /* Allow dirty nats by node block allocation in write_begin */
2867
2868         return err;
2869 }
2870
2871 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2872 {
2873         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2874         struct f2fs_nm_info *nm_i = NM_I(sbi);
2875         unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2876         unsigned int i;
2877         __u64 cp_ver = cur_cp_version(ckpt);
2878         block_t nat_bits_addr;
2879
2880         if (!enabled_nat_bits(sbi, NULL))
2881                 return 0;
2882
2883         nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2884         nm_i->nat_bits = f2fs_kzalloc(sbi,
2885                         nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2886         if (!nm_i->nat_bits)
2887                 return -ENOMEM;
2888
2889         nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2890                                                 nm_i->nat_bits_blocks;
2891         for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2892                 struct page *page;
2893
2894                 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2895                 if (IS_ERR(page))
2896                         return PTR_ERR(page);
2897
2898                 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2899                                         page_address(page), F2FS_BLKSIZE);
2900                 f2fs_put_page(page, 1);
2901         }
2902
2903         cp_ver |= (cur_cp_crc(ckpt) << 32);
2904         if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2905                 disable_nat_bits(sbi, true);
2906                 return 0;
2907         }
2908
2909         nm_i->full_nat_bits = nm_i->nat_bits + 8;
2910         nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2911
2912         f2fs_notice(sbi, "Found nat_bits in checkpoint");
2913         return 0;
2914 }
2915
2916 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2917 {
2918         struct f2fs_nm_info *nm_i = NM_I(sbi);
2919         unsigned int i = 0;
2920         nid_t nid, last_nid;
2921
2922         if (!enabled_nat_bits(sbi, NULL))
2923                 return;
2924
2925         for (i = 0; i < nm_i->nat_blocks; i++) {
2926                 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2927                 if (i >= nm_i->nat_blocks)
2928                         break;
2929
2930                 __set_bit_le(i, nm_i->nat_block_bitmap);
2931
2932                 nid = i * NAT_ENTRY_PER_BLOCK;
2933                 last_nid = nid + NAT_ENTRY_PER_BLOCK;
2934
2935                 spin_lock(&NM_I(sbi)->nid_list_lock);
2936                 for (; nid < last_nid; nid++)
2937                         update_free_nid_bitmap(sbi, nid, true, true);
2938                 spin_unlock(&NM_I(sbi)->nid_list_lock);
2939         }
2940
2941         for (i = 0; i < nm_i->nat_blocks; i++) {
2942                 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2943                 if (i >= nm_i->nat_blocks)
2944                         break;
2945
2946                 __set_bit_le(i, nm_i->nat_block_bitmap);
2947         }
2948 }
2949
2950 static int init_node_manager(struct f2fs_sb_info *sbi)
2951 {
2952         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2953         struct f2fs_nm_info *nm_i = NM_I(sbi);
2954         unsigned char *version_bitmap;
2955         unsigned int nat_segs;
2956         int err;
2957
2958         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2959
2960         /* segment_count_nat includes pair segment so divide to 2. */
2961         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2962         nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2963         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2964
2965         /* not used nids: 0, node, meta, (and root counted as valid node) */
2966         nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2967                                 sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
2968         nm_i->nid_cnt[FREE_NID] = 0;
2969         nm_i->nid_cnt[PREALLOC_NID] = 0;
2970         nm_i->nat_cnt = 0;
2971         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2972         nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2973         nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2974
2975         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2976         INIT_LIST_HEAD(&nm_i->free_nid_list);
2977         INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2978         INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2979         INIT_LIST_HEAD(&nm_i->nat_entries);
2980         spin_lock_init(&nm_i->nat_list_lock);
2981
2982         mutex_init(&nm_i->build_lock);
2983         spin_lock_init(&nm_i->nid_list_lock);
2984         init_rwsem(&nm_i->nat_tree_lock);
2985
2986         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2987         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2988         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2989         if (!version_bitmap)
2990                 return -EFAULT;
2991
2992         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2993                                         GFP_KERNEL);
2994         if (!nm_i->nat_bitmap)
2995                 return -ENOMEM;
2996
2997         err = __get_nat_bitmaps(sbi);
2998         if (err)
2999                 return err;
3000
3001 #ifdef CONFIG_F2FS_CHECK_FS
3002         nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3003                                         GFP_KERNEL);
3004         if (!nm_i->nat_bitmap_mir)
3005                 return -ENOMEM;
3006 #endif
3007
3008         return 0;
3009 }
3010
3011 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3012 {
3013         struct f2fs_nm_info *nm_i = NM_I(sbi);
3014         int i;
3015
3016         nm_i->free_nid_bitmap =
3017                 f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
3018                                              nm_i->nat_blocks),
3019                              GFP_KERNEL);
3020         if (!nm_i->free_nid_bitmap)
3021                 return -ENOMEM;
3022
3023         for (i = 0; i < nm_i->nat_blocks; i++) {
3024                 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3025                         f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3026                 if (!nm_i->free_nid_bitmap[i])
3027                         return -ENOMEM;
3028         }
3029
3030         nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3031                                                                 GFP_KERNEL);
3032         if (!nm_i->nat_block_bitmap)
3033                 return -ENOMEM;
3034
3035         nm_i->free_nid_count =
3036                 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3037                                               nm_i->nat_blocks),
3038                               GFP_KERNEL);
3039         if (!nm_i->free_nid_count)
3040                 return -ENOMEM;
3041         return 0;
3042 }
3043
3044 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3045 {
3046         int err;
3047
3048         sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3049                                                         GFP_KERNEL);
3050         if (!sbi->nm_info)
3051                 return -ENOMEM;
3052
3053         err = init_node_manager(sbi);
3054         if (err)
3055                 return err;
3056
3057         err = init_free_nid_cache(sbi);
3058         if (err)
3059                 return err;
3060
3061         /* load free nid status from nat_bits table */
3062         load_free_nid_bitmap(sbi);
3063
3064         return f2fs_build_free_nids(sbi, true, true);
3065 }
3066
3067 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3068 {
3069         struct f2fs_nm_info *nm_i = NM_I(sbi);
3070         struct free_nid *i, *next_i;
3071         struct nat_entry *natvec[NATVEC_SIZE];
3072         struct nat_entry_set *setvec[SETVEC_SIZE];
3073         nid_t nid = 0;
3074         unsigned int found;
3075
3076         if (!nm_i)
3077                 return;
3078
3079         /* destroy free nid list */
3080         spin_lock(&nm_i->nid_list_lock);
3081         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3082                 __remove_free_nid(sbi, i, FREE_NID);
3083                 spin_unlock(&nm_i->nid_list_lock);
3084                 kmem_cache_free(free_nid_slab, i);
3085                 spin_lock(&nm_i->nid_list_lock);
3086         }
3087         f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3088         f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3089         f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3090         spin_unlock(&nm_i->nid_list_lock);
3091
3092         /* destroy nat cache */
3093         down_write(&nm_i->nat_tree_lock);
3094         while ((found = __gang_lookup_nat_cache(nm_i,
3095                                         nid, NATVEC_SIZE, natvec))) {
3096                 unsigned idx;
3097
3098                 nid = nat_get_nid(natvec[found - 1]) + 1;
3099                 for (idx = 0; idx < found; idx++) {
3100                         spin_lock(&nm_i->nat_list_lock);
3101                         list_del(&natvec[idx]->list);
3102                         spin_unlock(&nm_i->nat_list_lock);
3103
3104                         __del_from_nat_cache(nm_i, natvec[idx]);
3105                 }
3106         }
3107         f2fs_bug_on(sbi, nm_i->nat_cnt);
3108
3109         /* destroy nat set cache */
3110         nid = 0;
3111         while ((found = __gang_lookup_nat_set(nm_i,
3112                                         nid, SETVEC_SIZE, setvec))) {
3113                 unsigned idx;
3114
3115                 nid = setvec[found - 1]->set + 1;
3116                 for (idx = 0; idx < found; idx++) {
3117                         /* entry_cnt is not zero, when cp_error was occurred */
3118                         f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3119                         radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3120                         kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3121                 }
3122         }
3123         up_write(&nm_i->nat_tree_lock);
3124
3125         kvfree(nm_i->nat_block_bitmap);
3126         if (nm_i->free_nid_bitmap) {
3127                 int i;
3128
3129                 for (i = 0; i < nm_i->nat_blocks; i++)
3130                         kvfree(nm_i->free_nid_bitmap[i]);
3131                 kvfree(nm_i->free_nid_bitmap);
3132         }
3133         kvfree(nm_i->free_nid_count);
3134
3135         kvfree(nm_i->nat_bitmap);
3136         kvfree(nm_i->nat_bits);
3137 #ifdef CONFIG_F2FS_CHECK_FS
3138         kvfree(nm_i->nat_bitmap_mir);
3139 #endif
3140         sbi->nm_info = NULL;
3141         kvfree(nm_i);
3142 }
3143
3144 int __init f2fs_create_node_manager_caches(void)
3145 {
3146         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
3147                         sizeof(struct nat_entry));
3148         if (!nat_entry_slab)
3149                 goto fail;
3150
3151         free_nid_slab = f2fs_kmem_cache_create("free_nid",
3152                         sizeof(struct free_nid));
3153         if (!free_nid_slab)
3154                 goto destroy_nat_entry;
3155
3156         nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
3157                         sizeof(struct nat_entry_set));
3158         if (!nat_entry_set_slab)
3159                 goto destroy_free_nid;
3160
3161         fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
3162                         sizeof(struct fsync_node_entry));
3163         if (!fsync_node_entry_slab)
3164                 goto destroy_nat_entry_set;
3165         return 0;
3166
3167 destroy_nat_entry_set:
3168         kmem_cache_destroy(nat_entry_set_slab);
3169 destroy_free_nid:
3170         kmem_cache_destroy(free_nid_slab);
3171 destroy_nat_entry:
3172         kmem_cache_destroy(nat_entry_slab);
3173 fail:
3174         return -ENOMEM;
3175 }
3176
3177 void f2fs_destroy_node_manager_caches(void)
3178 {
3179         kmem_cache_destroy(fsync_node_entry_slab);
3180         kmem_cache_destroy(nat_entry_set_slab);
3181         kmem_cache_destroy(free_nid_slab);
3182         kmem_cache_destroy(nat_entry_slab);
3183 }