]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/f2fs/segment.c
f2fs: avoid infinite GC loop due to stale atomic files
[linux.git] / fs / f2fs / segment.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35         unsigned long tmp = 0;
36         int shift = 24, idx = 0;
37
38 #if BITS_PER_LONG == 64
39         shift = 56;
40 #endif
41         while (shift >= 0) {
42                 tmp |= (unsigned long)str[idx++] << shift;
43                 shift -= BITS_PER_BYTE;
44         }
45         return tmp;
46 }
47
48 /*
49  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50  * MSB and LSB are reversed in a byte by f2fs_set_bit.
51  */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54         int num = 0;
55
56 #if BITS_PER_LONG == 64
57         if ((word & 0xffffffff00000000UL) == 0)
58                 num += 32;
59         else
60                 word >>= 32;
61 #endif
62         if ((word & 0xffff0000) == 0)
63                 num += 16;
64         else
65                 word >>= 16;
66
67         if ((word & 0xff00) == 0)
68                 num += 8;
69         else
70                 word >>= 8;
71
72         if ((word & 0xf0) == 0)
73                 num += 4;
74         else
75                 word >>= 4;
76
77         if ((word & 0xc) == 0)
78                 num += 2;
79         else
80                 word >>= 2;
81
82         if ((word & 0x2) == 0)
83                 num += 1;
84         return num;
85 }
86
87 /*
88  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89  * f2fs_set_bit makes MSB and LSB reversed in a byte.
90  * @size must be integral times of unsigned long.
91  * Example:
92  *                             MSB <--> LSB
93  *   f2fs_set_bit(0, bitmap) => 1000 0000
94  *   f2fs_set_bit(7, bitmap) => 0000 0001
95  */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97                         unsigned long size, unsigned long offset)
98 {
99         const unsigned long *p = addr + BIT_WORD(offset);
100         unsigned long result = size;
101         unsigned long tmp;
102
103         if (offset >= size)
104                 return size;
105
106         size -= (offset & ~(BITS_PER_LONG - 1));
107         offset %= BITS_PER_LONG;
108
109         while (1) {
110                 if (*p == 0)
111                         goto pass;
112
113                 tmp = __reverse_ulong((unsigned char *)p);
114
115                 tmp &= ~0UL >> offset;
116                 if (size < BITS_PER_LONG)
117                         tmp &= (~0UL << (BITS_PER_LONG - size));
118                 if (tmp)
119                         goto found;
120 pass:
121                 if (size <= BITS_PER_LONG)
122                         break;
123                 size -= BITS_PER_LONG;
124                 offset = 0;
125                 p++;
126         }
127         return result;
128 found:
129         return result - size + __reverse_ffs(tmp);
130 }
131
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133                         unsigned long size, unsigned long offset)
134 {
135         const unsigned long *p = addr + BIT_WORD(offset);
136         unsigned long result = size;
137         unsigned long tmp;
138
139         if (offset >= size)
140                 return size;
141
142         size -= (offset & ~(BITS_PER_LONG - 1));
143         offset %= BITS_PER_LONG;
144
145         while (1) {
146                 if (*p == ~0UL)
147                         goto pass;
148
149                 tmp = __reverse_ulong((unsigned char *)p);
150
151                 if (offset)
152                         tmp |= ~0UL << (BITS_PER_LONG - offset);
153                 if (size < BITS_PER_LONG)
154                         tmp |= ~0UL >> size;
155                 if (tmp != ~0UL)
156                         goto found;
157 pass:
158                 if (size <= BITS_PER_LONG)
159                         break;
160                 size -= BITS_PER_LONG;
161                 offset = 0;
162                 p++;
163         }
164         return result;
165 found:
166         return result - size + __reverse_ffz(tmp);
167 }
168
169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
170 {
171         int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172         int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173         int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
174
175         if (test_opt(sbi, LFS))
176                 return false;
177         if (sbi->gc_mode == GC_URGENT)
178                 return true;
179         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180                 return true;
181
182         return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183                         SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
184 }
185
186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
187 {
188         struct inmem_pages *new;
189
190         f2fs_trace_pid(page);
191
192         f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
193
194         new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
195
196         /* add atomic page indices to the list */
197         new->page = page;
198         INIT_LIST_HEAD(&new->list);
199
200         /* increase reference count with clean state */
201         get_page(page);
202         mutex_lock(&F2FS_I(inode)->inmem_lock);
203         list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
204         inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
205         mutex_unlock(&F2FS_I(inode)->inmem_lock);
206
207         trace_f2fs_register_inmem_page(page, INMEM);
208 }
209
210 static int __revoke_inmem_pages(struct inode *inode,
211                                 struct list_head *head, bool drop, bool recover,
212                                 bool trylock)
213 {
214         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
215         struct inmem_pages *cur, *tmp;
216         int err = 0;
217
218         list_for_each_entry_safe(cur, tmp, head, list) {
219                 struct page *page = cur->page;
220
221                 if (drop)
222                         trace_f2fs_commit_inmem_page(page, INMEM_DROP);
223
224                 if (trylock) {
225                         /*
226                          * to avoid deadlock in between page lock and
227                          * inmem_lock.
228                          */
229                         if (!trylock_page(page))
230                                 continue;
231                 } else {
232                         lock_page(page);
233                 }
234
235                 f2fs_wait_on_page_writeback(page, DATA, true, true);
236
237                 if (recover) {
238                         struct dnode_of_data dn;
239                         struct node_info ni;
240
241                         trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
242 retry:
243                         set_new_dnode(&dn, inode, NULL, NULL, 0);
244                         err = f2fs_get_dnode_of_data(&dn, page->index,
245                                                                 LOOKUP_NODE);
246                         if (err) {
247                                 if (err == -ENOMEM) {
248                                         congestion_wait(BLK_RW_ASYNC, HZ/50);
249                                         cond_resched();
250                                         goto retry;
251                                 }
252                                 err = -EAGAIN;
253                                 goto next;
254                         }
255
256                         err = f2fs_get_node_info(sbi, dn.nid, &ni);
257                         if (err) {
258                                 f2fs_put_dnode(&dn);
259                                 return err;
260                         }
261
262                         if (cur->old_addr == NEW_ADDR) {
263                                 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
264                                 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
265                         } else
266                                 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
267                                         cur->old_addr, ni.version, true, true);
268                         f2fs_put_dnode(&dn);
269                 }
270 next:
271                 /* we don't need to invalidate this in the sccessful status */
272                 if (drop || recover) {
273                         ClearPageUptodate(page);
274                         clear_cold_data(page);
275                 }
276                 f2fs_clear_page_private(page);
277                 f2fs_put_page(page, 1);
278
279                 list_del(&cur->list);
280                 kmem_cache_free(inmem_entry_slab, cur);
281                 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
282         }
283         return err;
284 }
285
286 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
287 {
288         struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
289         struct inode *inode;
290         struct f2fs_inode_info *fi;
291 next:
292         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
293         if (list_empty(head)) {
294                 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
295                 return;
296         }
297         fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
298         inode = igrab(&fi->vfs_inode);
299         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
300
301         if (inode) {
302                 if (gc_failure) {
303                         if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
304                                 goto drop;
305                         goto skip;
306                 }
307 drop:
308                 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
309                 f2fs_drop_inmem_pages(inode);
310                 iput(inode);
311         }
312 skip:
313         congestion_wait(BLK_RW_ASYNC, HZ/50);
314         cond_resched();
315         goto next;
316 }
317
318 void f2fs_drop_inmem_pages(struct inode *inode)
319 {
320         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
321         struct f2fs_inode_info *fi = F2FS_I(inode);
322
323         while (!list_empty(&fi->inmem_pages)) {
324                 mutex_lock(&fi->inmem_lock);
325                 __revoke_inmem_pages(inode, &fi->inmem_pages,
326                                                 true, false, true);
327                 mutex_unlock(&fi->inmem_lock);
328         }
329
330         clear_inode_flag(inode, FI_ATOMIC_FILE);
331         fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
332         stat_dec_atomic_write(inode);
333
334         spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
335         if (!list_empty(&fi->inmem_ilist))
336                 list_del_init(&fi->inmem_ilist);
337         spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
338 }
339
340 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
341 {
342         struct f2fs_inode_info *fi = F2FS_I(inode);
343         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
344         struct list_head *head = &fi->inmem_pages;
345         struct inmem_pages *cur = NULL;
346
347         f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
348
349         mutex_lock(&fi->inmem_lock);
350         list_for_each_entry(cur, head, list) {
351                 if (cur->page == page)
352                         break;
353         }
354
355         f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
356         list_del(&cur->list);
357         mutex_unlock(&fi->inmem_lock);
358
359         dec_page_count(sbi, F2FS_INMEM_PAGES);
360         kmem_cache_free(inmem_entry_slab, cur);
361
362         ClearPageUptodate(page);
363         f2fs_clear_page_private(page);
364         f2fs_put_page(page, 0);
365
366         trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
367 }
368
369 static int __f2fs_commit_inmem_pages(struct inode *inode)
370 {
371         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
372         struct f2fs_inode_info *fi = F2FS_I(inode);
373         struct inmem_pages *cur, *tmp;
374         struct f2fs_io_info fio = {
375                 .sbi = sbi,
376                 .ino = inode->i_ino,
377                 .type = DATA,
378                 .op = REQ_OP_WRITE,
379                 .op_flags = REQ_SYNC | REQ_PRIO,
380                 .io_type = FS_DATA_IO,
381         };
382         struct list_head revoke_list;
383         bool submit_bio = false;
384         int err = 0;
385
386         INIT_LIST_HEAD(&revoke_list);
387
388         list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
389                 struct page *page = cur->page;
390
391                 lock_page(page);
392                 if (page->mapping == inode->i_mapping) {
393                         trace_f2fs_commit_inmem_page(page, INMEM);
394
395                         f2fs_wait_on_page_writeback(page, DATA, true, true);
396
397                         set_page_dirty(page);
398                         if (clear_page_dirty_for_io(page)) {
399                                 inode_dec_dirty_pages(inode);
400                                 f2fs_remove_dirty_inode(inode);
401                         }
402 retry:
403                         fio.page = page;
404                         fio.old_blkaddr = NULL_ADDR;
405                         fio.encrypted_page = NULL;
406                         fio.need_lock = LOCK_DONE;
407                         err = f2fs_do_write_data_page(&fio);
408                         if (err) {
409                                 if (err == -ENOMEM) {
410                                         congestion_wait(BLK_RW_ASYNC, HZ/50);
411                                         cond_resched();
412                                         goto retry;
413                                 }
414                                 unlock_page(page);
415                                 break;
416                         }
417                         /* record old blkaddr for revoking */
418                         cur->old_addr = fio.old_blkaddr;
419                         submit_bio = true;
420                 }
421                 unlock_page(page);
422                 list_move_tail(&cur->list, &revoke_list);
423         }
424
425         if (submit_bio)
426                 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
427
428         if (err) {
429                 /*
430                  * try to revoke all committed pages, but still we could fail
431                  * due to no memory or other reason, if that happened, EAGAIN
432                  * will be returned, which means in such case, transaction is
433                  * already not integrity, caller should use journal to do the
434                  * recovery or rewrite & commit last transaction. For other
435                  * error number, revoking was done by filesystem itself.
436                  */
437                 err = __revoke_inmem_pages(inode, &revoke_list,
438                                                 false, true, false);
439
440                 /* drop all uncommitted pages */
441                 __revoke_inmem_pages(inode, &fi->inmem_pages,
442                                                 true, false, false);
443         } else {
444                 __revoke_inmem_pages(inode, &revoke_list,
445                                                 false, false, false);
446         }
447
448         return err;
449 }
450
451 int f2fs_commit_inmem_pages(struct inode *inode)
452 {
453         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
454         struct f2fs_inode_info *fi = F2FS_I(inode);
455         int err;
456
457         f2fs_balance_fs(sbi, true);
458
459         down_write(&fi->i_gc_rwsem[WRITE]);
460
461         f2fs_lock_op(sbi);
462         set_inode_flag(inode, FI_ATOMIC_COMMIT);
463
464         mutex_lock(&fi->inmem_lock);
465         err = __f2fs_commit_inmem_pages(inode);
466         mutex_unlock(&fi->inmem_lock);
467
468         clear_inode_flag(inode, FI_ATOMIC_COMMIT);
469
470         f2fs_unlock_op(sbi);
471         up_write(&fi->i_gc_rwsem[WRITE]);
472
473         return err;
474 }
475
476 /*
477  * This function balances dirty node and dentry pages.
478  * In addition, it controls garbage collection.
479  */
480 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
481 {
482         if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
483                 f2fs_show_injection_info(FAULT_CHECKPOINT);
484                 f2fs_stop_checkpoint(sbi, false);
485         }
486
487         /* balance_fs_bg is able to be pending */
488         if (need && excess_cached_nats(sbi))
489                 f2fs_balance_fs_bg(sbi);
490
491         if (!f2fs_is_checkpoint_ready(sbi))
492                 return;
493
494         /*
495          * We should do GC or end up with checkpoint, if there are so many dirty
496          * dir/node pages without enough free segments.
497          */
498         if (has_not_enough_free_secs(sbi, 0, 0)) {
499                 mutex_lock(&sbi->gc_mutex);
500                 f2fs_gc(sbi, false, false, NULL_SEGNO);
501         }
502 }
503
504 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
505 {
506         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
507                 return;
508
509         /* try to shrink extent cache when there is no enough memory */
510         if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
511                 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
512
513         /* check the # of cached NAT entries */
514         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
515                 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
516
517         if (!f2fs_available_free_memory(sbi, FREE_NIDS))
518                 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
519         else
520                 f2fs_build_free_nids(sbi, false, false);
521
522         if (!is_idle(sbi, REQ_TIME) &&
523                 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
524                 return;
525
526         /* checkpoint is the only way to shrink partial cached entries */
527         if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
528                         !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
529                         excess_prefree_segs(sbi) ||
530                         excess_dirty_nats(sbi) ||
531                         excess_dirty_nodes(sbi) ||
532                         f2fs_time_over(sbi, CP_TIME)) {
533                 if (test_opt(sbi, DATA_FLUSH)) {
534                         struct blk_plug plug;
535
536                         mutex_lock(&sbi->flush_lock);
537
538                         blk_start_plug(&plug);
539                         f2fs_sync_dirty_inodes(sbi, FILE_INODE);
540                         blk_finish_plug(&plug);
541
542                         mutex_unlock(&sbi->flush_lock);
543                 }
544                 f2fs_sync_fs(sbi->sb, true);
545                 stat_inc_bg_cp_count(sbi->stat_info);
546         }
547 }
548
549 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
550                                 struct block_device *bdev)
551 {
552         struct bio *bio;
553         int ret;
554
555         bio = f2fs_bio_alloc(sbi, 0, false);
556         if (!bio)
557                 return -ENOMEM;
558
559         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
560         bio_set_dev(bio, bdev);
561         ret = submit_bio_wait(bio);
562         bio_put(bio);
563
564         trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
565                                 test_opt(sbi, FLUSH_MERGE), ret);
566         return ret;
567 }
568
569 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
570 {
571         int ret = 0;
572         int i;
573
574         if (!f2fs_is_multi_device(sbi))
575                 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
576
577         for (i = 0; i < sbi->s_ndevs; i++) {
578                 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
579                         continue;
580                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
581                 if (ret)
582                         break;
583         }
584         return ret;
585 }
586
587 static int issue_flush_thread(void *data)
588 {
589         struct f2fs_sb_info *sbi = data;
590         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
591         wait_queue_head_t *q = &fcc->flush_wait_queue;
592 repeat:
593         if (kthread_should_stop())
594                 return 0;
595
596         sb_start_intwrite(sbi->sb);
597
598         if (!llist_empty(&fcc->issue_list)) {
599                 struct flush_cmd *cmd, *next;
600                 int ret;
601
602                 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
603                 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
604
605                 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
606
607                 ret = submit_flush_wait(sbi, cmd->ino);
608                 atomic_inc(&fcc->issued_flush);
609
610                 llist_for_each_entry_safe(cmd, next,
611                                           fcc->dispatch_list, llnode) {
612                         cmd->ret = ret;
613                         complete(&cmd->wait);
614                 }
615                 fcc->dispatch_list = NULL;
616         }
617
618         sb_end_intwrite(sbi->sb);
619
620         wait_event_interruptible(*q,
621                 kthread_should_stop() || !llist_empty(&fcc->issue_list));
622         goto repeat;
623 }
624
625 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
626 {
627         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
628         struct flush_cmd cmd;
629         int ret;
630
631         if (test_opt(sbi, NOBARRIER))
632                 return 0;
633
634         if (!test_opt(sbi, FLUSH_MERGE)) {
635                 atomic_inc(&fcc->queued_flush);
636                 ret = submit_flush_wait(sbi, ino);
637                 atomic_dec(&fcc->queued_flush);
638                 atomic_inc(&fcc->issued_flush);
639                 return ret;
640         }
641
642         if (atomic_inc_return(&fcc->queued_flush) == 1 ||
643             f2fs_is_multi_device(sbi)) {
644                 ret = submit_flush_wait(sbi, ino);
645                 atomic_dec(&fcc->queued_flush);
646
647                 atomic_inc(&fcc->issued_flush);
648                 return ret;
649         }
650
651         cmd.ino = ino;
652         init_completion(&cmd.wait);
653
654         llist_add(&cmd.llnode, &fcc->issue_list);
655
656         /* update issue_list before we wake up issue_flush thread */
657         smp_mb();
658
659         if (waitqueue_active(&fcc->flush_wait_queue))
660                 wake_up(&fcc->flush_wait_queue);
661
662         if (fcc->f2fs_issue_flush) {
663                 wait_for_completion(&cmd.wait);
664                 atomic_dec(&fcc->queued_flush);
665         } else {
666                 struct llist_node *list;
667
668                 list = llist_del_all(&fcc->issue_list);
669                 if (!list) {
670                         wait_for_completion(&cmd.wait);
671                         atomic_dec(&fcc->queued_flush);
672                 } else {
673                         struct flush_cmd *tmp, *next;
674
675                         ret = submit_flush_wait(sbi, ino);
676
677                         llist_for_each_entry_safe(tmp, next, list, llnode) {
678                                 if (tmp == &cmd) {
679                                         cmd.ret = ret;
680                                         atomic_dec(&fcc->queued_flush);
681                                         continue;
682                                 }
683                                 tmp->ret = ret;
684                                 complete(&tmp->wait);
685                         }
686                 }
687         }
688
689         return cmd.ret;
690 }
691
692 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
693 {
694         dev_t dev = sbi->sb->s_bdev->bd_dev;
695         struct flush_cmd_control *fcc;
696         int err = 0;
697
698         if (SM_I(sbi)->fcc_info) {
699                 fcc = SM_I(sbi)->fcc_info;
700                 if (fcc->f2fs_issue_flush)
701                         return err;
702                 goto init_thread;
703         }
704
705         fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
706         if (!fcc)
707                 return -ENOMEM;
708         atomic_set(&fcc->issued_flush, 0);
709         atomic_set(&fcc->queued_flush, 0);
710         init_waitqueue_head(&fcc->flush_wait_queue);
711         init_llist_head(&fcc->issue_list);
712         SM_I(sbi)->fcc_info = fcc;
713         if (!test_opt(sbi, FLUSH_MERGE))
714                 return err;
715
716 init_thread:
717         fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
718                                 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
719         if (IS_ERR(fcc->f2fs_issue_flush)) {
720                 err = PTR_ERR(fcc->f2fs_issue_flush);
721                 kvfree(fcc);
722                 SM_I(sbi)->fcc_info = NULL;
723                 return err;
724         }
725
726         return err;
727 }
728
729 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
730 {
731         struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
732
733         if (fcc && fcc->f2fs_issue_flush) {
734                 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
735
736                 fcc->f2fs_issue_flush = NULL;
737                 kthread_stop(flush_thread);
738         }
739         if (free) {
740                 kvfree(fcc);
741                 SM_I(sbi)->fcc_info = NULL;
742         }
743 }
744
745 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
746 {
747         int ret = 0, i;
748
749         if (!f2fs_is_multi_device(sbi))
750                 return 0;
751
752         for (i = 1; i < sbi->s_ndevs; i++) {
753                 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
754                         continue;
755                 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
756                 if (ret)
757                         break;
758
759                 spin_lock(&sbi->dev_lock);
760                 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
761                 spin_unlock(&sbi->dev_lock);
762         }
763
764         return ret;
765 }
766
767 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
768                 enum dirty_type dirty_type)
769 {
770         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
771
772         /* need not be added */
773         if (IS_CURSEG(sbi, segno))
774                 return;
775
776         if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
777                 dirty_i->nr_dirty[dirty_type]++;
778
779         if (dirty_type == DIRTY) {
780                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
781                 enum dirty_type t = sentry->type;
782
783                 if (unlikely(t >= DIRTY)) {
784                         f2fs_bug_on(sbi, 1);
785                         return;
786                 }
787                 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
788                         dirty_i->nr_dirty[t]++;
789         }
790 }
791
792 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
793                 enum dirty_type dirty_type)
794 {
795         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
796
797         if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
798                 dirty_i->nr_dirty[dirty_type]--;
799
800         if (dirty_type == DIRTY) {
801                 struct seg_entry *sentry = get_seg_entry(sbi, segno);
802                 enum dirty_type t = sentry->type;
803
804                 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
805                         dirty_i->nr_dirty[t]--;
806
807                 if (get_valid_blocks(sbi, segno, true) == 0) {
808                         clear_bit(GET_SEC_FROM_SEG(sbi, segno),
809                                                 dirty_i->victim_secmap);
810 #ifdef CONFIG_F2FS_CHECK_FS
811                         clear_bit(segno, SIT_I(sbi)->invalid_segmap);
812 #endif
813                 }
814         }
815 }
816
817 /*
818  * Should not occur error such as -ENOMEM.
819  * Adding dirty entry into seglist is not critical operation.
820  * If a given segment is one of current working segments, it won't be added.
821  */
822 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
823 {
824         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
825         unsigned short valid_blocks, ckpt_valid_blocks;
826
827         if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
828                 return;
829
830         mutex_lock(&dirty_i->seglist_lock);
831
832         valid_blocks = get_valid_blocks(sbi, segno, false);
833         ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
834
835         if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
836                                 ckpt_valid_blocks == sbi->blocks_per_seg)) {
837                 __locate_dirty_segment(sbi, segno, PRE);
838                 __remove_dirty_segment(sbi, segno, DIRTY);
839         } else if (valid_blocks < sbi->blocks_per_seg) {
840                 __locate_dirty_segment(sbi, segno, DIRTY);
841         } else {
842                 /* Recovery routine with SSR needs this */
843                 __remove_dirty_segment(sbi, segno, DIRTY);
844         }
845
846         mutex_unlock(&dirty_i->seglist_lock);
847 }
848
849 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
850 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
851 {
852         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
853         unsigned int segno;
854
855         mutex_lock(&dirty_i->seglist_lock);
856         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
857                 if (get_valid_blocks(sbi, segno, false))
858                         continue;
859                 if (IS_CURSEG(sbi, segno))
860                         continue;
861                 __locate_dirty_segment(sbi, segno, PRE);
862                 __remove_dirty_segment(sbi, segno, DIRTY);
863         }
864         mutex_unlock(&dirty_i->seglist_lock);
865 }
866
867 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
868 {
869         int ovp_hole_segs =
870                 (overprovision_segments(sbi) - reserved_segments(sbi));
871         block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
872         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
873         block_t holes[2] = {0, 0};      /* DATA and NODE */
874         block_t unusable;
875         struct seg_entry *se;
876         unsigned int segno;
877
878         mutex_lock(&dirty_i->seglist_lock);
879         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
880                 se = get_seg_entry(sbi, segno);
881                 if (IS_NODESEG(se->type))
882                         holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
883                 else
884                         holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
885         }
886         mutex_unlock(&dirty_i->seglist_lock);
887
888         unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
889         if (unusable > ovp_holes)
890                 return unusable - ovp_holes;
891         return 0;
892 }
893
894 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
895 {
896         int ovp_hole_segs =
897                 (overprovision_segments(sbi) - reserved_segments(sbi));
898         if (unusable > F2FS_OPTION(sbi).unusable_cap)
899                 return -EAGAIN;
900         if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
901                 dirty_segments(sbi) > ovp_hole_segs)
902                 return -EAGAIN;
903         return 0;
904 }
905
906 /* This is only used by SBI_CP_DISABLED */
907 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
908 {
909         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
910         unsigned int segno = 0;
911
912         mutex_lock(&dirty_i->seglist_lock);
913         for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
914                 if (get_valid_blocks(sbi, segno, false))
915                         continue;
916                 if (get_ckpt_valid_blocks(sbi, segno))
917                         continue;
918                 mutex_unlock(&dirty_i->seglist_lock);
919                 return segno;
920         }
921         mutex_unlock(&dirty_i->seglist_lock);
922         return NULL_SEGNO;
923 }
924
925 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
926                 struct block_device *bdev, block_t lstart,
927                 block_t start, block_t len)
928 {
929         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
930         struct list_head *pend_list;
931         struct discard_cmd *dc;
932
933         f2fs_bug_on(sbi, !len);
934
935         pend_list = &dcc->pend_list[plist_idx(len)];
936
937         dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
938         INIT_LIST_HEAD(&dc->list);
939         dc->bdev = bdev;
940         dc->lstart = lstart;
941         dc->start = start;
942         dc->len = len;
943         dc->ref = 0;
944         dc->state = D_PREP;
945         dc->queued = 0;
946         dc->error = 0;
947         init_completion(&dc->wait);
948         list_add_tail(&dc->list, pend_list);
949         spin_lock_init(&dc->lock);
950         dc->bio_ref = 0;
951         atomic_inc(&dcc->discard_cmd_cnt);
952         dcc->undiscard_blks += len;
953
954         return dc;
955 }
956
957 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
958                                 struct block_device *bdev, block_t lstart,
959                                 block_t start, block_t len,
960                                 struct rb_node *parent, struct rb_node **p,
961                                 bool leftmost)
962 {
963         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
964         struct discard_cmd *dc;
965
966         dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
967
968         rb_link_node(&dc->rb_node, parent, p);
969         rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
970
971         return dc;
972 }
973
974 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
975                                                         struct discard_cmd *dc)
976 {
977         if (dc->state == D_DONE)
978                 atomic_sub(dc->queued, &dcc->queued_discard);
979
980         list_del(&dc->list);
981         rb_erase_cached(&dc->rb_node, &dcc->root);
982         dcc->undiscard_blks -= dc->len;
983
984         kmem_cache_free(discard_cmd_slab, dc);
985
986         atomic_dec(&dcc->discard_cmd_cnt);
987 }
988
989 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
990                                                         struct discard_cmd *dc)
991 {
992         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
993         unsigned long flags;
994
995         trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
996
997         spin_lock_irqsave(&dc->lock, flags);
998         if (dc->bio_ref) {
999                 spin_unlock_irqrestore(&dc->lock, flags);
1000                 return;
1001         }
1002         spin_unlock_irqrestore(&dc->lock, flags);
1003
1004         f2fs_bug_on(sbi, dc->ref);
1005
1006         if (dc->error == -EOPNOTSUPP)
1007                 dc->error = 0;
1008
1009         if (dc->error)
1010                 printk_ratelimited(
1011                         "%sF2FS-fs: Issue discard(%u, %u, %u) failed, ret: %d",
1012                         KERN_INFO, dc->lstart, dc->start, dc->len, dc->error);
1013         __detach_discard_cmd(dcc, dc);
1014 }
1015
1016 static void f2fs_submit_discard_endio(struct bio *bio)
1017 {
1018         struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1019         unsigned long flags;
1020
1021         dc->error = blk_status_to_errno(bio->bi_status);
1022
1023         spin_lock_irqsave(&dc->lock, flags);
1024         dc->bio_ref--;
1025         if (!dc->bio_ref && dc->state == D_SUBMIT) {
1026                 dc->state = D_DONE;
1027                 complete_all(&dc->wait);
1028         }
1029         spin_unlock_irqrestore(&dc->lock, flags);
1030         bio_put(bio);
1031 }
1032
1033 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1034                                 block_t start, block_t end)
1035 {
1036 #ifdef CONFIG_F2FS_CHECK_FS
1037         struct seg_entry *sentry;
1038         unsigned int segno;
1039         block_t blk = start;
1040         unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1041         unsigned long *map;
1042
1043         while (blk < end) {
1044                 segno = GET_SEGNO(sbi, blk);
1045                 sentry = get_seg_entry(sbi, segno);
1046                 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1047
1048                 if (end < START_BLOCK(sbi, segno + 1))
1049                         size = GET_BLKOFF_FROM_SEG0(sbi, end);
1050                 else
1051                         size = max_blocks;
1052                 map = (unsigned long *)(sentry->cur_valid_map);
1053                 offset = __find_rev_next_bit(map, size, offset);
1054                 f2fs_bug_on(sbi, offset != size);
1055                 blk = START_BLOCK(sbi, segno + 1);
1056         }
1057 #endif
1058 }
1059
1060 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1061                                 struct discard_policy *dpolicy,
1062                                 int discard_type, unsigned int granularity)
1063 {
1064         /* common policy */
1065         dpolicy->type = discard_type;
1066         dpolicy->sync = true;
1067         dpolicy->ordered = false;
1068         dpolicy->granularity = granularity;
1069
1070         dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1071         dpolicy->io_aware_gran = MAX_PLIST_NUM;
1072         dpolicy->timeout = 0;
1073
1074         if (discard_type == DPOLICY_BG) {
1075                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1076                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1077                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1078                 dpolicy->io_aware = true;
1079                 dpolicy->sync = false;
1080                 dpolicy->ordered = true;
1081                 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1082                         dpolicy->granularity = 1;
1083                         dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1084                 }
1085         } else if (discard_type == DPOLICY_FORCE) {
1086                 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1087                 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1088                 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1089                 dpolicy->io_aware = false;
1090         } else if (discard_type == DPOLICY_FSTRIM) {
1091                 dpolicy->io_aware = false;
1092         } else if (discard_type == DPOLICY_UMOUNT) {
1093                 dpolicy->max_requests = UINT_MAX;
1094                 dpolicy->io_aware = false;
1095                 /* we need to issue all to keep CP_TRIMMED_FLAG */
1096                 dpolicy->granularity = 1;
1097         }
1098 }
1099
1100 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1101                                 struct block_device *bdev, block_t lstart,
1102                                 block_t start, block_t len);
1103 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1104 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1105                                                 struct discard_policy *dpolicy,
1106                                                 struct discard_cmd *dc,
1107                                                 unsigned int *issued)
1108 {
1109         struct block_device *bdev = dc->bdev;
1110         struct request_queue *q = bdev_get_queue(bdev);
1111         unsigned int max_discard_blocks =
1112                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1113         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1114         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1115                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1116         int flag = dpolicy->sync ? REQ_SYNC : 0;
1117         block_t lstart, start, len, total_len;
1118         int err = 0;
1119
1120         if (dc->state != D_PREP)
1121                 return 0;
1122
1123         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1124                 return 0;
1125
1126         trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1127
1128         lstart = dc->lstart;
1129         start = dc->start;
1130         len = dc->len;
1131         total_len = len;
1132
1133         dc->len = 0;
1134
1135         while (total_len && *issued < dpolicy->max_requests && !err) {
1136                 struct bio *bio = NULL;
1137                 unsigned long flags;
1138                 bool last = true;
1139
1140                 if (len > max_discard_blocks) {
1141                         len = max_discard_blocks;
1142                         last = false;
1143                 }
1144
1145                 (*issued)++;
1146                 if (*issued == dpolicy->max_requests)
1147                         last = true;
1148
1149                 dc->len += len;
1150
1151                 if (time_to_inject(sbi, FAULT_DISCARD)) {
1152                         f2fs_show_injection_info(FAULT_DISCARD);
1153                         err = -EIO;
1154                         goto submit;
1155                 }
1156                 err = __blkdev_issue_discard(bdev,
1157                                         SECTOR_FROM_BLOCK(start),
1158                                         SECTOR_FROM_BLOCK(len),
1159                                         GFP_NOFS, 0, &bio);
1160 submit:
1161                 if (err) {
1162                         spin_lock_irqsave(&dc->lock, flags);
1163                         if (dc->state == D_PARTIAL)
1164                                 dc->state = D_SUBMIT;
1165                         spin_unlock_irqrestore(&dc->lock, flags);
1166
1167                         break;
1168                 }
1169
1170                 f2fs_bug_on(sbi, !bio);
1171
1172                 /*
1173                  * should keep before submission to avoid D_DONE
1174                  * right away
1175                  */
1176                 spin_lock_irqsave(&dc->lock, flags);
1177                 if (last)
1178                         dc->state = D_SUBMIT;
1179                 else
1180                         dc->state = D_PARTIAL;
1181                 dc->bio_ref++;
1182                 spin_unlock_irqrestore(&dc->lock, flags);
1183
1184                 atomic_inc(&dcc->queued_discard);
1185                 dc->queued++;
1186                 list_move_tail(&dc->list, wait_list);
1187
1188                 /* sanity check on discard range */
1189                 __check_sit_bitmap(sbi, lstart, lstart + len);
1190
1191                 bio->bi_private = dc;
1192                 bio->bi_end_io = f2fs_submit_discard_endio;
1193                 bio->bi_opf |= flag;
1194                 submit_bio(bio);
1195
1196                 atomic_inc(&dcc->issued_discard);
1197
1198                 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1199
1200                 lstart += len;
1201                 start += len;
1202                 total_len -= len;
1203                 len = total_len;
1204         }
1205
1206         if (!err && len)
1207                 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1208         return err;
1209 }
1210
1211 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1212                                 struct block_device *bdev, block_t lstart,
1213                                 block_t start, block_t len,
1214                                 struct rb_node **insert_p,
1215                                 struct rb_node *insert_parent)
1216 {
1217         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1218         struct rb_node **p;
1219         struct rb_node *parent = NULL;
1220         struct discard_cmd *dc = NULL;
1221         bool leftmost = true;
1222
1223         if (insert_p && insert_parent) {
1224                 parent = insert_parent;
1225                 p = insert_p;
1226                 goto do_insert;
1227         }
1228
1229         p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1230                                                         lstart, &leftmost);
1231 do_insert:
1232         dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1233                                                                 p, leftmost);
1234         if (!dc)
1235                 return NULL;
1236
1237         return dc;
1238 }
1239
1240 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1241                                                 struct discard_cmd *dc)
1242 {
1243         list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1244 }
1245
1246 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1247                                 struct discard_cmd *dc, block_t blkaddr)
1248 {
1249         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1250         struct discard_info di = dc->di;
1251         bool modified = false;
1252
1253         if (dc->state == D_DONE || dc->len == 1) {
1254                 __remove_discard_cmd(sbi, dc);
1255                 return;
1256         }
1257
1258         dcc->undiscard_blks -= di.len;
1259
1260         if (blkaddr > di.lstart) {
1261                 dc->len = blkaddr - dc->lstart;
1262                 dcc->undiscard_blks += dc->len;
1263                 __relocate_discard_cmd(dcc, dc);
1264                 modified = true;
1265         }
1266
1267         if (blkaddr < di.lstart + di.len - 1) {
1268                 if (modified) {
1269                         __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1270                                         di.start + blkaddr + 1 - di.lstart,
1271                                         di.lstart + di.len - 1 - blkaddr,
1272                                         NULL, NULL);
1273                 } else {
1274                         dc->lstart++;
1275                         dc->len--;
1276                         dc->start++;
1277                         dcc->undiscard_blks += dc->len;
1278                         __relocate_discard_cmd(dcc, dc);
1279                 }
1280         }
1281 }
1282
1283 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1284                                 struct block_device *bdev, block_t lstart,
1285                                 block_t start, block_t len)
1286 {
1287         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1288         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1289         struct discard_cmd *dc;
1290         struct discard_info di = {0};
1291         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1292         struct request_queue *q = bdev_get_queue(bdev);
1293         unsigned int max_discard_blocks =
1294                         SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1295         block_t end = lstart + len;
1296
1297         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1298                                         NULL, lstart,
1299                                         (struct rb_entry **)&prev_dc,
1300                                         (struct rb_entry **)&next_dc,
1301                                         &insert_p, &insert_parent, true, NULL);
1302         if (dc)
1303                 prev_dc = dc;
1304
1305         if (!prev_dc) {
1306                 di.lstart = lstart;
1307                 di.len = next_dc ? next_dc->lstart - lstart : len;
1308                 di.len = min(di.len, len);
1309                 di.start = start;
1310         }
1311
1312         while (1) {
1313                 struct rb_node *node;
1314                 bool merged = false;
1315                 struct discard_cmd *tdc = NULL;
1316
1317                 if (prev_dc) {
1318                         di.lstart = prev_dc->lstart + prev_dc->len;
1319                         if (di.lstart < lstart)
1320                                 di.lstart = lstart;
1321                         if (di.lstart >= end)
1322                                 break;
1323
1324                         if (!next_dc || next_dc->lstart > end)
1325                                 di.len = end - di.lstart;
1326                         else
1327                                 di.len = next_dc->lstart - di.lstart;
1328                         di.start = start + di.lstart - lstart;
1329                 }
1330
1331                 if (!di.len)
1332                         goto next;
1333
1334                 if (prev_dc && prev_dc->state == D_PREP &&
1335                         prev_dc->bdev == bdev &&
1336                         __is_discard_back_mergeable(&di, &prev_dc->di,
1337                                                         max_discard_blocks)) {
1338                         prev_dc->di.len += di.len;
1339                         dcc->undiscard_blks += di.len;
1340                         __relocate_discard_cmd(dcc, prev_dc);
1341                         di = prev_dc->di;
1342                         tdc = prev_dc;
1343                         merged = true;
1344                 }
1345
1346                 if (next_dc && next_dc->state == D_PREP &&
1347                         next_dc->bdev == bdev &&
1348                         __is_discard_front_mergeable(&di, &next_dc->di,
1349                                                         max_discard_blocks)) {
1350                         next_dc->di.lstart = di.lstart;
1351                         next_dc->di.len += di.len;
1352                         next_dc->di.start = di.start;
1353                         dcc->undiscard_blks += di.len;
1354                         __relocate_discard_cmd(dcc, next_dc);
1355                         if (tdc)
1356                                 __remove_discard_cmd(sbi, tdc);
1357                         merged = true;
1358                 }
1359
1360                 if (!merged) {
1361                         __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1362                                                         di.len, NULL, NULL);
1363                 }
1364  next:
1365                 prev_dc = next_dc;
1366                 if (!prev_dc)
1367                         break;
1368
1369                 node = rb_next(&prev_dc->rb_node);
1370                 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1371         }
1372 }
1373
1374 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1375                 struct block_device *bdev, block_t blkstart, block_t blklen)
1376 {
1377         block_t lblkstart = blkstart;
1378
1379         if (!f2fs_bdev_support_discard(bdev))
1380                 return 0;
1381
1382         trace_f2fs_queue_discard(bdev, blkstart, blklen);
1383
1384         if (f2fs_is_multi_device(sbi)) {
1385                 int devi = f2fs_target_device_index(sbi, blkstart);
1386
1387                 blkstart -= FDEV(devi).start_blk;
1388         }
1389         mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1390         __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1391         mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1392         return 0;
1393 }
1394
1395 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1396                                         struct discard_policy *dpolicy)
1397 {
1398         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1399         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1400         struct rb_node **insert_p = NULL, *insert_parent = NULL;
1401         struct discard_cmd *dc;
1402         struct blk_plug plug;
1403         unsigned int pos = dcc->next_pos;
1404         unsigned int issued = 0;
1405         bool io_interrupted = false;
1406
1407         mutex_lock(&dcc->cmd_lock);
1408         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1409                                         NULL, pos,
1410                                         (struct rb_entry **)&prev_dc,
1411                                         (struct rb_entry **)&next_dc,
1412                                         &insert_p, &insert_parent, true, NULL);
1413         if (!dc)
1414                 dc = next_dc;
1415
1416         blk_start_plug(&plug);
1417
1418         while (dc) {
1419                 struct rb_node *node;
1420                 int err = 0;
1421
1422                 if (dc->state != D_PREP)
1423                         goto next;
1424
1425                 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1426                         io_interrupted = true;
1427                         break;
1428                 }
1429
1430                 dcc->next_pos = dc->lstart + dc->len;
1431                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1432
1433                 if (issued >= dpolicy->max_requests)
1434                         break;
1435 next:
1436                 node = rb_next(&dc->rb_node);
1437                 if (err)
1438                         __remove_discard_cmd(sbi, dc);
1439                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1440         }
1441
1442         blk_finish_plug(&plug);
1443
1444         if (!dc)
1445                 dcc->next_pos = 0;
1446
1447         mutex_unlock(&dcc->cmd_lock);
1448
1449         if (!issued && io_interrupted)
1450                 issued = -1;
1451
1452         return issued;
1453 }
1454
1455 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1456                                         struct discard_policy *dpolicy)
1457 {
1458         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1459         struct list_head *pend_list;
1460         struct discard_cmd *dc, *tmp;
1461         struct blk_plug plug;
1462         int i, issued = 0;
1463         bool io_interrupted = false;
1464
1465         if (dpolicy->timeout != 0)
1466                 f2fs_update_time(sbi, dpolicy->timeout);
1467
1468         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1469                 if (dpolicy->timeout != 0 &&
1470                                 f2fs_time_over(sbi, dpolicy->timeout))
1471                         break;
1472
1473                 if (i + 1 < dpolicy->granularity)
1474                         break;
1475
1476                 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1477                         return __issue_discard_cmd_orderly(sbi, dpolicy);
1478
1479                 pend_list = &dcc->pend_list[i];
1480
1481                 mutex_lock(&dcc->cmd_lock);
1482                 if (list_empty(pend_list))
1483                         goto next;
1484                 if (unlikely(dcc->rbtree_check))
1485                         f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1486                                                                 &dcc->root));
1487                 blk_start_plug(&plug);
1488                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1489                         f2fs_bug_on(sbi, dc->state != D_PREP);
1490
1491                         if (dpolicy->timeout != 0 &&
1492                                 f2fs_time_over(sbi, dpolicy->timeout))
1493                                 break;
1494
1495                         if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1496                                                 !is_idle(sbi, DISCARD_TIME)) {
1497                                 io_interrupted = true;
1498                                 break;
1499                         }
1500
1501                         __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1502
1503                         if (issued >= dpolicy->max_requests)
1504                                 break;
1505                 }
1506                 blk_finish_plug(&plug);
1507 next:
1508                 mutex_unlock(&dcc->cmd_lock);
1509
1510                 if (issued >= dpolicy->max_requests || io_interrupted)
1511                         break;
1512         }
1513
1514         if (!issued && io_interrupted)
1515                 issued = -1;
1516
1517         return issued;
1518 }
1519
1520 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1521 {
1522         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1523         struct list_head *pend_list;
1524         struct discard_cmd *dc, *tmp;
1525         int i;
1526         bool dropped = false;
1527
1528         mutex_lock(&dcc->cmd_lock);
1529         for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1530                 pend_list = &dcc->pend_list[i];
1531                 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1532                         f2fs_bug_on(sbi, dc->state != D_PREP);
1533                         __remove_discard_cmd(sbi, dc);
1534                         dropped = true;
1535                 }
1536         }
1537         mutex_unlock(&dcc->cmd_lock);
1538
1539         return dropped;
1540 }
1541
1542 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1543 {
1544         __drop_discard_cmd(sbi);
1545 }
1546
1547 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1548                                                         struct discard_cmd *dc)
1549 {
1550         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1551         unsigned int len = 0;
1552
1553         wait_for_completion_io(&dc->wait);
1554         mutex_lock(&dcc->cmd_lock);
1555         f2fs_bug_on(sbi, dc->state != D_DONE);
1556         dc->ref--;
1557         if (!dc->ref) {
1558                 if (!dc->error)
1559                         len = dc->len;
1560                 __remove_discard_cmd(sbi, dc);
1561         }
1562         mutex_unlock(&dcc->cmd_lock);
1563
1564         return len;
1565 }
1566
1567 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1568                                                 struct discard_policy *dpolicy,
1569                                                 block_t start, block_t end)
1570 {
1571         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1572         struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1573                                         &(dcc->fstrim_list) : &(dcc->wait_list);
1574         struct discard_cmd *dc, *tmp;
1575         bool need_wait;
1576         unsigned int trimmed = 0;
1577
1578 next:
1579         need_wait = false;
1580
1581         mutex_lock(&dcc->cmd_lock);
1582         list_for_each_entry_safe(dc, tmp, wait_list, list) {
1583                 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1584                         continue;
1585                 if (dc->len < dpolicy->granularity)
1586                         continue;
1587                 if (dc->state == D_DONE && !dc->ref) {
1588                         wait_for_completion_io(&dc->wait);
1589                         if (!dc->error)
1590                                 trimmed += dc->len;
1591                         __remove_discard_cmd(sbi, dc);
1592                 } else {
1593                         dc->ref++;
1594                         need_wait = true;
1595                         break;
1596                 }
1597         }
1598         mutex_unlock(&dcc->cmd_lock);
1599
1600         if (need_wait) {
1601                 trimmed += __wait_one_discard_bio(sbi, dc);
1602                 goto next;
1603         }
1604
1605         return trimmed;
1606 }
1607
1608 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1609                                                 struct discard_policy *dpolicy)
1610 {
1611         struct discard_policy dp;
1612         unsigned int discard_blks;
1613
1614         if (dpolicy)
1615                 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1616
1617         /* wait all */
1618         __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1619         discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1620         __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1621         discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1622
1623         return discard_blks;
1624 }
1625
1626 /* This should be covered by global mutex, &sit_i->sentry_lock */
1627 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1628 {
1629         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1630         struct discard_cmd *dc;
1631         bool need_wait = false;
1632
1633         mutex_lock(&dcc->cmd_lock);
1634         dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1635                                                         NULL, blkaddr);
1636         if (dc) {
1637                 if (dc->state == D_PREP) {
1638                         __punch_discard_cmd(sbi, dc, blkaddr);
1639                 } else {
1640                         dc->ref++;
1641                         need_wait = true;
1642                 }
1643         }
1644         mutex_unlock(&dcc->cmd_lock);
1645
1646         if (need_wait)
1647                 __wait_one_discard_bio(sbi, dc);
1648 }
1649
1650 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1651 {
1652         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1653
1654         if (dcc && dcc->f2fs_issue_discard) {
1655                 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1656
1657                 dcc->f2fs_issue_discard = NULL;
1658                 kthread_stop(discard_thread);
1659         }
1660 }
1661
1662 /* This comes from f2fs_put_super */
1663 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1664 {
1665         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1666         struct discard_policy dpolicy;
1667         bool dropped;
1668
1669         __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1670                                         dcc->discard_granularity);
1671         dpolicy.timeout = UMOUNT_DISCARD_TIMEOUT;
1672         __issue_discard_cmd(sbi, &dpolicy);
1673         dropped = __drop_discard_cmd(sbi);
1674
1675         /* just to make sure there is no pending discard commands */
1676         __wait_all_discard_cmd(sbi, NULL);
1677
1678         f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1679         return dropped;
1680 }
1681
1682 static int issue_discard_thread(void *data)
1683 {
1684         struct f2fs_sb_info *sbi = data;
1685         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1686         wait_queue_head_t *q = &dcc->discard_wait_queue;
1687         struct discard_policy dpolicy;
1688         unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1689         int issued;
1690
1691         set_freezable();
1692
1693         do {
1694                 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1695                                         dcc->discard_granularity);
1696
1697                 wait_event_interruptible_timeout(*q,
1698                                 kthread_should_stop() || freezing(current) ||
1699                                 dcc->discard_wake,
1700                                 msecs_to_jiffies(wait_ms));
1701
1702                 if (dcc->discard_wake)
1703                         dcc->discard_wake = 0;
1704
1705                 /* clean up pending candidates before going to sleep */
1706                 if (atomic_read(&dcc->queued_discard))
1707                         __wait_all_discard_cmd(sbi, NULL);
1708
1709                 if (try_to_freeze())
1710                         continue;
1711                 if (f2fs_readonly(sbi->sb))
1712                         continue;
1713                 if (kthread_should_stop())
1714                         return 0;
1715                 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1716                         wait_ms = dpolicy.max_interval;
1717                         continue;
1718                 }
1719
1720                 if (sbi->gc_mode == GC_URGENT)
1721                         __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1722
1723                 sb_start_intwrite(sbi->sb);
1724
1725                 issued = __issue_discard_cmd(sbi, &dpolicy);
1726                 if (issued > 0) {
1727                         __wait_all_discard_cmd(sbi, &dpolicy);
1728                         wait_ms = dpolicy.min_interval;
1729                 } else if (issued == -1){
1730                         wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1731                         if (!wait_ms)
1732                                 wait_ms = dpolicy.mid_interval;
1733                 } else {
1734                         wait_ms = dpolicy.max_interval;
1735                 }
1736
1737                 sb_end_intwrite(sbi->sb);
1738
1739         } while (!kthread_should_stop());
1740         return 0;
1741 }
1742
1743 #ifdef CONFIG_BLK_DEV_ZONED
1744 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1745                 struct block_device *bdev, block_t blkstart, block_t blklen)
1746 {
1747         sector_t sector, nr_sects;
1748         block_t lblkstart = blkstart;
1749         int devi = 0;
1750
1751         if (f2fs_is_multi_device(sbi)) {
1752                 devi = f2fs_target_device_index(sbi, blkstart);
1753                 if (blkstart < FDEV(devi).start_blk ||
1754                     blkstart > FDEV(devi).end_blk) {
1755                         f2fs_err(sbi, "Invalid block %x", blkstart);
1756                         return -EIO;
1757                 }
1758                 blkstart -= FDEV(devi).start_blk;
1759         }
1760
1761         /* For sequential zones, reset the zone write pointer */
1762         if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1763                 sector = SECTOR_FROM_BLOCK(blkstart);
1764                 nr_sects = SECTOR_FROM_BLOCK(blklen);
1765
1766                 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1767                                 nr_sects != bdev_zone_sectors(bdev)) {
1768                         f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1769                                  devi, sbi->s_ndevs ? FDEV(devi).path : "",
1770                                  blkstart, blklen);
1771                         return -EIO;
1772                 }
1773                 trace_f2fs_issue_reset_zone(bdev, blkstart);
1774                 return blkdev_reset_zones(bdev, sector, nr_sects, GFP_NOFS);
1775         }
1776
1777         /* For conventional zones, use regular discard if supported */
1778         return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1779 }
1780 #endif
1781
1782 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1783                 struct block_device *bdev, block_t blkstart, block_t blklen)
1784 {
1785 #ifdef CONFIG_BLK_DEV_ZONED
1786         if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1787                 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1788 #endif
1789         return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1790 }
1791
1792 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1793                                 block_t blkstart, block_t blklen)
1794 {
1795         sector_t start = blkstart, len = 0;
1796         struct block_device *bdev;
1797         struct seg_entry *se;
1798         unsigned int offset;
1799         block_t i;
1800         int err = 0;
1801
1802         bdev = f2fs_target_device(sbi, blkstart, NULL);
1803
1804         for (i = blkstart; i < blkstart + blklen; i++, len++) {
1805                 if (i != start) {
1806                         struct block_device *bdev2 =
1807                                 f2fs_target_device(sbi, i, NULL);
1808
1809                         if (bdev2 != bdev) {
1810                                 err = __issue_discard_async(sbi, bdev,
1811                                                 start, len);
1812                                 if (err)
1813                                         return err;
1814                                 bdev = bdev2;
1815                                 start = i;
1816                                 len = 0;
1817                         }
1818                 }
1819
1820                 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1821                 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1822
1823                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1824                         sbi->discard_blks--;
1825         }
1826
1827         if (len)
1828                 err = __issue_discard_async(sbi, bdev, start, len);
1829         return err;
1830 }
1831
1832 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1833                                                         bool check_only)
1834 {
1835         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1836         int max_blocks = sbi->blocks_per_seg;
1837         struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1838         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1839         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1840         unsigned long *discard_map = (unsigned long *)se->discard_map;
1841         unsigned long *dmap = SIT_I(sbi)->tmp_map;
1842         unsigned int start = 0, end = -1;
1843         bool force = (cpc->reason & CP_DISCARD);
1844         struct discard_entry *de = NULL;
1845         struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1846         int i;
1847
1848         if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1849                 return false;
1850
1851         if (!force) {
1852                 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1853                         SM_I(sbi)->dcc_info->nr_discards >=
1854                                 SM_I(sbi)->dcc_info->max_discards)
1855                         return false;
1856         }
1857
1858         /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1859         for (i = 0; i < entries; i++)
1860                 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1861                                 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1862
1863         while (force || SM_I(sbi)->dcc_info->nr_discards <=
1864                                 SM_I(sbi)->dcc_info->max_discards) {
1865                 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1866                 if (start >= max_blocks)
1867                         break;
1868
1869                 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1870                 if (force && start && end != max_blocks
1871                                         && (end - start) < cpc->trim_minlen)
1872                         continue;
1873
1874                 if (check_only)
1875                         return true;
1876
1877                 if (!de) {
1878                         de = f2fs_kmem_cache_alloc(discard_entry_slab,
1879                                                                 GFP_F2FS_ZERO);
1880                         de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1881                         list_add_tail(&de->list, head);
1882                 }
1883
1884                 for (i = start; i < end; i++)
1885                         __set_bit_le(i, (void *)de->discard_map);
1886
1887                 SM_I(sbi)->dcc_info->nr_discards += end - start;
1888         }
1889         return false;
1890 }
1891
1892 static void release_discard_addr(struct discard_entry *entry)
1893 {
1894         list_del(&entry->list);
1895         kmem_cache_free(discard_entry_slab, entry);
1896 }
1897
1898 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1899 {
1900         struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1901         struct discard_entry *entry, *this;
1902
1903         /* drop caches */
1904         list_for_each_entry_safe(entry, this, head, list)
1905                 release_discard_addr(entry);
1906 }
1907
1908 /*
1909  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1910  */
1911 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1912 {
1913         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1914         unsigned int segno;
1915
1916         mutex_lock(&dirty_i->seglist_lock);
1917         for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1918                 __set_test_and_free(sbi, segno);
1919         mutex_unlock(&dirty_i->seglist_lock);
1920 }
1921
1922 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1923                                                 struct cp_control *cpc)
1924 {
1925         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1926         struct list_head *head = &dcc->entry_list;
1927         struct discard_entry *entry, *this;
1928         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1929         unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1930         unsigned int start = 0, end = -1;
1931         unsigned int secno, start_segno;
1932         bool force = (cpc->reason & CP_DISCARD);
1933         bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
1934
1935         mutex_lock(&dirty_i->seglist_lock);
1936
1937         while (1) {
1938                 int i;
1939
1940                 if (need_align && end != -1)
1941                         end--;
1942                 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1943                 if (start >= MAIN_SEGS(sbi))
1944                         break;
1945                 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1946                                                                 start + 1);
1947
1948                 if (need_align) {
1949                         start = rounddown(start, sbi->segs_per_sec);
1950                         end = roundup(end, sbi->segs_per_sec);
1951                 }
1952
1953                 for (i = start; i < end; i++) {
1954                         if (test_and_clear_bit(i, prefree_map))
1955                                 dirty_i->nr_dirty[PRE]--;
1956                 }
1957
1958                 if (!f2fs_realtime_discard_enable(sbi))
1959                         continue;
1960
1961                 if (force && start >= cpc->trim_start &&
1962                                         (end - 1) <= cpc->trim_end)
1963                                 continue;
1964
1965                 if (!test_opt(sbi, LFS) || !__is_large_section(sbi)) {
1966                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1967                                 (end - start) << sbi->log_blocks_per_seg);
1968                         continue;
1969                 }
1970 next:
1971                 secno = GET_SEC_FROM_SEG(sbi, start);
1972                 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1973                 if (!IS_CURSEC(sbi, secno) &&
1974                         !get_valid_blocks(sbi, start, true))
1975                         f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1976                                 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1977
1978                 start = start_segno + sbi->segs_per_sec;
1979                 if (start < end)
1980                         goto next;
1981                 else
1982                         end = start - 1;
1983         }
1984         mutex_unlock(&dirty_i->seglist_lock);
1985
1986         /* send small discards */
1987         list_for_each_entry_safe(entry, this, head, list) {
1988                 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1989                 bool is_valid = test_bit_le(0, entry->discard_map);
1990
1991 find_next:
1992                 if (is_valid) {
1993                         next_pos = find_next_zero_bit_le(entry->discard_map,
1994                                         sbi->blocks_per_seg, cur_pos);
1995                         len = next_pos - cur_pos;
1996
1997                         if (f2fs_sb_has_blkzoned(sbi) ||
1998                             (force && len < cpc->trim_minlen))
1999                                 goto skip;
2000
2001                         f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2002                                                                         len);
2003                         total_len += len;
2004                 } else {
2005                         next_pos = find_next_bit_le(entry->discard_map,
2006                                         sbi->blocks_per_seg, cur_pos);
2007                 }
2008 skip:
2009                 cur_pos = next_pos;
2010                 is_valid = !is_valid;
2011
2012                 if (cur_pos < sbi->blocks_per_seg)
2013                         goto find_next;
2014
2015                 release_discard_addr(entry);
2016                 dcc->nr_discards -= total_len;
2017         }
2018
2019         wake_up_discard_thread(sbi, false);
2020 }
2021
2022 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2023 {
2024         dev_t dev = sbi->sb->s_bdev->bd_dev;
2025         struct discard_cmd_control *dcc;
2026         int err = 0, i;
2027
2028         if (SM_I(sbi)->dcc_info) {
2029                 dcc = SM_I(sbi)->dcc_info;
2030                 goto init_thread;
2031         }
2032
2033         dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2034         if (!dcc)
2035                 return -ENOMEM;
2036
2037         dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2038         INIT_LIST_HEAD(&dcc->entry_list);
2039         for (i = 0; i < MAX_PLIST_NUM; i++)
2040                 INIT_LIST_HEAD(&dcc->pend_list[i]);
2041         INIT_LIST_HEAD(&dcc->wait_list);
2042         INIT_LIST_HEAD(&dcc->fstrim_list);
2043         mutex_init(&dcc->cmd_lock);
2044         atomic_set(&dcc->issued_discard, 0);
2045         atomic_set(&dcc->queued_discard, 0);
2046         atomic_set(&dcc->discard_cmd_cnt, 0);
2047         dcc->nr_discards = 0;
2048         dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2049         dcc->undiscard_blks = 0;
2050         dcc->next_pos = 0;
2051         dcc->root = RB_ROOT_CACHED;
2052         dcc->rbtree_check = false;
2053
2054         init_waitqueue_head(&dcc->discard_wait_queue);
2055         SM_I(sbi)->dcc_info = dcc;
2056 init_thread:
2057         dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2058                                 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2059         if (IS_ERR(dcc->f2fs_issue_discard)) {
2060                 err = PTR_ERR(dcc->f2fs_issue_discard);
2061                 kvfree(dcc);
2062                 SM_I(sbi)->dcc_info = NULL;
2063                 return err;
2064         }
2065
2066         return err;
2067 }
2068
2069 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2070 {
2071         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2072
2073         if (!dcc)
2074                 return;
2075
2076         f2fs_stop_discard_thread(sbi);
2077
2078         /*
2079          * Recovery can cache discard commands, so in error path of
2080          * fill_super(), it needs to give a chance to handle them.
2081          */
2082         if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2083                 f2fs_issue_discard_timeout(sbi);
2084
2085         kvfree(dcc);
2086         SM_I(sbi)->dcc_info = NULL;
2087 }
2088
2089 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2090 {
2091         struct sit_info *sit_i = SIT_I(sbi);
2092
2093         if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2094                 sit_i->dirty_sentries++;
2095                 return false;
2096         }
2097
2098         return true;
2099 }
2100
2101 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2102                                         unsigned int segno, int modified)
2103 {
2104         struct seg_entry *se = get_seg_entry(sbi, segno);
2105         se->type = type;
2106         if (modified)
2107                 __mark_sit_entry_dirty(sbi, segno);
2108 }
2109
2110 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2111 {
2112         struct seg_entry *se;
2113         unsigned int segno, offset;
2114         long int new_vblocks;
2115         bool exist;
2116 #ifdef CONFIG_F2FS_CHECK_FS
2117         bool mir_exist;
2118 #endif
2119
2120         segno = GET_SEGNO(sbi, blkaddr);
2121
2122         se = get_seg_entry(sbi, segno);
2123         new_vblocks = se->valid_blocks + del;
2124         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2125
2126         f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2127                                 (new_vblocks > sbi->blocks_per_seg)));
2128
2129         se->valid_blocks = new_vblocks;
2130         se->mtime = get_mtime(sbi, false);
2131         if (se->mtime > SIT_I(sbi)->max_mtime)
2132                 SIT_I(sbi)->max_mtime = se->mtime;
2133
2134         /* Update valid block bitmap */
2135         if (del > 0) {
2136                 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2137 #ifdef CONFIG_F2FS_CHECK_FS
2138                 mir_exist = f2fs_test_and_set_bit(offset,
2139                                                 se->cur_valid_map_mir);
2140                 if (unlikely(exist != mir_exist)) {
2141                         f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2142                                  blkaddr, exist);
2143                         f2fs_bug_on(sbi, 1);
2144                 }
2145 #endif
2146                 if (unlikely(exist)) {
2147                         f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2148                                  blkaddr);
2149                         f2fs_bug_on(sbi, 1);
2150                         se->valid_blocks--;
2151                         del = 0;
2152                 }
2153
2154                 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2155                         sbi->discard_blks--;
2156
2157                 /*
2158                  * SSR should never reuse block which is checkpointed
2159                  * or newly invalidated.
2160                  */
2161                 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2162                         if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2163                                 se->ckpt_valid_blocks++;
2164                 }
2165         } else {
2166                 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2167 #ifdef CONFIG_F2FS_CHECK_FS
2168                 mir_exist = f2fs_test_and_clear_bit(offset,
2169                                                 se->cur_valid_map_mir);
2170                 if (unlikely(exist != mir_exist)) {
2171                         f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2172                                  blkaddr, exist);
2173                         f2fs_bug_on(sbi, 1);
2174                 }
2175 #endif
2176                 if (unlikely(!exist)) {
2177                         f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2178                                  blkaddr);
2179                         f2fs_bug_on(sbi, 1);
2180                         se->valid_blocks++;
2181                         del = 0;
2182                 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2183                         /*
2184                          * If checkpoints are off, we must not reuse data that
2185                          * was used in the previous checkpoint. If it was used
2186                          * before, we must track that to know how much space we
2187                          * really have.
2188                          */
2189                         if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2190                                 spin_lock(&sbi->stat_lock);
2191                                 sbi->unusable_block_count++;
2192                                 spin_unlock(&sbi->stat_lock);
2193                         }
2194                 }
2195
2196                 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2197                         sbi->discard_blks++;
2198         }
2199         if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2200                 se->ckpt_valid_blocks += del;
2201
2202         __mark_sit_entry_dirty(sbi, segno);
2203
2204         /* update total number of valid blocks to be written in ckpt area */
2205         SIT_I(sbi)->written_valid_blocks += del;
2206
2207         if (__is_large_section(sbi))
2208                 get_sec_entry(sbi, segno)->valid_blocks += del;
2209 }
2210
2211 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2212 {
2213         unsigned int segno = GET_SEGNO(sbi, addr);
2214         struct sit_info *sit_i = SIT_I(sbi);
2215
2216         f2fs_bug_on(sbi, addr == NULL_ADDR);
2217         if (addr == NEW_ADDR)
2218                 return;
2219
2220         invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2221
2222         /* add it into sit main buffer */
2223         down_write(&sit_i->sentry_lock);
2224
2225         update_sit_entry(sbi, addr, -1);
2226
2227         /* add it into dirty seglist */
2228         locate_dirty_segment(sbi, segno);
2229
2230         up_write(&sit_i->sentry_lock);
2231 }
2232
2233 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2234 {
2235         struct sit_info *sit_i = SIT_I(sbi);
2236         unsigned int segno, offset;
2237         struct seg_entry *se;
2238         bool is_cp = false;
2239
2240         if (!__is_valid_data_blkaddr(blkaddr))
2241                 return true;
2242
2243         down_read(&sit_i->sentry_lock);
2244
2245         segno = GET_SEGNO(sbi, blkaddr);
2246         se = get_seg_entry(sbi, segno);
2247         offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2248
2249         if (f2fs_test_bit(offset, se->ckpt_valid_map))
2250                 is_cp = true;
2251
2252         up_read(&sit_i->sentry_lock);
2253
2254         return is_cp;
2255 }
2256
2257 /*
2258  * This function should be resided under the curseg_mutex lock
2259  */
2260 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2261                                         struct f2fs_summary *sum)
2262 {
2263         struct curseg_info *curseg = CURSEG_I(sbi, type);
2264         void *addr = curseg->sum_blk;
2265         addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2266         memcpy(addr, sum, sizeof(struct f2fs_summary));
2267 }
2268
2269 /*
2270  * Calculate the number of current summary pages for writing
2271  */
2272 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2273 {
2274         int valid_sum_count = 0;
2275         int i, sum_in_page;
2276
2277         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2278                 if (sbi->ckpt->alloc_type[i] == SSR)
2279                         valid_sum_count += sbi->blocks_per_seg;
2280                 else {
2281                         if (for_ra)
2282                                 valid_sum_count += le16_to_cpu(
2283                                         F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2284                         else
2285                                 valid_sum_count += curseg_blkoff(sbi, i);
2286                 }
2287         }
2288
2289         sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2290                         SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2291         if (valid_sum_count <= sum_in_page)
2292                 return 1;
2293         else if ((valid_sum_count - sum_in_page) <=
2294                 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2295                 return 2;
2296         return 3;
2297 }
2298
2299 /*
2300  * Caller should put this summary page
2301  */
2302 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2303 {
2304         return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2305 }
2306
2307 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2308                                         void *src, block_t blk_addr)
2309 {
2310         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2311
2312         memcpy(page_address(page), src, PAGE_SIZE);
2313         set_page_dirty(page);
2314         f2fs_put_page(page, 1);
2315 }
2316
2317 static void write_sum_page(struct f2fs_sb_info *sbi,
2318                         struct f2fs_summary_block *sum_blk, block_t blk_addr)
2319 {
2320         f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2321 }
2322
2323 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2324                                                 int type, block_t blk_addr)
2325 {
2326         struct curseg_info *curseg = CURSEG_I(sbi, type);
2327         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2328         struct f2fs_summary_block *src = curseg->sum_blk;
2329         struct f2fs_summary_block *dst;
2330
2331         dst = (struct f2fs_summary_block *)page_address(page);
2332         memset(dst, 0, PAGE_SIZE);
2333
2334         mutex_lock(&curseg->curseg_mutex);
2335
2336         down_read(&curseg->journal_rwsem);
2337         memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2338         up_read(&curseg->journal_rwsem);
2339
2340         memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2341         memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2342
2343         mutex_unlock(&curseg->curseg_mutex);
2344
2345         set_page_dirty(page);
2346         f2fs_put_page(page, 1);
2347 }
2348
2349 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2350 {
2351         struct curseg_info *curseg = CURSEG_I(sbi, type);
2352         unsigned int segno = curseg->segno + 1;
2353         struct free_segmap_info *free_i = FREE_I(sbi);
2354
2355         if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2356                 return !test_bit(segno, free_i->free_segmap);
2357         return 0;
2358 }
2359
2360 /*
2361  * Find a new segment from the free segments bitmap to right order
2362  * This function should be returned with success, otherwise BUG
2363  */
2364 static void get_new_segment(struct f2fs_sb_info *sbi,
2365                         unsigned int *newseg, bool new_sec, int dir)
2366 {
2367         struct free_segmap_info *free_i = FREE_I(sbi);
2368         unsigned int segno, secno, zoneno;
2369         unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2370         unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2371         unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2372         unsigned int left_start = hint;
2373         bool init = true;
2374         int go_left = 0;
2375         int i;
2376
2377         spin_lock(&free_i->segmap_lock);
2378
2379         if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2380                 segno = find_next_zero_bit(free_i->free_segmap,
2381                         GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2382                 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2383                         goto got_it;
2384         }
2385 find_other_zone:
2386         secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2387         if (secno >= MAIN_SECS(sbi)) {
2388                 if (dir == ALLOC_RIGHT) {
2389                         secno = find_next_zero_bit(free_i->free_secmap,
2390                                                         MAIN_SECS(sbi), 0);
2391                         f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2392                 } else {
2393                         go_left = 1;
2394                         left_start = hint - 1;
2395                 }
2396         }
2397         if (go_left == 0)
2398                 goto skip_left;
2399
2400         while (test_bit(left_start, free_i->free_secmap)) {
2401                 if (left_start > 0) {
2402                         left_start--;
2403                         continue;
2404                 }
2405                 left_start = find_next_zero_bit(free_i->free_secmap,
2406                                                         MAIN_SECS(sbi), 0);
2407                 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2408                 break;
2409         }
2410         secno = left_start;
2411 skip_left:
2412         segno = GET_SEG_FROM_SEC(sbi, secno);
2413         zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2414
2415         /* give up on finding another zone */
2416         if (!init)
2417                 goto got_it;
2418         if (sbi->secs_per_zone == 1)
2419                 goto got_it;
2420         if (zoneno == old_zoneno)
2421                 goto got_it;
2422         if (dir == ALLOC_LEFT) {
2423                 if (!go_left && zoneno + 1 >= total_zones)
2424                         goto got_it;
2425                 if (go_left && zoneno == 0)
2426                         goto got_it;
2427         }
2428         for (i = 0; i < NR_CURSEG_TYPE; i++)
2429                 if (CURSEG_I(sbi, i)->zone == zoneno)
2430                         break;
2431
2432         if (i < NR_CURSEG_TYPE) {
2433                 /* zone is in user, try another */
2434                 if (go_left)
2435                         hint = zoneno * sbi->secs_per_zone - 1;
2436                 else if (zoneno + 1 >= total_zones)
2437                         hint = 0;
2438                 else
2439                         hint = (zoneno + 1) * sbi->secs_per_zone;
2440                 init = false;
2441                 goto find_other_zone;
2442         }
2443 got_it:
2444         /* set it as dirty segment in free segmap */
2445         f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2446         __set_inuse(sbi, segno);
2447         *newseg = segno;
2448         spin_unlock(&free_i->segmap_lock);
2449 }
2450
2451 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2452 {
2453         struct curseg_info *curseg = CURSEG_I(sbi, type);
2454         struct summary_footer *sum_footer;
2455
2456         curseg->segno = curseg->next_segno;
2457         curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2458         curseg->next_blkoff = 0;
2459         curseg->next_segno = NULL_SEGNO;
2460
2461         sum_footer = &(curseg->sum_blk->footer);
2462         memset(sum_footer, 0, sizeof(struct summary_footer));
2463         if (IS_DATASEG(type))
2464                 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2465         if (IS_NODESEG(type))
2466                 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2467         __set_sit_entry_type(sbi, type, curseg->segno, modified);
2468 }
2469
2470 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2471 {
2472         /* if segs_per_sec is large than 1, we need to keep original policy. */
2473         if (__is_large_section(sbi))
2474                 return CURSEG_I(sbi, type)->segno;
2475
2476         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2477                 return 0;
2478
2479         if (test_opt(sbi, NOHEAP) &&
2480                 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2481                 return 0;
2482
2483         if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2484                 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2485
2486         /* find segments from 0 to reuse freed segments */
2487         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2488                 return 0;
2489
2490         return CURSEG_I(sbi, type)->segno;
2491 }
2492
2493 /*
2494  * Allocate a current working segment.
2495  * This function always allocates a free segment in LFS manner.
2496  */
2497 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2498 {
2499         struct curseg_info *curseg = CURSEG_I(sbi, type);
2500         unsigned int segno = curseg->segno;
2501         int dir = ALLOC_LEFT;
2502
2503         write_sum_page(sbi, curseg->sum_blk,
2504                                 GET_SUM_BLOCK(sbi, segno));
2505         if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2506                 dir = ALLOC_RIGHT;
2507
2508         if (test_opt(sbi, NOHEAP))
2509                 dir = ALLOC_RIGHT;
2510
2511         segno = __get_next_segno(sbi, type);
2512         get_new_segment(sbi, &segno, new_sec, dir);
2513         curseg->next_segno = segno;
2514         reset_curseg(sbi, type, 1);
2515         curseg->alloc_type = LFS;
2516 }
2517
2518 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2519                         struct curseg_info *seg, block_t start)
2520 {
2521         struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2522         int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2523         unsigned long *target_map = SIT_I(sbi)->tmp_map;
2524         unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2525         unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2526         int i, pos;
2527
2528         for (i = 0; i < entries; i++)
2529                 target_map[i] = ckpt_map[i] | cur_map[i];
2530
2531         pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2532
2533         seg->next_blkoff = pos;
2534 }
2535
2536 /*
2537  * If a segment is written by LFS manner, next block offset is just obtained
2538  * by increasing the current block offset. However, if a segment is written by
2539  * SSR manner, next block offset obtained by calling __next_free_blkoff
2540  */
2541 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2542                                 struct curseg_info *seg)
2543 {
2544         if (seg->alloc_type == SSR)
2545                 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2546         else
2547                 seg->next_blkoff++;
2548 }
2549
2550 /*
2551  * This function always allocates a used segment(from dirty seglist) by SSR
2552  * manner, so it should recover the existing segment information of valid blocks
2553  */
2554 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2555 {
2556         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2557         struct curseg_info *curseg = CURSEG_I(sbi, type);
2558         unsigned int new_segno = curseg->next_segno;
2559         struct f2fs_summary_block *sum_node;
2560         struct page *sum_page;
2561
2562         write_sum_page(sbi, curseg->sum_blk,
2563                                 GET_SUM_BLOCK(sbi, curseg->segno));
2564         __set_test_and_inuse(sbi, new_segno);
2565
2566         mutex_lock(&dirty_i->seglist_lock);
2567         __remove_dirty_segment(sbi, new_segno, PRE);
2568         __remove_dirty_segment(sbi, new_segno, DIRTY);
2569         mutex_unlock(&dirty_i->seglist_lock);
2570
2571         reset_curseg(sbi, type, 1);
2572         curseg->alloc_type = SSR;
2573         __next_free_blkoff(sbi, curseg, 0);
2574
2575         sum_page = f2fs_get_sum_page(sbi, new_segno);
2576         f2fs_bug_on(sbi, IS_ERR(sum_page));
2577         sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2578         memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2579         f2fs_put_page(sum_page, 1);
2580 }
2581
2582 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2583 {
2584         struct curseg_info *curseg = CURSEG_I(sbi, type);
2585         const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2586         unsigned segno = NULL_SEGNO;
2587         int i, cnt;
2588         bool reversed = false;
2589
2590         /* f2fs_need_SSR() already forces to do this */
2591         if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2592                 curseg->next_segno = segno;
2593                 return 1;
2594         }
2595
2596         /* For node segments, let's do SSR more intensively */
2597         if (IS_NODESEG(type)) {
2598                 if (type >= CURSEG_WARM_NODE) {
2599                         reversed = true;
2600                         i = CURSEG_COLD_NODE;
2601                 } else {
2602                         i = CURSEG_HOT_NODE;
2603                 }
2604                 cnt = NR_CURSEG_NODE_TYPE;
2605         } else {
2606                 if (type >= CURSEG_WARM_DATA) {
2607                         reversed = true;
2608                         i = CURSEG_COLD_DATA;
2609                 } else {
2610                         i = CURSEG_HOT_DATA;
2611                 }
2612                 cnt = NR_CURSEG_DATA_TYPE;
2613         }
2614
2615         for (; cnt-- > 0; reversed ? i-- : i++) {
2616                 if (i == type)
2617                         continue;
2618                 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2619                         curseg->next_segno = segno;
2620                         return 1;
2621                 }
2622         }
2623
2624         /* find valid_blocks=0 in dirty list */
2625         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2626                 segno = get_free_segment(sbi);
2627                 if (segno != NULL_SEGNO) {
2628                         curseg->next_segno = segno;
2629                         return 1;
2630                 }
2631         }
2632         return 0;
2633 }
2634
2635 /*
2636  * flush out current segment and replace it with new segment
2637  * This function should be returned with success, otherwise BUG
2638  */
2639 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2640                                                 int type, bool force)
2641 {
2642         struct curseg_info *curseg = CURSEG_I(sbi, type);
2643
2644         if (force)
2645                 new_curseg(sbi, type, true);
2646         else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2647                                         type == CURSEG_WARM_NODE)
2648                 new_curseg(sbi, type, false);
2649         else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2650                         likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2651                 new_curseg(sbi, type, false);
2652         else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2653                 change_curseg(sbi, type);
2654         else
2655                 new_curseg(sbi, type, false);
2656
2657         stat_inc_seg_type(sbi, curseg);
2658 }
2659
2660 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2661                                         unsigned int start, unsigned int end)
2662 {
2663         struct curseg_info *curseg = CURSEG_I(sbi, type);
2664         unsigned int segno;
2665
2666         down_read(&SM_I(sbi)->curseg_lock);
2667         mutex_lock(&curseg->curseg_mutex);
2668         down_write(&SIT_I(sbi)->sentry_lock);
2669
2670         segno = CURSEG_I(sbi, type)->segno;
2671         if (segno < start || segno > end)
2672                 goto unlock;
2673
2674         if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2675                 change_curseg(sbi, type);
2676         else
2677                 new_curseg(sbi, type, true);
2678
2679         stat_inc_seg_type(sbi, curseg);
2680
2681         locate_dirty_segment(sbi, segno);
2682 unlock:
2683         up_write(&SIT_I(sbi)->sentry_lock);
2684
2685         if (segno != curseg->segno)
2686                 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2687                             type, segno, curseg->segno);
2688
2689         mutex_unlock(&curseg->curseg_mutex);
2690         up_read(&SM_I(sbi)->curseg_lock);
2691 }
2692
2693 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2694 {
2695         struct curseg_info *curseg;
2696         unsigned int old_segno;
2697         int i;
2698
2699         down_write(&SIT_I(sbi)->sentry_lock);
2700
2701         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2702                 curseg = CURSEG_I(sbi, i);
2703                 old_segno = curseg->segno;
2704                 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2705                 locate_dirty_segment(sbi, old_segno);
2706         }
2707
2708         up_write(&SIT_I(sbi)->sentry_lock);
2709 }
2710
2711 static const struct segment_allocation default_salloc_ops = {
2712         .allocate_segment = allocate_segment_by_default,
2713 };
2714
2715 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2716                                                 struct cp_control *cpc)
2717 {
2718         __u64 trim_start = cpc->trim_start;
2719         bool has_candidate = false;
2720
2721         down_write(&SIT_I(sbi)->sentry_lock);
2722         for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2723                 if (add_discard_addrs(sbi, cpc, true)) {
2724                         has_candidate = true;
2725                         break;
2726                 }
2727         }
2728         up_write(&SIT_I(sbi)->sentry_lock);
2729
2730         cpc->trim_start = trim_start;
2731         return has_candidate;
2732 }
2733
2734 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2735                                         struct discard_policy *dpolicy,
2736                                         unsigned int start, unsigned int end)
2737 {
2738         struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2739         struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2740         struct rb_node **insert_p = NULL, *insert_parent = NULL;
2741         struct discard_cmd *dc;
2742         struct blk_plug plug;
2743         int issued;
2744         unsigned int trimmed = 0;
2745
2746 next:
2747         issued = 0;
2748
2749         mutex_lock(&dcc->cmd_lock);
2750         if (unlikely(dcc->rbtree_check))
2751                 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2752                                                                 &dcc->root));
2753
2754         dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2755                                         NULL, start,
2756                                         (struct rb_entry **)&prev_dc,
2757                                         (struct rb_entry **)&next_dc,
2758                                         &insert_p, &insert_parent, true, NULL);
2759         if (!dc)
2760                 dc = next_dc;
2761
2762         blk_start_plug(&plug);
2763
2764         while (dc && dc->lstart <= end) {
2765                 struct rb_node *node;
2766                 int err = 0;
2767
2768                 if (dc->len < dpolicy->granularity)
2769                         goto skip;
2770
2771                 if (dc->state != D_PREP) {
2772                         list_move_tail(&dc->list, &dcc->fstrim_list);
2773                         goto skip;
2774                 }
2775
2776                 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2777
2778                 if (issued >= dpolicy->max_requests) {
2779                         start = dc->lstart + dc->len;
2780
2781                         if (err)
2782                                 __remove_discard_cmd(sbi, dc);
2783
2784                         blk_finish_plug(&plug);
2785                         mutex_unlock(&dcc->cmd_lock);
2786                         trimmed += __wait_all_discard_cmd(sbi, NULL);
2787                         congestion_wait(BLK_RW_ASYNC, HZ/50);
2788                         goto next;
2789                 }
2790 skip:
2791                 node = rb_next(&dc->rb_node);
2792                 if (err)
2793                         __remove_discard_cmd(sbi, dc);
2794                 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2795
2796                 if (fatal_signal_pending(current))
2797                         break;
2798         }
2799
2800         blk_finish_plug(&plug);
2801         mutex_unlock(&dcc->cmd_lock);
2802
2803         return trimmed;
2804 }
2805
2806 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2807 {
2808         __u64 start = F2FS_BYTES_TO_BLK(range->start);
2809         __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2810         unsigned int start_segno, end_segno;
2811         block_t start_block, end_block;
2812         struct cp_control cpc;
2813         struct discard_policy dpolicy;
2814         unsigned long long trimmed = 0;
2815         int err = 0;
2816         bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
2817
2818         if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2819                 return -EINVAL;
2820
2821         if (end < MAIN_BLKADDR(sbi))
2822                 goto out;
2823
2824         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2825                 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
2826                 return -EFSCORRUPTED;
2827         }
2828
2829         /* start/end segment number in main_area */
2830         start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2831         end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2832                                                 GET_SEGNO(sbi, end);
2833         if (need_align) {
2834                 start_segno = rounddown(start_segno, sbi->segs_per_sec);
2835                 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2836         }
2837
2838         cpc.reason = CP_DISCARD;
2839         cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2840         cpc.trim_start = start_segno;
2841         cpc.trim_end = end_segno;
2842
2843         if (sbi->discard_blks == 0)
2844                 goto out;
2845
2846         mutex_lock(&sbi->gc_mutex);
2847         err = f2fs_write_checkpoint(sbi, &cpc);
2848         mutex_unlock(&sbi->gc_mutex);
2849         if (err)
2850                 goto out;
2851
2852         /*
2853          * We filed discard candidates, but actually we don't need to wait for
2854          * all of them, since they'll be issued in idle time along with runtime
2855          * discard option. User configuration looks like using runtime discard
2856          * or periodic fstrim instead of it.
2857          */
2858         if (f2fs_realtime_discard_enable(sbi))
2859                 goto out;
2860
2861         start_block = START_BLOCK(sbi, start_segno);
2862         end_block = START_BLOCK(sbi, end_segno + 1);
2863
2864         __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2865         trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2866                                         start_block, end_block);
2867
2868         trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2869                                         start_block, end_block);
2870 out:
2871         if (!err)
2872                 range->len = F2FS_BLK_TO_BYTES(trimmed);
2873         return err;
2874 }
2875
2876 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2877 {
2878         struct curseg_info *curseg = CURSEG_I(sbi, type);
2879         if (curseg->next_blkoff < sbi->blocks_per_seg)
2880                 return true;
2881         return false;
2882 }
2883
2884 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2885 {
2886         switch (hint) {
2887         case WRITE_LIFE_SHORT:
2888                 return CURSEG_HOT_DATA;
2889         case WRITE_LIFE_EXTREME:
2890                 return CURSEG_COLD_DATA;
2891         default:
2892                 return CURSEG_WARM_DATA;
2893         }
2894 }
2895
2896 /* This returns write hints for each segment type. This hints will be
2897  * passed down to block layer. There are mapping tables which depend on
2898  * the mount option 'whint_mode'.
2899  *
2900  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2901  *
2902  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2903  *
2904  * User                  F2FS                     Block
2905  * ----                  ----                     -----
2906  *                       META                     WRITE_LIFE_NOT_SET
2907  *                       HOT_NODE                 "
2908  *                       WARM_NODE                "
2909  *                       COLD_NODE                "
2910  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2911  * extension list        "                        "
2912  *
2913  * -- buffered io
2914  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2915  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2916  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2917  * WRITE_LIFE_NONE       "                        "
2918  * WRITE_LIFE_MEDIUM     "                        "
2919  * WRITE_LIFE_LONG       "                        "
2920  *
2921  * -- direct io
2922  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2923  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2924  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2925  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2926  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2927  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2928  *
2929  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2930  *
2931  * User                  F2FS                     Block
2932  * ----                  ----                     -----
2933  *                       META                     WRITE_LIFE_MEDIUM;
2934  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
2935  *                       WARM_NODE                "
2936  *                       COLD_NODE                WRITE_LIFE_NONE
2937  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2938  * extension list        "                        "
2939  *
2940  * -- buffered io
2941  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2942  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2943  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
2944  * WRITE_LIFE_NONE       "                        "
2945  * WRITE_LIFE_MEDIUM     "                        "
2946  * WRITE_LIFE_LONG       "                        "
2947  *
2948  * -- direct io
2949  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2950  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2951  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2952  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2953  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2954  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2955  */
2956
2957 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2958                                 enum page_type type, enum temp_type temp)
2959 {
2960         if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2961                 if (type == DATA) {
2962                         if (temp == WARM)
2963                                 return WRITE_LIFE_NOT_SET;
2964                         else if (temp == HOT)
2965                                 return WRITE_LIFE_SHORT;
2966                         else if (temp == COLD)
2967                                 return WRITE_LIFE_EXTREME;
2968                 } else {
2969                         return WRITE_LIFE_NOT_SET;
2970                 }
2971         } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2972                 if (type == DATA) {
2973                         if (temp == WARM)
2974                                 return WRITE_LIFE_LONG;
2975                         else if (temp == HOT)
2976                                 return WRITE_LIFE_SHORT;
2977                         else if (temp == COLD)
2978                                 return WRITE_LIFE_EXTREME;
2979                 } else if (type == NODE) {
2980                         if (temp == WARM || temp == HOT)
2981                                 return WRITE_LIFE_NOT_SET;
2982                         else if (temp == COLD)
2983                                 return WRITE_LIFE_NONE;
2984                 } else if (type == META) {
2985                         return WRITE_LIFE_MEDIUM;
2986                 }
2987         }
2988         return WRITE_LIFE_NOT_SET;
2989 }
2990
2991 static int __get_segment_type_2(struct f2fs_io_info *fio)
2992 {
2993         if (fio->type == DATA)
2994                 return CURSEG_HOT_DATA;
2995         else
2996                 return CURSEG_HOT_NODE;
2997 }
2998
2999 static int __get_segment_type_4(struct f2fs_io_info *fio)
3000 {
3001         if (fio->type == DATA) {
3002                 struct inode *inode = fio->page->mapping->host;
3003
3004                 if (S_ISDIR(inode->i_mode))
3005                         return CURSEG_HOT_DATA;
3006                 else
3007                         return CURSEG_COLD_DATA;
3008         } else {
3009                 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3010                         return CURSEG_WARM_NODE;
3011                 else
3012                         return CURSEG_COLD_NODE;
3013         }
3014 }
3015
3016 static int __get_segment_type_6(struct f2fs_io_info *fio)
3017 {
3018         if (fio->type == DATA) {
3019                 struct inode *inode = fio->page->mapping->host;
3020
3021                 if (is_cold_data(fio->page) || file_is_cold(inode))
3022                         return CURSEG_COLD_DATA;
3023                 if (file_is_hot(inode) ||
3024                                 is_inode_flag_set(inode, FI_HOT_DATA) ||
3025                                 f2fs_is_atomic_file(inode) ||
3026                                 f2fs_is_volatile_file(inode))
3027                         return CURSEG_HOT_DATA;
3028                 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3029         } else {
3030                 if (IS_DNODE(fio->page))
3031                         return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3032                                                 CURSEG_HOT_NODE;
3033                 return CURSEG_COLD_NODE;
3034         }
3035 }
3036
3037 static int __get_segment_type(struct f2fs_io_info *fio)
3038 {
3039         int type = 0;
3040
3041         switch (F2FS_OPTION(fio->sbi).active_logs) {
3042         case 2:
3043                 type = __get_segment_type_2(fio);
3044                 break;
3045         case 4:
3046                 type = __get_segment_type_4(fio);
3047                 break;
3048         case 6:
3049                 type = __get_segment_type_6(fio);
3050                 break;
3051         default:
3052                 f2fs_bug_on(fio->sbi, true);
3053         }
3054
3055         if (IS_HOT(type))
3056                 fio->temp = HOT;
3057         else if (IS_WARM(type))
3058                 fio->temp = WARM;
3059         else
3060                 fio->temp = COLD;
3061         return type;
3062 }
3063
3064 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3065                 block_t old_blkaddr, block_t *new_blkaddr,
3066                 struct f2fs_summary *sum, int type,
3067                 struct f2fs_io_info *fio, bool add_list)
3068 {
3069         struct sit_info *sit_i = SIT_I(sbi);
3070         struct curseg_info *curseg = CURSEG_I(sbi, type);
3071
3072         down_read(&SM_I(sbi)->curseg_lock);
3073
3074         mutex_lock(&curseg->curseg_mutex);
3075         down_write(&sit_i->sentry_lock);
3076
3077         *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3078
3079         f2fs_wait_discard_bio(sbi, *new_blkaddr);
3080
3081         /*
3082          * __add_sum_entry should be resided under the curseg_mutex
3083          * because, this function updates a summary entry in the
3084          * current summary block.
3085          */
3086         __add_sum_entry(sbi, type, sum);
3087
3088         __refresh_next_blkoff(sbi, curseg);
3089
3090         stat_inc_block_count(sbi, curseg);
3091
3092         /*
3093          * SIT information should be updated before segment allocation,
3094          * since SSR needs latest valid block information.
3095          */
3096         update_sit_entry(sbi, *new_blkaddr, 1);
3097         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3098                 update_sit_entry(sbi, old_blkaddr, -1);
3099
3100         if (!__has_curseg_space(sbi, type))
3101                 sit_i->s_ops->allocate_segment(sbi, type, false);
3102
3103         /*
3104          * segment dirty status should be updated after segment allocation,
3105          * so we just need to update status only one time after previous
3106          * segment being closed.
3107          */
3108         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3109         locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3110
3111         up_write(&sit_i->sentry_lock);
3112
3113         if (page && IS_NODESEG(type)) {
3114                 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3115
3116                 f2fs_inode_chksum_set(sbi, page);
3117         }
3118
3119         if (add_list) {
3120                 struct f2fs_bio_info *io;
3121
3122                 INIT_LIST_HEAD(&fio->list);
3123                 fio->in_list = true;
3124                 fio->retry = false;
3125                 io = sbi->write_io[fio->type] + fio->temp;
3126                 spin_lock(&io->io_lock);
3127                 list_add_tail(&fio->list, &io->io_list);
3128                 spin_unlock(&io->io_lock);
3129         }
3130
3131         mutex_unlock(&curseg->curseg_mutex);
3132
3133         up_read(&SM_I(sbi)->curseg_lock);
3134 }
3135
3136 static void update_device_state(struct f2fs_io_info *fio)
3137 {
3138         struct f2fs_sb_info *sbi = fio->sbi;
3139         unsigned int devidx;
3140
3141         if (!f2fs_is_multi_device(sbi))
3142                 return;
3143
3144         devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3145
3146         /* update device state for fsync */
3147         f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3148
3149         /* update device state for checkpoint */
3150         if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3151                 spin_lock(&sbi->dev_lock);
3152                 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3153                 spin_unlock(&sbi->dev_lock);
3154         }
3155 }
3156
3157 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3158 {
3159         int type = __get_segment_type(fio);
3160         bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
3161
3162         if (keep_order)
3163                 down_read(&fio->sbi->io_order_lock);
3164 reallocate:
3165         f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3166                         &fio->new_blkaddr, sum, type, fio, true);
3167         if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3168                 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3169                                         fio->old_blkaddr, fio->old_blkaddr);
3170
3171         /* writeout dirty page into bdev */
3172         f2fs_submit_page_write(fio);
3173         if (fio->retry) {
3174                 fio->old_blkaddr = fio->new_blkaddr;
3175                 goto reallocate;
3176         }
3177
3178         update_device_state(fio);
3179
3180         if (keep_order)
3181                 up_read(&fio->sbi->io_order_lock);
3182 }
3183
3184 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3185                                         enum iostat_type io_type)
3186 {
3187         struct f2fs_io_info fio = {
3188                 .sbi = sbi,
3189                 .type = META,
3190                 .temp = HOT,
3191                 .op = REQ_OP_WRITE,
3192                 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3193                 .old_blkaddr = page->index,
3194                 .new_blkaddr = page->index,
3195                 .page = page,
3196                 .encrypted_page = NULL,
3197                 .in_list = false,
3198         };
3199
3200         if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3201                 fio.op_flags &= ~REQ_META;
3202
3203         set_page_writeback(page);
3204         ClearPageError(page);
3205         f2fs_submit_page_write(&fio);
3206
3207         stat_inc_meta_count(sbi, page->index);
3208         f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3209 }
3210
3211 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3212 {
3213         struct f2fs_summary sum;
3214
3215         set_summary(&sum, nid, 0, 0);
3216         do_write_page(&sum, fio);
3217
3218         f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3219 }
3220
3221 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3222                                         struct f2fs_io_info *fio)
3223 {
3224         struct f2fs_sb_info *sbi = fio->sbi;
3225         struct f2fs_summary sum;
3226
3227         f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3228         set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3229         do_write_page(&sum, fio);
3230         f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3231
3232         f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3233 }
3234
3235 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3236 {
3237         int err;
3238         struct f2fs_sb_info *sbi = fio->sbi;
3239         unsigned int segno;
3240
3241         fio->new_blkaddr = fio->old_blkaddr;
3242         /* i/o temperature is needed for passing down write hints */
3243         __get_segment_type(fio);
3244
3245         segno = GET_SEGNO(sbi, fio->new_blkaddr);
3246
3247         if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3248                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3249                 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3250                           __func__, segno);
3251                 return -EFSCORRUPTED;
3252         }
3253
3254         stat_inc_inplace_blocks(fio->sbi);
3255
3256         if (fio->bio)
3257                 err = f2fs_merge_page_bio(fio);
3258         else
3259                 err = f2fs_submit_page_bio(fio);
3260         if (!err) {
3261                 update_device_state(fio);
3262                 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3263         }
3264
3265         return err;
3266 }
3267
3268 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3269                                                 unsigned int segno)
3270 {
3271         int i;
3272
3273         for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3274                 if (CURSEG_I(sbi, i)->segno == segno)
3275                         break;
3276         }
3277         return i;
3278 }
3279
3280 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3281                                 block_t old_blkaddr, block_t new_blkaddr,
3282                                 bool recover_curseg, bool recover_newaddr)
3283 {
3284         struct sit_info *sit_i = SIT_I(sbi);
3285         struct curseg_info *curseg;
3286         unsigned int segno, old_cursegno;
3287         struct seg_entry *se;
3288         int type;
3289         unsigned short old_blkoff;
3290
3291         segno = GET_SEGNO(sbi, new_blkaddr);
3292         se = get_seg_entry(sbi, segno);
3293         type = se->type;
3294
3295         down_write(&SM_I(sbi)->curseg_lock);
3296
3297         if (!recover_curseg) {
3298                 /* for recovery flow */
3299                 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3300                         if (old_blkaddr == NULL_ADDR)
3301                                 type = CURSEG_COLD_DATA;
3302                         else
3303                                 type = CURSEG_WARM_DATA;
3304                 }
3305         } else {
3306                 if (IS_CURSEG(sbi, segno)) {
3307                         /* se->type is volatile as SSR allocation */
3308                         type = __f2fs_get_curseg(sbi, segno);
3309                         f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3310                 } else {
3311                         type = CURSEG_WARM_DATA;
3312                 }
3313         }
3314
3315         f2fs_bug_on(sbi, !IS_DATASEG(type));
3316         curseg = CURSEG_I(sbi, type);
3317
3318         mutex_lock(&curseg->curseg_mutex);
3319         down_write(&sit_i->sentry_lock);
3320
3321         old_cursegno = curseg->segno;
3322         old_blkoff = curseg->next_blkoff;
3323
3324         /* change the current segment */
3325         if (segno != curseg->segno) {
3326                 curseg->next_segno = segno;
3327                 change_curseg(sbi, type);
3328         }
3329
3330         curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3331         __add_sum_entry(sbi, type, sum);
3332
3333         if (!recover_curseg || recover_newaddr)
3334                 update_sit_entry(sbi, new_blkaddr, 1);
3335         if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3336                 invalidate_mapping_pages(META_MAPPING(sbi),
3337                                         old_blkaddr, old_blkaddr);
3338                 update_sit_entry(sbi, old_blkaddr, -1);
3339         }
3340
3341         locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3342         locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3343
3344         locate_dirty_segment(sbi, old_cursegno);
3345
3346         if (recover_curseg) {
3347                 if (old_cursegno != curseg->segno) {
3348                         curseg->next_segno = old_cursegno;
3349                         change_curseg(sbi, type);
3350                 }
3351                 curseg->next_blkoff = old_blkoff;
3352         }
3353
3354         up_write(&sit_i->sentry_lock);
3355         mutex_unlock(&curseg->curseg_mutex);
3356         up_write(&SM_I(sbi)->curseg_lock);
3357 }
3358
3359 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3360                                 block_t old_addr, block_t new_addr,
3361                                 unsigned char version, bool recover_curseg,
3362                                 bool recover_newaddr)
3363 {
3364         struct f2fs_summary sum;
3365
3366         set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3367
3368         f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3369                                         recover_curseg, recover_newaddr);
3370
3371         f2fs_update_data_blkaddr(dn, new_addr);
3372 }
3373
3374 void f2fs_wait_on_page_writeback(struct page *page,
3375                                 enum page_type type, bool ordered, bool locked)
3376 {
3377         if (PageWriteback(page)) {
3378                 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3379
3380                 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3381                 if (ordered) {
3382                         wait_on_page_writeback(page);
3383                         f2fs_bug_on(sbi, locked && PageWriteback(page));
3384                 } else {
3385                         wait_for_stable_page(page);
3386                 }
3387         }
3388 }
3389
3390 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3391 {
3392         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3393         struct page *cpage;
3394
3395         if (!f2fs_post_read_required(inode))
3396                 return;
3397
3398         if (!__is_valid_data_blkaddr(blkaddr))
3399                 return;
3400
3401         cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3402         if (cpage) {
3403                 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3404                 f2fs_put_page(cpage, 1);
3405         }
3406 }
3407
3408 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3409                                                                 block_t len)
3410 {
3411         block_t i;
3412
3413         for (i = 0; i < len; i++)
3414                 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3415 }
3416
3417 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3418 {
3419         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3420         struct curseg_info *seg_i;
3421         unsigned char *kaddr;
3422         struct page *page;
3423         block_t start;
3424         int i, j, offset;
3425
3426         start = start_sum_block(sbi);
3427
3428         page = f2fs_get_meta_page(sbi, start++);
3429         if (IS_ERR(page))
3430                 return PTR_ERR(page);
3431         kaddr = (unsigned char *)page_address(page);
3432
3433         /* Step 1: restore nat cache */
3434         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3435         memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3436
3437         /* Step 2: restore sit cache */
3438         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3439         memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3440         offset = 2 * SUM_JOURNAL_SIZE;
3441
3442         /* Step 3: restore summary entries */
3443         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3444                 unsigned short blk_off;
3445                 unsigned int segno;
3446
3447                 seg_i = CURSEG_I(sbi, i);
3448                 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3449                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3450                 seg_i->next_segno = segno;
3451                 reset_curseg(sbi, i, 0);
3452                 seg_i->alloc_type = ckpt->alloc_type[i];
3453                 seg_i->next_blkoff = blk_off;
3454
3455                 if (seg_i->alloc_type == SSR)
3456                         blk_off = sbi->blocks_per_seg;
3457
3458                 for (j = 0; j < blk_off; j++) {
3459                         struct f2fs_summary *s;
3460                         s = (struct f2fs_summary *)(kaddr + offset);
3461                         seg_i->sum_blk->entries[j] = *s;
3462                         offset += SUMMARY_SIZE;
3463                         if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3464                                                 SUM_FOOTER_SIZE)
3465                                 continue;
3466
3467                         f2fs_put_page(page, 1);
3468                         page = NULL;
3469
3470                         page = f2fs_get_meta_page(sbi, start++);
3471                         if (IS_ERR(page))
3472                                 return PTR_ERR(page);
3473                         kaddr = (unsigned char *)page_address(page);
3474                         offset = 0;
3475                 }
3476         }
3477         f2fs_put_page(page, 1);
3478         return 0;
3479 }
3480
3481 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3482 {
3483         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3484         struct f2fs_summary_block *sum;
3485         struct curseg_info *curseg;
3486         struct page *new;
3487         unsigned short blk_off;
3488         unsigned int segno = 0;
3489         block_t blk_addr = 0;
3490         int err = 0;
3491
3492         /* get segment number and block addr */
3493         if (IS_DATASEG(type)) {
3494                 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3495                 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3496                                                         CURSEG_HOT_DATA]);
3497                 if (__exist_node_summaries(sbi))
3498                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3499                 else
3500                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3501         } else {
3502                 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3503                                                         CURSEG_HOT_NODE]);
3504                 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3505                                                         CURSEG_HOT_NODE]);
3506                 if (__exist_node_summaries(sbi))
3507                         blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3508                                                         type - CURSEG_HOT_NODE);
3509                 else
3510                         blk_addr = GET_SUM_BLOCK(sbi, segno);
3511         }
3512
3513         new = f2fs_get_meta_page(sbi, blk_addr);
3514         if (IS_ERR(new))
3515                 return PTR_ERR(new);
3516         sum = (struct f2fs_summary_block *)page_address(new);
3517
3518         if (IS_NODESEG(type)) {
3519                 if (__exist_node_summaries(sbi)) {
3520                         struct f2fs_summary *ns = &sum->entries[0];
3521                         int i;
3522                         for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3523                                 ns->version = 0;
3524                                 ns->ofs_in_node = 0;
3525                         }
3526                 } else {
3527                         err = f2fs_restore_node_summary(sbi, segno, sum);
3528                         if (err)
3529                                 goto out;
3530                 }
3531         }
3532
3533         /* set uncompleted segment to curseg */
3534         curseg = CURSEG_I(sbi, type);
3535         mutex_lock(&curseg->curseg_mutex);
3536
3537         /* update journal info */
3538         down_write(&curseg->journal_rwsem);
3539         memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3540         up_write(&curseg->journal_rwsem);
3541
3542         memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3543         memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3544         curseg->next_segno = segno;
3545         reset_curseg(sbi, type, 0);
3546         curseg->alloc_type = ckpt->alloc_type[type];
3547         curseg->next_blkoff = blk_off;
3548         mutex_unlock(&curseg->curseg_mutex);
3549 out:
3550         f2fs_put_page(new, 1);
3551         return err;
3552 }
3553
3554 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3555 {
3556         struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3557         struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3558         int type = CURSEG_HOT_DATA;
3559         int err;
3560
3561         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3562                 int npages = f2fs_npages_for_summary_flush(sbi, true);
3563
3564                 if (npages >= 2)
3565                         f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3566                                                         META_CP, true);
3567
3568                 /* restore for compacted data summary */
3569                 err = read_compacted_summaries(sbi);
3570                 if (err)
3571                         return err;
3572                 type = CURSEG_HOT_NODE;
3573         }
3574
3575         if (__exist_node_summaries(sbi))
3576                 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3577                                         NR_CURSEG_TYPE - type, META_CP, true);
3578
3579         for (; type <= CURSEG_COLD_NODE; type++) {
3580                 err = read_normal_summaries(sbi, type);
3581                 if (err)
3582                         return err;
3583         }
3584
3585         /* sanity check for summary blocks */
3586         if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3587                         sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3588                 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
3589                          nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3590                 return -EINVAL;
3591         }
3592
3593         return 0;
3594 }
3595
3596 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3597 {
3598         struct page *page;
3599         unsigned char *kaddr;
3600         struct f2fs_summary *summary;
3601         struct curseg_info *seg_i;
3602         int written_size = 0;
3603         int i, j;
3604
3605         page = f2fs_grab_meta_page(sbi, blkaddr++);
3606         kaddr = (unsigned char *)page_address(page);
3607         memset(kaddr, 0, PAGE_SIZE);
3608
3609         /* Step 1: write nat cache */
3610         seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3611         memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3612         written_size += SUM_JOURNAL_SIZE;
3613
3614         /* Step 2: write sit cache */
3615         seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3616         memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3617         written_size += SUM_JOURNAL_SIZE;
3618
3619         /* Step 3: write summary entries */
3620         for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3621                 unsigned short blkoff;
3622                 seg_i = CURSEG_I(sbi, i);
3623                 if (sbi->ckpt->alloc_type[i] == SSR)
3624                         blkoff = sbi->blocks_per_seg;
3625                 else
3626                         blkoff = curseg_blkoff(sbi, i);
3627
3628                 for (j = 0; j < blkoff; j++) {
3629                         if (!page) {
3630                                 page = f2fs_grab_meta_page(sbi, blkaddr++);
3631                                 kaddr = (unsigned char *)page_address(page);
3632                                 memset(kaddr, 0, PAGE_SIZE);
3633                                 written_size = 0;
3634                         }
3635                         summary = (struct f2fs_summary *)(kaddr + written_size);
3636                         *summary = seg_i->sum_blk->entries[j];
3637                         written_size += SUMMARY_SIZE;
3638
3639                         if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3640                                                         SUM_FOOTER_SIZE)
3641                                 continue;
3642
3643                         set_page_dirty(page);
3644                         f2fs_put_page(page, 1);
3645                         page = NULL;
3646                 }
3647         }
3648         if (page) {
3649                 set_page_dirty(page);
3650                 f2fs_put_page(page, 1);
3651         }
3652 }
3653
3654 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3655                                         block_t blkaddr, int type)
3656 {
3657         int i, end;
3658         if (IS_DATASEG(type))
3659                 end = type + NR_CURSEG_DATA_TYPE;
3660         else
3661                 end = type + NR_CURSEG_NODE_TYPE;
3662
3663         for (i = type; i < end; i++)
3664                 write_current_sum_page(sbi, i, blkaddr + (i - type));
3665 }
3666
3667 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3668 {
3669         if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3670                 write_compacted_summaries(sbi, start_blk);
3671         else
3672                 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3673 }
3674
3675 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3676 {
3677         write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3678 }
3679
3680 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3681                                         unsigned int val, int alloc)
3682 {
3683         int i;
3684
3685         if (type == NAT_JOURNAL) {
3686                 for (i = 0; i < nats_in_cursum(journal); i++) {
3687                         if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3688                                 return i;
3689                 }
3690                 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3691                         return update_nats_in_cursum(journal, 1);
3692         } else if (type == SIT_JOURNAL) {
3693                 for (i = 0; i < sits_in_cursum(journal); i++)
3694                         if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3695                                 return i;
3696                 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3697                         return update_sits_in_cursum(journal, 1);
3698         }
3699         return -1;
3700 }
3701
3702 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3703                                         unsigned int segno)
3704 {
3705         return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3706 }
3707
3708 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3709                                         unsigned int start)
3710 {
3711         struct sit_info *sit_i = SIT_I(sbi);
3712         struct page *page;
3713         pgoff_t src_off, dst_off;
3714
3715         src_off = current_sit_addr(sbi, start);
3716         dst_off = next_sit_addr(sbi, src_off);
3717
3718         page = f2fs_grab_meta_page(sbi, dst_off);
3719         seg_info_to_sit_page(sbi, page, start);
3720
3721         set_page_dirty(page);
3722         set_to_next_sit(sit_i, start);
3723
3724         return page;
3725 }
3726
3727 static struct sit_entry_set *grab_sit_entry_set(void)
3728 {
3729         struct sit_entry_set *ses =
3730                         f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3731
3732         ses->entry_cnt = 0;
3733         INIT_LIST_HEAD(&ses->set_list);
3734         return ses;
3735 }
3736
3737 static void release_sit_entry_set(struct sit_entry_set *ses)
3738 {
3739         list_del(&ses->set_list);
3740         kmem_cache_free(sit_entry_set_slab, ses);
3741 }
3742
3743 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3744                                                 struct list_head *head)
3745 {
3746         struct sit_entry_set *next = ses;
3747
3748         if (list_is_last(&ses->set_list, head))
3749                 return;
3750
3751         list_for_each_entry_continue(next, head, set_list)
3752                 if (ses->entry_cnt <= next->entry_cnt)
3753                         break;
3754
3755         list_move_tail(&ses->set_list, &next->set_list);
3756 }
3757
3758 static void add_sit_entry(unsigned int segno, struct list_head *head)
3759 {
3760         struct sit_entry_set *ses;
3761         unsigned int start_segno = START_SEGNO(segno);
3762
3763         list_for_each_entry(ses, head, set_list) {
3764                 if (ses->start_segno == start_segno) {
3765                         ses->entry_cnt++;
3766                         adjust_sit_entry_set(ses, head);
3767                         return;
3768                 }
3769         }
3770
3771         ses = grab_sit_entry_set();
3772
3773         ses->start_segno = start_segno;
3774         ses->entry_cnt++;
3775         list_add(&ses->set_list, head);
3776 }
3777
3778 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3779 {
3780         struct f2fs_sm_info *sm_info = SM_I(sbi);
3781         struct list_head *set_list = &sm_info->sit_entry_set;
3782         unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3783         unsigned int segno;
3784
3785         for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3786                 add_sit_entry(segno, set_list);
3787 }
3788
3789 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3790 {
3791         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3792         struct f2fs_journal *journal = curseg->journal;
3793         int i;
3794
3795         down_write(&curseg->journal_rwsem);
3796         for (i = 0; i < sits_in_cursum(journal); i++) {
3797                 unsigned int segno;
3798                 bool dirtied;
3799
3800                 segno = le32_to_cpu(segno_in_journal(journal, i));
3801                 dirtied = __mark_sit_entry_dirty(sbi, segno);
3802
3803                 if (!dirtied)
3804                         add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3805         }
3806         update_sits_in_cursum(journal, -i);
3807         up_write(&curseg->journal_rwsem);
3808 }
3809
3810 /*
3811  * CP calls this function, which flushes SIT entries including sit_journal,
3812  * and moves prefree segs to free segs.
3813  */
3814 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3815 {
3816         struct sit_info *sit_i = SIT_I(sbi);
3817         unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3818         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3819         struct f2fs_journal *journal = curseg->journal;
3820         struct sit_entry_set *ses, *tmp;
3821         struct list_head *head = &SM_I(sbi)->sit_entry_set;
3822         bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
3823         struct seg_entry *se;
3824
3825         down_write(&sit_i->sentry_lock);
3826
3827         if (!sit_i->dirty_sentries)
3828                 goto out;
3829
3830         /*
3831          * add and account sit entries of dirty bitmap in sit entry
3832          * set temporarily
3833          */
3834         add_sits_in_set(sbi);
3835
3836         /*
3837          * if there are no enough space in journal to store dirty sit
3838          * entries, remove all entries from journal and add and account
3839          * them in sit entry set.
3840          */
3841         if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
3842                                                                 !to_journal)
3843                 remove_sits_in_journal(sbi);
3844
3845         /*
3846          * there are two steps to flush sit entries:
3847          * #1, flush sit entries to journal in current cold data summary block.
3848          * #2, flush sit entries to sit page.
3849          */
3850         list_for_each_entry_safe(ses, tmp, head, set_list) {
3851                 struct page *page = NULL;
3852                 struct f2fs_sit_block *raw_sit = NULL;
3853                 unsigned int start_segno = ses->start_segno;
3854                 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3855                                                 (unsigned long)MAIN_SEGS(sbi));
3856                 unsigned int segno = start_segno;
3857
3858                 if (to_journal &&
3859                         !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3860                         to_journal = false;
3861
3862                 if (to_journal) {
3863                         down_write(&curseg->journal_rwsem);
3864                 } else {
3865                         page = get_next_sit_page(sbi, start_segno);
3866                         raw_sit = page_address(page);
3867                 }
3868
3869                 /* flush dirty sit entries in region of current sit set */
3870                 for_each_set_bit_from(segno, bitmap, end) {
3871                         int offset, sit_offset;
3872
3873                         se = get_seg_entry(sbi, segno);
3874 #ifdef CONFIG_F2FS_CHECK_FS
3875                         if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3876                                                 SIT_VBLOCK_MAP_SIZE))
3877                                 f2fs_bug_on(sbi, 1);
3878 #endif
3879
3880                         /* add discard candidates */
3881                         if (!(cpc->reason & CP_DISCARD)) {
3882                                 cpc->trim_start = segno;
3883                                 add_discard_addrs(sbi, cpc, false);
3884                         }
3885
3886                         if (to_journal) {
3887                                 offset = f2fs_lookup_journal_in_cursum(journal,
3888                                                         SIT_JOURNAL, segno, 1);
3889                                 f2fs_bug_on(sbi, offset < 0);
3890                                 segno_in_journal(journal, offset) =
3891                                                         cpu_to_le32(segno);
3892                                 seg_info_to_raw_sit(se,
3893                                         &sit_in_journal(journal, offset));
3894                                 check_block_count(sbi, segno,
3895                                         &sit_in_journal(journal, offset));
3896                         } else {
3897                                 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3898                                 seg_info_to_raw_sit(se,
3899                                                 &raw_sit->entries[sit_offset]);
3900                                 check_block_count(sbi, segno,
3901                                                 &raw_sit->entries[sit_offset]);
3902                         }
3903
3904                         __clear_bit(segno, bitmap);
3905                         sit_i->dirty_sentries--;
3906                         ses->entry_cnt--;
3907                 }
3908
3909                 if (to_journal)
3910                         up_write(&curseg->journal_rwsem);
3911                 else
3912                         f2fs_put_page(page, 1);
3913
3914                 f2fs_bug_on(sbi, ses->entry_cnt);
3915                 release_sit_entry_set(ses);
3916         }
3917
3918         f2fs_bug_on(sbi, !list_empty(head));
3919         f2fs_bug_on(sbi, sit_i->dirty_sentries);
3920 out:
3921         if (cpc->reason & CP_DISCARD) {
3922                 __u64 trim_start = cpc->trim_start;
3923
3924                 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3925                         add_discard_addrs(sbi, cpc, false);
3926
3927                 cpc->trim_start = trim_start;
3928         }
3929         up_write(&sit_i->sentry_lock);
3930
3931         set_prefree_as_free_segments(sbi);
3932 }
3933
3934 static int build_sit_info(struct f2fs_sb_info *sbi)
3935 {
3936         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3937         struct sit_info *sit_i;
3938         unsigned int sit_segs, start;
3939         char *src_bitmap, *bitmap;
3940         unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
3941
3942         /* allocate memory for SIT information */
3943         sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3944         if (!sit_i)
3945                 return -ENOMEM;
3946
3947         SM_I(sbi)->sit_info = sit_i;
3948
3949         sit_i->sentries =
3950                 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3951                                               MAIN_SEGS(sbi)),
3952                               GFP_KERNEL);
3953         if (!sit_i->sentries)
3954                 return -ENOMEM;
3955
3956         main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3957         sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
3958                                                                 GFP_KERNEL);
3959         if (!sit_i->dirty_sentries_bitmap)
3960                 return -ENOMEM;
3961
3962 #ifdef CONFIG_F2FS_CHECK_FS
3963         bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
3964 #else
3965         bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
3966 #endif
3967         sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
3968         if (!sit_i->bitmap)
3969                 return -ENOMEM;
3970
3971         bitmap = sit_i->bitmap;
3972
3973         for (start = 0; start < MAIN_SEGS(sbi); start++) {
3974                 sit_i->sentries[start].cur_valid_map = bitmap;
3975                 bitmap += SIT_VBLOCK_MAP_SIZE;
3976
3977                 sit_i->sentries[start].ckpt_valid_map = bitmap;
3978                 bitmap += SIT_VBLOCK_MAP_SIZE;
3979
3980 #ifdef CONFIG_F2FS_CHECK_FS
3981                 sit_i->sentries[start].cur_valid_map_mir = bitmap;
3982                 bitmap += SIT_VBLOCK_MAP_SIZE;
3983 #endif
3984
3985                 sit_i->sentries[start].discard_map = bitmap;
3986                 bitmap += SIT_VBLOCK_MAP_SIZE;
3987         }
3988
3989         sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3990         if (!sit_i->tmp_map)
3991                 return -ENOMEM;
3992
3993         if (__is_large_section(sbi)) {
3994                 sit_i->sec_entries =
3995                         f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
3996                                                       MAIN_SECS(sbi)),
3997                                       GFP_KERNEL);
3998                 if (!sit_i->sec_entries)
3999                         return -ENOMEM;
4000         }
4001
4002         /* get information related with SIT */
4003         sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4004
4005         /* setup SIT bitmap from ckeckpoint pack */
4006         sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4007         src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4008
4009         sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4010         if (!sit_i->sit_bitmap)
4011                 return -ENOMEM;
4012
4013 #ifdef CONFIG_F2FS_CHECK_FS
4014         sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4015                                         sit_bitmap_size, GFP_KERNEL);
4016         if (!sit_i->sit_bitmap_mir)
4017                 return -ENOMEM;
4018
4019         sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4020                                         main_bitmap_size, GFP_KERNEL);
4021         if (!sit_i->invalid_segmap)
4022                 return -ENOMEM;
4023 #endif
4024
4025         /* init SIT information */
4026         sit_i->s_ops = &default_salloc_ops;
4027
4028         sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4029         sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4030         sit_i->written_valid_blocks = 0;
4031         sit_i->bitmap_size = sit_bitmap_size;
4032         sit_i->dirty_sentries = 0;
4033         sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4034         sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4035         sit_i->mounted_time = ktime_get_real_seconds();
4036         init_rwsem(&sit_i->sentry_lock);
4037         return 0;
4038 }
4039
4040 static int build_free_segmap(struct f2fs_sb_info *sbi)
4041 {
4042         struct free_segmap_info *free_i;
4043         unsigned int bitmap_size, sec_bitmap_size;
4044
4045         /* allocate memory for free segmap information */
4046         free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4047         if (!free_i)
4048                 return -ENOMEM;
4049
4050         SM_I(sbi)->free_info = free_i;
4051
4052         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4053         free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4054         if (!free_i->free_segmap)
4055                 return -ENOMEM;
4056
4057         sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4058         free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4059         if (!free_i->free_secmap)
4060                 return -ENOMEM;
4061
4062         /* set all segments as dirty temporarily */
4063         memset(free_i->free_segmap, 0xff, bitmap_size);
4064         memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4065
4066         /* init free segmap information */
4067         free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4068         free_i->free_segments = 0;
4069         free_i->free_sections = 0;
4070         spin_lock_init(&free_i->segmap_lock);
4071         return 0;
4072 }
4073
4074 static int build_curseg(struct f2fs_sb_info *sbi)
4075 {
4076         struct curseg_info *array;
4077         int i;
4078
4079         array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
4080                              GFP_KERNEL);
4081         if (!array)
4082                 return -ENOMEM;
4083
4084         SM_I(sbi)->curseg_array = array;
4085
4086         for (i = 0; i < NR_CURSEG_TYPE; i++) {
4087                 mutex_init(&array[i].curseg_mutex);
4088                 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4089                 if (!array[i].sum_blk)
4090                         return -ENOMEM;
4091                 init_rwsem(&array[i].journal_rwsem);
4092                 array[i].journal = f2fs_kzalloc(sbi,
4093                                 sizeof(struct f2fs_journal), GFP_KERNEL);
4094                 if (!array[i].journal)
4095                         return -ENOMEM;
4096                 array[i].segno = NULL_SEGNO;
4097                 array[i].next_blkoff = 0;
4098         }
4099         return restore_curseg_summaries(sbi);
4100 }
4101
4102 static int build_sit_entries(struct f2fs_sb_info *sbi)
4103 {
4104         struct sit_info *sit_i = SIT_I(sbi);
4105         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4106         struct f2fs_journal *journal = curseg->journal;
4107         struct seg_entry *se;
4108         struct f2fs_sit_entry sit;
4109         int sit_blk_cnt = SIT_BLK_CNT(sbi);
4110         unsigned int i, start, end;
4111         unsigned int readed, start_blk = 0;
4112         int err = 0;
4113         block_t total_node_blocks = 0;
4114
4115         do {
4116                 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4117                                                         META_SIT, true);
4118
4119                 start = start_blk * sit_i->sents_per_block;
4120                 end = (start_blk + readed) * sit_i->sents_per_block;
4121
4122                 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4123                         struct f2fs_sit_block *sit_blk;
4124                         struct page *page;
4125
4126                         se = &sit_i->sentries[start];
4127                         page = get_current_sit_page(sbi, start);
4128                         if (IS_ERR(page))
4129                                 return PTR_ERR(page);
4130                         sit_blk = (struct f2fs_sit_block *)page_address(page);
4131                         sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4132                         f2fs_put_page(page, 1);
4133
4134                         err = check_block_count(sbi, start, &sit);
4135                         if (err)
4136                                 return err;
4137                         seg_info_from_raw_sit(se, &sit);
4138                         if (IS_NODESEG(se->type))
4139                                 total_node_blocks += se->valid_blocks;
4140
4141                         /* build discard map only one time */
4142                         if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4143                                 memset(se->discard_map, 0xff,
4144                                         SIT_VBLOCK_MAP_SIZE);
4145                         } else {
4146                                 memcpy(se->discard_map,
4147                                         se->cur_valid_map,
4148                                         SIT_VBLOCK_MAP_SIZE);
4149                                 sbi->discard_blks +=
4150                                         sbi->blocks_per_seg -
4151                                         se->valid_blocks;
4152                         }
4153
4154                         if (__is_large_section(sbi))
4155                                 get_sec_entry(sbi, start)->valid_blocks +=
4156                                                         se->valid_blocks;
4157                 }
4158                 start_blk += readed;
4159         } while (start_blk < sit_blk_cnt);
4160
4161         down_read(&curseg->journal_rwsem);
4162         for (i = 0; i < sits_in_cursum(journal); i++) {
4163                 unsigned int old_valid_blocks;
4164
4165                 start = le32_to_cpu(segno_in_journal(journal, i));
4166                 if (start >= MAIN_SEGS(sbi)) {
4167                         f2fs_err(sbi, "Wrong journal entry on segno %u",
4168                                  start);
4169                         err = -EFSCORRUPTED;
4170                         break;
4171                 }
4172
4173                 se = &sit_i->sentries[start];
4174                 sit = sit_in_journal(journal, i);
4175
4176                 old_valid_blocks = se->valid_blocks;
4177                 if (IS_NODESEG(se->type))
4178                         total_node_blocks -= old_valid_blocks;
4179
4180                 err = check_block_count(sbi, start, &sit);
4181                 if (err)
4182                         break;
4183                 seg_info_from_raw_sit(se, &sit);
4184                 if (IS_NODESEG(se->type))
4185                         total_node_blocks += se->valid_blocks;
4186
4187                 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4188                         memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4189                 } else {
4190                         memcpy(se->discard_map, se->cur_valid_map,
4191                                                 SIT_VBLOCK_MAP_SIZE);
4192                         sbi->discard_blks += old_valid_blocks;
4193                         sbi->discard_blks -= se->valid_blocks;
4194                 }
4195
4196                 if (__is_large_section(sbi)) {
4197                         get_sec_entry(sbi, start)->valid_blocks +=
4198                                                         se->valid_blocks;
4199                         get_sec_entry(sbi, start)->valid_blocks -=
4200                                                         old_valid_blocks;
4201                 }
4202         }
4203         up_read(&curseg->journal_rwsem);
4204
4205         if (!err && total_node_blocks != valid_node_count(sbi)) {
4206                 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4207                          total_node_blocks, valid_node_count(sbi));
4208                 err = -EFSCORRUPTED;
4209         }
4210
4211         return err;
4212 }
4213
4214 static void init_free_segmap(struct f2fs_sb_info *sbi)
4215 {
4216         unsigned int start;
4217         int type;
4218
4219         for (start = 0; start < MAIN_SEGS(sbi); start++) {
4220                 struct seg_entry *sentry = get_seg_entry(sbi, start);
4221                 if (!sentry->valid_blocks)
4222                         __set_free(sbi, start);
4223                 else
4224                         SIT_I(sbi)->written_valid_blocks +=
4225                                                 sentry->valid_blocks;
4226         }
4227
4228         /* set use the current segments */
4229         for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4230                 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4231                 __set_test_and_inuse(sbi, curseg_t->segno);
4232         }
4233 }
4234
4235 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4236 {
4237         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4238         struct free_segmap_info *free_i = FREE_I(sbi);
4239         unsigned int segno = 0, offset = 0;
4240         unsigned short valid_blocks;
4241
4242         while (1) {
4243                 /* find dirty segment based on free segmap */
4244                 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4245                 if (segno >= MAIN_SEGS(sbi))
4246                         break;
4247                 offset = segno + 1;
4248                 valid_blocks = get_valid_blocks(sbi, segno, false);
4249                 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4250                         continue;
4251                 if (valid_blocks > sbi->blocks_per_seg) {
4252                         f2fs_bug_on(sbi, 1);
4253                         continue;
4254                 }
4255                 mutex_lock(&dirty_i->seglist_lock);
4256                 __locate_dirty_segment(sbi, segno, DIRTY);
4257                 mutex_unlock(&dirty_i->seglist_lock);
4258         }
4259 }
4260
4261 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4262 {
4263         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4264         unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4265
4266         dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4267         if (!dirty_i->victim_secmap)
4268                 return -ENOMEM;
4269         return 0;
4270 }
4271
4272 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4273 {
4274         struct dirty_seglist_info *dirty_i;
4275         unsigned int bitmap_size, i;
4276
4277         /* allocate memory for dirty segments list information */
4278         dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4279                                                                 GFP_KERNEL);
4280         if (!dirty_i)
4281                 return -ENOMEM;
4282
4283         SM_I(sbi)->dirty_info = dirty_i;
4284         mutex_init(&dirty_i->seglist_lock);
4285
4286         bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4287
4288         for (i = 0; i < NR_DIRTY_TYPE; i++) {
4289                 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4290                                                                 GFP_KERNEL);
4291                 if (!dirty_i->dirty_segmap[i])
4292                         return -ENOMEM;
4293         }
4294
4295         init_dirty_segmap(sbi);
4296         return init_victim_secmap(sbi);
4297 }
4298
4299 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4300 {
4301         int i;
4302
4303         /*
4304          * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4305          * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4306          */
4307         for (i = 0; i < NO_CHECK_TYPE; i++) {
4308                 struct curseg_info *curseg = CURSEG_I(sbi, i);
4309                 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4310                 unsigned int blkofs = curseg->next_blkoff;
4311
4312                 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4313                         goto out;
4314
4315                 if (curseg->alloc_type == SSR)
4316                         continue;
4317
4318                 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4319                         if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4320                                 continue;
4321 out:
4322                         f2fs_err(sbi,
4323                                  "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4324                                  i, curseg->segno, curseg->alloc_type,
4325                                  curseg->next_blkoff, blkofs);
4326                         return -EFSCORRUPTED;
4327                 }
4328         }
4329         return 0;
4330 }
4331
4332 /*
4333  * Update min, max modified time for cost-benefit GC algorithm
4334  */
4335 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4336 {
4337         struct sit_info *sit_i = SIT_I(sbi);
4338         unsigned int segno;
4339
4340         down_write(&sit_i->sentry_lock);
4341
4342         sit_i->min_mtime = ULLONG_MAX;
4343
4344         for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4345                 unsigned int i;
4346                 unsigned long long mtime = 0;
4347
4348                 for (i = 0; i < sbi->segs_per_sec; i++)
4349                         mtime += get_seg_entry(sbi, segno + i)->mtime;
4350
4351                 mtime = div_u64(mtime, sbi->segs_per_sec);
4352
4353                 if (sit_i->min_mtime > mtime)
4354                         sit_i->min_mtime = mtime;
4355         }
4356         sit_i->max_mtime = get_mtime(sbi, false);
4357         up_write(&sit_i->sentry_lock);
4358 }
4359
4360 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4361 {
4362         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4363         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4364         struct f2fs_sm_info *sm_info;
4365         int err;
4366
4367         sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4368         if (!sm_info)
4369                 return -ENOMEM;
4370
4371         /* init sm info */
4372         sbi->sm_info = sm_info;
4373         sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4374         sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4375         sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4376         sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4377         sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4378         sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4379         sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4380         sm_info->rec_prefree_segments = sm_info->main_segments *
4381                                         DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4382         if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4383                 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4384
4385         if (!test_opt(sbi, LFS))
4386                 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4387         sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4388         sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4389         sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4390         sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4391         sm_info->min_ssr_sections = reserved_sections(sbi);
4392
4393         INIT_LIST_HEAD(&sm_info->sit_entry_set);
4394
4395         init_rwsem(&sm_info->curseg_lock);
4396
4397         if (!f2fs_readonly(sbi->sb)) {
4398                 err = f2fs_create_flush_cmd_control(sbi);
4399                 if (err)
4400                         return err;
4401         }
4402
4403         err = create_discard_cmd_control(sbi);
4404         if (err)
4405                 return err;
4406
4407         err = build_sit_info(sbi);
4408         if (err)
4409                 return err;
4410         err = build_free_segmap(sbi);
4411         if (err)
4412                 return err;
4413         err = build_curseg(sbi);
4414         if (err)
4415                 return err;
4416
4417         /* reinit free segmap based on SIT */
4418         err = build_sit_entries(sbi);
4419         if (err)
4420                 return err;
4421
4422         init_free_segmap(sbi);
4423         err = build_dirty_segmap(sbi);
4424         if (err)
4425                 return err;
4426
4427         err = sanity_check_curseg(sbi);
4428         if (err)
4429                 return err;
4430
4431         init_min_max_mtime(sbi);
4432         return 0;
4433 }
4434
4435 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4436                 enum dirty_type dirty_type)
4437 {
4438         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4439
4440         mutex_lock(&dirty_i->seglist_lock);
4441         kvfree(dirty_i->dirty_segmap[dirty_type]);
4442         dirty_i->nr_dirty[dirty_type] = 0;
4443         mutex_unlock(&dirty_i->seglist_lock);
4444 }
4445
4446 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4447 {
4448         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4449         kvfree(dirty_i->victim_secmap);
4450 }
4451
4452 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4453 {
4454         struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4455         int i;
4456
4457         if (!dirty_i)
4458                 return;
4459
4460         /* discard pre-free/dirty segments list */
4461         for (i = 0; i < NR_DIRTY_TYPE; i++)
4462                 discard_dirty_segmap(sbi, i);
4463
4464         destroy_victim_secmap(sbi);
4465         SM_I(sbi)->dirty_info = NULL;
4466         kvfree(dirty_i);
4467 }
4468
4469 static void destroy_curseg(struct f2fs_sb_info *sbi)
4470 {
4471         struct curseg_info *array = SM_I(sbi)->curseg_array;
4472         int i;
4473
4474         if (!array)
4475                 return;
4476         SM_I(sbi)->curseg_array = NULL;
4477         for (i = 0; i < NR_CURSEG_TYPE; i++) {
4478                 kvfree(array[i].sum_blk);
4479                 kvfree(array[i].journal);
4480         }
4481         kvfree(array);
4482 }
4483
4484 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4485 {
4486         struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4487         if (!free_i)
4488                 return;
4489         SM_I(sbi)->free_info = NULL;
4490         kvfree(free_i->free_segmap);
4491         kvfree(free_i->free_secmap);
4492         kvfree(free_i);
4493 }
4494
4495 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4496 {
4497         struct sit_info *sit_i = SIT_I(sbi);
4498
4499         if (!sit_i)
4500                 return;
4501
4502         if (sit_i->sentries)
4503                 kvfree(sit_i->bitmap);
4504         kvfree(sit_i->tmp_map);
4505
4506         kvfree(sit_i->sentries);
4507         kvfree(sit_i->sec_entries);
4508         kvfree(sit_i->dirty_sentries_bitmap);
4509
4510         SM_I(sbi)->sit_info = NULL;
4511         kvfree(sit_i->sit_bitmap);
4512 #ifdef CONFIG_F2FS_CHECK_FS
4513         kvfree(sit_i->sit_bitmap_mir);
4514         kvfree(sit_i->invalid_segmap);
4515 #endif
4516         kvfree(sit_i);
4517 }
4518
4519 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4520 {
4521         struct f2fs_sm_info *sm_info = SM_I(sbi);
4522
4523         if (!sm_info)
4524                 return;
4525         f2fs_destroy_flush_cmd_control(sbi, true);
4526         destroy_discard_cmd_control(sbi);
4527         destroy_dirty_segmap(sbi);
4528         destroy_curseg(sbi);
4529         destroy_free_segmap(sbi);
4530         destroy_sit_info(sbi);
4531         sbi->sm_info = NULL;
4532         kvfree(sm_info);
4533 }
4534
4535 int __init f2fs_create_segment_manager_caches(void)
4536 {
4537         discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4538                         sizeof(struct discard_entry));
4539         if (!discard_entry_slab)
4540                 goto fail;
4541
4542         discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4543                         sizeof(struct discard_cmd));
4544         if (!discard_cmd_slab)
4545                 goto destroy_discard_entry;
4546
4547         sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4548                         sizeof(struct sit_entry_set));
4549         if (!sit_entry_set_slab)
4550                 goto destroy_discard_cmd;
4551
4552         inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4553                         sizeof(struct inmem_pages));
4554         if (!inmem_entry_slab)
4555                 goto destroy_sit_entry_set;
4556         return 0;
4557
4558 destroy_sit_entry_set:
4559         kmem_cache_destroy(sit_entry_set_slab);
4560 destroy_discard_cmd:
4561         kmem_cache_destroy(discard_cmd_slab);
4562 destroy_discard_entry:
4563         kmem_cache_destroy(discard_entry_slab);
4564 fail:
4565         return -ENOMEM;
4566 }
4567
4568 void f2fs_destroy_segment_manager_caches(void)
4569 {
4570         kmem_cache_destroy(sit_entry_set_slab);
4571         kmem_cache_destroy(discard_cmd_slab);
4572         kmem_cache_destroy(discard_entry_slab);
4573         kmem_cache_destroy(inmem_entry_slab);
4574 }