]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/f2fs/super.c
f2fs: give random value to i_generation
[linux.git] / fs / f2fs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/statfs.h>
12 #include <linux/buffer_head.h>
13 #include <linux/backing-dev.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "xattr.h"
31 #include "gc.h"
32 #include "trace.h"
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/f2fs.h>
36
37 static struct kmem_cache *f2fs_inode_cachep;
38
39 #ifdef CONFIG_F2FS_FAULT_INJECTION
40
41 const char *f2fs_fault_name[FAULT_MAX] = {
42         [FAULT_KMALLOC]         = "kmalloc",
43         [FAULT_KVMALLOC]        = "kvmalloc",
44         [FAULT_PAGE_ALLOC]      = "page alloc",
45         [FAULT_PAGE_GET]        = "page get",
46         [FAULT_ALLOC_BIO]       = "alloc bio",
47         [FAULT_ALLOC_NID]       = "alloc nid",
48         [FAULT_ORPHAN]          = "orphan",
49         [FAULT_BLOCK]           = "no more block",
50         [FAULT_DIR_DEPTH]       = "too big dir depth",
51         [FAULT_EVICT_INODE]     = "evict_inode fail",
52         [FAULT_TRUNCATE]        = "truncate fail",
53         [FAULT_READ_IO]         = "read IO error",
54         [FAULT_CHECKPOINT]      = "checkpoint error",
55         [FAULT_DISCARD]         = "discard error",
56         [FAULT_WRITE_IO]        = "write IO error",
57 };
58
59 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
60                                                         unsigned int type)
61 {
62         struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
63
64         if (rate) {
65                 atomic_set(&ffi->inject_ops, 0);
66                 ffi->inject_rate = rate;
67         }
68
69         if (type)
70                 ffi->inject_type = type;
71
72         if (!rate && !type)
73                 memset(ffi, 0, sizeof(struct f2fs_fault_info));
74 }
75 #endif
76
77 /* f2fs-wide shrinker description */
78 static struct shrinker f2fs_shrinker_info = {
79         .scan_objects = f2fs_shrink_scan,
80         .count_objects = f2fs_shrink_count,
81         .seeks = DEFAULT_SEEKS,
82 };
83
84 enum {
85         Opt_gc_background,
86         Opt_disable_roll_forward,
87         Opt_norecovery,
88         Opt_discard,
89         Opt_nodiscard,
90         Opt_noheap,
91         Opt_heap,
92         Opt_user_xattr,
93         Opt_nouser_xattr,
94         Opt_acl,
95         Opt_noacl,
96         Opt_active_logs,
97         Opt_disable_ext_identify,
98         Opt_inline_xattr,
99         Opt_noinline_xattr,
100         Opt_inline_xattr_size,
101         Opt_inline_data,
102         Opt_inline_dentry,
103         Opt_noinline_dentry,
104         Opt_flush_merge,
105         Opt_noflush_merge,
106         Opt_nobarrier,
107         Opt_fastboot,
108         Opt_extent_cache,
109         Opt_noextent_cache,
110         Opt_noinline_data,
111         Opt_data_flush,
112         Opt_reserve_root,
113         Opt_resgid,
114         Opt_resuid,
115         Opt_mode,
116         Opt_io_size_bits,
117         Opt_fault_injection,
118         Opt_fault_type,
119         Opt_lazytime,
120         Opt_nolazytime,
121         Opt_quota,
122         Opt_noquota,
123         Opt_usrquota,
124         Opt_grpquota,
125         Opt_prjquota,
126         Opt_usrjquota,
127         Opt_grpjquota,
128         Opt_prjjquota,
129         Opt_offusrjquota,
130         Opt_offgrpjquota,
131         Opt_offprjjquota,
132         Opt_jqfmt_vfsold,
133         Opt_jqfmt_vfsv0,
134         Opt_jqfmt_vfsv1,
135         Opt_whint,
136         Opt_alloc,
137         Opt_fsync,
138         Opt_test_dummy_encryption,
139         Opt_checkpoint,
140         Opt_err,
141 };
142
143 static match_table_t f2fs_tokens = {
144         {Opt_gc_background, "background_gc=%s"},
145         {Opt_disable_roll_forward, "disable_roll_forward"},
146         {Opt_norecovery, "norecovery"},
147         {Opt_discard, "discard"},
148         {Opt_nodiscard, "nodiscard"},
149         {Opt_noheap, "no_heap"},
150         {Opt_heap, "heap"},
151         {Opt_user_xattr, "user_xattr"},
152         {Opt_nouser_xattr, "nouser_xattr"},
153         {Opt_acl, "acl"},
154         {Opt_noacl, "noacl"},
155         {Opt_active_logs, "active_logs=%u"},
156         {Opt_disable_ext_identify, "disable_ext_identify"},
157         {Opt_inline_xattr, "inline_xattr"},
158         {Opt_noinline_xattr, "noinline_xattr"},
159         {Opt_inline_xattr_size, "inline_xattr_size=%u"},
160         {Opt_inline_data, "inline_data"},
161         {Opt_inline_dentry, "inline_dentry"},
162         {Opt_noinline_dentry, "noinline_dentry"},
163         {Opt_flush_merge, "flush_merge"},
164         {Opt_noflush_merge, "noflush_merge"},
165         {Opt_nobarrier, "nobarrier"},
166         {Opt_fastboot, "fastboot"},
167         {Opt_extent_cache, "extent_cache"},
168         {Opt_noextent_cache, "noextent_cache"},
169         {Opt_noinline_data, "noinline_data"},
170         {Opt_data_flush, "data_flush"},
171         {Opt_reserve_root, "reserve_root=%u"},
172         {Opt_resgid, "resgid=%u"},
173         {Opt_resuid, "resuid=%u"},
174         {Opt_mode, "mode=%s"},
175         {Opt_io_size_bits, "io_bits=%u"},
176         {Opt_fault_injection, "fault_injection=%u"},
177         {Opt_fault_type, "fault_type=%u"},
178         {Opt_lazytime, "lazytime"},
179         {Opt_nolazytime, "nolazytime"},
180         {Opt_quota, "quota"},
181         {Opt_noquota, "noquota"},
182         {Opt_usrquota, "usrquota"},
183         {Opt_grpquota, "grpquota"},
184         {Opt_prjquota, "prjquota"},
185         {Opt_usrjquota, "usrjquota=%s"},
186         {Opt_grpjquota, "grpjquota=%s"},
187         {Opt_prjjquota, "prjjquota=%s"},
188         {Opt_offusrjquota, "usrjquota="},
189         {Opt_offgrpjquota, "grpjquota="},
190         {Opt_offprjjquota, "prjjquota="},
191         {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
192         {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
193         {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
194         {Opt_whint, "whint_mode=%s"},
195         {Opt_alloc, "alloc_mode=%s"},
196         {Opt_fsync, "fsync_mode=%s"},
197         {Opt_test_dummy_encryption, "test_dummy_encryption"},
198         {Opt_checkpoint, "checkpoint=%s"},
199         {Opt_err, NULL},
200 };
201
202 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
203 {
204         struct va_format vaf;
205         va_list args;
206
207         va_start(args, fmt);
208         vaf.fmt = fmt;
209         vaf.va = &args;
210         printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
211         va_end(args);
212 }
213
214 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
215 {
216         block_t limit = (sbi->user_block_count << 1) / 1000;
217
218         /* limit is 0.2% */
219         if (test_opt(sbi, RESERVE_ROOT) &&
220                         F2FS_OPTION(sbi).root_reserved_blocks > limit) {
221                 F2FS_OPTION(sbi).root_reserved_blocks = limit;
222                 f2fs_msg(sbi->sb, KERN_INFO,
223                         "Reduce reserved blocks for root = %u",
224                         F2FS_OPTION(sbi).root_reserved_blocks);
225         }
226         if (!test_opt(sbi, RESERVE_ROOT) &&
227                 (!uid_eq(F2FS_OPTION(sbi).s_resuid,
228                                 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
229                 !gid_eq(F2FS_OPTION(sbi).s_resgid,
230                                 make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
231                 f2fs_msg(sbi->sb, KERN_INFO,
232                         "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
233                                 from_kuid_munged(&init_user_ns,
234                                         F2FS_OPTION(sbi).s_resuid),
235                                 from_kgid_munged(&init_user_ns,
236                                         F2FS_OPTION(sbi).s_resgid));
237 }
238
239 static void init_once(void *foo)
240 {
241         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
242
243         inode_init_once(&fi->vfs_inode);
244 }
245
246 #ifdef CONFIG_QUOTA
247 static const char * const quotatypes[] = INITQFNAMES;
248 #define QTYPE2NAME(t) (quotatypes[t])
249 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
250                                                         substring_t *args)
251 {
252         struct f2fs_sb_info *sbi = F2FS_SB(sb);
253         char *qname;
254         int ret = -EINVAL;
255
256         if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
257                 f2fs_msg(sb, KERN_ERR,
258                         "Cannot change journaled "
259                         "quota options when quota turned on");
260                 return -EINVAL;
261         }
262         if (f2fs_sb_has_quota_ino(sbi)) {
263                 f2fs_msg(sb, KERN_INFO,
264                         "QUOTA feature is enabled, so ignore qf_name");
265                 return 0;
266         }
267
268         qname = match_strdup(args);
269         if (!qname) {
270                 f2fs_msg(sb, KERN_ERR,
271                         "Not enough memory for storing quotafile name");
272                 return -ENOMEM;
273         }
274         if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
275                 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
276                         ret = 0;
277                 else
278                         f2fs_msg(sb, KERN_ERR,
279                                  "%s quota file already specified",
280                                  QTYPE2NAME(qtype));
281                 goto errout;
282         }
283         if (strchr(qname, '/')) {
284                 f2fs_msg(sb, KERN_ERR,
285                         "quotafile must be on filesystem root");
286                 goto errout;
287         }
288         F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
289         set_opt(sbi, QUOTA);
290         return 0;
291 errout:
292         kvfree(qname);
293         return ret;
294 }
295
296 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
297 {
298         struct f2fs_sb_info *sbi = F2FS_SB(sb);
299
300         if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
301                 f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options"
302                         " when quota turned on");
303                 return -EINVAL;
304         }
305         kvfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
306         F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
307         return 0;
308 }
309
310 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
311 {
312         /*
313          * We do the test below only for project quotas. 'usrquota' and
314          * 'grpquota' mount options are allowed even without quota feature
315          * to support legacy quotas in quota files.
316          */
317         if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
318                 f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. "
319                          "Cannot enable project quota enforcement.");
320                 return -1;
321         }
322         if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
323                         F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
324                         F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
325                 if (test_opt(sbi, USRQUOTA) &&
326                                 F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
327                         clear_opt(sbi, USRQUOTA);
328
329                 if (test_opt(sbi, GRPQUOTA) &&
330                                 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
331                         clear_opt(sbi, GRPQUOTA);
332
333                 if (test_opt(sbi, PRJQUOTA) &&
334                                 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
335                         clear_opt(sbi, PRJQUOTA);
336
337                 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
338                                 test_opt(sbi, PRJQUOTA)) {
339                         f2fs_msg(sbi->sb, KERN_ERR, "old and new quota "
340                                         "format mixing");
341                         return -1;
342                 }
343
344                 if (!F2FS_OPTION(sbi).s_jquota_fmt) {
345                         f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format "
346                                         "not specified");
347                         return -1;
348                 }
349         }
350
351         if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
352                 f2fs_msg(sbi->sb, KERN_INFO,
353                         "QUOTA feature is enabled, so ignore jquota_fmt");
354                 F2FS_OPTION(sbi).s_jquota_fmt = 0;
355         }
356         return 0;
357 }
358 #endif
359
360 static int parse_options(struct super_block *sb, char *options)
361 {
362         struct f2fs_sb_info *sbi = F2FS_SB(sb);
363         substring_t args[MAX_OPT_ARGS];
364         char *p, *name;
365         int arg = 0;
366         kuid_t uid;
367         kgid_t gid;
368 #ifdef CONFIG_QUOTA
369         int ret;
370 #endif
371
372         if (!options)
373                 return 0;
374
375         while ((p = strsep(&options, ",")) != NULL) {
376                 int token;
377                 if (!*p)
378                         continue;
379                 /*
380                  * Initialize args struct so we know whether arg was
381                  * found; some options take optional arguments.
382                  */
383                 args[0].to = args[0].from = NULL;
384                 token = match_token(p, f2fs_tokens, args);
385
386                 switch (token) {
387                 case Opt_gc_background:
388                         name = match_strdup(&args[0]);
389
390                         if (!name)
391                                 return -ENOMEM;
392                         if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
393                                 set_opt(sbi, BG_GC);
394                                 clear_opt(sbi, FORCE_FG_GC);
395                         } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
396                                 clear_opt(sbi, BG_GC);
397                                 clear_opt(sbi, FORCE_FG_GC);
398                         } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
399                                 set_opt(sbi, BG_GC);
400                                 set_opt(sbi, FORCE_FG_GC);
401                         } else {
402                                 kvfree(name);
403                                 return -EINVAL;
404                         }
405                         kvfree(name);
406                         break;
407                 case Opt_disable_roll_forward:
408                         set_opt(sbi, DISABLE_ROLL_FORWARD);
409                         break;
410                 case Opt_norecovery:
411                         /* this option mounts f2fs with ro */
412                         set_opt(sbi, DISABLE_ROLL_FORWARD);
413                         if (!f2fs_readonly(sb))
414                                 return -EINVAL;
415                         break;
416                 case Opt_discard:
417                         set_opt(sbi, DISCARD);
418                         break;
419                 case Opt_nodiscard:
420                         if (f2fs_sb_has_blkzoned(sbi)) {
421                                 f2fs_msg(sb, KERN_WARNING,
422                                         "discard is required for zoned block devices");
423                                 return -EINVAL;
424                         }
425                         clear_opt(sbi, DISCARD);
426                         break;
427                 case Opt_noheap:
428                         set_opt(sbi, NOHEAP);
429                         break;
430                 case Opt_heap:
431                         clear_opt(sbi, NOHEAP);
432                         break;
433 #ifdef CONFIG_F2FS_FS_XATTR
434                 case Opt_user_xattr:
435                         set_opt(sbi, XATTR_USER);
436                         break;
437                 case Opt_nouser_xattr:
438                         clear_opt(sbi, XATTR_USER);
439                         break;
440                 case Opt_inline_xattr:
441                         set_opt(sbi, INLINE_XATTR);
442                         break;
443                 case Opt_noinline_xattr:
444                         clear_opt(sbi, INLINE_XATTR);
445                         break;
446                 case Opt_inline_xattr_size:
447                         if (args->from && match_int(args, &arg))
448                                 return -EINVAL;
449                         set_opt(sbi, INLINE_XATTR_SIZE);
450                         F2FS_OPTION(sbi).inline_xattr_size = arg;
451                         break;
452 #else
453                 case Opt_user_xattr:
454                         f2fs_msg(sb, KERN_INFO,
455                                 "user_xattr options not supported");
456                         break;
457                 case Opt_nouser_xattr:
458                         f2fs_msg(sb, KERN_INFO,
459                                 "nouser_xattr options not supported");
460                         break;
461                 case Opt_inline_xattr:
462                         f2fs_msg(sb, KERN_INFO,
463                                 "inline_xattr options not supported");
464                         break;
465                 case Opt_noinline_xattr:
466                         f2fs_msg(sb, KERN_INFO,
467                                 "noinline_xattr options not supported");
468                         break;
469 #endif
470 #ifdef CONFIG_F2FS_FS_POSIX_ACL
471                 case Opt_acl:
472                         set_opt(sbi, POSIX_ACL);
473                         break;
474                 case Opt_noacl:
475                         clear_opt(sbi, POSIX_ACL);
476                         break;
477 #else
478                 case Opt_acl:
479                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
480                         break;
481                 case Opt_noacl:
482                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
483                         break;
484 #endif
485                 case Opt_active_logs:
486                         if (args->from && match_int(args, &arg))
487                                 return -EINVAL;
488                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
489                                 return -EINVAL;
490                         F2FS_OPTION(sbi).active_logs = arg;
491                         break;
492                 case Opt_disable_ext_identify:
493                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
494                         break;
495                 case Opt_inline_data:
496                         set_opt(sbi, INLINE_DATA);
497                         break;
498                 case Opt_inline_dentry:
499                         set_opt(sbi, INLINE_DENTRY);
500                         break;
501                 case Opt_noinline_dentry:
502                         clear_opt(sbi, INLINE_DENTRY);
503                         break;
504                 case Opt_flush_merge:
505                         set_opt(sbi, FLUSH_MERGE);
506                         break;
507                 case Opt_noflush_merge:
508                         clear_opt(sbi, FLUSH_MERGE);
509                         break;
510                 case Opt_nobarrier:
511                         set_opt(sbi, NOBARRIER);
512                         break;
513                 case Opt_fastboot:
514                         set_opt(sbi, FASTBOOT);
515                         break;
516                 case Opt_extent_cache:
517                         set_opt(sbi, EXTENT_CACHE);
518                         break;
519                 case Opt_noextent_cache:
520                         clear_opt(sbi, EXTENT_CACHE);
521                         break;
522                 case Opt_noinline_data:
523                         clear_opt(sbi, INLINE_DATA);
524                         break;
525                 case Opt_data_flush:
526                         set_opt(sbi, DATA_FLUSH);
527                         break;
528                 case Opt_reserve_root:
529                         if (args->from && match_int(args, &arg))
530                                 return -EINVAL;
531                         if (test_opt(sbi, RESERVE_ROOT)) {
532                                 f2fs_msg(sb, KERN_INFO,
533                                         "Preserve previous reserve_root=%u",
534                                         F2FS_OPTION(sbi).root_reserved_blocks);
535                         } else {
536                                 F2FS_OPTION(sbi).root_reserved_blocks = arg;
537                                 set_opt(sbi, RESERVE_ROOT);
538                         }
539                         break;
540                 case Opt_resuid:
541                         if (args->from && match_int(args, &arg))
542                                 return -EINVAL;
543                         uid = make_kuid(current_user_ns(), arg);
544                         if (!uid_valid(uid)) {
545                                 f2fs_msg(sb, KERN_ERR,
546                                         "Invalid uid value %d", arg);
547                                 return -EINVAL;
548                         }
549                         F2FS_OPTION(sbi).s_resuid = uid;
550                         break;
551                 case Opt_resgid:
552                         if (args->from && match_int(args, &arg))
553                                 return -EINVAL;
554                         gid = make_kgid(current_user_ns(), arg);
555                         if (!gid_valid(gid)) {
556                                 f2fs_msg(sb, KERN_ERR,
557                                         "Invalid gid value %d", arg);
558                                 return -EINVAL;
559                         }
560                         F2FS_OPTION(sbi).s_resgid = gid;
561                         break;
562                 case Opt_mode:
563                         name = match_strdup(&args[0]);
564
565                         if (!name)
566                                 return -ENOMEM;
567                         if (strlen(name) == 8 &&
568                                         !strncmp(name, "adaptive", 8)) {
569                                 if (f2fs_sb_has_blkzoned(sbi)) {
570                                         f2fs_msg(sb, KERN_WARNING,
571                                                  "adaptive mode is not allowed with "
572                                                  "zoned block device feature");
573                                         kvfree(name);
574                                         return -EINVAL;
575                                 }
576                                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
577                         } else if (strlen(name) == 3 &&
578                                         !strncmp(name, "lfs", 3)) {
579                                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
580                         } else {
581                                 kvfree(name);
582                                 return -EINVAL;
583                         }
584                         kvfree(name);
585                         break;
586                 case Opt_io_size_bits:
587                         if (args->from && match_int(args, &arg))
588                                 return -EINVAL;
589                         if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) {
590                                 f2fs_msg(sb, KERN_WARNING,
591                                         "Not support %d, larger than %d",
592                                         1 << arg, BIO_MAX_PAGES);
593                                 return -EINVAL;
594                         }
595                         F2FS_OPTION(sbi).write_io_size_bits = arg;
596                         break;
597 #ifdef CONFIG_F2FS_FAULT_INJECTION
598                 case Opt_fault_injection:
599                         if (args->from && match_int(args, &arg))
600                                 return -EINVAL;
601                         f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
602                         set_opt(sbi, FAULT_INJECTION);
603                         break;
604
605                 case Opt_fault_type:
606                         if (args->from && match_int(args, &arg))
607                                 return -EINVAL;
608                         f2fs_build_fault_attr(sbi, 0, arg);
609                         set_opt(sbi, FAULT_INJECTION);
610                         break;
611 #else
612                 case Opt_fault_injection:
613                         f2fs_msg(sb, KERN_INFO,
614                                 "fault_injection options not supported");
615                         break;
616
617                 case Opt_fault_type:
618                         f2fs_msg(sb, KERN_INFO,
619                                 "fault_type options not supported");
620                         break;
621 #endif
622                 case Opt_lazytime:
623                         sb->s_flags |= SB_LAZYTIME;
624                         break;
625                 case Opt_nolazytime:
626                         sb->s_flags &= ~SB_LAZYTIME;
627                         break;
628 #ifdef CONFIG_QUOTA
629                 case Opt_quota:
630                 case Opt_usrquota:
631                         set_opt(sbi, USRQUOTA);
632                         break;
633                 case Opt_grpquota:
634                         set_opt(sbi, GRPQUOTA);
635                         break;
636                 case Opt_prjquota:
637                         set_opt(sbi, PRJQUOTA);
638                         break;
639                 case Opt_usrjquota:
640                         ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
641                         if (ret)
642                                 return ret;
643                         break;
644                 case Opt_grpjquota:
645                         ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
646                         if (ret)
647                                 return ret;
648                         break;
649                 case Opt_prjjquota:
650                         ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
651                         if (ret)
652                                 return ret;
653                         break;
654                 case Opt_offusrjquota:
655                         ret = f2fs_clear_qf_name(sb, USRQUOTA);
656                         if (ret)
657                                 return ret;
658                         break;
659                 case Opt_offgrpjquota:
660                         ret = f2fs_clear_qf_name(sb, GRPQUOTA);
661                         if (ret)
662                                 return ret;
663                         break;
664                 case Opt_offprjjquota:
665                         ret = f2fs_clear_qf_name(sb, PRJQUOTA);
666                         if (ret)
667                                 return ret;
668                         break;
669                 case Opt_jqfmt_vfsold:
670                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
671                         break;
672                 case Opt_jqfmt_vfsv0:
673                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
674                         break;
675                 case Opt_jqfmt_vfsv1:
676                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
677                         break;
678                 case Opt_noquota:
679                         clear_opt(sbi, QUOTA);
680                         clear_opt(sbi, USRQUOTA);
681                         clear_opt(sbi, GRPQUOTA);
682                         clear_opt(sbi, PRJQUOTA);
683                         break;
684 #else
685                 case Opt_quota:
686                 case Opt_usrquota:
687                 case Opt_grpquota:
688                 case Opt_prjquota:
689                 case Opt_usrjquota:
690                 case Opt_grpjquota:
691                 case Opt_prjjquota:
692                 case Opt_offusrjquota:
693                 case Opt_offgrpjquota:
694                 case Opt_offprjjquota:
695                 case Opt_jqfmt_vfsold:
696                 case Opt_jqfmt_vfsv0:
697                 case Opt_jqfmt_vfsv1:
698                 case Opt_noquota:
699                         f2fs_msg(sb, KERN_INFO,
700                                         "quota operations not supported");
701                         break;
702 #endif
703                 case Opt_whint:
704                         name = match_strdup(&args[0]);
705                         if (!name)
706                                 return -ENOMEM;
707                         if (strlen(name) == 10 &&
708                                         !strncmp(name, "user-based", 10)) {
709                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
710                         } else if (strlen(name) == 3 &&
711                                         !strncmp(name, "off", 3)) {
712                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
713                         } else if (strlen(name) == 8 &&
714                                         !strncmp(name, "fs-based", 8)) {
715                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
716                         } else {
717                                 kvfree(name);
718                                 return -EINVAL;
719                         }
720                         kvfree(name);
721                         break;
722                 case Opt_alloc:
723                         name = match_strdup(&args[0]);
724                         if (!name)
725                                 return -ENOMEM;
726
727                         if (strlen(name) == 7 &&
728                                         !strncmp(name, "default", 7)) {
729                                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
730                         } else if (strlen(name) == 5 &&
731                                         !strncmp(name, "reuse", 5)) {
732                                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
733                         } else {
734                                 kvfree(name);
735                                 return -EINVAL;
736                         }
737                         kvfree(name);
738                         break;
739                 case Opt_fsync:
740                         name = match_strdup(&args[0]);
741                         if (!name)
742                                 return -ENOMEM;
743                         if (strlen(name) == 5 &&
744                                         !strncmp(name, "posix", 5)) {
745                                 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
746                         } else if (strlen(name) == 6 &&
747                                         !strncmp(name, "strict", 6)) {
748                                 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
749                         } else if (strlen(name) == 9 &&
750                                         !strncmp(name, "nobarrier", 9)) {
751                                 F2FS_OPTION(sbi).fsync_mode =
752                                                         FSYNC_MODE_NOBARRIER;
753                         } else {
754                                 kvfree(name);
755                                 return -EINVAL;
756                         }
757                         kvfree(name);
758                         break;
759                 case Opt_test_dummy_encryption:
760 #ifdef CONFIG_F2FS_FS_ENCRYPTION
761                         if (!f2fs_sb_has_encrypt(sbi)) {
762                                 f2fs_msg(sb, KERN_ERR, "Encrypt feature is off");
763                                 return -EINVAL;
764                         }
765
766                         F2FS_OPTION(sbi).test_dummy_encryption = true;
767                         f2fs_msg(sb, KERN_INFO,
768                                         "Test dummy encryption mode enabled");
769 #else
770                         f2fs_msg(sb, KERN_INFO,
771                                         "Test dummy encryption mount option ignored");
772 #endif
773                         break;
774                 case Opt_checkpoint:
775                         name = match_strdup(&args[0]);
776                         if (!name)
777                                 return -ENOMEM;
778
779                         if (strlen(name) == 6 &&
780                                         !strncmp(name, "enable", 6)) {
781                                 clear_opt(sbi, DISABLE_CHECKPOINT);
782                         } else if (strlen(name) == 7 &&
783                                         !strncmp(name, "disable", 7)) {
784                                 set_opt(sbi, DISABLE_CHECKPOINT);
785                         } else {
786                                 kvfree(name);
787                                 return -EINVAL;
788                         }
789                         kvfree(name);
790                         break;
791                 default:
792                         f2fs_msg(sb, KERN_ERR,
793                                 "Unrecognized mount option \"%s\" or missing value",
794                                 p);
795                         return -EINVAL;
796                 }
797         }
798 #ifdef CONFIG_QUOTA
799         if (f2fs_check_quota_options(sbi))
800                 return -EINVAL;
801 #else
802         if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
803                 f2fs_msg(sbi->sb, KERN_INFO,
804                          "Filesystem with quota feature cannot be mounted RDWR "
805                          "without CONFIG_QUOTA");
806                 return -EINVAL;
807         }
808         if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
809                 f2fs_msg(sb, KERN_ERR,
810                         "Filesystem with project quota feature cannot be "
811                         "mounted RDWR without CONFIG_QUOTA");
812                 return -EINVAL;
813         }
814 #endif
815
816         if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
817                 f2fs_msg(sb, KERN_ERR,
818                                 "Should set mode=lfs with %uKB-sized IO",
819                                 F2FS_IO_SIZE_KB(sbi));
820                 return -EINVAL;
821         }
822
823         if (test_opt(sbi, INLINE_XATTR_SIZE)) {
824                 if (!f2fs_sb_has_extra_attr(sbi) ||
825                         !f2fs_sb_has_flexible_inline_xattr(sbi)) {
826                         f2fs_msg(sb, KERN_ERR,
827                                         "extra_attr or flexible_inline_xattr "
828                                         "feature is off");
829                         return -EINVAL;
830                 }
831                 if (!test_opt(sbi, INLINE_XATTR)) {
832                         f2fs_msg(sb, KERN_ERR,
833                                         "inline_xattr_size option should be "
834                                         "set with inline_xattr option");
835                         return -EINVAL;
836                 }
837                 if (F2FS_OPTION(sbi).inline_xattr_size <
838                         sizeof(struct f2fs_xattr_header) / sizeof(__le32) ||
839                         F2FS_OPTION(sbi).inline_xattr_size >
840                         DEF_ADDRS_PER_INODE -
841                         F2FS_TOTAL_EXTRA_ATTR_SIZE / sizeof(__le32) -
842                         DEF_INLINE_RESERVED_SIZE -
843                         MIN_INLINE_DENTRY_SIZE / sizeof(__le32)) {
844                         f2fs_msg(sb, KERN_ERR,
845                                         "inline xattr size is out of range");
846                         return -EINVAL;
847                 }
848         }
849
850         if (test_opt(sbi, DISABLE_CHECKPOINT) && test_opt(sbi, LFS)) {
851                 f2fs_msg(sb, KERN_ERR,
852                                 "LFS not compatible with checkpoint=disable\n");
853                 return -EINVAL;
854         }
855
856         /* Not pass down write hints if the number of active logs is lesser
857          * than NR_CURSEG_TYPE.
858          */
859         if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
860                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
861         return 0;
862 }
863
864 static struct inode *f2fs_alloc_inode(struct super_block *sb)
865 {
866         struct f2fs_inode_info *fi;
867
868         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
869         if (!fi)
870                 return NULL;
871
872         init_once((void *) fi);
873
874         /* Initialize f2fs-specific inode info */
875         atomic_set(&fi->dirty_pages, 0);
876         init_rwsem(&fi->i_sem);
877         INIT_LIST_HEAD(&fi->dirty_list);
878         INIT_LIST_HEAD(&fi->gdirty_list);
879         INIT_LIST_HEAD(&fi->inmem_ilist);
880         INIT_LIST_HEAD(&fi->inmem_pages);
881         mutex_init(&fi->inmem_lock);
882         init_rwsem(&fi->i_gc_rwsem[READ]);
883         init_rwsem(&fi->i_gc_rwsem[WRITE]);
884         init_rwsem(&fi->i_mmap_sem);
885         init_rwsem(&fi->i_xattr_sem);
886
887         /* Will be used by directory only */
888         fi->i_dir_level = F2FS_SB(sb)->dir_level;
889
890         return &fi->vfs_inode;
891 }
892
893 static int f2fs_drop_inode(struct inode *inode)
894 {
895         int ret;
896         /*
897          * This is to avoid a deadlock condition like below.
898          * writeback_single_inode(inode)
899          *  - f2fs_write_data_page
900          *    - f2fs_gc -> iput -> evict
901          *       - inode_wait_for_writeback(inode)
902          */
903         if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
904                 if (!inode->i_nlink && !is_bad_inode(inode)) {
905                         /* to avoid evict_inode call simultaneously */
906                         atomic_inc(&inode->i_count);
907                         spin_unlock(&inode->i_lock);
908
909                         /* some remained atomic pages should discarded */
910                         if (f2fs_is_atomic_file(inode))
911                                 f2fs_drop_inmem_pages(inode);
912
913                         /* should remain fi->extent_tree for writepage */
914                         f2fs_destroy_extent_node(inode);
915
916                         sb_start_intwrite(inode->i_sb);
917                         f2fs_i_size_write(inode, 0);
918
919                         f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
920                                         inode, NULL, 0, DATA);
921                         truncate_inode_pages_final(inode->i_mapping);
922
923                         if (F2FS_HAS_BLOCKS(inode))
924                                 f2fs_truncate(inode);
925
926                         sb_end_intwrite(inode->i_sb);
927
928                         spin_lock(&inode->i_lock);
929                         atomic_dec(&inode->i_count);
930                 }
931                 trace_f2fs_drop_inode(inode, 0);
932                 return 0;
933         }
934         ret = generic_drop_inode(inode);
935         trace_f2fs_drop_inode(inode, ret);
936         return ret;
937 }
938
939 int f2fs_inode_dirtied(struct inode *inode, bool sync)
940 {
941         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
942         int ret = 0;
943
944         spin_lock(&sbi->inode_lock[DIRTY_META]);
945         if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
946                 ret = 1;
947         } else {
948                 set_inode_flag(inode, FI_DIRTY_INODE);
949                 stat_inc_dirty_inode(sbi, DIRTY_META);
950         }
951         if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
952                 list_add_tail(&F2FS_I(inode)->gdirty_list,
953                                 &sbi->inode_list[DIRTY_META]);
954                 inc_page_count(sbi, F2FS_DIRTY_IMETA);
955         }
956         spin_unlock(&sbi->inode_lock[DIRTY_META]);
957         return ret;
958 }
959
960 void f2fs_inode_synced(struct inode *inode)
961 {
962         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
963
964         spin_lock(&sbi->inode_lock[DIRTY_META]);
965         if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
966                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
967                 return;
968         }
969         if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
970                 list_del_init(&F2FS_I(inode)->gdirty_list);
971                 dec_page_count(sbi, F2FS_DIRTY_IMETA);
972         }
973         clear_inode_flag(inode, FI_DIRTY_INODE);
974         clear_inode_flag(inode, FI_AUTO_RECOVER);
975         stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
976         spin_unlock(&sbi->inode_lock[DIRTY_META]);
977 }
978
979 /*
980  * f2fs_dirty_inode() is called from __mark_inode_dirty()
981  *
982  * We should call set_dirty_inode to write the dirty inode through write_inode.
983  */
984 static void f2fs_dirty_inode(struct inode *inode, int flags)
985 {
986         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
987
988         if (inode->i_ino == F2FS_NODE_INO(sbi) ||
989                         inode->i_ino == F2FS_META_INO(sbi))
990                 return;
991
992         if (flags == I_DIRTY_TIME)
993                 return;
994
995         if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
996                 clear_inode_flag(inode, FI_AUTO_RECOVER);
997
998         f2fs_inode_dirtied(inode, false);
999 }
1000
1001 static void f2fs_i_callback(struct rcu_head *head)
1002 {
1003         struct inode *inode = container_of(head, struct inode, i_rcu);
1004         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1005 }
1006
1007 static void f2fs_destroy_inode(struct inode *inode)
1008 {
1009         call_rcu(&inode->i_rcu, f2fs_i_callback);
1010 }
1011
1012 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1013 {
1014         percpu_counter_destroy(&sbi->alloc_valid_block_count);
1015         percpu_counter_destroy(&sbi->total_valid_inode_count);
1016 }
1017
1018 static void destroy_device_list(struct f2fs_sb_info *sbi)
1019 {
1020         int i;
1021
1022         for (i = 0; i < sbi->s_ndevs; i++) {
1023                 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1024 #ifdef CONFIG_BLK_DEV_ZONED
1025                 kvfree(FDEV(i).blkz_type);
1026 #endif
1027         }
1028         kvfree(sbi->devs);
1029 }
1030
1031 static void f2fs_put_super(struct super_block *sb)
1032 {
1033         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1034         int i;
1035         bool dropped;
1036
1037         f2fs_quota_off_umount(sb);
1038
1039         /* prevent remaining shrinker jobs */
1040         mutex_lock(&sbi->umount_mutex);
1041
1042         /*
1043          * We don't need to do checkpoint when superblock is clean.
1044          * But, the previous checkpoint was not done by umount, it needs to do
1045          * clean checkpoint again.
1046          */
1047         if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1048                         !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1049                 struct cp_control cpc = {
1050                         .reason = CP_UMOUNT,
1051                 };
1052                 f2fs_write_checkpoint(sbi, &cpc);
1053         }
1054
1055         /* be sure to wait for any on-going discard commands */
1056         dropped = f2fs_issue_discard_timeout(sbi);
1057
1058         if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1059                                         !sbi->discard_blks && !dropped) {
1060                 struct cp_control cpc = {
1061                         .reason = CP_UMOUNT | CP_TRIMMED,
1062                 };
1063                 f2fs_write_checkpoint(sbi, &cpc);
1064         }
1065
1066         /*
1067          * normally superblock is clean, so we need to release this.
1068          * In addition, EIO will skip do checkpoint, we need this as well.
1069          */
1070         f2fs_release_ino_entry(sbi, true);
1071
1072         f2fs_leave_shrinker(sbi);
1073         mutex_unlock(&sbi->umount_mutex);
1074
1075         /* our cp_error case, we can wait for any writeback page */
1076         f2fs_flush_merged_writes(sbi);
1077
1078         f2fs_wait_on_all_pages_writeback(sbi);
1079
1080         f2fs_bug_on(sbi, sbi->fsync_node_num);
1081
1082         iput(sbi->node_inode);
1083         sbi->node_inode = NULL;
1084
1085         iput(sbi->meta_inode);
1086         sbi->meta_inode = NULL;
1087
1088         /*
1089          * iput() can update stat information, if f2fs_write_checkpoint()
1090          * above failed with error.
1091          */
1092         f2fs_destroy_stats(sbi);
1093
1094         /* destroy f2fs internal modules */
1095         f2fs_destroy_node_manager(sbi);
1096         f2fs_destroy_segment_manager(sbi);
1097
1098         kvfree(sbi->ckpt);
1099
1100         f2fs_unregister_sysfs(sbi);
1101
1102         sb->s_fs_info = NULL;
1103         if (sbi->s_chksum_driver)
1104                 crypto_free_shash(sbi->s_chksum_driver);
1105         kvfree(sbi->raw_super);
1106
1107         destroy_device_list(sbi);
1108         mempool_destroy(sbi->write_io_dummy);
1109 #ifdef CONFIG_QUOTA
1110         for (i = 0; i < MAXQUOTAS; i++)
1111                 kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1112 #endif
1113         destroy_percpu_info(sbi);
1114         for (i = 0; i < NR_PAGE_TYPE; i++)
1115                 kvfree(sbi->write_io[i]);
1116         kvfree(sbi);
1117 }
1118
1119 int f2fs_sync_fs(struct super_block *sb, int sync)
1120 {
1121         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1122         int err = 0;
1123
1124         if (unlikely(f2fs_cp_error(sbi)))
1125                 return 0;
1126         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1127                 return 0;
1128
1129         trace_f2fs_sync_fs(sb, sync);
1130
1131         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1132                 return -EAGAIN;
1133
1134         if (sync) {
1135                 struct cp_control cpc;
1136
1137                 cpc.reason = __get_cp_reason(sbi);
1138
1139                 mutex_lock(&sbi->gc_mutex);
1140                 err = f2fs_write_checkpoint(sbi, &cpc);
1141                 mutex_unlock(&sbi->gc_mutex);
1142         }
1143         f2fs_trace_ios(NULL, 1);
1144
1145         return err;
1146 }
1147
1148 static int f2fs_freeze(struct super_block *sb)
1149 {
1150         if (f2fs_readonly(sb))
1151                 return 0;
1152
1153         /* IO error happened before */
1154         if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1155                 return -EIO;
1156
1157         /* must be clean, since sync_filesystem() was already called */
1158         if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1159                 return -EINVAL;
1160         return 0;
1161 }
1162
1163 static int f2fs_unfreeze(struct super_block *sb)
1164 {
1165         return 0;
1166 }
1167
1168 #ifdef CONFIG_QUOTA
1169 static int f2fs_statfs_project(struct super_block *sb,
1170                                 kprojid_t projid, struct kstatfs *buf)
1171 {
1172         struct kqid qid;
1173         struct dquot *dquot;
1174         u64 limit;
1175         u64 curblock;
1176
1177         qid = make_kqid_projid(projid);
1178         dquot = dqget(sb, qid);
1179         if (IS_ERR(dquot))
1180                 return PTR_ERR(dquot);
1181         spin_lock(&dquot->dq_dqb_lock);
1182
1183         limit = (dquot->dq_dqb.dqb_bsoftlimit ?
1184                  dquot->dq_dqb.dqb_bsoftlimit :
1185                  dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
1186         if (limit && buf->f_blocks > limit) {
1187                 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
1188                 buf->f_blocks = limit;
1189                 buf->f_bfree = buf->f_bavail =
1190                         (buf->f_blocks > curblock) ?
1191                          (buf->f_blocks - curblock) : 0;
1192         }
1193
1194         limit = dquot->dq_dqb.dqb_isoftlimit ?
1195                 dquot->dq_dqb.dqb_isoftlimit :
1196                 dquot->dq_dqb.dqb_ihardlimit;
1197         if (limit && buf->f_files > limit) {
1198                 buf->f_files = limit;
1199                 buf->f_ffree =
1200                         (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1201                          (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1202         }
1203
1204         spin_unlock(&dquot->dq_dqb_lock);
1205         dqput(dquot);
1206         return 0;
1207 }
1208 #endif
1209
1210 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1211 {
1212         struct super_block *sb = dentry->d_sb;
1213         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1214         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1215         block_t total_count, user_block_count, start_count;
1216         u64 avail_node_count;
1217
1218         total_count = le64_to_cpu(sbi->raw_super->block_count);
1219         user_block_count = sbi->user_block_count;
1220         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1221         buf->f_type = F2FS_SUPER_MAGIC;
1222         buf->f_bsize = sbi->blocksize;
1223
1224         buf->f_blocks = total_count - start_count;
1225         buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1226                                                 sbi->current_reserved_blocks;
1227         if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1228                 buf->f_bfree = 0;
1229         else
1230                 buf->f_bfree -= sbi->unusable_block_count;
1231
1232         if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1233                 buf->f_bavail = buf->f_bfree -
1234                                 F2FS_OPTION(sbi).root_reserved_blocks;
1235         else
1236                 buf->f_bavail = 0;
1237
1238         avail_node_count = sbi->total_node_count - sbi->nquota_files -
1239                                                 F2FS_RESERVED_NODE_NUM;
1240
1241         if (avail_node_count > user_block_count) {
1242                 buf->f_files = user_block_count;
1243                 buf->f_ffree = buf->f_bavail;
1244         } else {
1245                 buf->f_files = avail_node_count;
1246                 buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1247                                         buf->f_bavail);
1248         }
1249
1250         buf->f_namelen = F2FS_NAME_LEN;
1251         buf->f_fsid.val[0] = (u32)id;
1252         buf->f_fsid.val[1] = (u32)(id >> 32);
1253
1254 #ifdef CONFIG_QUOTA
1255         if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1256                         sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1257                 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1258         }
1259 #endif
1260         return 0;
1261 }
1262
1263 static inline void f2fs_show_quota_options(struct seq_file *seq,
1264                                            struct super_block *sb)
1265 {
1266 #ifdef CONFIG_QUOTA
1267         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1268
1269         if (F2FS_OPTION(sbi).s_jquota_fmt) {
1270                 char *fmtname = "";
1271
1272                 switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1273                 case QFMT_VFS_OLD:
1274                         fmtname = "vfsold";
1275                         break;
1276                 case QFMT_VFS_V0:
1277                         fmtname = "vfsv0";
1278                         break;
1279                 case QFMT_VFS_V1:
1280                         fmtname = "vfsv1";
1281                         break;
1282                 }
1283                 seq_printf(seq, ",jqfmt=%s", fmtname);
1284         }
1285
1286         if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1287                 seq_show_option(seq, "usrjquota",
1288                         F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1289
1290         if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1291                 seq_show_option(seq, "grpjquota",
1292                         F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1293
1294         if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1295                 seq_show_option(seq, "prjjquota",
1296                         F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1297 #endif
1298 }
1299
1300 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1301 {
1302         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1303
1304         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1305                 if (test_opt(sbi, FORCE_FG_GC))
1306                         seq_printf(seq, ",background_gc=%s", "sync");
1307                 else
1308                         seq_printf(seq, ",background_gc=%s", "on");
1309         } else {
1310                 seq_printf(seq, ",background_gc=%s", "off");
1311         }
1312         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1313                 seq_puts(seq, ",disable_roll_forward");
1314         if (test_opt(sbi, DISCARD))
1315                 seq_puts(seq, ",discard");
1316         if (test_opt(sbi, NOHEAP))
1317                 seq_puts(seq, ",no_heap");
1318         else
1319                 seq_puts(seq, ",heap");
1320 #ifdef CONFIG_F2FS_FS_XATTR
1321         if (test_opt(sbi, XATTR_USER))
1322                 seq_puts(seq, ",user_xattr");
1323         else
1324                 seq_puts(seq, ",nouser_xattr");
1325         if (test_opt(sbi, INLINE_XATTR))
1326                 seq_puts(seq, ",inline_xattr");
1327         else
1328                 seq_puts(seq, ",noinline_xattr");
1329         if (test_opt(sbi, INLINE_XATTR_SIZE))
1330                 seq_printf(seq, ",inline_xattr_size=%u",
1331                                         F2FS_OPTION(sbi).inline_xattr_size);
1332 #endif
1333 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1334         if (test_opt(sbi, POSIX_ACL))
1335                 seq_puts(seq, ",acl");
1336         else
1337                 seq_puts(seq, ",noacl");
1338 #endif
1339         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1340                 seq_puts(seq, ",disable_ext_identify");
1341         if (test_opt(sbi, INLINE_DATA))
1342                 seq_puts(seq, ",inline_data");
1343         else
1344                 seq_puts(seq, ",noinline_data");
1345         if (test_opt(sbi, INLINE_DENTRY))
1346                 seq_puts(seq, ",inline_dentry");
1347         else
1348                 seq_puts(seq, ",noinline_dentry");
1349         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1350                 seq_puts(seq, ",flush_merge");
1351         if (test_opt(sbi, NOBARRIER))
1352                 seq_puts(seq, ",nobarrier");
1353         if (test_opt(sbi, FASTBOOT))
1354                 seq_puts(seq, ",fastboot");
1355         if (test_opt(sbi, EXTENT_CACHE))
1356                 seq_puts(seq, ",extent_cache");
1357         else
1358                 seq_puts(seq, ",noextent_cache");
1359         if (test_opt(sbi, DATA_FLUSH))
1360                 seq_puts(seq, ",data_flush");
1361
1362         seq_puts(seq, ",mode=");
1363         if (test_opt(sbi, ADAPTIVE))
1364                 seq_puts(seq, "adaptive");
1365         else if (test_opt(sbi, LFS))
1366                 seq_puts(seq, "lfs");
1367         seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1368         if (test_opt(sbi, RESERVE_ROOT))
1369                 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1370                                 F2FS_OPTION(sbi).root_reserved_blocks,
1371                                 from_kuid_munged(&init_user_ns,
1372                                         F2FS_OPTION(sbi).s_resuid),
1373                                 from_kgid_munged(&init_user_ns,
1374                                         F2FS_OPTION(sbi).s_resgid));
1375         if (F2FS_IO_SIZE_BITS(sbi))
1376                 seq_printf(seq, ",io_bits=%u",
1377                                 F2FS_OPTION(sbi).write_io_size_bits);
1378 #ifdef CONFIG_F2FS_FAULT_INJECTION
1379         if (test_opt(sbi, FAULT_INJECTION)) {
1380                 seq_printf(seq, ",fault_injection=%u",
1381                                 F2FS_OPTION(sbi).fault_info.inject_rate);
1382                 seq_printf(seq, ",fault_type=%u",
1383                                 F2FS_OPTION(sbi).fault_info.inject_type);
1384         }
1385 #endif
1386 #ifdef CONFIG_QUOTA
1387         if (test_opt(sbi, QUOTA))
1388                 seq_puts(seq, ",quota");
1389         if (test_opt(sbi, USRQUOTA))
1390                 seq_puts(seq, ",usrquota");
1391         if (test_opt(sbi, GRPQUOTA))
1392                 seq_puts(seq, ",grpquota");
1393         if (test_opt(sbi, PRJQUOTA))
1394                 seq_puts(seq, ",prjquota");
1395 #endif
1396         f2fs_show_quota_options(seq, sbi->sb);
1397         if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1398                 seq_printf(seq, ",whint_mode=%s", "user-based");
1399         else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1400                 seq_printf(seq, ",whint_mode=%s", "fs-based");
1401 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1402         if (F2FS_OPTION(sbi).test_dummy_encryption)
1403                 seq_puts(seq, ",test_dummy_encryption");
1404 #endif
1405
1406         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1407                 seq_printf(seq, ",alloc_mode=%s", "default");
1408         else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1409                 seq_printf(seq, ",alloc_mode=%s", "reuse");
1410
1411         if (test_opt(sbi, DISABLE_CHECKPOINT))
1412                 seq_puts(seq, ",checkpoint=disable");
1413
1414         if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1415                 seq_printf(seq, ",fsync_mode=%s", "posix");
1416         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1417                 seq_printf(seq, ",fsync_mode=%s", "strict");
1418         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1419                 seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1420         return 0;
1421 }
1422
1423 static void default_options(struct f2fs_sb_info *sbi)
1424 {
1425         /* init some FS parameters */
1426         F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1427         F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1428         F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1429         F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1430         F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1431         F2FS_OPTION(sbi).test_dummy_encryption = false;
1432         F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1433         F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1434
1435         set_opt(sbi, BG_GC);
1436         set_opt(sbi, INLINE_XATTR);
1437         set_opt(sbi, INLINE_DATA);
1438         set_opt(sbi, INLINE_DENTRY);
1439         set_opt(sbi, EXTENT_CACHE);
1440         set_opt(sbi, NOHEAP);
1441         clear_opt(sbi, DISABLE_CHECKPOINT);
1442         sbi->sb->s_flags |= SB_LAZYTIME;
1443         set_opt(sbi, FLUSH_MERGE);
1444         set_opt(sbi, DISCARD);
1445         if (f2fs_sb_has_blkzoned(sbi))
1446                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
1447         else
1448                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1449
1450 #ifdef CONFIG_F2FS_FS_XATTR
1451         set_opt(sbi, XATTR_USER);
1452 #endif
1453 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1454         set_opt(sbi, POSIX_ACL);
1455 #endif
1456
1457         f2fs_build_fault_attr(sbi, 0, 0);
1458 }
1459
1460 #ifdef CONFIG_QUOTA
1461 static int f2fs_enable_quotas(struct super_block *sb);
1462 #endif
1463
1464 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
1465 {
1466         unsigned int s_flags = sbi->sb->s_flags;
1467         struct cp_control cpc;
1468         int err = 0;
1469         int ret;
1470
1471         if (s_flags & SB_RDONLY) {
1472                 f2fs_msg(sbi->sb, KERN_ERR,
1473                                 "checkpoint=disable on readonly fs");
1474                 return -EINVAL;
1475         }
1476         sbi->sb->s_flags |= SB_ACTIVE;
1477
1478         f2fs_update_time(sbi, DISABLE_TIME);
1479
1480         while (!f2fs_time_over(sbi, DISABLE_TIME)) {
1481                 mutex_lock(&sbi->gc_mutex);
1482                 err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1483                 if (err == -ENODATA) {
1484                         err = 0;
1485                         break;
1486                 }
1487                 if (err && err != -EAGAIN)
1488                         break;
1489         }
1490
1491         ret = sync_filesystem(sbi->sb);
1492         if (ret || err) {
1493                 err = ret ? ret: err;
1494                 goto restore_flag;
1495         }
1496
1497         if (f2fs_disable_cp_again(sbi)) {
1498                 err = -EAGAIN;
1499                 goto restore_flag;
1500         }
1501
1502         mutex_lock(&sbi->gc_mutex);
1503         cpc.reason = CP_PAUSE;
1504         set_sbi_flag(sbi, SBI_CP_DISABLED);
1505         f2fs_write_checkpoint(sbi, &cpc);
1506
1507         sbi->unusable_block_count = 0;
1508         mutex_unlock(&sbi->gc_mutex);
1509 restore_flag:
1510         sbi->sb->s_flags = s_flags;     /* Restore MS_RDONLY status */
1511         return err;
1512 }
1513
1514 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
1515 {
1516         mutex_lock(&sbi->gc_mutex);
1517         f2fs_dirty_to_prefree(sbi);
1518
1519         clear_sbi_flag(sbi, SBI_CP_DISABLED);
1520         set_sbi_flag(sbi, SBI_IS_DIRTY);
1521         mutex_unlock(&sbi->gc_mutex);
1522
1523         f2fs_sync_fs(sbi->sb, 1);
1524 }
1525
1526 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1527 {
1528         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1529         struct f2fs_mount_info org_mount_opt;
1530         unsigned long old_sb_flags;
1531         int err;
1532         bool need_restart_gc = false;
1533         bool need_stop_gc = false;
1534         bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1535         bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT);
1536         bool checkpoint_changed;
1537 #ifdef CONFIG_QUOTA
1538         int i, j;
1539 #endif
1540
1541         /*
1542          * Save the old mount options in case we
1543          * need to restore them.
1544          */
1545         org_mount_opt = sbi->mount_opt;
1546         old_sb_flags = sb->s_flags;
1547
1548 #ifdef CONFIG_QUOTA
1549         org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1550         for (i = 0; i < MAXQUOTAS; i++) {
1551                 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1552                         org_mount_opt.s_qf_names[i] =
1553                                 kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1554                                 GFP_KERNEL);
1555                         if (!org_mount_opt.s_qf_names[i]) {
1556                                 for (j = 0; j < i; j++)
1557                                         kvfree(org_mount_opt.s_qf_names[j]);
1558                                 return -ENOMEM;
1559                         }
1560                 } else {
1561                         org_mount_opt.s_qf_names[i] = NULL;
1562                 }
1563         }
1564 #endif
1565
1566         /* recover superblocks we couldn't write due to previous RO mount */
1567         if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1568                 err = f2fs_commit_super(sbi, false);
1569                 f2fs_msg(sb, KERN_INFO,
1570                         "Try to recover all the superblocks, ret: %d", err);
1571                 if (!err)
1572                         clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1573         }
1574
1575         default_options(sbi);
1576
1577         /* parse mount options */
1578         err = parse_options(sb, data);
1579         if (err)
1580                 goto restore_opts;
1581         checkpoint_changed =
1582                         disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT);
1583
1584         /*
1585          * Previous and new state of filesystem is RO,
1586          * so skip checking GC and FLUSH_MERGE conditions.
1587          */
1588         if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1589                 goto skip;
1590
1591 #ifdef CONFIG_QUOTA
1592         if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1593                 err = dquot_suspend(sb, -1);
1594                 if (err < 0)
1595                         goto restore_opts;
1596         } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
1597                 /* dquot_resume needs RW */
1598                 sb->s_flags &= ~SB_RDONLY;
1599                 if (sb_any_quota_suspended(sb)) {
1600                         dquot_resume(sb, -1);
1601                 } else if (f2fs_sb_has_quota_ino(sbi)) {
1602                         err = f2fs_enable_quotas(sb);
1603                         if (err)
1604                                 goto restore_opts;
1605                 }
1606         }
1607 #endif
1608         /* disallow enable/disable extent_cache dynamically */
1609         if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1610                 err = -EINVAL;
1611                 f2fs_msg(sbi->sb, KERN_WARNING,
1612                                 "switch extent_cache option is not allowed");
1613                 goto restore_opts;
1614         }
1615
1616         if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
1617                 err = -EINVAL;
1618                 f2fs_msg(sbi->sb, KERN_WARNING,
1619                         "disabling checkpoint not compatible with read-only");
1620                 goto restore_opts;
1621         }
1622
1623         /*
1624          * We stop the GC thread if FS is mounted as RO
1625          * or if background_gc = off is passed in mount
1626          * option. Also sync the filesystem.
1627          */
1628         if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) {
1629                 if (sbi->gc_thread) {
1630                         f2fs_stop_gc_thread(sbi);
1631                         need_restart_gc = true;
1632                 }
1633         } else if (!sbi->gc_thread) {
1634                 err = f2fs_start_gc_thread(sbi);
1635                 if (err)
1636                         goto restore_opts;
1637                 need_stop_gc = true;
1638         }
1639
1640         if (*flags & SB_RDONLY ||
1641                 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1642                 writeback_inodes_sb(sb, WB_REASON_SYNC);
1643                 sync_inodes_sb(sb);
1644
1645                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1646                 set_sbi_flag(sbi, SBI_IS_CLOSE);
1647                 f2fs_sync_fs(sb, 1);
1648                 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1649         }
1650
1651         if (checkpoint_changed) {
1652                 if (test_opt(sbi, DISABLE_CHECKPOINT)) {
1653                         err = f2fs_disable_checkpoint(sbi);
1654                         if (err)
1655                                 goto restore_gc;
1656                 } else {
1657                         f2fs_enable_checkpoint(sbi);
1658                 }
1659         }
1660
1661         /*
1662          * We stop issue flush thread if FS is mounted as RO
1663          * or if flush_merge is not passed in mount option.
1664          */
1665         if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1666                 clear_opt(sbi, FLUSH_MERGE);
1667                 f2fs_destroy_flush_cmd_control(sbi, false);
1668         } else {
1669                 err = f2fs_create_flush_cmd_control(sbi);
1670                 if (err)
1671                         goto restore_gc;
1672         }
1673 skip:
1674 #ifdef CONFIG_QUOTA
1675         /* Release old quota file names */
1676         for (i = 0; i < MAXQUOTAS; i++)
1677                 kvfree(org_mount_opt.s_qf_names[i]);
1678 #endif
1679         /* Update the POSIXACL Flag */
1680         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1681                 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1682
1683         limit_reserve_root(sbi);
1684         *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
1685         return 0;
1686 restore_gc:
1687         if (need_restart_gc) {
1688                 if (f2fs_start_gc_thread(sbi))
1689                         f2fs_msg(sbi->sb, KERN_WARNING,
1690                                 "background gc thread has stopped");
1691         } else if (need_stop_gc) {
1692                 f2fs_stop_gc_thread(sbi);
1693         }
1694 restore_opts:
1695 #ifdef CONFIG_QUOTA
1696         F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1697         for (i = 0; i < MAXQUOTAS; i++) {
1698                 kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1699                 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1700         }
1701 #endif
1702         sbi->mount_opt = org_mount_opt;
1703         sb->s_flags = old_sb_flags;
1704         return err;
1705 }
1706
1707 #ifdef CONFIG_QUOTA
1708 /* Read data from quotafile */
1709 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1710                                size_t len, loff_t off)
1711 {
1712         struct inode *inode = sb_dqopt(sb)->files[type];
1713         struct address_space *mapping = inode->i_mapping;
1714         block_t blkidx = F2FS_BYTES_TO_BLK(off);
1715         int offset = off & (sb->s_blocksize - 1);
1716         int tocopy;
1717         size_t toread;
1718         loff_t i_size = i_size_read(inode);
1719         struct page *page;
1720         char *kaddr;
1721
1722         if (off > i_size)
1723                 return 0;
1724
1725         if (off + len > i_size)
1726                 len = i_size - off;
1727         toread = len;
1728         while (toread > 0) {
1729                 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1730 repeat:
1731                 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1732                 if (IS_ERR(page)) {
1733                         if (PTR_ERR(page) == -ENOMEM) {
1734                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1735                                 goto repeat;
1736                         }
1737                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1738                         return PTR_ERR(page);
1739                 }
1740
1741                 lock_page(page);
1742
1743                 if (unlikely(page->mapping != mapping)) {
1744                         f2fs_put_page(page, 1);
1745                         goto repeat;
1746                 }
1747                 if (unlikely(!PageUptodate(page))) {
1748                         f2fs_put_page(page, 1);
1749                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1750                         return -EIO;
1751                 }
1752
1753                 kaddr = kmap_atomic(page);
1754                 memcpy(data, kaddr + offset, tocopy);
1755                 kunmap_atomic(kaddr);
1756                 f2fs_put_page(page, 1);
1757
1758                 offset = 0;
1759                 toread -= tocopy;
1760                 data += tocopy;
1761                 blkidx++;
1762         }
1763         return len;
1764 }
1765
1766 /* Write to quotafile */
1767 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1768                                 const char *data, size_t len, loff_t off)
1769 {
1770         struct inode *inode = sb_dqopt(sb)->files[type];
1771         struct address_space *mapping = inode->i_mapping;
1772         const struct address_space_operations *a_ops = mapping->a_ops;
1773         int offset = off & (sb->s_blocksize - 1);
1774         size_t towrite = len;
1775         struct page *page;
1776         char *kaddr;
1777         int err = 0;
1778         int tocopy;
1779
1780         while (towrite > 0) {
1781                 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1782                                                                 towrite);
1783 retry:
1784                 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1785                                                         &page, NULL);
1786                 if (unlikely(err)) {
1787                         if (err == -ENOMEM) {
1788                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1789                                 goto retry;
1790                         }
1791                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1792                         break;
1793                 }
1794
1795                 kaddr = kmap_atomic(page);
1796                 memcpy(kaddr + offset, data, tocopy);
1797                 kunmap_atomic(kaddr);
1798                 flush_dcache_page(page);
1799
1800                 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1801                                                 page, NULL);
1802                 offset = 0;
1803                 towrite -= tocopy;
1804                 off += tocopy;
1805                 data += tocopy;
1806                 cond_resched();
1807         }
1808
1809         if (len == towrite)
1810                 return err;
1811         inode->i_mtime = inode->i_ctime = current_time(inode);
1812         f2fs_mark_inode_dirty_sync(inode, false);
1813         return len - towrite;
1814 }
1815
1816 static struct dquot **f2fs_get_dquots(struct inode *inode)
1817 {
1818         return F2FS_I(inode)->i_dquot;
1819 }
1820
1821 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1822 {
1823         return &F2FS_I(inode)->i_reserved_quota;
1824 }
1825
1826 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1827 {
1828         if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
1829                 f2fs_msg(sbi->sb, KERN_ERR,
1830                         "quota sysfile may be corrupted, skip loading it");
1831                 return 0;
1832         }
1833
1834         return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
1835                                         F2FS_OPTION(sbi).s_jquota_fmt, type);
1836 }
1837
1838 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1839 {
1840         int enabled = 0;
1841         int i, err;
1842
1843         if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
1844                 err = f2fs_enable_quotas(sbi->sb);
1845                 if (err) {
1846                         f2fs_msg(sbi->sb, KERN_ERR,
1847                                         "Cannot turn on quota_ino: %d", err);
1848                         return 0;
1849                 }
1850                 return 1;
1851         }
1852
1853         for (i = 0; i < MAXQUOTAS; i++) {
1854                 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1855                         err = f2fs_quota_on_mount(sbi, i);
1856                         if (!err) {
1857                                 enabled = 1;
1858                                 continue;
1859                         }
1860                         f2fs_msg(sbi->sb, KERN_ERR,
1861                                 "Cannot turn on quotas: %d on %d", err, i);
1862                 }
1863         }
1864         return enabled;
1865 }
1866
1867 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
1868                              unsigned int flags)
1869 {
1870         struct inode *qf_inode;
1871         unsigned long qf_inum;
1872         int err;
1873
1874         BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
1875
1876         qf_inum = f2fs_qf_ino(sb, type);
1877         if (!qf_inum)
1878                 return -EPERM;
1879
1880         qf_inode = f2fs_iget(sb, qf_inum);
1881         if (IS_ERR(qf_inode)) {
1882                 f2fs_msg(sb, KERN_ERR,
1883                         "Bad quota inode %u:%lu", type, qf_inum);
1884                 return PTR_ERR(qf_inode);
1885         }
1886
1887         /* Don't account quota for quota files to avoid recursion */
1888         qf_inode->i_flags |= S_NOQUOTA;
1889         err = dquot_enable(qf_inode, type, format_id, flags);
1890         iput(qf_inode);
1891         return err;
1892 }
1893
1894 static int f2fs_enable_quotas(struct super_block *sb)
1895 {
1896         int type, err = 0;
1897         unsigned long qf_inum;
1898         bool quota_mopt[MAXQUOTAS] = {
1899                 test_opt(F2FS_SB(sb), USRQUOTA),
1900                 test_opt(F2FS_SB(sb), GRPQUOTA),
1901                 test_opt(F2FS_SB(sb), PRJQUOTA),
1902         };
1903
1904         if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
1905                 f2fs_msg(sb, KERN_ERR,
1906                         "quota file may be corrupted, skip loading it");
1907                 return 0;
1908         }
1909
1910         sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
1911
1912         for (type = 0; type < MAXQUOTAS; type++) {
1913                 qf_inum = f2fs_qf_ino(sb, type);
1914                 if (qf_inum) {
1915                         err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
1916                                 DQUOT_USAGE_ENABLED |
1917                                 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
1918                         if (err) {
1919                                 f2fs_msg(sb, KERN_ERR,
1920                                         "Failed to enable quota tracking "
1921                                         "(type=%d, err=%d). Please run "
1922                                         "fsck to fix.", type, err);
1923                                 for (type--; type >= 0; type--)
1924                                         dquot_quota_off(sb, type);
1925                                 set_sbi_flag(F2FS_SB(sb),
1926                                                 SBI_QUOTA_NEED_REPAIR);
1927                                 return err;
1928                         }
1929                 }
1930         }
1931         return 0;
1932 }
1933
1934 int f2fs_quota_sync(struct super_block *sb, int type)
1935 {
1936         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1937         struct quota_info *dqopt = sb_dqopt(sb);
1938         int cnt;
1939         int ret;
1940
1941         ret = dquot_writeback_dquots(sb, type);
1942         if (ret)
1943                 goto out;
1944
1945         /*
1946          * Now when everything is written we can discard the pagecache so
1947          * that userspace sees the changes.
1948          */
1949         for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1950                 struct address_space *mapping;
1951
1952                 if (type != -1 && cnt != type)
1953                         continue;
1954                 if (!sb_has_quota_active(sb, cnt))
1955                         continue;
1956
1957                 mapping = dqopt->files[cnt]->i_mapping;
1958
1959                 ret = filemap_fdatawrite(mapping);
1960                 if (ret)
1961                         goto out;
1962
1963                 /* if we are using journalled quota */
1964                 if (is_journalled_quota(sbi))
1965                         continue;
1966
1967                 ret = filemap_fdatawait(mapping);
1968                 if (ret)
1969                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1970
1971                 inode_lock(dqopt->files[cnt]);
1972                 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1973                 inode_unlock(dqopt->files[cnt]);
1974         }
1975 out:
1976         if (ret)
1977                 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1978         return ret;
1979 }
1980
1981 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1982                                                         const struct path *path)
1983 {
1984         struct inode *inode;
1985         int err;
1986
1987         err = f2fs_quota_sync(sb, type);
1988         if (err)
1989                 return err;
1990
1991         err = dquot_quota_on(sb, type, format_id, path);
1992         if (err)
1993                 return err;
1994
1995         inode = d_inode(path->dentry);
1996
1997         inode_lock(inode);
1998         F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
1999         f2fs_set_inode_flags(inode);
2000         inode_unlock(inode);
2001         f2fs_mark_inode_dirty_sync(inode, false);
2002
2003         return 0;
2004 }
2005
2006 static int f2fs_quota_off(struct super_block *sb, int type)
2007 {
2008         struct inode *inode = sb_dqopt(sb)->files[type];
2009         int err;
2010
2011         if (!inode || !igrab(inode))
2012                 return dquot_quota_off(sb, type);
2013
2014         err = f2fs_quota_sync(sb, type);
2015         if (err)
2016                 goto out_put;
2017
2018         err = dquot_quota_off(sb, type);
2019         if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2020                 goto out_put;
2021
2022         inode_lock(inode);
2023         F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2024         f2fs_set_inode_flags(inode);
2025         inode_unlock(inode);
2026         f2fs_mark_inode_dirty_sync(inode, false);
2027 out_put:
2028         iput(inode);
2029         return err;
2030 }
2031
2032 void f2fs_quota_off_umount(struct super_block *sb)
2033 {
2034         int type;
2035         int err;
2036
2037         for (type = 0; type < MAXQUOTAS; type++) {
2038                 err = f2fs_quota_off(sb, type);
2039                 if (err) {
2040                         int ret = dquot_quota_off(sb, type);
2041
2042                         f2fs_msg(sb, KERN_ERR,
2043                                 "Fail to turn off disk quota "
2044                                 "(type: %d, err: %d, ret:%d), Please "
2045                                 "run fsck to fix it.", type, err, ret);
2046                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2047                 }
2048         }
2049         /*
2050          * In case of checkpoint=disable, we must flush quota blocks.
2051          * This can cause NULL exception for node_inode in end_io, since
2052          * put_super already dropped it.
2053          */
2054         sync_filesystem(sb);
2055 }
2056
2057 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2058 {
2059         struct quota_info *dqopt = sb_dqopt(sb);
2060         int type;
2061
2062         for (type = 0; type < MAXQUOTAS; type++) {
2063                 if (!dqopt->files[type])
2064                         continue;
2065                 f2fs_inode_synced(dqopt->files[type]);
2066         }
2067 }
2068
2069 static int f2fs_dquot_commit(struct dquot *dquot)
2070 {
2071         int ret;
2072
2073         ret = dquot_commit(dquot);
2074         if (ret < 0)
2075                 set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR);
2076         return ret;
2077 }
2078
2079 static int f2fs_dquot_acquire(struct dquot *dquot)
2080 {
2081         int ret;
2082
2083         ret = dquot_acquire(dquot);
2084         if (ret < 0)
2085                 set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR);
2086
2087         return ret;
2088 }
2089
2090 static int f2fs_dquot_release(struct dquot *dquot)
2091 {
2092         int ret;
2093
2094         ret = dquot_release(dquot);
2095         if (ret < 0)
2096                 set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR);
2097         return ret;
2098 }
2099
2100 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2101 {
2102         struct super_block *sb = dquot->dq_sb;
2103         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2104         int ret;
2105
2106         ret = dquot_mark_dquot_dirty(dquot);
2107
2108         /* if we are using journalled quota */
2109         if (is_journalled_quota(sbi))
2110                 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2111
2112         return ret;
2113 }
2114
2115 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2116 {
2117         int ret;
2118
2119         ret = dquot_commit_info(sb, type);
2120         if (ret < 0)
2121                 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2122         return ret;
2123 }
2124
2125 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2126 {
2127         *projid = F2FS_I(inode)->i_projid;
2128         return 0;
2129 }
2130
2131 static const struct dquot_operations f2fs_quota_operations = {
2132         .get_reserved_space = f2fs_get_reserved_space,
2133         .write_dquot    = f2fs_dquot_commit,
2134         .acquire_dquot  = f2fs_dquot_acquire,
2135         .release_dquot  = f2fs_dquot_release,
2136         .mark_dirty     = f2fs_dquot_mark_dquot_dirty,
2137         .write_info     = f2fs_dquot_commit_info,
2138         .alloc_dquot    = dquot_alloc,
2139         .destroy_dquot  = dquot_destroy,
2140         .get_projid     = f2fs_get_projid,
2141         .get_next_id    = dquot_get_next_id,
2142 };
2143
2144 static const struct quotactl_ops f2fs_quotactl_ops = {
2145         .quota_on       = f2fs_quota_on,
2146         .quota_off      = f2fs_quota_off,
2147         .quota_sync     = f2fs_quota_sync,
2148         .get_state      = dquot_get_state,
2149         .set_info       = dquot_set_dqinfo,
2150         .get_dqblk      = dquot_get_dqblk,
2151         .set_dqblk      = dquot_set_dqblk,
2152         .get_nextdqblk  = dquot_get_next_dqblk,
2153 };
2154 #else
2155 int f2fs_quota_sync(struct super_block *sb, int type)
2156 {
2157         return 0;
2158 }
2159
2160 void f2fs_quota_off_umount(struct super_block *sb)
2161 {
2162 }
2163 #endif
2164
2165 static const struct super_operations f2fs_sops = {
2166         .alloc_inode    = f2fs_alloc_inode,
2167         .drop_inode     = f2fs_drop_inode,
2168         .destroy_inode  = f2fs_destroy_inode,
2169         .write_inode    = f2fs_write_inode,
2170         .dirty_inode    = f2fs_dirty_inode,
2171         .show_options   = f2fs_show_options,
2172 #ifdef CONFIG_QUOTA
2173         .quota_read     = f2fs_quota_read,
2174         .quota_write    = f2fs_quota_write,
2175         .get_dquots     = f2fs_get_dquots,
2176 #endif
2177         .evict_inode    = f2fs_evict_inode,
2178         .put_super      = f2fs_put_super,
2179         .sync_fs        = f2fs_sync_fs,
2180         .freeze_fs      = f2fs_freeze,
2181         .unfreeze_fs    = f2fs_unfreeze,
2182         .statfs         = f2fs_statfs,
2183         .remount_fs     = f2fs_remount,
2184 };
2185
2186 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2187 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2188 {
2189         return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2190                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2191                                 ctx, len, NULL);
2192 }
2193
2194 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2195                                                         void *fs_data)
2196 {
2197         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2198
2199         /*
2200          * Encrypting the root directory is not allowed because fsck
2201          * expects lost+found directory to exist and remain unencrypted
2202          * if LOST_FOUND feature is enabled.
2203          *
2204          */
2205         if (f2fs_sb_has_lost_found(sbi) &&
2206                         inode->i_ino == F2FS_ROOT_INO(sbi))
2207                 return -EPERM;
2208
2209         return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2210                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2211                                 ctx, len, fs_data, XATTR_CREATE);
2212 }
2213
2214 static bool f2fs_dummy_context(struct inode *inode)
2215 {
2216         return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode));
2217 }
2218
2219 static const struct fscrypt_operations f2fs_cryptops = {
2220         .key_prefix     = "f2fs:",
2221         .get_context    = f2fs_get_context,
2222         .set_context    = f2fs_set_context,
2223         .dummy_context  = f2fs_dummy_context,
2224         .empty_dir      = f2fs_empty_dir,
2225         .max_namelen    = F2FS_NAME_LEN,
2226 };
2227 #endif
2228
2229 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2230                 u64 ino, u32 generation)
2231 {
2232         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2233         struct inode *inode;
2234
2235         if (f2fs_check_nid_range(sbi, ino))
2236                 return ERR_PTR(-ESTALE);
2237
2238         /*
2239          * f2fs_iget isn't quite right if the inode is currently unallocated!
2240          * However f2fs_iget currently does appropriate checks to handle stale
2241          * inodes so everything is OK.
2242          */
2243         inode = f2fs_iget(sb, ino);
2244         if (IS_ERR(inode))
2245                 return ERR_CAST(inode);
2246         if (unlikely(generation && inode->i_generation != generation)) {
2247                 /* we didn't find the right inode.. */
2248                 iput(inode);
2249                 return ERR_PTR(-ESTALE);
2250         }
2251         return inode;
2252 }
2253
2254 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2255                 int fh_len, int fh_type)
2256 {
2257         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2258                                     f2fs_nfs_get_inode);
2259 }
2260
2261 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2262                 int fh_len, int fh_type)
2263 {
2264         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2265                                     f2fs_nfs_get_inode);
2266 }
2267
2268 static const struct export_operations f2fs_export_ops = {
2269         .fh_to_dentry = f2fs_fh_to_dentry,
2270         .fh_to_parent = f2fs_fh_to_parent,
2271         .get_parent = f2fs_get_parent,
2272 };
2273
2274 static loff_t max_file_blocks(void)
2275 {
2276         loff_t result = 0;
2277         loff_t leaf_count = ADDRS_PER_BLOCK;
2278
2279         /*
2280          * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2281          * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2282          * space in inode.i_addr, it will be more safe to reassign
2283          * result as zero.
2284          */
2285
2286         /* two direct node blocks */
2287         result += (leaf_count * 2);
2288
2289         /* two indirect node blocks */
2290         leaf_count *= NIDS_PER_BLOCK;
2291         result += (leaf_count * 2);
2292
2293         /* one double indirect node block */
2294         leaf_count *= NIDS_PER_BLOCK;
2295         result += leaf_count;
2296
2297         return result;
2298 }
2299
2300 static int __f2fs_commit_super(struct buffer_head *bh,
2301                         struct f2fs_super_block *super)
2302 {
2303         lock_buffer(bh);
2304         if (super)
2305                 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2306         set_buffer_dirty(bh);
2307         unlock_buffer(bh);
2308
2309         /* it's rare case, we can do fua all the time */
2310         return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2311 }
2312
2313 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2314                                         struct buffer_head *bh)
2315 {
2316         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2317                                         (bh->b_data + F2FS_SUPER_OFFSET);
2318         struct super_block *sb = sbi->sb;
2319         u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2320         u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2321         u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2322         u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2323         u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2324         u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2325         u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2326         u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2327         u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2328         u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2329         u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2330         u32 segment_count = le32_to_cpu(raw_super->segment_count);
2331         u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2332         u64 main_end_blkaddr = main_blkaddr +
2333                                 (segment_count_main << log_blocks_per_seg);
2334         u64 seg_end_blkaddr = segment0_blkaddr +
2335                                 (segment_count << log_blocks_per_seg);
2336
2337         if (segment0_blkaddr != cp_blkaddr) {
2338                 f2fs_msg(sb, KERN_INFO,
2339                         "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2340                         segment0_blkaddr, cp_blkaddr);
2341                 return true;
2342         }
2343
2344         if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2345                                                         sit_blkaddr) {
2346                 f2fs_msg(sb, KERN_INFO,
2347                         "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2348                         cp_blkaddr, sit_blkaddr,
2349                         segment_count_ckpt << log_blocks_per_seg);
2350                 return true;
2351         }
2352
2353         if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2354                                                         nat_blkaddr) {
2355                 f2fs_msg(sb, KERN_INFO,
2356                         "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2357                         sit_blkaddr, nat_blkaddr,
2358                         segment_count_sit << log_blocks_per_seg);
2359                 return true;
2360         }
2361
2362         if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2363                                                         ssa_blkaddr) {
2364                 f2fs_msg(sb, KERN_INFO,
2365                         "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2366                         nat_blkaddr, ssa_blkaddr,
2367                         segment_count_nat << log_blocks_per_seg);
2368                 return true;
2369         }
2370
2371         if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2372                                                         main_blkaddr) {
2373                 f2fs_msg(sb, KERN_INFO,
2374                         "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2375                         ssa_blkaddr, main_blkaddr,
2376                         segment_count_ssa << log_blocks_per_seg);
2377                 return true;
2378         }
2379
2380         if (main_end_blkaddr > seg_end_blkaddr) {
2381                 f2fs_msg(sb, KERN_INFO,
2382                         "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2383                         main_blkaddr,
2384                         segment0_blkaddr +
2385                                 (segment_count << log_blocks_per_seg),
2386                         segment_count_main << log_blocks_per_seg);
2387                 return true;
2388         } else if (main_end_blkaddr < seg_end_blkaddr) {
2389                 int err = 0;
2390                 char *res;
2391
2392                 /* fix in-memory information all the time */
2393                 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2394                                 segment0_blkaddr) >> log_blocks_per_seg);
2395
2396                 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2397                         set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2398                         res = "internally";
2399                 } else {
2400                         err = __f2fs_commit_super(bh, NULL);
2401                         res = err ? "failed" : "done";
2402                 }
2403                 f2fs_msg(sb, KERN_INFO,
2404                         "Fix alignment : %s, start(%u) end(%u) block(%u)",
2405                         res, main_blkaddr,
2406                         segment0_blkaddr +
2407                                 (segment_count << log_blocks_per_seg),
2408                         segment_count_main << log_blocks_per_seg);
2409                 if (err)
2410                         return true;
2411         }
2412         return false;
2413 }
2414
2415 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2416                                 struct buffer_head *bh)
2417 {
2418         block_t segment_count, segs_per_sec, secs_per_zone;
2419         block_t total_sections, blocks_per_seg;
2420         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2421                                         (bh->b_data + F2FS_SUPER_OFFSET);
2422         struct super_block *sb = sbi->sb;
2423         unsigned int blocksize;
2424         size_t crc_offset = 0;
2425         __u32 crc = 0;
2426
2427         /* Check checksum_offset and crc in superblock */
2428         if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
2429                 crc_offset = le32_to_cpu(raw_super->checksum_offset);
2430                 if (crc_offset !=
2431                         offsetof(struct f2fs_super_block, crc)) {
2432                         f2fs_msg(sb, KERN_INFO,
2433                                 "Invalid SB checksum offset: %zu",
2434                                 crc_offset);
2435                         return 1;
2436                 }
2437                 crc = le32_to_cpu(raw_super->crc);
2438                 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
2439                         f2fs_msg(sb, KERN_INFO,
2440                                 "Invalid SB checksum value: %u", crc);
2441                         return 1;
2442                 }
2443         }
2444
2445         if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
2446                 f2fs_msg(sb, KERN_INFO,
2447                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
2448                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2449                 return 1;
2450         }
2451
2452         /* Currently, support only 4KB page cache size */
2453         if (F2FS_BLKSIZE != PAGE_SIZE) {
2454                 f2fs_msg(sb, KERN_INFO,
2455                         "Invalid page_cache_size (%lu), supports only 4KB\n",
2456                         PAGE_SIZE);
2457                 return 1;
2458         }
2459
2460         /* Currently, support only 4KB block size */
2461         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2462         if (blocksize != F2FS_BLKSIZE) {
2463                 f2fs_msg(sb, KERN_INFO,
2464                         "Invalid blocksize (%u), supports only 4KB\n",
2465                         blocksize);
2466                 return 1;
2467         }
2468
2469         /* check log blocks per segment */
2470         if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2471                 f2fs_msg(sb, KERN_INFO,
2472                         "Invalid log blocks per segment (%u)\n",
2473                         le32_to_cpu(raw_super->log_blocks_per_seg));
2474                 return 1;
2475         }
2476
2477         /* Currently, support 512/1024/2048/4096 bytes sector size */
2478         if (le32_to_cpu(raw_super->log_sectorsize) >
2479                                 F2FS_MAX_LOG_SECTOR_SIZE ||
2480                 le32_to_cpu(raw_super->log_sectorsize) <
2481                                 F2FS_MIN_LOG_SECTOR_SIZE) {
2482                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
2483                         le32_to_cpu(raw_super->log_sectorsize));
2484                 return 1;
2485         }
2486         if (le32_to_cpu(raw_super->log_sectors_per_block) +
2487                 le32_to_cpu(raw_super->log_sectorsize) !=
2488                         F2FS_MAX_LOG_SECTOR_SIZE) {
2489                 f2fs_msg(sb, KERN_INFO,
2490                         "Invalid log sectors per block(%u) log sectorsize(%u)",
2491                         le32_to_cpu(raw_super->log_sectors_per_block),
2492                         le32_to_cpu(raw_super->log_sectorsize));
2493                 return 1;
2494         }
2495
2496         segment_count = le32_to_cpu(raw_super->segment_count);
2497         segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2498         secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2499         total_sections = le32_to_cpu(raw_super->section_count);
2500
2501         /* blocks_per_seg should be 512, given the above check */
2502         blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2503
2504         if (segment_count > F2FS_MAX_SEGMENT ||
2505                                 segment_count < F2FS_MIN_SEGMENTS) {
2506                 f2fs_msg(sb, KERN_INFO,
2507                         "Invalid segment count (%u)",
2508                         segment_count);
2509                 return 1;
2510         }
2511
2512         if (total_sections > segment_count ||
2513                         total_sections < F2FS_MIN_SEGMENTS ||
2514                         segs_per_sec > segment_count || !segs_per_sec) {
2515                 f2fs_msg(sb, KERN_INFO,
2516                         "Invalid segment/section count (%u, %u x %u)",
2517                         segment_count, total_sections, segs_per_sec);
2518                 return 1;
2519         }
2520
2521         if ((segment_count / segs_per_sec) < total_sections) {
2522                 f2fs_msg(sb, KERN_INFO,
2523                         "Small segment_count (%u < %u * %u)",
2524                         segment_count, segs_per_sec, total_sections);
2525                 return 1;
2526         }
2527
2528         if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
2529                 f2fs_msg(sb, KERN_INFO,
2530                         "Wrong segment_count / block_count (%u > %llu)",
2531                         segment_count, le64_to_cpu(raw_super->block_count));
2532                 return 1;
2533         }
2534
2535         if (secs_per_zone > total_sections || !secs_per_zone) {
2536                 f2fs_msg(sb, KERN_INFO,
2537                         "Wrong secs_per_zone / total_sections (%u, %u)",
2538                         secs_per_zone, total_sections);
2539                 return 1;
2540         }
2541         if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2542                         raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2543                         (le32_to_cpu(raw_super->extension_count) +
2544                         raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2545                 f2fs_msg(sb, KERN_INFO,
2546                         "Corrupted extension count (%u + %u > %u)",
2547                         le32_to_cpu(raw_super->extension_count),
2548                         raw_super->hot_ext_count,
2549                         F2FS_MAX_EXTENSION);
2550                 return 1;
2551         }
2552
2553         if (le32_to_cpu(raw_super->cp_payload) >
2554                                 (blocks_per_seg - F2FS_CP_PACKS)) {
2555                 f2fs_msg(sb, KERN_INFO,
2556                         "Insane cp_payload (%u > %u)",
2557                         le32_to_cpu(raw_super->cp_payload),
2558                         blocks_per_seg - F2FS_CP_PACKS);
2559                 return 1;
2560         }
2561
2562         /* check reserved ino info */
2563         if (le32_to_cpu(raw_super->node_ino) != 1 ||
2564                 le32_to_cpu(raw_super->meta_ino) != 2 ||
2565                 le32_to_cpu(raw_super->root_ino) != 3) {
2566                 f2fs_msg(sb, KERN_INFO,
2567                         "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2568                         le32_to_cpu(raw_super->node_ino),
2569                         le32_to_cpu(raw_super->meta_ino),
2570                         le32_to_cpu(raw_super->root_ino));
2571                 return 1;
2572         }
2573
2574         /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2575         if (sanity_check_area_boundary(sbi, bh))
2576                 return 1;
2577
2578         return 0;
2579 }
2580
2581 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
2582 {
2583         unsigned int total, fsmeta;
2584         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2585         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2586         unsigned int ovp_segments, reserved_segments;
2587         unsigned int main_segs, blocks_per_seg;
2588         unsigned int sit_segs, nat_segs;
2589         unsigned int sit_bitmap_size, nat_bitmap_size;
2590         unsigned int log_blocks_per_seg;
2591         unsigned int segment_count_main;
2592         unsigned int cp_pack_start_sum, cp_payload;
2593         block_t user_block_count;
2594         int i, j;
2595
2596         total = le32_to_cpu(raw_super->segment_count);
2597         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2598         sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2599         fsmeta += sit_segs;
2600         nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2601         fsmeta += nat_segs;
2602         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2603         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2604
2605         if (unlikely(fsmeta >= total))
2606                 return 1;
2607
2608         ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2609         reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2610
2611         if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2612                         ovp_segments == 0 || reserved_segments == 0)) {
2613                 f2fs_msg(sbi->sb, KERN_ERR,
2614                         "Wrong layout: check mkfs.f2fs version");
2615                 return 1;
2616         }
2617
2618         user_block_count = le64_to_cpu(ckpt->user_block_count);
2619         segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2620         log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2621         if (!user_block_count || user_block_count >=
2622                         segment_count_main << log_blocks_per_seg) {
2623                 f2fs_msg(sbi->sb, KERN_ERR,
2624                         "Wrong user_block_count: %u", user_block_count);
2625                 return 1;
2626         }
2627
2628         main_segs = le32_to_cpu(raw_super->segment_count_main);
2629         blocks_per_seg = sbi->blocks_per_seg;
2630
2631         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2632                 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2633                         le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2634                         return 1;
2635                 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
2636                         if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2637                                 le32_to_cpu(ckpt->cur_node_segno[j])) {
2638                                 f2fs_msg(sbi->sb, KERN_ERR,
2639                                         "Node segment (%u, %u) has the same "
2640                                         "segno: %u", i, j,
2641                                         le32_to_cpu(ckpt->cur_node_segno[i]));
2642                                 return 1;
2643                         }
2644                 }
2645         }
2646         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2647                 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2648                         le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2649                         return 1;
2650                 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
2651                         if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
2652                                 le32_to_cpu(ckpt->cur_data_segno[j])) {
2653                                 f2fs_msg(sbi->sb, KERN_ERR,
2654                                         "Data segment (%u, %u) has the same "
2655                                         "segno: %u", i, j,
2656                                         le32_to_cpu(ckpt->cur_data_segno[i]));
2657                                 return 1;
2658                         }
2659                 }
2660         }
2661         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2662                 for (j = i; j < NR_CURSEG_DATA_TYPE; j++) {
2663                         if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2664                                 le32_to_cpu(ckpt->cur_data_segno[j])) {
2665                                 f2fs_msg(sbi->sb, KERN_ERR,
2666                                         "Data segment (%u) and Data segment (%u)"
2667                                         " has the same segno: %u", i, j,
2668                                         le32_to_cpu(ckpt->cur_node_segno[i]));
2669                                 return 1;
2670                         }
2671                 }
2672         }
2673
2674         sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2675         nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2676
2677         if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
2678                 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
2679                 f2fs_msg(sbi->sb, KERN_ERR,
2680                         "Wrong bitmap size: sit: %u, nat:%u",
2681                         sit_bitmap_size, nat_bitmap_size);
2682                 return 1;
2683         }
2684
2685         cp_pack_start_sum = __start_sum_addr(sbi);
2686         cp_payload = __cp_payload(sbi);
2687         if (cp_pack_start_sum < cp_payload + 1 ||
2688                 cp_pack_start_sum > blocks_per_seg - 1 -
2689                         NR_CURSEG_TYPE) {
2690                 f2fs_msg(sbi->sb, KERN_ERR,
2691                         "Wrong cp_pack_start_sum: %u",
2692                         cp_pack_start_sum);
2693                 return 1;
2694         }
2695
2696         if (unlikely(f2fs_cp_error(sbi))) {
2697                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
2698                 return 1;
2699         }
2700         return 0;
2701 }
2702
2703 static void init_sb_info(struct f2fs_sb_info *sbi)
2704 {
2705         struct f2fs_super_block *raw_super = sbi->raw_super;
2706         int i;
2707
2708         sbi->log_sectors_per_block =
2709                 le32_to_cpu(raw_super->log_sectors_per_block);
2710         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2711         sbi->blocksize = 1 << sbi->log_blocksize;
2712         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2713         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2714         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2715         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2716         sbi->total_sections = le32_to_cpu(raw_super->section_count);
2717         sbi->total_node_count =
2718                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
2719                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2720         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2721         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2722         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2723         sbi->cur_victim_sec = NULL_SECNO;
2724         sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
2725         sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
2726         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2727         sbi->migration_granularity = sbi->segs_per_sec;
2728
2729         sbi->dir_level = DEF_DIR_LEVEL;
2730         sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2731         sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2732         sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
2733         sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
2734         sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
2735         sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
2736                                 DEF_UMOUNT_DISCARD_TIMEOUT;
2737         clear_sbi_flag(sbi, SBI_NEED_FSCK);
2738
2739         for (i = 0; i < NR_COUNT_TYPE; i++)
2740                 atomic_set(&sbi->nr_pages[i], 0);
2741
2742         for (i = 0; i < META; i++)
2743                 atomic_set(&sbi->wb_sync_req[i], 0);
2744
2745         INIT_LIST_HEAD(&sbi->s_list);
2746         mutex_init(&sbi->umount_mutex);
2747         init_rwsem(&sbi->io_order_lock);
2748         spin_lock_init(&sbi->cp_lock);
2749
2750         sbi->dirty_device = 0;
2751         spin_lock_init(&sbi->dev_lock);
2752
2753         init_rwsem(&sbi->sb_lock);
2754 }
2755
2756 static int init_percpu_info(struct f2fs_sb_info *sbi)
2757 {
2758         int err;
2759
2760         err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2761         if (err)
2762                 return err;
2763
2764         err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
2765                                                                 GFP_KERNEL);
2766         if (err)
2767                 percpu_counter_destroy(&sbi->alloc_valid_block_count);
2768
2769         return err;
2770 }
2771
2772 #ifdef CONFIG_BLK_DEV_ZONED
2773 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2774 {
2775         struct block_device *bdev = FDEV(devi).bdev;
2776         sector_t nr_sectors = bdev->bd_part->nr_sects;
2777         sector_t sector = 0;
2778         struct blk_zone *zones;
2779         unsigned int i, nr_zones;
2780         unsigned int n = 0;
2781         int err = -EIO;
2782
2783         if (!f2fs_sb_has_blkzoned(sbi))
2784                 return 0;
2785
2786         if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
2787                                 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
2788                 return -EINVAL;
2789         sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2790         if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2791                                 __ilog2_u32(sbi->blocks_per_blkz))
2792                 return -EINVAL;
2793         sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2794         FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2795                                         sbi->log_blocks_per_blkz;
2796         if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2797                 FDEV(devi).nr_blkz++;
2798
2799         FDEV(devi).blkz_type = f2fs_kmalloc(sbi, FDEV(devi).nr_blkz,
2800                                                                 GFP_KERNEL);
2801         if (!FDEV(devi).blkz_type)
2802                 return -ENOMEM;
2803
2804 #define F2FS_REPORT_NR_ZONES   4096
2805
2806         zones = f2fs_kzalloc(sbi,
2807                              array_size(F2FS_REPORT_NR_ZONES,
2808                                         sizeof(struct blk_zone)),
2809                              GFP_KERNEL);
2810         if (!zones)
2811                 return -ENOMEM;
2812
2813         /* Get block zones type */
2814         while (zones && sector < nr_sectors) {
2815
2816                 nr_zones = F2FS_REPORT_NR_ZONES;
2817                 err = blkdev_report_zones(bdev, sector,
2818                                           zones, &nr_zones,
2819                                           GFP_KERNEL);
2820                 if (err)
2821                         break;
2822                 if (!nr_zones) {
2823                         err = -EIO;
2824                         break;
2825                 }
2826
2827                 for (i = 0; i < nr_zones; i++) {
2828                         FDEV(devi).blkz_type[n] = zones[i].type;
2829                         sector += zones[i].len;
2830                         n++;
2831                 }
2832         }
2833
2834         kvfree(zones);
2835
2836         return err;
2837 }
2838 #endif
2839
2840 /*
2841  * Read f2fs raw super block.
2842  * Because we have two copies of super block, so read both of them
2843  * to get the first valid one. If any one of them is broken, we pass
2844  * them recovery flag back to the caller.
2845  */
2846 static int read_raw_super_block(struct f2fs_sb_info *sbi,
2847                         struct f2fs_super_block **raw_super,
2848                         int *valid_super_block, int *recovery)
2849 {
2850         struct super_block *sb = sbi->sb;
2851         int block;
2852         struct buffer_head *bh;
2853         struct f2fs_super_block *super;
2854         int err = 0;
2855
2856         super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2857         if (!super)
2858                 return -ENOMEM;
2859
2860         for (block = 0; block < 2; block++) {
2861                 bh = sb_bread(sb, block);
2862                 if (!bh) {
2863                         f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
2864                                 block + 1);
2865                         err = -EIO;
2866                         continue;
2867                 }
2868
2869                 /* sanity checking of raw super */
2870                 if (sanity_check_raw_super(sbi, bh)) {
2871                         f2fs_msg(sb, KERN_ERR,
2872                                 "Can't find valid F2FS filesystem in %dth superblock",
2873                                 block + 1);
2874                         err = -EINVAL;
2875                         brelse(bh);
2876                         continue;
2877                 }
2878
2879                 if (!*raw_super) {
2880                         memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2881                                                         sizeof(*super));
2882                         *valid_super_block = block;
2883                         *raw_super = super;
2884                 }
2885                 brelse(bh);
2886         }
2887
2888         /* Fail to read any one of the superblocks*/
2889         if (err < 0)
2890                 *recovery = 1;
2891
2892         /* No valid superblock */
2893         if (!*raw_super)
2894                 kvfree(super);
2895         else
2896                 err = 0;
2897
2898         return err;
2899 }
2900
2901 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2902 {
2903         struct buffer_head *bh;
2904         __u32 crc = 0;
2905         int err;
2906
2907         if ((recover && f2fs_readonly(sbi->sb)) ||
2908                                 bdev_read_only(sbi->sb->s_bdev)) {
2909                 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2910                 return -EROFS;
2911         }
2912
2913         /* we should update superblock crc here */
2914         if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
2915                 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
2916                                 offsetof(struct f2fs_super_block, crc));
2917                 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
2918         }
2919
2920         /* write back-up superblock first */
2921         bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
2922         if (!bh)
2923                 return -EIO;
2924         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2925         brelse(bh);
2926
2927         /* if we are in recovery path, skip writing valid superblock */
2928         if (recover || err)
2929                 return err;
2930
2931         /* write current valid superblock */
2932         bh = sb_bread(sbi->sb, sbi->valid_super_block);
2933         if (!bh)
2934                 return -EIO;
2935         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2936         brelse(bh);
2937         return err;
2938 }
2939
2940 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
2941 {
2942         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2943         unsigned int max_devices = MAX_DEVICES;
2944         int i;
2945
2946         /* Initialize single device information */
2947         if (!RDEV(0).path[0]) {
2948                 if (!bdev_is_zoned(sbi->sb->s_bdev))
2949                         return 0;
2950                 max_devices = 1;
2951         }
2952
2953         /*
2954          * Initialize multiple devices information, or single
2955          * zoned block device information.
2956          */
2957         sbi->devs = f2fs_kzalloc(sbi,
2958                                  array_size(max_devices,
2959                                             sizeof(struct f2fs_dev_info)),
2960                                  GFP_KERNEL);
2961         if (!sbi->devs)
2962                 return -ENOMEM;
2963
2964         for (i = 0; i < max_devices; i++) {
2965
2966                 if (i > 0 && !RDEV(i).path[0])
2967                         break;
2968
2969                 if (max_devices == 1) {
2970                         /* Single zoned block device mount */
2971                         FDEV(0).bdev =
2972                                 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
2973                                         sbi->sb->s_mode, sbi->sb->s_type);
2974                 } else {
2975                         /* Multi-device mount */
2976                         memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
2977                         FDEV(i).total_segments =
2978                                 le32_to_cpu(RDEV(i).total_segments);
2979                         if (i == 0) {
2980                                 FDEV(i).start_blk = 0;
2981                                 FDEV(i).end_blk = FDEV(i).start_blk +
2982                                     (FDEV(i).total_segments <<
2983                                     sbi->log_blocks_per_seg) - 1 +
2984                                     le32_to_cpu(raw_super->segment0_blkaddr);
2985                         } else {
2986                                 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
2987                                 FDEV(i).end_blk = FDEV(i).start_blk +
2988                                         (FDEV(i).total_segments <<
2989                                         sbi->log_blocks_per_seg) - 1;
2990                         }
2991                         FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
2992                                         sbi->sb->s_mode, sbi->sb->s_type);
2993                 }
2994                 if (IS_ERR(FDEV(i).bdev))
2995                         return PTR_ERR(FDEV(i).bdev);
2996
2997                 /* to release errored devices */
2998                 sbi->s_ndevs = i + 1;
2999
3000 #ifdef CONFIG_BLK_DEV_ZONED
3001                 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3002                                 !f2fs_sb_has_blkzoned(sbi)) {
3003                         f2fs_msg(sbi->sb, KERN_ERR,
3004                                 "Zoned block device feature not enabled\n");
3005                         return -EINVAL;
3006                 }
3007                 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3008                         if (init_blkz_info(sbi, i)) {
3009                                 f2fs_msg(sbi->sb, KERN_ERR,
3010                                         "Failed to initialize F2FS blkzone information");
3011                                 return -EINVAL;
3012                         }
3013                         if (max_devices == 1)
3014                                 break;
3015                         f2fs_msg(sbi->sb, KERN_INFO,
3016                                 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3017                                 i, FDEV(i).path,
3018                                 FDEV(i).total_segments,
3019                                 FDEV(i).start_blk, FDEV(i).end_blk,
3020                                 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3021                                 "Host-aware" : "Host-managed");
3022                         continue;
3023                 }
3024 #endif
3025                 f2fs_msg(sbi->sb, KERN_INFO,
3026                         "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3027                                 i, FDEV(i).path,
3028                                 FDEV(i).total_segments,
3029                                 FDEV(i).start_blk, FDEV(i).end_blk);
3030         }
3031         f2fs_msg(sbi->sb, KERN_INFO,
3032                         "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3033         return 0;
3034 }
3035
3036 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3037 {
3038         struct f2fs_sm_info *sm_i = SM_I(sbi);
3039
3040         /* adjust parameters according to the volume size */
3041         if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3042                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3043                 sm_i->dcc_info->discard_granularity = 1;
3044                 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3045         }
3046
3047         sbi->readdir_ra = 1;
3048 }
3049
3050 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3051 {
3052         struct f2fs_sb_info *sbi;
3053         struct f2fs_super_block *raw_super;
3054         struct inode *root;
3055         int err;
3056         bool skip_recovery = false, need_fsck = false;
3057         char *options = NULL;
3058         int recovery, i, valid_super_block;
3059         struct curseg_info *seg_i;
3060         int retry_cnt = 1;
3061
3062 try_onemore:
3063         err = -EINVAL;
3064         raw_super = NULL;
3065         valid_super_block = -1;
3066         recovery = 0;
3067
3068         /* allocate memory for f2fs-specific super block info */
3069         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3070         if (!sbi)
3071                 return -ENOMEM;
3072
3073         sbi->sb = sb;
3074
3075         /* Load the checksum driver */
3076         sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3077         if (IS_ERR(sbi->s_chksum_driver)) {
3078                 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
3079                 err = PTR_ERR(sbi->s_chksum_driver);
3080                 sbi->s_chksum_driver = NULL;
3081                 goto free_sbi;
3082         }
3083
3084         /* set a block size */
3085         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3086                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
3087                 goto free_sbi;
3088         }
3089
3090         err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3091                                                                 &recovery);
3092         if (err)
3093                 goto free_sbi;
3094
3095         sb->s_fs_info = sbi;
3096         sbi->raw_super = raw_super;
3097
3098         /* precompute checksum seed for metadata */
3099         if (f2fs_sb_has_inode_chksum(sbi))
3100                 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3101                                                 sizeof(raw_super->uuid));
3102
3103         /*
3104          * The BLKZONED feature indicates that the drive was formatted with
3105          * zone alignment optimization. This is optional for host-aware
3106          * devices, but mandatory for host-managed zoned block devices.
3107          */
3108 #ifndef CONFIG_BLK_DEV_ZONED
3109         if (f2fs_sb_has_blkzoned(sbi)) {
3110                 f2fs_msg(sb, KERN_ERR,
3111                          "Zoned block device support is not enabled\n");
3112                 err = -EOPNOTSUPP;
3113                 goto free_sb_buf;
3114         }
3115 #endif
3116         default_options(sbi);
3117         /* parse mount options */
3118         options = kstrdup((const char *)data, GFP_KERNEL);
3119         if (data && !options) {
3120                 err = -ENOMEM;
3121                 goto free_sb_buf;
3122         }
3123
3124         err = parse_options(sb, options);
3125         if (err)
3126                 goto free_options;
3127
3128         sbi->max_file_blocks = max_file_blocks();
3129         sb->s_maxbytes = sbi->max_file_blocks <<
3130                                 le32_to_cpu(raw_super->log_blocksize);
3131         sb->s_max_links = F2FS_LINK_MAX;
3132
3133 #ifdef CONFIG_QUOTA
3134         sb->dq_op = &f2fs_quota_operations;
3135         if (f2fs_sb_has_quota_ino(sbi))
3136                 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3137         else
3138                 sb->s_qcop = &f2fs_quotactl_ops;
3139         sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3140
3141         if (f2fs_sb_has_quota_ino(sbi)) {
3142                 for (i = 0; i < MAXQUOTAS; i++) {
3143                         if (f2fs_qf_ino(sbi->sb, i))
3144                                 sbi->nquota_files++;
3145                 }
3146         }
3147 #endif
3148
3149         sb->s_op = &f2fs_sops;
3150 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3151         sb->s_cop = &f2fs_cryptops;
3152 #endif
3153         sb->s_xattr = f2fs_xattr_handlers;
3154         sb->s_export_op = &f2fs_export_ops;
3155         sb->s_magic = F2FS_SUPER_MAGIC;
3156         sb->s_time_gran = 1;
3157         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3158                 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3159         memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3160         sb->s_iflags |= SB_I_CGROUPWB;
3161
3162         /* init f2fs-specific super block info */
3163         sbi->valid_super_block = valid_super_block;
3164         mutex_init(&sbi->gc_mutex);
3165         mutex_init(&sbi->writepages);
3166         mutex_init(&sbi->cp_mutex);
3167         init_rwsem(&sbi->node_write);
3168         init_rwsem(&sbi->node_change);
3169
3170         /* disallow all the data/node/meta page writes */
3171         set_sbi_flag(sbi, SBI_POR_DOING);
3172         spin_lock_init(&sbi->stat_lock);
3173
3174         /* init iostat info */
3175         spin_lock_init(&sbi->iostat_lock);
3176         sbi->iostat_enable = false;
3177
3178         for (i = 0; i < NR_PAGE_TYPE; i++) {
3179                 int n = (i == META) ? 1: NR_TEMP_TYPE;
3180                 int j;
3181
3182                 sbi->write_io[i] =
3183                         f2fs_kmalloc(sbi,
3184                                      array_size(n,
3185                                                 sizeof(struct f2fs_bio_info)),
3186                                      GFP_KERNEL);
3187                 if (!sbi->write_io[i]) {
3188                         err = -ENOMEM;
3189                         goto free_bio_info;
3190                 }
3191
3192                 for (j = HOT; j < n; j++) {
3193                         init_rwsem(&sbi->write_io[i][j].io_rwsem);
3194                         sbi->write_io[i][j].sbi = sbi;
3195                         sbi->write_io[i][j].bio = NULL;
3196                         spin_lock_init(&sbi->write_io[i][j].io_lock);
3197                         INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
3198                 }
3199         }
3200
3201         init_rwsem(&sbi->cp_rwsem);
3202         init_waitqueue_head(&sbi->cp_wait);
3203         init_sb_info(sbi);
3204
3205         err = init_percpu_info(sbi);
3206         if (err)
3207                 goto free_bio_info;
3208
3209         if (F2FS_IO_SIZE(sbi) > 1) {
3210                 sbi->write_io_dummy =
3211                         mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
3212                 if (!sbi->write_io_dummy) {
3213                         err = -ENOMEM;
3214                         goto free_percpu;
3215                 }
3216         }
3217
3218         /* get an inode for meta space */
3219         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
3220         if (IS_ERR(sbi->meta_inode)) {
3221                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
3222                 err = PTR_ERR(sbi->meta_inode);
3223                 goto free_io_dummy;
3224         }
3225
3226         err = f2fs_get_valid_checkpoint(sbi);
3227         if (err) {
3228                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
3229                 goto free_meta_inode;
3230         }
3231
3232         if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
3233                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3234         if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
3235                 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3236                 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
3237         }
3238
3239         /* Initialize device list */
3240         err = f2fs_scan_devices(sbi);
3241         if (err) {
3242                 f2fs_msg(sb, KERN_ERR, "Failed to find devices");
3243                 goto free_devices;
3244         }
3245
3246         sbi->total_valid_node_count =
3247                                 le32_to_cpu(sbi->ckpt->valid_node_count);
3248         percpu_counter_set(&sbi->total_valid_inode_count,
3249                                 le32_to_cpu(sbi->ckpt->valid_inode_count));
3250         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
3251         sbi->total_valid_block_count =
3252                                 le64_to_cpu(sbi->ckpt->valid_block_count);
3253         sbi->last_valid_block_count = sbi->total_valid_block_count;
3254         sbi->reserved_blocks = 0;
3255         sbi->current_reserved_blocks = 0;
3256         limit_reserve_root(sbi);
3257
3258         for (i = 0; i < NR_INODE_TYPE; i++) {
3259                 INIT_LIST_HEAD(&sbi->inode_list[i]);
3260                 spin_lock_init(&sbi->inode_lock[i]);
3261         }
3262
3263         f2fs_init_extent_cache_info(sbi);
3264
3265         f2fs_init_ino_entry_info(sbi);
3266
3267         f2fs_init_fsync_node_info(sbi);
3268
3269         /* setup f2fs internal modules */
3270         err = f2fs_build_segment_manager(sbi);
3271         if (err) {
3272                 f2fs_msg(sb, KERN_ERR,
3273                         "Failed to initialize F2FS segment manager");
3274                 goto free_sm;
3275         }
3276         err = f2fs_build_node_manager(sbi);
3277         if (err) {
3278                 f2fs_msg(sb, KERN_ERR,
3279                         "Failed to initialize F2FS node manager");
3280                 goto free_nm;
3281         }
3282
3283         /* For write statistics */
3284         if (sb->s_bdev->bd_part)
3285                 sbi->sectors_written_start =
3286                         (u64)part_stat_read(sb->s_bdev->bd_part,
3287                                             sectors[STAT_WRITE]);
3288
3289         /* Read accumulated write IO statistics if exists */
3290         seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
3291         if (__exist_node_summaries(sbi))
3292                 sbi->kbytes_written =
3293                         le64_to_cpu(seg_i->journal->info.kbytes_written);
3294
3295         f2fs_build_gc_manager(sbi);
3296
3297         err = f2fs_build_stats(sbi);
3298         if (err)
3299                 goto free_nm;
3300
3301         /* get an inode for node space */
3302         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
3303         if (IS_ERR(sbi->node_inode)) {
3304                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
3305                 err = PTR_ERR(sbi->node_inode);
3306                 goto free_stats;
3307         }
3308
3309         /* read root inode and dentry */
3310         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
3311         if (IS_ERR(root)) {
3312                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
3313                 err = PTR_ERR(root);
3314                 goto free_node_inode;
3315         }
3316         if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
3317                         !root->i_size || !root->i_nlink) {
3318                 iput(root);
3319                 err = -EINVAL;
3320                 goto free_node_inode;
3321         }
3322
3323         sb->s_root = d_make_root(root); /* allocate root dentry */
3324         if (!sb->s_root) {
3325                 err = -ENOMEM;
3326                 goto free_node_inode;
3327         }
3328
3329         err = f2fs_register_sysfs(sbi);
3330         if (err)
3331                 goto free_root_inode;
3332
3333 #ifdef CONFIG_QUOTA
3334         /* Enable quota usage during mount */
3335         if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
3336                 err = f2fs_enable_quotas(sb);
3337                 if (err)
3338                         f2fs_msg(sb, KERN_ERR,
3339                                 "Cannot turn on quotas: error %d", err);
3340         }
3341 #endif
3342         /* if there are nt orphan nodes free them */
3343         err = f2fs_recover_orphan_inodes(sbi);
3344         if (err)
3345                 goto free_meta;
3346
3347         if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
3348                 goto reset_checkpoint;
3349
3350         /* recover fsynced data */
3351         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
3352                 /*
3353                  * mount should be failed, when device has readonly mode, and
3354                  * previous checkpoint was not done by clean system shutdown.
3355                  */
3356                 if (bdev_read_only(sb->s_bdev) &&
3357                                 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3358                         err = -EROFS;
3359                         goto free_meta;
3360                 }
3361
3362                 if (need_fsck)
3363                         set_sbi_flag(sbi, SBI_NEED_FSCK);
3364
3365                 if (skip_recovery)
3366                         goto reset_checkpoint;
3367
3368                 err = f2fs_recover_fsync_data(sbi, false);
3369                 if (err < 0) {
3370                         if (err != -ENOMEM)
3371                                 skip_recovery = true;
3372                         need_fsck = true;
3373                         f2fs_msg(sb, KERN_ERR,
3374                                 "Cannot recover all fsync data errno=%d", err);
3375                         goto free_meta;
3376                 }
3377         } else {
3378                 err = f2fs_recover_fsync_data(sbi, true);
3379
3380                 if (!f2fs_readonly(sb) && err > 0) {
3381                         err = -EINVAL;
3382                         f2fs_msg(sb, KERN_ERR,
3383                                 "Need to recover fsync data");
3384                         goto free_meta;
3385                 }
3386         }
3387 reset_checkpoint:
3388         /* f2fs_recover_fsync_data() cleared this already */
3389         clear_sbi_flag(sbi, SBI_POR_DOING);
3390
3391         if (test_opt(sbi, DISABLE_CHECKPOINT)) {
3392                 err = f2fs_disable_checkpoint(sbi);
3393                 if (err)
3394                         goto sync_free_meta;
3395         } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
3396                 f2fs_enable_checkpoint(sbi);
3397         }
3398
3399         /*
3400          * If filesystem is not mounted as read-only then
3401          * do start the gc_thread.
3402          */
3403         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
3404                 /* After POR, we can run background GC thread.*/
3405                 err = f2fs_start_gc_thread(sbi);
3406                 if (err)
3407                         goto sync_free_meta;
3408         }
3409         kvfree(options);
3410
3411         /* recover broken superblock */
3412         if (recovery) {
3413                 err = f2fs_commit_super(sbi, true);
3414                 f2fs_msg(sb, KERN_INFO,
3415                         "Try to recover %dth superblock, ret: %d",
3416                         sbi->valid_super_block ? 1 : 2, err);
3417         }
3418
3419         f2fs_join_shrinker(sbi);
3420
3421         f2fs_tuning_parameters(sbi);
3422
3423         f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
3424                                 cur_cp_version(F2FS_CKPT(sbi)));
3425         f2fs_update_time(sbi, CP_TIME);
3426         f2fs_update_time(sbi, REQ_TIME);
3427         clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3428         return 0;
3429
3430 sync_free_meta:
3431         /* safe to flush all the data */
3432         sync_filesystem(sbi->sb);
3433         retry_cnt = 0;
3434
3435 free_meta:
3436 #ifdef CONFIG_QUOTA
3437         f2fs_truncate_quota_inode_pages(sb);
3438         if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
3439                 f2fs_quota_off_umount(sbi->sb);
3440 #endif
3441         /*
3442          * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3443          * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3444          * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3445          * falls into an infinite loop in f2fs_sync_meta_pages().
3446          */
3447         truncate_inode_pages_final(META_MAPPING(sbi));
3448         /* evict some inodes being cached by GC */
3449         evict_inodes(sb);
3450         f2fs_unregister_sysfs(sbi);
3451 free_root_inode:
3452         dput(sb->s_root);
3453         sb->s_root = NULL;
3454 free_node_inode:
3455         f2fs_release_ino_entry(sbi, true);
3456         truncate_inode_pages_final(NODE_MAPPING(sbi));
3457         iput(sbi->node_inode);
3458         sbi->node_inode = NULL;
3459 free_stats:
3460         f2fs_destroy_stats(sbi);
3461 free_nm:
3462         f2fs_destroy_node_manager(sbi);
3463 free_sm:
3464         f2fs_destroy_segment_manager(sbi);
3465 free_devices:
3466         destroy_device_list(sbi);
3467         kvfree(sbi->ckpt);
3468 free_meta_inode:
3469         make_bad_inode(sbi->meta_inode);
3470         iput(sbi->meta_inode);
3471         sbi->meta_inode = NULL;
3472 free_io_dummy:
3473         mempool_destroy(sbi->write_io_dummy);
3474 free_percpu:
3475         destroy_percpu_info(sbi);
3476 free_bio_info:
3477         for (i = 0; i < NR_PAGE_TYPE; i++)
3478                 kvfree(sbi->write_io[i]);
3479 free_options:
3480 #ifdef CONFIG_QUOTA
3481         for (i = 0; i < MAXQUOTAS; i++)
3482                 kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
3483 #endif
3484         kvfree(options);
3485 free_sb_buf:
3486         kvfree(raw_super);
3487 free_sbi:
3488         if (sbi->s_chksum_driver)
3489                 crypto_free_shash(sbi->s_chksum_driver);
3490         kvfree(sbi);
3491
3492         /* give only one another chance */
3493         if (retry_cnt > 0 && skip_recovery) {
3494                 retry_cnt--;
3495                 shrink_dcache_sb(sb);
3496                 goto try_onemore;
3497         }
3498         return err;
3499 }
3500
3501 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3502                         const char *dev_name, void *data)
3503 {
3504         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3505 }
3506
3507 static void kill_f2fs_super(struct super_block *sb)
3508 {
3509         if (sb->s_root) {
3510                 struct f2fs_sb_info *sbi = F2FS_SB(sb);
3511
3512                 set_sbi_flag(sbi, SBI_IS_CLOSE);
3513                 f2fs_stop_gc_thread(sbi);
3514                 f2fs_stop_discard_thread(sbi);
3515
3516                 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
3517                                 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3518                         struct cp_control cpc = {
3519                                 .reason = CP_UMOUNT,
3520                         };
3521                         f2fs_write_checkpoint(sbi, &cpc);
3522                 }
3523
3524                 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
3525                         sb->s_flags &= ~SB_RDONLY;
3526         }
3527         kill_block_super(sb);
3528 }
3529
3530 static struct file_system_type f2fs_fs_type = {
3531         .owner          = THIS_MODULE,
3532         .name           = "f2fs",
3533         .mount          = f2fs_mount,
3534         .kill_sb        = kill_f2fs_super,
3535         .fs_flags       = FS_REQUIRES_DEV,
3536 };
3537 MODULE_ALIAS_FS("f2fs");
3538
3539 static int __init init_inodecache(void)
3540 {
3541         f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3542                         sizeof(struct f2fs_inode_info), 0,
3543                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3544         if (!f2fs_inode_cachep)
3545                 return -ENOMEM;
3546         return 0;
3547 }
3548
3549 static void destroy_inodecache(void)
3550 {
3551         /*
3552          * Make sure all delayed rcu free inodes are flushed before we
3553          * destroy cache.
3554          */
3555         rcu_barrier();
3556         kmem_cache_destroy(f2fs_inode_cachep);
3557 }
3558
3559 static int __init init_f2fs_fs(void)
3560 {
3561         int err;
3562
3563         if (PAGE_SIZE != F2FS_BLKSIZE) {
3564                 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
3565                                 PAGE_SIZE, F2FS_BLKSIZE);
3566                 return -EINVAL;
3567         }
3568
3569         f2fs_build_trace_ios();
3570
3571         err = init_inodecache();
3572         if (err)
3573                 goto fail;
3574         err = f2fs_create_node_manager_caches();
3575         if (err)
3576                 goto free_inodecache;
3577         err = f2fs_create_segment_manager_caches();
3578         if (err)
3579                 goto free_node_manager_caches;
3580         err = f2fs_create_checkpoint_caches();
3581         if (err)
3582                 goto free_segment_manager_caches;
3583         err = f2fs_create_extent_cache();
3584         if (err)
3585                 goto free_checkpoint_caches;
3586         err = f2fs_init_sysfs();
3587         if (err)
3588                 goto free_extent_cache;
3589         err = register_shrinker(&f2fs_shrinker_info);
3590         if (err)
3591                 goto free_sysfs;
3592         err = register_filesystem(&f2fs_fs_type);
3593         if (err)
3594                 goto free_shrinker;
3595         f2fs_create_root_stats();
3596         err = f2fs_init_post_read_processing();
3597         if (err)
3598                 goto free_root_stats;
3599         return 0;
3600
3601 free_root_stats:
3602         f2fs_destroy_root_stats();
3603         unregister_filesystem(&f2fs_fs_type);
3604 free_shrinker:
3605         unregister_shrinker(&f2fs_shrinker_info);
3606 free_sysfs:
3607         f2fs_exit_sysfs();
3608 free_extent_cache:
3609         f2fs_destroy_extent_cache();
3610 free_checkpoint_caches:
3611         f2fs_destroy_checkpoint_caches();
3612 free_segment_manager_caches:
3613         f2fs_destroy_segment_manager_caches();
3614 free_node_manager_caches:
3615         f2fs_destroy_node_manager_caches();
3616 free_inodecache:
3617         destroy_inodecache();
3618 fail:
3619         return err;
3620 }
3621
3622 static void __exit exit_f2fs_fs(void)
3623 {
3624         f2fs_destroy_post_read_processing();
3625         f2fs_destroy_root_stats();
3626         unregister_filesystem(&f2fs_fs_type);
3627         unregister_shrinker(&f2fs_shrinker_info);
3628         f2fs_exit_sysfs();
3629         f2fs_destroy_extent_cache();
3630         f2fs_destroy_checkpoint_caches();
3631         f2fs_destroy_segment_manager_caches();
3632         f2fs_destroy_node_manager_caches();
3633         destroy_inodecache();
3634         f2fs_destroy_trace_ios();
3635 }
3636
3637 module_init(init_f2fs_fs)
3638 module_exit(exit_f2fs_fs)
3639
3640 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
3641 MODULE_DESCRIPTION("Flash Friendly File System");
3642 MODULE_LICENSE("GPL");
3643