]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/f2fs/super.c
f2fs: fix miscounted block limit in f2fs_statfs_project()
[linux.git] / fs / f2fs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/statfs.h>
12 #include <linux/buffer_head.h>
13 #include <linux/backing-dev.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 #include <linux/unicode.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct kmem_cache *f2fs_inode_cachep;
39
40 #ifdef CONFIG_F2FS_FAULT_INJECTION
41
42 const char *f2fs_fault_name[FAULT_MAX] = {
43         [FAULT_KMALLOC]         = "kmalloc",
44         [FAULT_KVMALLOC]        = "kvmalloc",
45         [FAULT_PAGE_ALLOC]      = "page alloc",
46         [FAULT_PAGE_GET]        = "page get",
47         [FAULT_ALLOC_BIO]       = "alloc bio",
48         [FAULT_ALLOC_NID]       = "alloc nid",
49         [FAULT_ORPHAN]          = "orphan",
50         [FAULT_BLOCK]           = "no more block",
51         [FAULT_DIR_DEPTH]       = "too big dir depth",
52         [FAULT_EVICT_INODE]     = "evict_inode fail",
53         [FAULT_TRUNCATE]        = "truncate fail",
54         [FAULT_READ_IO]         = "read IO error",
55         [FAULT_CHECKPOINT]      = "checkpoint error",
56         [FAULT_DISCARD]         = "discard error",
57         [FAULT_WRITE_IO]        = "write IO error",
58 };
59
60 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
61                                                         unsigned int type)
62 {
63         struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
64
65         if (rate) {
66                 atomic_set(&ffi->inject_ops, 0);
67                 ffi->inject_rate = rate;
68         }
69
70         if (type)
71                 ffi->inject_type = type;
72
73         if (!rate && !type)
74                 memset(ffi, 0, sizeof(struct f2fs_fault_info));
75 }
76 #endif
77
78 /* f2fs-wide shrinker description */
79 static struct shrinker f2fs_shrinker_info = {
80         .scan_objects = f2fs_shrink_scan,
81         .count_objects = f2fs_shrink_count,
82         .seeks = DEFAULT_SEEKS,
83 };
84
85 enum {
86         Opt_gc_background,
87         Opt_disable_roll_forward,
88         Opt_norecovery,
89         Opt_discard,
90         Opt_nodiscard,
91         Opt_noheap,
92         Opt_heap,
93         Opt_user_xattr,
94         Opt_nouser_xattr,
95         Opt_acl,
96         Opt_noacl,
97         Opt_active_logs,
98         Opt_disable_ext_identify,
99         Opt_inline_xattr,
100         Opt_noinline_xattr,
101         Opt_inline_xattr_size,
102         Opt_inline_data,
103         Opt_inline_dentry,
104         Opt_noinline_dentry,
105         Opt_flush_merge,
106         Opt_noflush_merge,
107         Opt_nobarrier,
108         Opt_fastboot,
109         Opt_extent_cache,
110         Opt_noextent_cache,
111         Opt_noinline_data,
112         Opt_data_flush,
113         Opt_reserve_root,
114         Opt_resgid,
115         Opt_resuid,
116         Opt_mode,
117         Opt_io_size_bits,
118         Opt_fault_injection,
119         Opt_fault_type,
120         Opt_lazytime,
121         Opt_nolazytime,
122         Opt_quota,
123         Opt_noquota,
124         Opt_usrquota,
125         Opt_grpquota,
126         Opt_prjquota,
127         Opt_usrjquota,
128         Opt_grpjquota,
129         Opt_prjjquota,
130         Opt_offusrjquota,
131         Opt_offgrpjquota,
132         Opt_offprjjquota,
133         Opt_jqfmt_vfsold,
134         Opt_jqfmt_vfsv0,
135         Opt_jqfmt_vfsv1,
136         Opt_whint,
137         Opt_alloc,
138         Opt_fsync,
139         Opt_test_dummy_encryption,
140         Opt_checkpoint_disable,
141         Opt_checkpoint_disable_cap,
142         Opt_checkpoint_disable_cap_perc,
143         Opt_checkpoint_enable,
144         Opt_compress_algorithm,
145         Opt_compress_log_size,
146         Opt_compress_extension,
147         Opt_err,
148 };
149
150 static match_table_t f2fs_tokens = {
151         {Opt_gc_background, "background_gc=%s"},
152         {Opt_disable_roll_forward, "disable_roll_forward"},
153         {Opt_norecovery, "norecovery"},
154         {Opt_discard, "discard"},
155         {Opt_nodiscard, "nodiscard"},
156         {Opt_noheap, "no_heap"},
157         {Opt_heap, "heap"},
158         {Opt_user_xattr, "user_xattr"},
159         {Opt_nouser_xattr, "nouser_xattr"},
160         {Opt_acl, "acl"},
161         {Opt_noacl, "noacl"},
162         {Opt_active_logs, "active_logs=%u"},
163         {Opt_disable_ext_identify, "disable_ext_identify"},
164         {Opt_inline_xattr, "inline_xattr"},
165         {Opt_noinline_xattr, "noinline_xattr"},
166         {Opt_inline_xattr_size, "inline_xattr_size=%u"},
167         {Opt_inline_data, "inline_data"},
168         {Opt_inline_dentry, "inline_dentry"},
169         {Opt_noinline_dentry, "noinline_dentry"},
170         {Opt_flush_merge, "flush_merge"},
171         {Opt_noflush_merge, "noflush_merge"},
172         {Opt_nobarrier, "nobarrier"},
173         {Opt_fastboot, "fastboot"},
174         {Opt_extent_cache, "extent_cache"},
175         {Opt_noextent_cache, "noextent_cache"},
176         {Opt_noinline_data, "noinline_data"},
177         {Opt_data_flush, "data_flush"},
178         {Opt_reserve_root, "reserve_root=%u"},
179         {Opt_resgid, "resgid=%u"},
180         {Opt_resuid, "resuid=%u"},
181         {Opt_mode, "mode=%s"},
182         {Opt_io_size_bits, "io_bits=%u"},
183         {Opt_fault_injection, "fault_injection=%u"},
184         {Opt_fault_type, "fault_type=%u"},
185         {Opt_lazytime, "lazytime"},
186         {Opt_nolazytime, "nolazytime"},
187         {Opt_quota, "quota"},
188         {Opt_noquota, "noquota"},
189         {Opt_usrquota, "usrquota"},
190         {Opt_grpquota, "grpquota"},
191         {Opt_prjquota, "prjquota"},
192         {Opt_usrjquota, "usrjquota=%s"},
193         {Opt_grpjquota, "grpjquota=%s"},
194         {Opt_prjjquota, "prjjquota=%s"},
195         {Opt_offusrjquota, "usrjquota="},
196         {Opt_offgrpjquota, "grpjquota="},
197         {Opt_offprjjquota, "prjjquota="},
198         {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
199         {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
200         {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
201         {Opt_whint, "whint_mode=%s"},
202         {Opt_alloc, "alloc_mode=%s"},
203         {Opt_fsync, "fsync_mode=%s"},
204         {Opt_test_dummy_encryption, "test_dummy_encryption"},
205         {Opt_checkpoint_disable, "checkpoint=disable"},
206         {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
207         {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
208         {Opt_checkpoint_enable, "checkpoint=enable"},
209         {Opt_compress_algorithm, "compress_algorithm=%s"},
210         {Opt_compress_log_size, "compress_log_size=%u"},
211         {Opt_compress_extension, "compress_extension=%s"},
212         {Opt_err, NULL},
213 };
214
215 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
216 {
217         struct va_format vaf;
218         va_list args;
219         int level;
220
221         va_start(args, fmt);
222
223         level = printk_get_level(fmt);
224         vaf.fmt = printk_skip_level(fmt);
225         vaf.va = &args;
226         printk("%c%cF2FS-fs (%s): %pV\n",
227                KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
228
229         va_end(args);
230 }
231
232 #ifdef CONFIG_UNICODE
233 static const struct f2fs_sb_encodings {
234         __u16 magic;
235         char *name;
236         char *version;
237 } f2fs_sb_encoding_map[] = {
238         {F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"},
239 };
240
241 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb,
242                                  const struct f2fs_sb_encodings **encoding,
243                                  __u16 *flags)
244 {
245         __u16 magic = le16_to_cpu(sb->s_encoding);
246         int i;
247
248         for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
249                 if (magic == f2fs_sb_encoding_map[i].magic)
250                         break;
251
252         if (i >= ARRAY_SIZE(f2fs_sb_encoding_map))
253                 return -EINVAL;
254
255         *encoding = &f2fs_sb_encoding_map[i];
256         *flags = le16_to_cpu(sb->s_encoding_flags);
257
258         return 0;
259 }
260 #endif
261
262 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
263 {
264         block_t limit = min((sbi->user_block_count << 1) / 1000,
265                         sbi->user_block_count - sbi->reserved_blocks);
266
267         /* limit is 0.2% */
268         if (test_opt(sbi, RESERVE_ROOT) &&
269                         F2FS_OPTION(sbi).root_reserved_blocks > limit) {
270                 F2FS_OPTION(sbi).root_reserved_blocks = limit;
271                 f2fs_info(sbi, "Reduce reserved blocks for root = %u",
272                           F2FS_OPTION(sbi).root_reserved_blocks);
273         }
274         if (!test_opt(sbi, RESERVE_ROOT) &&
275                 (!uid_eq(F2FS_OPTION(sbi).s_resuid,
276                                 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
277                 !gid_eq(F2FS_OPTION(sbi).s_resgid,
278                                 make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
279                 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
280                           from_kuid_munged(&init_user_ns,
281                                            F2FS_OPTION(sbi).s_resuid),
282                           from_kgid_munged(&init_user_ns,
283                                            F2FS_OPTION(sbi).s_resgid));
284 }
285
286 static void init_once(void *foo)
287 {
288         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
289
290         inode_init_once(&fi->vfs_inode);
291 }
292
293 #ifdef CONFIG_QUOTA
294 static const char * const quotatypes[] = INITQFNAMES;
295 #define QTYPE2NAME(t) (quotatypes[t])
296 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
297                                                         substring_t *args)
298 {
299         struct f2fs_sb_info *sbi = F2FS_SB(sb);
300         char *qname;
301         int ret = -EINVAL;
302
303         if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
304                 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
305                 return -EINVAL;
306         }
307         if (f2fs_sb_has_quota_ino(sbi)) {
308                 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
309                 return 0;
310         }
311
312         qname = match_strdup(args);
313         if (!qname) {
314                 f2fs_err(sbi, "Not enough memory for storing quotafile name");
315                 return -ENOMEM;
316         }
317         if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
318                 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
319                         ret = 0;
320                 else
321                         f2fs_err(sbi, "%s quota file already specified",
322                                  QTYPE2NAME(qtype));
323                 goto errout;
324         }
325         if (strchr(qname, '/')) {
326                 f2fs_err(sbi, "quotafile must be on filesystem root");
327                 goto errout;
328         }
329         F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
330         set_opt(sbi, QUOTA);
331         return 0;
332 errout:
333         kvfree(qname);
334         return ret;
335 }
336
337 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
338 {
339         struct f2fs_sb_info *sbi = F2FS_SB(sb);
340
341         if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
342                 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
343                 return -EINVAL;
344         }
345         kvfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
346         F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
347         return 0;
348 }
349
350 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
351 {
352         /*
353          * We do the test below only for project quotas. 'usrquota' and
354          * 'grpquota' mount options are allowed even without quota feature
355          * to support legacy quotas in quota files.
356          */
357         if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
358                 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
359                 return -1;
360         }
361         if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
362                         F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
363                         F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
364                 if (test_opt(sbi, USRQUOTA) &&
365                                 F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
366                         clear_opt(sbi, USRQUOTA);
367
368                 if (test_opt(sbi, GRPQUOTA) &&
369                                 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
370                         clear_opt(sbi, GRPQUOTA);
371
372                 if (test_opt(sbi, PRJQUOTA) &&
373                                 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
374                         clear_opt(sbi, PRJQUOTA);
375
376                 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
377                                 test_opt(sbi, PRJQUOTA)) {
378                         f2fs_err(sbi, "old and new quota format mixing");
379                         return -1;
380                 }
381
382                 if (!F2FS_OPTION(sbi).s_jquota_fmt) {
383                         f2fs_err(sbi, "journaled quota format not specified");
384                         return -1;
385                 }
386         }
387
388         if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
389                 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
390                 F2FS_OPTION(sbi).s_jquota_fmt = 0;
391         }
392         return 0;
393 }
394 #endif
395
396 static int parse_options(struct super_block *sb, char *options)
397 {
398         struct f2fs_sb_info *sbi = F2FS_SB(sb);
399         substring_t args[MAX_OPT_ARGS];
400         unsigned char (*ext)[F2FS_EXTENSION_LEN];
401         char *p, *name;
402         int arg = 0, ext_cnt;
403         kuid_t uid;
404         kgid_t gid;
405 #ifdef CONFIG_QUOTA
406         int ret;
407 #endif
408
409         if (!options)
410                 return 0;
411
412         while ((p = strsep(&options, ",")) != NULL) {
413                 int token;
414                 if (!*p)
415                         continue;
416                 /*
417                  * Initialize args struct so we know whether arg was
418                  * found; some options take optional arguments.
419                  */
420                 args[0].to = args[0].from = NULL;
421                 token = match_token(p, f2fs_tokens, args);
422
423                 switch (token) {
424                 case Opt_gc_background:
425                         name = match_strdup(&args[0]);
426
427                         if (!name)
428                                 return -ENOMEM;
429                         if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
430                                 set_opt(sbi, BG_GC);
431                                 clear_opt(sbi, FORCE_FG_GC);
432                         } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
433                                 clear_opt(sbi, BG_GC);
434                                 clear_opt(sbi, FORCE_FG_GC);
435                         } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
436                                 set_opt(sbi, BG_GC);
437                                 set_opt(sbi, FORCE_FG_GC);
438                         } else {
439                                 kvfree(name);
440                                 return -EINVAL;
441                         }
442                         kvfree(name);
443                         break;
444                 case Opt_disable_roll_forward:
445                         set_opt(sbi, DISABLE_ROLL_FORWARD);
446                         break;
447                 case Opt_norecovery:
448                         /* this option mounts f2fs with ro */
449                         set_opt(sbi, DISABLE_ROLL_FORWARD);
450                         if (!f2fs_readonly(sb))
451                                 return -EINVAL;
452                         break;
453                 case Opt_discard:
454                         set_opt(sbi, DISCARD);
455                         break;
456                 case Opt_nodiscard:
457                         if (f2fs_sb_has_blkzoned(sbi)) {
458                                 f2fs_warn(sbi, "discard is required for zoned block devices");
459                                 return -EINVAL;
460                         }
461                         clear_opt(sbi, DISCARD);
462                         break;
463                 case Opt_noheap:
464                         set_opt(sbi, NOHEAP);
465                         break;
466                 case Opt_heap:
467                         clear_opt(sbi, NOHEAP);
468                         break;
469 #ifdef CONFIG_F2FS_FS_XATTR
470                 case Opt_user_xattr:
471                         set_opt(sbi, XATTR_USER);
472                         break;
473                 case Opt_nouser_xattr:
474                         clear_opt(sbi, XATTR_USER);
475                         break;
476                 case Opt_inline_xattr:
477                         set_opt(sbi, INLINE_XATTR);
478                         break;
479                 case Opt_noinline_xattr:
480                         clear_opt(sbi, INLINE_XATTR);
481                         break;
482                 case Opt_inline_xattr_size:
483                         if (args->from && match_int(args, &arg))
484                                 return -EINVAL;
485                         set_opt(sbi, INLINE_XATTR_SIZE);
486                         F2FS_OPTION(sbi).inline_xattr_size = arg;
487                         break;
488 #else
489                 case Opt_user_xattr:
490                         f2fs_info(sbi, "user_xattr options not supported");
491                         break;
492                 case Opt_nouser_xattr:
493                         f2fs_info(sbi, "nouser_xattr options not supported");
494                         break;
495                 case Opt_inline_xattr:
496                         f2fs_info(sbi, "inline_xattr options not supported");
497                         break;
498                 case Opt_noinline_xattr:
499                         f2fs_info(sbi, "noinline_xattr options not supported");
500                         break;
501 #endif
502 #ifdef CONFIG_F2FS_FS_POSIX_ACL
503                 case Opt_acl:
504                         set_opt(sbi, POSIX_ACL);
505                         break;
506                 case Opt_noacl:
507                         clear_opt(sbi, POSIX_ACL);
508                         break;
509 #else
510                 case Opt_acl:
511                         f2fs_info(sbi, "acl options not supported");
512                         break;
513                 case Opt_noacl:
514                         f2fs_info(sbi, "noacl options not supported");
515                         break;
516 #endif
517                 case Opt_active_logs:
518                         if (args->from && match_int(args, &arg))
519                                 return -EINVAL;
520                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
521                                 return -EINVAL;
522                         F2FS_OPTION(sbi).active_logs = arg;
523                         break;
524                 case Opt_disable_ext_identify:
525                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
526                         break;
527                 case Opt_inline_data:
528                         set_opt(sbi, INLINE_DATA);
529                         break;
530                 case Opt_inline_dentry:
531                         set_opt(sbi, INLINE_DENTRY);
532                         break;
533                 case Opt_noinline_dentry:
534                         clear_opt(sbi, INLINE_DENTRY);
535                         break;
536                 case Opt_flush_merge:
537                         set_opt(sbi, FLUSH_MERGE);
538                         break;
539                 case Opt_noflush_merge:
540                         clear_opt(sbi, FLUSH_MERGE);
541                         break;
542                 case Opt_nobarrier:
543                         set_opt(sbi, NOBARRIER);
544                         break;
545                 case Opt_fastboot:
546                         set_opt(sbi, FASTBOOT);
547                         break;
548                 case Opt_extent_cache:
549                         set_opt(sbi, EXTENT_CACHE);
550                         break;
551                 case Opt_noextent_cache:
552                         clear_opt(sbi, EXTENT_CACHE);
553                         break;
554                 case Opt_noinline_data:
555                         clear_opt(sbi, INLINE_DATA);
556                         break;
557                 case Opt_data_flush:
558                         set_opt(sbi, DATA_FLUSH);
559                         break;
560                 case Opt_reserve_root:
561                         if (args->from && match_int(args, &arg))
562                                 return -EINVAL;
563                         if (test_opt(sbi, RESERVE_ROOT)) {
564                                 f2fs_info(sbi, "Preserve previous reserve_root=%u",
565                                           F2FS_OPTION(sbi).root_reserved_blocks);
566                         } else {
567                                 F2FS_OPTION(sbi).root_reserved_blocks = arg;
568                                 set_opt(sbi, RESERVE_ROOT);
569                         }
570                         break;
571                 case Opt_resuid:
572                         if (args->from && match_int(args, &arg))
573                                 return -EINVAL;
574                         uid = make_kuid(current_user_ns(), arg);
575                         if (!uid_valid(uid)) {
576                                 f2fs_err(sbi, "Invalid uid value %d", arg);
577                                 return -EINVAL;
578                         }
579                         F2FS_OPTION(sbi).s_resuid = uid;
580                         break;
581                 case Opt_resgid:
582                         if (args->from && match_int(args, &arg))
583                                 return -EINVAL;
584                         gid = make_kgid(current_user_ns(), arg);
585                         if (!gid_valid(gid)) {
586                                 f2fs_err(sbi, "Invalid gid value %d", arg);
587                                 return -EINVAL;
588                         }
589                         F2FS_OPTION(sbi).s_resgid = gid;
590                         break;
591                 case Opt_mode:
592                         name = match_strdup(&args[0]);
593
594                         if (!name)
595                                 return -ENOMEM;
596                         if (strlen(name) == 8 &&
597                                         !strncmp(name, "adaptive", 8)) {
598                                 if (f2fs_sb_has_blkzoned(sbi)) {
599                                         f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
600                                         kvfree(name);
601                                         return -EINVAL;
602                                 }
603                                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
604                         } else if (strlen(name) == 3 &&
605                                         !strncmp(name, "lfs", 3)) {
606                                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
607                         } else {
608                                 kvfree(name);
609                                 return -EINVAL;
610                         }
611                         kvfree(name);
612                         break;
613                 case Opt_io_size_bits:
614                         if (args->from && match_int(args, &arg))
615                                 return -EINVAL;
616                         if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) {
617                                 f2fs_warn(sbi, "Not support %d, larger than %d",
618                                           1 << arg, BIO_MAX_PAGES);
619                                 return -EINVAL;
620                         }
621                         F2FS_OPTION(sbi).write_io_size_bits = arg;
622                         break;
623 #ifdef CONFIG_F2FS_FAULT_INJECTION
624                 case Opt_fault_injection:
625                         if (args->from && match_int(args, &arg))
626                                 return -EINVAL;
627                         f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
628                         set_opt(sbi, FAULT_INJECTION);
629                         break;
630
631                 case Opt_fault_type:
632                         if (args->from && match_int(args, &arg))
633                                 return -EINVAL;
634                         f2fs_build_fault_attr(sbi, 0, arg);
635                         set_opt(sbi, FAULT_INJECTION);
636                         break;
637 #else
638                 case Opt_fault_injection:
639                         f2fs_info(sbi, "fault_injection options not supported");
640                         break;
641
642                 case Opt_fault_type:
643                         f2fs_info(sbi, "fault_type options not supported");
644                         break;
645 #endif
646                 case Opt_lazytime:
647                         sb->s_flags |= SB_LAZYTIME;
648                         break;
649                 case Opt_nolazytime:
650                         sb->s_flags &= ~SB_LAZYTIME;
651                         break;
652 #ifdef CONFIG_QUOTA
653                 case Opt_quota:
654                 case Opt_usrquota:
655                         set_opt(sbi, USRQUOTA);
656                         break;
657                 case Opt_grpquota:
658                         set_opt(sbi, GRPQUOTA);
659                         break;
660                 case Opt_prjquota:
661                         set_opt(sbi, PRJQUOTA);
662                         break;
663                 case Opt_usrjquota:
664                         ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
665                         if (ret)
666                                 return ret;
667                         break;
668                 case Opt_grpjquota:
669                         ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
670                         if (ret)
671                                 return ret;
672                         break;
673                 case Opt_prjjquota:
674                         ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
675                         if (ret)
676                                 return ret;
677                         break;
678                 case Opt_offusrjquota:
679                         ret = f2fs_clear_qf_name(sb, USRQUOTA);
680                         if (ret)
681                                 return ret;
682                         break;
683                 case Opt_offgrpjquota:
684                         ret = f2fs_clear_qf_name(sb, GRPQUOTA);
685                         if (ret)
686                                 return ret;
687                         break;
688                 case Opt_offprjjquota:
689                         ret = f2fs_clear_qf_name(sb, PRJQUOTA);
690                         if (ret)
691                                 return ret;
692                         break;
693                 case Opt_jqfmt_vfsold:
694                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
695                         break;
696                 case Opt_jqfmt_vfsv0:
697                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
698                         break;
699                 case Opt_jqfmt_vfsv1:
700                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
701                         break;
702                 case Opt_noquota:
703                         clear_opt(sbi, QUOTA);
704                         clear_opt(sbi, USRQUOTA);
705                         clear_opt(sbi, GRPQUOTA);
706                         clear_opt(sbi, PRJQUOTA);
707                         break;
708 #else
709                 case Opt_quota:
710                 case Opt_usrquota:
711                 case Opt_grpquota:
712                 case Opt_prjquota:
713                 case Opt_usrjquota:
714                 case Opt_grpjquota:
715                 case Opt_prjjquota:
716                 case Opt_offusrjquota:
717                 case Opt_offgrpjquota:
718                 case Opt_offprjjquota:
719                 case Opt_jqfmt_vfsold:
720                 case Opt_jqfmt_vfsv0:
721                 case Opt_jqfmt_vfsv1:
722                 case Opt_noquota:
723                         f2fs_info(sbi, "quota operations not supported");
724                         break;
725 #endif
726                 case Opt_whint:
727                         name = match_strdup(&args[0]);
728                         if (!name)
729                                 return -ENOMEM;
730                         if (strlen(name) == 10 &&
731                                         !strncmp(name, "user-based", 10)) {
732                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
733                         } else if (strlen(name) == 3 &&
734                                         !strncmp(name, "off", 3)) {
735                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
736                         } else if (strlen(name) == 8 &&
737                                         !strncmp(name, "fs-based", 8)) {
738                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
739                         } else {
740                                 kvfree(name);
741                                 return -EINVAL;
742                         }
743                         kvfree(name);
744                         break;
745                 case Opt_alloc:
746                         name = match_strdup(&args[0]);
747                         if (!name)
748                                 return -ENOMEM;
749
750                         if (strlen(name) == 7 &&
751                                         !strncmp(name, "default", 7)) {
752                                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
753                         } else if (strlen(name) == 5 &&
754                                         !strncmp(name, "reuse", 5)) {
755                                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
756                         } else {
757                                 kvfree(name);
758                                 return -EINVAL;
759                         }
760                         kvfree(name);
761                         break;
762                 case Opt_fsync:
763                         name = match_strdup(&args[0]);
764                         if (!name)
765                                 return -ENOMEM;
766                         if (strlen(name) == 5 &&
767                                         !strncmp(name, "posix", 5)) {
768                                 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
769                         } else if (strlen(name) == 6 &&
770                                         !strncmp(name, "strict", 6)) {
771                                 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
772                         } else if (strlen(name) == 9 &&
773                                         !strncmp(name, "nobarrier", 9)) {
774                                 F2FS_OPTION(sbi).fsync_mode =
775                                                         FSYNC_MODE_NOBARRIER;
776                         } else {
777                                 kvfree(name);
778                                 return -EINVAL;
779                         }
780                         kvfree(name);
781                         break;
782                 case Opt_test_dummy_encryption:
783 #ifdef CONFIG_FS_ENCRYPTION
784                         if (!f2fs_sb_has_encrypt(sbi)) {
785                                 f2fs_err(sbi, "Encrypt feature is off");
786                                 return -EINVAL;
787                         }
788
789                         F2FS_OPTION(sbi).test_dummy_encryption = true;
790                         f2fs_info(sbi, "Test dummy encryption mode enabled");
791 #else
792                         f2fs_info(sbi, "Test dummy encryption mount option ignored");
793 #endif
794                         break;
795                 case Opt_checkpoint_disable_cap_perc:
796                         if (args->from && match_int(args, &arg))
797                                 return -EINVAL;
798                         if (arg < 0 || arg > 100)
799                                 return -EINVAL;
800                         if (arg == 100)
801                                 F2FS_OPTION(sbi).unusable_cap =
802                                         sbi->user_block_count;
803                         else
804                                 F2FS_OPTION(sbi).unusable_cap =
805                                         (sbi->user_block_count / 100) * arg;
806                         set_opt(sbi, DISABLE_CHECKPOINT);
807                         break;
808                 case Opt_checkpoint_disable_cap:
809                         if (args->from && match_int(args, &arg))
810                                 return -EINVAL;
811                         F2FS_OPTION(sbi).unusable_cap = arg;
812                         set_opt(sbi, DISABLE_CHECKPOINT);
813                         break;
814                 case Opt_checkpoint_disable:
815                         set_opt(sbi, DISABLE_CHECKPOINT);
816                         break;
817                 case Opt_checkpoint_enable:
818                         clear_opt(sbi, DISABLE_CHECKPOINT);
819                         break;
820                 case Opt_compress_algorithm:
821                         if (!f2fs_sb_has_compression(sbi)) {
822                                 f2fs_err(sbi, "Compression feature if off");
823                                 return -EINVAL;
824                         }
825                         name = match_strdup(&args[0]);
826                         if (!name)
827                                 return -ENOMEM;
828                         if (strlen(name) == 3 && !strcmp(name, "lzo")) {
829                                 F2FS_OPTION(sbi).compress_algorithm =
830                                                                 COMPRESS_LZO;
831                         } else if (strlen(name) == 3 &&
832                                         !strcmp(name, "lz4")) {
833                                 F2FS_OPTION(sbi).compress_algorithm =
834                                                                 COMPRESS_LZ4;
835                         } else {
836                                 kfree(name);
837                                 return -EINVAL;
838                         }
839                         kfree(name);
840                         break;
841                 case Opt_compress_log_size:
842                         if (!f2fs_sb_has_compression(sbi)) {
843                                 f2fs_err(sbi, "Compression feature is off");
844                                 return -EINVAL;
845                         }
846                         if (args->from && match_int(args, &arg))
847                                 return -EINVAL;
848                         if (arg < MIN_COMPRESS_LOG_SIZE ||
849                                 arg > MAX_COMPRESS_LOG_SIZE) {
850                                 f2fs_err(sbi,
851                                         "Compress cluster log size is out of range");
852                                 return -EINVAL;
853                         }
854                         F2FS_OPTION(sbi).compress_log_size = arg;
855                         break;
856                 case Opt_compress_extension:
857                         if (!f2fs_sb_has_compression(sbi)) {
858                                 f2fs_err(sbi, "Compression feature is off");
859                                 return -EINVAL;
860                         }
861                         name = match_strdup(&args[0]);
862                         if (!name)
863                                 return -ENOMEM;
864
865                         ext = F2FS_OPTION(sbi).extensions;
866                         ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
867
868                         if (strlen(name) >= F2FS_EXTENSION_LEN ||
869                                 ext_cnt >= COMPRESS_EXT_NUM) {
870                                 f2fs_err(sbi,
871                                         "invalid extension length/number");
872                                 kfree(name);
873                                 return -EINVAL;
874                         }
875
876                         strcpy(ext[ext_cnt], name);
877                         F2FS_OPTION(sbi).compress_ext_cnt++;
878                         kfree(name);
879                         break;
880                 default:
881                         f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
882                                  p);
883                         return -EINVAL;
884                 }
885         }
886 #ifdef CONFIG_QUOTA
887         if (f2fs_check_quota_options(sbi))
888                 return -EINVAL;
889 #else
890         if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
891                 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
892                 return -EINVAL;
893         }
894         if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
895                 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
896                 return -EINVAL;
897         }
898 #endif
899 #ifndef CONFIG_UNICODE
900         if (f2fs_sb_has_casefold(sbi)) {
901                 f2fs_err(sbi,
902                         "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
903                 return -EINVAL;
904         }
905 #endif
906
907         if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
908                 f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
909                          F2FS_IO_SIZE_KB(sbi));
910                 return -EINVAL;
911         }
912
913         if (test_opt(sbi, INLINE_XATTR_SIZE)) {
914                 int min_size, max_size;
915
916                 if (!f2fs_sb_has_extra_attr(sbi) ||
917                         !f2fs_sb_has_flexible_inline_xattr(sbi)) {
918                         f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
919                         return -EINVAL;
920                 }
921                 if (!test_opt(sbi, INLINE_XATTR)) {
922                         f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
923                         return -EINVAL;
924                 }
925
926                 min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
927                 max_size = MAX_INLINE_XATTR_SIZE;
928
929                 if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
930                                 F2FS_OPTION(sbi).inline_xattr_size > max_size) {
931                         f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
932                                  min_size, max_size);
933                         return -EINVAL;
934                 }
935         }
936
937         if (test_opt(sbi, DISABLE_CHECKPOINT) && test_opt(sbi, LFS)) {
938                 f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n");
939                 return -EINVAL;
940         }
941
942         /* Not pass down write hints if the number of active logs is lesser
943          * than NR_CURSEG_TYPE.
944          */
945         if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
946                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
947         return 0;
948 }
949
950 static struct inode *f2fs_alloc_inode(struct super_block *sb)
951 {
952         struct f2fs_inode_info *fi;
953
954         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
955         if (!fi)
956                 return NULL;
957
958         init_once((void *) fi);
959
960         /* Initialize f2fs-specific inode info */
961         atomic_set(&fi->dirty_pages, 0);
962         init_rwsem(&fi->i_sem);
963         INIT_LIST_HEAD(&fi->dirty_list);
964         INIT_LIST_HEAD(&fi->gdirty_list);
965         INIT_LIST_HEAD(&fi->inmem_ilist);
966         INIT_LIST_HEAD(&fi->inmem_pages);
967         mutex_init(&fi->inmem_lock);
968         init_rwsem(&fi->i_gc_rwsem[READ]);
969         init_rwsem(&fi->i_gc_rwsem[WRITE]);
970         init_rwsem(&fi->i_mmap_sem);
971         init_rwsem(&fi->i_xattr_sem);
972
973         /* Will be used by directory only */
974         fi->i_dir_level = F2FS_SB(sb)->dir_level;
975
976         return &fi->vfs_inode;
977 }
978
979 static int f2fs_drop_inode(struct inode *inode)
980 {
981         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
982         int ret;
983
984         /*
985          * during filesystem shutdown, if checkpoint is disabled,
986          * drop useless meta/node dirty pages.
987          */
988         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
989                 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
990                         inode->i_ino == F2FS_META_INO(sbi)) {
991                         trace_f2fs_drop_inode(inode, 1);
992                         return 1;
993                 }
994         }
995
996         /*
997          * This is to avoid a deadlock condition like below.
998          * writeback_single_inode(inode)
999          *  - f2fs_write_data_page
1000          *    - f2fs_gc -> iput -> evict
1001          *       - inode_wait_for_writeback(inode)
1002          */
1003         if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1004                 if (!inode->i_nlink && !is_bad_inode(inode)) {
1005                         /* to avoid evict_inode call simultaneously */
1006                         atomic_inc(&inode->i_count);
1007                         spin_unlock(&inode->i_lock);
1008
1009                         /* some remained atomic pages should discarded */
1010                         if (f2fs_is_atomic_file(inode))
1011                                 f2fs_drop_inmem_pages(inode);
1012
1013                         /* should remain fi->extent_tree for writepage */
1014                         f2fs_destroy_extent_node(inode);
1015
1016                         sb_start_intwrite(inode->i_sb);
1017                         f2fs_i_size_write(inode, 0);
1018
1019                         f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1020                                         inode, NULL, 0, DATA);
1021                         truncate_inode_pages_final(inode->i_mapping);
1022
1023                         if (F2FS_HAS_BLOCKS(inode))
1024                                 f2fs_truncate(inode);
1025
1026                         sb_end_intwrite(inode->i_sb);
1027
1028                         spin_lock(&inode->i_lock);
1029                         atomic_dec(&inode->i_count);
1030                 }
1031                 trace_f2fs_drop_inode(inode, 0);
1032                 return 0;
1033         }
1034         ret = generic_drop_inode(inode);
1035         if (!ret)
1036                 ret = fscrypt_drop_inode(inode);
1037         trace_f2fs_drop_inode(inode, ret);
1038         return ret;
1039 }
1040
1041 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1042 {
1043         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1044         int ret = 0;
1045
1046         spin_lock(&sbi->inode_lock[DIRTY_META]);
1047         if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1048                 ret = 1;
1049         } else {
1050                 set_inode_flag(inode, FI_DIRTY_INODE);
1051                 stat_inc_dirty_inode(sbi, DIRTY_META);
1052         }
1053         if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1054                 list_add_tail(&F2FS_I(inode)->gdirty_list,
1055                                 &sbi->inode_list[DIRTY_META]);
1056                 inc_page_count(sbi, F2FS_DIRTY_IMETA);
1057         }
1058         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1059         return ret;
1060 }
1061
1062 void f2fs_inode_synced(struct inode *inode)
1063 {
1064         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1065
1066         spin_lock(&sbi->inode_lock[DIRTY_META]);
1067         if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1068                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1069                 return;
1070         }
1071         if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1072                 list_del_init(&F2FS_I(inode)->gdirty_list);
1073                 dec_page_count(sbi, F2FS_DIRTY_IMETA);
1074         }
1075         clear_inode_flag(inode, FI_DIRTY_INODE);
1076         clear_inode_flag(inode, FI_AUTO_RECOVER);
1077         stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1078         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1079 }
1080
1081 /*
1082  * f2fs_dirty_inode() is called from __mark_inode_dirty()
1083  *
1084  * We should call set_dirty_inode to write the dirty inode through write_inode.
1085  */
1086 static void f2fs_dirty_inode(struct inode *inode, int flags)
1087 {
1088         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1089
1090         if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1091                         inode->i_ino == F2FS_META_INO(sbi))
1092                 return;
1093
1094         if (flags == I_DIRTY_TIME)
1095                 return;
1096
1097         if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1098                 clear_inode_flag(inode, FI_AUTO_RECOVER);
1099
1100         f2fs_inode_dirtied(inode, false);
1101 }
1102
1103 static void f2fs_free_inode(struct inode *inode)
1104 {
1105         fscrypt_free_inode(inode);
1106         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1107 }
1108
1109 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1110 {
1111         percpu_counter_destroy(&sbi->alloc_valid_block_count);
1112         percpu_counter_destroy(&sbi->total_valid_inode_count);
1113 }
1114
1115 static void destroy_device_list(struct f2fs_sb_info *sbi)
1116 {
1117         int i;
1118
1119         for (i = 0; i < sbi->s_ndevs; i++) {
1120                 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1121 #ifdef CONFIG_BLK_DEV_ZONED
1122                 kvfree(FDEV(i).blkz_seq);
1123 #endif
1124         }
1125         kvfree(sbi->devs);
1126 }
1127
1128 static void f2fs_put_super(struct super_block *sb)
1129 {
1130         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1131         int i;
1132         bool dropped;
1133
1134         f2fs_quota_off_umount(sb);
1135
1136         /* prevent remaining shrinker jobs */
1137         mutex_lock(&sbi->umount_mutex);
1138
1139         /*
1140          * We don't need to do checkpoint when superblock is clean.
1141          * But, the previous checkpoint was not done by umount, it needs to do
1142          * clean checkpoint again.
1143          */
1144         if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1145                         !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1146                 struct cp_control cpc = {
1147                         .reason = CP_UMOUNT,
1148                 };
1149                 f2fs_write_checkpoint(sbi, &cpc);
1150         }
1151
1152         /* be sure to wait for any on-going discard commands */
1153         dropped = f2fs_issue_discard_timeout(sbi);
1154
1155         if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1156                                         !sbi->discard_blks && !dropped) {
1157                 struct cp_control cpc = {
1158                         .reason = CP_UMOUNT | CP_TRIMMED,
1159                 };
1160                 f2fs_write_checkpoint(sbi, &cpc);
1161         }
1162
1163         /*
1164          * normally superblock is clean, so we need to release this.
1165          * In addition, EIO will skip do checkpoint, we need this as well.
1166          */
1167         f2fs_release_ino_entry(sbi, true);
1168
1169         f2fs_leave_shrinker(sbi);
1170         mutex_unlock(&sbi->umount_mutex);
1171
1172         /* our cp_error case, we can wait for any writeback page */
1173         f2fs_flush_merged_writes(sbi);
1174
1175         f2fs_wait_on_all_pages_writeback(sbi);
1176
1177         f2fs_bug_on(sbi, sbi->fsync_node_num);
1178
1179         iput(sbi->node_inode);
1180         sbi->node_inode = NULL;
1181
1182         iput(sbi->meta_inode);
1183         sbi->meta_inode = NULL;
1184
1185         /*
1186          * iput() can update stat information, if f2fs_write_checkpoint()
1187          * above failed with error.
1188          */
1189         f2fs_destroy_stats(sbi);
1190
1191         /* destroy f2fs internal modules */
1192         f2fs_destroy_node_manager(sbi);
1193         f2fs_destroy_segment_manager(sbi);
1194
1195         f2fs_destroy_post_read_wq(sbi);
1196
1197         kvfree(sbi->ckpt);
1198
1199         f2fs_unregister_sysfs(sbi);
1200
1201         sb->s_fs_info = NULL;
1202         if (sbi->s_chksum_driver)
1203                 crypto_free_shash(sbi->s_chksum_driver);
1204         kvfree(sbi->raw_super);
1205
1206         destroy_device_list(sbi);
1207         mempool_destroy(sbi->write_io_dummy);
1208 #ifdef CONFIG_QUOTA
1209         for (i = 0; i < MAXQUOTAS; i++)
1210                 kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1211 #endif
1212         destroy_percpu_info(sbi);
1213         for (i = 0; i < NR_PAGE_TYPE; i++)
1214                 kvfree(sbi->write_io[i]);
1215 #ifdef CONFIG_UNICODE
1216         utf8_unload(sbi->s_encoding);
1217 #endif
1218         kvfree(sbi);
1219 }
1220
1221 int f2fs_sync_fs(struct super_block *sb, int sync)
1222 {
1223         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1224         int err = 0;
1225
1226         if (unlikely(f2fs_cp_error(sbi)))
1227                 return 0;
1228         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1229                 return 0;
1230
1231         trace_f2fs_sync_fs(sb, sync);
1232
1233         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1234                 return -EAGAIN;
1235
1236         if (sync) {
1237                 struct cp_control cpc;
1238
1239                 cpc.reason = __get_cp_reason(sbi);
1240
1241                 mutex_lock(&sbi->gc_mutex);
1242                 err = f2fs_write_checkpoint(sbi, &cpc);
1243                 mutex_unlock(&sbi->gc_mutex);
1244         }
1245         f2fs_trace_ios(NULL, 1);
1246
1247         return err;
1248 }
1249
1250 static int f2fs_freeze(struct super_block *sb)
1251 {
1252         if (f2fs_readonly(sb))
1253                 return 0;
1254
1255         /* IO error happened before */
1256         if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1257                 return -EIO;
1258
1259         /* must be clean, since sync_filesystem() was already called */
1260         if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1261                 return -EINVAL;
1262         return 0;
1263 }
1264
1265 static int f2fs_unfreeze(struct super_block *sb)
1266 {
1267         return 0;
1268 }
1269
1270 #ifdef CONFIG_QUOTA
1271 static int f2fs_statfs_project(struct super_block *sb,
1272                                 kprojid_t projid, struct kstatfs *buf)
1273 {
1274         struct kqid qid;
1275         struct dquot *dquot;
1276         u64 limit;
1277         u64 curblock;
1278
1279         qid = make_kqid_projid(projid);
1280         dquot = dqget(sb, qid);
1281         if (IS_ERR(dquot))
1282                 return PTR_ERR(dquot);
1283         spin_lock(&dquot->dq_dqb_lock);
1284
1285         limit = 0;
1286         if (dquot->dq_dqb.dqb_bsoftlimit)
1287                 limit = dquot->dq_dqb.dqb_bsoftlimit;
1288         if (dquot->dq_dqb.dqb_bhardlimit &&
1289                         (!limit || dquot->dq_dqb.dqb_bhardlimit < limit))
1290                 limit = dquot->dq_dqb.dqb_bhardlimit;
1291         if (limit)
1292                 limit >>= sb->s_blocksize_bits;
1293
1294         if (limit && buf->f_blocks > limit) {
1295                 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
1296                 buf->f_blocks = limit;
1297                 buf->f_bfree = buf->f_bavail =
1298                         (buf->f_blocks > curblock) ?
1299                          (buf->f_blocks - curblock) : 0;
1300         }
1301
1302         limit = 0;
1303         if (dquot->dq_dqb.dqb_isoftlimit)
1304                 limit = dquot->dq_dqb.dqb_isoftlimit;
1305         if (dquot->dq_dqb.dqb_ihardlimit &&
1306                         (!limit || dquot->dq_dqb.dqb_ihardlimit < limit))
1307                 limit = dquot->dq_dqb.dqb_ihardlimit;
1308
1309         if (limit && buf->f_files > limit) {
1310                 buf->f_files = limit;
1311                 buf->f_ffree =
1312                         (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1313                          (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1314         }
1315
1316         spin_unlock(&dquot->dq_dqb_lock);
1317         dqput(dquot);
1318         return 0;
1319 }
1320 #endif
1321
1322 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1323 {
1324         struct super_block *sb = dentry->d_sb;
1325         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1326         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1327         block_t total_count, user_block_count, start_count;
1328         u64 avail_node_count;
1329
1330         total_count = le64_to_cpu(sbi->raw_super->block_count);
1331         user_block_count = sbi->user_block_count;
1332         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1333         buf->f_type = F2FS_SUPER_MAGIC;
1334         buf->f_bsize = sbi->blocksize;
1335
1336         buf->f_blocks = total_count - start_count;
1337         buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1338                                                 sbi->current_reserved_blocks;
1339
1340         spin_lock(&sbi->stat_lock);
1341         if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1342                 buf->f_bfree = 0;
1343         else
1344                 buf->f_bfree -= sbi->unusable_block_count;
1345         spin_unlock(&sbi->stat_lock);
1346
1347         if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1348                 buf->f_bavail = buf->f_bfree -
1349                                 F2FS_OPTION(sbi).root_reserved_blocks;
1350         else
1351                 buf->f_bavail = 0;
1352
1353         avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1354
1355         if (avail_node_count > user_block_count) {
1356                 buf->f_files = user_block_count;
1357                 buf->f_ffree = buf->f_bavail;
1358         } else {
1359                 buf->f_files = avail_node_count;
1360                 buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1361                                         buf->f_bavail);
1362         }
1363
1364         buf->f_namelen = F2FS_NAME_LEN;
1365         buf->f_fsid.val[0] = (u32)id;
1366         buf->f_fsid.val[1] = (u32)(id >> 32);
1367
1368 #ifdef CONFIG_QUOTA
1369         if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1370                         sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1371                 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1372         }
1373 #endif
1374         return 0;
1375 }
1376
1377 static inline void f2fs_show_quota_options(struct seq_file *seq,
1378                                            struct super_block *sb)
1379 {
1380 #ifdef CONFIG_QUOTA
1381         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1382
1383         if (F2FS_OPTION(sbi).s_jquota_fmt) {
1384                 char *fmtname = "";
1385
1386                 switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1387                 case QFMT_VFS_OLD:
1388                         fmtname = "vfsold";
1389                         break;
1390                 case QFMT_VFS_V0:
1391                         fmtname = "vfsv0";
1392                         break;
1393                 case QFMT_VFS_V1:
1394                         fmtname = "vfsv1";
1395                         break;
1396                 }
1397                 seq_printf(seq, ",jqfmt=%s", fmtname);
1398         }
1399
1400         if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1401                 seq_show_option(seq, "usrjquota",
1402                         F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1403
1404         if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1405                 seq_show_option(seq, "grpjquota",
1406                         F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1407
1408         if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1409                 seq_show_option(seq, "prjjquota",
1410                         F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1411 #endif
1412 }
1413
1414 static inline void f2fs_show_compress_options(struct seq_file *seq,
1415                                                         struct super_block *sb)
1416 {
1417         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1418         char *algtype = "";
1419         int i;
1420
1421         if (!f2fs_sb_has_compression(sbi))
1422                 return;
1423
1424         switch (F2FS_OPTION(sbi).compress_algorithm) {
1425         case COMPRESS_LZO:
1426                 algtype = "lzo";
1427                 break;
1428         case COMPRESS_LZ4:
1429                 algtype = "lz4";
1430                 break;
1431         }
1432         seq_printf(seq, ",compress_algorithm=%s", algtype);
1433
1434         seq_printf(seq, ",compress_log_size=%u",
1435                         F2FS_OPTION(sbi).compress_log_size);
1436
1437         for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1438                 seq_printf(seq, ",compress_extension=%s",
1439                         F2FS_OPTION(sbi).extensions[i]);
1440         }
1441 }
1442
1443 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1444 {
1445         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1446
1447         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1448                 if (test_opt(sbi, FORCE_FG_GC))
1449                         seq_printf(seq, ",background_gc=%s", "sync");
1450                 else
1451                         seq_printf(seq, ",background_gc=%s", "on");
1452         } else {
1453                 seq_printf(seq, ",background_gc=%s", "off");
1454         }
1455         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1456                 seq_puts(seq, ",disable_roll_forward");
1457         if (test_opt(sbi, DISCARD))
1458                 seq_puts(seq, ",discard");
1459         else
1460                 seq_puts(seq, ",nodiscard");
1461         if (test_opt(sbi, NOHEAP))
1462                 seq_puts(seq, ",no_heap");
1463         else
1464                 seq_puts(seq, ",heap");
1465 #ifdef CONFIG_F2FS_FS_XATTR
1466         if (test_opt(sbi, XATTR_USER))
1467                 seq_puts(seq, ",user_xattr");
1468         else
1469                 seq_puts(seq, ",nouser_xattr");
1470         if (test_opt(sbi, INLINE_XATTR))
1471                 seq_puts(seq, ",inline_xattr");
1472         else
1473                 seq_puts(seq, ",noinline_xattr");
1474         if (test_opt(sbi, INLINE_XATTR_SIZE))
1475                 seq_printf(seq, ",inline_xattr_size=%u",
1476                                         F2FS_OPTION(sbi).inline_xattr_size);
1477 #endif
1478 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1479         if (test_opt(sbi, POSIX_ACL))
1480                 seq_puts(seq, ",acl");
1481         else
1482                 seq_puts(seq, ",noacl");
1483 #endif
1484         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1485                 seq_puts(seq, ",disable_ext_identify");
1486         if (test_opt(sbi, INLINE_DATA))
1487                 seq_puts(seq, ",inline_data");
1488         else
1489                 seq_puts(seq, ",noinline_data");
1490         if (test_opt(sbi, INLINE_DENTRY))
1491                 seq_puts(seq, ",inline_dentry");
1492         else
1493                 seq_puts(seq, ",noinline_dentry");
1494         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1495                 seq_puts(seq, ",flush_merge");
1496         if (test_opt(sbi, NOBARRIER))
1497                 seq_puts(seq, ",nobarrier");
1498         if (test_opt(sbi, FASTBOOT))
1499                 seq_puts(seq, ",fastboot");
1500         if (test_opt(sbi, EXTENT_CACHE))
1501                 seq_puts(seq, ",extent_cache");
1502         else
1503                 seq_puts(seq, ",noextent_cache");
1504         if (test_opt(sbi, DATA_FLUSH))
1505                 seq_puts(seq, ",data_flush");
1506
1507         seq_puts(seq, ",mode=");
1508         if (test_opt(sbi, ADAPTIVE))
1509                 seq_puts(seq, "adaptive");
1510         else if (test_opt(sbi, LFS))
1511                 seq_puts(seq, "lfs");
1512         seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1513         if (test_opt(sbi, RESERVE_ROOT))
1514                 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1515                                 F2FS_OPTION(sbi).root_reserved_blocks,
1516                                 from_kuid_munged(&init_user_ns,
1517                                         F2FS_OPTION(sbi).s_resuid),
1518                                 from_kgid_munged(&init_user_ns,
1519                                         F2FS_OPTION(sbi).s_resgid));
1520         if (F2FS_IO_SIZE_BITS(sbi))
1521                 seq_printf(seq, ",io_bits=%u",
1522                                 F2FS_OPTION(sbi).write_io_size_bits);
1523 #ifdef CONFIG_F2FS_FAULT_INJECTION
1524         if (test_opt(sbi, FAULT_INJECTION)) {
1525                 seq_printf(seq, ",fault_injection=%u",
1526                                 F2FS_OPTION(sbi).fault_info.inject_rate);
1527                 seq_printf(seq, ",fault_type=%u",
1528                                 F2FS_OPTION(sbi).fault_info.inject_type);
1529         }
1530 #endif
1531 #ifdef CONFIG_QUOTA
1532         if (test_opt(sbi, QUOTA))
1533                 seq_puts(seq, ",quota");
1534         if (test_opt(sbi, USRQUOTA))
1535                 seq_puts(seq, ",usrquota");
1536         if (test_opt(sbi, GRPQUOTA))
1537                 seq_puts(seq, ",grpquota");
1538         if (test_opt(sbi, PRJQUOTA))
1539                 seq_puts(seq, ",prjquota");
1540 #endif
1541         f2fs_show_quota_options(seq, sbi->sb);
1542         if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1543                 seq_printf(seq, ",whint_mode=%s", "user-based");
1544         else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1545                 seq_printf(seq, ",whint_mode=%s", "fs-based");
1546 #ifdef CONFIG_FS_ENCRYPTION
1547         if (F2FS_OPTION(sbi).test_dummy_encryption)
1548                 seq_puts(seq, ",test_dummy_encryption");
1549 #endif
1550
1551         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1552                 seq_printf(seq, ",alloc_mode=%s", "default");
1553         else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1554                 seq_printf(seq, ",alloc_mode=%s", "reuse");
1555
1556         if (test_opt(sbi, DISABLE_CHECKPOINT))
1557                 seq_printf(seq, ",checkpoint=disable:%u",
1558                                 F2FS_OPTION(sbi).unusable_cap);
1559         if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1560                 seq_printf(seq, ",fsync_mode=%s", "posix");
1561         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1562                 seq_printf(seq, ",fsync_mode=%s", "strict");
1563         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1564                 seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1565
1566         f2fs_show_compress_options(seq, sbi->sb);
1567         return 0;
1568 }
1569
1570 static void default_options(struct f2fs_sb_info *sbi)
1571 {
1572         /* init some FS parameters */
1573         F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1574         F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1575         F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1576         F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1577         F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1578         F2FS_OPTION(sbi).test_dummy_encryption = false;
1579         F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1580         F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1581         F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZO;
1582         F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
1583         F2FS_OPTION(sbi).compress_ext_cnt = 0;
1584
1585         set_opt(sbi, BG_GC);
1586         set_opt(sbi, INLINE_XATTR);
1587         set_opt(sbi, INLINE_DATA);
1588         set_opt(sbi, INLINE_DENTRY);
1589         set_opt(sbi, EXTENT_CACHE);
1590         set_opt(sbi, NOHEAP);
1591         clear_opt(sbi, DISABLE_CHECKPOINT);
1592         F2FS_OPTION(sbi).unusable_cap = 0;
1593         sbi->sb->s_flags |= SB_LAZYTIME;
1594         set_opt(sbi, FLUSH_MERGE);
1595         set_opt(sbi, DISCARD);
1596         if (f2fs_sb_has_blkzoned(sbi))
1597                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
1598         else
1599                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1600
1601 #ifdef CONFIG_F2FS_FS_XATTR
1602         set_opt(sbi, XATTR_USER);
1603 #endif
1604 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1605         set_opt(sbi, POSIX_ACL);
1606 #endif
1607
1608         f2fs_build_fault_attr(sbi, 0, 0);
1609 }
1610
1611 #ifdef CONFIG_QUOTA
1612 static int f2fs_enable_quotas(struct super_block *sb);
1613 #endif
1614
1615 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
1616 {
1617         unsigned int s_flags = sbi->sb->s_flags;
1618         struct cp_control cpc;
1619         int err = 0;
1620         int ret;
1621         block_t unusable;
1622
1623         if (s_flags & SB_RDONLY) {
1624                 f2fs_err(sbi, "checkpoint=disable on readonly fs");
1625                 return -EINVAL;
1626         }
1627         sbi->sb->s_flags |= SB_ACTIVE;
1628
1629         f2fs_update_time(sbi, DISABLE_TIME);
1630
1631         while (!f2fs_time_over(sbi, DISABLE_TIME)) {
1632                 mutex_lock(&sbi->gc_mutex);
1633                 err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1634                 if (err == -ENODATA) {
1635                         err = 0;
1636                         break;
1637                 }
1638                 if (err && err != -EAGAIN)
1639                         break;
1640         }
1641
1642         ret = sync_filesystem(sbi->sb);
1643         if (ret || err) {
1644                 err = ret ? ret: err;
1645                 goto restore_flag;
1646         }
1647
1648         unusable = f2fs_get_unusable_blocks(sbi);
1649         if (f2fs_disable_cp_again(sbi, unusable)) {
1650                 err = -EAGAIN;
1651                 goto restore_flag;
1652         }
1653
1654         mutex_lock(&sbi->gc_mutex);
1655         cpc.reason = CP_PAUSE;
1656         set_sbi_flag(sbi, SBI_CP_DISABLED);
1657         err = f2fs_write_checkpoint(sbi, &cpc);
1658         if (err)
1659                 goto out_unlock;
1660
1661         spin_lock(&sbi->stat_lock);
1662         sbi->unusable_block_count = unusable;
1663         spin_unlock(&sbi->stat_lock);
1664
1665 out_unlock:
1666         mutex_unlock(&sbi->gc_mutex);
1667 restore_flag:
1668         sbi->sb->s_flags = s_flags;     /* Restore MS_RDONLY status */
1669         return err;
1670 }
1671
1672 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
1673 {
1674         mutex_lock(&sbi->gc_mutex);
1675         f2fs_dirty_to_prefree(sbi);
1676
1677         clear_sbi_flag(sbi, SBI_CP_DISABLED);
1678         set_sbi_flag(sbi, SBI_IS_DIRTY);
1679         mutex_unlock(&sbi->gc_mutex);
1680
1681         f2fs_sync_fs(sbi->sb, 1);
1682 }
1683
1684 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1685 {
1686         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1687         struct f2fs_mount_info org_mount_opt;
1688         unsigned long old_sb_flags;
1689         int err;
1690         bool need_restart_gc = false;
1691         bool need_stop_gc = false;
1692         bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1693         bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT);
1694         bool no_io_align = !F2FS_IO_ALIGNED(sbi);
1695         bool checkpoint_changed;
1696 #ifdef CONFIG_QUOTA
1697         int i, j;
1698 #endif
1699
1700         /*
1701          * Save the old mount options in case we
1702          * need to restore them.
1703          */
1704         org_mount_opt = sbi->mount_opt;
1705         old_sb_flags = sb->s_flags;
1706
1707 #ifdef CONFIG_QUOTA
1708         org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1709         for (i = 0; i < MAXQUOTAS; i++) {
1710                 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1711                         org_mount_opt.s_qf_names[i] =
1712                                 kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1713                                 GFP_KERNEL);
1714                         if (!org_mount_opt.s_qf_names[i]) {
1715                                 for (j = 0; j < i; j++)
1716                                         kvfree(org_mount_opt.s_qf_names[j]);
1717                                 return -ENOMEM;
1718                         }
1719                 } else {
1720                         org_mount_opt.s_qf_names[i] = NULL;
1721                 }
1722         }
1723 #endif
1724
1725         /* recover superblocks we couldn't write due to previous RO mount */
1726         if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1727                 err = f2fs_commit_super(sbi, false);
1728                 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
1729                           err);
1730                 if (!err)
1731                         clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1732         }
1733
1734         default_options(sbi);
1735
1736         /* parse mount options */
1737         err = parse_options(sb, data);
1738         if (err)
1739                 goto restore_opts;
1740         checkpoint_changed =
1741                         disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT);
1742
1743         /*
1744          * Previous and new state of filesystem is RO,
1745          * so skip checking GC and FLUSH_MERGE conditions.
1746          */
1747         if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1748                 goto skip;
1749
1750 #ifdef CONFIG_QUOTA
1751         if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1752                 err = dquot_suspend(sb, -1);
1753                 if (err < 0)
1754                         goto restore_opts;
1755         } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
1756                 /* dquot_resume needs RW */
1757                 sb->s_flags &= ~SB_RDONLY;
1758                 if (sb_any_quota_suspended(sb)) {
1759                         dquot_resume(sb, -1);
1760                 } else if (f2fs_sb_has_quota_ino(sbi)) {
1761                         err = f2fs_enable_quotas(sb);
1762                         if (err)
1763                                 goto restore_opts;
1764                 }
1765         }
1766 #endif
1767         /* disallow enable/disable extent_cache dynamically */
1768         if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1769                 err = -EINVAL;
1770                 f2fs_warn(sbi, "switch extent_cache option is not allowed");
1771                 goto restore_opts;
1772         }
1773
1774         if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
1775                 err = -EINVAL;
1776                 f2fs_warn(sbi, "switch io_bits option is not allowed");
1777                 goto restore_opts;
1778         }
1779
1780         if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
1781                 err = -EINVAL;
1782                 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
1783                 goto restore_opts;
1784         }
1785
1786         /*
1787          * We stop the GC thread if FS is mounted as RO
1788          * or if background_gc = off is passed in mount
1789          * option. Also sync the filesystem.
1790          */
1791         if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) {
1792                 if (sbi->gc_thread) {
1793                         f2fs_stop_gc_thread(sbi);
1794                         need_restart_gc = true;
1795                 }
1796         } else if (!sbi->gc_thread) {
1797                 err = f2fs_start_gc_thread(sbi);
1798                 if (err)
1799                         goto restore_opts;
1800                 need_stop_gc = true;
1801         }
1802
1803         if (*flags & SB_RDONLY ||
1804                 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1805                 writeback_inodes_sb(sb, WB_REASON_SYNC);
1806                 sync_inodes_sb(sb);
1807
1808                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1809                 set_sbi_flag(sbi, SBI_IS_CLOSE);
1810                 f2fs_sync_fs(sb, 1);
1811                 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1812         }
1813
1814         if (checkpoint_changed) {
1815                 if (test_opt(sbi, DISABLE_CHECKPOINT)) {
1816                         err = f2fs_disable_checkpoint(sbi);
1817                         if (err)
1818                                 goto restore_gc;
1819                 } else {
1820                         f2fs_enable_checkpoint(sbi);
1821                 }
1822         }
1823
1824         /*
1825          * We stop issue flush thread if FS is mounted as RO
1826          * or if flush_merge is not passed in mount option.
1827          */
1828         if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1829                 clear_opt(sbi, FLUSH_MERGE);
1830                 f2fs_destroy_flush_cmd_control(sbi, false);
1831         } else {
1832                 err = f2fs_create_flush_cmd_control(sbi);
1833                 if (err)
1834                         goto restore_gc;
1835         }
1836 skip:
1837 #ifdef CONFIG_QUOTA
1838         /* Release old quota file names */
1839         for (i = 0; i < MAXQUOTAS; i++)
1840                 kvfree(org_mount_opt.s_qf_names[i]);
1841 #endif
1842         /* Update the POSIXACL Flag */
1843         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1844                 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1845
1846         limit_reserve_root(sbi);
1847         *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
1848         return 0;
1849 restore_gc:
1850         if (need_restart_gc) {
1851                 if (f2fs_start_gc_thread(sbi))
1852                         f2fs_warn(sbi, "background gc thread has stopped");
1853         } else if (need_stop_gc) {
1854                 f2fs_stop_gc_thread(sbi);
1855         }
1856 restore_opts:
1857 #ifdef CONFIG_QUOTA
1858         F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1859         for (i = 0; i < MAXQUOTAS; i++) {
1860                 kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1861                 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1862         }
1863 #endif
1864         sbi->mount_opt = org_mount_opt;
1865         sb->s_flags = old_sb_flags;
1866         return err;
1867 }
1868
1869 #ifdef CONFIG_QUOTA
1870 /* Read data from quotafile */
1871 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1872                                size_t len, loff_t off)
1873 {
1874         struct inode *inode = sb_dqopt(sb)->files[type];
1875         struct address_space *mapping = inode->i_mapping;
1876         block_t blkidx = F2FS_BYTES_TO_BLK(off);
1877         int offset = off & (sb->s_blocksize - 1);
1878         int tocopy;
1879         size_t toread;
1880         loff_t i_size = i_size_read(inode);
1881         struct page *page;
1882         char *kaddr;
1883
1884         if (off > i_size)
1885                 return 0;
1886
1887         if (off + len > i_size)
1888                 len = i_size - off;
1889         toread = len;
1890         while (toread > 0) {
1891                 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1892 repeat:
1893                 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1894                 if (IS_ERR(page)) {
1895                         if (PTR_ERR(page) == -ENOMEM) {
1896                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1897                                 goto repeat;
1898                         }
1899                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1900                         return PTR_ERR(page);
1901                 }
1902
1903                 lock_page(page);
1904
1905                 if (unlikely(page->mapping != mapping)) {
1906                         f2fs_put_page(page, 1);
1907                         goto repeat;
1908                 }
1909                 if (unlikely(!PageUptodate(page))) {
1910                         f2fs_put_page(page, 1);
1911                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1912                         return -EIO;
1913                 }
1914
1915                 kaddr = kmap_atomic(page);
1916                 memcpy(data, kaddr + offset, tocopy);
1917                 kunmap_atomic(kaddr);
1918                 f2fs_put_page(page, 1);
1919
1920                 offset = 0;
1921                 toread -= tocopy;
1922                 data += tocopy;
1923                 blkidx++;
1924         }
1925         return len;
1926 }
1927
1928 /* Write to quotafile */
1929 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1930                                 const char *data, size_t len, loff_t off)
1931 {
1932         struct inode *inode = sb_dqopt(sb)->files[type];
1933         struct address_space *mapping = inode->i_mapping;
1934         const struct address_space_operations *a_ops = mapping->a_ops;
1935         int offset = off & (sb->s_blocksize - 1);
1936         size_t towrite = len;
1937         struct page *page;
1938         char *kaddr;
1939         int err = 0;
1940         int tocopy;
1941
1942         while (towrite > 0) {
1943                 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1944                                                                 towrite);
1945 retry:
1946                 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1947                                                         &page, NULL);
1948                 if (unlikely(err)) {
1949                         if (err == -ENOMEM) {
1950                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1951                                 goto retry;
1952                         }
1953                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1954                         break;
1955                 }
1956
1957                 kaddr = kmap_atomic(page);
1958                 memcpy(kaddr + offset, data, tocopy);
1959                 kunmap_atomic(kaddr);
1960                 flush_dcache_page(page);
1961
1962                 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1963                                                 page, NULL);
1964                 offset = 0;
1965                 towrite -= tocopy;
1966                 off += tocopy;
1967                 data += tocopy;
1968                 cond_resched();
1969         }
1970
1971         if (len == towrite)
1972                 return err;
1973         inode->i_mtime = inode->i_ctime = current_time(inode);
1974         f2fs_mark_inode_dirty_sync(inode, false);
1975         return len - towrite;
1976 }
1977
1978 static struct dquot **f2fs_get_dquots(struct inode *inode)
1979 {
1980         return F2FS_I(inode)->i_dquot;
1981 }
1982
1983 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1984 {
1985         return &F2FS_I(inode)->i_reserved_quota;
1986 }
1987
1988 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1989 {
1990         if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
1991                 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
1992                 return 0;
1993         }
1994
1995         return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
1996                                         F2FS_OPTION(sbi).s_jquota_fmt, type);
1997 }
1998
1999 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
2000 {
2001         int enabled = 0;
2002         int i, err;
2003
2004         if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
2005                 err = f2fs_enable_quotas(sbi->sb);
2006                 if (err) {
2007                         f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2008                         return 0;
2009                 }
2010                 return 1;
2011         }
2012
2013         for (i = 0; i < MAXQUOTAS; i++) {
2014                 if (F2FS_OPTION(sbi).s_qf_names[i]) {
2015                         err = f2fs_quota_on_mount(sbi, i);
2016                         if (!err) {
2017                                 enabled = 1;
2018                                 continue;
2019                         }
2020                         f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2021                                  err, i);
2022                 }
2023         }
2024         return enabled;
2025 }
2026
2027 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2028                              unsigned int flags)
2029 {
2030         struct inode *qf_inode;
2031         unsigned long qf_inum;
2032         int err;
2033
2034         BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2035
2036         qf_inum = f2fs_qf_ino(sb, type);
2037         if (!qf_inum)
2038                 return -EPERM;
2039
2040         qf_inode = f2fs_iget(sb, qf_inum);
2041         if (IS_ERR(qf_inode)) {
2042                 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2043                 return PTR_ERR(qf_inode);
2044         }
2045
2046         /* Don't account quota for quota files to avoid recursion */
2047         qf_inode->i_flags |= S_NOQUOTA;
2048         err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2049         iput(qf_inode);
2050         return err;
2051 }
2052
2053 static int f2fs_enable_quotas(struct super_block *sb)
2054 {
2055         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2056         int type, err = 0;
2057         unsigned long qf_inum;
2058         bool quota_mopt[MAXQUOTAS] = {
2059                 test_opt(sbi, USRQUOTA),
2060                 test_opt(sbi, GRPQUOTA),
2061                 test_opt(sbi, PRJQUOTA),
2062         };
2063
2064         if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2065                 f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2066                 return 0;
2067         }
2068
2069         sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2070
2071         for (type = 0; type < MAXQUOTAS; type++) {
2072                 qf_inum = f2fs_qf_ino(sb, type);
2073                 if (qf_inum) {
2074                         err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2075                                 DQUOT_USAGE_ENABLED |
2076                                 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2077                         if (err) {
2078                                 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2079                                          type, err);
2080                                 for (type--; type >= 0; type--)
2081                                         dquot_quota_off(sb, type);
2082                                 set_sbi_flag(F2FS_SB(sb),
2083                                                 SBI_QUOTA_NEED_REPAIR);
2084                                 return err;
2085                         }
2086                 }
2087         }
2088         return 0;
2089 }
2090
2091 int f2fs_quota_sync(struct super_block *sb, int type)
2092 {
2093         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2094         struct quota_info *dqopt = sb_dqopt(sb);
2095         int cnt;
2096         int ret;
2097
2098         /*
2099          * do_quotactl
2100          *  f2fs_quota_sync
2101          *  down_read(quota_sem)
2102          *  dquot_writeback_dquots()
2103          *  f2fs_dquot_commit
2104          *                            block_operation
2105          *                            down_read(quota_sem)
2106          */
2107         f2fs_lock_op(sbi);
2108
2109         down_read(&sbi->quota_sem);
2110         ret = dquot_writeback_dquots(sb, type);
2111         if (ret)
2112                 goto out;
2113
2114         /*
2115          * Now when everything is written we can discard the pagecache so
2116          * that userspace sees the changes.
2117          */
2118         for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2119                 struct address_space *mapping;
2120
2121                 if (type != -1 && cnt != type)
2122                         continue;
2123                 if (!sb_has_quota_active(sb, cnt))
2124                         continue;
2125
2126                 mapping = dqopt->files[cnt]->i_mapping;
2127
2128                 ret = filemap_fdatawrite(mapping);
2129                 if (ret)
2130                         goto out;
2131
2132                 /* if we are using journalled quota */
2133                 if (is_journalled_quota(sbi))
2134                         continue;
2135
2136                 ret = filemap_fdatawait(mapping);
2137                 if (ret)
2138                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2139
2140                 inode_lock(dqopt->files[cnt]);
2141                 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
2142                 inode_unlock(dqopt->files[cnt]);
2143         }
2144 out:
2145         if (ret)
2146                 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2147         up_read(&sbi->quota_sem);
2148         f2fs_unlock_op(sbi);
2149         return ret;
2150 }
2151
2152 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2153                                                         const struct path *path)
2154 {
2155         struct inode *inode;
2156         int err;
2157
2158         /* if quota sysfile exists, deny enabling quota with specific file */
2159         if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2160                 f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2161                 return -EBUSY;
2162         }
2163
2164         err = f2fs_quota_sync(sb, type);
2165         if (err)
2166                 return err;
2167
2168         err = dquot_quota_on(sb, type, format_id, path);
2169         if (err)
2170                 return err;
2171
2172         inode = d_inode(path->dentry);
2173
2174         inode_lock(inode);
2175         F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2176         f2fs_set_inode_flags(inode);
2177         inode_unlock(inode);
2178         f2fs_mark_inode_dirty_sync(inode, false);
2179
2180         return 0;
2181 }
2182
2183 static int __f2fs_quota_off(struct super_block *sb, int type)
2184 {
2185         struct inode *inode = sb_dqopt(sb)->files[type];
2186         int err;
2187
2188         if (!inode || !igrab(inode))
2189                 return dquot_quota_off(sb, type);
2190
2191         err = f2fs_quota_sync(sb, type);
2192         if (err)
2193                 goto out_put;
2194
2195         err = dquot_quota_off(sb, type);
2196         if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2197                 goto out_put;
2198
2199         inode_lock(inode);
2200         F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2201         f2fs_set_inode_flags(inode);
2202         inode_unlock(inode);
2203         f2fs_mark_inode_dirty_sync(inode, false);
2204 out_put:
2205         iput(inode);
2206         return err;
2207 }
2208
2209 static int f2fs_quota_off(struct super_block *sb, int type)
2210 {
2211         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2212         int err;
2213
2214         err = __f2fs_quota_off(sb, type);
2215
2216         /*
2217          * quotactl can shutdown journalled quota, result in inconsistence
2218          * between quota record and fs data by following updates, tag the
2219          * flag to let fsck be aware of it.
2220          */
2221         if (is_journalled_quota(sbi))
2222                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2223         return err;
2224 }
2225
2226 void f2fs_quota_off_umount(struct super_block *sb)
2227 {
2228         int type;
2229         int err;
2230
2231         for (type = 0; type < MAXQUOTAS; type++) {
2232                 err = __f2fs_quota_off(sb, type);
2233                 if (err) {
2234                         int ret = dquot_quota_off(sb, type);
2235
2236                         f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2237                                  type, err, ret);
2238                         set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2239                 }
2240         }
2241         /*
2242          * In case of checkpoint=disable, we must flush quota blocks.
2243          * This can cause NULL exception for node_inode in end_io, since
2244          * put_super already dropped it.
2245          */
2246         sync_filesystem(sb);
2247 }
2248
2249 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2250 {
2251         struct quota_info *dqopt = sb_dqopt(sb);
2252         int type;
2253
2254         for (type = 0; type < MAXQUOTAS; type++) {
2255                 if (!dqopt->files[type])
2256                         continue;
2257                 f2fs_inode_synced(dqopt->files[type]);
2258         }
2259 }
2260
2261 static int f2fs_dquot_commit(struct dquot *dquot)
2262 {
2263         struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2264         int ret;
2265
2266         down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
2267         ret = dquot_commit(dquot);
2268         if (ret < 0)
2269                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2270         up_read(&sbi->quota_sem);
2271         return ret;
2272 }
2273
2274 static int f2fs_dquot_acquire(struct dquot *dquot)
2275 {
2276         struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2277         int ret;
2278
2279         down_read(&sbi->quota_sem);
2280         ret = dquot_acquire(dquot);
2281         if (ret < 0)
2282                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2283         up_read(&sbi->quota_sem);
2284         return ret;
2285 }
2286
2287 static int f2fs_dquot_release(struct dquot *dquot)
2288 {
2289         struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2290         int ret = dquot_release(dquot);
2291
2292         if (ret < 0)
2293                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2294         return ret;
2295 }
2296
2297 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2298 {
2299         struct super_block *sb = dquot->dq_sb;
2300         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2301         int ret = dquot_mark_dquot_dirty(dquot);
2302
2303         /* if we are using journalled quota */
2304         if (is_journalled_quota(sbi))
2305                 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2306
2307         return ret;
2308 }
2309
2310 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2311 {
2312         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2313         int ret = dquot_commit_info(sb, type);
2314
2315         if (ret < 0)
2316                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2317         return ret;
2318 }
2319
2320 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2321 {
2322         *projid = F2FS_I(inode)->i_projid;
2323         return 0;
2324 }
2325
2326 static const struct dquot_operations f2fs_quota_operations = {
2327         .get_reserved_space = f2fs_get_reserved_space,
2328         .write_dquot    = f2fs_dquot_commit,
2329         .acquire_dquot  = f2fs_dquot_acquire,
2330         .release_dquot  = f2fs_dquot_release,
2331         .mark_dirty     = f2fs_dquot_mark_dquot_dirty,
2332         .write_info     = f2fs_dquot_commit_info,
2333         .alloc_dquot    = dquot_alloc,
2334         .destroy_dquot  = dquot_destroy,
2335         .get_projid     = f2fs_get_projid,
2336         .get_next_id    = dquot_get_next_id,
2337 };
2338
2339 static const struct quotactl_ops f2fs_quotactl_ops = {
2340         .quota_on       = f2fs_quota_on,
2341         .quota_off      = f2fs_quota_off,
2342         .quota_sync     = f2fs_quota_sync,
2343         .get_state      = dquot_get_state,
2344         .set_info       = dquot_set_dqinfo,
2345         .get_dqblk      = dquot_get_dqblk,
2346         .set_dqblk      = dquot_set_dqblk,
2347         .get_nextdqblk  = dquot_get_next_dqblk,
2348 };
2349 #else
2350 int f2fs_quota_sync(struct super_block *sb, int type)
2351 {
2352         return 0;
2353 }
2354
2355 void f2fs_quota_off_umount(struct super_block *sb)
2356 {
2357 }
2358 #endif
2359
2360 static const struct super_operations f2fs_sops = {
2361         .alloc_inode    = f2fs_alloc_inode,
2362         .free_inode     = f2fs_free_inode,
2363         .drop_inode     = f2fs_drop_inode,
2364         .write_inode    = f2fs_write_inode,
2365         .dirty_inode    = f2fs_dirty_inode,
2366         .show_options   = f2fs_show_options,
2367 #ifdef CONFIG_QUOTA
2368         .quota_read     = f2fs_quota_read,
2369         .quota_write    = f2fs_quota_write,
2370         .get_dquots     = f2fs_get_dquots,
2371 #endif
2372         .evict_inode    = f2fs_evict_inode,
2373         .put_super      = f2fs_put_super,
2374         .sync_fs        = f2fs_sync_fs,
2375         .freeze_fs      = f2fs_freeze,
2376         .unfreeze_fs    = f2fs_unfreeze,
2377         .statfs         = f2fs_statfs,
2378         .remount_fs     = f2fs_remount,
2379 };
2380
2381 #ifdef CONFIG_FS_ENCRYPTION
2382 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2383 {
2384         return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2385                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2386                                 ctx, len, NULL);
2387 }
2388
2389 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2390                                                         void *fs_data)
2391 {
2392         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2393
2394         /*
2395          * Encrypting the root directory is not allowed because fsck
2396          * expects lost+found directory to exist and remain unencrypted
2397          * if LOST_FOUND feature is enabled.
2398          *
2399          */
2400         if (f2fs_sb_has_lost_found(sbi) &&
2401                         inode->i_ino == F2FS_ROOT_INO(sbi))
2402                 return -EPERM;
2403
2404         return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2405                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2406                                 ctx, len, fs_data, XATTR_CREATE);
2407 }
2408
2409 static bool f2fs_dummy_context(struct inode *inode)
2410 {
2411         return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode));
2412 }
2413
2414 static bool f2fs_has_stable_inodes(struct super_block *sb)
2415 {
2416         return true;
2417 }
2418
2419 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
2420                                        int *ino_bits_ret, int *lblk_bits_ret)
2421 {
2422         *ino_bits_ret = 8 * sizeof(nid_t);
2423         *lblk_bits_ret = 8 * sizeof(block_t);
2424 }
2425
2426 static const struct fscrypt_operations f2fs_cryptops = {
2427         .key_prefix             = "f2fs:",
2428         .get_context            = f2fs_get_context,
2429         .set_context            = f2fs_set_context,
2430         .dummy_context          = f2fs_dummy_context,
2431         .empty_dir              = f2fs_empty_dir,
2432         .max_namelen            = F2FS_NAME_LEN,
2433         .has_stable_inodes      = f2fs_has_stable_inodes,
2434         .get_ino_and_lblk_bits  = f2fs_get_ino_and_lblk_bits,
2435 };
2436 #endif
2437
2438 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2439                 u64 ino, u32 generation)
2440 {
2441         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2442         struct inode *inode;
2443
2444         if (f2fs_check_nid_range(sbi, ino))
2445                 return ERR_PTR(-ESTALE);
2446
2447         /*
2448          * f2fs_iget isn't quite right if the inode is currently unallocated!
2449          * However f2fs_iget currently does appropriate checks to handle stale
2450          * inodes so everything is OK.
2451          */
2452         inode = f2fs_iget(sb, ino);
2453         if (IS_ERR(inode))
2454                 return ERR_CAST(inode);
2455         if (unlikely(generation && inode->i_generation != generation)) {
2456                 /* we didn't find the right inode.. */
2457                 iput(inode);
2458                 return ERR_PTR(-ESTALE);
2459         }
2460         return inode;
2461 }
2462
2463 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2464                 int fh_len, int fh_type)
2465 {
2466         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2467                                     f2fs_nfs_get_inode);
2468 }
2469
2470 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2471                 int fh_len, int fh_type)
2472 {
2473         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2474                                     f2fs_nfs_get_inode);
2475 }
2476
2477 static const struct export_operations f2fs_export_ops = {
2478         .fh_to_dentry = f2fs_fh_to_dentry,
2479         .fh_to_parent = f2fs_fh_to_parent,
2480         .get_parent = f2fs_get_parent,
2481 };
2482
2483 static loff_t max_file_blocks(void)
2484 {
2485         loff_t result = 0;
2486         loff_t leaf_count = DEF_ADDRS_PER_BLOCK;
2487
2488         /*
2489          * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2490          * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2491          * space in inode.i_addr, it will be more safe to reassign
2492          * result as zero.
2493          */
2494
2495         /* two direct node blocks */
2496         result += (leaf_count * 2);
2497
2498         /* two indirect node blocks */
2499         leaf_count *= NIDS_PER_BLOCK;
2500         result += (leaf_count * 2);
2501
2502         /* one double indirect node block */
2503         leaf_count *= NIDS_PER_BLOCK;
2504         result += leaf_count;
2505
2506         return result;
2507 }
2508
2509 static int __f2fs_commit_super(struct buffer_head *bh,
2510                         struct f2fs_super_block *super)
2511 {
2512         lock_buffer(bh);
2513         if (super)
2514                 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2515         set_buffer_dirty(bh);
2516         unlock_buffer(bh);
2517
2518         /* it's rare case, we can do fua all the time */
2519         return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2520 }
2521
2522 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2523                                         struct buffer_head *bh)
2524 {
2525         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2526                                         (bh->b_data + F2FS_SUPER_OFFSET);
2527         struct super_block *sb = sbi->sb;
2528         u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2529         u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2530         u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2531         u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2532         u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2533         u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2534         u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2535         u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2536         u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2537         u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2538         u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2539         u32 segment_count = le32_to_cpu(raw_super->segment_count);
2540         u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2541         u64 main_end_blkaddr = main_blkaddr +
2542                                 (segment_count_main << log_blocks_per_seg);
2543         u64 seg_end_blkaddr = segment0_blkaddr +
2544                                 (segment_count << log_blocks_per_seg);
2545
2546         if (segment0_blkaddr != cp_blkaddr) {
2547                 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2548                           segment0_blkaddr, cp_blkaddr);
2549                 return true;
2550         }
2551
2552         if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2553                                                         sit_blkaddr) {
2554                 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2555                           cp_blkaddr, sit_blkaddr,
2556                           segment_count_ckpt << log_blocks_per_seg);
2557                 return true;
2558         }
2559
2560         if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2561                                                         nat_blkaddr) {
2562                 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2563                           sit_blkaddr, nat_blkaddr,
2564                           segment_count_sit << log_blocks_per_seg);
2565                 return true;
2566         }
2567
2568         if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2569                                                         ssa_blkaddr) {
2570                 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2571                           nat_blkaddr, ssa_blkaddr,
2572                           segment_count_nat << log_blocks_per_seg);
2573                 return true;
2574         }
2575
2576         if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2577                                                         main_blkaddr) {
2578                 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2579                           ssa_blkaddr, main_blkaddr,
2580                           segment_count_ssa << log_blocks_per_seg);
2581                 return true;
2582         }
2583
2584         if (main_end_blkaddr > seg_end_blkaddr) {
2585                 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2586                           main_blkaddr,
2587                           segment0_blkaddr +
2588                           (segment_count << log_blocks_per_seg),
2589                           segment_count_main << log_blocks_per_seg);
2590                 return true;
2591         } else if (main_end_blkaddr < seg_end_blkaddr) {
2592                 int err = 0;
2593                 char *res;
2594
2595                 /* fix in-memory information all the time */
2596                 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2597                                 segment0_blkaddr) >> log_blocks_per_seg);
2598
2599                 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2600                         set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2601                         res = "internally";
2602                 } else {
2603                         err = __f2fs_commit_super(bh, NULL);
2604                         res = err ? "failed" : "done";
2605                 }
2606                 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%u) block(%u)",
2607                           res, main_blkaddr,
2608                           segment0_blkaddr +
2609                           (segment_count << log_blocks_per_seg),
2610                           segment_count_main << log_blocks_per_seg);
2611                 if (err)
2612                         return true;
2613         }
2614         return false;
2615 }
2616
2617 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2618                                 struct buffer_head *bh)
2619 {
2620         block_t segment_count, segs_per_sec, secs_per_zone;
2621         block_t total_sections, blocks_per_seg;
2622         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2623                                         (bh->b_data + F2FS_SUPER_OFFSET);
2624         unsigned int blocksize;
2625         size_t crc_offset = 0;
2626         __u32 crc = 0;
2627
2628         if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
2629                 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
2630                           F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2631                 return -EINVAL;
2632         }
2633
2634         /* Check checksum_offset and crc in superblock */
2635         if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
2636                 crc_offset = le32_to_cpu(raw_super->checksum_offset);
2637                 if (crc_offset !=
2638                         offsetof(struct f2fs_super_block, crc)) {
2639                         f2fs_info(sbi, "Invalid SB checksum offset: %zu",
2640                                   crc_offset);
2641                         return -EFSCORRUPTED;
2642                 }
2643                 crc = le32_to_cpu(raw_super->crc);
2644                 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
2645                         f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
2646                         return -EFSCORRUPTED;
2647                 }
2648         }
2649
2650         /* Currently, support only 4KB page cache size */
2651         if (F2FS_BLKSIZE != PAGE_SIZE) {
2652                 f2fs_info(sbi, "Invalid page_cache_size (%lu), supports only 4KB",
2653                           PAGE_SIZE);
2654                 return -EFSCORRUPTED;
2655         }
2656
2657         /* Currently, support only 4KB block size */
2658         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2659         if (blocksize != F2FS_BLKSIZE) {
2660                 f2fs_info(sbi, "Invalid blocksize (%u), supports only 4KB",
2661                           blocksize);
2662                 return -EFSCORRUPTED;
2663         }
2664
2665         /* check log blocks per segment */
2666         if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2667                 f2fs_info(sbi, "Invalid log blocks per segment (%u)",
2668                           le32_to_cpu(raw_super->log_blocks_per_seg));
2669                 return -EFSCORRUPTED;
2670         }
2671
2672         /* Currently, support 512/1024/2048/4096 bytes sector size */
2673         if (le32_to_cpu(raw_super->log_sectorsize) >
2674                                 F2FS_MAX_LOG_SECTOR_SIZE ||
2675                 le32_to_cpu(raw_super->log_sectorsize) <
2676                                 F2FS_MIN_LOG_SECTOR_SIZE) {
2677                 f2fs_info(sbi, "Invalid log sectorsize (%u)",
2678                           le32_to_cpu(raw_super->log_sectorsize));
2679                 return -EFSCORRUPTED;
2680         }
2681         if (le32_to_cpu(raw_super->log_sectors_per_block) +
2682                 le32_to_cpu(raw_super->log_sectorsize) !=
2683                         F2FS_MAX_LOG_SECTOR_SIZE) {
2684                 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
2685                           le32_to_cpu(raw_super->log_sectors_per_block),
2686                           le32_to_cpu(raw_super->log_sectorsize));
2687                 return -EFSCORRUPTED;
2688         }
2689
2690         segment_count = le32_to_cpu(raw_super->segment_count);
2691         segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2692         secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2693         total_sections = le32_to_cpu(raw_super->section_count);
2694
2695         /* blocks_per_seg should be 512, given the above check */
2696         blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2697
2698         if (segment_count > F2FS_MAX_SEGMENT ||
2699                                 segment_count < F2FS_MIN_SEGMENTS) {
2700                 f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
2701                 return -EFSCORRUPTED;
2702         }
2703
2704         if (total_sections > segment_count ||
2705                         total_sections < F2FS_MIN_SEGMENTS ||
2706                         segs_per_sec > segment_count || !segs_per_sec) {
2707                 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
2708                           segment_count, total_sections, segs_per_sec);
2709                 return -EFSCORRUPTED;
2710         }
2711
2712         if ((segment_count / segs_per_sec) < total_sections) {
2713                 f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
2714                           segment_count, segs_per_sec, total_sections);
2715                 return -EFSCORRUPTED;
2716         }
2717
2718         if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
2719                 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
2720                           segment_count, le64_to_cpu(raw_super->block_count));
2721                 return -EFSCORRUPTED;
2722         }
2723
2724         if (RDEV(0).path[0]) {
2725                 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
2726                 int i = 1;
2727
2728                 while (i < MAX_DEVICES && RDEV(i).path[0]) {
2729                         dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
2730                         i++;
2731                 }
2732                 if (segment_count != dev_seg_count) {
2733                         f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
2734                                         segment_count, dev_seg_count);
2735                         return -EFSCORRUPTED;
2736                 }
2737         }
2738
2739         if (secs_per_zone > total_sections || !secs_per_zone) {
2740                 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
2741                           secs_per_zone, total_sections);
2742                 return -EFSCORRUPTED;
2743         }
2744         if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2745                         raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2746                         (le32_to_cpu(raw_super->extension_count) +
2747                         raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2748                 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
2749                           le32_to_cpu(raw_super->extension_count),
2750                           raw_super->hot_ext_count,
2751                           F2FS_MAX_EXTENSION);
2752                 return -EFSCORRUPTED;
2753         }
2754
2755         if (le32_to_cpu(raw_super->cp_payload) >
2756                                 (blocks_per_seg - F2FS_CP_PACKS)) {
2757                 f2fs_info(sbi, "Insane cp_payload (%u > %u)",
2758                           le32_to_cpu(raw_super->cp_payload),
2759                           blocks_per_seg - F2FS_CP_PACKS);
2760                 return -EFSCORRUPTED;
2761         }
2762
2763         /* check reserved ino info */
2764         if (le32_to_cpu(raw_super->node_ino) != 1 ||
2765                 le32_to_cpu(raw_super->meta_ino) != 2 ||
2766                 le32_to_cpu(raw_super->root_ino) != 3) {
2767                 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2768                           le32_to_cpu(raw_super->node_ino),
2769                           le32_to_cpu(raw_super->meta_ino),
2770                           le32_to_cpu(raw_super->root_ino));
2771                 return -EFSCORRUPTED;
2772         }
2773
2774         /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2775         if (sanity_check_area_boundary(sbi, bh))
2776                 return -EFSCORRUPTED;
2777
2778         return 0;
2779 }
2780
2781 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
2782 {
2783         unsigned int total, fsmeta;
2784         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2785         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2786         unsigned int ovp_segments, reserved_segments;
2787         unsigned int main_segs, blocks_per_seg;
2788         unsigned int sit_segs, nat_segs;
2789         unsigned int sit_bitmap_size, nat_bitmap_size;
2790         unsigned int log_blocks_per_seg;
2791         unsigned int segment_count_main;
2792         unsigned int cp_pack_start_sum, cp_payload;
2793         block_t user_block_count, valid_user_blocks;
2794         block_t avail_node_count, valid_node_count;
2795         int i, j;
2796
2797         total = le32_to_cpu(raw_super->segment_count);
2798         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2799         sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2800         fsmeta += sit_segs;
2801         nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2802         fsmeta += nat_segs;
2803         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2804         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2805
2806         if (unlikely(fsmeta >= total))
2807                 return 1;
2808
2809         ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2810         reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2811
2812         if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2813                         ovp_segments == 0 || reserved_segments == 0)) {
2814                 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
2815                 return 1;
2816         }
2817
2818         user_block_count = le64_to_cpu(ckpt->user_block_count);
2819         segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2820         log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2821         if (!user_block_count || user_block_count >=
2822                         segment_count_main << log_blocks_per_seg) {
2823                 f2fs_err(sbi, "Wrong user_block_count: %u",
2824                          user_block_count);
2825                 return 1;
2826         }
2827
2828         valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
2829         if (valid_user_blocks > user_block_count) {
2830                 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
2831                          valid_user_blocks, user_block_count);
2832                 return 1;
2833         }
2834
2835         valid_node_count = le32_to_cpu(ckpt->valid_node_count);
2836         avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
2837         if (valid_node_count > avail_node_count) {
2838                 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
2839                          valid_node_count, avail_node_count);
2840                 return 1;
2841         }
2842
2843         main_segs = le32_to_cpu(raw_super->segment_count_main);
2844         blocks_per_seg = sbi->blocks_per_seg;
2845
2846         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2847                 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2848                         le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2849                         return 1;
2850                 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
2851                         if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2852                                 le32_to_cpu(ckpt->cur_node_segno[j])) {
2853                                 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
2854                                          i, j,
2855                                          le32_to_cpu(ckpt->cur_node_segno[i]));
2856                                 return 1;
2857                         }
2858                 }
2859         }
2860         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2861                 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2862                         le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2863                         return 1;
2864                 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
2865                         if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
2866                                 le32_to_cpu(ckpt->cur_data_segno[j])) {
2867                                 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
2868                                          i, j,
2869                                          le32_to_cpu(ckpt->cur_data_segno[i]));
2870                                 return 1;
2871                         }
2872                 }
2873         }
2874         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2875                 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
2876                         if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2877                                 le32_to_cpu(ckpt->cur_data_segno[j])) {
2878                                 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
2879                                          i, j,
2880                                          le32_to_cpu(ckpt->cur_node_segno[i]));
2881                                 return 1;
2882                         }
2883                 }
2884         }
2885
2886         sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2887         nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2888
2889         if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
2890                 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
2891                 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
2892                          sit_bitmap_size, nat_bitmap_size);
2893                 return 1;
2894         }
2895
2896         cp_pack_start_sum = __start_sum_addr(sbi);
2897         cp_payload = __cp_payload(sbi);
2898         if (cp_pack_start_sum < cp_payload + 1 ||
2899                 cp_pack_start_sum > blocks_per_seg - 1 -
2900                         NR_CURSEG_TYPE) {
2901                 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
2902                          cp_pack_start_sum);
2903                 return 1;
2904         }
2905
2906         if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
2907                 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
2908                 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
2909                           "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
2910                           "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
2911                           le32_to_cpu(ckpt->checksum_offset));
2912                 return 1;
2913         }
2914
2915         if (unlikely(f2fs_cp_error(sbi))) {
2916                 f2fs_err(sbi, "A bug case: need to run fsck");
2917                 return 1;
2918         }
2919         return 0;
2920 }
2921
2922 static void init_sb_info(struct f2fs_sb_info *sbi)
2923 {
2924         struct f2fs_super_block *raw_super = sbi->raw_super;
2925         int i;
2926
2927         sbi->log_sectors_per_block =
2928                 le32_to_cpu(raw_super->log_sectors_per_block);
2929         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2930         sbi->blocksize = 1 << sbi->log_blocksize;
2931         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2932         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2933         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2934         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2935         sbi->total_sections = le32_to_cpu(raw_super->section_count);
2936         sbi->total_node_count =
2937                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
2938                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2939         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2940         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2941         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2942         sbi->cur_victim_sec = NULL_SECNO;
2943         sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
2944         sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
2945         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2946         sbi->migration_granularity = sbi->segs_per_sec;
2947
2948         sbi->dir_level = DEF_DIR_LEVEL;
2949         sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2950         sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2951         sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
2952         sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
2953         sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
2954         sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
2955                                 DEF_UMOUNT_DISCARD_TIMEOUT;
2956         clear_sbi_flag(sbi, SBI_NEED_FSCK);
2957
2958         for (i = 0; i < NR_COUNT_TYPE; i++)
2959                 atomic_set(&sbi->nr_pages[i], 0);
2960
2961         for (i = 0; i < META; i++)
2962                 atomic_set(&sbi->wb_sync_req[i], 0);
2963
2964         INIT_LIST_HEAD(&sbi->s_list);
2965         mutex_init(&sbi->umount_mutex);
2966         init_rwsem(&sbi->io_order_lock);
2967         spin_lock_init(&sbi->cp_lock);
2968
2969         sbi->dirty_device = 0;
2970         spin_lock_init(&sbi->dev_lock);
2971
2972         init_rwsem(&sbi->sb_lock);
2973         init_rwsem(&sbi->pin_sem);
2974 }
2975
2976 static int init_percpu_info(struct f2fs_sb_info *sbi)
2977 {
2978         int err;
2979
2980         err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2981         if (err)
2982                 return err;
2983
2984         err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
2985                                                                 GFP_KERNEL);
2986         if (err)
2987                 percpu_counter_destroy(&sbi->alloc_valid_block_count);
2988
2989         return err;
2990 }
2991
2992 #ifdef CONFIG_BLK_DEV_ZONED
2993 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
2994                                void *data)
2995 {
2996         struct f2fs_dev_info *dev = data;
2997
2998         if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL)
2999                 set_bit(idx, dev->blkz_seq);
3000         return 0;
3001 }
3002
3003 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
3004 {
3005         struct block_device *bdev = FDEV(devi).bdev;
3006         sector_t nr_sectors = bdev->bd_part->nr_sects;
3007         int ret;
3008
3009         if (!f2fs_sb_has_blkzoned(sbi))
3010                 return 0;
3011
3012         if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3013                                 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
3014                 return -EINVAL;
3015         sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
3016         if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
3017                                 __ilog2_u32(sbi->blocks_per_blkz))
3018                 return -EINVAL;
3019         sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
3020         FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
3021                                         sbi->log_blocks_per_blkz;
3022         if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
3023                 FDEV(devi).nr_blkz++;
3024
3025         FDEV(devi).blkz_seq = f2fs_kzalloc(sbi,
3026                                         BITS_TO_LONGS(FDEV(devi).nr_blkz)
3027                                         * sizeof(unsigned long),
3028                                         GFP_KERNEL);
3029         if (!FDEV(devi).blkz_seq)
3030                 return -ENOMEM;
3031
3032         /* Get block zones type */
3033         ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3034                                   &FDEV(devi));
3035         if (ret < 0)
3036                 return ret;
3037
3038         return 0;
3039 }
3040 #endif
3041
3042 /*
3043  * Read f2fs raw super block.
3044  * Because we have two copies of super block, so read both of them
3045  * to get the first valid one. If any one of them is broken, we pass
3046  * them recovery flag back to the caller.
3047  */
3048 static int read_raw_super_block(struct f2fs_sb_info *sbi,
3049                         struct f2fs_super_block **raw_super,
3050                         int *valid_super_block, int *recovery)
3051 {
3052         struct super_block *sb = sbi->sb;
3053         int block;
3054         struct buffer_head *bh;
3055         struct f2fs_super_block *super;
3056         int err = 0;
3057
3058         super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3059         if (!super)
3060                 return -ENOMEM;
3061
3062         for (block = 0; block < 2; block++) {
3063                 bh = sb_bread(sb, block);
3064                 if (!bh) {
3065                         f2fs_err(sbi, "Unable to read %dth superblock",
3066                                  block + 1);
3067                         err = -EIO;
3068                         *recovery = 1;
3069                         continue;
3070                 }
3071
3072                 /* sanity checking of raw super */
3073                 err = sanity_check_raw_super(sbi, bh);
3074                 if (err) {
3075                         f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3076                                  block + 1);
3077                         brelse(bh);
3078                         *recovery = 1;
3079                         continue;
3080                 }
3081
3082                 if (!*raw_super) {
3083                         memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3084                                                         sizeof(*super));
3085                         *valid_super_block = block;
3086                         *raw_super = super;
3087                 }
3088                 brelse(bh);
3089         }
3090
3091         /* No valid superblock */
3092         if (!*raw_super)
3093                 kvfree(super);
3094         else
3095                 err = 0;
3096
3097         return err;
3098 }
3099
3100 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3101 {
3102         struct buffer_head *bh;
3103         __u32 crc = 0;
3104         int err;
3105
3106         if ((recover && f2fs_readonly(sbi->sb)) ||
3107                                 bdev_read_only(sbi->sb->s_bdev)) {
3108                 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3109                 return -EROFS;
3110         }
3111
3112         /* we should update superblock crc here */
3113         if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3114                 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3115                                 offsetof(struct f2fs_super_block, crc));
3116                 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3117         }
3118
3119         /* write back-up superblock first */
3120         bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3121         if (!bh)
3122                 return -EIO;
3123         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3124         brelse(bh);
3125
3126         /* if we are in recovery path, skip writing valid superblock */
3127         if (recover || err)
3128                 return err;
3129
3130         /* write current valid superblock */
3131         bh = sb_bread(sbi->sb, sbi->valid_super_block);
3132         if (!bh)
3133                 return -EIO;
3134         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3135         brelse(bh);
3136         return err;
3137 }
3138
3139 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3140 {
3141         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3142         unsigned int max_devices = MAX_DEVICES;
3143         int i;
3144
3145         /* Initialize single device information */
3146         if (!RDEV(0).path[0]) {
3147                 if (!bdev_is_zoned(sbi->sb->s_bdev))
3148                         return 0;
3149                 max_devices = 1;
3150         }
3151
3152         /*
3153          * Initialize multiple devices information, or single
3154          * zoned block device information.
3155          */
3156         sbi->devs = f2fs_kzalloc(sbi,
3157                                  array_size(max_devices,
3158                                             sizeof(struct f2fs_dev_info)),
3159                                  GFP_KERNEL);
3160         if (!sbi->devs)
3161                 return -ENOMEM;
3162
3163         for (i = 0; i < max_devices; i++) {
3164
3165                 if (i > 0 && !RDEV(i).path[0])
3166                         break;
3167
3168                 if (max_devices == 1) {
3169                         /* Single zoned block device mount */
3170                         FDEV(0).bdev =
3171                                 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3172                                         sbi->sb->s_mode, sbi->sb->s_type);
3173                 } else {
3174                         /* Multi-device mount */
3175                         memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3176                         FDEV(i).total_segments =
3177                                 le32_to_cpu(RDEV(i).total_segments);
3178                         if (i == 0) {
3179                                 FDEV(i).start_blk = 0;
3180                                 FDEV(i).end_blk = FDEV(i).start_blk +
3181                                     (FDEV(i).total_segments <<
3182                                     sbi->log_blocks_per_seg) - 1 +
3183                                     le32_to_cpu(raw_super->segment0_blkaddr);
3184                         } else {
3185                                 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3186                                 FDEV(i).end_blk = FDEV(i).start_blk +
3187                                         (FDEV(i).total_segments <<
3188                                         sbi->log_blocks_per_seg) - 1;
3189                         }
3190                         FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3191                                         sbi->sb->s_mode, sbi->sb->s_type);
3192                 }
3193                 if (IS_ERR(FDEV(i).bdev))
3194                         return PTR_ERR(FDEV(i).bdev);
3195
3196                 /* to release errored devices */
3197                 sbi->s_ndevs = i + 1;
3198
3199 #ifdef CONFIG_BLK_DEV_ZONED
3200                 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3201                                 !f2fs_sb_has_blkzoned(sbi)) {
3202                         f2fs_err(sbi, "Zoned block device feature not enabled\n");
3203                         return -EINVAL;
3204                 }
3205                 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3206                         if (init_blkz_info(sbi, i)) {
3207                                 f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
3208                                 return -EINVAL;
3209                         }
3210                         if (max_devices == 1)
3211                                 break;
3212                         f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3213                                   i, FDEV(i).path,
3214                                   FDEV(i).total_segments,
3215                                   FDEV(i).start_blk, FDEV(i).end_blk,
3216                                   bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3217                                   "Host-aware" : "Host-managed");
3218                         continue;
3219                 }
3220 #endif
3221                 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3222                           i, FDEV(i).path,
3223                           FDEV(i).total_segments,
3224                           FDEV(i).start_blk, FDEV(i).end_blk);
3225         }
3226         f2fs_info(sbi,
3227                   "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3228         return 0;
3229 }
3230
3231 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
3232 {
3233 #ifdef CONFIG_UNICODE
3234         if (f2fs_sb_has_casefold(sbi) && !sbi->s_encoding) {
3235                 const struct f2fs_sb_encodings *encoding_info;
3236                 struct unicode_map *encoding;
3237                 __u16 encoding_flags;
3238
3239                 if (f2fs_sb_has_encrypt(sbi)) {
3240                         f2fs_err(sbi,
3241                                 "Can't mount with encoding and encryption");
3242                         return -EINVAL;
3243                 }
3244
3245                 if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info,
3246                                           &encoding_flags)) {
3247                         f2fs_err(sbi,
3248                                  "Encoding requested by superblock is unknown");
3249                         return -EINVAL;
3250                 }
3251
3252                 encoding = utf8_load(encoding_info->version);
3253                 if (IS_ERR(encoding)) {
3254                         f2fs_err(sbi,
3255                                  "can't mount with superblock charset: %s-%s "
3256                                  "not supported by the kernel. flags: 0x%x.",
3257                                  encoding_info->name, encoding_info->version,
3258                                  encoding_flags);
3259                         return PTR_ERR(encoding);
3260                 }
3261                 f2fs_info(sbi, "Using encoding defined by superblock: "
3262                          "%s-%s with flags 0x%hx", encoding_info->name,
3263                          encoding_info->version?:"\b", encoding_flags);
3264
3265                 sbi->s_encoding = encoding;
3266                 sbi->s_encoding_flags = encoding_flags;
3267                 sbi->sb->s_d_op = &f2fs_dentry_ops;
3268         }
3269 #else
3270         if (f2fs_sb_has_casefold(sbi)) {
3271                 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
3272                 return -EINVAL;
3273         }
3274 #endif
3275         return 0;
3276 }
3277
3278 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3279 {
3280         struct f2fs_sm_info *sm_i = SM_I(sbi);
3281
3282         /* adjust parameters according to the volume size */
3283         if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3284                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3285                 sm_i->dcc_info->discard_granularity = 1;
3286                 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3287         }
3288
3289         sbi->readdir_ra = 1;
3290 }
3291
3292 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3293 {
3294         struct f2fs_sb_info *sbi;
3295         struct f2fs_super_block *raw_super;
3296         struct inode *root;
3297         int err;
3298         bool skip_recovery = false, need_fsck = false;
3299         char *options = NULL;
3300         int recovery, i, valid_super_block;
3301         struct curseg_info *seg_i;
3302         int retry_cnt = 1;
3303
3304 try_onemore:
3305         err = -EINVAL;
3306         raw_super = NULL;
3307         valid_super_block = -1;
3308         recovery = 0;
3309
3310         /* allocate memory for f2fs-specific super block info */
3311         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3312         if (!sbi)
3313                 return -ENOMEM;
3314
3315         sbi->sb = sb;
3316
3317         /* Load the checksum driver */
3318         sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3319         if (IS_ERR(sbi->s_chksum_driver)) {
3320                 f2fs_err(sbi, "Cannot load crc32 driver.");
3321                 err = PTR_ERR(sbi->s_chksum_driver);
3322                 sbi->s_chksum_driver = NULL;
3323                 goto free_sbi;
3324         }
3325
3326         /* set a block size */
3327         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3328                 f2fs_err(sbi, "unable to set blocksize");
3329                 goto free_sbi;
3330         }
3331
3332         err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3333                                                                 &recovery);
3334         if (err)
3335                 goto free_sbi;
3336
3337         sb->s_fs_info = sbi;
3338         sbi->raw_super = raw_super;
3339
3340         /* precompute checksum seed for metadata */
3341         if (f2fs_sb_has_inode_chksum(sbi))
3342                 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3343                                                 sizeof(raw_super->uuid));
3344
3345         /*
3346          * The BLKZONED feature indicates that the drive was formatted with
3347          * zone alignment optimization. This is optional for host-aware
3348          * devices, but mandatory for host-managed zoned block devices.
3349          */
3350 #ifndef CONFIG_BLK_DEV_ZONED
3351         if (f2fs_sb_has_blkzoned(sbi)) {
3352                 f2fs_err(sbi, "Zoned block device support is not enabled");
3353                 err = -EOPNOTSUPP;
3354                 goto free_sb_buf;
3355         }
3356 #endif
3357         default_options(sbi);
3358         /* parse mount options */
3359         options = kstrdup((const char *)data, GFP_KERNEL);
3360         if (data && !options) {
3361                 err = -ENOMEM;
3362                 goto free_sb_buf;
3363         }
3364
3365         err = parse_options(sb, options);
3366         if (err)
3367                 goto free_options;
3368
3369         sbi->max_file_blocks = max_file_blocks();
3370         sb->s_maxbytes = sbi->max_file_blocks <<
3371                                 le32_to_cpu(raw_super->log_blocksize);
3372         sb->s_max_links = F2FS_LINK_MAX;
3373
3374         err = f2fs_setup_casefold(sbi);
3375         if (err)
3376                 goto free_options;
3377
3378 #ifdef CONFIG_QUOTA
3379         sb->dq_op = &f2fs_quota_operations;
3380         sb->s_qcop = &f2fs_quotactl_ops;
3381         sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3382
3383         if (f2fs_sb_has_quota_ino(sbi)) {
3384                 for (i = 0; i < MAXQUOTAS; i++) {
3385                         if (f2fs_qf_ino(sbi->sb, i))
3386                                 sbi->nquota_files++;
3387                 }
3388         }
3389 #endif
3390
3391         sb->s_op = &f2fs_sops;
3392 #ifdef CONFIG_FS_ENCRYPTION
3393         sb->s_cop = &f2fs_cryptops;
3394 #endif
3395 #ifdef CONFIG_FS_VERITY
3396         sb->s_vop = &f2fs_verityops;
3397 #endif
3398         sb->s_xattr = f2fs_xattr_handlers;
3399         sb->s_export_op = &f2fs_export_ops;
3400         sb->s_magic = F2FS_SUPER_MAGIC;
3401         sb->s_time_gran = 1;
3402         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3403                 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3404         memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3405         sb->s_iflags |= SB_I_CGROUPWB;
3406
3407         /* init f2fs-specific super block info */
3408         sbi->valid_super_block = valid_super_block;
3409         mutex_init(&sbi->gc_mutex);
3410         mutex_init(&sbi->writepages);
3411         mutex_init(&sbi->cp_mutex);
3412         mutex_init(&sbi->resize_mutex);
3413         init_rwsem(&sbi->node_write);
3414         init_rwsem(&sbi->node_change);
3415
3416         /* disallow all the data/node/meta page writes */
3417         set_sbi_flag(sbi, SBI_POR_DOING);
3418         spin_lock_init(&sbi->stat_lock);
3419
3420         /* init iostat info */
3421         spin_lock_init(&sbi->iostat_lock);
3422         sbi->iostat_enable = false;
3423
3424         for (i = 0; i < NR_PAGE_TYPE; i++) {
3425                 int n = (i == META) ? 1: NR_TEMP_TYPE;
3426                 int j;
3427
3428                 sbi->write_io[i] =
3429                         f2fs_kmalloc(sbi,
3430                                      array_size(n,
3431                                                 sizeof(struct f2fs_bio_info)),
3432                                      GFP_KERNEL);
3433                 if (!sbi->write_io[i]) {
3434                         err = -ENOMEM;
3435                         goto free_bio_info;
3436                 }
3437
3438                 for (j = HOT; j < n; j++) {
3439                         init_rwsem(&sbi->write_io[i][j].io_rwsem);
3440                         sbi->write_io[i][j].sbi = sbi;
3441                         sbi->write_io[i][j].bio = NULL;
3442                         spin_lock_init(&sbi->write_io[i][j].io_lock);
3443                         INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
3444                         INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
3445                         init_rwsem(&sbi->write_io[i][j].bio_list_lock);
3446                 }
3447         }
3448
3449         init_rwsem(&sbi->cp_rwsem);
3450         init_rwsem(&sbi->quota_sem);
3451         init_waitqueue_head(&sbi->cp_wait);
3452         init_sb_info(sbi);
3453
3454         err = init_percpu_info(sbi);
3455         if (err)
3456                 goto free_bio_info;
3457
3458         if (F2FS_IO_ALIGNED(sbi)) {
3459                 sbi->write_io_dummy =
3460                         mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
3461                 if (!sbi->write_io_dummy) {
3462                         err = -ENOMEM;
3463                         goto free_percpu;
3464                 }
3465         }
3466
3467         /* get an inode for meta space */
3468         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
3469         if (IS_ERR(sbi->meta_inode)) {
3470                 f2fs_err(sbi, "Failed to read F2FS meta data inode");
3471                 err = PTR_ERR(sbi->meta_inode);
3472                 goto free_io_dummy;
3473         }
3474
3475         err = f2fs_get_valid_checkpoint(sbi);
3476         if (err) {
3477                 f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
3478                 goto free_meta_inode;
3479         }
3480
3481         if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
3482                 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3483         if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
3484                 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3485                 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
3486         }
3487
3488         if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
3489                 set_sbi_flag(sbi, SBI_NEED_FSCK);
3490
3491         /* Initialize device list */
3492         err = f2fs_scan_devices(sbi);
3493         if (err) {
3494                 f2fs_err(sbi, "Failed to find devices");
3495                 goto free_devices;
3496         }
3497
3498         err = f2fs_init_post_read_wq(sbi);
3499         if (err) {
3500                 f2fs_err(sbi, "Failed to initialize post read workqueue");
3501                 goto free_devices;
3502         }
3503
3504         sbi->total_valid_node_count =
3505                                 le32_to_cpu(sbi->ckpt->valid_node_count);
3506         percpu_counter_set(&sbi->total_valid_inode_count,
3507                                 le32_to_cpu(sbi->ckpt->valid_inode_count));
3508         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
3509         sbi->total_valid_block_count =
3510                                 le64_to_cpu(sbi->ckpt->valid_block_count);
3511         sbi->last_valid_block_count = sbi->total_valid_block_count;
3512         sbi->reserved_blocks = 0;
3513         sbi->current_reserved_blocks = 0;
3514         limit_reserve_root(sbi);
3515
3516         for (i = 0; i < NR_INODE_TYPE; i++) {
3517                 INIT_LIST_HEAD(&sbi->inode_list[i]);
3518                 spin_lock_init(&sbi->inode_lock[i]);
3519         }
3520         mutex_init(&sbi->flush_lock);
3521
3522         f2fs_init_extent_cache_info(sbi);
3523
3524         f2fs_init_ino_entry_info(sbi);
3525
3526         f2fs_init_fsync_node_info(sbi);
3527
3528         /* setup f2fs internal modules */
3529         err = f2fs_build_segment_manager(sbi);
3530         if (err) {
3531                 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
3532                          err);
3533                 goto free_sm;
3534         }
3535         err = f2fs_build_node_manager(sbi);
3536         if (err) {
3537                 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
3538                          err);
3539                 goto free_nm;
3540         }
3541
3542         /* For write statistics */
3543         if (sb->s_bdev->bd_part)
3544                 sbi->sectors_written_start =
3545                         (u64)part_stat_read(sb->s_bdev->bd_part,
3546                                             sectors[STAT_WRITE]);
3547
3548         /* Read accumulated write IO statistics if exists */
3549         seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
3550         if (__exist_node_summaries(sbi))
3551                 sbi->kbytes_written =
3552                         le64_to_cpu(seg_i->journal->info.kbytes_written);
3553
3554         f2fs_build_gc_manager(sbi);
3555
3556         err = f2fs_build_stats(sbi);
3557         if (err)
3558                 goto free_nm;
3559
3560         /* get an inode for node space */
3561         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
3562         if (IS_ERR(sbi->node_inode)) {
3563                 f2fs_err(sbi, "Failed to read node inode");
3564                 err = PTR_ERR(sbi->node_inode);
3565                 goto free_stats;
3566         }
3567
3568         /* read root inode and dentry */
3569         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
3570         if (IS_ERR(root)) {
3571                 f2fs_err(sbi, "Failed to read root inode");
3572                 err = PTR_ERR(root);
3573                 goto free_node_inode;
3574         }
3575         if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
3576                         !root->i_size || !root->i_nlink) {
3577                 iput(root);
3578                 err = -EINVAL;
3579                 goto free_node_inode;
3580         }
3581
3582         sb->s_root = d_make_root(root); /* allocate root dentry */
3583         if (!sb->s_root) {
3584                 err = -ENOMEM;
3585                 goto free_node_inode;
3586         }
3587
3588         err = f2fs_register_sysfs(sbi);
3589         if (err)
3590                 goto free_root_inode;
3591
3592 #ifdef CONFIG_QUOTA
3593         /* Enable quota usage during mount */
3594         if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
3595                 err = f2fs_enable_quotas(sb);
3596                 if (err)
3597                         f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
3598         }
3599 #endif
3600         /* if there are nt orphan nodes free them */
3601         err = f2fs_recover_orphan_inodes(sbi);
3602         if (err)
3603                 goto free_meta;
3604
3605         if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
3606                 goto reset_checkpoint;
3607
3608         /* recover fsynced data */
3609         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
3610                 /*
3611                  * mount should be failed, when device has readonly mode, and
3612                  * previous checkpoint was not done by clean system shutdown.
3613                  */
3614                 if (f2fs_hw_is_readonly(sbi)) {
3615                         if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3616                                 err = -EROFS;
3617                                 f2fs_err(sbi, "Need to recover fsync data, but write access unavailable");
3618                                 goto free_meta;
3619                         }
3620                         f2fs_info(sbi, "write access unavailable, skipping recovery");
3621                         goto reset_checkpoint;
3622                 }
3623
3624                 if (need_fsck)
3625                         set_sbi_flag(sbi, SBI_NEED_FSCK);
3626
3627                 if (skip_recovery)
3628                         goto reset_checkpoint;
3629
3630                 err = f2fs_recover_fsync_data(sbi, false);
3631                 if (err < 0) {
3632                         if (err != -ENOMEM)
3633                                 skip_recovery = true;
3634                         need_fsck = true;
3635                         f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
3636                                  err);
3637                         goto free_meta;
3638                 }
3639         } else {
3640                 err = f2fs_recover_fsync_data(sbi, true);
3641
3642                 if (!f2fs_readonly(sb) && err > 0) {
3643                         err = -EINVAL;
3644                         f2fs_err(sbi, "Need to recover fsync data");
3645                         goto free_meta;
3646                 }
3647         }
3648
3649         /*
3650          * If the f2fs is not readonly and fsync data recovery succeeds,
3651          * check zoned block devices' write pointer consistency.
3652          */
3653         if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
3654                 err = f2fs_check_write_pointer(sbi);
3655                 if (err)
3656                         goto free_meta;
3657         }
3658
3659 reset_checkpoint:
3660         /* f2fs_recover_fsync_data() cleared this already */
3661         clear_sbi_flag(sbi, SBI_POR_DOING);
3662
3663         if (test_opt(sbi, DISABLE_CHECKPOINT)) {
3664                 err = f2fs_disable_checkpoint(sbi);
3665                 if (err)
3666                         goto sync_free_meta;
3667         } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
3668                 f2fs_enable_checkpoint(sbi);
3669         }
3670
3671         /*
3672          * If filesystem is not mounted as read-only then
3673          * do start the gc_thread.
3674          */
3675         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
3676                 /* After POR, we can run background GC thread.*/
3677                 err = f2fs_start_gc_thread(sbi);
3678                 if (err)
3679                         goto sync_free_meta;
3680         }
3681         kvfree(options);
3682
3683         /* recover broken superblock */
3684         if (recovery) {
3685                 err = f2fs_commit_super(sbi, true);
3686                 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
3687                           sbi->valid_super_block ? 1 : 2, err);
3688         }
3689
3690         f2fs_join_shrinker(sbi);
3691
3692         f2fs_tuning_parameters(sbi);
3693
3694         f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
3695                     cur_cp_version(F2FS_CKPT(sbi)));
3696         f2fs_update_time(sbi, CP_TIME);
3697         f2fs_update_time(sbi, REQ_TIME);
3698         clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3699         return 0;
3700
3701 sync_free_meta:
3702         /* safe to flush all the data */
3703         sync_filesystem(sbi->sb);
3704         retry_cnt = 0;
3705
3706 free_meta:
3707 #ifdef CONFIG_QUOTA
3708         f2fs_truncate_quota_inode_pages(sb);
3709         if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
3710                 f2fs_quota_off_umount(sbi->sb);
3711 #endif
3712         /*
3713          * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3714          * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3715          * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3716          * falls into an infinite loop in f2fs_sync_meta_pages().
3717          */
3718         truncate_inode_pages_final(META_MAPPING(sbi));
3719         /* evict some inodes being cached by GC */
3720         evict_inodes(sb);
3721         f2fs_unregister_sysfs(sbi);
3722 free_root_inode:
3723         dput(sb->s_root);
3724         sb->s_root = NULL;
3725 free_node_inode:
3726         f2fs_release_ino_entry(sbi, true);
3727         truncate_inode_pages_final(NODE_MAPPING(sbi));
3728         iput(sbi->node_inode);
3729         sbi->node_inode = NULL;
3730 free_stats:
3731         f2fs_destroy_stats(sbi);
3732 free_nm:
3733         f2fs_destroy_node_manager(sbi);
3734 free_sm:
3735         f2fs_destroy_segment_manager(sbi);
3736         f2fs_destroy_post_read_wq(sbi);
3737 free_devices:
3738         destroy_device_list(sbi);
3739         kvfree(sbi->ckpt);
3740 free_meta_inode:
3741         make_bad_inode(sbi->meta_inode);
3742         iput(sbi->meta_inode);
3743         sbi->meta_inode = NULL;
3744 free_io_dummy:
3745         mempool_destroy(sbi->write_io_dummy);
3746 free_percpu:
3747         destroy_percpu_info(sbi);
3748 free_bio_info:
3749         for (i = 0; i < NR_PAGE_TYPE; i++)
3750                 kvfree(sbi->write_io[i]);
3751
3752 #ifdef CONFIG_UNICODE
3753         utf8_unload(sbi->s_encoding);
3754 #endif
3755 free_options:
3756 #ifdef CONFIG_QUOTA
3757         for (i = 0; i < MAXQUOTAS; i++)
3758                 kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
3759 #endif
3760         kvfree(options);
3761 free_sb_buf:
3762         kvfree(raw_super);
3763 free_sbi:
3764         if (sbi->s_chksum_driver)
3765                 crypto_free_shash(sbi->s_chksum_driver);
3766         kvfree(sbi);
3767
3768         /* give only one another chance */
3769         if (retry_cnt > 0 && skip_recovery) {
3770                 retry_cnt--;
3771                 shrink_dcache_sb(sb);
3772                 goto try_onemore;
3773         }
3774         return err;
3775 }
3776
3777 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3778                         const char *dev_name, void *data)
3779 {
3780         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3781 }
3782
3783 static void kill_f2fs_super(struct super_block *sb)
3784 {
3785         if (sb->s_root) {
3786                 struct f2fs_sb_info *sbi = F2FS_SB(sb);
3787
3788                 set_sbi_flag(sbi, SBI_IS_CLOSE);
3789                 f2fs_stop_gc_thread(sbi);
3790                 f2fs_stop_discard_thread(sbi);
3791
3792                 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
3793                                 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3794                         struct cp_control cpc = {
3795                                 .reason = CP_UMOUNT,
3796                         };
3797                         f2fs_write_checkpoint(sbi, &cpc);
3798                 }
3799
3800                 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
3801                         sb->s_flags &= ~SB_RDONLY;
3802         }
3803         kill_block_super(sb);
3804 }
3805
3806 static struct file_system_type f2fs_fs_type = {
3807         .owner          = THIS_MODULE,
3808         .name           = "f2fs",
3809         .mount          = f2fs_mount,
3810         .kill_sb        = kill_f2fs_super,
3811         .fs_flags       = FS_REQUIRES_DEV,
3812 };
3813 MODULE_ALIAS_FS("f2fs");
3814
3815 static int __init init_inodecache(void)
3816 {
3817         f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3818                         sizeof(struct f2fs_inode_info), 0,
3819                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3820         if (!f2fs_inode_cachep)
3821                 return -ENOMEM;
3822         return 0;
3823 }
3824
3825 static void destroy_inodecache(void)
3826 {
3827         /*
3828          * Make sure all delayed rcu free inodes are flushed before we
3829          * destroy cache.
3830          */
3831         rcu_barrier();
3832         kmem_cache_destroy(f2fs_inode_cachep);
3833 }
3834
3835 static int __init init_f2fs_fs(void)
3836 {
3837         int err;
3838
3839         if (PAGE_SIZE != F2FS_BLKSIZE) {
3840                 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
3841                                 PAGE_SIZE, F2FS_BLKSIZE);
3842                 return -EINVAL;
3843         }
3844
3845         f2fs_build_trace_ios();
3846
3847         err = init_inodecache();
3848         if (err)
3849                 goto fail;
3850         err = f2fs_create_node_manager_caches();
3851         if (err)
3852                 goto free_inodecache;
3853         err = f2fs_create_segment_manager_caches();
3854         if (err)
3855                 goto free_node_manager_caches;
3856         err = f2fs_create_checkpoint_caches();
3857         if (err)
3858                 goto free_segment_manager_caches;
3859         err = f2fs_create_extent_cache();
3860         if (err)
3861                 goto free_checkpoint_caches;
3862         err = f2fs_init_sysfs();
3863         if (err)
3864                 goto free_extent_cache;
3865         err = register_shrinker(&f2fs_shrinker_info);
3866         if (err)
3867                 goto free_sysfs;
3868         err = register_filesystem(&f2fs_fs_type);
3869         if (err)
3870                 goto free_shrinker;
3871         f2fs_create_root_stats();
3872         err = f2fs_init_post_read_processing();
3873         if (err)
3874                 goto free_root_stats;
3875         err = f2fs_init_bio_entry_cache();
3876         if (err)
3877                 goto free_post_read;
3878         err = f2fs_init_bioset();
3879         if (err)
3880                 goto free_bio_enrty_cache;
3881         return 0;
3882 free_bio_enrty_cache:
3883         f2fs_destroy_bio_entry_cache();
3884 free_post_read:
3885         f2fs_destroy_post_read_processing();
3886 free_root_stats:
3887         f2fs_destroy_root_stats();
3888         unregister_filesystem(&f2fs_fs_type);
3889 free_shrinker:
3890         unregister_shrinker(&f2fs_shrinker_info);
3891 free_sysfs:
3892         f2fs_exit_sysfs();
3893 free_extent_cache:
3894         f2fs_destroy_extent_cache();
3895 free_checkpoint_caches:
3896         f2fs_destroy_checkpoint_caches();
3897 free_segment_manager_caches:
3898         f2fs_destroy_segment_manager_caches();
3899 free_node_manager_caches:
3900         f2fs_destroy_node_manager_caches();
3901 free_inodecache:
3902         destroy_inodecache();
3903 fail:
3904         return err;
3905 }
3906
3907 static void __exit exit_f2fs_fs(void)
3908 {
3909         f2fs_destroy_bioset();
3910         f2fs_destroy_bio_entry_cache();
3911         f2fs_destroy_post_read_processing();
3912         f2fs_destroy_root_stats();
3913         unregister_filesystem(&f2fs_fs_type);
3914         unregister_shrinker(&f2fs_shrinker_info);
3915         f2fs_exit_sysfs();
3916         f2fs_destroy_extent_cache();
3917         f2fs_destroy_checkpoint_caches();
3918         f2fs_destroy_segment_manager_caches();
3919         f2fs_destroy_node_manager_caches();
3920         destroy_inodecache();
3921         f2fs_destroy_trace_ios();
3922 }
3923
3924 module_init(init_f2fs_fs)
3925 module_exit(exit_f2fs_fs)
3926
3927 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
3928 MODULE_DESCRIPTION("Flash Friendly File System");
3929 MODULE_LICENSE("GPL");
3930