]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/jbd2/journal.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[linux.git] / fs / jbd2 / journal.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 #if 0
70 EXPORT_SYMBOL(journal_sync_buffer);
71 #endif
72 EXPORT_SYMBOL(jbd2_journal_flush);
73 EXPORT_SYMBOL(jbd2_journal_revoke);
74
75 EXPORT_SYMBOL(jbd2_journal_init_dev);
76 EXPORT_SYMBOL(jbd2_journal_init_inode);
77 EXPORT_SYMBOL(jbd2_journal_check_used_features);
78 EXPORT_SYMBOL(jbd2_journal_check_available_features);
79 EXPORT_SYMBOL(jbd2_journal_set_features);
80 EXPORT_SYMBOL(jbd2_journal_load);
81 EXPORT_SYMBOL(jbd2_journal_destroy);
82 EXPORT_SYMBOL(jbd2_journal_abort);
83 EXPORT_SYMBOL(jbd2_journal_errno);
84 EXPORT_SYMBOL(jbd2_journal_ack_err);
85 EXPORT_SYMBOL(jbd2_journal_clear_err);
86 EXPORT_SYMBOL(jbd2_log_wait_commit);
87 EXPORT_SYMBOL(jbd2_log_start_commit);
88 EXPORT_SYMBOL(jbd2_journal_start_commit);
89 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
90 EXPORT_SYMBOL(jbd2_journal_wipe);
91 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
92 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
93 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
94 EXPORT_SYMBOL(jbd2_journal_force_commit);
95 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
96 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
97 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
98 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
100 EXPORT_SYMBOL(jbd2_inode_cache);
101
102 static void __journal_abort_soft (journal_t *journal, int errno);
103 static int jbd2_journal_create_slab(size_t slab_size);
104
105 #ifdef CONFIG_JBD2_DEBUG
106 void __jbd2_debug(int level, const char *file, const char *func,
107                   unsigned int line, const char *fmt, ...)
108 {
109         struct va_format vaf;
110         va_list args;
111
112         if (level > jbd2_journal_enable_debug)
113                 return;
114         va_start(args, fmt);
115         vaf.fmt = fmt;
116         vaf.va = &args;
117         printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
118         va_end(args);
119 }
120 EXPORT_SYMBOL(__jbd2_debug);
121 #endif
122
123 /* Checksumming functions */
124 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
125 {
126         if (!jbd2_journal_has_csum_v2or3_feature(j))
127                 return 1;
128
129         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
130 }
131
132 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
133 {
134         __u32 csum;
135         __be32 old_csum;
136
137         old_csum = sb->s_checksum;
138         sb->s_checksum = 0;
139         csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
140         sb->s_checksum = old_csum;
141
142         return cpu_to_be32(csum);
143 }
144
145 /*
146  * Helper function used to manage commit timeouts
147  */
148
149 static void commit_timeout(struct timer_list *t)
150 {
151         journal_t *journal = from_timer(journal, t, j_commit_timer);
152
153         wake_up_process(journal->j_task);
154 }
155
156 /*
157  * kjournald2: The main thread function used to manage a logging device
158  * journal.
159  *
160  * This kernel thread is responsible for two things:
161  *
162  * 1) COMMIT:  Every so often we need to commit the current state of the
163  *    filesystem to disk.  The journal thread is responsible for writing
164  *    all of the metadata buffers to disk.
165  *
166  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
167  *    of the data in that part of the log has been rewritten elsewhere on
168  *    the disk.  Flushing these old buffers to reclaim space in the log is
169  *    known as checkpointing, and this thread is responsible for that job.
170  */
171
172 static int kjournald2(void *arg)
173 {
174         journal_t *journal = arg;
175         transaction_t *transaction;
176
177         /*
178          * Set up an interval timer which can be used to trigger a commit wakeup
179          * after the commit interval expires
180          */
181         timer_setup(&journal->j_commit_timer, commit_timeout, 0);
182
183         set_freezable();
184
185         /* Record that the journal thread is running */
186         journal->j_task = current;
187         wake_up(&journal->j_wait_done_commit);
188
189         /*
190          * Make sure that no allocations from this kernel thread will ever
191          * recurse to the fs layer because we are responsible for the
192          * transaction commit and any fs involvement might get stuck waiting for
193          * the trasn. commit.
194          */
195         memalloc_nofs_save();
196
197         /*
198          * And now, wait forever for commit wakeup events.
199          */
200         write_lock(&journal->j_state_lock);
201
202 loop:
203         if (journal->j_flags & JBD2_UNMOUNT)
204                 goto end_loop;
205
206         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
207                 journal->j_commit_sequence, journal->j_commit_request);
208
209         if (journal->j_commit_sequence != journal->j_commit_request) {
210                 jbd_debug(1, "OK, requests differ\n");
211                 write_unlock(&journal->j_state_lock);
212                 del_timer_sync(&journal->j_commit_timer);
213                 jbd2_journal_commit_transaction(journal);
214                 write_lock(&journal->j_state_lock);
215                 goto loop;
216         }
217
218         wake_up(&journal->j_wait_done_commit);
219         if (freezing(current)) {
220                 /*
221                  * The simpler the better. Flushing journal isn't a
222                  * good idea, because that depends on threads that may
223                  * be already stopped.
224                  */
225                 jbd_debug(1, "Now suspending kjournald2\n");
226                 write_unlock(&journal->j_state_lock);
227                 try_to_freeze();
228                 write_lock(&journal->j_state_lock);
229         } else {
230                 /*
231                  * We assume on resume that commits are already there,
232                  * so we don't sleep
233                  */
234                 DEFINE_WAIT(wait);
235                 int should_sleep = 1;
236
237                 prepare_to_wait(&journal->j_wait_commit, &wait,
238                                 TASK_INTERRUPTIBLE);
239                 if (journal->j_commit_sequence != journal->j_commit_request)
240                         should_sleep = 0;
241                 transaction = journal->j_running_transaction;
242                 if (transaction && time_after_eq(jiffies,
243                                                 transaction->t_expires))
244                         should_sleep = 0;
245                 if (journal->j_flags & JBD2_UNMOUNT)
246                         should_sleep = 0;
247                 if (should_sleep) {
248                         write_unlock(&journal->j_state_lock);
249                         schedule();
250                         write_lock(&journal->j_state_lock);
251                 }
252                 finish_wait(&journal->j_wait_commit, &wait);
253         }
254
255         jbd_debug(1, "kjournald2 wakes\n");
256
257         /*
258          * Were we woken up by a commit wakeup event?
259          */
260         transaction = journal->j_running_transaction;
261         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
262                 journal->j_commit_request = transaction->t_tid;
263                 jbd_debug(1, "woke because of timeout\n");
264         }
265         goto loop;
266
267 end_loop:
268         del_timer_sync(&journal->j_commit_timer);
269         journal->j_task = NULL;
270         wake_up(&journal->j_wait_done_commit);
271         jbd_debug(1, "Journal thread exiting.\n");
272         write_unlock(&journal->j_state_lock);
273         return 0;
274 }
275
276 static int jbd2_journal_start_thread(journal_t *journal)
277 {
278         struct task_struct *t;
279
280         t = kthread_run(kjournald2, journal, "jbd2/%s",
281                         journal->j_devname);
282         if (IS_ERR(t))
283                 return PTR_ERR(t);
284
285         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
286         return 0;
287 }
288
289 static void journal_kill_thread(journal_t *journal)
290 {
291         write_lock(&journal->j_state_lock);
292         journal->j_flags |= JBD2_UNMOUNT;
293
294         while (journal->j_task) {
295                 write_unlock(&journal->j_state_lock);
296                 wake_up(&journal->j_wait_commit);
297                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
298                 write_lock(&journal->j_state_lock);
299         }
300         write_unlock(&journal->j_state_lock);
301 }
302
303 /*
304  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
305  *
306  * Writes a metadata buffer to a given disk block.  The actual IO is not
307  * performed but a new buffer_head is constructed which labels the data
308  * to be written with the correct destination disk block.
309  *
310  * Any magic-number escaping which needs to be done will cause a
311  * copy-out here.  If the buffer happens to start with the
312  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
313  * magic number is only written to the log for descripter blocks.  In
314  * this case, we copy the data and replace the first word with 0, and we
315  * return a result code which indicates that this buffer needs to be
316  * marked as an escaped buffer in the corresponding log descriptor
317  * block.  The missing word can then be restored when the block is read
318  * during recovery.
319  *
320  * If the source buffer has already been modified by a new transaction
321  * since we took the last commit snapshot, we use the frozen copy of
322  * that data for IO. If we end up using the existing buffer_head's data
323  * for the write, then we have to make sure nobody modifies it while the
324  * IO is in progress. do_get_write_access() handles this.
325  *
326  * The function returns a pointer to the buffer_head to be used for IO.
327  * 
328  *
329  * Return value:
330  *  <0: Error
331  * >=0: Finished OK
332  *
333  * On success:
334  * Bit 0 set == escape performed on the data
335  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
336  */
337
338 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
339                                   struct journal_head  *jh_in,
340                                   struct buffer_head **bh_out,
341                                   sector_t blocknr)
342 {
343         int need_copy_out = 0;
344         int done_copy_out = 0;
345         int do_escape = 0;
346         char *mapped_data;
347         struct buffer_head *new_bh;
348         struct page *new_page;
349         unsigned int new_offset;
350         struct buffer_head *bh_in = jh2bh(jh_in);
351         journal_t *journal = transaction->t_journal;
352
353         /*
354          * The buffer really shouldn't be locked: only the current committing
355          * transaction is allowed to write it, so nobody else is allowed
356          * to do any IO.
357          *
358          * akpm: except if we're journalling data, and write() output is
359          * also part of a shared mapping, and another thread has
360          * decided to launch a writepage() against this buffer.
361          */
362         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
363
364         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
365
366         /* keep subsequent assertions sane */
367         atomic_set(&new_bh->b_count, 1);
368
369         jbd_lock_bh_state(bh_in);
370 repeat:
371         /*
372          * If a new transaction has already done a buffer copy-out, then
373          * we use that version of the data for the commit.
374          */
375         if (jh_in->b_frozen_data) {
376                 done_copy_out = 1;
377                 new_page = virt_to_page(jh_in->b_frozen_data);
378                 new_offset = offset_in_page(jh_in->b_frozen_data);
379         } else {
380                 new_page = jh2bh(jh_in)->b_page;
381                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
382         }
383
384         mapped_data = kmap_atomic(new_page);
385         /*
386          * Fire data frozen trigger if data already wasn't frozen.  Do this
387          * before checking for escaping, as the trigger may modify the magic
388          * offset.  If a copy-out happens afterwards, it will have the correct
389          * data in the buffer.
390          */
391         if (!done_copy_out)
392                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
393                                            jh_in->b_triggers);
394
395         /*
396          * Check for escaping
397          */
398         if (*((__be32 *)(mapped_data + new_offset)) ==
399                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
400                 need_copy_out = 1;
401                 do_escape = 1;
402         }
403         kunmap_atomic(mapped_data);
404
405         /*
406          * Do we need to do a data copy?
407          */
408         if (need_copy_out && !done_copy_out) {
409                 char *tmp;
410
411                 jbd_unlock_bh_state(bh_in);
412                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
413                 if (!tmp) {
414                         brelse(new_bh);
415                         return -ENOMEM;
416                 }
417                 jbd_lock_bh_state(bh_in);
418                 if (jh_in->b_frozen_data) {
419                         jbd2_free(tmp, bh_in->b_size);
420                         goto repeat;
421                 }
422
423                 jh_in->b_frozen_data = tmp;
424                 mapped_data = kmap_atomic(new_page);
425                 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
426                 kunmap_atomic(mapped_data);
427
428                 new_page = virt_to_page(tmp);
429                 new_offset = offset_in_page(tmp);
430                 done_copy_out = 1;
431
432                 /*
433                  * This isn't strictly necessary, as we're using frozen
434                  * data for the escaping, but it keeps consistency with
435                  * b_frozen_data usage.
436                  */
437                 jh_in->b_frozen_triggers = jh_in->b_triggers;
438         }
439
440         /*
441          * Did we need to do an escaping?  Now we've done all the
442          * copying, we can finally do so.
443          */
444         if (do_escape) {
445                 mapped_data = kmap_atomic(new_page);
446                 *((unsigned int *)(mapped_data + new_offset)) = 0;
447                 kunmap_atomic(mapped_data);
448         }
449
450         set_bh_page(new_bh, new_page, new_offset);
451         new_bh->b_size = bh_in->b_size;
452         new_bh->b_bdev = journal->j_dev;
453         new_bh->b_blocknr = blocknr;
454         new_bh->b_private = bh_in;
455         set_buffer_mapped(new_bh);
456         set_buffer_dirty(new_bh);
457
458         *bh_out = new_bh;
459
460         /*
461          * The to-be-written buffer needs to get moved to the io queue,
462          * and the original buffer whose contents we are shadowing or
463          * copying is moved to the transaction's shadow queue.
464          */
465         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
466         spin_lock(&journal->j_list_lock);
467         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
468         spin_unlock(&journal->j_list_lock);
469         set_buffer_shadow(bh_in);
470         jbd_unlock_bh_state(bh_in);
471
472         return do_escape | (done_copy_out << 1);
473 }
474
475 /*
476  * Allocation code for the journal file.  Manage the space left in the
477  * journal, so that we can begin checkpointing when appropriate.
478  */
479
480 /*
481  * Called with j_state_lock locked for writing.
482  * Returns true if a transaction commit was started.
483  */
484 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
485 {
486         /* Return if the txn has already requested to be committed */
487         if (journal->j_commit_request == target)
488                 return 0;
489
490         /*
491          * The only transaction we can possibly wait upon is the
492          * currently running transaction (if it exists).  Otherwise,
493          * the target tid must be an old one.
494          */
495         if (journal->j_running_transaction &&
496             journal->j_running_transaction->t_tid == target) {
497                 /*
498                  * We want a new commit: OK, mark the request and wakeup the
499                  * commit thread.  We do _not_ do the commit ourselves.
500                  */
501
502                 journal->j_commit_request = target;
503                 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
504                           journal->j_commit_request,
505                           journal->j_commit_sequence);
506                 journal->j_running_transaction->t_requested = jiffies;
507                 wake_up(&journal->j_wait_commit);
508                 return 1;
509         } else if (!tid_geq(journal->j_commit_request, target))
510                 /* This should never happen, but if it does, preserve
511                    the evidence before kjournald goes into a loop and
512                    increments j_commit_sequence beyond all recognition. */
513                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
514                           journal->j_commit_request,
515                           journal->j_commit_sequence,
516                           target, journal->j_running_transaction ? 
517                           journal->j_running_transaction->t_tid : 0);
518         return 0;
519 }
520
521 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
522 {
523         int ret;
524
525         write_lock(&journal->j_state_lock);
526         ret = __jbd2_log_start_commit(journal, tid);
527         write_unlock(&journal->j_state_lock);
528         return ret;
529 }
530
531 /*
532  * Force and wait any uncommitted transactions.  We can only force the running
533  * transaction if we don't have an active handle, otherwise, we will deadlock.
534  * Returns: <0 in case of error,
535  *           0 if nothing to commit,
536  *           1 if transaction was successfully committed.
537  */
538 static int __jbd2_journal_force_commit(journal_t *journal)
539 {
540         transaction_t *transaction = NULL;
541         tid_t tid;
542         int need_to_start = 0, ret = 0;
543
544         read_lock(&journal->j_state_lock);
545         if (journal->j_running_transaction && !current->journal_info) {
546                 transaction = journal->j_running_transaction;
547                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
548                         need_to_start = 1;
549         } else if (journal->j_committing_transaction)
550                 transaction = journal->j_committing_transaction;
551
552         if (!transaction) {
553                 /* Nothing to commit */
554                 read_unlock(&journal->j_state_lock);
555                 return 0;
556         }
557         tid = transaction->t_tid;
558         read_unlock(&journal->j_state_lock);
559         if (need_to_start)
560                 jbd2_log_start_commit(journal, tid);
561         ret = jbd2_log_wait_commit(journal, tid);
562         if (!ret)
563                 ret = 1;
564
565         return ret;
566 }
567
568 /**
569  * Force and wait upon a commit if the calling process is not within
570  * transaction.  This is used for forcing out undo-protected data which contains
571  * bitmaps, when the fs is running out of space.
572  *
573  * @journal: journal to force
574  * Returns true if progress was made.
575  */
576 int jbd2_journal_force_commit_nested(journal_t *journal)
577 {
578         int ret;
579
580         ret = __jbd2_journal_force_commit(journal);
581         return ret > 0;
582 }
583
584 /**
585  * int journal_force_commit() - force any uncommitted transactions
586  * @journal: journal to force
587  *
588  * Caller want unconditional commit. We can only force the running transaction
589  * if we don't have an active handle, otherwise, we will deadlock.
590  */
591 int jbd2_journal_force_commit(journal_t *journal)
592 {
593         int ret;
594
595         J_ASSERT(!current->journal_info);
596         ret = __jbd2_journal_force_commit(journal);
597         if (ret > 0)
598                 ret = 0;
599         return ret;
600 }
601
602 /*
603  * Start a commit of the current running transaction (if any).  Returns true
604  * if a transaction is going to be committed (or is currently already
605  * committing), and fills its tid in at *ptid
606  */
607 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
608 {
609         int ret = 0;
610
611         write_lock(&journal->j_state_lock);
612         if (journal->j_running_transaction) {
613                 tid_t tid = journal->j_running_transaction->t_tid;
614
615                 __jbd2_log_start_commit(journal, tid);
616                 /* There's a running transaction and we've just made sure
617                  * it's commit has been scheduled. */
618                 if (ptid)
619                         *ptid = tid;
620                 ret = 1;
621         } else if (journal->j_committing_transaction) {
622                 /*
623                  * If commit has been started, then we have to wait for
624                  * completion of that transaction.
625                  */
626                 if (ptid)
627                         *ptid = journal->j_committing_transaction->t_tid;
628                 ret = 1;
629         }
630         write_unlock(&journal->j_state_lock);
631         return ret;
632 }
633
634 /*
635  * Return 1 if a given transaction has not yet sent barrier request
636  * connected with a transaction commit. If 0 is returned, transaction
637  * may or may not have sent the barrier. Used to avoid sending barrier
638  * twice in common cases.
639  */
640 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
641 {
642         int ret = 0;
643         transaction_t *commit_trans;
644
645         if (!(journal->j_flags & JBD2_BARRIER))
646                 return 0;
647         read_lock(&journal->j_state_lock);
648         /* Transaction already committed? */
649         if (tid_geq(journal->j_commit_sequence, tid))
650                 goto out;
651         commit_trans = journal->j_committing_transaction;
652         if (!commit_trans || commit_trans->t_tid != tid) {
653                 ret = 1;
654                 goto out;
655         }
656         /*
657          * Transaction is being committed and we already proceeded to
658          * submitting a flush to fs partition?
659          */
660         if (journal->j_fs_dev != journal->j_dev) {
661                 if (!commit_trans->t_need_data_flush ||
662                     commit_trans->t_state >= T_COMMIT_DFLUSH)
663                         goto out;
664         } else {
665                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
666                         goto out;
667         }
668         ret = 1;
669 out:
670         read_unlock(&journal->j_state_lock);
671         return ret;
672 }
673 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
674
675 /*
676  * Wait for a specified commit to complete.
677  * The caller may not hold the journal lock.
678  */
679 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
680 {
681         int err = 0;
682
683         read_lock(&journal->j_state_lock);
684 #ifdef CONFIG_PROVE_LOCKING
685         /*
686          * Some callers make sure transaction is already committing and in that
687          * case we cannot block on open handles anymore. So don't warn in that
688          * case.
689          */
690         if (tid_gt(tid, journal->j_commit_sequence) &&
691             (!journal->j_committing_transaction ||
692              journal->j_committing_transaction->t_tid != tid)) {
693                 read_unlock(&journal->j_state_lock);
694                 jbd2_might_wait_for_commit(journal);
695                 read_lock(&journal->j_state_lock);
696         }
697 #endif
698 #ifdef CONFIG_JBD2_DEBUG
699         if (!tid_geq(journal->j_commit_request, tid)) {
700                 printk(KERN_ERR
701                        "%s: error: j_commit_request=%d, tid=%d\n",
702                        __func__, journal->j_commit_request, tid);
703         }
704 #endif
705         while (tid_gt(tid, journal->j_commit_sequence)) {
706                 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
707                                   tid, journal->j_commit_sequence);
708                 read_unlock(&journal->j_state_lock);
709                 wake_up(&journal->j_wait_commit);
710                 wait_event(journal->j_wait_done_commit,
711                                 !tid_gt(tid, journal->j_commit_sequence));
712                 read_lock(&journal->j_state_lock);
713         }
714         read_unlock(&journal->j_state_lock);
715
716         if (unlikely(is_journal_aborted(journal)))
717                 err = -EIO;
718         return err;
719 }
720
721 /* Return 1 when transaction with given tid has already committed. */
722 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
723 {
724         int ret = 1;
725
726         read_lock(&journal->j_state_lock);
727         if (journal->j_running_transaction &&
728             journal->j_running_transaction->t_tid == tid)
729                 ret = 0;
730         if (journal->j_committing_transaction &&
731             journal->j_committing_transaction->t_tid == tid)
732                 ret = 0;
733         read_unlock(&journal->j_state_lock);
734         return ret;
735 }
736 EXPORT_SYMBOL(jbd2_transaction_committed);
737
738 /*
739  * When this function returns the transaction corresponding to tid
740  * will be completed.  If the transaction has currently running, start
741  * committing that transaction before waiting for it to complete.  If
742  * the transaction id is stale, it is by definition already completed,
743  * so just return SUCCESS.
744  */
745 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
746 {
747         int     need_to_wait = 1;
748
749         read_lock(&journal->j_state_lock);
750         if (journal->j_running_transaction &&
751             journal->j_running_transaction->t_tid == tid) {
752                 if (journal->j_commit_request != tid) {
753                         /* transaction not yet started, so request it */
754                         read_unlock(&journal->j_state_lock);
755                         jbd2_log_start_commit(journal, tid);
756                         goto wait_commit;
757                 }
758         } else if (!(journal->j_committing_transaction &&
759                      journal->j_committing_transaction->t_tid == tid))
760                 need_to_wait = 0;
761         read_unlock(&journal->j_state_lock);
762         if (!need_to_wait)
763                 return 0;
764 wait_commit:
765         return jbd2_log_wait_commit(journal, tid);
766 }
767 EXPORT_SYMBOL(jbd2_complete_transaction);
768
769 /*
770  * Log buffer allocation routines:
771  */
772
773 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
774 {
775         unsigned long blocknr;
776
777         write_lock(&journal->j_state_lock);
778         J_ASSERT(journal->j_free > 1);
779
780         blocknr = journal->j_head;
781         journal->j_head++;
782         journal->j_free--;
783         if (journal->j_head == journal->j_last)
784                 journal->j_head = journal->j_first;
785         write_unlock(&journal->j_state_lock);
786         return jbd2_journal_bmap(journal, blocknr, retp);
787 }
788
789 /*
790  * Conversion of logical to physical block numbers for the journal
791  *
792  * On external journals the journal blocks are identity-mapped, so
793  * this is a no-op.  If needed, we can use j_blk_offset - everything is
794  * ready.
795  */
796 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
797                  unsigned long long *retp)
798 {
799         int err = 0;
800         unsigned long long ret;
801
802         if (journal->j_inode) {
803                 ret = bmap(journal->j_inode, blocknr);
804                 if (ret)
805                         *retp = ret;
806                 else {
807                         printk(KERN_ALERT "%s: journal block not found "
808                                         "at offset %lu on %s\n",
809                                __func__, blocknr, journal->j_devname);
810                         err = -EIO;
811                         __journal_abort_soft(journal, err);
812                 }
813         } else {
814                 *retp = blocknr; /* +journal->j_blk_offset */
815         }
816         return err;
817 }
818
819 /*
820  * We play buffer_head aliasing tricks to write data/metadata blocks to
821  * the journal without copying their contents, but for journal
822  * descriptor blocks we do need to generate bona fide buffers.
823  *
824  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
825  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
826  * But we don't bother doing that, so there will be coherency problems with
827  * mmaps of blockdevs which hold live JBD-controlled filesystems.
828  */
829 struct buffer_head *
830 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
831 {
832         journal_t *journal = transaction->t_journal;
833         struct buffer_head *bh;
834         unsigned long long blocknr;
835         journal_header_t *header;
836         int err;
837
838         err = jbd2_journal_next_log_block(journal, &blocknr);
839
840         if (err)
841                 return NULL;
842
843         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
844         if (!bh)
845                 return NULL;
846         lock_buffer(bh);
847         memset(bh->b_data, 0, journal->j_blocksize);
848         header = (journal_header_t *)bh->b_data;
849         header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
850         header->h_blocktype = cpu_to_be32(type);
851         header->h_sequence = cpu_to_be32(transaction->t_tid);
852         set_buffer_uptodate(bh);
853         unlock_buffer(bh);
854         BUFFER_TRACE(bh, "return this buffer");
855         return bh;
856 }
857
858 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
859 {
860         struct jbd2_journal_block_tail *tail;
861         __u32 csum;
862
863         if (!jbd2_journal_has_csum_v2or3(j))
864                 return;
865
866         tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
867                         sizeof(struct jbd2_journal_block_tail));
868         tail->t_checksum = 0;
869         csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
870         tail->t_checksum = cpu_to_be32(csum);
871 }
872
873 /*
874  * Return tid of the oldest transaction in the journal and block in the journal
875  * where the transaction starts.
876  *
877  * If the journal is now empty, return which will be the next transaction ID
878  * we will write and where will that transaction start.
879  *
880  * The return value is 0 if journal tail cannot be pushed any further, 1 if
881  * it can.
882  */
883 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
884                               unsigned long *block)
885 {
886         transaction_t *transaction;
887         int ret;
888
889         read_lock(&journal->j_state_lock);
890         spin_lock(&journal->j_list_lock);
891         transaction = journal->j_checkpoint_transactions;
892         if (transaction) {
893                 *tid = transaction->t_tid;
894                 *block = transaction->t_log_start;
895         } else if ((transaction = journal->j_committing_transaction) != NULL) {
896                 *tid = transaction->t_tid;
897                 *block = transaction->t_log_start;
898         } else if ((transaction = journal->j_running_transaction) != NULL) {
899                 *tid = transaction->t_tid;
900                 *block = journal->j_head;
901         } else {
902                 *tid = journal->j_transaction_sequence;
903                 *block = journal->j_head;
904         }
905         ret = tid_gt(*tid, journal->j_tail_sequence);
906         spin_unlock(&journal->j_list_lock);
907         read_unlock(&journal->j_state_lock);
908
909         return ret;
910 }
911
912 /*
913  * Update information in journal structure and in on disk journal superblock
914  * about log tail. This function does not check whether information passed in
915  * really pushes log tail further. It's responsibility of the caller to make
916  * sure provided log tail information is valid (e.g. by holding
917  * j_checkpoint_mutex all the time between computing log tail and calling this
918  * function as is the case with jbd2_cleanup_journal_tail()).
919  *
920  * Requires j_checkpoint_mutex
921  */
922 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
923 {
924         unsigned long freed;
925         int ret;
926
927         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
928
929         /*
930          * We cannot afford for write to remain in drive's caches since as
931          * soon as we update j_tail, next transaction can start reusing journal
932          * space and if we lose sb update during power failure we'd replay
933          * old transaction with possibly newly overwritten data.
934          */
935         ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
936                                               REQ_SYNC | REQ_FUA);
937         if (ret)
938                 goto out;
939
940         write_lock(&journal->j_state_lock);
941         freed = block - journal->j_tail;
942         if (block < journal->j_tail)
943                 freed += journal->j_last - journal->j_first;
944
945         trace_jbd2_update_log_tail(journal, tid, block, freed);
946         jbd_debug(1,
947                   "Cleaning journal tail from %d to %d (offset %lu), "
948                   "freeing %lu\n",
949                   journal->j_tail_sequence, tid, block, freed);
950
951         journal->j_free += freed;
952         journal->j_tail_sequence = tid;
953         journal->j_tail = block;
954         write_unlock(&journal->j_state_lock);
955
956 out:
957         return ret;
958 }
959
960 /*
961  * This is a variation of __jbd2_update_log_tail which checks for validity of
962  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
963  * with other threads updating log tail.
964  */
965 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
966 {
967         mutex_lock_io(&journal->j_checkpoint_mutex);
968         if (tid_gt(tid, journal->j_tail_sequence))
969                 __jbd2_update_log_tail(journal, tid, block);
970         mutex_unlock(&journal->j_checkpoint_mutex);
971 }
972
973 struct jbd2_stats_proc_session {
974         journal_t *journal;
975         struct transaction_stats_s *stats;
976         int start;
977         int max;
978 };
979
980 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
981 {
982         return *pos ? NULL : SEQ_START_TOKEN;
983 }
984
985 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
986 {
987         return NULL;
988 }
989
990 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
991 {
992         struct jbd2_stats_proc_session *s = seq->private;
993
994         if (v != SEQ_START_TOKEN)
995                 return 0;
996         seq_printf(seq, "%lu transactions (%lu requested), "
997                    "each up to %u blocks\n",
998                    s->stats->ts_tid, s->stats->ts_requested,
999                    s->journal->j_max_transaction_buffers);
1000         if (s->stats->ts_tid == 0)
1001                 return 0;
1002         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1003             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1004         seq_printf(seq, "  %ums request delay\n",
1005             (s->stats->ts_requested == 0) ? 0 :
1006             jiffies_to_msecs(s->stats->run.rs_request_delay /
1007                              s->stats->ts_requested));
1008         seq_printf(seq, "  %ums running transaction\n",
1009             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1010         seq_printf(seq, "  %ums transaction was being locked\n",
1011             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1012         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1013             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1014         seq_printf(seq, "  %ums logging transaction\n",
1015             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1016         seq_printf(seq, "  %lluus average transaction commit time\n",
1017                    div_u64(s->journal->j_average_commit_time, 1000));
1018         seq_printf(seq, "  %lu handles per transaction\n",
1019             s->stats->run.rs_handle_count / s->stats->ts_tid);
1020         seq_printf(seq, "  %lu blocks per transaction\n",
1021             s->stats->run.rs_blocks / s->stats->ts_tid);
1022         seq_printf(seq, "  %lu logged blocks per transaction\n",
1023             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1024         return 0;
1025 }
1026
1027 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1028 {
1029 }
1030
1031 static const struct seq_operations jbd2_seq_info_ops = {
1032         .start  = jbd2_seq_info_start,
1033         .next   = jbd2_seq_info_next,
1034         .stop   = jbd2_seq_info_stop,
1035         .show   = jbd2_seq_info_show,
1036 };
1037
1038 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1039 {
1040         journal_t *journal = PDE_DATA(inode);
1041         struct jbd2_stats_proc_session *s;
1042         int rc, size;
1043
1044         s = kmalloc(sizeof(*s), GFP_KERNEL);
1045         if (s == NULL)
1046                 return -ENOMEM;
1047         size = sizeof(struct transaction_stats_s);
1048         s->stats = kmalloc(size, GFP_KERNEL);
1049         if (s->stats == NULL) {
1050                 kfree(s);
1051                 return -ENOMEM;
1052         }
1053         spin_lock(&journal->j_history_lock);
1054         memcpy(s->stats, &journal->j_stats, size);
1055         s->journal = journal;
1056         spin_unlock(&journal->j_history_lock);
1057
1058         rc = seq_open(file, &jbd2_seq_info_ops);
1059         if (rc == 0) {
1060                 struct seq_file *m = file->private_data;
1061                 m->private = s;
1062         } else {
1063                 kfree(s->stats);
1064                 kfree(s);
1065         }
1066         return rc;
1067
1068 }
1069
1070 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1071 {
1072         struct seq_file *seq = file->private_data;
1073         struct jbd2_stats_proc_session *s = seq->private;
1074         kfree(s->stats);
1075         kfree(s);
1076         return seq_release(inode, file);
1077 }
1078
1079 static const struct file_operations jbd2_seq_info_fops = {
1080         .owner          = THIS_MODULE,
1081         .open           = jbd2_seq_info_open,
1082         .read           = seq_read,
1083         .llseek         = seq_lseek,
1084         .release        = jbd2_seq_info_release,
1085 };
1086
1087 static struct proc_dir_entry *proc_jbd2_stats;
1088
1089 static void jbd2_stats_proc_init(journal_t *journal)
1090 {
1091         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1092         if (journal->j_proc_entry) {
1093                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1094                                  &jbd2_seq_info_fops, journal);
1095         }
1096 }
1097
1098 static void jbd2_stats_proc_exit(journal_t *journal)
1099 {
1100         remove_proc_entry("info", journal->j_proc_entry);
1101         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1102 }
1103
1104 /*
1105  * Management for journal control blocks: functions to create and
1106  * destroy journal_t structures, and to initialise and read existing
1107  * journal blocks from disk.  */
1108
1109 /* First: create and setup a journal_t object in memory.  We initialise
1110  * very few fields yet: that has to wait until we have created the
1111  * journal structures from from scratch, or loaded them from disk. */
1112
1113 static journal_t *journal_init_common(struct block_device *bdev,
1114                         struct block_device *fs_dev,
1115                         unsigned long long start, int len, int blocksize)
1116 {
1117         static struct lock_class_key jbd2_trans_commit_key;
1118         journal_t *journal;
1119         int err;
1120         struct buffer_head *bh;
1121         int n;
1122
1123         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1124         if (!journal)
1125                 return NULL;
1126
1127         init_waitqueue_head(&journal->j_wait_transaction_locked);
1128         init_waitqueue_head(&journal->j_wait_done_commit);
1129         init_waitqueue_head(&journal->j_wait_commit);
1130         init_waitqueue_head(&journal->j_wait_updates);
1131         init_waitqueue_head(&journal->j_wait_reserved);
1132         mutex_init(&journal->j_barrier);
1133         mutex_init(&journal->j_checkpoint_mutex);
1134         spin_lock_init(&journal->j_revoke_lock);
1135         spin_lock_init(&journal->j_list_lock);
1136         rwlock_init(&journal->j_state_lock);
1137
1138         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1139         journal->j_min_batch_time = 0;
1140         journal->j_max_batch_time = 15000; /* 15ms */
1141         atomic_set(&journal->j_reserved_credits, 0);
1142
1143         /* The journal is marked for error until we succeed with recovery! */
1144         journal->j_flags = JBD2_ABORT;
1145
1146         /* Set up a default-sized revoke table for the new mount. */
1147         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1148         if (err)
1149                 goto err_cleanup;
1150
1151         spin_lock_init(&journal->j_history_lock);
1152
1153         lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1154                          &jbd2_trans_commit_key, 0);
1155
1156         /* journal descriptor can store up to n blocks -bzzz */
1157         journal->j_blocksize = blocksize;
1158         journal->j_dev = bdev;
1159         journal->j_fs_dev = fs_dev;
1160         journal->j_blk_offset = start;
1161         journal->j_maxlen = len;
1162         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1163         journal->j_wbufsize = n;
1164         journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1165                                         GFP_KERNEL);
1166         if (!journal->j_wbuf)
1167                 goto err_cleanup;
1168
1169         bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1170         if (!bh) {
1171                 pr_err("%s: Cannot get buffer for journal superblock\n",
1172                         __func__);
1173                 goto err_cleanup;
1174         }
1175         journal->j_sb_buffer = bh;
1176         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1177
1178         return journal;
1179
1180 err_cleanup:
1181         kfree(journal->j_wbuf);
1182         jbd2_journal_destroy_revoke(journal);
1183         kfree(journal);
1184         return NULL;
1185 }
1186
1187 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1188  *
1189  * Create a journal structure assigned some fixed set of disk blocks to
1190  * the journal.  We don't actually touch those disk blocks yet, but we
1191  * need to set up all of the mapping information to tell the journaling
1192  * system where the journal blocks are.
1193  *
1194  */
1195
1196 /**
1197  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1198  *  @bdev: Block device on which to create the journal
1199  *  @fs_dev: Device which hold journalled filesystem for this journal.
1200  *  @start: Block nr Start of journal.
1201  *  @len:  Length of the journal in blocks.
1202  *  @blocksize: blocksize of journalling device
1203  *
1204  *  Returns: a newly created journal_t *
1205  *
1206  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1207  *  range of blocks on an arbitrary block device.
1208  *
1209  */
1210 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1211                         struct block_device *fs_dev,
1212                         unsigned long long start, int len, int blocksize)
1213 {
1214         journal_t *journal;
1215
1216         journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1217         if (!journal)
1218                 return NULL;
1219
1220         bdevname(journal->j_dev, journal->j_devname);
1221         strreplace(journal->j_devname, '/', '!');
1222         jbd2_stats_proc_init(journal);
1223
1224         return journal;
1225 }
1226
1227 /**
1228  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1229  *  @inode: An inode to create the journal in
1230  *
1231  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1232  * the journal.  The inode must exist already, must support bmap() and
1233  * must have all data blocks preallocated.
1234  */
1235 journal_t *jbd2_journal_init_inode(struct inode *inode)
1236 {
1237         journal_t *journal;
1238         char *p;
1239         unsigned long long blocknr;
1240
1241         blocknr = bmap(inode, 0);
1242         if (!blocknr) {
1243                 pr_err("%s: Cannot locate journal superblock\n",
1244                         __func__);
1245                 return NULL;
1246         }
1247
1248         jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1249                   inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1250                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1251
1252         journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1253                         blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1254                         inode->i_sb->s_blocksize);
1255         if (!journal)
1256                 return NULL;
1257
1258         journal->j_inode = inode;
1259         bdevname(journal->j_dev, journal->j_devname);
1260         p = strreplace(journal->j_devname, '/', '!');
1261         sprintf(p, "-%lu", journal->j_inode->i_ino);
1262         jbd2_stats_proc_init(journal);
1263
1264         return journal;
1265 }
1266
1267 /*
1268  * If the journal init or create aborts, we need to mark the journal
1269  * superblock as being NULL to prevent the journal destroy from writing
1270  * back a bogus superblock.
1271  */
1272 static void journal_fail_superblock (journal_t *journal)
1273 {
1274         struct buffer_head *bh = journal->j_sb_buffer;
1275         brelse(bh);
1276         journal->j_sb_buffer = NULL;
1277 }
1278
1279 /*
1280  * Given a journal_t structure, initialise the various fields for
1281  * startup of a new journaling session.  We use this both when creating
1282  * a journal, and after recovering an old journal to reset it for
1283  * subsequent use.
1284  */
1285
1286 static int journal_reset(journal_t *journal)
1287 {
1288         journal_superblock_t *sb = journal->j_superblock;
1289         unsigned long long first, last;
1290
1291         first = be32_to_cpu(sb->s_first);
1292         last = be32_to_cpu(sb->s_maxlen);
1293         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1294                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1295                        first, last);
1296                 journal_fail_superblock(journal);
1297                 return -EINVAL;
1298         }
1299
1300         journal->j_first = first;
1301         journal->j_last = last;
1302
1303         journal->j_head = first;
1304         journal->j_tail = first;
1305         journal->j_free = last - first;
1306
1307         journal->j_tail_sequence = journal->j_transaction_sequence;
1308         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1309         journal->j_commit_request = journal->j_commit_sequence;
1310
1311         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1312
1313         /*
1314          * As a special case, if the on-disk copy is already marked as needing
1315          * no recovery (s_start == 0), then we can safely defer the superblock
1316          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1317          * attempting a write to a potential-readonly device.
1318          */
1319         if (sb->s_start == 0) {
1320                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1321                         "(start %ld, seq %d, errno %d)\n",
1322                         journal->j_tail, journal->j_tail_sequence,
1323                         journal->j_errno);
1324                 journal->j_flags |= JBD2_FLUSHED;
1325         } else {
1326                 /* Lock here to make assertions happy... */
1327                 mutex_lock_io(&journal->j_checkpoint_mutex);
1328                 /*
1329                  * Update log tail information. We use REQ_FUA since new
1330                  * transaction will start reusing journal space and so we
1331                  * must make sure information about current log tail is on
1332                  * disk before that.
1333                  */
1334                 jbd2_journal_update_sb_log_tail(journal,
1335                                                 journal->j_tail_sequence,
1336                                                 journal->j_tail,
1337                                                 REQ_SYNC | REQ_FUA);
1338                 mutex_unlock(&journal->j_checkpoint_mutex);
1339         }
1340         return jbd2_journal_start_thread(journal);
1341 }
1342
1343 /*
1344  * This function expects that the caller will have locked the journal
1345  * buffer head, and will return with it unlocked
1346  */
1347 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1348 {
1349         struct buffer_head *bh = journal->j_sb_buffer;
1350         journal_superblock_t *sb = journal->j_superblock;
1351         int ret;
1352
1353         /* Buffer got discarded which means block device got invalidated */
1354         if (!buffer_mapped(bh))
1355                 return -EIO;
1356
1357         trace_jbd2_write_superblock(journal, write_flags);
1358         if (!(journal->j_flags & JBD2_BARRIER))
1359                 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1360         if (buffer_write_io_error(bh)) {
1361                 /*
1362                  * Oh, dear.  A previous attempt to write the journal
1363                  * superblock failed.  This could happen because the
1364                  * USB device was yanked out.  Or it could happen to
1365                  * be a transient write error and maybe the block will
1366                  * be remapped.  Nothing we can do but to retry the
1367                  * write and hope for the best.
1368                  */
1369                 printk(KERN_ERR "JBD2: previous I/O error detected "
1370                        "for journal superblock update for %s.\n",
1371                        journal->j_devname);
1372                 clear_buffer_write_io_error(bh);
1373                 set_buffer_uptodate(bh);
1374         }
1375         if (jbd2_journal_has_csum_v2or3(journal))
1376                 sb->s_checksum = jbd2_superblock_csum(journal, sb);
1377         get_bh(bh);
1378         bh->b_end_io = end_buffer_write_sync;
1379         ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1380         wait_on_buffer(bh);
1381         if (buffer_write_io_error(bh)) {
1382                 clear_buffer_write_io_error(bh);
1383                 set_buffer_uptodate(bh);
1384                 ret = -EIO;
1385         }
1386         if (ret) {
1387                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1388                        "journal superblock for %s.\n", ret,
1389                        journal->j_devname);
1390                 jbd2_journal_abort(journal, ret);
1391         }
1392
1393         return ret;
1394 }
1395
1396 /**
1397  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1398  * @journal: The journal to update.
1399  * @tail_tid: TID of the new transaction at the tail of the log
1400  * @tail_block: The first block of the transaction at the tail of the log
1401  * @write_op: With which operation should we write the journal sb
1402  *
1403  * Update a journal's superblock information about log tail and write it to
1404  * disk, waiting for the IO to complete.
1405  */
1406 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1407                                      unsigned long tail_block, int write_op)
1408 {
1409         journal_superblock_t *sb = journal->j_superblock;
1410         int ret;
1411
1412         if (is_journal_aborted(journal))
1413                 return -EIO;
1414
1415         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1416         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1417                   tail_block, tail_tid);
1418
1419         lock_buffer(journal->j_sb_buffer);
1420         sb->s_sequence = cpu_to_be32(tail_tid);
1421         sb->s_start    = cpu_to_be32(tail_block);
1422
1423         ret = jbd2_write_superblock(journal, write_op);
1424         if (ret)
1425                 goto out;
1426
1427         /* Log is no longer empty */
1428         write_lock(&journal->j_state_lock);
1429         WARN_ON(!sb->s_sequence);
1430         journal->j_flags &= ~JBD2_FLUSHED;
1431         write_unlock(&journal->j_state_lock);
1432
1433 out:
1434         return ret;
1435 }
1436
1437 /**
1438  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1439  * @journal: The journal to update.
1440  * @write_op: With which operation should we write the journal sb
1441  *
1442  * Update a journal's dynamic superblock fields to show that journal is empty.
1443  * Write updated superblock to disk waiting for IO to complete.
1444  */
1445 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1446 {
1447         journal_superblock_t *sb = journal->j_superblock;
1448
1449         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1450         lock_buffer(journal->j_sb_buffer);
1451         if (sb->s_start == 0) {         /* Is it already empty? */
1452                 unlock_buffer(journal->j_sb_buffer);
1453                 return;
1454         }
1455
1456         jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1457                   journal->j_tail_sequence);
1458
1459         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1460         sb->s_start    = cpu_to_be32(0);
1461
1462         jbd2_write_superblock(journal, write_op);
1463
1464         /* Log is no longer empty */
1465         write_lock(&journal->j_state_lock);
1466         journal->j_flags |= JBD2_FLUSHED;
1467         write_unlock(&journal->j_state_lock);
1468 }
1469
1470
1471 /**
1472  * jbd2_journal_update_sb_errno() - Update error in the journal.
1473  * @journal: The journal to update.
1474  *
1475  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1476  * to complete.
1477  */
1478 void jbd2_journal_update_sb_errno(journal_t *journal)
1479 {
1480         journal_superblock_t *sb = journal->j_superblock;
1481         int errcode;
1482
1483         lock_buffer(journal->j_sb_buffer);
1484         errcode = journal->j_errno;
1485         if (errcode == -ESHUTDOWN)
1486                 errcode = 0;
1487         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1488         sb->s_errno    = cpu_to_be32(errcode);
1489
1490         jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1491 }
1492 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1493
1494 /*
1495  * Read the superblock for a given journal, performing initial
1496  * validation of the format.
1497  */
1498 static int journal_get_superblock(journal_t *journal)
1499 {
1500         struct buffer_head *bh;
1501         journal_superblock_t *sb;
1502         int err = -EIO;
1503
1504         bh = journal->j_sb_buffer;
1505
1506         J_ASSERT(bh != NULL);
1507         if (!buffer_uptodate(bh)) {
1508                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1509                 wait_on_buffer(bh);
1510                 if (!buffer_uptodate(bh)) {
1511                         printk(KERN_ERR
1512                                 "JBD2: IO error reading journal superblock\n");
1513                         goto out;
1514                 }
1515         }
1516
1517         if (buffer_verified(bh))
1518                 return 0;
1519
1520         sb = journal->j_superblock;
1521
1522         err = -EINVAL;
1523
1524         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1525             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1526                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1527                 goto out;
1528         }
1529
1530         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1531         case JBD2_SUPERBLOCK_V1:
1532                 journal->j_format_version = 1;
1533                 break;
1534         case JBD2_SUPERBLOCK_V2:
1535                 journal->j_format_version = 2;
1536                 break;
1537         default:
1538                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1539                 goto out;
1540         }
1541
1542         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1543                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1544         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1545                 printk(KERN_WARNING "JBD2: journal file too short\n");
1546                 goto out;
1547         }
1548
1549         if (be32_to_cpu(sb->s_first) == 0 ||
1550             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1551                 printk(KERN_WARNING
1552                         "JBD2: Invalid start block of journal: %u\n",
1553                         be32_to_cpu(sb->s_first));
1554                 goto out;
1555         }
1556
1557         if (jbd2_has_feature_csum2(journal) &&
1558             jbd2_has_feature_csum3(journal)) {
1559                 /* Can't have checksum v2 and v3 at the same time! */
1560                 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1561                        "at the same time!\n");
1562                 goto out;
1563         }
1564
1565         if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1566             jbd2_has_feature_checksum(journal)) {
1567                 /* Can't have checksum v1 and v2 on at the same time! */
1568                 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1569                        "at the same time!\n");
1570                 goto out;
1571         }
1572
1573         if (!jbd2_verify_csum_type(journal, sb)) {
1574                 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1575                 goto out;
1576         }
1577
1578         /* Load the checksum driver */
1579         if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1580                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1581                 if (IS_ERR(journal->j_chksum_driver)) {
1582                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1583                         err = PTR_ERR(journal->j_chksum_driver);
1584                         journal->j_chksum_driver = NULL;
1585                         goto out;
1586                 }
1587         }
1588
1589         if (jbd2_journal_has_csum_v2or3(journal)) {
1590                 /* Check superblock checksum */
1591                 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1592                         printk(KERN_ERR "JBD2: journal checksum error\n");
1593                         err = -EFSBADCRC;
1594                         goto out;
1595                 }
1596
1597                 /* Precompute checksum seed for all metadata */
1598                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1599                                                    sizeof(sb->s_uuid));
1600         }
1601
1602         set_buffer_verified(bh);
1603
1604         return 0;
1605
1606 out:
1607         journal_fail_superblock(journal);
1608         return err;
1609 }
1610
1611 /*
1612  * Load the on-disk journal superblock and read the key fields into the
1613  * journal_t.
1614  */
1615
1616 static int load_superblock(journal_t *journal)
1617 {
1618         int err;
1619         journal_superblock_t *sb;
1620
1621         err = journal_get_superblock(journal);
1622         if (err)
1623                 return err;
1624
1625         sb = journal->j_superblock;
1626
1627         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1628         journal->j_tail = be32_to_cpu(sb->s_start);
1629         journal->j_first = be32_to_cpu(sb->s_first);
1630         journal->j_last = be32_to_cpu(sb->s_maxlen);
1631         journal->j_errno = be32_to_cpu(sb->s_errno);
1632
1633         return 0;
1634 }
1635
1636
1637 /**
1638  * int jbd2_journal_load() - Read journal from disk.
1639  * @journal: Journal to act on.
1640  *
1641  * Given a journal_t structure which tells us which disk blocks contain
1642  * a journal, read the journal from disk to initialise the in-memory
1643  * structures.
1644  */
1645 int jbd2_journal_load(journal_t *journal)
1646 {
1647         int err;
1648         journal_superblock_t *sb;
1649
1650         err = load_superblock(journal);
1651         if (err)
1652                 return err;
1653
1654         sb = journal->j_superblock;
1655         /* If this is a V2 superblock, then we have to check the
1656          * features flags on it. */
1657
1658         if (journal->j_format_version >= 2) {
1659                 if ((sb->s_feature_ro_compat &
1660                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1661                     (sb->s_feature_incompat &
1662                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1663                         printk(KERN_WARNING
1664                                 "JBD2: Unrecognised features on journal\n");
1665                         return -EINVAL;
1666                 }
1667         }
1668
1669         /*
1670          * Create a slab for this blocksize
1671          */
1672         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1673         if (err)
1674                 return err;
1675
1676         /* Let the recovery code check whether it needs to recover any
1677          * data from the journal. */
1678         if (jbd2_journal_recover(journal))
1679                 goto recovery_error;
1680
1681         if (journal->j_failed_commit) {
1682                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1683                        "is corrupt.\n", journal->j_failed_commit,
1684                        journal->j_devname);
1685                 return -EFSCORRUPTED;
1686         }
1687
1688         /* OK, we've finished with the dynamic journal bits:
1689          * reinitialise the dynamic contents of the superblock in memory
1690          * and reset them on disk. */
1691         if (journal_reset(journal))
1692                 goto recovery_error;
1693
1694         journal->j_flags &= ~JBD2_ABORT;
1695         journal->j_flags |= JBD2_LOADED;
1696         return 0;
1697
1698 recovery_error:
1699         printk(KERN_WARNING "JBD2: recovery failed\n");
1700         return -EIO;
1701 }
1702
1703 /**
1704  * void jbd2_journal_destroy() - Release a journal_t structure.
1705  * @journal: Journal to act on.
1706  *
1707  * Release a journal_t structure once it is no longer in use by the
1708  * journaled object.
1709  * Return <0 if we couldn't clean up the journal.
1710  */
1711 int jbd2_journal_destroy(journal_t *journal)
1712 {
1713         int err = 0;
1714
1715         /* Wait for the commit thread to wake up and die. */
1716         journal_kill_thread(journal);
1717
1718         /* Force a final log commit */
1719         if (journal->j_running_transaction)
1720                 jbd2_journal_commit_transaction(journal);
1721
1722         /* Force any old transactions to disk */
1723
1724         /* Totally anal locking here... */
1725         spin_lock(&journal->j_list_lock);
1726         while (journal->j_checkpoint_transactions != NULL) {
1727                 spin_unlock(&journal->j_list_lock);
1728                 mutex_lock_io(&journal->j_checkpoint_mutex);
1729                 err = jbd2_log_do_checkpoint(journal);
1730                 mutex_unlock(&journal->j_checkpoint_mutex);
1731                 /*
1732                  * If checkpointing failed, just free the buffers to avoid
1733                  * looping forever
1734                  */
1735                 if (err) {
1736                         jbd2_journal_destroy_checkpoint(journal);
1737                         spin_lock(&journal->j_list_lock);
1738                         break;
1739                 }
1740                 spin_lock(&journal->j_list_lock);
1741         }
1742
1743         J_ASSERT(journal->j_running_transaction == NULL);
1744         J_ASSERT(journal->j_committing_transaction == NULL);
1745         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1746         spin_unlock(&journal->j_list_lock);
1747
1748         if (journal->j_sb_buffer) {
1749                 if (!is_journal_aborted(journal)) {
1750                         mutex_lock_io(&journal->j_checkpoint_mutex);
1751
1752                         write_lock(&journal->j_state_lock);
1753                         journal->j_tail_sequence =
1754                                 ++journal->j_transaction_sequence;
1755                         write_unlock(&journal->j_state_lock);
1756
1757                         jbd2_mark_journal_empty(journal,
1758                                         REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1759                         mutex_unlock(&journal->j_checkpoint_mutex);
1760                 } else
1761                         err = -EIO;
1762                 brelse(journal->j_sb_buffer);
1763         }
1764
1765         if (journal->j_proc_entry)
1766                 jbd2_stats_proc_exit(journal);
1767         iput(journal->j_inode);
1768         if (journal->j_revoke)
1769                 jbd2_journal_destroy_revoke(journal);
1770         if (journal->j_chksum_driver)
1771                 crypto_free_shash(journal->j_chksum_driver);
1772         kfree(journal->j_wbuf);
1773         kfree(journal);
1774
1775         return err;
1776 }
1777
1778
1779 /**
1780  *int jbd2_journal_check_used_features () - Check if features specified are used.
1781  * @journal: Journal to check.
1782  * @compat: bitmask of compatible features
1783  * @ro: bitmask of features that force read-only mount
1784  * @incompat: bitmask of incompatible features
1785  *
1786  * Check whether the journal uses all of a given set of
1787  * features.  Return true (non-zero) if it does.
1788  **/
1789
1790 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1791                                  unsigned long ro, unsigned long incompat)
1792 {
1793         journal_superblock_t *sb;
1794
1795         if (!compat && !ro && !incompat)
1796                 return 1;
1797         /* Load journal superblock if it is not loaded yet. */
1798         if (journal->j_format_version == 0 &&
1799             journal_get_superblock(journal) != 0)
1800                 return 0;
1801         if (journal->j_format_version == 1)
1802                 return 0;
1803
1804         sb = journal->j_superblock;
1805
1806         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1807             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1808             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1809                 return 1;
1810
1811         return 0;
1812 }
1813
1814 /**
1815  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1816  * @journal: Journal to check.
1817  * @compat: bitmask of compatible features
1818  * @ro: bitmask of features that force read-only mount
1819  * @incompat: bitmask of incompatible features
1820  *
1821  * Check whether the journaling code supports the use of
1822  * all of a given set of features on this journal.  Return true
1823  * (non-zero) if it can. */
1824
1825 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1826                                       unsigned long ro, unsigned long incompat)
1827 {
1828         if (!compat && !ro && !incompat)
1829                 return 1;
1830
1831         /* We can support any known requested features iff the
1832          * superblock is in version 2.  Otherwise we fail to support any
1833          * extended sb features. */
1834
1835         if (journal->j_format_version != 2)
1836                 return 0;
1837
1838         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1839             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1840             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1841                 return 1;
1842
1843         return 0;
1844 }
1845
1846 /**
1847  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1848  * @journal: Journal to act on.
1849  * @compat: bitmask of compatible features
1850  * @ro: bitmask of features that force read-only mount
1851  * @incompat: bitmask of incompatible features
1852  *
1853  * Mark a given journal feature as present on the
1854  * superblock.  Returns true if the requested features could be set.
1855  *
1856  */
1857
1858 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1859                           unsigned long ro, unsigned long incompat)
1860 {
1861 #define INCOMPAT_FEATURE_ON(f) \
1862                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1863 #define COMPAT_FEATURE_ON(f) \
1864                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1865         journal_superblock_t *sb;
1866
1867         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1868                 return 1;
1869
1870         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1871                 return 0;
1872
1873         /* If enabling v2 checksums, turn on v3 instead */
1874         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1875                 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1876                 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1877         }
1878
1879         /* Asking for checksumming v3 and v1?  Only give them v3. */
1880         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1881             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1882                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1883
1884         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1885                   compat, ro, incompat);
1886
1887         sb = journal->j_superblock;
1888
1889         /* Load the checksum driver if necessary */
1890         if ((journal->j_chksum_driver == NULL) &&
1891             INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1892                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1893                 if (IS_ERR(journal->j_chksum_driver)) {
1894                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1895                         journal->j_chksum_driver = NULL;
1896                         return 0;
1897                 }
1898                 /* Precompute checksum seed for all metadata */
1899                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1900                                                    sizeof(sb->s_uuid));
1901         }
1902
1903         lock_buffer(journal->j_sb_buffer);
1904
1905         /* If enabling v3 checksums, update superblock */
1906         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1907                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1908                 sb->s_feature_compat &=
1909                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1910         }
1911
1912         /* If enabling v1 checksums, downgrade superblock */
1913         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1914                 sb->s_feature_incompat &=
1915                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1916                                      JBD2_FEATURE_INCOMPAT_CSUM_V3);
1917
1918         sb->s_feature_compat    |= cpu_to_be32(compat);
1919         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1920         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1921         unlock_buffer(journal->j_sb_buffer);
1922
1923         return 1;
1924 #undef COMPAT_FEATURE_ON
1925 #undef INCOMPAT_FEATURE_ON
1926 }
1927
1928 /*
1929  * jbd2_journal_clear_features () - Clear a given journal feature in the
1930  *                                  superblock
1931  * @journal: Journal to act on.
1932  * @compat: bitmask of compatible features
1933  * @ro: bitmask of features that force read-only mount
1934  * @incompat: bitmask of incompatible features
1935  *
1936  * Clear a given journal feature as present on the
1937  * superblock.
1938  */
1939 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1940                                 unsigned long ro, unsigned long incompat)
1941 {
1942         journal_superblock_t *sb;
1943
1944         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1945                   compat, ro, incompat);
1946
1947         sb = journal->j_superblock;
1948
1949         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1950         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1951         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1952 }
1953 EXPORT_SYMBOL(jbd2_journal_clear_features);
1954
1955 /**
1956  * int jbd2_journal_flush () - Flush journal
1957  * @journal: Journal to act on.
1958  *
1959  * Flush all data for a given journal to disk and empty the journal.
1960  * Filesystems can use this when remounting readonly to ensure that
1961  * recovery does not need to happen on remount.
1962  */
1963
1964 int jbd2_journal_flush(journal_t *journal)
1965 {
1966         int err = 0;
1967         transaction_t *transaction = NULL;
1968
1969         write_lock(&journal->j_state_lock);
1970
1971         /* Force everything buffered to the log... */
1972         if (journal->j_running_transaction) {
1973                 transaction = journal->j_running_transaction;
1974                 __jbd2_log_start_commit(journal, transaction->t_tid);
1975         } else if (journal->j_committing_transaction)
1976                 transaction = journal->j_committing_transaction;
1977
1978         /* Wait for the log commit to complete... */
1979         if (transaction) {
1980                 tid_t tid = transaction->t_tid;
1981
1982                 write_unlock(&journal->j_state_lock);
1983                 jbd2_log_wait_commit(journal, tid);
1984         } else {
1985                 write_unlock(&journal->j_state_lock);
1986         }
1987
1988         /* ...and flush everything in the log out to disk. */
1989         spin_lock(&journal->j_list_lock);
1990         while (!err && journal->j_checkpoint_transactions != NULL) {
1991                 spin_unlock(&journal->j_list_lock);
1992                 mutex_lock_io(&journal->j_checkpoint_mutex);
1993                 err = jbd2_log_do_checkpoint(journal);
1994                 mutex_unlock(&journal->j_checkpoint_mutex);
1995                 spin_lock(&journal->j_list_lock);
1996         }
1997         spin_unlock(&journal->j_list_lock);
1998
1999         if (is_journal_aborted(journal))
2000                 return -EIO;
2001
2002         mutex_lock_io(&journal->j_checkpoint_mutex);
2003         if (!err) {
2004                 err = jbd2_cleanup_journal_tail(journal);
2005                 if (err < 0) {
2006                         mutex_unlock(&journal->j_checkpoint_mutex);
2007                         goto out;
2008                 }
2009                 err = 0;
2010         }
2011
2012         /* Finally, mark the journal as really needing no recovery.
2013          * This sets s_start==0 in the underlying superblock, which is
2014          * the magic code for a fully-recovered superblock.  Any future
2015          * commits of data to the journal will restore the current
2016          * s_start value. */
2017         jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2018         mutex_unlock(&journal->j_checkpoint_mutex);
2019         write_lock(&journal->j_state_lock);
2020         J_ASSERT(!journal->j_running_transaction);
2021         J_ASSERT(!journal->j_committing_transaction);
2022         J_ASSERT(!journal->j_checkpoint_transactions);
2023         J_ASSERT(journal->j_head == journal->j_tail);
2024         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2025         write_unlock(&journal->j_state_lock);
2026 out:
2027         return err;
2028 }
2029
2030 /**
2031  * int jbd2_journal_wipe() - Wipe journal contents
2032  * @journal: Journal to act on.
2033  * @write: flag (see below)
2034  *
2035  * Wipe out all of the contents of a journal, safely.  This will produce
2036  * a warning if the journal contains any valid recovery information.
2037  * Must be called between journal_init_*() and jbd2_journal_load().
2038  *
2039  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2040  * we merely suppress recovery.
2041  */
2042
2043 int jbd2_journal_wipe(journal_t *journal, int write)
2044 {
2045         int err = 0;
2046
2047         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2048
2049         err = load_superblock(journal);
2050         if (err)
2051                 return err;
2052
2053         if (!journal->j_tail)
2054                 goto no_recovery;
2055
2056         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2057                 write ? "Clearing" : "Ignoring");
2058
2059         err = jbd2_journal_skip_recovery(journal);
2060         if (write) {
2061                 /* Lock to make assertions happy... */
2062                 mutex_lock_io(&journal->j_checkpoint_mutex);
2063                 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2064                 mutex_unlock(&journal->j_checkpoint_mutex);
2065         }
2066
2067  no_recovery:
2068         return err;
2069 }
2070
2071 /*
2072  * Journal abort has very specific semantics, which we describe
2073  * for journal abort.
2074  *
2075  * Two internal functions, which provide abort to the jbd layer
2076  * itself are here.
2077  */
2078
2079 /*
2080  * Quick version for internal journal use (doesn't lock the journal).
2081  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2082  * and don't attempt to make any other journal updates.
2083  */
2084 void __jbd2_journal_abort_hard(journal_t *journal)
2085 {
2086         transaction_t *transaction;
2087
2088         if (journal->j_flags & JBD2_ABORT)
2089                 return;
2090
2091         printk(KERN_ERR "Aborting journal on device %s.\n",
2092                journal->j_devname);
2093
2094         write_lock(&journal->j_state_lock);
2095         journal->j_flags |= JBD2_ABORT;
2096         transaction = journal->j_running_transaction;
2097         if (transaction)
2098                 __jbd2_log_start_commit(journal, transaction->t_tid);
2099         write_unlock(&journal->j_state_lock);
2100 }
2101
2102 /* Soft abort: record the abort error status in the journal superblock,
2103  * but don't do any other IO. */
2104 static void __journal_abort_soft (journal_t *journal, int errno)
2105 {
2106         int old_errno;
2107
2108         write_lock(&journal->j_state_lock);
2109         old_errno = journal->j_errno;
2110         if (!journal->j_errno || errno == -ESHUTDOWN)
2111                 journal->j_errno = errno;
2112
2113         if (journal->j_flags & JBD2_ABORT) {
2114                 write_unlock(&journal->j_state_lock);
2115                 if (!old_errno && old_errno != -ESHUTDOWN &&
2116                     errno == -ESHUTDOWN)
2117                         jbd2_journal_update_sb_errno(journal);
2118                 return;
2119         }
2120         write_unlock(&journal->j_state_lock);
2121
2122         __jbd2_journal_abort_hard(journal);
2123
2124         if (errno) {
2125                 jbd2_journal_update_sb_errno(journal);
2126                 write_lock(&journal->j_state_lock);
2127                 journal->j_flags |= JBD2_REC_ERR;
2128                 write_unlock(&journal->j_state_lock);
2129         }
2130 }
2131
2132 /**
2133  * void jbd2_journal_abort () - Shutdown the journal immediately.
2134  * @journal: the journal to shutdown.
2135  * @errno:   an error number to record in the journal indicating
2136  *           the reason for the shutdown.
2137  *
2138  * Perform a complete, immediate shutdown of the ENTIRE
2139  * journal (not of a single transaction).  This operation cannot be
2140  * undone without closing and reopening the journal.
2141  *
2142  * The jbd2_journal_abort function is intended to support higher level error
2143  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2144  * mode.
2145  *
2146  * Journal abort has very specific semantics.  Any existing dirty,
2147  * unjournaled buffers in the main filesystem will still be written to
2148  * disk by bdflush, but the journaling mechanism will be suspended
2149  * immediately and no further transaction commits will be honoured.
2150  *
2151  * Any dirty, journaled buffers will be written back to disk without
2152  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2153  * filesystem, but we _do_ attempt to leave as much data as possible
2154  * behind for fsck to use for cleanup.
2155  *
2156  * Any attempt to get a new transaction handle on a journal which is in
2157  * ABORT state will just result in an -EROFS error return.  A
2158  * jbd2_journal_stop on an existing handle will return -EIO if we have
2159  * entered abort state during the update.
2160  *
2161  * Recursive transactions are not disturbed by journal abort until the
2162  * final jbd2_journal_stop, which will receive the -EIO error.
2163  *
2164  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2165  * which will be recorded (if possible) in the journal superblock.  This
2166  * allows a client to record failure conditions in the middle of a
2167  * transaction without having to complete the transaction to record the
2168  * failure to disk.  ext3_error, for example, now uses this
2169  * functionality.
2170  *
2171  * Errors which originate from within the journaling layer will NOT
2172  * supply an errno; a null errno implies that absolutely no further
2173  * writes are done to the journal (unless there are any already in
2174  * progress).
2175  *
2176  */
2177
2178 void jbd2_journal_abort(journal_t *journal, int errno)
2179 {
2180         __journal_abort_soft(journal, errno);
2181 }
2182
2183 /**
2184  * int jbd2_journal_errno () - returns the journal's error state.
2185  * @journal: journal to examine.
2186  *
2187  * This is the errno number set with jbd2_journal_abort(), the last
2188  * time the journal was mounted - if the journal was stopped
2189  * without calling abort this will be 0.
2190  *
2191  * If the journal has been aborted on this mount time -EROFS will
2192  * be returned.
2193  */
2194 int jbd2_journal_errno(journal_t *journal)
2195 {
2196         int err;
2197
2198         read_lock(&journal->j_state_lock);
2199         if (journal->j_flags & JBD2_ABORT)
2200                 err = -EROFS;
2201         else
2202                 err = journal->j_errno;
2203         read_unlock(&journal->j_state_lock);
2204         return err;
2205 }
2206
2207 /**
2208  * int jbd2_journal_clear_err () - clears the journal's error state
2209  * @journal: journal to act on.
2210  *
2211  * An error must be cleared or acked to take a FS out of readonly
2212  * mode.
2213  */
2214 int jbd2_journal_clear_err(journal_t *journal)
2215 {
2216         int err = 0;
2217
2218         write_lock(&journal->j_state_lock);
2219         if (journal->j_flags & JBD2_ABORT)
2220                 err = -EROFS;
2221         else
2222                 journal->j_errno = 0;
2223         write_unlock(&journal->j_state_lock);
2224         return err;
2225 }
2226
2227 /**
2228  * void jbd2_journal_ack_err() - Ack journal err.
2229  * @journal: journal to act on.
2230  *
2231  * An error must be cleared or acked to take a FS out of readonly
2232  * mode.
2233  */
2234 void jbd2_journal_ack_err(journal_t *journal)
2235 {
2236         write_lock(&journal->j_state_lock);
2237         if (journal->j_errno)
2238                 journal->j_flags |= JBD2_ACK_ERR;
2239         write_unlock(&journal->j_state_lock);
2240 }
2241
2242 int jbd2_journal_blocks_per_page(struct inode *inode)
2243 {
2244         return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2245 }
2246
2247 /*
2248  * helper functions to deal with 32 or 64bit block numbers.
2249  */
2250 size_t journal_tag_bytes(journal_t *journal)
2251 {
2252         size_t sz;
2253
2254         if (jbd2_has_feature_csum3(journal))
2255                 return sizeof(journal_block_tag3_t);
2256
2257         sz = sizeof(journal_block_tag_t);
2258
2259         if (jbd2_has_feature_csum2(journal))
2260                 sz += sizeof(__u16);
2261
2262         if (jbd2_has_feature_64bit(journal))
2263                 return sz;
2264         else
2265                 return sz - sizeof(__u32);
2266 }
2267
2268 /*
2269  * JBD memory management
2270  *
2271  * These functions are used to allocate block-sized chunks of memory
2272  * used for making copies of buffer_head data.  Very often it will be
2273  * page-sized chunks of data, but sometimes it will be in
2274  * sub-page-size chunks.  (For example, 16k pages on Power systems
2275  * with a 4k block file system.)  For blocks smaller than a page, we
2276  * use a SLAB allocator.  There are slab caches for each block size,
2277  * which are allocated at mount time, if necessary, and we only free
2278  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2279  * this reason we don't need to a mutex to protect access to
2280  * jbd2_slab[] allocating or releasing memory; only in
2281  * jbd2_journal_create_slab().
2282  */
2283 #define JBD2_MAX_SLABS 8
2284 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2285
2286 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2287         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2288         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2289 };
2290
2291
2292 static void jbd2_journal_destroy_slabs(void)
2293 {
2294         int i;
2295
2296         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2297                 kmem_cache_destroy(jbd2_slab[i]);
2298                 jbd2_slab[i] = NULL;
2299         }
2300 }
2301
2302 static int jbd2_journal_create_slab(size_t size)
2303 {
2304         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2305         int i = order_base_2(size) - 10;
2306         size_t slab_size;
2307
2308         if (size == PAGE_SIZE)
2309                 return 0;
2310
2311         if (i >= JBD2_MAX_SLABS)
2312                 return -EINVAL;
2313
2314         if (unlikely(i < 0))
2315                 i = 0;
2316         mutex_lock(&jbd2_slab_create_mutex);
2317         if (jbd2_slab[i]) {
2318                 mutex_unlock(&jbd2_slab_create_mutex);
2319                 return 0;       /* Already created */
2320         }
2321
2322         slab_size = 1 << (i+10);
2323         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2324                                          slab_size, 0, NULL);
2325         mutex_unlock(&jbd2_slab_create_mutex);
2326         if (!jbd2_slab[i]) {
2327                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2328                 return -ENOMEM;
2329         }
2330         return 0;
2331 }
2332
2333 static struct kmem_cache *get_slab(size_t size)
2334 {
2335         int i = order_base_2(size) - 10;
2336
2337         BUG_ON(i >= JBD2_MAX_SLABS);
2338         if (unlikely(i < 0))
2339                 i = 0;
2340         BUG_ON(jbd2_slab[i] == NULL);
2341         return jbd2_slab[i];
2342 }
2343
2344 void *jbd2_alloc(size_t size, gfp_t flags)
2345 {
2346         void *ptr;
2347
2348         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2349
2350         if (size < PAGE_SIZE)
2351                 ptr = kmem_cache_alloc(get_slab(size), flags);
2352         else
2353                 ptr = (void *)__get_free_pages(flags, get_order(size));
2354
2355         /* Check alignment; SLUB has gotten this wrong in the past,
2356          * and this can lead to user data corruption! */
2357         BUG_ON(((unsigned long) ptr) & (size-1));
2358
2359         return ptr;
2360 }
2361
2362 void jbd2_free(void *ptr, size_t size)
2363 {
2364         if (size < PAGE_SIZE)
2365                 kmem_cache_free(get_slab(size), ptr);
2366         else
2367                 free_pages((unsigned long)ptr, get_order(size));
2368 };
2369
2370 /*
2371  * Journal_head storage management
2372  */
2373 static struct kmem_cache *jbd2_journal_head_cache;
2374 #ifdef CONFIG_JBD2_DEBUG
2375 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2376 #endif
2377
2378 static int jbd2_journal_init_journal_head_cache(void)
2379 {
2380         int retval;
2381
2382         J_ASSERT(jbd2_journal_head_cache == NULL);
2383         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2384                                 sizeof(struct journal_head),
2385                                 0,              /* offset */
2386                                 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2387                                 NULL);          /* ctor */
2388         retval = 0;
2389         if (!jbd2_journal_head_cache) {
2390                 retval = -ENOMEM;
2391                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2392         }
2393         return retval;
2394 }
2395
2396 static void jbd2_journal_destroy_journal_head_cache(void)
2397 {
2398         kmem_cache_destroy(jbd2_journal_head_cache);
2399         jbd2_journal_head_cache = NULL;
2400 }
2401
2402 /*
2403  * journal_head splicing and dicing
2404  */
2405 static struct journal_head *journal_alloc_journal_head(void)
2406 {
2407         struct journal_head *ret;
2408
2409 #ifdef CONFIG_JBD2_DEBUG
2410         atomic_inc(&nr_journal_heads);
2411 #endif
2412         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2413         if (!ret) {
2414                 jbd_debug(1, "out of memory for journal_head\n");
2415                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2416                 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2417                                 GFP_NOFS | __GFP_NOFAIL);
2418         }
2419         return ret;
2420 }
2421
2422 static void journal_free_journal_head(struct journal_head *jh)
2423 {
2424 #ifdef CONFIG_JBD2_DEBUG
2425         atomic_dec(&nr_journal_heads);
2426         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2427 #endif
2428         kmem_cache_free(jbd2_journal_head_cache, jh);
2429 }
2430
2431 /*
2432  * A journal_head is attached to a buffer_head whenever JBD has an
2433  * interest in the buffer.
2434  *
2435  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2436  * is set.  This bit is tested in core kernel code where we need to take
2437  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2438  * there.
2439  *
2440  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2441  *
2442  * When a buffer has its BH_JBD bit set it is immune from being released by
2443  * core kernel code, mainly via ->b_count.
2444  *
2445  * A journal_head is detached from its buffer_head when the journal_head's
2446  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2447  * transaction (b_cp_transaction) hold their references to b_jcount.
2448  *
2449  * Various places in the kernel want to attach a journal_head to a buffer_head
2450  * _before_ attaching the journal_head to a transaction.  To protect the
2451  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2452  * journal_head's b_jcount refcount by one.  The caller must call
2453  * jbd2_journal_put_journal_head() to undo this.
2454  *
2455  * So the typical usage would be:
2456  *
2457  *      (Attach a journal_head if needed.  Increments b_jcount)
2458  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2459  *      ...
2460  *      (Get another reference for transaction)
2461  *      jbd2_journal_grab_journal_head(bh);
2462  *      jh->b_transaction = xxx;
2463  *      (Put original reference)
2464  *      jbd2_journal_put_journal_head(jh);
2465  */
2466
2467 /*
2468  * Give a buffer_head a journal_head.
2469  *
2470  * May sleep.
2471  */
2472 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2473 {
2474         struct journal_head *jh;
2475         struct journal_head *new_jh = NULL;
2476
2477 repeat:
2478         if (!buffer_jbd(bh))
2479                 new_jh = journal_alloc_journal_head();
2480
2481         jbd_lock_bh_journal_head(bh);
2482         if (buffer_jbd(bh)) {
2483                 jh = bh2jh(bh);
2484         } else {
2485                 J_ASSERT_BH(bh,
2486                         (atomic_read(&bh->b_count) > 0) ||
2487                         (bh->b_page && bh->b_page->mapping));
2488
2489                 if (!new_jh) {
2490                         jbd_unlock_bh_journal_head(bh);
2491                         goto repeat;
2492                 }
2493
2494                 jh = new_jh;
2495                 new_jh = NULL;          /* We consumed it */
2496                 set_buffer_jbd(bh);
2497                 bh->b_private = jh;
2498                 jh->b_bh = bh;
2499                 get_bh(bh);
2500                 BUFFER_TRACE(bh, "added journal_head");
2501         }
2502         jh->b_jcount++;
2503         jbd_unlock_bh_journal_head(bh);
2504         if (new_jh)
2505                 journal_free_journal_head(new_jh);
2506         return bh->b_private;
2507 }
2508
2509 /*
2510  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2511  * having a journal_head, return NULL
2512  */
2513 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2514 {
2515         struct journal_head *jh = NULL;
2516
2517         jbd_lock_bh_journal_head(bh);
2518         if (buffer_jbd(bh)) {
2519                 jh = bh2jh(bh);
2520                 jh->b_jcount++;
2521         }
2522         jbd_unlock_bh_journal_head(bh);
2523         return jh;
2524 }
2525
2526 static void __journal_remove_journal_head(struct buffer_head *bh)
2527 {
2528         struct journal_head *jh = bh2jh(bh);
2529
2530         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2531         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2532         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2533         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2534         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2535         J_ASSERT_BH(bh, buffer_jbd(bh));
2536         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2537         BUFFER_TRACE(bh, "remove journal_head");
2538         if (jh->b_frozen_data) {
2539                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2540                 jbd2_free(jh->b_frozen_data, bh->b_size);
2541         }
2542         if (jh->b_committed_data) {
2543                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2544                 jbd2_free(jh->b_committed_data, bh->b_size);
2545         }
2546         bh->b_private = NULL;
2547         jh->b_bh = NULL;        /* debug, really */
2548         clear_buffer_jbd(bh);
2549         journal_free_journal_head(jh);
2550 }
2551
2552 /*
2553  * Drop a reference on the passed journal_head.  If it fell to zero then
2554  * release the journal_head from the buffer_head.
2555  */
2556 void jbd2_journal_put_journal_head(struct journal_head *jh)
2557 {
2558         struct buffer_head *bh = jh2bh(jh);
2559
2560         jbd_lock_bh_journal_head(bh);
2561         J_ASSERT_JH(jh, jh->b_jcount > 0);
2562         --jh->b_jcount;
2563         if (!jh->b_jcount) {
2564                 __journal_remove_journal_head(bh);
2565                 jbd_unlock_bh_journal_head(bh);
2566                 __brelse(bh);
2567         } else
2568                 jbd_unlock_bh_journal_head(bh);
2569 }
2570
2571 /*
2572  * Initialize jbd inode head
2573  */
2574 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2575 {
2576         jinode->i_transaction = NULL;
2577         jinode->i_next_transaction = NULL;
2578         jinode->i_vfs_inode = inode;
2579         jinode->i_flags = 0;
2580         INIT_LIST_HEAD(&jinode->i_list);
2581 }
2582
2583 /*
2584  * Function to be called before we start removing inode from memory (i.e.,
2585  * clear_inode() is a fine place to be called from). It removes inode from
2586  * transaction's lists.
2587  */
2588 void jbd2_journal_release_jbd_inode(journal_t *journal,
2589                                     struct jbd2_inode *jinode)
2590 {
2591         if (!journal)
2592                 return;
2593 restart:
2594         spin_lock(&journal->j_list_lock);
2595         /* Is commit writing out inode - we have to wait */
2596         if (jinode->i_flags & JI_COMMIT_RUNNING) {
2597                 wait_queue_head_t *wq;
2598                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2599                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2600                 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2601                 spin_unlock(&journal->j_list_lock);
2602                 schedule();
2603                 finish_wait(wq, &wait.wq_entry);
2604                 goto restart;
2605         }
2606
2607         if (jinode->i_transaction) {
2608                 list_del(&jinode->i_list);
2609                 jinode->i_transaction = NULL;
2610         }
2611         spin_unlock(&journal->j_list_lock);
2612 }
2613
2614
2615 #ifdef CONFIG_PROC_FS
2616
2617 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2618
2619 static void __init jbd2_create_jbd_stats_proc_entry(void)
2620 {
2621         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2622 }
2623
2624 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2625 {
2626         if (proc_jbd2_stats)
2627                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2628 }
2629
2630 #else
2631
2632 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2633 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2634
2635 #endif
2636
2637 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2638
2639 static int __init jbd2_journal_init_handle_cache(void)
2640 {
2641         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2642         if (jbd2_handle_cache == NULL) {
2643                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2644                 return -ENOMEM;
2645         }
2646         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2647         if (jbd2_inode_cache == NULL) {
2648                 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2649                 kmem_cache_destroy(jbd2_handle_cache);
2650                 return -ENOMEM;
2651         }
2652         return 0;
2653 }
2654
2655 static void jbd2_journal_destroy_handle_cache(void)
2656 {
2657         kmem_cache_destroy(jbd2_handle_cache);
2658         jbd2_handle_cache = NULL;
2659         kmem_cache_destroy(jbd2_inode_cache);
2660         jbd2_inode_cache = NULL;
2661 }
2662
2663 /*
2664  * Module startup and shutdown
2665  */
2666
2667 static int __init journal_init_caches(void)
2668 {
2669         int ret;
2670
2671         ret = jbd2_journal_init_revoke_caches();
2672         if (ret == 0)
2673                 ret = jbd2_journal_init_journal_head_cache();
2674         if (ret == 0)
2675                 ret = jbd2_journal_init_handle_cache();
2676         if (ret == 0)
2677                 ret = jbd2_journal_init_transaction_cache();
2678         return ret;
2679 }
2680
2681 static void jbd2_journal_destroy_caches(void)
2682 {
2683         jbd2_journal_destroy_revoke_caches();
2684         jbd2_journal_destroy_journal_head_cache();
2685         jbd2_journal_destroy_handle_cache();
2686         jbd2_journal_destroy_transaction_cache();
2687         jbd2_journal_destroy_slabs();
2688 }
2689
2690 static int __init journal_init(void)
2691 {
2692         int ret;
2693
2694         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2695
2696         ret = journal_init_caches();
2697         if (ret == 0) {
2698                 jbd2_create_jbd_stats_proc_entry();
2699         } else {
2700                 jbd2_journal_destroy_caches();
2701         }
2702         return ret;
2703 }
2704
2705 static void __exit journal_exit(void)
2706 {
2707 #ifdef CONFIG_JBD2_DEBUG
2708         int n = atomic_read(&nr_journal_heads);
2709         if (n)
2710                 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2711 #endif
2712         jbd2_remove_jbd_stats_proc_entry();
2713         jbd2_journal_destroy_caches();
2714 }
2715
2716 MODULE_LICENSE("GPL");
2717 module_init(journal_init);
2718 module_exit(journal_exit);
2719