]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/jbd2/journal.c
ext4, jbd2: ensure panic when aborting with zero errno
[linux.git] / fs / jbd2 / journal.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/journal.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem journal-writing code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages journals: areas of disk reserved for logging
13  * transactional updates.  This includes the kernel journaling thread
14  * which is responsible for scheduling updates to the log.
15  *
16  * We do not actually manage the physical storage of the journal in this
17  * file: that is left to a per-journal policy function, which allows us
18  * to store the journal within a filesystem-specified area for ext2
19  * journaling (ext2 can use a reserved inode for storing the log).
20  */
21
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97 EXPORT_SYMBOL(jbd2_inode_cache);
98
99 static void __journal_abort_soft (journal_t *journal, int errno);
100 static int jbd2_journal_create_slab(size_t slab_size);
101
102 #ifdef CONFIG_JBD2_DEBUG
103 void __jbd2_debug(int level, const char *file, const char *func,
104                   unsigned int line, const char *fmt, ...)
105 {
106         struct va_format vaf;
107         va_list args;
108
109         if (level > jbd2_journal_enable_debug)
110                 return;
111         va_start(args, fmt);
112         vaf.fmt = fmt;
113         vaf.va = &args;
114         printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
115         va_end(args);
116 }
117 EXPORT_SYMBOL(__jbd2_debug);
118 #endif
119
120 /* Checksumming functions */
121 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
122 {
123         if (!jbd2_journal_has_csum_v2or3_feature(j))
124                 return 1;
125
126         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
127 }
128
129 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
130 {
131         __u32 csum;
132         __be32 old_csum;
133
134         old_csum = sb->s_checksum;
135         sb->s_checksum = 0;
136         csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
137         sb->s_checksum = old_csum;
138
139         return cpu_to_be32(csum);
140 }
141
142 /*
143  * Helper function used to manage commit timeouts
144  */
145
146 static void commit_timeout(struct timer_list *t)
147 {
148         journal_t *journal = from_timer(journal, t, j_commit_timer);
149
150         wake_up_process(journal->j_task);
151 }
152
153 /*
154  * kjournald2: The main thread function used to manage a logging device
155  * journal.
156  *
157  * This kernel thread is responsible for two things:
158  *
159  * 1) COMMIT:  Every so often we need to commit the current state of the
160  *    filesystem to disk.  The journal thread is responsible for writing
161  *    all of the metadata buffers to disk.
162  *
163  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
164  *    of the data in that part of the log has been rewritten elsewhere on
165  *    the disk.  Flushing these old buffers to reclaim space in the log is
166  *    known as checkpointing, and this thread is responsible for that job.
167  */
168
169 static int kjournald2(void *arg)
170 {
171         journal_t *journal = arg;
172         transaction_t *transaction;
173
174         /*
175          * Set up an interval timer which can be used to trigger a commit wakeup
176          * after the commit interval expires
177          */
178         timer_setup(&journal->j_commit_timer, commit_timeout, 0);
179
180         set_freezable();
181
182         /* Record that the journal thread is running */
183         journal->j_task = current;
184         wake_up(&journal->j_wait_done_commit);
185
186         /*
187          * Make sure that no allocations from this kernel thread will ever
188          * recurse to the fs layer because we are responsible for the
189          * transaction commit and any fs involvement might get stuck waiting for
190          * the trasn. commit.
191          */
192         memalloc_nofs_save();
193
194         /*
195          * And now, wait forever for commit wakeup events.
196          */
197         write_lock(&journal->j_state_lock);
198
199 loop:
200         if (journal->j_flags & JBD2_UNMOUNT)
201                 goto end_loop;
202
203         jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
204                 journal->j_commit_sequence, journal->j_commit_request);
205
206         if (journal->j_commit_sequence != journal->j_commit_request) {
207                 jbd_debug(1, "OK, requests differ\n");
208                 write_unlock(&journal->j_state_lock);
209                 del_timer_sync(&journal->j_commit_timer);
210                 jbd2_journal_commit_transaction(journal);
211                 write_lock(&journal->j_state_lock);
212                 goto loop;
213         }
214
215         wake_up(&journal->j_wait_done_commit);
216         if (freezing(current)) {
217                 /*
218                  * The simpler the better. Flushing journal isn't a
219                  * good idea, because that depends on threads that may
220                  * be already stopped.
221                  */
222                 jbd_debug(1, "Now suspending kjournald2\n");
223                 write_unlock(&journal->j_state_lock);
224                 try_to_freeze();
225                 write_lock(&journal->j_state_lock);
226         } else {
227                 /*
228                  * We assume on resume that commits are already there,
229                  * so we don't sleep
230                  */
231                 DEFINE_WAIT(wait);
232                 int should_sleep = 1;
233
234                 prepare_to_wait(&journal->j_wait_commit, &wait,
235                                 TASK_INTERRUPTIBLE);
236                 if (journal->j_commit_sequence != journal->j_commit_request)
237                         should_sleep = 0;
238                 transaction = journal->j_running_transaction;
239                 if (transaction && time_after_eq(jiffies,
240                                                 transaction->t_expires))
241                         should_sleep = 0;
242                 if (journal->j_flags & JBD2_UNMOUNT)
243                         should_sleep = 0;
244                 if (should_sleep) {
245                         write_unlock(&journal->j_state_lock);
246                         schedule();
247                         write_lock(&journal->j_state_lock);
248                 }
249                 finish_wait(&journal->j_wait_commit, &wait);
250         }
251
252         jbd_debug(1, "kjournald2 wakes\n");
253
254         /*
255          * Were we woken up by a commit wakeup event?
256          */
257         transaction = journal->j_running_transaction;
258         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
259                 journal->j_commit_request = transaction->t_tid;
260                 jbd_debug(1, "woke because of timeout\n");
261         }
262         goto loop;
263
264 end_loop:
265         del_timer_sync(&journal->j_commit_timer);
266         journal->j_task = NULL;
267         wake_up(&journal->j_wait_done_commit);
268         jbd_debug(1, "Journal thread exiting.\n");
269         write_unlock(&journal->j_state_lock);
270         return 0;
271 }
272
273 static int jbd2_journal_start_thread(journal_t *journal)
274 {
275         struct task_struct *t;
276
277         t = kthread_run(kjournald2, journal, "jbd2/%s",
278                         journal->j_devname);
279         if (IS_ERR(t))
280                 return PTR_ERR(t);
281
282         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
283         return 0;
284 }
285
286 static void journal_kill_thread(journal_t *journal)
287 {
288         write_lock(&journal->j_state_lock);
289         journal->j_flags |= JBD2_UNMOUNT;
290
291         while (journal->j_task) {
292                 write_unlock(&journal->j_state_lock);
293                 wake_up(&journal->j_wait_commit);
294                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
295                 write_lock(&journal->j_state_lock);
296         }
297         write_unlock(&journal->j_state_lock);
298 }
299
300 /*
301  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
302  *
303  * Writes a metadata buffer to a given disk block.  The actual IO is not
304  * performed but a new buffer_head is constructed which labels the data
305  * to be written with the correct destination disk block.
306  *
307  * Any magic-number escaping which needs to be done will cause a
308  * copy-out here.  If the buffer happens to start with the
309  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
310  * magic number is only written to the log for descripter blocks.  In
311  * this case, we copy the data and replace the first word with 0, and we
312  * return a result code which indicates that this buffer needs to be
313  * marked as an escaped buffer in the corresponding log descriptor
314  * block.  The missing word can then be restored when the block is read
315  * during recovery.
316  *
317  * If the source buffer has already been modified by a new transaction
318  * since we took the last commit snapshot, we use the frozen copy of
319  * that data for IO. If we end up using the existing buffer_head's data
320  * for the write, then we have to make sure nobody modifies it while the
321  * IO is in progress. do_get_write_access() handles this.
322  *
323  * The function returns a pointer to the buffer_head to be used for IO.
324  *
325  *
326  * Return value:
327  *  <0: Error
328  * >=0: Finished OK
329  *
330  * On success:
331  * Bit 0 set == escape performed on the data
332  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
333  */
334
335 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
336                                   struct journal_head  *jh_in,
337                                   struct buffer_head **bh_out,
338                                   sector_t blocknr)
339 {
340         int need_copy_out = 0;
341         int done_copy_out = 0;
342         int do_escape = 0;
343         char *mapped_data;
344         struct buffer_head *new_bh;
345         struct page *new_page;
346         unsigned int new_offset;
347         struct buffer_head *bh_in = jh2bh(jh_in);
348         journal_t *journal = transaction->t_journal;
349
350         /*
351          * The buffer really shouldn't be locked: only the current committing
352          * transaction is allowed to write it, so nobody else is allowed
353          * to do any IO.
354          *
355          * akpm: except if we're journalling data, and write() output is
356          * also part of a shared mapping, and another thread has
357          * decided to launch a writepage() against this buffer.
358          */
359         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
360
361         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
362
363         /* keep subsequent assertions sane */
364         atomic_set(&new_bh->b_count, 1);
365
366         spin_lock(&jh_in->b_state_lock);
367 repeat:
368         /*
369          * If a new transaction has already done a buffer copy-out, then
370          * we use that version of the data for the commit.
371          */
372         if (jh_in->b_frozen_data) {
373                 done_copy_out = 1;
374                 new_page = virt_to_page(jh_in->b_frozen_data);
375                 new_offset = offset_in_page(jh_in->b_frozen_data);
376         } else {
377                 new_page = jh2bh(jh_in)->b_page;
378                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
379         }
380
381         mapped_data = kmap_atomic(new_page);
382         /*
383          * Fire data frozen trigger if data already wasn't frozen.  Do this
384          * before checking for escaping, as the trigger may modify the magic
385          * offset.  If a copy-out happens afterwards, it will have the correct
386          * data in the buffer.
387          */
388         if (!done_copy_out)
389                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
390                                            jh_in->b_triggers);
391
392         /*
393          * Check for escaping
394          */
395         if (*((__be32 *)(mapped_data + new_offset)) ==
396                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
397                 need_copy_out = 1;
398                 do_escape = 1;
399         }
400         kunmap_atomic(mapped_data);
401
402         /*
403          * Do we need to do a data copy?
404          */
405         if (need_copy_out && !done_copy_out) {
406                 char *tmp;
407
408                 spin_unlock(&jh_in->b_state_lock);
409                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
410                 if (!tmp) {
411                         brelse(new_bh);
412                         return -ENOMEM;
413                 }
414                 spin_lock(&jh_in->b_state_lock);
415                 if (jh_in->b_frozen_data) {
416                         jbd2_free(tmp, bh_in->b_size);
417                         goto repeat;
418                 }
419
420                 jh_in->b_frozen_data = tmp;
421                 mapped_data = kmap_atomic(new_page);
422                 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
423                 kunmap_atomic(mapped_data);
424
425                 new_page = virt_to_page(tmp);
426                 new_offset = offset_in_page(tmp);
427                 done_copy_out = 1;
428
429                 /*
430                  * This isn't strictly necessary, as we're using frozen
431                  * data for the escaping, but it keeps consistency with
432                  * b_frozen_data usage.
433                  */
434                 jh_in->b_frozen_triggers = jh_in->b_triggers;
435         }
436
437         /*
438          * Did we need to do an escaping?  Now we've done all the
439          * copying, we can finally do so.
440          */
441         if (do_escape) {
442                 mapped_data = kmap_atomic(new_page);
443                 *((unsigned int *)(mapped_data + new_offset)) = 0;
444                 kunmap_atomic(mapped_data);
445         }
446
447         set_bh_page(new_bh, new_page, new_offset);
448         new_bh->b_size = bh_in->b_size;
449         new_bh->b_bdev = journal->j_dev;
450         new_bh->b_blocknr = blocknr;
451         new_bh->b_private = bh_in;
452         set_buffer_mapped(new_bh);
453         set_buffer_dirty(new_bh);
454
455         *bh_out = new_bh;
456
457         /*
458          * The to-be-written buffer needs to get moved to the io queue,
459          * and the original buffer whose contents we are shadowing or
460          * copying is moved to the transaction's shadow queue.
461          */
462         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
463         spin_lock(&journal->j_list_lock);
464         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
465         spin_unlock(&journal->j_list_lock);
466         set_buffer_shadow(bh_in);
467         spin_unlock(&jh_in->b_state_lock);
468
469         return do_escape | (done_copy_out << 1);
470 }
471
472 /*
473  * Allocation code for the journal file.  Manage the space left in the
474  * journal, so that we can begin checkpointing when appropriate.
475  */
476
477 /*
478  * Called with j_state_lock locked for writing.
479  * Returns true if a transaction commit was started.
480  */
481 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
482 {
483         /* Return if the txn has already requested to be committed */
484         if (journal->j_commit_request == target)
485                 return 0;
486
487         /*
488          * The only transaction we can possibly wait upon is the
489          * currently running transaction (if it exists).  Otherwise,
490          * the target tid must be an old one.
491          */
492         if (journal->j_running_transaction &&
493             journal->j_running_transaction->t_tid == target) {
494                 /*
495                  * We want a new commit: OK, mark the request and wakeup the
496                  * commit thread.  We do _not_ do the commit ourselves.
497                  */
498
499                 journal->j_commit_request = target;
500                 jbd_debug(1, "JBD2: requesting commit %u/%u\n",
501                           journal->j_commit_request,
502                           journal->j_commit_sequence);
503                 journal->j_running_transaction->t_requested = jiffies;
504                 wake_up(&journal->j_wait_commit);
505                 return 1;
506         } else if (!tid_geq(journal->j_commit_request, target))
507                 /* This should never happen, but if it does, preserve
508                    the evidence before kjournald goes into a loop and
509                    increments j_commit_sequence beyond all recognition. */
510                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
511                           journal->j_commit_request,
512                           journal->j_commit_sequence,
513                           target, journal->j_running_transaction ?
514                           journal->j_running_transaction->t_tid : 0);
515         return 0;
516 }
517
518 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
519 {
520         int ret;
521
522         write_lock(&journal->j_state_lock);
523         ret = __jbd2_log_start_commit(journal, tid);
524         write_unlock(&journal->j_state_lock);
525         return ret;
526 }
527
528 /*
529  * Force and wait any uncommitted transactions.  We can only force the running
530  * transaction if we don't have an active handle, otherwise, we will deadlock.
531  * Returns: <0 in case of error,
532  *           0 if nothing to commit,
533  *           1 if transaction was successfully committed.
534  */
535 static int __jbd2_journal_force_commit(journal_t *journal)
536 {
537         transaction_t *transaction = NULL;
538         tid_t tid;
539         int need_to_start = 0, ret = 0;
540
541         read_lock(&journal->j_state_lock);
542         if (journal->j_running_transaction && !current->journal_info) {
543                 transaction = journal->j_running_transaction;
544                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
545                         need_to_start = 1;
546         } else if (journal->j_committing_transaction)
547                 transaction = journal->j_committing_transaction;
548
549         if (!transaction) {
550                 /* Nothing to commit */
551                 read_unlock(&journal->j_state_lock);
552                 return 0;
553         }
554         tid = transaction->t_tid;
555         read_unlock(&journal->j_state_lock);
556         if (need_to_start)
557                 jbd2_log_start_commit(journal, tid);
558         ret = jbd2_log_wait_commit(journal, tid);
559         if (!ret)
560                 ret = 1;
561
562         return ret;
563 }
564
565 /**
566  * Force and wait upon a commit if the calling process is not within
567  * transaction.  This is used for forcing out undo-protected data which contains
568  * bitmaps, when the fs is running out of space.
569  *
570  * @journal: journal to force
571  * Returns true if progress was made.
572  */
573 int jbd2_journal_force_commit_nested(journal_t *journal)
574 {
575         int ret;
576
577         ret = __jbd2_journal_force_commit(journal);
578         return ret > 0;
579 }
580
581 /**
582  * int journal_force_commit() - force any uncommitted transactions
583  * @journal: journal to force
584  *
585  * Caller want unconditional commit. We can only force the running transaction
586  * if we don't have an active handle, otherwise, we will deadlock.
587  */
588 int jbd2_journal_force_commit(journal_t *journal)
589 {
590         int ret;
591
592         J_ASSERT(!current->journal_info);
593         ret = __jbd2_journal_force_commit(journal);
594         if (ret > 0)
595                 ret = 0;
596         return ret;
597 }
598
599 /*
600  * Start a commit of the current running transaction (if any).  Returns true
601  * if a transaction is going to be committed (or is currently already
602  * committing), and fills its tid in at *ptid
603  */
604 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
605 {
606         int ret = 0;
607
608         write_lock(&journal->j_state_lock);
609         if (journal->j_running_transaction) {
610                 tid_t tid = journal->j_running_transaction->t_tid;
611
612                 __jbd2_log_start_commit(journal, tid);
613                 /* There's a running transaction and we've just made sure
614                  * it's commit has been scheduled. */
615                 if (ptid)
616                         *ptid = tid;
617                 ret = 1;
618         } else if (journal->j_committing_transaction) {
619                 /*
620                  * If commit has been started, then we have to wait for
621                  * completion of that transaction.
622                  */
623                 if (ptid)
624                         *ptid = journal->j_committing_transaction->t_tid;
625                 ret = 1;
626         }
627         write_unlock(&journal->j_state_lock);
628         return ret;
629 }
630
631 /*
632  * Return 1 if a given transaction has not yet sent barrier request
633  * connected with a transaction commit. If 0 is returned, transaction
634  * may or may not have sent the barrier. Used to avoid sending barrier
635  * twice in common cases.
636  */
637 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
638 {
639         int ret = 0;
640         transaction_t *commit_trans;
641
642         if (!(journal->j_flags & JBD2_BARRIER))
643                 return 0;
644         read_lock(&journal->j_state_lock);
645         /* Transaction already committed? */
646         if (tid_geq(journal->j_commit_sequence, tid))
647                 goto out;
648         commit_trans = journal->j_committing_transaction;
649         if (!commit_trans || commit_trans->t_tid != tid) {
650                 ret = 1;
651                 goto out;
652         }
653         /*
654          * Transaction is being committed and we already proceeded to
655          * submitting a flush to fs partition?
656          */
657         if (journal->j_fs_dev != journal->j_dev) {
658                 if (!commit_trans->t_need_data_flush ||
659                     commit_trans->t_state >= T_COMMIT_DFLUSH)
660                         goto out;
661         } else {
662                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
663                         goto out;
664         }
665         ret = 1;
666 out:
667         read_unlock(&journal->j_state_lock);
668         return ret;
669 }
670 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
671
672 /*
673  * Wait for a specified commit to complete.
674  * The caller may not hold the journal lock.
675  */
676 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
677 {
678         int err = 0;
679
680         read_lock(&journal->j_state_lock);
681 #ifdef CONFIG_PROVE_LOCKING
682         /*
683          * Some callers make sure transaction is already committing and in that
684          * case we cannot block on open handles anymore. So don't warn in that
685          * case.
686          */
687         if (tid_gt(tid, journal->j_commit_sequence) &&
688             (!journal->j_committing_transaction ||
689              journal->j_committing_transaction->t_tid != tid)) {
690                 read_unlock(&journal->j_state_lock);
691                 jbd2_might_wait_for_commit(journal);
692                 read_lock(&journal->j_state_lock);
693         }
694 #endif
695 #ifdef CONFIG_JBD2_DEBUG
696         if (!tid_geq(journal->j_commit_request, tid)) {
697                 printk(KERN_ERR
698                        "%s: error: j_commit_request=%u, tid=%u\n",
699                        __func__, journal->j_commit_request, tid);
700         }
701 #endif
702         while (tid_gt(tid, journal->j_commit_sequence)) {
703                 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
704                                   tid, journal->j_commit_sequence);
705                 read_unlock(&journal->j_state_lock);
706                 wake_up(&journal->j_wait_commit);
707                 wait_event(journal->j_wait_done_commit,
708                                 !tid_gt(tid, journal->j_commit_sequence));
709                 read_lock(&journal->j_state_lock);
710         }
711         read_unlock(&journal->j_state_lock);
712
713         if (unlikely(is_journal_aborted(journal)))
714                 err = -EIO;
715         return err;
716 }
717
718 /* Return 1 when transaction with given tid has already committed. */
719 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
720 {
721         int ret = 1;
722
723         read_lock(&journal->j_state_lock);
724         if (journal->j_running_transaction &&
725             journal->j_running_transaction->t_tid == tid)
726                 ret = 0;
727         if (journal->j_committing_transaction &&
728             journal->j_committing_transaction->t_tid == tid)
729                 ret = 0;
730         read_unlock(&journal->j_state_lock);
731         return ret;
732 }
733 EXPORT_SYMBOL(jbd2_transaction_committed);
734
735 /*
736  * When this function returns the transaction corresponding to tid
737  * will be completed.  If the transaction has currently running, start
738  * committing that transaction before waiting for it to complete.  If
739  * the transaction id is stale, it is by definition already completed,
740  * so just return SUCCESS.
741  */
742 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
743 {
744         int     need_to_wait = 1;
745
746         read_lock(&journal->j_state_lock);
747         if (journal->j_running_transaction &&
748             journal->j_running_transaction->t_tid == tid) {
749                 if (journal->j_commit_request != tid) {
750                         /* transaction not yet started, so request it */
751                         read_unlock(&journal->j_state_lock);
752                         jbd2_log_start_commit(journal, tid);
753                         goto wait_commit;
754                 }
755         } else if (!(journal->j_committing_transaction &&
756                      journal->j_committing_transaction->t_tid == tid))
757                 need_to_wait = 0;
758         read_unlock(&journal->j_state_lock);
759         if (!need_to_wait)
760                 return 0;
761 wait_commit:
762         return jbd2_log_wait_commit(journal, tid);
763 }
764 EXPORT_SYMBOL(jbd2_complete_transaction);
765
766 /*
767  * Log buffer allocation routines:
768  */
769
770 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
771 {
772         unsigned long blocknr;
773
774         write_lock(&journal->j_state_lock);
775         J_ASSERT(journal->j_free > 1);
776
777         blocknr = journal->j_head;
778         journal->j_head++;
779         journal->j_free--;
780         if (journal->j_head == journal->j_last)
781                 journal->j_head = journal->j_first;
782         write_unlock(&journal->j_state_lock);
783         return jbd2_journal_bmap(journal, blocknr, retp);
784 }
785
786 /*
787  * Conversion of logical to physical block numbers for the journal
788  *
789  * On external journals the journal blocks are identity-mapped, so
790  * this is a no-op.  If needed, we can use j_blk_offset - everything is
791  * ready.
792  */
793 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
794                  unsigned long long *retp)
795 {
796         int err = 0;
797         unsigned long long ret;
798
799         if (journal->j_inode) {
800                 ret = bmap(journal->j_inode, blocknr);
801                 if (ret)
802                         *retp = ret;
803                 else {
804                         printk(KERN_ALERT "%s: journal block not found "
805                                         "at offset %lu on %s\n",
806                                __func__, blocknr, journal->j_devname);
807                         err = -EIO;
808                         __journal_abort_soft(journal, err);
809                 }
810         } else {
811                 *retp = blocknr; /* +journal->j_blk_offset */
812         }
813         return err;
814 }
815
816 /*
817  * We play buffer_head aliasing tricks to write data/metadata blocks to
818  * the journal without copying their contents, but for journal
819  * descriptor blocks we do need to generate bona fide buffers.
820  *
821  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
822  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
823  * But we don't bother doing that, so there will be coherency problems with
824  * mmaps of blockdevs which hold live JBD-controlled filesystems.
825  */
826 struct buffer_head *
827 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
828 {
829         journal_t *journal = transaction->t_journal;
830         struct buffer_head *bh;
831         unsigned long long blocknr;
832         journal_header_t *header;
833         int err;
834
835         err = jbd2_journal_next_log_block(journal, &blocknr);
836
837         if (err)
838                 return NULL;
839
840         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
841         if (!bh)
842                 return NULL;
843         atomic_dec(&transaction->t_outstanding_credits);
844         lock_buffer(bh);
845         memset(bh->b_data, 0, journal->j_blocksize);
846         header = (journal_header_t *)bh->b_data;
847         header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
848         header->h_blocktype = cpu_to_be32(type);
849         header->h_sequence = cpu_to_be32(transaction->t_tid);
850         set_buffer_uptodate(bh);
851         unlock_buffer(bh);
852         BUFFER_TRACE(bh, "return this buffer");
853         return bh;
854 }
855
856 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
857 {
858         struct jbd2_journal_block_tail *tail;
859         __u32 csum;
860
861         if (!jbd2_journal_has_csum_v2or3(j))
862                 return;
863
864         tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
865                         sizeof(struct jbd2_journal_block_tail));
866         tail->t_checksum = 0;
867         csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
868         tail->t_checksum = cpu_to_be32(csum);
869 }
870
871 /*
872  * Return tid of the oldest transaction in the journal and block in the journal
873  * where the transaction starts.
874  *
875  * If the journal is now empty, return which will be the next transaction ID
876  * we will write and where will that transaction start.
877  *
878  * The return value is 0 if journal tail cannot be pushed any further, 1 if
879  * it can.
880  */
881 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
882                               unsigned long *block)
883 {
884         transaction_t *transaction;
885         int ret;
886
887         read_lock(&journal->j_state_lock);
888         spin_lock(&journal->j_list_lock);
889         transaction = journal->j_checkpoint_transactions;
890         if (transaction) {
891                 *tid = transaction->t_tid;
892                 *block = transaction->t_log_start;
893         } else if ((transaction = journal->j_committing_transaction) != NULL) {
894                 *tid = transaction->t_tid;
895                 *block = transaction->t_log_start;
896         } else if ((transaction = journal->j_running_transaction) != NULL) {
897                 *tid = transaction->t_tid;
898                 *block = journal->j_head;
899         } else {
900                 *tid = journal->j_transaction_sequence;
901                 *block = journal->j_head;
902         }
903         ret = tid_gt(*tid, journal->j_tail_sequence);
904         spin_unlock(&journal->j_list_lock);
905         read_unlock(&journal->j_state_lock);
906
907         return ret;
908 }
909
910 /*
911  * Update information in journal structure and in on disk journal superblock
912  * about log tail. This function does not check whether information passed in
913  * really pushes log tail further. It's responsibility of the caller to make
914  * sure provided log tail information is valid (e.g. by holding
915  * j_checkpoint_mutex all the time between computing log tail and calling this
916  * function as is the case with jbd2_cleanup_journal_tail()).
917  *
918  * Requires j_checkpoint_mutex
919  */
920 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
921 {
922         unsigned long freed;
923         int ret;
924
925         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
926
927         /*
928          * We cannot afford for write to remain in drive's caches since as
929          * soon as we update j_tail, next transaction can start reusing journal
930          * space and if we lose sb update during power failure we'd replay
931          * old transaction with possibly newly overwritten data.
932          */
933         ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
934                                               REQ_SYNC | REQ_FUA);
935         if (ret)
936                 goto out;
937
938         write_lock(&journal->j_state_lock);
939         freed = block - journal->j_tail;
940         if (block < journal->j_tail)
941                 freed += journal->j_last - journal->j_first;
942
943         trace_jbd2_update_log_tail(journal, tid, block, freed);
944         jbd_debug(1,
945                   "Cleaning journal tail from %u to %u (offset %lu), "
946                   "freeing %lu\n",
947                   journal->j_tail_sequence, tid, block, freed);
948
949         journal->j_free += freed;
950         journal->j_tail_sequence = tid;
951         journal->j_tail = block;
952         write_unlock(&journal->j_state_lock);
953
954 out:
955         return ret;
956 }
957
958 /*
959  * This is a variation of __jbd2_update_log_tail which checks for validity of
960  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
961  * with other threads updating log tail.
962  */
963 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
964 {
965         mutex_lock_io(&journal->j_checkpoint_mutex);
966         if (tid_gt(tid, journal->j_tail_sequence))
967                 __jbd2_update_log_tail(journal, tid, block);
968         mutex_unlock(&journal->j_checkpoint_mutex);
969 }
970
971 struct jbd2_stats_proc_session {
972         journal_t *journal;
973         struct transaction_stats_s *stats;
974         int start;
975         int max;
976 };
977
978 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
979 {
980         return *pos ? NULL : SEQ_START_TOKEN;
981 }
982
983 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
984 {
985         (*pos)++;
986         return NULL;
987 }
988
989 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
990 {
991         struct jbd2_stats_proc_session *s = seq->private;
992
993         if (v != SEQ_START_TOKEN)
994                 return 0;
995         seq_printf(seq, "%lu transactions (%lu requested), "
996                    "each up to %u blocks\n",
997                    s->stats->ts_tid, s->stats->ts_requested,
998                    s->journal->j_max_transaction_buffers);
999         if (s->stats->ts_tid == 0)
1000                 return 0;
1001         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1002             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1003         seq_printf(seq, "  %ums request delay\n",
1004             (s->stats->ts_requested == 0) ? 0 :
1005             jiffies_to_msecs(s->stats->run.rs_request_delay /
1006                              s->stats->ts_requested));
1007         seq_printf(seq, "  %ums running transaction\n",
1008             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1009         seq_printf(seq, "  %ums transaction was being locked\n",
1010             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1011         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1012             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1013         seq_printf(seq, "  %ums logging transaction\n",
1014             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1015         seq_printf(seq, "  %lluus average transaction commit time\n",
1016                    div_u64(s->journal->j_average_commit_time, 1000));
1017         seq_printf(seq, "  %lu handles per transaction\n",
1018             s->stats->run.rs_handle_count / s->stats->ts_tid);
1019         seq_printf(seq, "  %lu blocks per transaction\n",
1020             s->stats->run.rs_blocks / s->stats->ts_tid);
1021         seq_printf(seq, "  %lu logged blocks per transaction\n",
1022             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1023         return 0;
1024 }
1025
1026 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1027 {
1028 }
1029
1030 static const struct seq_operations jbd2_seq_info_ops = {
1031         .start  = jbd2_seq_info_start,
1032         .next   = jbd2_seq_info_next,
1033         .stop   = jbd2_seq_info_stop,
1034         .show   = jbd2_seq_info_show,
1035 };
1036
1037 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1038 {
1039         journal_t *journal = PDE_DATA(inode);
1040         struct jbd2_stats_proc_session *s;
1041         int rc, size;
1042
1043         s = kmalloc(sizeof(*s), GFP_KERNEL);
1044         if (s == NULL)
1045                 return -ENOMEM;
1046         size = sizeof(struct transaction_stats_s);
1047         s->stats = kmalloc(size, GFP_KERNEL);
1048         if (s->stats == NULL) {
1049                 kfree(s);
1050                 return -ENOMEM;
1051         }
1052         spin_lock(&journal->j_history_lock);
1053         memcpy(s->stats, &journal->j_stats, size);
1054         s->journal = journal;
1055         spin_unlock(&journal->j_history_lock);
1056
1057         rc = seq_open(file, &jbd2_seq_info_ops);
1058         if (rc == 0) {
1059                 struct seq_file *m = file->private_data;
1060                 m->private = s;
1061         } else {
1062                 kfree(s->stats);
1063                 kfree(s);
1064         }
1065         return rc;
1066
1067 }
1068
1069 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1070 {
1071         struct seq_file *seq = file->private_data;
1072         struct jbd2_stats_proc_session *s = seq->private;
1073         kfree(s->stats);
1074         kfree(s);
1075         return seq_release(inode, file);
1076 }
1077
1078 static const struct file_operations jbd2_seq_info_fops = {
1079         .owner          = THIS_MODULE,
1080         .open           = jbd2_seq_info_open,
1081         .read           = seq_read,
1082         .llseek         = seq_lseek,
1083         .release        = jbd2_seq_info_release,
1084 };
1085
1086 static struct proc_dir_entry *proc_jbd2_stats;
1087
1088 static void jbd2_stats_proc_init(journal_t *journal)
1089 {
1090         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1091         if (journal->j_proc_entry) {
1092                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1093                                  &jbd2_seq_info_fops, journal);
1094         }
1095 }
1096
1097 static void jbd2_stats_proc_exit(journal_t *journal)
1098 {
1099         remove_proc_entry("info", journal->j_proc_entry);
1100         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1101 }
1102
1103 /* Minimum size of descriptor tag */
1104 static int jbd2_min_tag_size(void)
1105 {
1106         /*
1107          * Tag with 32-bit block numbers does not use last four bytes of the
1108          * structure
1109          */
1110         return sizeof(journal_block_tag_t) - 4;
1111 }
1112
1113 /*
1114  * Management for journal control blocks: functions to create and
1115  * destroy journal_t structures, and to initialise and read existing
1116  * journal blocks from disk.  */
1117
1118 /* First: create and setup a journal_t object in memory.  We initialise
1119  * very few fields yet: that has to wait until we have created the
1120  * journal structures from from scratch, or loaded them from disk. */
1121
1122 static journal_t *journal_init_common(struct block_device *bdev,
1123                         struct block_device *fs_dev,
1124                         unsigned long long start, int len, int blocksize)
1125 {
1126         static struct lock_class_key jbd2_trans_commit_key;
1127         journal_t *journal;
1128         int err;
1129         struct buffer_head *bh;
1130         int n;
1131
1132         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1133         if (!journal)
1134                 return NULL;
1135
1136         init_waitqueue_head(&journal->j_wait_transaction_locked);
1137         init_waitqueue_head(&journal->j_wait_done_commit);
1138         init_waitqueue_head(&journal->j_wait_commit);
1139         init_waitqueue_head(&journal->j_wait_updates);
1140         init_waitqueue_head(&journal->j_wait_reserved);
1141         mutex_init(&journal->j_barrier);
1142         mutex_init(&journal->j_checkpoint_mutex);
1143         spin_lock_init(&journal->j_revoke_lock);
1144         spin_lock_init(&journal->j_list_lock);
1145         rwlock_init(&journal->j_state_lock);
1146
1147         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1148         journal->j_min_batch_time = 0;
1149         journal->j_max_batch_time = 15000; /* 15ms */
1150         atomic_set(&journal->j_reserved_credits, 0);
1151
1152         /* The journal is marked for error until we succeed with recovery! */
1153         journal->j_flags = JBD2_ABORT;
1154
1155         /* Set up a default-sized revoke table for the new mount. */
1156         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1157         if (err)
1158                 goto err_cleanup;
1159
1160         spin_lock_init(&journal->j_history_lock);
1161
1162         lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1163                          &jbd2_trans_commit_key, 0);
1164
1165         /* journal descriptor can store up to n blocks -bzzz */
1166         journal->j_blocksize = blocksize;
1167         journal->j_dev = bdev;
1168         journal->j_fs_dev = fs_dev;
1169         journal->j_blk_offset = start;
1170         journal->j_maxlen = len;
1171         /* We need enough buffers to write out full descriptor block. */
1172         n = journal->j_blocksize / jbd2_min_tag_size();
1173         journal->j_wbufsize = n;
1174         journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1175                                         GFP_KERNEL);
1176         if (!journal->j_wbuf)
1177                 goto err_cleanup;
1178
1179         bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1180         if (!bh) {
1181                 pr_err("%s: Cannot get buffer for journal superblock\n",
1182                         __func__);
1183                 goto err_cleanup;
1184         }
1185         journal->j_sb_buffer = bh;
1186         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1187
1188         return journal;
1189
1190 err_cleanup:
1191         kfree(journal->j_wbuf);
1192         jbd2_journal_destroy_revoke(journal);
1193         kfree(journal);
1194         return NULL;
1195 }
1196
1197 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1198  *
1199  * Create a journal structure assigned some fixed set of disk blocks to
1200  * the journal.  We don't actually touch those disk blocks yet, but we
1201  * need to set up all of the mapping information to tell the journaling
1202  * system where the journal blocks are.
1203  *
1204  */
1205
1206 /**
1207  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1208  *  @bdev: Block device on which to create the journal
1209  *  @fs_dev: Device which hold journalled filesystem for this journal.
1210  *  @start: Block nr Start of journal.
1211  *  @len:  Length of the journal in blocks.
1212  *  @blocksize: blocksize of journalling device
1213  *
1214  *  Returns: a newly created journal_t *
1215  *
1216  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1217  *  range of blocks on an arbitrary block device.
1218  *
1219  */
1220 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1221                         struct block_device *fs_dev,
1222                         unsigned long long start, int len, int blocksize)
1223 {
1224         journal_t *journal;
1225
1226         journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1227         if (!journal)
1228                 return NULL;
1229
1230         bdevname(journal->j_dev, journal->j_devname);
1231         strreplace(journal->j_devname, '/', '!');
1232         jbd2_stats_proc_init(journal);
1233
1234         return journal;
1235 }
1236
1237 /**
1238  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1239  *  @inode: An inode to create the journal in
1240  *
1241  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1242  * the journal.  The inode must exist already, must support bmap() and
1243  * must have all data blocks preallocated.
1244  */
1245 journal_t *jbd2_journal_init_inode(struct inode *inode)
1246 {
1247         journal_t *journal;
1248         char *p;
1249         unsigned long long blocknr;
1250
1251         blocknr = bmap(inode, 0);
1252         if (!blocknr) {
1253                 pr_err("%s: Cannot locate journal superblock\n",
1254                         __func__);
1255                 return NULL;
1256         }
1257
1258         jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1259                   inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1260                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1261
1262         journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1263                         blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1264                         inode->i_sb->s_blocksize);
1265         if (!journal)
1266                 return NULL;
1267
1268         journal->j_inode = inode;
1269         bdevname(journal->j_dev, journal->j_devname);
1270         p = strreplace(journal->j_devname, '/', '!');
1271         sprintf(p, "-%lu", journal->j_inode->i_ino);
1272         jbd2_stats_proc_init(journal);
1273
1274         return journal;
1275 }
1276
1277 /*
1278  * If the journal init or create aborts, we need to mark the journal
1279  * superblock as being NULL to prevent the journal destroy from writing
1280  * back a bogus superblock.
1281  */
1282 static void journal_fail_superblock (journal_t *journal)
1283 {
1284         struct buffer_head *bh = journal->j_sb_buffer;
1285         brelse(bh);
1286         journal->j_sb_buffer = NULL;
1287 }
1288
1289 /*
1290  * Given a journal_t structure, initialise the various fields for
1291  * startup of a new journaling session.  We use this both when creating
1292  * a journal, and after recovering an old journal to reset it for
1293  * subsequent use.
1294  */
1295
1296 static int journal_reset(journal_t *journal)
1297 {
1298         journal_superblock_t *sb = journal->j_superblock;
1299         unsigned long long first, last;
1300
1301         first = be32_to_cpu(sb->s_first);
1302         last = be32_to_cpu(sb->s_maxlen);
1303         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1304                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1305                        first, last);
1306                 journal_fail_superblock(journal);
1307                 return -EINVAL;
1308         }
1309
1310         journal->j_first = first;
1311         journal->j_last = last;
1312
1313         journal->j_head = first;
1314         journal->j_tail = first;
1315         journal->j_free = last - first;
1316
1317         journal->j_tail_sequence = journal->j_transaction_sequence;
1318         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1319         journal->j_commit_request = journal->j_commit_sequence;
1320
1321         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1322
1323         /*
1324          * As a special case, if the on-disk copy is already marked as needing
1325          * no recovery (s_start == 0), then we can safely defer the superblock
1326          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1327          * attempting a write to a potential-readonly device.
1328          */
1329         if (sb->s_start == 0) {
1330                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1331                         "(start %ld, seq %u, errno %d)\n",
1332                         journal->j_tail, journal->j_tail_sequence,
1333                         journal->j_errno);
1334                 journal->j_flags |= JBD2_FLUSHED;
1335         } else {
1336                 /* Lock here to make assertions happy... */
1337                 mutex_lock_io(&journal->j_checkpoint_mutex);
1338                 /*
1339                  * Update log tail information. We use REQ_FUA since new
1340                  * transaction will start reusing journal space and so we
1341                  * must make sure information about current log tail is on
1342                  * disk before that.
1343                  */
1344                 jbd2_journal_update_sb_log_tail(journal,
1345                                                 journal->j_tail_sequence,
1346                                                 journal->j_tail,
1347                                                 REQ_SYNC | REQ_FUA);
1348                 mutex_unlock(&journal->j_checkpoint_mutex);
1349         }
1350         return jbd2_journal_start_thread(journal);
1351 }
1352
1353 /*
1354  * This function expects that the caller will have locked the journal
1355  * buffer head, and will return with it unlocked
1356  */
1357 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1358 {
1359         struct buffer_head *bh = journal->j_sb_buffer;
1360         journal_superblock_t *sb = journal->j_superblock;
1361         int ret;
1362
1363         /* Buffer got discarded which means block device got invalidated */
1364         if (!buffer_mapped(bh))
1365                 return -EIO;
1366
1367         trace_jbd2_write_superblock(journal, write_flags);
1368         if (!(journal->j_flags & JBD2_BARRIER))
1369                 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1370         if (buffer_write_io_error(bh)) {
1371                 /*
1372                  * Oh, dear.  A previous attempt to write the journal
1373                  * superblock failed.  This could happen because the
1374                  * USB device was yanked out.  Or it could happen to
1375                  * be a transient write error and maybe the block will
1376                  * be remapped.  Nothing we can do but to retry the
1377                  * write and hope for the best.
1378                  */
1379                 printk(KERN_ERR "JBD2: previous I/O error detected "
1380                        "for journal superblock update for %s.\n",
1381                        journal->j_devname);
1382                 clear_buffer_write_io_error(bh);
1383                 set_buffer_uptodate(bh);
1384         }
1385         if (jbd2_journal_has_csum_v2or3(journal))
1386                 sb->s_checksum = jbd2_superblock_csum(journal, sb);
1387         get_bh(bh);
1388         bh->b_end_io = end_buffer_write_sync;
1389         ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1390         wait_on_buffer(bh);
1391         if (buffer_write_io_error(bh)) {
1392                 clear_buffer_write_io_error(bh);
1393                 set_buffer_uptodate(bh);
1394                 ret = -EIO;
1395         }
1396         if (ret) {
1397                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1398                        "journal superblock for %s.\n", ret,
1399                        journal->j_devname);
1400                 jbd2_journal_abort(journal, ret);
1401         }
1402
1403         return ret;
1404 }
1405
1406 /**
1407  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1408  * @journal: The journal to update.
1409  * @tail_tid: TID of the new transaction at the tail of the log
1410  * @tail_block: The first block of the transaction at the tail of the log
1411  * @write_op: With which operation should we write the journal sb
1412  *
1413  * Update a journal's superblock information about log tail and write it to
1414  * disk, waiting for the IO to complete.
1415  */
1416 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1417                                      unsigned long tail_block, int write_op)
1418 {
1419         journal_superblock_t *sb = journal->j_superblock;
1420         int ret;
1421
1422         if (is_journal_aborted(journal))
1423                 return -EIO;
1424
1425         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1426         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1427                   tail_block, tail_tid);
1428
1429         lock_buffer(journal->j_sb_buffer);
1430         sb->s_sequence = cpu_to_be32(tail_tid);
1431         sb->s_start    = cpu_to_be32(tail_block);
1432
1433         ret = jbd2_write_superblock(journal, write_op);
1434         if (ret)
1435                 goto out;
1436
1437         /* Log is no longer empty */
1438         write_lock(&journal->j_state_lock);
1439         WARN_ON(!sb->s_sequence);
1440         journal->j_flags &= ~JBD2_FLUSHED;
1441         write_unlock(&journal->j_state_lock);
1442
1443 out:
1444         return ret;
1445 }
1446
1447 /**
1448  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1449  * @journal: The journal to update.
1450  * @write_op: With which operation should we write the journal sb
1451  *
1452  * Update a journal's dynamic superblock fields to show that journal is empty.
1453  * Write updated superblock to disk waiting for IO to complete.
1454  */
1455 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1456 {
1457         journal_superblock_t *sb = journal->j_superblock;
1458
1459         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1460         lock_buffer(journal->j_sb_buffer);
1461         if (sb->s_start == 0) {         /* Is it already empty? */
1462                 unlock_buffer(journal->j_sb_buffer);
1463                 return;
1464         }
1465
1466         jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1467                   journal->j_tail_sequence);
1468
1469         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1470         sb->s_start    = cpu_to_be32(0);
1471
1472         jbd2_write_superblock(journal, write_op);
1473
1474         /* Log is no longer empty */
1475         write_lock(&journal->j_state_lock);
1476         journal->j_flags |= JBD2_FLUSHED;
1477         write_unlock(&journal->j_state_lock);
1478 }
1479
1480
1481 /**
1482  * jbd2_journal_update_sb_errno() - Update error in the journal.
1483  * @journal: The journal to update.
1484  *
1485  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1486  * to complete.
1487  */
1488 void jbd2_journal_update_sb_errno(journal_t *journal)
1489 {
1490         journal_superblock_t *sb = journal->j_superblock;
1491         int errcode;
1492
1493         lock_buffer(journal->j_sb_buffer);
1494         errcode = journal->j_errno;
1495         if (errcode == -ESHUTDOWN)
1496                 errcode = 0;
1497         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1498         sb->s_errno    = cpu_to_be32(errcode);
1499
1500         jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1501 }
1502 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1503
1504 static int journal_revoke_records_per_block(journal_t *journal)
1505 {
1506         int record_size;
1507         int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1508
1509         if (jbd2_has_feature_64bit(journal))
1510                 record_size = 8;
1511         else
1512                 record_size = 4;
1513
1514         if (jbd2_journal_has_csum_v2or3(journal))
1515                 space -= sizeof(struct jbd2_journal_block_tail);
1516         return space / record_size;
1517 }
1518
1519 /*
1520  * Read the superblock for a given journal, performing initial
1521  * validation of the format.
1522  */
1523 static int journal_get_superblock(journal_t *journal)
1524 {
1525         struct buffer_head *bh;
1526         journal_superblock_t *sb;
1527         int err = -EIO;
1528
1529         bh = journal->j_sb_buffer;
1530
1531         J_ASSERT(bh != NULL);
1532         if (!buffer_uptodate(bh)) {
1533                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1534                 wait_on_buffer(bh);
1535                 if (!buffer_uptodate(bh)) {
1536                         printk(KERN_ERR
1537                                 "JBD2: IO error reading journal superblock\n");
1538                         goto out;
1539                 }
1540         }
1541
1542         if (buffer_verified(bh))
1543                 return 0;
1544
1545         sb = journal->j_superblock;
1546
1547         err = -EINVAL;
1548
1549         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1550             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1551                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1552                 goto out;
1553         }
1554
1555         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1556         case JBD2_SUPERBLOCK_V1:
1557                 journal->j_format_version = 1;
1558                 break;
1559         case JBD2_SUPERBLOCK_V2:
1560                 journal->j_format_version = 2;
1561                 break;
1562         default:
1563                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1564                 goto out;
1565         }
1566
1567         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1568                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1569         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1570                 printk(KERN_WARNING "JBD2: journal file too short\n");
1571                 goto out;
1572         }
1573
1574         if (be32_to_cpu(sb->s_first) == 0 ||
1575             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1576                 printk(KERN_WARNING
1577                         "JBD2: Invalid start block of journal: %u\n",
1578                         be32_to_cpu(sb->s_first));
1579                 goto out;
1580         }
1581
1582         if (jbd2_has_feature_csum2(journal) &&
1583             jbd2_has_feature_csum3(journal)) {
1584                 /* Can't have checksum v2 and v3 at the same time! */
1585                 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1586                        "at the same time!\n");
1587                 goto out;
1588         }
1589
1590         if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1591             jbd2_has_feature_checksum(journal)) {
1592                 /* Can't have checksum v1 and v2 on at the same time! */
1593                 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1594                        "at the same time!\n");
1595                 goto out;
1596         }
1597
1598         if (!jbd2_verify_csum_type(journal, sb)) {
1599                 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1600                 goto out;
1601         }
1602
1603         /* Load the checksum driver */
1604         if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1605                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1606                 if (IS_ERR(journal->j_chksum_driver)) {
1607                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1608                         err = PTR_ERR(journal->j_chksum_driver);
1609                         journal->j_chksum_driver = NULL;
1610                         goto out;
1611                 }
1612         }
1613
1614         if (jbd2_journal_has_csum_v2or3(journal)) {
1615                 /* Check superblock checksum */
1616                 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1617                         printk(KERN_ERR "JBD2: journal checksum error\n");
1618                         err = -EFSBADCRC;
1619                         goto out;
1620                 }
1621
1622                 /* Precompute checksum seed for all metadata */
1623                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1624                                                    sizeof(sb->s_uuid));
1625         }
1626
1627         journal->j_revoke_records_per_block =
1628                                 journal_revoke_records_per_block(journal);
1629         set_buffer_verified(bh);
1630
1631         return 0;
1632
1633 out:
1634         journal_fail_superblock(journal);
1635         return err;
1636 }
1637
1638 /*
1639  * Load the on-disk journal superblock and read the key fields into the
1640  * journal_t.
1641  */
1642
1643 static int load_superblock(journal_t *journal)
1644 {
1645         int err;
1646         journal_superblock_t *sb;
1647
1648         err = journal_get_superblock(journal);
1649         if (err)
1650                 return err;
1651
1652         sb = journal->j_superblock;
1653
1654         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1655         journal->j_tail = be32_to_cpu(sb->s_start);
1656         journal->j_first = be32_to_cpu(sb->s_first);
1657         journal->j_last = be32_to_cpu(sb->s_maxlen);
1658         journal->j_errno = be32_to_cpu(sb->s_errno);
1659
1660         return 0;
1661 }
1662
1663
1664 /**
1665  * int jbd2_journal_load() - Read journal from disk.
1666  * @journal: Journal to act on.
1667  *
1668  * Given a journal_t structure which tells us which disk blocks contain
1669  * a journal, read the journal from disk to initialise the in-memory
1670  * structures.
1671  */
1672 int jbd2_journal_load(journal_t *journal)
1673 {
1674         int err;
1675         journal_superblock_t *sb;
1676
1677         err = load_superblock(journal);
1678         if (err)
1679                 return err;
1680
1681         sb = journal->j_superblock;
1682         /* If this is a V2 superblock, then we have to check the
1683          * features flags on it. */
1684
1685         if (journal->j_format_version >= 2) {
1686                 if ((sb->s_feature_ro_compat &
1687                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1688                     (sb->s_feature_incompat &
1689                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1690                         printk(KERN_WARNING
1691                                 "JBD2: Unrecognised features on journal\n");
1692                         return -EINVAL;
1693                 }
1694         }
1695
1696         /*
1697          * Create a slab for this blocksize
1698          */
1699         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1700         if (err)
1701                 return err;
1702
1703         /* Let the recovery code check whether it needs to recover any
1704          * data from the journal. */
1705         if (jbd2_journal_recover(journal))
1706                 goto recovery_error;
1707
1708         if (journal->j_failed_commit) {
1709                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1710                        "is corrupt.\n", journal->j_failed_commit,
1711                        journal->j_devname);
1712                 return -EFSCORRUPTED;
1713         }
1714         /*
1715          * clear JBD2_ABORT flag initialized in journal_init_common
1716          * here to update log tail information with the newest seq.
1717          */
1718         journal->j_flags &= ~JBD2_ABORT;
1719
1720         /* OK, we've finished with the dynamic journal bits:
1721          * reinitialise the dynamic contents of the superblock in memory
1722          * and reset them on disk. */
1723         if (journal_reset(journal))
1724                 goto recovery_error;
1725
1726         journal->j_flags |= JBD2_LOADED;
1727         return 0;
1728
1729 recovery_error:
1730         printk(KERN_WARNING "JBD2: recovery failed\n");
1731         return -EIO;
1732 }
1733
1734 /**
1735  * void jbd2_journal_destroy() - Release a journal_t structure.
1736  * @journal: Journal to act on.
1737  *
1738  * Release a journal_t structure once it is no longer in use by the
1739  * journaled object.
1740  * Return <0 if we couldn't clean up the journal.
1741  */
1742 int jbd2_journal_destroy(journal_t *journal)
1743 {
1744         int err = 0;
1745
1746         /* Wait for the commit thread to wake up and die. */
1747         journal_kill_thread(journal);
1748
1749         /* Force a final log commit */
1750         if (journal->j_running_transaction)
1751                 jbd2_journal_commit_transaction(journal);
1752
1753         /* Force any old transactions to disk */
1754
1755         /* Totally anal locking here... */
1756         spin_lock(&journal->j_list_lock);
1757         while (journal->j_checkpoint_transactions != NULL) {
1758                 spin_unlock(&journal->j_list_lock);
1759                 mutex_lock_io(&journal->j_checkpoint_mutex);
1760                 err = jbd2_log_do_checkpoint(journal);
1761                 mutex_unlock(&journal->j_checkpoint_mutex);
1762                 /*
1763                  * If checkpointing failed, just free the buffers to avoid
1764                  * looping forever
1765                  */
1766                 if (err) {
1767                         jbd2_journal_destroy_checkpoint(journal);
1768                         spin_lock(&journal->j_list_lock);
1769                         break;
1770                 }
1771                 spin_lock(&journal->j_list_lock);
1772         }
1773
1774         J_ASSERT(journal->j_running_transaction == NULL);
1775         J_ASSERT(journal->j_committing_transaction == NULL);
1776         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1777         spin_unlock(&journal->j_list_lock);
1778
1779         if (journal->j_sb_buffer) {
1780                 if (!is_journal_aborted(journal)) {
1781                         mutex_lock_io(&journal->j_checkpoint_mutex);
1782
1783                         write_lock(&journal->j_state_lock);
1784                         journal->j_tail_sequence =
1785                                 ++journal->j_transaction_sequence;
1786                         write_unlock(&journal->j_state_lock);
1787
1788                         jbd2_mark_journal_empty(journal,
1789                                         REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1790                         mutex_unlock(&journal->j_checkpoint_mutex);
1791                 } else
1792                         err = -EIO;
1793                 brelse(journal->j_sb_buffer);
1794         }
1795
1796         if (journal->j_proc_entry)
1797                 jbd2_stats_proc_exit(journal);
1798         iput(journal->j_inode);
1799         if (journal->j_revoke)
1800                 jbd2_journal_destroy_revoke(journal);
1801         if (journal->j_chksum_driver)
1802                 crypto_free_shash(journal->j_chksum_driver);
1803         kfree(journal->j_wbuf);
1804         kfree(journal);
1805
1806         return err;
1807 }
1808
1809
1810 /**
1811  *int jbd2_journal_check_used_features () - Check if features specified are used.
1812  * @journal: Journal to check.
1813  * @compat: bitmask of compatible features
1814  * @ro: bitmask of features that force read-only mount
1815  * @incompat: bitmask of incompatible features
1816  *
1817  * Check whether the journal uses all of a given set of
1818  * features.  Return true (non-zero) if it does.
1819  **/
1820
1821 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1822                                  unsigned long ro, unsigned long incompat)
1823 {
1824         journal_superblock_t *sb;
1825
1826         if (!compat && !ro && !incompat)
1827                 return 1;
1828         /* Load journal superblock if it is not loaded yet. */
1829         if (journal->j_format_version == 0 &&
1830             journal_get_superblock(journal) != 0)
1831                 return 0;
1832         if (journal->j_format_version == 1)
1833                 return 0;
1834
1835         sb = journal->j_superblock;
1836
1837         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1838             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1839             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1840                 return 1;
1841
1842         return 0;
1843 }
1844
1845 /**
1846  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1847  * @journal: Journal to check.
1848  * @compat: bitmask of compatible features
1849  * @ro: bitmask of features that force read-only mount
1850  * @incompat: bitmask of incompatible features
1851  *
1852  * Check whether the journaling code supports the use of
1853  * all of a given set of features on this journal.  Return true
1854  * (non-zero) if it can. */
1855
1856 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1857                                       unsigned long ro, unsigned long incompat)
1858 {
1859         if (!compat && !ro && !incompat)
1860                 return 1;
1861
1862         /* We can support any known requested features iff the
1863          * superblock is in version 2.  Otherwise we fail to support any
1864          * extended sb features. */
1865
1866         if (journal->j_format_version != 2)
1867                 return 0;
1868
1869         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1870             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1871             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1872                 return 1;
1873
1874         return 0;
1875 }
1876
1877 /**
1878  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1879  * @journal: Journal to act on.
1880  * @compat: bitmask of compatible features
1881  * @ro: bitmask of features that force read-only mount
1882  * @incompat: bitmask of incompatible features
1883  *
1884  * Mark a given journal feature as present on the
1885  * superblock.  Returns true if the requested features could be set.
1886  *
1887  */
1888
1889 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1890                           unsigned long ro, unsigned long incompat)
1891 {
1892 #define INCOMPAT_FEATURE_ON(f) \
1893                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1894 #define COMPAT_FEATURE_ON(f) \
1895                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1896         journal_superblock_t *sb;
1897
1898         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1899                 return 1;
1900
1901         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1902                 return 0;
1903
1904         /* If enabling v2 checksums, turn on v3 instead */
1905         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1906                 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1907                 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1908         }
1909
1910         /* Asking for checksumming v3 and v1?  Only give them v3. */
1911         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1912             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1913                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1914
1915         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1916                   compat, ro, incompat);
1917
1918         sb = journal->j_superblock;
1919
1920         /* Load the checksum driver if necessary */
1921         if ((journal->j_chksum_driver == NULL) &&
1922             INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1923                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1924                 if (IS_ERR(journal->j_chksum_driver)) {
1925                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1926                         journal->j_chksum_driver = NULL;
1927                         return 0;
1928                 }
1929                 /* Precompute checksum seed for all metadata */
1930                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1931                                                    sizeof(sb->s_uuid));
1932         }
1933
1934         lock_buffer(journal->j_sb_buffer);
1935
1936         /* If enabling v3 checksums, update superblock */
1937         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1938                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1939                 sb->s_feature_compat &=
1940                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1941         }
1942
1943         /* If enabling v1 checksums, downgrade superblock */
1944         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1945                 sb->s_feature_incompat &=
1946                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1947                                      JBD2_FEATURE_INCOMPAT_CSUM_V3);
1948
1949         sb->s_feature_compat    |= cpu_to_be32(compat);
1950         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1951         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1952         unlock_buffer(journal->j_sb_buffer);
1953         journal->j_revoke_records_per_block =
1954                                 journal_revoke_records_per_block(journal);
1955
1956         return 1;
1957 #undef COMPAT_FEATURE_ON
1958 #undef INCOMPAT_FEATURE_ON
1959 }
1960
1961 /*
1962  * jbd2_journal_clear_features () - Clear a given journal feature in the
1963  *                                  superblock
1964  * @journal: Journal to act on.
1965  * @compat: bitmask of compatible features
1966  * @ro: bitmask of features that force read-only mount
1967  * @incompat: bitmask of incompatible features
1968  *
1969  * Clear a given journal feature as present on the
1970  * superblock.
1971  */
1972 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1973                                 unsigned long ro, unsigned long incompat)
1974 {
1975         journal_superblock_t *sb;
1976
1977         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1978                   compat, ro, incompat);
1979
1980         sb = journal->j_superblock;
1981
1982         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1983         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1984         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1985         journal->j_revoke_records_per_block =
1986                                 journal_revoke_records_per_block(journal);
1987 }
1988 EXPORT_SYMBOL(jbd2_journal_clear_features);
1989
1990 /**
1991  * int jbd2_journal_flush () - Flush journal
1992  * @journal: Journal to act on.
1993  *
1994  * Flush all data for a given journal to disk and empty the journal.
1995  * Filesystems can use this when remounting readonly to ensure that
1996  * recovery does not need to happen on remount.
1997  */
1998
1999 int jbd2_journal_flush(journal_t *journal)
2000 {
2001         int err = 0;
2002         transaction_t *transaction = NULL;
2003
2004         write_lock(&journal->j_state_lock);
2005
2006         /* Force everything buffered to the log... */
2007         if (journal->j_running_transaction) {
2008                 transaction = journal->j_running_transaction;
2009                 __jbd2_log_start_commit(journal, transaction->t_tid);
2010         } else if (journal->j_committing_transaction)
2011                 transaction = journal->j_committing_transaction;
2012
2013         /* Wait for the log commit to complete... */
2014         if (transaction) {
2015                 tid_t tid = transaction->t_tid;
2016
2017                 write_unlock(&journal->j_state_lock);
2018                 jbd2_log_wait_commit(journal, tid);
2019         } else {
2020                 write_unlock(&journal->j_state_lock);
2021         }
2022
2023         /* ...and flush everything in the log out to disk. */
2024         spin_lock(&journal->j_list_lock);
2025         while (!err && journal->j_checkpoint_transactions != NULL) {
2026                 spin_unlock(&journal->j_list_lock);
2027                 mutex_lock_io(&journal->j_checkpoint_mutex);
2028                 err = jbd2_log_do_checkpoint(journal);
2029                 mutex_unlock(&journal->j_checkpoint_mutex);
2030                 spin_lock(&journal->j_list_lock);
2031         }
2032         spin_unlock(&journal->j_list_lock);
2033
2034         if (is_journal_aborted(journal))
2035                 return -EIO;
2036
2037         mutex_lock_io(&journal->j_checkpoint_mutex);
2038         if (!err) {
2039                 err = jbd2_cleanup_journal_tail(journal);
2040                 if (err < 0) {
2041                         mutex_unlock(&journal->j_checkpoint_mutex);
2042                         goto out;
2043                 }
2044                 err = 0;
2045         }
2046
2047         /* Finally, mark the journal as really needing no recovery.
2048          * This sets s_start==0 in the underlying superblock, which is
2049          * the magic code for a fully-recovered superblock.  Any future
2050          * commits of data to the journal will restore the current
2051          * s_start value. */
2052         jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2053         mutex_unlock(&journal->j_checkpoint_mutex);
2054         write_lock(&journal->j_state_lock);
2055         J_ASSERT(!journal->j_running_transaction);
2056         J_ASSERT(!journal->j_committing_transaction);
2057         J_ASSERT(!journal->j_checkpoint_transactions);
2058         J_ASSERT(journal->j_head == journal->j_tail);
2059         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2060         write_unlock(&journal->j_state_lock);
2061 out:
2062         return err;
2063 }
2064
2065 /**
2066  * int jbd2_journal_wipe() - Wipe journal contents
2067  * @journal: Journal to act on.
2068  * @write: flag (see below)
2069  *
2070  * Wipe out all of the contents of a journal, safely.  This will produce
2071  * a warning if the journal contains any valid recovery information.
2072  * Must be called between journal_init_*() and jbd2_journal_load().
2073  *
2074  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2075  * we merely suppress recovery.
2076  */
2077
2078 int jbd2_journal_wipe(journal_t *journal, int write)
2079 {
2080         int err = 0;
2081
2082         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2083
2084         err = load_superblock(journal);
2085         if (err)
2086                 return err;
2087
2088         if (!journal->j_tail)
2089                 goto no_recovery;
2090
2091         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2092                 write ? "Clearing" : "Ignoring");
2093
2094         err = jbd2_journal_skip_recovery(journal);
2095         if (write) {
2096                 /* Lock to make assertions happy... */
2097                 mutex_lock_io(&journal->j_checkpoint_mutex);
2098                 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2099                 mutex_unlock(&journal->j_checkpoint_mutex);
2100         }
2101
2102  no_recovery:
2103         return err;
2104 }
2105
2106 /*
2107  * Journal abort has very specific semantics, which we describe
2108  * for journal abort.
2109  *
2110  * Two internal functions, which provide abort to the jbd layer
2111  * itself are here.
2112  */
2113
2114 /*
2115  * Quick version for internal journal use (doesn't lock the journal).
2116  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2117  * and don't attempt to make any other journal updates.
2118  */
2119 void __jbd2_journal_abort_hard(journal_t *journal)
2120 {
2121         transaction_t *transaction;
2122
2123         if (journal->j_flags & JBD2_ABORT)
2124                 return;
2125
2126         printk(KERN_ERR "Aborting journal on device %s.\n",
2127                journal->j_devname);
2128
2129         write_lock(&journal->j_state_lock);
2130         journal->j_flags |= JBD2_ABORT;
2131         transaction = journal->j_running_transaction;
2132         if (transaction)
2133                 __jbd2_log_start_commit(journal, transaction->t_tid);
2134         write_unlock(&journal->j_state_lock);
2135 }
2136
2137 /* Soft abort: record the abort error status in the journal superblock,
2138  * but don't do any other IO. */
2139 static void __journal_abort_soft (journal_t *journal, int errno)
2140 {
2141         int old_errno;
2142
2143         write_lock(&journal->j_state_lock);
2144         old_errno = journal->j_errno;
2145         if (!journal->j_errno || errno == -ESHUTDOWN)
2146                 journal->j_errno = errno;
2147
2148         if (journal->j_flags & JBD2_ABORT) {
2149                 write_unlock(&journal->j_state_lock);
2150                 if (!old_errno && old_errno != -ESHUTDOWN &&
2151                     errno == -ESHUTDOWN)
2152                         jbd2_journal_update_sb_errno(journal);
2153                 return;
2154         }
2155         write_unlock(&journal->j_state_lock);
2156
2157         __jbd2_journal_abort_hard(journal);
2158
2159         jbd2_journal_update_sb_errno(journal);
2160         write_lock(&journal->j_state_lock);
2161         journal->j_flags |= JBD2_REC_ERR;
2162         write_unlock(&journal->j_state_lock);
2163 }
2164
2165 /**
2166  * void jbd2_journal_abort () - Shutdown the journal immediately.
2167  * @journal: the journal to shutdown.
2168  * @errno:   an error number to record in the journal indicating
2169  *           the reason for the shutdown.
2170  *
2171  * Perform a complete, immediate shutdown of the ENTIRE
2172  * journal (not of a single transaction).  This operation cannot be
2173  * undone without closing and reopening the journal.
2174  *
2175  * The jbd2_journal_abort function is intended to support higher level error
2176  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2177  * mode.
2178  *
2179  * Journal abort has very specific semantics.  Any existing dirty,
2180  * unjournaled buffers in the main filesystem will still be written to
2181  * disk by bdflush, but the journaling mechanism will be suspended
2182  * immediately and no further transaction commits will be honoured.
2183  *
2184  * Any dirty, journaled buffers will be written back to disk without
2185  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2186  * filesystem, but we _do_ attempt to leave as much data as possible
2187  * behind for fsck to use for cleanup.
2188  *
2189  * Any attempt to get a new transaction handle on a journal which is in
2190  * ABORT state will just result in an -EROFS error return.  A
2191  * jbd2_journal_stop on an existing handle will return -EIO if we have
2192  * entered abort state during the update.
2193  *
2194  * Recursive transactions are not disturbed by journal abort until the
2195  * final jbd2_journal_stop, which will receive the -EIO error.
2196  *
2197  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2198  * which will be recorded (if possible) in the journal superblock.  This
2199  * allows a client to record failure conditions in the middle of a
2200  * transaction without having to complete the transaction to record the
2201  * failure to disk.  ext3_error, for example, now uses this
2202  * functionality.
2203  *
2204  */
2205
2206 void jbd2_journal_abort(journal_t *journal, int errno)
2207 {
2208         __journal_abort_soft(journal, errno);
2209 }
2210
2211 /**
2212  * int jbd2_journal_errno () - returns the journal's error state.
2213  * @journal: journal to examine.
2214  *
2215  * This is the errno number set with jbd2_journal_abort(), the last
2216  * time the journal was mounted - if the journal was stopped
2217  * without calling abort this will be 0.
2218  *
2219  * If the journal has been aborted on this mount time -EROFS will
2220  * be returned.
2221  */
2222 int jbd2_journal_errno(journal_t *journal)
2223 {
2224         int err;
2225
2226         read_lock(&journal->j_state_lock);
2227         if (journal->j_flags & JBD2_ABORT)
2228                 err = -EROFS;
2229         else
2230                 err = journal->j_errno;
2231         read_unlock(&journal->j_state_lock);
2232         return err;
2233 }
2234
2235 /**
2236  * int jbd2_journal_clear_err () - clears the journal's error state
2237  * @journal: journal to act on.
2238  *
2239  * An error must be cleared or acked to take a FS out of readonly
2240  * mode.
2241  */
2242 int jbd2_journal_clear_err(journal_t *journal)
2243 {
2244         int err = 0;
2245
2246         write_lock(&journal->j_state_lock);
2247         if (journal->j_flags & JBD2_ABORT)
2248                 err = -EROFS;
2249         else
2250                 journal->j_errno = 0;
2251         write_unlock(&journal->j_state_lock);
2252         return err;
2253 }
2254
2255 /**
2256  * void jbd2_journal_ack_err() - Ack journal err.
2257  * @journal: journal to act on.
2258  *
2259  * An error must be cleared or acked to take a FS out of readonly
2260  * mode.
2261  */
2262 void jbd2_journal_ack_err(journal_t *journal)
2263 {
2264         write_lock(&journal->j_state_lock);
2265         if (journal->j_errno)
2266                 journal->j_flags |= JBD2_ACK_ERR;
2267         write_unlock(&journal->j_state_lock);
2268 }
2269
2270 int jbd2_journal_blocks_per_page(struct inode *inode)
2271 {
2272         return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2273 }
2274
2275 /*
2276  * helper functions to deal with 32 or 64bit block numbers.
2277  */
2278 size_t journal_tag_bytes(journal_t *journal)
2279 {
2280         size_t sz;
2281
2282         if (jbd2_has_feature_csum3(journal))
2283                 return sizeof(journal_block_tag3_t);
2284
2285         sz = sizeof(journal_block_tag_t);
2286
2287         if (jbd2_has_feature_csum2(journal))
2288                 sz += sizeof(__u16);
2289
2290         if (jbd2_has_feature_64bit(journal))
2291                 return sz;
2292         else
2293                 return sz - sizeof(__u32);
2294 }
2295
2296 /*
2297  * JBD memory management
2298  *
2299  * These functions are used to allocate block-sized chunks of memory
2300  * used for making copies of buffer_head data.  Very often it will be
2301  * page-sized chunks of data, but sometimes it will be in
2302  * sub-page-size chunks.  (For example, 16k pages on Power systems
2303  * with a 4k block file system.)  For blocks smaller than a page, we
2304  * use a SLAB allocator.  There are slab caches for each block size,
2305  * which are allocated at mount time, if necessary, and we only free
2306  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2307  * this reason we don't need to a mutex to protect access to
2308  * jbd2_slab[] allocating or releasing memory; only in
2309  * jbd2_journal_create_slab().
2310  */
2311 #define JBD2_MAX_SLABS 8
2312 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2313
2314 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2315         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2316         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2317 };
2318
2319
2320 static void jbd2_journal_destroy_slabs(void)
2321 {
2322         int i;
2323
2324         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2325                 kmem_cache_destroy(jbd2_slab[i]);
2326                 jbd2_slab[i] = NULL;
2327         }
2328 }
2329
2330 static int jbd2_journal_create_slab(size_t size)
2331 {
2332         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2333         int i = order_base_2(size) - 10;
2334         size_t slab_size;
2335
2336         if (size == PAGE_SIZE)
2337                 return 0;
2338
2339         if (i >= JBD2_MAX_SLABS)
2340                 return -EINVAL;
2341
2342         if (unlikely(i < 0))
2343                 i = 0;
2344         mutex_lock(&jbd2_slab_create_mutex);
2345         if (jbd2_slab[i]) {
2346                 mutex_unlock(&jbd2_slab_create_mutex);
2347                 return 0;       /* Already created */
2348         }
2349
2350         slab_size = 1 << (i+10);
2351         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2352                                          slab_size, 0, NULL);
2353         mutex_unlock(&jbd2_slab_create_mutex);
2354         if (!jbd2_slab[i]) {
2355                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2356                 return -ENOMEM;
2357         }
2358         return 0;
2359 }
2360
2361 static struct kmem_cache *get_slab(size_t size)
2362 {
2363         int i = order_base_2(size) - 10;
2364
2365         BUG_ON(i >= JBD2_MAX_SLABS);
2366         if (unlikely(i < 0))
2367                 i = 0;
2368         BUG_ON(jbd2_slab[i] == NULL);
2369         return jbd2_slab[i];
2370 }
2371
2372 void *jbd2_alloc(size_t size, gfp_t flags)
2373 {
2374         void *ptr;
2375
2376         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2377
2378         if (size < PAGE_SIZE)
2379                 ptr = kmem_cache_alloc(get_slab(size), flags);
2380         else
2381                 ptr = (void *)__get_free_pages(flags, get_order(size));
2382
2383         /* Check alignment; SLUB has gotten this wrong in the past,
2384          * and this can lead to user data corruption! */
2385         BUG_ON(((unsigned long) ptr) & (size-1));
2386
2387         return ptr;
2388 }
2389
2390 void jbd2_free(void *ptr, size_t size)
2391 {
2392         if (size < PAGE_SIZE)
2393                 kmem_cache_free(get_slab(size), ptr);
2394         else
2395                 free_pages((unsigned long)ptr, get_order(size));
2396 };
2397
2398 /*
2399  * Journal_head storage management
2400  */
2401 static struct kmem_cache *jbd2_journal_head_cache;
2402 #ifdef CONFIG_JBD2_DEBUG
2403 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2404 #endif
2405
2406 static int __init jbd2_journal_init_journal_head_cache(void)
2407 {
2408         J_ASSERT(!jbd2_journal_head_cache);
2409         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2410                                 sizeof(struct journal_head),
2411                                 0,              /* offset */
2412                                 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2413                                 NULL);          /* ctor */
2414         if (!jbd2_journal_head_cache) {
2415                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2416                 return -ENOMEM;
2417         }
2418         return 0;
2419 }
2420
2421 static void jbd2_journal_destroy_journal_head_cache(void)
2422 {
2423         kmem_cache_destroy(jbd2_journal_head_cache);
2424         jbd2_journal_head_cache = NULL;
2425 }
2426
2427 /*
2428  * journal_head splicing and dicing
2429  */
2430 static struct journal_head *journal_alloc_journal_head(void)
2431 {
2432         struct journal_head *ret;
2433
2434 #ifdef CONFIG_JBD2_DEBUG
2435         atomic_inc(&nr_journal_heads);
2436 #endif
2437         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2438         if (!ret) {
2439                 jbd_debug(1, "out of memory for journal_head\n");
2440                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2441                 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2442                                 GFP_NOFS | __GFP_NOFAIL);
2443         }
2444         if (ret)
2445                 spin_lock_init(&ret->b_state_lock);
2446         return ret;
2447 }
2448
2449 static void journal_free_journal_head(struct journal_head *jh)
2450 {
2451 #ifdef CONFIG_JBD2_DEBUG
2452         atomic_dec(&nr_journal_heads);
2453         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2454 #endif
2455         kmem_cache_free(jbd2_journal_head_cache, jh);
2456 }
2457
2458 /*
2459  * A journal_head is attached to a buffer_head whenever JBD has an
2460  * interest in the buffer.
2461  *
2462  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2463  * is set.  This bit is tested in core kernel code where we need to take
2464  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2465  * there.
2466  *
2467  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2468  *
2469  * When a buffer has its BH_JBD bit set it is immune from being released by
2470  * core kernel code, mainly via ->b_count.
2471  *
2472  * A journal_head is detached from its buffer_head when the journal_head's
2473  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2474  * transaction (b_cp_transaction) hold their references to b_jcount.
2475  *
2476  * Various places in the kernel want to attach a journal_head to a buffer_head
2477  * _before_ attaching the journal_head to a transaction.  To protect the
2478  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2479  * journal_head's b_jcount refcount by one.  The caller must call
2480  * jbd2_journal_put_journal_head() to undo this.
2481  *
2482  * So the typical usage would be:
2483  *
2484  *      (Attach a journal_head if needed.  Increments b_jcount)
2485  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2486  *      ...
2487  *      (Get another reference for transaction)
2488  *      jbd2_journal_grab_journal_head(bh);
2489  *      jh->b_transaction = xxx;
2490  *      (Put original reference)
2491  *      jbd2_journal_put_journal_head(jh);
2492  */
2493
2494 /*
2495  * Give a buffer_head a journal_head.
2496  *
2497  * May sleep.
2498  */
2499 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2500 {
2501         struct journal_head *jh;
2502         struct journal_head *new_jh = NULL;
2503
2504 repeat:
2505         if (!buffer_jbd(bh))
2506                 new_jh = journal_alloc_journal_head();
2507
2508         jbd_lock_bh_journal_head(bh);
2509         if (buffer_jbd(bh)) {
2510                 jh = bh2jh(bh);
2511         } else {
2512                 J_ASSERT_BH(bh,
2513                         (atomic_read(&bh->b_count) > 0) ||
2514                         (bh->b_page && bh->b_page->mapping));
2515
2516                 if (!new_jh) {
2517                         jbd_unlock_bh_journal_head(bh);
2518                         goto repeat;
2519                 }
2520
2521                 jh = new_jh;
2522                 new_jh = NULL;          /* We consumed it */
2523                 set_buffer_jbd(bh);
2524                 bh->b_private = jh;
2525                 jh->b_bh = bh;
2526                 get_bh(bh);
2527                 BUFFER_TRACE(bh, "added journal_head");
2528         }
2529         jh->b_jcount++;
2530         jbd_unlock_bh_journal_head(bh);
2531         if (new_jh)
2532                 journal_free_journal_head(new_jh);
2533         return bh->b_private;
2534 }
2535
2536 /*
2537  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2538  * having a journal_head, return NULL
2539  */
2540 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2541 {
2542         struct journal_head *jh = NULL;
2543
2544         jbd_lock_bh_journal_head(bh);
2545         if (buffer_jbd(bh)) {
2546                 jh = bh2jh(bh);
2547                 jh->b_jcount++;
2548         }
2549         jbd_unlock_bh_journal_head(bh);
2550         return jh;
2551 }
2552
2553 static void __journal_remove_journal_head(struct buffer_head *bh)
2554 {
2555         struct journal_head *jh = bh2jh(bh);
2556
2557         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2558         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2559         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2560         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2561         J_ASSERT_BH(bh, buffer_jbd(bh));
2562         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2563         BUFFER_TRACE(bh, "remove journal_head");
2564
2565         /* Unlink before dropping the lock */
2566         bh->b_private = NULL;
2567         jh->b_bh = NULL;        /* debug, really */
2568         clear_buffer_jbd(bh);
2569 }
2570
2571 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2572 {
2573         if (jh->b_frozen_data) {
2574                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2575                 jbd2_free(jh->b_frozen_data, b_size);
2576         }
2577         if (jh->b_committed_data) {
2578                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2579                 jbd2_free(jh->b_committed_data, b_size);
2580         }
2581         journal_free_journal_head(jh);
2582 }
2583
2584 /*
2585  * Drop a reference on the passed journal_head.  If it fell to zero then
2586  * release the journal_head from the buffer_head.
2587  */
2588 void jbd2_journal_put_journal_head(struct journal_head *jh)
2589 {
2590         struct buffer_head *bh = jh2bh(jh);
2591
2592         jbd_lock_bh_journal_head(bh);
2593         J_ASSERT_JH(jh, jh->b_jcount > 0);
2594         --jh->b_jcount;
2595         if (!jh->b_jcount) {
2596                 __journal_remove_journal_head(bh);
2597                 jbd_unlock_bh_journal_head(bh);
2598                 journal_release_journal_head(jh, bh->b_size);
2599                 __brelse(bh);
2600         } else {
2601                 jbd_unlock_bh_journal_head(bh);
2602         }
2603 }
2604
2605 /*
2606  * Initialize jbd inode head
2607  */
2608 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2609 {
2610         jinode->i_transaction = NULL;
2611         jinode->i_next_transaction = NULL;
2612         jinode->i_vfs_inode = inode;
2613         jinode->i_flags = 0;
2614         jinode->i_dirty_start = 0;
2615         jinode->i_dirty_end = 0;
2616         INIT_LIST_HEAD(&jinode->i_list);
2617 }
2618
2619 /*
2620  * Function to be called before we start removing inode from memory (i.e.,
2621  * clear_inode() is a fine place to be called from). It removes inode from
2622  * transaction's lists.
2623  */
2624 void jbd2_journal_release_jbd_inode(journal_t *journal,
2625                                     struct jbd2_inode *jinode)
2626 {
2627         if (!journal)
2628                 return;
2629 restart:
2630         spin_lock(&journal->j_list_lock);
2631         /* Is commit writing out inode - we have to wait */
2632         if (jinode->i_flags & JI_COMMIT_RUNNING) {
2633                 wait_queue_head_t *wq;
2634                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2635                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2636                 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2637                 spin_unlock(&journal->j_list_lock);
2638                 schedule();
2639                 finish_wait(wq, &wait.wq_entry);
2640                 goto restart;
2641         }
2642
2643         if (jinode->i_transaction) {
2644                 list_del(&jinode->i_list);
2645                 jinode->i_transaction = NULL;
2646         }
2647         spin_unlock(&journal->j_list_lock);
2648 }
2649
2650
2651 #ifdef CONFIG_PROC_FS
2652
2653 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2654
2655 static void __init jbd2_create_jbd_stats_proc_entry(void)
2656 {
2657         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2658 }
2659
2660 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2661 {
2662         if (proc_jbd2_stats)
2663                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2664 }
2665
2666 #else
2667
2668 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2669 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2670
2671 #endif
2672
2673 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2674
2675 static int __init jbd2_journal_init_inode_cache(void)
2676 {
2677         J_ASSERT(!jbd2_inode_cache);
2678         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2679         if (!jbd2_inode_cache) {
2680                 pr_emerg("JBD2: failed to create inode cache\n");
2681                 return -ENOMEM;
2682         }
2683         return 0;
2684 }
2685
2686 static int __init jbd2_journal_init_handle_cache(void)
2687 {
2688         J_ASSERT(!jbd2_handle_cache);
2689         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2690         if (!jbd2_handle_cache) {
2691                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2692                 return -ENOMEM;
2693         }
2694         return 0;
2695 }
2696
2697 static void jbd2_journal_destroy_inode_cache(void)
2698 {
2699         kmem_cache_destroy(jbd2_inode_cache);
2700         jbd2_inode_cache = NULL;
2701 }
2702
2703 static void jbd2_journal_destroy_handle_cache(void)
2704 {
2705         kmem_cache_destroy(jbd2_handle_cache);
2706         jbd2_handle_cache = NULL;
2707 }
2708
2709 /*
2710  * Module startup and shutdown
2711  */
2712
2713 static int __init journal_init_caches(void)
2714 {
2715         int ret;
2716
2717         ret = jbd2_journal_init_revoke_record_cache();
2718         if (ret == 0)
2719                 ret = jbd2_journal_init_revoke_table_cache();
2720         if (ret == 0)
2721                 ret = jbd2_journal_init_journal_head_cache();
2722         if (ret == 0)
2723                 ret = jbd2_journal_init_handle_cache();
2724         if (ret == 0)
2725                 ret = jbd2_journal_init_inode_cache();
2726         if (ret == 0)
2727                 ret = jbd2_journal_init_transaction_cache();
2728         return ret;
2729 }
2730
2731 static void jbd2_journal_destroy_caches(void)
2732 {
2733         jbd2_journal_destroy_revoke_record_cache();
2734         jbd2_journal_destroy_revoke_table_cache();
2735         jbd2_journal_destroy_journal_head_cache();
2736         jbd2_journal_destroy_handle_cache();
2737         jbd2_journal_destroy_inode_cache();
2738         jbd2_journal_destroy_transaction_cache();
2739         jbd2_journal_destroy_slabs();
2740 }
2741
2742 static int __init journal_init(void)
2743 {
2744         int ret;
2745
2746         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2747
2748         ret = journal_init_caches();
2749         if (ret == 0) {
2750                 jbd2_create_jbd_stats_proc_entry();
2751         } else {
2752                 jbd2_journal_destroy_caches();
2753         }
2754         return ret;
2755 }
2756
2757 static void __exit journal_exit(void)
2758 {
2759 #ifdef CONFIG_JBD2_DEBUG
2760         int n = atomic_read(&nr_journal_heads);
2761         if (n)
2762                 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2763 #endif
2764         jbd2_remove_jbd_stats_proc_entry();
2765         jbd2_journal_destroy_caches();
2766 }
2767
2768 MODULE_LICENSE("GPL");
2769 module_init(journal_init);
2770 module_exit(journal_exit);
2771