]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/nfs/dir.c
NFS: Switch readdir to using iterate_shared()
[linux.git] / fs / nfs / dir.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996  Added silly rename for unlink   --okir
10  * 28 Sep 1996  Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de 
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999  Cache readdir lookups in the page cache. -DaveM
19  */
20
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
41
42 #include "delegation.h"
43 #include "iostat.h"
44 #include "internal.h"
45 #include "fscache.h"
46
47 #include "nfstrace.h"
48
49 /* #define NFS_DEBUG_VERBOSE 1 */
50
51 static int nfs_opendir(struct inode *, struct file *);
52 static int nfs_closedir(struct inode *, struct file *);
53 static int nfs_readdir(struct file *, struct dir_context *);
54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56 static void nfs_readdir_clear_array(struct page*);
57
58 const struct file_operations nfs_dir_operations = {
59         .llseek         = nfs_llseek_dir,
60         .read           = generic_read_dir,
61         .iterate_shared = nfs_readdir,
62         .open           = nfs_opendir,
63         .release        = nfs_closedir,
64         .fsync          = nfs_fsync_dir,
65 };
66
67 const struct address_space_operations nfs_dir_aops = {
68         .freepage = nfs_readdir_clear_array,
69 };
70
71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
72 {
73         struct nfs_inode *nfsi = NFS_I(dir);
74         struct nfs_open_dir_context *ctx;
75         ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76         if (ctx != NULL) {
77                 ctx->duped = 0;
78                 ctx->attr_gencount = nfsi->attr_gencount;
79                 ctx->dir_cookie = 0;
80                 ctx->dup_cookie = 0;
81                 ctx->cred = get_cred(cred);
82                 spin_lock(&dir->i_lock);
83                 if (list_empty(&nfsi->open_files) &&
84                     (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
85                         nfsi->cache_validity |= NFS_INO_INVALID_DATA |
86                                 NFS_INO_REVAL_FORCED;
87                 list_add(&ctx->list, &nfsi->open_files);
88                 spin_unlock(&dir->i_lock);
89                 return ctx;
90         }
91         return  ERR_PTR(-ENOMEM);
92 }
93
94 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
95 {
96         spin_lock(&dir->i_lock);
97         list_del(&ctx->list);
98         spin_unlock(&dir->i_lock);
99         put_cred(ctx->cred);
100         kfree(ctx);
101 }
102
103 /*
104  * Open file
105  */
106 static int
107 nfs_opendir(struct inode *inode, struct file *filp)
108 {
109         int res = 0;
110         struct nfs_open_dir_context *ctx;
111
112         dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
113
114         nfs_inc_stats(inode, NFSIOS_VFSOPEN);
115
116         ctx = alloc_nfs_open_dir_context(inode, current_cred());
117         if (IS_ERR(ctx)) {
118                 res = PTR_ERR(ctx);
119                 goto out;
120         }
121         filp->private_data = ctx;
122 out:
123         return res;
124 }
125
126 static int
127 nfs_closedir(struct inode *inode, struct file *filp)
128 {
129         put_nfs_open_dir_context(file_inode(filp), filp->private_data);
130         return 0;
131 }
132
133 struct nfs_cache_array_entry {
134         u64 cookie;
135         u64 ino;
136         struct qstr string;
137         unsigned char d_type;
138 };
139
140 struct nfs_cache_array {
141         int size;
142         int eof_index;
143         u64 last_cookie;
144         struct nfs_cache_array_entry array[0];
145 };
146
147 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool);
148 typedef struct {
149         struct file     *file;
150         struct page     *page;
151         struct dir_context *ctx;
152         unsigned long   page_index;
153         u64             *dir_cookie;
154         u64             last_cookie;
155         loff_t          current_index;
156         decode_dirent_t decode;
157
158         unsigned long   timestamp;
159         unsigned long   gencount;
160         unsigned int    cache_entry_index;
161         bool plus;
162         bool eof;
163 } nfs_readdir_descriptor_t;
164
165 static
166 void nfs_readdir_init_array(struct page *page)
167 {
168         struct nfs_cache_array *array;
169
170         array = kmap_atomic(page);
171         memset(array, 0, sizeof(struct nfs_cache_array));
172         array->eof_index = -1;
173         kunmap_atomic(array);
174 }
175
176 /*
177  * we are freeing strings created by nfs_add_to_readdir_array()
178  */
179 static
180 void nfs_readdir_clear_array(struct page *page)
181 {
182         struct nfs_cache_array *array;
183         int i;
184
185         array = kmap_atomic(page);
186         for (i = 0; i < array->size; i++)
187                 kfree(array->array[i].string.name);
188         array->size = 0;
189         kunmap_atomic(array);
190 }
191
192 /*
193  * the caller is responsible for freeing qstr.name
194  * when called by nfs_readdir_add_to_array, the strings will be freed in
195  * nfs_clear_readdir_array()
196  */
197 static
198 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
199 {
200         string->len = len;
201         string->name = kmemdup_nul(name, len, GFP_KERNEL);
202         if (string->name == NULL)
203                 return -ENOMEM;
204         /*
205          * Avoid a kmemleak false positive. The pointer to the name is stored
206          * in a page cache page which kmemleak does not scan.
207          */
208         kmemleak_not_leak(string->name);
209         string->hash = full_name_hash(NULL, name, len);
210         return 0;
211 }
212
213 static
214 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
215 {
216         struct nfs_cache_array *array = kmap(page);
217         struct nfs_cache_array_entry *cache_entry;
218         int ret;
219
220         cache_entry = &array->array[array->size];
221
222         /* Check that this entry lies within the page bounds */
223         ret = -ENOSPC;
224         if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
225                 goto out;
226
227         cache_entry->cookie = entry->prev_cookie;
228         cache_entry->ino = entry->ino;
229         cache_entry->d_type = entry->d_type;
230         ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
231         if (ret)
232                 goto out;
233         array->last_cookie = entry->cookie;
234         array->size++;
235         if (entry->eof != 0)
236                 array->eof_index = array->size;
237 out:
238         kunmap(page);
239         return ret;
240 }
241
242 static
243 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
244 {
245         loff_t diff = desc->ctx->pos - desc->current_index;
246         unsigned int index;
247
248         if (diff < 0)
249                 goto out_eof;
250         if (diff >= array->size) {
251                 if (array->eof_index >= 0)
252                         goto out_eof;
253                 return -EAGAIN;
254         }
255
256         index = (unsigned int)diff;
257         *desc->dir_cookie = array->array[index].cookie;
258         desc->cache_entry_index = index;
259         return 0;
260 out_eof:
261         desc->eof = true;
262         return -EBADCOOKIE;
263 }
264
265 static bool
266 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
267 {
268         if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
269                 return false;
270         smp_rmb();
271         return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
272 }
273
274 static
275 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
276 {
277         int i;
278         loff_t new_pos;
279         int status = -EAGAIN;
280
281         for (i = 0; i < array->size; i++) {
282                 if (array->array[i].cookie == *desc->dir_cookie) {
283                         struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
284                         struct nfs_open_dir_context *ctx = desc->file->private_data;
285
286                         new_pos = desc->current_index + i;
287                         if (ctx->attr_gencount != nfsi->attr_gencount ||
288                             !nfs_readdir_inode_mapping_valid(nfsi)) {
289                                 ctx->duped = 0;
290                                 ctx->attr_gencount = nfsi->attr_gencount;
291                         } else if (new_pos < desc->ctx->pos) {
292                                 if (ctx->duped > 0
293                                     && ctx->dup_cookie == *desc->dir_cookie) {
294                                         if (printk_ratelimit()) {
295                                                 pr_notice("NFS: directory %pD2 contains a readdir loop."
296                                                                 "Please contact your server vendor.  "
297                                                                 "The file: %.*s has duplicate cookie %llu\n",
298                                                                 desc->file, array->array[i].string.len,
299                                                                 array->array[i].string.name, *desc->dir_cookie);
300                                         }
301                                         status = -ELOOP;
302                                         goto out;
303                                 }
304                                 ctx->dup_cookie = *desc->dir_cookie;
305                                 ctx->duped = -1;
306                         }
307                         desc->ctx->pos = new_pos;
308                         desc->cache_entry_index = i;
309                         return 0;
310                 }
311         }
312         if (array->eof_index >= 0) {
313                 status = -EBADCOOKIE;
314                 if (*desc->dir_cookie == array->last_cookie)
315                         desc->eof = true;
316         }
317 out:
318         return status;
319 }
320
321 static
322 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
323 {
324         struct nfs_cache_array *array;
325         int status;
326
327         array = kmap(desc->page);
328
329         if (*desc->dir_cookie == 0)
330                 status = nfs_readdir_search_for_pos(array, desc);
331         else
332                 status = nfs_readdir_search_for_cookie(array, desc);
333
334         if (status == -EAGAIN) {
335                 desc->last_cookie = array->last_cookie;
336                 desc->current_index += array->size;
337                 desc->page_index++;
338         }
339         kunmap(desc->page);
340         return status;
341 }
342
343 /* Fill a page with xdr information before transferring to the cache page */
344 static
345 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
346                         struct nfs_entry *entry, struct file *file, struct inode *inode)
347 {
348         struct nfs_open_dir_context *ctx = file->private_data;
349         const struct cred *cred = ctx->cred;
350         unsigned long   timestamp, gencount;
351         int             error;
352
353  again:
354         timestamp = jiffies;
355         gencount = nfs_inc_attr_generation_counter();
356         error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
357                                           NFS_SERVER(inode)->dtsize, desc->plus);
358         if (error < 0) {
359                 /* We requested READDIRPLUS, but the server doesn't grok it */
360                 if (error == -ENOTSUPP && desc->plus) {
361                         NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
362                         clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
363                         desc->plus = false;
364                         goto again;
365                 }
366                 goto error;
367         }
368         desc->timestamp = timestamp;
369         desc->gencount = gencount;
370 error:
371         return error;
372 }
373
374 static int xdr_decode(nfs_readdir_descriptor_t *desc,
375                       struct nfs_entry *entry, struct xdr_stream *xdr)
376 {
377         int error;
378
379         error = desc->decode(xdr, entry, desc->plus);
380         if (error)
381                 return error;
382         entry->fattr->time_start = desc->timestamp;
383         entry->fattr->gencount = desc->gencount;
384         return 0;
385 }
386
387 /* Match file and dirent using either filehandle or fileid
388  * Note: caller is responsible for checking the fsid
389  */
390 static
391 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
392 {
393         struct inode *inode;
394         struct nfs_inode *nfsi;
395
396         if (d_really_is_negative(dentry))
397                 return 0;
398
399         inode = d_inode(dentry);
400         if (is_bad_inode(inode) || NFS_STALE(inode))
401                 return 0;
402
403         nfsi = NFS_I(inode);
404         if (entry->fattr->fileid != nfsi->fileid)
405                 return 0;
406         if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
407                 return 0;
408         return 1;
409 }
410
411 static
412 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
413 {
414         if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
415                 return false;
416         if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
417                 return true;
418         if (ctx->pos == 0)
419                 return true;
420         return false;
421 }
422
423 /*
424  * This function is called by the lookup and getattr code to request the
425  * use of readdirplus to accelerate any future lookups in the same
426  * directory.
427  */
428 void nfs_advise_use_readdirplus(struct inode *dir)
429 {
430         struct nfs_inode *nfsi = NFS_I(dir);
431
432         if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
433             !list_empty(&nfsi->open_files))
434                 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
435 }
436
437 /*
438  * This function is mainly for use by nfs_getattr().
439  *
440  * If this is an 'ls -l', we want to force use of readdirplus.
441  * Do this by checking if there is an active file descriptor
442  * and calling nfs_advise_use_readdirplus, then forcing a
443  * cache flush.
444  */
445 void nfs_force_use_readdirplus(struct inode *dir)
446 {
447         struct nfs_inode *nfsi = NFS_I(dir);
448
449         if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
450             !list_empty(&nfsi->open_files)) {
451                 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
452                 invalidate_mapping_pages(dir->i_mapping, 0, -1);
453         }
454 }
455
456 static
457 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
458 {
459         struct qstr filename = QSTR_INIT(entry->name, entry->len);
460         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
461         struct dentry *dentry;
462         struct dentry *alias;
463         struct inode *dir = d_inode(parent);
464         struct inode *inode;
465         int status;
466
467         if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
468                 return;
469         if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
470                 return;
471         if (filename.len == 0)
472                 return;
473         /* Validate that the name doesn't contain any illegal '\0' */
474         if (strnlen(filename.name, filename.len) != filename.len)
475                 return;
476         /* ...or '/' */
477         if (strnchr(filename.name, filename.len, '/'))
478                 return;
479         if (filename.name[0] == '.') {
480                 if (filename.len == 1)
481                         return;
482                 if (filename.len == 2 && filename.name[1] == '.')
483                         return;
484         }
485         filename.hash = full_name_hash(parent, filename.name, filename.len);
486
487         dentry = d_lookup(parent, &filename);
488 again:
489         if (!dentry) {
490                 dentry = d_alloc_parallel(parent, &filename, &wq);
491                 if (IS_ERR(dentry))
492                         return;
493         }
494         if (!d_in_lookup(dentry)) {
495                 /* Is there a mountpoint here? If so, just exit */
496                 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
497                                         &entry->fattr->fsid))
498                         goto out;
499                 if (nfs_same_file(dentry, entry)) {
500                         if (!entry->fh->size)
501                                 goto out;
502                         nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
503                         status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
504                         if (!status)
505                                 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
506                         goto out;
507                 } else {
508                         d_invalidate(dentry);
509                         dput(dentry);
510                         dentry = NULL;
511                         goto again;
512                 }
513         }
514         if (!entry->fh->size) {
515                 d_lookup_done(dentry);
516                 goto out;
517         }
518
519         inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
520         alias = d_splice_alias(inode, dentry);
521         d_lookup_done(dentry);
522         if (alias) {
523                 if (IS_ERR(alias))
524                         goto out;
525                 dput(dentry);
526                 dentry = alias;
527         }
528         nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
529 out:
530         dput(dentry);
531 }
532
533 /* Perform conversion from xdr to cache array */
534 static
535 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
536                                 struct page **xdr_pages, struct page *page, unsigned int buflen)
537 {
538         struct xdr_stream stream;
539         struct xdr_buf buf;
540         struct page *scratch;
541         struct nfs_cache_array *array;
542         unsigned int count = 0;
543         int status;
544
545         scratch = alloc_page(GFP_KERNEL);
546         if (scratch == NULL)
547                 return -ENOMEM;
548
549         if (buflen == 0)
550                 goto out_nopages;
551
552         xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
553         xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
554
555         do {
556                 status = xdr_decode(desc, entry, &stream);
557                 if (status != 0) {
558                         if (status == -EAGAIN)
559                                 status = 0;
560                         break;
561                 }
562
563                 count++;
564
565                 if (desc->plus)
566                         nfs_prime_dcache(file_dentry(desc->file), entry);
567
568                 status = nfs_readdir_add_to_array(entry, page);
569                 if (status != 0)
570                         break;
571         } while (!entry->eof);
572
573 out_nopages:
574         if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
575                 array = kmap(page);
576                 array->eof_index = array->size;
577                 status = 0;
578                 kunmap(page);
579         }
580
581         put_page(scratch);
582         return status;
583 }
584
585 static
586 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
587 {
588         unsigned int i;
589         for (i = 0; i < npages; i++)
590                 put_page(pages[i]);
591 }
592
593 /*
594  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
595  * to nfs_readdir_free_pages()
596  */
597 static
598 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
599 {
600         unsigned int i;
601
602         for (i = 0; i < npages; i++) {
603                 struct page *page = alloc_page(GFP_KERNEL);
604                 if (page == NULL)
605                         goto out_freepages;
606                 pages[i] = page;
607         }
608         return 0;
609
610 out_freepages:
611         nfs_readdir_free_pages(pages, i);
612         return -ENOMEM;
613 }
614
615 static
616 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
617 {
618         struct page *pages[NFS_MAX_READDIR_PAGES];
619         struct nfs_entry entry;
620         struct file     *file = desc->file;
621         struct nfs_cache_array *array;
622         int status = -ENOMEM;
623         unsigned int array_size = ARRAY_SIZE(pages);
624
625         nfs_readdir_init_array(page);
626
627         entry.prev_cookie = 0;
628         entry.cookie = desc->last_cookie;
629         entry.eof = 0;
630         entry.fh = nfs_alloc_fhandle();
631         entry.fattr = nfs_alloc_fattr();
632         entry.server = NFS_SERVER(inode);
633         if (entry.fh == NULL || entry.fattr == NULL)
634                 goto out;
635
636         entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
637         if (IS_ERR(entry.label)) {
638                 status = PTR_ERR(entry.label);
639                 goto out;
640         }
641
642         array = kmap(page);
643
644         status = nfs_readdir_alloc_pages(pages, array_size);
645         if (status < 0)
646                 goto out_release_array;
647         do {
648                 unsigned int pglen;
649                 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
650
651                 if (status < 0)
652                         break;
653                 pglen = status;
654                 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
655                 if (status < 0) {
656                         if (status == -ENOSPC)
657                                 status = 0;
658                         break;
659                 }
660         } while (array->eof_index < 0);
661
662         nfs_readdir_free_pages(pages, array_size);
663 out_release_array:
664         kunmap(page);
665         nfs4_label_free(entry.label);
666 out:
667         nfs_free_fattr(entry.fattr);
668         nfs_free_fhandle(entry.fh);
669         return status;
670 }
671
672 /*
673  * Now we cache directories properly, by converting xdr information
674  * to an array that can be used for lookups later.  This results in
675  * fewer cache pages, since we can store more information on each page.
676  * We only need to convert from xdr once so future lookups are much simpler
677  */
678 static
679 int nfs_readdir_filler(void *data, struct page* page)
680 {
681         nfs_readdir_descriptor_t *desc = data;
682         struct inode    *inode = file_inode(desc->file);
683         int ret;
684
685         ret = nfs_readdir_xdr_to_array(desc, page, inode);
686         if (ret < 0)
687                 goto error;
688         SetPageUptodate(page);
689
690         if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
691                 /* Should never happen */
692                 nfs_zap_mapping(inode, inode->i_mapping);
693         }
694         unlock_page(page);
695         return 0;
696  error:
697         nfs_readdir_clear_array(page);
698         unlock_page(page);
699         return ret;
700 }
701
702 static
703 void cache_page_release(nfs_readdir_descriptor_t *desc)
704 {
705         put_page(desc->page);
706         desc->page = NULL;
707 }
708
709 static
710 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
711 {
712         return read_cache_page(desc->file->f_mapping, desc->page_index,
713                         nfs_readdir_filler, desc);
714 }
715
716 /*
717  * Returns 0 if desc->dir_cookie was found on page desc->page_index
718  * and locks the page to prevent removal from the page cache.
719  */
720 static
721 int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc)
722 {
723         int res;
724
725         desc->page = get_cache_page(desc);
726         if (IS_ERR(desc->page))
727                 return PTR_ERR(desc->page);
728         res = lock_page_killable(desc->page);
729         if (res != 0)
730                 goto error;
731         res = -EAGAIN;
732         if (desc->page->mapping != NULL) {
733                 res = nfs_readdir_search_array(desc);
734                 if (res == 0)
735                         return 0;
736         }
737         unlock_page(desc->page);
738 error:
739         cache_page_release(desc);
740         return res;
741 }
742
743 /* Search for desc->dir_cookie from the beginning of the page cache */
744 static inline
745 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
746 {
747         int res;
748
749         if (desc->page_index == 0) {
750                 desc->current_index = 0;
751                 desc->last_cookie = 0;
752         }
753         do {
754                 res = find_and_lock_cache_page(desc);
755         } while (res == -EAGAIN);
756         return res;
757 }
758
759 /*
760  * Once we've found the start of the dirent within a page: fill 'er up...
761  */
762 static 
763 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
764 {
765         struct file     *file = desc->file;
766         int i = 0;
767         int res = 0;
768         struct nfs_cache_array *array = NULL;
769         struct nfs_open_dir_context *ctx = file->private_data;
770
771         array = kmap(desc->page);
772         for (i = desc->cache_entry_index; i < array->size; i++) {
773                 struct nfs_cache_array_entry *ent;
774
775                 ent = &array->array[i];
776                 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
777                     nfs_compat_user_ino64(ent->ino), ent->d_type)) {
778                         desc->eof = true;
779                         break;
780                 }
781                 desc->ctx->pos++;
782                 if (i < (array->size-1))
783                         *desc->dir_cookie = array->array[i+1].cookie;
784                 else
785                         *desc->dir_cookie = array->last_cookie;
786                 if (ctx->duped != 0)
787                         ctx->duped = 1;
788         }
789         if (array->eof_index >= 0)
790                 desc->eof = true;
791
792         kunmap(desc->page);
793         dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
794                         (unsigned long long)*desc->dir_cookie, res);
795         return res;
796 }
797
798 /*
799  * If we cannot find a cookie in our cache, we suspect that this is
800  * because it points to a deleted file, so we ask the server to return
801  * whatever it thinks is the next entry. We then feed this to filldir.
802  * If all goes well, we should then be able to find our way round the
803  * cache on the next call to readdir_search_pagecache();
804  *
805  * NOTE: we cannot add the anonymous page to the pagecache because
806  *       the data it contains might not be page aligned. Besides,
807  *       we should already have a complete representation of the
808  *       directory in the page cache by the time we get here.
809  */
810 static inline
811 int uncached_readdir(nfs_readdir_descriptor_t *desc)
812 {
813         struct page     *page = NULL;
814         int             status;
815         struct inode *inode = file_inode(desc->file);
816         struct nfs_open_dir_context *ctx = desc->file->private_data;
817
818         dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
819                         (unsigned long long)*desc->dir_cookie);
820
821         page = alloc_page(GFP_HIGHUSER);
822         if (!page) {
823                 status = -ENOMEM;
824                 goto out;
825         }
826
827         desc->page_index = 0;
828         desc->last_cookie = *desc->dir_cookie;
829         desc->page = page;
830         ctx->duped = 0;
831
832         status = nfs_readdir_xdr_to_array(desc, page, inode);
833         if (status < 0)
834                 goto out_release;
835
836         status = nfs_do_filldir(desc);
837
838  out_release:
839         nfs_readdir_clear_array(desc->page);
840         cache_page_release(desc);
841  out:
842         dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
843                         __func__, status);
844         return status;
845 }
846
847 /* The file offset position represents the dirent entry number.  A
848    last cookie cache takes care of the common case of reading the
849    whole directory.
850  */
851 static int nfs_readdir(struct file *file, struct dir_context *ctx)
852 {
853         struct dentry   *dentry = file_dentry(file);
854         struct inode    *inode = d_inode(dentry);
855         nfs_readdir_descriptor_t my_desc,
856                         *desc = &my_desc;
857         struct nfs_open_dir_context *dir_ctx = file->private_data;
858         int res = 0;
859
860         dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
861                         file, (long long)ctx->pos);
862         nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
863
864         /*
865          * ctx->pos points to the dirent entry number.
866          * *desc->dir_cookie has the cookie for the next entry. We have
867          * to either find the entry with the appropriate number or
868          * revalidate the cookie.
869          */
870         memset(desc, 0, sizeof(*desc));
871
872         desc->file = file;
873         desc->ctx = ctx;
874         desc->dir_cookie = &dir_ctx->dir_cookie;
875         desc->decode = NFS_PROTO(inode)->decode_dirent;
876         desc->plus = nfs_use_readdirplus(inode, ctx);
877
878         if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
879                 res = nfs_revalidate_mapping(inode, file->f_mapping);
880         if (res < 0)
881                 goto out;
882
883         do {
884                 res = readdir_search_pagecache(desc);
885
886                 if (res == -EBADCOOKIE) {
887                         res = 0;
888                         /* This means either end of directory */
889                         if (*desc->dir_cookie && !desc->eof) {
890                                 /* Or that the server has 'lost' a cookie */
891                                 res = uncached_readdir(desc);
892                                 if (res == 0)
893                                         continue;
894                         }
895                         break;
896                 }
897                 if (res == -ETOOSMALL && desc->plus) {
898                         clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
899                         nfs_zap_caches(inode);
900                         desc->page_index = 0;
901                         desc->plus = false;
902                         desc->eof = false;
903                         continue;
904                 }
905                 if (res < 0)
906                         break;
907
908                 res = nfs_do_filldir(desc);
909                 unlock_page(desc->page);
910                 cache_page_release(desc);
911                 if (res < 0)
912                         break;
913         } while (!desc->eof);
914 out:
915         if (res > 0)
916                 res = 0;
917         dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
918         return res;
919 }
920
921 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
922 {
923         struct inode *inode = file_inode(filp);
924         struct nfs_open_dir_context *dir_ctx = filp->private_data;
925
926         dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
927                         filp, offset, whence);
928
929         switch (whence) {
930         default:
931                 return -EINVAL;
932         case SEEK_SET:
933                 if (offset < 0)
934                         return -EINVAL;
935                 inode_lock(inode);
936                 break;
937         case SEEK_CUR:
938                 if (offset == 0)
939                         return filp->f_pos;
940                 inode_lock(inode);
941                 offset += filp->f_pos;
942                 if (offset < 0) {
943                         inode_unlock(inode);
944                         return -EINVAL;
945                 }
946         }
947         if (offset != filp->f_pos) {
948                 filp->f_pos = offset;
949                 dir_ctx->dir_cookie = 0;
950                 dir_ctx->duped = 0;
951         }
952         inode_unlock(inode);
953         return offset;
954 }
955
956 /*
957  * All directory operations under NFS are synchronous, so fsync()
958  * is a dummy operation.
959  */
960 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
961                          int datasync)
962 {
963         struct inode *inode = file_inode(filp);
964
965         dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
966
967         inode_lock(inode);
968         nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
969         inode_unlock(inode);
970         return 0;
971 }
972
973 /**
974  * nfs_force_lookup_revalidate - Mark the directory as having changed
975  * @dir: pointer to directory inode
976  *
977  * This forces the revalidation code in nfs_lookup_revalidate() to do a
978  * full lookup on all child dentries of 'dir' whenever a change occurs
979  * on the server that might have invalidated our dcache.
980  *
981  * The caller should be holding dir->i_lock
982  */
983 void nfs_force_lookup_revalidate(struct inode *dir)
984 {
985         NFS_I(dir)->cache_change_attribute++;
986 }
987 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
988
989 /*
990  * A check for whether or not the parent directory has changed.
991  * In the case it has, we assume that the dentries are untrustworthy
992  * and may need to be looked up again.
993  * If rcu_walk prevents us from performing a full check, return 0.
994  */
995 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
996                               int rcu_walk)
997 {
998         if (IS_ROOT(dentry))
999                 return 1;
1000         if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1001                 return 0;
1002         if (!nfs_verify_change_attribute(dir, dentry->d_time))
1003                 return 0;
1004         /* Revalidate nfsi->cache_change_attribute before we declare a match */
1005         if (nfs_mapping_need_revalidate_inode(dir)) {
1006                 if (rcu_walk)
1007                         return 0;
1008                 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1009                         return 0;
1010         }
1011         if (!nfs_verify_change_attribute(dir, dentry->d_time))
1012                 return 0;
1013         return 1;
1014 }
1015
1016 /*
1017  * Use intent information to check whether or not we're going to do
1018  * an O_EXCL create using this path component.
1019  */
1020 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1021 {
1022         if (NFS_PROTO(dir)->version == 2)
1023                 return 0;
1024         return flags & LOOKUP_EXCL;
1025 }
1026
1027 /*
1028  * Inode and filehandle revalidation for lookups.
1029  *
1030  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1031  * or if the intent information indicates that we're about to open this
1032  * particular file and the "nocto" mount flag is not set.
1033  *
1034  */
1035 static
1036 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1037 {
1038         struct nfs_server *server = NFS_SERVER(inode);
1039         int ret;
1040
1041         if (IS_AUTOMOUNT(inode))
1042                 return 0;
1043
1044         if (flags & LOOKUP_OPEN) {
1045                 switch (inode->i_mode & S_IFMT) {
1046                 case S_IFREG:
1047                         /* A NFSv4 OPEN will revalidate later */
1048                         if (server->caps & NFS_CAP_ATOMIC_OPEN)
1049                                 goto out;
1050                         /* Fallthrough */
1051                 case S_IFDIR:
1052                         if (server->flags & NFS_MOUNT_NOCTO)
1053                                 break;
1054                         /* NFS close-to-open cache consistency validation */
1055                         goto out_force;
1056                 }
1057         }
1058
1059         /* VFS wants an on-the-wire revalidation */
1060         if (flags & LOOKUP_REVAL)
1061                 goto out_force;
1062 out:
1063         return (inode->i_nlink == 0) ? -ESTALE : 0;
1064 out_force:
1065         if (flags & LOOKUP_RCU)
1066                 return -ECHILD;
1067         ret = __nfs_revalidate_inode(server, inode);
1068         if (ret != 0)
1069                 return ret;
1070         goto out;
1071 }
1072
1073 /*
1074  * We judge how long we want to trust negative
1075  * dentries by looking at the parent inode mtime.
1076  *
1077  * If parent mtime has changed, we revalidate, else we wait for a
1078  * period corresponding to the parent's attribute cache timeout value.
1079  *
1080  * If LOOKUP_RCU prevents us from performing a full check, return 1
1081  * suggesting a reval is needed.
1082  *
1083  * Note that when creating a new file, or looking up a rename target,
1084  * then it shouldn't be necessary to revalidate a negative dentry.
1085  */
1086 static inline
1087 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1088                        unsigned int flags)
1089 {
1090         if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1091                 return 0;
1092         if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1093                 return 1;
1094         return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1095 }
1096
1097 static int
1098 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1099                            struct inode *inode, int error)
1100 {
1101         switch (error) {
1102         case 1:
1103                 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1104                         __func__, dentry);
1105                 return 1;
1106         case 0:
1107                 nfs_mark_for_revalidate(dir);
1108                 if (inode && S_ISDIR(inode->i_mode)) {
1109                         /* Purge readdir caches. */
1110                         nfs_zap_caches(inode);
1111                         /*
1112                          * We can't d_drop the root of a disconnected tree:
1113                          * its d_hash is on the s_anon list and d_drop() would hide
1114                          * it from shrink_dcache_for_unmount(), leading to busy
1115                          * inodes on unmount and further oopses.
1116                          */
1117                         if (IS_ROOT(dentry))
1118                                 return 1;
1119                 }
1120                 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1121                                 __func__, dentry);
1122                 return 0;
1123         }
1124         dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1125                                 __func__, dentry, error);
1126         return error;
1127 }
1128
1129 static int
1130 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1131                                unsigned int flags)
1132 {
1133         int ret = 1;
1134         if (nfs_neg_need_reval(dir, dentry, flags)) {
1135                 if (flags & LOOKUP_RCU)
1136                         return -ECHILD;
1137                 ret = 0;
1138         }
1139         return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1140 }
1141
1142 static int
1143 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1144                                 struct inode *inode)
1145 {
1146         nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1147         return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1148 }
1149
1150 static int
1151 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1152                              struct inode *inode)
1153 {
1154         struct nfs_fh *fhandle;
1155         struct nfs_fattr *fattr;
1156         struct nfs4_label *label;
1157         int ret;
1158
1159         ret = -ENOMEM;
1160         fhandle = nfs_alloc_fhandle();
1161         fattr = nfs_alloc_fattr();
1162         label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1163         if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1164                 goto out;
1165
1166         ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1167         if (ret < 0) {
1168                 switch (ret) {
1169                 case -ESTALE:
1170                 case -ENOENT:
1171                         ret = 0;
1172                         break;
1173                 case -ETIMEDOUT:
1174                         if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1175                                 ret = 1;
1176                 }
1177                 goto out;
1178         }
1179         ret = 0;
1180         if (nfs_compare_fh(NFS_FH(inode), fhandle))
1181                 goto out;
1182         if (nfs_refresh_inode(inode, fattr) < 0)
1183                 goto out;
1184
1185         nfs_setsecurity(inode, fattr, label);
1186         nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1187
1188         /* set a readdirplus hint that we had a cache miss */
1189         nfs_force_use_readdirplus(dir);
1190         ret = 1;
1191 out:
1192         nfs_free_fattr(fattr);
1193         nfs_free_fhandle(fhandle);
1194         nfs4_label_free(label);
1195         return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1196 }
1197
1198 /*
1199  * This is called every time the dcache has a lookup hit,
1200  * and we should check whether we can really trust that
1201  * lookup.
1202  *
1203  * NOTE! The hit can be a negative hit too, don't assume
1204  * we have an inode!
1205  *
1206  * If the parent directory is seen to have changed, we throw out the
1207  * cached dentry and do a new lookup.
1208  */
1209 static int
1210 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1211                          unsigned int flags)
1212 {
1213         struct inode *inode;
1214         int error;
1215
1216         nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1217         inode = d_inode(dentry);
1218
1219         if (!inode)
1220                 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1221
1222         if (is_bad_inode(inode)) {
1223                 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1224                                 __func__, dentry);
1225                 goto out_bad;
1226         }
1227
1228         if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1229                 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1230
1231         /* Force a full look up iff the parent directory has changed */
1232         if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1233             nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1234                 error = nfs_lookup_verify_inode(inode, flags);
1235                 if (error) {
1236                         if (error == -ESTALE)
1237                                 nfs_zap_caches(dir);
1238                         goto out_bad;
1239                 }
1240                 nfs_advise_use_readdirplus(dir);
1241                 goto out_valid;
1242         }
1243
1244         if (flags & LOOKUP_RCU)
1245                 return -ECHILD;
1246
1247         if (NFS_STALE(inode))
1248                 goto out_bad;
1249
1250         trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1251         error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1252         trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1253         return error;
1254 out_valid:
1255         return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1256 out_bad:
1257         if (flags & LOOKUP_RCU)
1258                 return -ECHILD;
1259         return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1260 }
1261
1262 static int
1263 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1264                         int (*reval)(struct inode *, struct dentry *, unsigned int))
1265 {
1266         struct dentry *parent;
1267         struct inode *dir;
1268         int ret;
1269
1270         if (flags & LOOKUP_RCU) {
1271                 parent = READ_ONCE(dentry->d_parent);
1272                 dir = d_inode_rcu(parent);
1273                 if (!dir)
1274                         return -ECHILD;
1275                 ret = reval(dir, dentry, flags);
1276                 if (parent != READ_ONCE(dentry->d_parent))
1277                         return -ECHILD;
1278         } else {
1279                 parent = dget_parent(dentry);
1280                 ret = reval(d_inode(parent), dentry, flags);
1281                 dput(parent);
1282         }
1283         return ret;
1284 }
1285
1286 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1287 {
1288         return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1289 }
1290
1291 /*
1292  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1293  * when we don't really care about the dentry name. This is called when a
1294  * pathwalk ends on a dentry that was not found via a normal lookup in the
1295  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1296  *
1297  * In this situation, we just want to verify that the inode itself is OK
1298  * since the dentry might have changed on the server.
1299  */
1300 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1301 {
1302         struct inode *inode = d_inode(dentry);
1303         int error = 0;
1304
1305         /*
1306          * I believe we can only get a negative dentry here in the case of a
1307          * procfs-style symlink. Just assume it's correct for now, but we may
1308          * eventually need to do something more here.
1309          */
1310         if (!inode) {
1311                 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1312                                 __func__, dentry);
1313                 return 1;
1314         }
1315
1316         if (is_bad_inode(inode)) {
1317                 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1318                                 __func__, dentry);
1319                 return 0;
1320         }
1321
1322         error = nfs_lookup_verify_inode(inode, flags);
1323         dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1324                         __func__, inode->i_ino, error ? "invalid" : "valid");
1325         return !error;
1326 }
1327
1328 /*
1329  * This is called from dput() when d_count is going to 0.
1330  */
1331 static int nfs_dentry_delete(const struct dentry *dentry)
1332 {
1333         dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1334                 dentry, dentry->d_flags);
1335
1336         /* Unhash any dentry with a stale inode */
1337         if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1338                 return 1;
1339
1340         if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1341                 /* Unhash it, so that ->d_iput() would be called */
1342                 return 1;
1343         }
1344         if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1345                 /* Unhash it, so that ancestors of killed async unlink
1346                  * files will be cleaned up during umount */
1347                 return 1;
1348         }
1349         return 0;
1350
1351 }
1352
1353 /* Ensure that we revalidate inode->i_nlink */
1354 static void nfs_drop_nlink(struct inode *inode)
1355 {
1356         spin_lock(&inode->i_lock);
1357         /* drop the inode if we're reasonably sure this is the last link */
1358         if (inode->i_nlink > 0)
1359                 drop_nlink(inode);
1360         NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1361         NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1362                 | NFS_INO_INVALID_CTIME
1363                 | NFS_INO_INVALID_OTHER
1364                 | NFS_INO_REVAL_FORCED;
1365         spin_unlock(&inode->i_lock);
1366 }
1367
1368 /*
1369  * Called when the dentry loses inode.
1370  * We use it to clean up silly-renamed files.
1371  */
1372 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1373 {
1374         if (S_ISDIR(inode->i_mode))
1375                 /* drop any readdir cache as it could easily be old */
1376                 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1377
1378         if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1379                 nfs_complete_unlink(dentry, inode);
1380                 nfs_drop_nlink(inode);
1381         }
1382         iput(inode);
1383 }
1384
1385 static void nfs_d_release(struct dentry *dentry)
1386 {
1387         /* free cached devname value, if it survived that far */
1388         if (unlikely(dentry->d_fsdata)) {
1389                 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1390                         WARN_ON(1);
1391                 else
1392                         kfree(dentry->d_fsdata);
1393         }
1394 }
1395
1396 const struct dentry_operations nfs_dentry_operations = {
1397         .d_revalidate   = nfs_lookup_revalidate,
1398         .d_weak_revalidate      = nfs_weak_revalidate,
1399         .d_delete       = nfs_dentry_delete,
1400         .d_iput         = nfs_dentry_iput,
1401         .d_automount    = nfs_d_automount,
1402         .d_release      = nfs_d_release,
1403 };
1404 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1405
1406 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1407 {
1408         struct dentry *res;
1409         struct inode *inode = NULL;
1410         struct nfs_fh *fhandle = NULL;
1411         struct nfs_fattr *fattr = NULL;
1412         struct nfs4_label *label = NULL;
1413         int error;
1414
1415         dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1416         nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1417
1418         if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1419                 return ERR_PTR(-ENAMETOOLONG);
1420
1421         /*
1422          * If we're doing an exclusive create, optimize away the lookup
1423          * but don't hash the dentry.
1424          */
1425         if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1426                 return NULL;
1427
1428         res = ERR_PTR(-ENOMEM);
1429         fhandle = nfs_alloc_fhandle();
1430         fattr = nfs_alloc_fattr();
1431         if (fhandle == NULL || fattr == NULL)
1432                 goto out;
1433
1434         label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1435         if (IS_ERR(label))
1436                 goto out;
1437
1438         trace_nfs_lookup_enter(dir, dentry, flags);
1439         error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1440         if (error == -ENOENT)
1441                 goto no_entry;
1442         if (error < 0) {
1443                 res = ERR_PTR(error);
1444                 goto out_label;
1445         }
1446         inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1447         res = ERR_CAST(inode);
1448         if (IS_ERR(res))
1449                 goto out_label;
1450
1451         /* Notify readdir to use READDIRPLUS */
1452         nfs_force_use_readdirplus(dir);
1453
1454 no_entry:
1455         res = d_splice_alias(inode, dentry);
1456         if (res != NULL) {
1457                 if (IS_ERR(res))
1458                         goto out_label;
1459                 dentry = res;
1460         }
1461         nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1462 out_label:
1463         trace_nfs_lookup_exit(dir, dentry, flags, error);
1464         nfs4_label_free(label);
1465 out:
1466         nfs_free_fattr(fattr);
1467         nfs_free_fhandle(fhandle);
1468         return res;
1469 }
1470 EXPORT_SYMBOL_GPL(nfs_lookup);
1471
1472 #if IS_ENABLED(CONFIG_NFS_V4)
1473 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1474
1475 const struct dentry_operations nfs4_dentry_operations = {
1476         .d_revalidate   = nfs4_lookup_revalidate,
1477         .d_weak_revalidate      = nfs_weak_revalidate,
1478         .d_delete       = nfs_dentry_delete,
1479         .d_iput         = nfs_dentry_iput,
1480         .d_automount    = nfs_d_automount,
1481         .d_release      = nfs_d_release,
1482 };
1483 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1484
1485 static fmode_t flags_to_mode(int flags)
1486 {
1487         fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1488         if ((flags & O_ACCMODE) != O_WRONLY)
1489                 res |= FMODE_READ;
1490         if ((flags & O_ACCMODE) != O_RDONLY)
1491                 res |= FMODE_WRITE;
1492         return res;
1493 }
1494
1495 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1496 {
1497         return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1498 }
1499
1500 static int do_open(struct inode *inode, struct file *filp)
1501 {
1502         nfs_fscache_open_file(inode, filp);
1503         return 0;
1504 }
1505
1506 static int nfs_finish_open(struct nfs_open_context *ctx,
1507                            struct dentry *dentry,
1508                            struct file *file, unsigned open_flags)
1509 {
1510         int err;
1511
1512         err = finish_open(file, dentry, do_open);
1513         if (err)
1514                 goto out;
1515         if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1516                 nfs_file_set_open_context(file, ctx);
1517         else
1518                 err = -EOPENSTALE;
1519 out:
1520         return err;
1521 }
1522
1523 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1524                     struct file *file, unsigned open_flags,
1525                     umode_t mode)
1526 {
1527         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1528         struct nfs_open_context *ctx;
1529         struct dentry *res;
1530         struct iattr attr = { .ia_valid = ATTR_OPEN };
1531         struct inode *inode;
1532         unsigned int lookup_flags = 0;
1533         bool switched = false;
1534         int created = 0;
1535         int err;
1536
1537         /* Expect a negative dentry */
1538         BUG_ON(d_inode(dentry));
1539
1540         dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1541                         dir->i_sb->s_id, dir->i_ino, dentry);
1542
1543         err = nfs_check_flags(open_flags);
1544         if (err)
1545                 return err;
1546
1547         /* NFS only supports OPEN on regular files */
1548         if ((open_flags & O_DIRECTORY)) {
1549                 if (!d_in_lookup(dentry)) {
1550                         /*
1551                          * Hashed negative dentry with O_DIRECTORY: dentry was
1552                          * revalidated and is fine, no need to perform lookup
1553                          * again
1554                          */
1555                         return -ENOENT;
1556                 }
1557                 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1558                 goto no_open;
1559         }
1560
1561         if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1562                 return -ENAMETOOLONG;
1563
1564         if (open_flags & O_CREAT) {
1565                 struct nfs_server *server = NFS_SERVER(dir);
1566
1567                 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1568                         mode &= ~current_umask();
1569
1570                 attr.ia_valid |= ATTR_MODE;
1571                 attr.ia_mode = mode;
1572         }
1573         if (open_flags & O_TRUNC) {
1574                 attr.ia_valid |= ATTR_SIZE;
1575                 attr.ia_size = 0;
1576         }
1577
1578         if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1579                 d_drop(dentry);
1580                 switched = true;
1581                 dentry = d_alloc_parallel(dentry->d_parent,
1582                                           &dentry->d_name, &wq);
1583                 if (IS_ERR(dentry))
1584                         return PTR_ERR(dentry);
1585                 if (unlikely(!d_in_lookup(dentry)))
1586                         return finish_no_open(file, dentry);
1587         }
1588
1589         ctx = create_nfs_open_context(dentry, open_flags, file);
1590         err = PTR_ERR(ctx);
1591         if (IS_ERR(ctx))
1592                 goto out;
1593
1594         trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1595         inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1596         if (created)
1597                 file->f_mode |= FMODE_CREATED;
1598         if (IS_ERR(inode)) {
1599                 err = PTR_ERR(inode);
1600                 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1601                 put_nfs_open_context(ctx);
1602                 d_drop(dentry);
1603                 switch (err) {
1604                 case -ENOENT:
1605                         d_splice_alias(NULL, dentry);
1606                         nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1607                         break;
1608                 case -EISDIR:
1609                 case -ENOTDIR:
1610                         goto no_open;
1611                 case -ELOOP:
1612                         if (!(open_flags & O_NOFOLLOW))
1613                                 goto no_open;
1614                         break;
1615                         /* case -EINVAL: */
1616                 default:
1617                         break;
1618                 }
1619                 goto out;
1620         }
1621
1622         err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1623         trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1624         put_nfs_open_context(ctx);
1625 out:
1626         if (unlikely(switched)) {
1627                 d_lookup_done(dentry);
1628                 dput(dentry);
1629         }
1630         return err;
1631
1632 no_open:
1633         res = nfs_lookup(dir, dentry, lookup_flags);
1634         if (switched) {
1635                 d_lookup_done(dentry);
1636                 if (!res)
1637                         res = dentry;
1638                 else
1639                         dput(dentry);
1640         }
1641         if (IS_ERR(res))
1642                 return PTR_ERR(res);
1643         return finish_no_open(file, res);
1644 }
1645 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1646
1647 static int
1648 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1649                           unsigned int flags)
1650 {
1651         struct inode *inode;
1652
1653         if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1654                 goto full_reval;
1655         if (d_mountpoint(dentry))
1656                 goto full_reval;
1657
1658         inode = d_inode(dentry);
1659
1660         /* We can't create new files in nfs_open_revalidate(), so we
1661          * optimize away revalidation of negative dentries.
1662          */
1663         if (inode == NULL)
1664                 goto full_reval;
1665
1666         if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1667                 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1668
1669         /* NFS only supports OPEN on regular files */
1670         if (!S_ISREG(inode->i_mode))
1671                 goto full_reval;
1672
1673         /* We cannot do exclusive creation on a positive dentry */
1674         if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1675                 goto reval_dentry;
1676
1677         /* Check if the directory changed */
1678         if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1679                 goto reval_dentry;
1680
1681         /* Let f_op->open() actually open (and revalidate) the file */
1682         return 1;
1683 reval_dentry:
1684         if (flags & LOOKUP_RCU)
1685                 return -ECHILD;
1686         return nfs_lookup_revalidate_dentry(dir, dentry, inode);
1687
1688 full_reval:
1689         return nfs_do_lookup_revalidate(dir, dentry, flags);
1690 }
1691
1692 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1693 {
1694         return __nfs_lookup_revalidate(dentry, flags,
1695                         nfs4_do_lookup_revalidate);
1696 }
1697
1698 #endif /* CONFIG_NFSV4 */
1699
1700 struct dentry *
1701 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
1702                                 struct nfs_fattr *fattr,
1703                                 struct nfs4_label *label)
1704 {
1705         struct dentry *parent = dget_parent(dentry);
1706         struct inode *dir = d_inode(parent);
1707         struct inode *inode;
1708         struct dentry *d;
1709         int error;
1710
1711         d_drop(dentry);
1712
1713         if (fhandle->size == 0) {
1714                 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
1715                 if (error)
1716                         goto out_error;
1717         }
1718         nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1719         if (!(fattr->valid & NFS_ATTR_FATTR)) {
1720                 struct nfs_server *server = NFS_SB(dentry->d_sb);
1721                 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1722                                 fattr, NULL, NULL);
1723                 if (error < 0)
1724                         goto out_error;
1725         }
1726         inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1727         d = d_splice_alias(inode, dentry);
1728 out:
1729         dput(parent);
1730         return d;
1731 out_error:
1732         nfs_mark_for_revalidate(dir);
1733         d = ERR_PTR(error);
1734         goto out;
1735 }
1736 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
1737
1738 /*
1739  * Code common to create, mkdir, and mknod.
1740  */
1741 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1742                                 struct nfs_fattr *fattr,
1743                                 struct nfs4_label *label)
1744 {
1745         struct dentry *d;
1746
1747         d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
1748         if (IS_ERR(d))
1749                 return PTR_ERR(d);
1750
1751         /* Callers don't care */
1752         dput(d);
1753         return 0;
1754 }
1755 EXPORT_SYMBOL_GPL(nfs_instantiate);
1756
1757 /*
1758  * Following a failed create operation, we drop the dentry rather
1759  * than retain a negative dentry. This avoids a problem in the event
1760  * that the operation succeeded on the server, but an error in the
1761  * reply path made it appear to have failed.
1762  */
1763 int nfs_create(struct inode *dir, struct dentry *dentry,
1764                 umode_t mode, bool excl)
1765 {
1766         struct iattr attr;
1767         int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1768         int error;
1769
1770         dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1771                         dir->i_sb->s_id, dir->i_ino, dentry);
1772
1773         attr.ia_mode = mode;
1774         attr.ia_valid = ATTR_MODE;
1775
1776         trace_nfs_create_enter(dir, dentry, open_flags);
1777         error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1778         trace_nfs_create_exit(dir, dentry, open_flags, error);
1779         if (error != 0)
1780                 goto out_err;
1781         return 0;
1782 out_err:
1783         d_drop(dentry);
1784         return error;
1785 }
1786 EXPORT_SYMBOL_GPL(nfs_create);
1787
1788 /*
1789  * See comments for nfs_proc_create regarding failed operations.
1790  */
1791 int
1792 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1793 {
1794         struct iattr attr;
1795         int status;
1796
1797         dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1798                         dir->i_sb->s_id, dir->i_ino, dentry);
1799
1800         attr.ia_mode = mode;
1801         attr.ia_valid = ATTR_MODE;
1802
1803         trace_nfs_mknod_enter(dir, dentry);
1804         status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1805         trace_nfs_mknod_exit(dir, dentry, status);
1806         if (status != 0)
1807                 goto out_err;
1808         return 0;
1809 out_err:
1810         d_drop(dentry);
1811         return status;
1812 }
1813 EXPORT_SYMBOL_GPL(nfs_mknod);
1814
1815 /*
1816  * See comments for nfs_proc_create regarding failed operations.
1817  */
1818 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1819 {
1820         struct iattr attr;
1821         int error;
1822
1823         dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1824                         dir->i_sb->s_id, dir->i_ino, dentry);
1825
1826         attr.ia_valid = ATTR_MODE;
1827         attr.ia_mode = mode | S_IFDIR;
1828
1829         trace_nfs_mkdir_enter(dir, dentry);
1830         error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1831         trace_nfs_mkdir_exit(dir, dentry, error);
1832         if (error != 0)
1833                 goto out_err;
1834         return 0;
1835 out_err:
1836         d_drop(dentry);
1837         return error;
1838 }
1839 EXPORT_SYMBOL_GPL(nfs_mkdir);
1840
1841 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1842 {
1843         if (simple_positive(dentry))
1844                 d_delete(dentry);
1845 }
1846
1847 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1848 {
1849         int error;
1850
1851         dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1852                         dir->i_sb->s_id, dir->i_ino, dentry);
1853
1854         trace_nfs_rmdir_enter(dir, dentry);
1855         if (d_really_is_positive(dentry)) {
1856                 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1857                 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1858                 /* Ensure the VFS deletes this inode */
1859                 switch (error) {
1860                 case 0:
1861                         clear_nlink(d_inode(dentry));
1862                         break;
1863                 case -ENOENT:
1864                         nfs_dentry_handle_enoent(dentry);
1865                 }
1866                 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1867         } else
1868                 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1869         trace_nfs_rmdir_exit(dir, dentry, error);
1870
1871         return error;
1872 }
1873 EXPORT_SYMBOL_GPL(nfs_rmdir);
1874
1875 /*
1876  * Remove a file after making sure there are no pending writes,
1877  * and after checking that the file has only one user. 
1878  *
1879  * We invalidate the attribute cache and free the inode prior to the operation
1880  * to avoid possible races if the server reuses the inode.
1881  */
1882 static int nfs_safe_remove(struct dentry *dentry)
1883 {
1884         struct inode *dir = d_inode(dentry->d_parent);
1885         struct inode *inode = d_inode(dentry);
1886         int error = -EBUSY;
1887                 
1888         dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1889
1890         /* If the dentry was sillyrenamed, we simply call d_delete() */
1891         if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1892                 error = 0;
1893                 goto out;
1894         }
1895
1896         trace_nfs_remove_enter(dir, dentry);
1897         if (inode != NULL) {
1898                 error = NFS_PROTO(dir)->remove(dir, dentry);
1899                 if (error == 0)
1900                         nfs_drop_nlink(inode);
1901         } else
1902                 error = NFS_PROTO(dir)->remove(dir, dentry);
1903         if (error == -ENOENT)
1904                 nfs_dentry_handle_enoent(dentry);
1905         trace_nfs_remove_exit(dir, dentry, error);
1906 out:
1907         return error;
1908 }
1909
1910 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1911  *  belongs to an active ".nfs..." file and we return -EBUSY.
1912  *
1913  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1914  */
1915 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1916 {
1917         int error;
1918         int need_rehash = 0;
1919
1920         dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1921                 dir->i_ino, dentry);
1922
1923         trace_nfs_unlink_enter(dir, dentry);
1924         spin_lock(&dentry->d_lock);
1925         if (d_count(dentry) > 1) {
1926                 spin_unlock(&dentry->d_lock);
1927                 /* Start asynchronous writeout of the inode */
1928                 write_inode_now(d_inode(dentry), 0);
1929                 error = nfs_sillyrename(dir, dentry);
1930                 goto out;
1931         }
1932         if (!d_unhashed(dentry)) {
1933                 __d_drop(dentry);
1934                 need_rehash = 1;
1935         }
1936         spin_unlock(&dentry->d_lock);
1937         error = nfs_safe_remove(dentry);
1938         if (!error || error == -ENOENT) {
1939                 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1940         } else if (need_rehash)
1941                 d_rehash(dentry);
1942 out:
1943         trace_nfs_unlink_exit(dir, dentry, error);
1944         return error;
1945 }
1946 EXPORT_SYMBOL_GPL(nfs_unlink);
1947
1948 /*
1949  * To create a symbolic link, most file systems instantiate a new inode,
1950  * add a page to it containing the path, then write it out to the disk
1951  * using prepare_write/commit_write.
1952  *
1953  * Unfortunately the NFS client can't create the in-core inode first
1954  * because it needs a file handle to create an in-core inode (see
1955  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1956  * symlink request has completed on the server.
1957  *
1958  * So instead we allocate a raw page, copy the symname into it, then do
1959  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1960  * now have a new file handle and can instantiate an in-core NFS inode
1961  * and move the raw page into its mapping.
1962  */
1963 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1964 {
1965         struct page *page;
1966         char *kaddr;
1967         struct iattr attr;
1968         unsigned int pathlen = strlen(symname);
1969         int error;
1970
1971         dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1972                 dir->i_ino, dentry, symname);
1973
1974         if (pathlen > PAGE_SIZE)
1975                 return -ENAMETOOLONG;
1976
1977         attr.ia_mode = S_IFLNK | S_IRWXUGO;
1978         attr.ia_valid = ATTR_MODE;
1979
1980         page = alloc_page(GFP_USER);
1981         if (!page)
1982                 return -ENOMEM;
1983
1984         kaddr = page_address(page);
1985         memcpy(kaddr, symname, pathlen);
1986         if (pathlen < PAGE_SIZE)
1987                 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1988
1989         trace_nfs_symlink_enter(dir, dentry);
1990         error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1991         trace_nfs_symlink_exit(dir, dentry, error);
1992         if (error != 0) {
1993                 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1994                         dir->i_sb->s_id, dir->i_ino,
1995                         dentry, symname, error);
1996                 d_drop(dentry);
1997                 __free_page(page);
1998                 return error;
1999         }
2000
2001         /*
2002          * No big deal if we can't add this page to the page cache here.
2003          * READLINK will get the missing page from the server if needed.
2004          */
2005         if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2006                                                         GFP_KERNEL)) {
2007                 SetPageUptodate(page);
2008                 unlock_page(page);
2009                 /*
2010                  * add_to_page_cache_lru() grabs an extra page refcount.
2011                  * Drop it here to avoid leaking this page later.
2012                  */
2013                 put_page(page);
2014         } else
2015                 __free_page(page);
2016
2017         return 0;
2018 }
2019 EXPORT_SYMBOL_GPL(nfs_symlink);
2020
2021 int
2022 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2023 {
2024         struct inode *inode = d_inode(old_dentry);
2025         int error;
2026
2027         dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2028                 old_dentry, dentry);
2029
2030         trace_nfs_link_enter(inode, dir, dentry);
2031         d_drop(dentry);
2032         error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2033         if (error == 0) {
2034                 ihold(inode);
2035                 d_add(dentry, inode);
2036         }
2037         trace_nfs_link_exit(inode, dir, dentry, error);
2038         return error;
2039 }
2040 EXPORT_SYMBOL_GPL(nfs_link);
2041
2042 /*
2043  * RENAME
2044  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2045  * different file handle for the same inode after a rename (e.g. when
2046  * moving to a different directory). A fail-safe method to do so would
2047  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2048  * rename the old file using the sillyrename stuff. This way, the original
2049  * file in old_dir will go away when the last process iput()s the inode.
2050  *
2051  * FIXED.
2052  * 
2053  * It actually works quite well. One needs to have the possibility for
2054  * at least one ".nfs..." file in each directory the file ever gets
2055  * moved or linked to which happens automagically with the new
2056  * implementation that only depends on the dcache stuff instead of
2057  * using the inode layer
2058  *
2059  * Unfortunately, things are a little more complicated than indicated
2060  * above. For a cross-directory move, we want to make sure we can get
2061  * rid of the old inode after the operation.  This means there must be
2062  * no pending writes (if it's a file), and the use count must be 1.
2063  * If these conditions are met, we can drop the dentries before doing
2064  * the rename.
2065  */
2066 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2067                struct inode *new_dir, struct dentry *new_dentry,
2068                unsigned int flags)
2069 {
2070         struct inode *old_inode = d_inode(old_dentry);
2071         struct inode *new_inode = d_inode(new_dentry);
2072         struct dentry *dentry = NULL, *rehash = NULL;
2073         struct rpc_task *task;
2074         int error = -EBUSY;
2075
2076         if (flags)
2077                 return -EINVAL;
2078
2079         dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2080                  old_dentry, new_dentry,
2081                  d_count(new_dentry));
2082
2083         trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2084         /*
2085          * For non-directories, check whether the target is busy and if so,
2086          * make a copy of the dentry and then do a silly-rename. If the
2087          * silly-rename succeeds, the copied dentry is hashed and becomes
2088          * the new target.
2089          */
2090         if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2091                 /*
2092                  * To prevent any new references to the target during the
2093                  * rename, we unhash the dentry in advance.
2094                  */
2095                 if (!d_unhashed(new_dentry)) {
2096                         d_drop(new_dentry);
2097                         rehash = new_dentry;
2098                 }
2099
2100                 if (d_count(new_dentry) > 2) {
2101                         int err;
2102
2103                         /* copy the target dentry's name */
2104                         dentry = d_alloc(new_dentry->d_parent,
2105                                          &new_dentry->d_name);
2106                         if (!dentry)
2107                                 goto out;
2108
2109                         /* silly-rename the existing target ... */
2110                         err = nfs_sillyrename(new_dir, new_dentry);
2111                         if (err)
2112                                 goto out;
2113
2114                         new_dentry = dentry;
2115                         rehash = NULL;
2116                         new_inode = NULL;
2117                 }
2118         }
2119
2120         task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2121         if (IS_ERR(task)) {
2122                 error = PTR_ERR(task);
2123                 goto out;
2124         }
2125
2126         error = rpc_wait_for_completion_task(task);
2127         if (error != 0) {
2128                 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2129                 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2130                 smp_wmb();
2131         } else
2132                 error = task->tk_status;
2133         rpc_put_task(task);
2134         /* Ensure the inode attributes are revalidated */
2135         if (error == 0) {
2136                 spin_lock(&old_inode->i_lock);
2137                 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2138                 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2139                         | NFS_INO_INVALID_CTIME
2140                         | NFS_INO_REVAL_FORCED;
2141                 spin_unlock(&old_inode->i_lock);
2142         }
2143 out:
2144         if (rehash)
2145                 d_rehash(rehash);
2146         trace_nfs_rename_exit(old_dir, old_dentry,
2147                         new_dir, new_dentry, error);
2148         if (!error) {
2149                 if (new_inode != NULL)
2150                         nfs_drop_nlink(new_inode);
2151                 /*
2152                  * The d_move() should be here instead of in an async RPC completion
2153                  * handler because we need the proper locks to move the dentry.  If
2154                  * we're interrupted by a signal, the async RPC completion handler
2155                  * should mark the directories for revalidation.
2156                  */
2157                 d_move(old_dentry, new_dentry);
2158                 nfs_set_verifier(old_dentry,
2159                                         nfs_save_change_attribute(new_dir));
2160         } else if (error == -ENOENT)
2161                 nfs_dentry_handle_enoent(old_dentry);
2162
2163         /* new dentry created? */
2164         if (dentry)
2165                 dput(dentry);
2166         return error;
2167 }
2168 EXPORT_SYMBOL_GPL(nfs_rename);
2169
2170 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2171 static LIST_HEAD(nfs_access_lru_list);
2172 static atomic_long_t nfs_access_nr_entries;
2173
2174 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2175 module_param(nfs_access_max_cachesize, ulong, 0644);
2176 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2177
2178 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2179 {
2180         put_cred(entry->cred);
2181         kfree_rcu(entry, rcu_head);
2182         smp_mb__before_atomic();
2183         atomic_long_dec(&nfs_access_nr_entries);
2184         smp_mb__after_atomic();
2185 }
2186
2187 static void nfs_access_free_list(struct list_head *head)
2188 {
2189         struct nfs_access_entry *cache;
2190
2191         while (!list_empty(head)) {
2192                 cache = list_entry(head->next, struct nfs_access_entry, lru);
2193                 list_del(&cache->lru);
2194                 nfs_access_free_entry(cache);
2195         }
2196 }
2197
2198 static unsigned long
2199 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2200 {
2201         LIST_HEAD(head);
2202         struct nfs_inode *nfsi, *next;
2203         struct nfs_access_entry *cache;
2204         long freed = 0;
2205
2206         spin_lock(&nfs_access_lru_lock);
2207         list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2208                 struct inode *inode;
2209
2210                 if (nr_to_scan-- == 0)
2211                         break;
2212                 inode = &nfsi->vfs_inode;
2213                 spin_lock(&inode->i_lock);
2214                 if (list_empty(&nfsi->access_cache_entry_lru))
2215                         goto remove_lru_entry;
2216                 cache = list_entry(nfsi->access_cache_entry_lru.next,
2217                                 struct nfs_access_entry, lru);
2218                 list_move(&cache->lru, &head);
2219                 rb_erase(&cache->rb_node, &nfsi->access_cache);
2220                 freed++;
2221                 if (!list_empty(&nfsi->access_cache_entry_lru))
2222                         list_move_tail(&nfsi->access_cache_inode_lru,
2223                                         &nfs_access_lru_list);
2224                 else {
2225 remove_lru_entry:
2226                         list_del_init(&nfsi->access_cache_inode_lru);
2227                         smp_mb__before_atomic();
2228                         clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2229                         smp_mb__after_atomic();
2230                 }
2231                 spin_unlock(&inode->i_lock);
2232         }
2233         spin_unlock(&nfs_access_lru_lock);
2234         nfs_access_free_list(&head);
2235         return freed;
2236 }
2237
2238 unsigned long
2239 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2240 {
2241         int nr_to_scan = sc->nr_to_scan;
2242         gfp_t gfp_mask = sc->gfp_mask;
2243
2244         if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2245                 return SHRINK_STOP;
2246         return nfs_do_access_cache_scan(nr_to_scan);
2247 }
2248
2249
2250 unsigned long
2251 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2252 {
2253         return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2254 }
2255
2256 static void
2257 nfs_access_cache_enforce_limit(void)
2258 {
2259         long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2260         unsigned long diff;
2261         unsigned int nr_to_scan;
2262
2263         if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2264                 return;
2265         nr_to_scan = 100;
2266         diff = nr_entries - nfs_access_max_cachesize;
2267         if (diff < nr_to_scan)
2268                 nr_to_scan = diff;
2269         nfs_do_access_cache_scan(nr_to_scan);
2270 }
2271
2272 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2273 {
2274         struct rb_root *root_node = &nfsi->access_cache;
2275         struct rb_node *n;
2276         struct nfs_access_entry *entry;
2277
2278         /* Unhook entries from the cache */
2279         while ((n = rb_first(root_node)) != NULL) {
2280                 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2281                 rb_erase(n, root_node);
2282                 list_move(&entry->lru, head);
2283         }
2284         nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2285 }
2286
2287 void nfs_access_zap_cache(struct inode *inode)
2288 {
2289         LIST_HEAD(head);
2290
2291         if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2292                 return;
2293         /* Remove from global LRU init */
2294         spin_lock(&nfs_access_lru_lock);
2295         if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2296                 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2297
2298         spin_lock(&inode->i_lock);
2299         __nfs_access_zap_cache(NFS_I(inode), &head);
2300         spin_unlock(&inode->i_lock);
2301         spin_unlock(&nfs_access_lru_lock);
2302         nfs_access_free_list(&head);
2303 }
2304 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2305
2306 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2307 {
2308         struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2309
2310         while (n != NULL) {
2311                 struct nfs_access_entry *entry =
2312                         rb_entry(n, struct nfs_access_entry, rb_node);
2313                 int cmp = cred_fscmp(cred, entry->cred);
2314
2315                 if (cmp < 0)
2316                         n = n->rb_left;
2317                 else if (cmp > 0)
2318                         n = n->rb_right;
2319                 else
2320                         return entry;
2321         }
2322         return NULL;
2323 }
2324
2325 static int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2326 {
2327         struct nfs_inode *nfsi = NFS_I(inode);
2328         struct nfs_access_entry *cache;
2329         bool retry = true;
2330         int err;
2331
2332         spin_lock(&inode->i_lock);
2333         for(;;) {
2334                 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2335                         goto out_zap;
2336                 cache = nfs_access_search_rbtree(inode, cred);
2337                 err = -ENOENT;
2338                 if (cache == NULL)
2339                         goto out;
2340                 /* Found an entry, is our attribute cache valid? */
2341                 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2342                         break;
2343                 if (!retry)
2344                         break;
2345                 err = -ECHILD;
2346                 if (!may_block)
2347                         goto out;
2348                 spin_unlock(&inode->i_lock);
2349                 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2350                 if (err)
2351                         return err;
2352                 spin_lock(&inode->i_lock);
2353                 retry = false;
2354         }
2355         res->cred = cache->cred;
2356         res->mask = cache->mask;
2357         list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2358         err = 0;
2359 out:
2360         spin_unlock(&inode->i_lock);
2361         return err;
2362 out_zap:
2363         spin_unlock(&inode->i_lock);
2364         nfs_access_zap_cache(inode);
2365         return -ENOENT;
2366 }
2367
2368 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2369 {
2370         /* Only check the most recently returned cache entry,
2371          * but do it without locking.
2372          */
2373         struct nfs_inode *nfsi = NFS_I(inode);
2374         struct nfs_access_entry *cache;
2375         int err = -ECHILD;
2376         struct list_head *lh;
2377
2378         rcu_read_lock();
2379         if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2380                 goto out;
2381         lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2382         cache = list_entry(lh, struct nfs_access_entry, lru);
2383         if (lh == &nfsi->access_cache_entry_lru ||
2384             cred_fscmp(cred, cache->cred) != 0)
2385                 cache = NULL;
2386         if (cache == NULL)
2387                 goto out;
2388         if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2389                 goto out;
2390         res->cred = cache->cred;
2391         res->mask = cache->mask;
2392         err = 0;
2393 out:
2394         rcu_read_unlock();
2395         return err;
2396 }
2397
2398 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2399 {
2400         struct nfs_inode *nfsi = NFS_I(inode);
2401         struct rb_root *root_node = &nfsi->access_cache;
2402         struct rb_node **p = &root_node->rb_node;
2403         struct rb_node *parent = NULL;
2404         struct nfs_access_entry *entry;
2405         int cmp;
2406
2407         spin_lock(&inode->i_lock);
2408         while (*p != NULL) {
2409                 parent = *p;
2410                 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2411                 cmp = cred_fscmp(set->cred, entry->cred);
2412
2413                 if (cmp < 0)
2414                         p = &parent->rb_left;
2415                 else if (cmp > 0)
2416                         p = &parent->rb_right;
2417                 else
2418                         goto found;
2419         }
2420         rb_link_node(&set->rb_node, parent, p);
2421         rb_insert_color(&set->rb_node, root_node);
2422         list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2423         spin_unlock(&inode->i_lock);
2424         return;
2425 found:
2426         rb_replace_node(parent, &set->rb_node, root_node);
2427         list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2428         list_del(&entry->lru);
2429         spin_unlock(&inode->i_lock);
2430         nfs_access_free_entry(entry);
2431 }
2432
2433 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2434 {
2435         struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2436         if (cache == NULL)
2437                 return;
2438         RB_CLEAR_NODE(&cache->rb_node);
2439         cache->cred = get_cred(set->cred);
2440         cache->mask = set->mask;
2441
2442         /* The above field assignments must be visible
2443          * before this item appears on the lru.  We cannot easily
2444          * use rcu_assign_pointer, so just force the memory barrier.
2445          */
2446         smp_wmb();
2447         nfs_access_add_rbtree(inode, cache);
2448
2449         /* Update accounting */
2450         smp_mb__before_atomic();
2451         atomic_long_inc(&nfs_access_nr_entries);
2452         smp_mb__after_atomic();
2453
2454         /* Add inode to global LRU list */
2455         if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2456                 spin_lock(&nfs_access_lru_lock);
2457                 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2458                         list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2459                                         &nfs_access_lru_list);
2460                 spin_unlock(&nfs_access_lru_lock);
2461         }
2462         nfs_access_cache_enforce_limit();
2463 }
2464 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2465
2466 #define NFS_MAY_READ (NFS_ACCESS_READ)
2467 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2468                 NFS_ACCESS_EXTEND | \
2469                 NFS_ACCESS_DELETE)
2470 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2471                 NFS_ACCESS_EXTEND)
2472 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2473 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2474 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2475 static int
2476 nfs_access_calc_mask(u32 access_result, umode_t umode)
2477 {
2478         int mask = 0;
2479
2480         if (access_result & NFS_MAY_READ)
2481                 mask |= MAY_READ;
2482         if (S_ISDIR(umode)) {
2483                 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2484                         mask |= MAY_WRITE;
2485                 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2486                         mask |= MAY_EXEC;
2487         } else if (S_ISREG(umode)) {
2488                 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2489                         mask |= MAY_WRITE;
2490                 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2491                         mask |= MAY_EXEC;
2492         } else if (access_result & NFS_MAY_WRITE)
2493                         mask |= MAY_WRITE;
2494         return mask;
2495 }
2496
2497 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2498 {
2499         entry->mask = access_result;
2500 }
2501 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2502
2503 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2504 {
2505         struct nfs_access_entry cache;
2506         bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2507         int cache_mask = -1;
2508         int status;
2509
2510         trace_nfs_access_enter(inode);
2511
2512         status = nfs_access_get_cached_rcu(inode, cred, &cache);
2513         if (status != 0)
2514                 status = nfs_access_get_cached(inode, cred, &cache, may_block);
2515         if (status == 0)
2516                 goto out_cached;
2517
2518         status = -ECHILD;
2519         if (!may_block)
2520                 goto out;
2521
2522         /*
2523          * Determine which access bits we want to ask for...
2524          */
2525         cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2526         if (S_ISDIR(inode->i_mode))
2527                 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2528         else
2529                 cache.mask |= NFS_ACCESS_EXECUTE;
2530         cache.cred = cred;
2531         status = NFS_PROTO(inode)->access(inode, &cache);
2532         if (status != 0) {
2533                 if (status == -ESTALE) {
2534                         nfs_zap_caches(inode);
2535                         if (!S_ISDIR(inode->i_mode))
2536                                 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2537                 }
2538                 goto out;
2539         }
2540         nfs_access_add_cache(inode, &cache);
2541 out_cached:
2542         cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2543         if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2544                 status = -EACCES;
2545 out:
2546         trace_nfs_access_exit(inode, mask, cache_mask, status);
2547         return status;
2548 }
2549
2550 static int nfs_open_permission_mask(int openflags)
2551 {
2552         int mask = 0;
2553
2554         if (openflags & __FMODE_EXEC) {
2555                 /* ONLY check exec rights */
2556                 mask = MAY_EXEC;
2557         } else {
2558                 if ((openflags & O_ACCMODE) != O_WRONLY)
2559                         mask |= MAY_READ;
2560                 if ((openflags & O_ACCMODE) != O_RDONLY)
2561                         mask |= MAY_WRITE;
2562         }
2563
2564         return mask;
2565 }
2566
2567 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2568 {
2569         return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2570 }
2571 EXPORT_SYMBOL_GPL(nfs_may_open);
2572
2573 static int nfs_execute_ok(struct inode *inode, int mask)
2574 {
2575         struct nfs_server *server = NFS_SERVER(inode);
2576         int ret = 0;
2577
2578         if (S_ISDIR(inode->i_mode))
2579                 return 0;
2580         if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2581                 if (mask & MAY_NOT_BLOCK)
2582                         return -ECHILD;
2583                 ret = __nfs_revalidate_inode(server, inode);
2584         }
2585         if (ret == 0 && !execute_ok(inode))
2586                 ret = -EACCES;
2587         return ret;
2588 }
2589
2590 int nfs_permission(struct inode *inode, int mask)
2591 {
2592         const struct cred *cred = current_cred();
2593         int res = 0;
2594
2595         nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2596
2597         if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2598                 goto out;
2599         /* Is this sys_access() ? */
2600         if (mask & (MAY_ACCESS | MAY_CHDIR))
2601                 goto force_lookup;
2602
2603         switch (inode->i_mode & S_IFMT) {
2604                 case S_IFLNK:
2605                         goto out;
2606                 case S_IFREG:
2607                         if ((mask & MAY_OPEN) &&
2608                            nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2609                                 return 0;
2610                         break;
2611                 case S_IFDIR:
2612                         /*
2613                          * Optimize away all write operations, since the server
2614                          * will check permissions when we perform the op.
2615                          */
2616                         if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2617                                 goto out;
2618         }
2619
2620 force_lookup:
2621         if (!NFS_PROTO(inode)->access)
2622                 goto out_notsup;
2623
2624         /* Always try fast lookups first */
2625         rcu_read_lock();
2626         res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2627         rcu_read_unlock();
2628         if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2629                 /* Fast lookup failed, try the slow way */
2630                 res = nfs_do_access(inode, cred, mask);
2631         }
2632 out:
2633         if (!res && (mask & MAY_EXEC))
2634                 res = nfs_execute_ok(inode, mask);
2635
2636         dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2637                 inode->i_sb->s_id, inode->i_ino, mask, res);
2638         return res;
2639 out_notsup:
2640         if (mask & MAY_NOT_BLOCK)
2641                 return -ECHILD;
2642
2643         res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2644         if (res == 0)
2645                 res = generic_permission(inode, mask);
2646         goto out;
2647 }
2648 EXPORT_SYMBOL_GPL(nfs_permission);
2649
2650 /*
2651  * Local variables:
2652  *  version-control: t
2653  *  kept-new-versions: 5
2654  * End:
2655  */