]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/ocfs2/journal.c
Merge tag 'ovl-fixes-5.5-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/mszere...
[linux.git] / fs / ocfs2 / journal.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3  * vim: noexpandtab sw=8 ts=8 sts=0:
4  *
5  * journal.c
6  *
7  * Defines functions of journalling api
8  *
9  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
10  */
11
12 #include <linux/fs.h>
13 #include <linux/types.h>
14 #include <linux/slab.h>
15 #include <linux/highmem.h>
16 #include <linux/kthread.h>
17 #include <linux/time.h>
18 #include <linux/random.h>
19 #include <linux/delay.h>
20
21 #include <cluster/masklog.h>
22
23 #include "ocfs2.h"
24
25 #include "alloc.h"
26 #include "blockcheck.h"
27 #include "dir.h"
28 #include "dlmglue.h"
29 #include "extent_map.h"
30 #include "heartbeat.h"
31 #include "inode.h"
32 #include "journal.h"
33 #include "localalloc.h"
34 #include "slot_map.h"
35 #include "super.h"
36 #include "sysfile.h"
37 #include "uptodate.h"
38 #include "quota.h"
39 #include "file.h"
40 #include "namei.h"
41
42 #include "buffer_head_io.h"
43 #include "ocfs2_trace.h"
44
45 DEFINE_SPINLOCK(trans_inc_lock);
46
47 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
48
49 static int ocfs2_force_read_journal(struct inode *inode);
50 static int ocfs2_recover_node(struct ocfs2_super *osb,
51                               int node_num, int slot_num);
52 static int __ocfs2_recovery_thread(void *arg);
53 static int ocfs2_commit_cache(struct ocfs2_super *osb);
54 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
55 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
56                                       int dirty, int replayed);
57 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
58                                  int slot_num);
59 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
60                                  int slot,
61                                  enum ocfs2_orphan_reco_type orphan_reco_type);
62 static int ocfs2_commit_thread(void *arg);
63 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
64                                             int slot_num,
65                                             struct ocfs2_dinode *la_dinode,
66                                             struct ocfs2_dinode *tl_dinode,
67                                             struct ocfs2_quota_recovery *qrec,
68                                             enum ocfs2_orphan_reco_type orphan_reco_type);
69
70 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
71 {
72         return __ocfs2_wait_on_mount(osb, 0);
73 }
74
75 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
76 {
77         return __ocfs2_wait_on_mount(osb, 1);
78 }
79
80 /*
81  * This replay_map is to track online/offline slots, so we could recover
82  * offline slots during recovery and mount
83  */
84
85 enum ocfs2_replay_state {
86         REPLAY_UNNEEDED = 0,    /* Replay is not needed, so ignore this map */
87         REPLAY_NEEDED,          /* Replay slots marked in rm_replay_slots */
88         REPLAY_DONE             /* Replay was already queued */
89 };
90
91 struct ocfs2_replay_map {
92         unsigned int rm_slots;
93         enum ocfs2_replay_state rm_state;
94         unsigned char rm_replay_slots[0];
95 };
96
97 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
98 {
99         if (!osb->replay_map)
100                 return;
101
102         /* If we've already queued the replay, we don't have any more to do */
103         if (osb->replay_map->rm_state == REPLAY_DONE)
104                 return;
105
106         osb->replay_map->rm_state = state;
107 }
108
109 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
110 {
111         struct ocfs2_replay_map *replay_map;
112         int i, node_num;
113
114         /* If replay map is already set, we don't do it again */
115         if (osb->replay_map)
116                 return 0;
117
118         replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
119                              (osb->max_slots * sizeof(char)), GFP_KERNEL);
120
121         if (!replay_map) {
122                 mlog_errno(-ENOMEM);
123                 return -ENOMEM;
124         }
125
126         spin_lock(&osb->osb_lock);
127
128         replay_map->rm_slots = osb->max_slots;
129         replay_map->rm_state = REPLAY_UNNEEDED;
130
131         /* set rm_replay_slots for offline slot(s) */
132         for (i = 0; i < replay_map->rm_slots; i++) {
133                 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
134                         replay_map->rm_replay_slots[i] = 1;
135         }
136
137         osb->replay_map = replay_map;
138         spin_unlock(&osb->osb_lock);
139         return 0;
140 }
141
142 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
143                 enum ocfs2_orphan_reco_type orphan_reco_type)
144 {
145         struct ocfs2_replay_map *replay_map = osb->replay_map;
146         int i;
147
148         if (!replay_map)
149                 return;
150
151         if (replay_map->rm_state != REPLAY_NEEDED)
152                 return;
153
154         for (i = 0; i < replay_map->rm_slots; i++)
155                 if (replay_map->rm_replay_slots[i])
156                         ocfs2_queue_recovery_completion(osb->journal, i, NULL,
157                                                         NULL, NULL,
158                                                         orphan_reco_type);
159         replay_map->rm_state = REPLAY_DONE;
160 }
161
162 static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
163 {
164         struct ocfs2_replay_map *replay_map = osb->replay_map;
165
166         if (!osb->replay_map)
167                 return;
168
169         kfree(replay_map);
170         osb->replay_map = NULL;
171 }
172
173 int ocfs2_recovery_init(struct ocfs2_super *osb)
174 {
175         struct ocfs2_recovery_map *rm;
176
177         mutex_init(&osb->recovery_lock);
178         osb->disable_recovery = 0;
179         osb->recovery_thread_task = NULL;
180         init_waitqueue_head(&osb->recovery_event);
181
182         rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
183                      osb->max_slots * sizeof(unsigned int),
184                      GFP_KERNEL);
185         if (!rm) {
186                 mlog_errno(-ENOMEM);
187                 return -ENOMEM;
188         }
189
190         rm->rm_entries = (unsigned int *)((char *)rm +
191                                           sizeof(struct ocfs2_recovery_map));
192         osb->recovery_map = rm;
193
194         return 0;
195 }
196
197 /* we can't grab the goofy sem lock from inside wait_event, so we use
198  * memory barriers to make sure that we'll see the null task before
199  * being woken up */
200 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
201 {
202         mb();
203         return osb->recovery_thread_task != NULL;
204 }
205
206 void ocfs2_recovery_exit(struct ocfs2_super *osb)
207 {
208         struct ocfs2_recovery_map *rm;
209
210         /* disable any new recovery threads and wait for any currently
211          * running ones to exit. Do this before setting the vol_state. */
212         mutex_lock(&osb->recovery_lock);
213         osb->disable_recovery = 1;
214         mutex_unlock(&osb->recovery_lock);
215         wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
216
217         /* At this point, we know that no more recovery threads can be
218          * launched, so wait for any recovery completion work to
219          * complete. */
220         if (osb->ocfs2_wq)
221                 flush_workqueue(osb->ocfs2_wq);
222
223         /*
224          * Now that recovery is shut down, and the osb is about to be
225          * freed,  the osb_lock is not taken here.
226          */
227         rm = osb->recovery_map;
228         /* XXX: Should we bug if there are dirty entries? */
229
230         kfree(rm);
231 }
232
233 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
234                                      unsigned int node_num)
235 {
236         int i;
237         struct ocfs2_recovery_map *rm = osb->recovery_map;
238
239         assert_spin_locked(&osb->osb_lock);
240
241         for (i = 0; i < rm->rm_used; i++) {
242                 if (rm->rm_entries[i] == node_num)
243                         return 1;
244         }
245
246         return 0;
247 }
248
249 /* Behaves like test-and-set.  Returns the previous value */
250 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
251                                   unsigned int node_num)
252 {
253         struct ocfs2_recovery_map *rm = osb->recovery_map;
254
255         spin_lock(&osb->osb_lock);
256         if (__ocfs2_recovery_map_test(osb, node_num)) {
257                 spin_unlock(&osb->osb_lock);
258                 return 1;
259         }
260
261         /* XXX: Can this be exploited? Not from o2dlm... */
262         BUG_ON(rm->rm_used >= osb->max_slots);
263
264         rm->rm_entries[rm->rm_used] = node_num;
265         rm->rm_used++;
266         spin_unlock(&osb->osb_lock);
267
268         return 0;
269 }
270
271 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
272                                      unsigned int node_num)
273 {
274         int i;
275         struct ocfs2_recovery_map *rm = osb->recovery_map;
276
277         spin_lock(&osb->osb_lock);
278
279         for (i = 0; i < rm->rm_used; i++) {
280                 if (rm->rm_entries[i] == node_num)
281                         break;
282         }
283
284         if (i < rm->rm_used) {
285                 /* XXX: be careful with the pointer math */
286                 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
287                         (rm->rm_used - i - 1) * sizeof(unsigned int));
288                 rm->rm_used--;
289         }
290
291         spin_unlock(&osb->osb_lock);
292 }
293
294 static int ocfs2_commit_cache(struct ocfs2_super *osb)
295 {
296         int status = 0;
297         unsigned int flushed;
298         struct ocfs2_journal *journal = NULL;
299
300         journal = osb->journal;
301
302         /* Flush all pending commits and checkpoint the journal. */
303         down_write(&journal->j_trans_barrier);
304
305         flushed = atomic_read(&journal->j_num_trans);
306         trace_ocfs2_commit_cache_begin(flushed);
307         if (flushed == 0) {
308                 up_write(&journal->j_trans_barrier);
309                 goto finally;
310         }
311
312         jbd2_journal_lock_updates(journal->j_journal);
313         status = jbd2_journal_flush(journal->j_journal);
314         jbd2_journal_unlock_updates(journal->j_journal);
315         if (status < 0) {
316                 up_write(&journal->j_trans_barrier);
317                 mlog_errno(status);
318                 goto finally;
319         }
320
321         ocfs2_inc_trans_id(journal);
322
323         flushed = atomic_read(&journal->j_num_trans);
324         atomic_set(&journal->j_num_trans, 0);
325         up_write(&journal->j_trans_barrier);
326
327         trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
328
329         ocfs2_wake_downconvert_thread(osb);
330         wake_up(&journal->j_checkpointed);
331 finally:
332         return status;
333 }
334
335 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
336 {
337         journal_t *journal = osb->journal->j_journal;
338         handle_t *handle;
339
340         BUG_ON(!osb || !osb->journal->j_journal);
341
342         if (ocfs2_is_hard_readonly(osb))
343                 return ERR_PTR(-EROFS);
344
345         BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
346         BUG_ON(max_buffs <= 0);
347
348         /* Nested transaction? Just return the handle... */
349         if (journal_current_handle())
350                 return jbd2_journal_start(journal, max_buffs);
351
352         sb_start_intwrite(osb->sb);
353
354         down_read(&osb->journal->j_trans_barrier);
355
356         handle = jbd2_journal_start(journal, max_buffs);
357         if (IS_ERR(handle)) {
358                 up_read(&osb->journal->j_trans_barrier);
359                 sb_end_intwrite(osb->sb);
360
361                 mlog_errno(PTR_ERR(handle));
362
363                 if (is_journal_aborted(journal)) {
364                         ocfs2_abort(osb->sb, "Detected aborted journal\n");
365                         handle = ERR_PTR(-EROFS);
366                 }
367         } else {
368                 if (!ocfs2_mount_local(osb))
369                         atomic_inc(&(osb->journal->j_num_trans));
370         }
371
372         return handle;
373 }
374
375 int ocfs2_commit_trans(struct ocfs2_super *osb,
376                        handle_t *handle)
377 {
378         int ret, nested;
379         struct ocfs2_journal *journal = osb->journal;
380
381         BUG_ON(!handle);
382
383         nested = handle->h_ref > 1;
384         ret = jbd2_journal_stop(handle);
385         if (ret < 0)
386                 mlog_errno(ret);
387
388         if (!nested) {
389                 up_read(&journal->j_trans_barrier);
390                 sb_end_intwrite(osb->sb);
391         }
392
393         return ret;
394 }
395
396 /*
397  * 'nblocks' is what you want to add to the current transaction.
398  *
399  * This might call jbd2_journal_restart() which will commit dirty buffers
400  * and then restart the transaction. Before calling
401  * ocfs2_extend_trans(), any changed blocks should have been
402  * dirtied. After calling it, all blocks which need to be changed must
403  * go through another set of journal_access/journal_dirty calls.
404  *
405  * WARNING: This will not release any semaphores or disk locks taken
406  * during the transaction, so make sure they were taken *before*
407  * start_trans or we'll have ordering deadlocks.
408  *
409  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
410  * good because transaction ids haven't yet been recorded on the
411  * cluster locks associated with this handle.
412  */
413 int ocfs2_extend_trans(handle_t *handle, int nblocks)
414 {
415         int status, old_nblocks;
416
417         BUG_ON(!handle);
418         BUG_ON(nblocks < 0);
419
420         if (!nblocks)
421                 return 0;
422
423         old_nblocks = jbd2_handle_buffer_credits(handle);
424
425         trace_ocfs2_extend_trans(old_nblocks, nblocks);
426
427 #ifdef CONFIG_OCFS2_DEBUG_FS
428         status = 1;
429 #else
430         status = jbd2_journal_extend(handle, nblocks, 0);
431         if (status < 0) {
432                 mlog_errno(status);
433                 goto bail;
434         }
435 #endif
436
437         if (status > 0) {
438                 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
439                 status = jbd2_journal_restart(handle,
440                                               old_nblocks + nblocks);
441                 if (status < 0) {
442                         mlog_errno(status);
443                         goto bail;
444                 }
445         }
446
447         status = 0;
448 bail:
449         return status;
450 }
451
452 /*
453  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
454  * If that fails, restart the transaction & regain write access for the
455  * buffer head which is used for metadata modifications.
456  * Taken from Ext4: extend_or_restart_transaction()
457  */
458 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
459 {
460         int status, old_nblks;
461
462         BUG_ON(!handle);
463
464         old_nblks = jbd2_handle_buffer_credits(handle);
465         trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
466
467         if (old_nblks < thresh)
468                 return 0;
469
470         status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
471         if (status < 0) {
472                 mlog_errno(status);
473                 goto bail;
474         }
475
476         if (status > 0) {
477                 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
478                 if (status < 0)
479                         mlog_errno(status);
480         }
481
482 bail:
483         return status;
484 }
485
486
487 struct ocfs2_triggers {
488         struct jbd2_buffer_trigger_type ot_triggers;
489         int                             ot_offset;
490 };
491
492 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
493 {
494         return container_of(triggers, struct ocfs2_triggers, ot_triggers);
495 }
496
497 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
498                                  struct buffer_head *bh,
499                                  void *data, size_t size)
500 {
501         struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
502
503         /*
504          * We aren't guaranteed to have the superblock here, so we
505          * must unconditionally compute the ecc data.
506          * __ocfs2_journal_access() will only set the triggers if
507          * metaecc is enabled.
508          */
509         ocfs2_block_check_compute(data, size, data + ot->ot_offset);
510 }
511
512 /*
513  * Quota blocks have their own trigger because the struct ocfs2_block_check
514  * offset depends on the blocksize.
515  */
516 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
517                                  struct buffer_head *bh,
518                                  void *data, size_t size)
519 {
520         struct ocfs2_disk_dqtrailer *dqt =
521                 ocfs2_block_dqtrailer(size, data);
522
523         /*
524          * We aren't guaranteed to have the superblock here, so we
525          * must unconditionally compute the ecc data.
526          * __ocfs2_journal_access() will only set the triggers if
527          * metaecc is enabled.
528          */
529         ocfs2_block_check_compute(data, size, &dqt->dq_check);
530 }
531
532 /*
533  * Directory blocks also have their own trigger because the
534  * struct ocfs2_block_check offset depends on the blocksize.
535  */
536 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
537                                  struct buffer_head *bh,
538                                  void *data, size_t size)
539 {
540         struct ocfs2_dir_block_trailer *trailer =
541                 ocfs2_dir_trailer_from_size(size, data);
542
543         /*
544          * We aren't guaranteed to have the superblock here, so we
545          * must unconditionally compute the ecc data.
546          * __ocfs2_journal_access() will only set the triggers if
547          * metaecc is enabled.
548          */
549         ocfs2_block_check_compute(data, size, &trailer->db_check);
550 }
551
552 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
553                                 struct buffer_head *bh)
554 {
555         mlog(ML_ERROR,
556              "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
557              "bh->b_blocknr = %llu\n",
558              (unsigned long)bh,
559              (unsigned long long)bh->b_blocknr);
560
561         ocfs2_error(bh->b_bdev->bd_super,
562                     "JBD2 has aborted our journal, ocfs2 cannot continue\n");
563 }
564
565 static struct ocfs2_triggers di_triggers = {
566         .ot_triggers = {
567                 .t_frozen = ocfs2_frozen_trigger,
568                 .t_abort = ocfs2_abort_trigger,
569         },
570         .ot_offset      = offsetof(struct ocfs2_dinode, i_check),
571 };
572
573 static struct ocfs2_triggers eb_triggers = {
574         .ot_triggers = {
575                 .t_frozen = ocfs2_frozen_trigger,
576                 .t_abort = ocfs2_abort_trigger,
577         },
578         .ot_offset      = offsetof(struct ocfs2_extent_block, h_check),
579 };
580
581 static struct ocfs2_triggers rb_triggers = {
582         .ot_triggers = {
583                 .t_frozen = ocfs2_frozen_trigger,
584                 .t_abort = ocfs2_abort_trigger,
585         },
586         .ot_offset      = offsetof(struct ocfs2_refcount_block, rf_check),
587 };
588
589 static struct ocfs2_triggers gd_triggers = {
590         .ot_triggers = {
591                 .t_frozen = ocfs2_frozen_trigger,
592                 .t_abort = ocfs2_abort_trigger,
593         },
594         .ot_offset      = offsetof(struct ocfs2_group_desc, bg_check),
595 };
596
597 static struct ocfs2_triggers db_triggers = {
598         .ot_triggers = {
599                 .t_frozen = ocfs2_db_frozen_trigger,
600                 .t_abort = ocfs2_abort_trigger,
601         },
602 };
603
604 static struct ocfs2_triggers xb_triggers = {
605         .ot_triggers = {
606                 .t_frozen = ocfs2_frozen_trigger,
607                 .t_abort = ocfs2_abort_trigger,
608         },
609         .ot_offset      = offsetof(struct ocfs2_xattr_block, xb_check),
610 };
611
612 static struct ocfs2_triggers dq_triggers = {
613         .ot_triggers = {
614                 .t_frozen = ocfs2_dq_frozen_trigger,
615                 .t_abort = ocfs2_abort_trigger,
616         },
617 };
618
619 static struct ocfs2_triggers dr_triggers = {
620         .ot_triggers = {
621                 .t_frozen = ocfs2_frozen_trigger,
622                 .t_abort = ocfs2_abort_trigger,
623         },
624         .ot_offset      = offsetof(struct ocfs2_dx_root_block, dr_check),
625 };
626
627 static struct ocfs2_triggers dl_triggers = {
628         .ot_triggers = {
629                 .t_frozen = ocfs2_frozen_trigger,
630                 .t_abort = ocfs2_abort_trigger,
631         },
632         .ot_offset      = offsetof(struct ocfs2_dx_leaf, dl_check),
633 };
634
635 static int __ocfs2_journal_access(handle_t *handle,
636                                   struct ocfs2_caching_info *ci,
637                                   struct buffer_head *bh,
638                                   struct ocfs2_triggers *triggers,
639                                   int type)
640 {
641         int status;
642         struct ocfs2_super *osb =
643                 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
644
645         BUG_ON(!ci || !ci->ci_ops);
646         BUG_ON(!handle);
647         BUG_ON(!bh);
648
649         trace_ocfs2_journal_access(
650                 (unsigned long long)ocfs2_metadata_cache_owner(ci),
651                 (unsigned long long)bh->b_blocknr, type, bh->b_size);
652
653         /* we can safely remove this assertion after testing. */
654         if (!buffer_uptodate(bh)) {
655                 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
656                 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
657                      (unsigned long long)bh->b_blocknr, bh->b_state);
658
659                 lock_buffer(bh);
660                 /*
661                  * A previous transaction with a couple of buffer heads fail
662                  * to checkpoint, so all the bhs are marked as BH_Write_EIO.
663                  * For current transaction, the bh is just among those error
664                  * bhs which previous transaction handle. We can't just clear
665                  * its BH_Write_EIO and reuse directly, since other bhs are
666                  * not written to disk yet and that will cause metadata
667                  * inconsistency. So we should set fs read-only to avoid
668                  * further damage.
669                  */
670                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
671                         unlock_buffer(bh);
672                         return ocfs2_error(osb->sb, "A previous attempt to "
673                                         "write this buffer head failed\n");
674                 }
675                 unlock_buffer(bh);
676         }
677
678         /* Set the current transaction information on the ci so
679          * that the locking code knows whether it can drop it's locks
680          * on this ci or not. We're protected from the commit
681          * thread updating the current transaction id until
682          * ocfs2_commit_trans() because ocfs2_start_trans() took
683          * j_trans_barrier for us. */
684         ocfs2_set_ci_lock_trans(osb->journal, ci);
685
686         ocfs2_metadata_cache_io_lock(ci);
687         switch (type) {
688         case OCFS2_JOURNAL_ACCESS_CREATE:
689         case OCFS2_JOURNAL_ACCESS_WRITE:
690                 status = jbd2_journal_get_write_access(handle, bh);
691                 break;
692
693         case OCFS2_JOURNAL_ACCESS_UNDO:
694                 status = jbd2_journal_get_undo_access(handle, bh);
695                 break;
696
697         default:
698                 status = -EINVAL;
699                 mlog(ML_ERROR, "Unknown access type!\n");
700         }
701         if (!status && ocfs2_meta_ecc(osb) && triggers)
702                 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
703         ocfs2_metadata_cache_io_unlock(ci);
704
705         if (status < 0)
706                 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
707                      status, type);
708
709         return status;
710 }
711
712 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
713                             struct buffer_head *bh, int type)
714 {
715         return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
716 }
717
718 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
719                             struct buffer_head *bh, int type)
720 {
721         return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
722 }
723
724 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
725                             struct buffer_head *bh, int type)
726 {
727         return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
728                                       type);
729 }
730
731 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
732                             struct buffer_head *bh, int type)
733 {
734         return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
735 }
736
737 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
738                             struct buffer_head *bh, int type)
739 {
740         return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
741 }
742
743 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
744                             struct buffer_head *bh, int type)
745 {
746         return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
747 }
748
749 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
750                             struct buffer_head *bh, int type)
751 {
752         return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
753 }
754
755 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
756                             struct buffer_head *bh, int type)
757 {
758         return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
759 }
760
761 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
762                             struct buffer_head *bh, int type)
763 {
764         return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
765 }
766
767 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
768                          struct buffer_head *bh, int type)
769 {
770         return __ocfs2_journal_access(handle, ci, bh, NULL, type);
771 }
772
773 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
774 {
775         int status;
776
777         trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
778
779         status = jbd2_journal_dirty_metadata(handle, bh);
780         if (status) {
781                 mlog_errno(status);
782                 if (!is_handle_aborted(handle)) {
783                         journal_t *journal = handle->h_transaction->t_journal;
784                         struct super_block *sb = bh->b_bdev->bd_super;
785
786                         mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
787                                         "Aborting transaction and journal.\n");
788                         handle->h_err = status;
789                         jbd2_journal_abort_handle(handle);
790                         jbd2_journal_abort(journal, status);
791                         ocfs2_abort(sb, "Journal already aborted.\n");
792                 }
793         }
794 }
795
796 #define OCFS2_DEFAULT_COMMIT_INTERVAL   (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
797
798 void ocfs2_set_journal_params(struct ocfs2_super *osb)
799 {
800         journal_t *journal = osb->journal->j_journal;
801         unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
802
803         if (osb->osb_commit_interval)
804                 commit_interval = osb->osb_commit_interval;
805
806         write_lock(&journal->j_state_lock);
807         journal->j_commit_interval = commit_interval;
808         if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
809                 journal->j_flags |= JBD2_BARRIER;
810         else
811                 journal->j_flags &= ~JBD2_BARRIER;
812         write_unlock(&journal->j_state_lock);
813 }
814
815 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
816 {
817         int status = -1;
818         struct inode *inode = NULL; /* the journal inode */
819         journal_t *j_journal = NULL;
820         struct ocfs2_dinode *di = NULL;
821         struct buffer_head *bh = NULL;
822         struct ocfs2_super *osb;
823         int inode_lock = 0;
824
825         BUG_ON(!journal);
826
827         osb = journal->j_osb;
828
829         /* already have the inode for our journal */
830         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
831                                             osb->slot_num);
832         if (inode == NULL) {
833                 status = -EACCES;
834                 mlog_errno(status);
835                 goto done;
836         }
837         if (is_bad_inode(inode)) {
838                 mlog(ML_ERROR, "access error (bad inode)\n");
839                 iput(inode);
840                 inode = NULL;
841                 status = -EACCES;
842                 goto done;
843         }
844
845         SET_INODE_JOURNAL(inode);
846         OCFS2_I(inode)->ip_open_count++;
847
848         /* Skip recovery waits here - journal inode metadata never
849          * changes in a live cluster so it can be considered an
850          * exception to the rule. */
851         status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
852         if (status < 0) {
853                 if (status != -ERESTARTSYS)
854                         mlog(ML_ERROR, "Could not get lock on journal!\n");
855                 goto done;
856         }
857
858         inode_lock = 1;
859         di = (struct ocfs2_dinode *)bh->b_data;
860
861         if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
862                 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
863                      i_size_read(inode));
864                 status = -EINVAL;
865                 goto done;
866         }
867
868         trace_ocfs2_journal_init(i_size_read(inode),
869                                  (unsigned long long)inode->i_blocks,
870                                  OCFS2_I(inode)->ip_clusters);
871
872         /* call the kernels journal init function now */
873         j_journal = jbd2_journal_init_inode(inode);
874         if (j_journal == NULL) {
875                 mlog(ML_ERROR, "Linux journal layer error\n");
876                 status = -EINVAL;
877                 goto done;
878         }
879
880         trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
881
882         *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
883                   OCFS2_JOURNAL_DIRTY_FL);
884
885         journal->j_journal = j_journal;
886         journal->j_inode = inode;
887         journal->j_bh = bh;
888
889         ocfs2_set_journal_params(osb);
890
891         journal->j_state = OCFS2_JOURNAL_LOADED;
892
893         status = 0;
894 done:
895         if (status < 0) {
896                 if (inode_lock)
897                         ocfs2_inode_unlock(inode, 1);
898                 brelse(bh);
899                 if (inode) {
900                         OCFS2_I(inode)->ip_open_count--;
901                         iput(inode);
902                 }
903         }
904
905         return status;
906 }
907
908 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
909 {
910         le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
911 }
912
913 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
914 {
915         return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
916 }
917
918 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
919                                       int dirty, int replayed)
920 {
921         int status;
922         unsigned int flags;
923         struct ocfs2_journal *journal = osb->journal;
924         struct buffer_head *bh = journal->j_bh;
925         struct ocfs2_dinode *fe;
926
927         fe = (struct ocfs2_dinode *)bh->b_data;
928
929         /* The journal bh on the osb always comes from ocfs2_journal_init()
930          * and was validated there inside ocfs2_inode_lock_full().  It's a
931          * code bug if we mess it up. */
932         BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
933
934         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
935         if (dirty)
936                 flags |= OCFS2_JOURNAL_DIRTY_FL;
937         else
938                 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
939         fe->id1.journal1.ij_flags = cpu_to_le32(flags);
940
941         if (replayed)
942                 ocfs2_bump_recovery_generation(fe);
943
944         ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
945         status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
946         if (status < 0)
947                 mlog_errno(status);
948
949         return status;
950 }
951
952 /*
953  * If the journal has been kmalloc'd it needs to be freed after this
954  * call.
955  */
956 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
957 {
958         struct ocfs2_journal *journal = NULL;
959         int status = 0;
960         struct inode *inode = NULL;
961         int num_running_trans = 0;
962
963         BUG_ON(!osb);
964
965         journal = osb->journal;
966         if (!journal)
967                 goto done;
968
969         inode = journal->j_inode;
970
971         if (journal->j_state != OCFS2_JOURNAL_LOADED)
972                 goto done;
973
974         /* need to inc inode use count - jbd2_journal_destroy will iput. */
975         if (!igrab(inode))
976                 BUG();
977
978         num_running_trans = atomic_read(&(osb->journal->j_num_trans));
979         trace_ocfs2_journal_shutdown(num_running_trans);
980
981         /* Do a commit_cache here. It will flush our journal, *and*
982          * release any locks that are still held.
983          * set the SHUTDOWN flag and release the trans lock.
984          * the commit thread will take the trans lock for us below. */
985         journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
986
987         /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
988          * drop the trans_lock (which we want to hold until we
989          * completely destroy the journal. */
990         if (osb->commit_task) {
991                 /* Wait for the commit thread */
992                 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
993                 kthread_stop(osb->commit_task);
994                 osb->commit_task = NULL;
995         }
996
997         BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
998
999         if (ocfs2_mount_local(osb)) {
1000                 jbd2_journal_lock_updates(journal->j_journal);
1001                 status = jbd2_journal_flush(journal->j_journal);
1002                 jbd2_journal_unlock_updates(journal->j_journal);
1003                 if (status < 0)
1004                         mlog_errno(status);
1005         }
1006
1007         /* Shutdown the kernel journal system */
1008         if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1009                 /*
1010                  * Do not toggle if flush was unsuccessful otherwise
1011                  * will leave dirty metadata in a "clean" journal
1012                  */
1013                 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1014                 if (status < 0)
1015                         mlog_errno(status);
1016         }
1017         journal->j_journal = NULL;
1018
1019         OCFS2_I(inode)->ip_open_count--;
1020
1021         /* unlock our journal */
1022         ocfs2_inode_unlock(inode, 1);
1023
1024         brelse(journal->j_bh);
1025         journal->j_bh = NULL;
1026
1027         journal->j_state = OCFS2_JOURNAL_FREE;
1028
1029 //      up_write(&journal->j_trans_barrier);
1030 done:
1031         iput(inode);
1032 }
1033
1034 static void ocfs2_clear_journal_error(struct super_block *sb,
1035                                       journal_t *journal,
1036                                       int slot)
1037 {
1038         int olderr;
1039
1040         olderr = jbd2_journal_errno(journal);
1041         if (olderr) {
1042                 mlog(ML_ERROR, "File system error %d recorded in "
1043                      "journal %u.\n", olderr, slot);
1044                 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1045                      sb->s_id);
1046
1047                 jbd2_journal_ack_err(journal);
1048                 jbd2_journal_clear_err(journal);
1049         }
1050 }
1051
1052 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1053 {
1054         int status = 0;
1055         struct ocfs2_super *osb;
1056
1057         BUG_ON(!journal);
1058
1059         osb = journal->j_osb;
1060
1061         status = jbd2_journal_load(journal->j_journal);
1062         if (status < 0) {
1063                 mlog(ML_ERROR, "Failed to load journal!\n");
1064                 goto done;
1065         }
1066
1067         ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1068
1069         status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1070         if (status < 0) {
1071                 mlog_errno(status);
1072                 goto done;
1073         }
1074
1075         /* Launch the commit thread */
1076         if (!local) {
1077                 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1078                                 "ocfs2cmt-%s", osb->uuid_str);
1079                 if (IS_ERR(osb->commit_task)) {
1080                         status = PTR_ERR(osb->commit_task);
1081                         osb->commit_task = NULL;
1082                         mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1083                              "error=%d", status);
1084                         goto done;
1085                 }
1086         } else
1087                 osb->commit_task = NULL;
1088
1089 done:
1090         return status;
1091 }
1092
1093
1094 /* 'full' flag tells us whether we clear out all blocks or if we just
1095  * mark the journal clean */
1096 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1097 {
1098         int status;
1099
1100         BUG_ON(!journal);
1101
1102         status = jbd2_journal_wipe(journal->j_journal, full);
1103         if (status < 0) {
1104                 mlog_errno(status);
1105                 goto bail;
1106         }
1107
1108         status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1109         if (status < 0)
1110                 mlog_errno(status);
1111
1112 bail:
1113         return status;
1114 }
1115
1116 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1117 {
1118         int empty;
1119         struct ocfs2_recovery_map *rm = osb->recovery_map;
1120
1121         spin_lock(&osb->osb_lock);
1122         empty = (rm->rm_used == 0);
1123         spin_unlock(&osb->osb_lock);
1124
1125         return empty;
1126 }
1127
1128 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1129 {
1130         wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1131 }
1132
1133 /*
1134  * JBD Might read a cached version of another nodes journal file. We
1135  * don't want this as this file changes often and we get no
1136  * notification on those changes. The only way to be sure that we've
1137  * got the most up to date version of those blocks then is to force
1138  * read them off disk. Just searching through the buffer cache won't
1139  * work as there may be pages backing this file which are still marked
1140  * up to date. We know things can't change on this file underneath us
1141  * as we have the lock by now :)
1142  */
1143 static int ocfs2_force_read_journal(struct inode *inode)
1144 {
1145         int status = 0;
1146         int i;
1147         u64 v_blkno, p_blkno, p_blocks, num_blocks;
1148         struct buffer_head *bh = NULL;
1149         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1150
1151         num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1152         v_blkno = 0;
1153         while (v_blkno < num_blocks) {
1154                 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1155                                                      &p_blkno, &p_blocks, NULL);
1156                 if (status < 0) {
1157                         mlog_errno(status);
1158                         goto bail;
1159                 }
1160
1161                 for (i = 0; i < p_blocks; i++, p_blkno++) {
1162                         bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1163                                         osb->sb->s_blocksize);
1164                         /* block not cached. */
1165                         if (!bh)
1166                                 continue;
1167
1168                         brelse(bh);
1169                         bh = NULL;
1170                         /* We are reading journal data which should not
1171                          * be put in the uptodate cache.
1172                          */
1173                         status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1174                         if (status < 0) {
1175                                 mlog_errno(status);
1176                                 goto bail;
1177                         }
1178
1179                         brelse(bh);
1180                         bh = NULL;
1181                 }
1182
1183                 v_blkno += p_blocks;
1184         }
1185
1186 bail:
1187         return status;
1188 }
1189
1190 struct ocfs2_la_recovery_item {
1191         struct list_head        lri_list;
1192         int                     lri_slot;
1193         struct ocfs2_dinode     *lri_la_dinode;
1194         struct ocfs2_dinode     *lri_tl_dinode;
1195         struct ocfs2_quota_recovery *lri_qrec;
1196         enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1197 };
1198
1199 /* Does the second half of the recovery process. By this point, the
1200  * node is marked clean and can actually be considered recovered,
1201  * hence it's no longer in the recovery map, but there's still some
1202  * cleanup we can do which shouldn't happen within the recovery thread
1203  * as locking in that context becomes very difficult if we are to take
1204  * recovering nodes into account.
1205  *
1206  * NOTE: This function can and will sleep on recovery of other nodes
1207  * during cluster locking, just like any other ocfs2 process.
1208  */
1209 void ocfs2_complete_recovery(struct work_struct *work)
1210 {
1211         int ret = 0;
1212         struct ocfs2_journal *journal =
1213                 container_of(work, struct ocfs2_journal, j_recovery_work);
1214         struct ocfs2_super *osb = journal->j_osb;
1215         struct ocfs2_dinode *la_dinode, *tl_dinode;
1216         struct ocfs2_la_recovery_item *item, *n;
1217         struct ocfs2_quota_recovery *qrec;
1218         enum ocfs2_orphan_reco_type orphan_reco_type;
1219         LIST_HEAD(tmp_la_list);
1220
1221         trace_ocfs2_complete_recovery(
1222                 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1223
1224         spin_lock(&journal->j_lock);
1225         list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1226         spin_unlock(&journal->j_lock);
1227
1228         list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1229                 list_del_init(&item->lri_list);
1230
1231                 ocfs2_wait_on_quotas(osb);
1232
1233                 la_dinode = item->lri_la_dinode;
1234                 tl_dinode = item->lri_tl_dinode;
1235                 qrec = item->lri_qrec;
1236                 orphan_reco_type = item->lri_orphan_reco_type;
1237
1238                 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1239                         la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1240                         tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1241                         qrec);
1242
1243                 if (la_dinode) {
1244                         ret = ocfs2_complete_local_alloc_recovery(osb,
1245                                                                   la_dinode);
1246                         if (ret < 0)
1247                                 mlog_errno(ret);
1248
1249                         kfree(la_dinode);
1250                 }
1251
1252                 if (tl_dinode) {
1253                         ret = ocfs2_complete_truncate_log_recovery(osb,
1254                                                                    tl_dinode);
1255                         if (ret < 0)
1256                                 mlog_errno(ret);
1257
1258                         kfree(tl_dinode);
1259                 }
1260
1261                 ret = ocfs2_recover_orphans(osb, item->lri_slot,
1262                                 orphan_reco_type);
1263                 if (ret < 0)
1264                         mlog_errno(ret);
1265
1266                 if (qrec) {
1267                         ret = ocfs2_finish_quota_recovery(osb, qrec,
1268                                                           item->lri_slot);
1269                         if (ret < 0)
1270                                 mlog_errno(ret);
1271                         /* Recovery info is already freed now */
1272                 }
1273
1274                 kfree(item);
1275         }
1276
1277         trace_ocfs2_complete_recovery_end(ret);
1278 }
1279
1280 /* NOTE: This function always eats your references to la_dinode and
1281  * tl_dinode, either manually on error, or by passing them to
1282  * ocfs2_complete_recovery */
1283 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1284                                             int slot_num,
1285                                             struct ocfs2_dinode *la_dinode,
1286                                             struct ocfs2_dinode *tl_dinode,
1287                                             struct ocfs2_quota_recovery *qrec,
1288                                             enum ocfs2_orphan_reco_type orphan_reco_type)
1289 {
1290         struct ocfs2_la_recovery_item *item;
1291
1292         item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1293         if (!item) {
1294                 /* Though we wish to avoid it, we are in fact safe in
1295                  * skipping local alloc cleanup as fsck.ocfs2 is more
1296                  * than capable of reclaiming unused space. */
1297                 kfree(la_dinode);
1298                 kfree(tl_dinode);
1299
1300                 if (qrec)
1301                         ocfs2_free_quota_recovery(qrec);
1302
1303                 mlog_errno(-ENOMEM);
1304                 return;
1305         }
1306
1307         INIT_LIST_HEAD(&item->lri_list);
1308         item->lri_la_dinode = la_dinode;
1309         item->lri_slot = slot_num;
1310         item->lri_tl_dinode = tl_dinode;
1311         item->lri_qrec = qrec;
1312         item->lri_orphan_reco_type = orphan_reco_type;
1313
1314         spin_lock(&journal->j_lock);
1315         list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1316         queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1317         spin_unlock(&journal->j_lock);
1318 }
1319
1320 /* Called by the mount code to queue recovery the last part of
1321  * recovery for it's own and offline slot(s). */
1322 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1323 {
1324         struct ocfs2_journal *journal = osb->journal;
1325
1326         if (ocfs2_is_hard_readonly(osb))
1327                 return;
1328
1329         /* No need to queue up our truncate_log as regular cleanup will catch
1330          * that */
1331         ocfs2_queue_recovery_completion(journal, osb->slot_num,
1332                                         osb->local_alloc_copy, NULL, NULL,
1333                                         ORPHAN_NEED_TRUNCATE);
1334         ocfs2_schedule_truncate_log_flush(osb, 0);
1335
1336         osb->local_alloc_copy = NULL;
1337
1338         /* queue to recover orphan slots for all offline slots */
1339         ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1340         ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1341         ocfs2_free_replay_slots(osb);
1342 }
1343
1344 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1345 {
1346         if (osb->quota_rec) {
1347                 ocfs2_queue_recovery_completion(osb->journal,
1348                                                 osb->slot_num,
1349                                                 NULL,
1350                                                 NULL,
1351                                                 osb->quota_rec,
1352                                                 ORPHAN_NEED_TRUNCATE);
1353                 osb->quota_rec = NULL;
1354         }
1355 }
1356
1357 static int __ocfs2_recovery_thread(void *arg)
1358 {
1359         int status, node_num, slot_num;
1360         struct ocfs2_super *osb = arg;
1361         struct ocfs2_recovery_map *rm = osb->recovery_map;
1362         int *rm_quota = NULL;
1363         int rm_quota_used = 0, i;
1364         struct ocfs2_quota_recovery *qrec;
1365
1366         /* Whether the quota supported. */
1367         int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1368                         OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1369                 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1370                         OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1371
1372         status = ocfs2_wait_on_mount(osb);
1373         if (status < 0) {
1374                 goto bail;
1375         }
1376
1377         if (quota_enabled) {
1378                 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1379                 if (!rm_quota) {
1380                         status = -ENOMEM;
1381                         goto bail;
1382                 }
1383         }
1384 restart:
1385         status = ocfs2_super_lock(osb, 1);
1386         if (status < 0) {
1387                 mlog_errno(status);
1388                 goto bail;
1389         }
1390
1391         status = ocfs2_compute_replay_slots(osb);
1392         if (status < 0)
1393                 mlog_errno(status);
1394
1395         /* queue recovery for our own slot */
1396         ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1397                                         NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1398
1399         spin_lock(&osb->osb_lock);
1400         while (rm->rm_used) {
1401                 /* It's always safe to remove entry zero, as we won't
1402                  * clear it until ocfs2_recover_node() has succeeded. */
1403                 node_num = rm->rm_entries[0];
1404                 spin_unlock(&osb->osb_lock);
1405                 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1406                 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1407                 if (slot_num == -ENOENT) {
1408                         status = 0;
1409                         goto skip_recovery;
1410                 }
1411
1412                 /* It is a bit subtle with quota recovery. We cannot do it
1413                  * immediately because we have to obtain cluster locks from
1414                  * quota files and we also don't want to just skip it because
1415                  * then quota usage would be out of sync until some node takes
1416                  * the slot. So we remember which nodes need quota recovery
1417                  * and when everything else is done, we recover quotas. */
1418                 if (quota_enabled) {
1419                         for (i = 0; i < rm_quota_used
1420                                         && rm_quota[i] != slot_num; i++)
1421                                 ;
1422
1423                         if (i == rm_quota_used)
1424                                 rm_quota[rm_quota_used++] = slot_num;
1425                 }
1426
1427                 status = ocfs2_recover_node(osb, node_num, slot_num);
1428 skip_recovery:
1429                 if (!status) {
1430                         ocfs2_recovery_map_clear(osb, node_num);
1431                 } else {
1432                         mlog(ML_ERROR,
1433                              "Error %d recovering node %d on device (%u,%u)!\n",
1434                              status, node_num,
1435                              MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1436                         mlog(ML_ERROR, "Volume requires unmount.\n");
1437                 }
1438
1439                 spin_lock(&osb->osb_lock);
1440         }
1441         spin_unlock(&osb->osb_lock);
1442         trace_ocfs2_recovery_thread_end(status);
1443
1444         /* Refresh all journal recovery generations from disk */
1445         status = ocfs2_check_journals_nolocks(osb);
1446         status = (status == -EROFS) ? 0 : status;
1447         if (status < 0)
1448                 mlog_errno(status);
1449
1450         /* Now it is right time to recover quotas... We have to do this under
1451          * superblock lock so that no one can start using the slot (and crash)
1452          * before we recover it */
1453         if (quota_enabled) {
1454                 for (i = 0; i < rm_quota_used; i++) {
1455                         qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1456                         if (IS_ERR(qrec)) {
1457                                 status = PTR_ERR(qrec);
1458                                 mlog_errno(status);
1459                                 continue;
1460                         }
1461                         ocfs2_queue_recovery_completion(osb->journal,
1462                                         rm_quota[i],
1463                                         NULL, NULL, qrec,
1464                                         ORPHAN_NEED_TRUNCATE);
1465                 }
1466         }
1467
1468         ocfs2_super_unlock(osb, 1);
1469
1470         /* queue recovery for offline slots */
1471         ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1472
1473 bail:
1474         mutex_lock(&osb->recovery_lock);
1475         if (!status && !ocfs2_recovery_completed(osb)) {
1476                 mutex_unlock(&osb->recovery_lock);
1477                 goto restart;
1478         }
1479
1480         ocfs2_free_replay_slots(osb);
1481         osb->recovery_thread_task = NULL;
1482         mb(); /* sync with ocfs2_recovery_thread_running */
1483         wake_up(&osb->recovery_event);
1484
1485         mutex_unlock(&osb->recovery_lock);
1486
1487         if (quota_enabled)
1488                 kfree(rm_quota);
1489
1490         /* no one is callint kthread_stop() for us so the kthread() api
1491          * requires that we call do_exit().  And it isn't exported, but
1492          * complete_and_exit() seems to be a minimal wrapper around it. */
1493         complete_and_exit(NULL, status);
1494 }
1495
1496 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1497 {
1498         mutex_lock(&osb->recovery_lock);
1499
1500         trace_ocfs2_recovery_thread(node_num, osb->node_num,
1501                 osb->disable_recovery, osb->recovery_thread_task,
1502                 osb->disable_recovery ?
1503                 -1 : ocfs2_recovery_map_set(osb, node_num));
1504
1505         if (osb->disable_recovery)
1506                 goto out;
1507
1508         if (osb->recovery_thread_task)
1509                 goto out;
1510
1511         osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1512                         "ocfs2rec-%s", osb->uuid_str);
1513         if (IS_ERR(osb->recovery_thread_task)) {
1514                 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1515                 osb->recovery_thread_task = NULL;
1516         }
1517
1518 out:
1519         mutex_unlock(&osb->recovery_lock);
1520         wake_up(&osb->recovery_event);
1521 }
1522
1523 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1524                                     int slot_num,
1525                                     struct buffer_head **bh,
1526                                     struct inode **ret_inode)
1527 {
1528         int status = -EACCES;
1529         struct inode *inode = NULL;
1530
1531         BUG_ON(slot_num >= osb->max_slots);
1532
1533         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1534                                             slot_num);
1535         if (!inode || is_bad_inode(inode)) {
1536                 mlog_errno(status);
1537                 goto bail;
1538         }
1539         SET_INODE_JOURNAL(inode);
1540
1541         status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1542         if (status < 0) {
1543                 mlog_errno(status);
1544                 goto bail;
1545         }
1546
1547         status = 0;
1548
1549 bail:
1550         if (inode) {
1551                 if (status || !ret_inode)
1552                         iput(inode);
1553                 else
1554                         *ret_inode = inode;
1555         }
1556         return status;
1557 }
1558
1559 /* Does the actual journal replay and marks the journal inode as
1560  * clean. Will only replay if the journal inode is marked dirty. */
1561 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1562                                 int node_num,
1563                                 int slot_num)
1564 {
1565         int status;
1566         int got_lock = 0;
1567         unsigned int flags;
1568         struct inode *inode = NULL;
1569         struct ocfs2_dinode *fe;
1570         journal_t *journal = NULL;
1571         struct buffer_head *bh = NULL;
1572         u32 slot_reco_gen;
1573
1574         status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1575         if (status) {
1576                 mlog_errno(status);
1577                 goto done;
1578         }
1579
1580         fe = (struct ocfs2_dinode *)bh->b_data;
1581         slot_reco_gen = ocfs2_get_recovery_generation(fe);
1582         brelse(bh);
1583         bh = NULL;
1584
1585         /*
1586          * As the fs recovery is asynchronous, there is a small chance that
1587          * another node mounted (and recovered) the slot before the recovery
1588          * thread could get the lock. To handle that, we dirty read the journal
1589          * inode for that slot to get the recovery generation. If it is
1590          * different than what we expected, the slot has been recovered.
1591          * If not, it needs recovery.
1592          */
1593         if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1594                 trace_ocfs2_replay_journal_recovered(slot_num,
1595                      osb->slot_recovery_generations[slot_num], slot_reco_gen);
1596                 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1597                 status = -EBUSY;
1598                 goto done;
1599         }
1600
1601         /* Continue with recovery as the journal has not yet been recovered */
1602
1603         status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1604         if (status < 0) {
1605                 trace_ocfs2_replay_journal_lock_err(status);
1606                 if (status != -ERESTARTSYS)
1607                         mlog(ML_ERROR, "Could not lock journal!\n");
1608                 goto done;
1609         }
1610         got_lock = 1;
1611
1612         fe = (struct ocfs2_dinode *) bh->b_data;
1613
1614         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1615         slot_reco_gen = ocfs2_get_recovery_generation(fe);
1616
1617         if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1618                 trace_ocfs2_replay_journal_skip(node_num);
1619                 /* Refresh recovery generation for the slot */
1620                 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1621                 goto done;
1622         }
1623
1624         /* we need to run complete recovery for offline orphan slots */
1625         ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1626
1627         printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1628                "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1629                MINOR(osb->sb->s_dev));
1630
1631         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1632
1633         status = ocfs2_force_read_journal(inode);
1634         if (status < 0) {
1635                 mlog_errno(status);
1636                 goto done;
1637         }
1638
1639         journal = jbd2_journal_init_inode(inode);
1640         if (journal == NULL) {
1641                 mlog(ML_ERROR, "Linux journal layer error\n");
1642                 status = -EIO;
1643                 goto done;
1644         }
1645
1646         status = jbd2_journal_load(journal);
1647         if (status < 0) {
1648                 mlog_errno(status);
1649                 if (!igrab(inode))
1650                         BUG();
1651                 jbd2_journal_destroy(journal);
1652                 goto done;
1653         }
1654
1655         ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1656
1657         /* wipe the journal */
1658         jbd2_journal_lock_updates(journal);
1659         status = jbd2_journal_flush(journal);
1660         jbd2_journal_unlock_updates(journal);
1661         if (status < 0)
1662                 mlog_errno(status);
1663
1664         /* This will mark the node clean */
1665         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1666         flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1667         fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1668
1669         /* Increment recovery generation to indicate successful recovery */
1670         ocfs2_bump_recovery_generation(fe);
1671         osb->slot_recovery_generations[slot_num] =
1672                                         ocfs2_get_recovery_generation(fe);
1673
1674         ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1675         status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1676         if (status < 0)
1677                 mlog_errno(status);
1678
1679         if (!igrab(inode))
1680                 BUG();
1681
1682         jbd2_journal_destroy(journal);
1683
1684         printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1685                "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1686                MINOR(osb->sb->s_dev));
1687 done:
1688         /* drop the lock on this nodes journal */
1689         if (got_lock)
1690                 ocfs2_inode_unlock(inode, 1);
1691
1692         iput(inode);
1693         brelse(bh);
1694
1695         return status;
1696 }
1697
1698 /*
1699  * Do the most important parts of node recovery:
1700  *  - Replay it's journal
1701  *  - Stamp a clean local allocator file
1702  *  - Stamp a clean truncate log
1703  *  - Mark the node clean
1704  *
1705  * If this function completes without error, a node in OCFS2 can be
1706  * said to have been safely recovered. As a result, failure during the
1707  * second part of a nodes recovery process (local alloc recovery) is
1708  * far less concerning.
1709  */
1710 static int ocfs2_recover_node(struct ocfs2_super *osb,
1711                               int node_num, int slot_num)
1712 {
1713         int status = 0;
1714         struct ocfs2_dinode *la_copy = NULL;
1715         struct ocfs2_dinode *tl_copy = NULL;
1716
1717         trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1718
1719         /* Should not ever be called to recover ourselves -- in that
1720          * case we should've called ocfs2_journal_load instead. */
1721         BUG_ON(osb->node_num == node_num);
1722
1723         status = ocfs2_replay_journal(osb, node_num, slot_num);
1724         if (status < 0) {
1725                 if (status == -EBUSY) {
1726                         trace_ocfs2_recover_node_skip(slot_num, node_num);
1727                         status = 0;
1728                         goto done;
1729                 }
1730                 mlog_errno(status);
1731                 goto done;
1732         }
1733
1734         /* Stamp a clean local alloc file AFTER recovering the journal... */
1735         status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1736         if (status < 0) {
1737                 mlog_errno(status);
1738                 goto done;
1739         }
1740
1741         /* An error from begin_truncate_log_recovery is not
1742          * serious enough to warrant halting the rest of
1743          * recovery. */
1744         status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1745         if (status < 0)
1746                 mlog_errno(status);
1747
1748         /* Likewise, this would be a strange but ultimately not so
1749          * harmful place to get an error... */
1750         status = ocfs2_clear_slot(osb, slot_num);
1751         if (status < 0)
1752                 mlog_errno(status);
1753
1754         /* This will kfree the memory pointed to by la_copy and tl_copy */
1755         ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1756                                         tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1757
1758         status = 0;
1759 done:
1760
1761         return status;
1762 }
1763
1764 /* Test node liveness by trylocking his journal. If we get the lock,
1765  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1766  * still alive (we couldn't get the lock) and < 0 on error. */
1767 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1768                                  int slot_num)
1769 {
1770         int status, flags;
1771         struct inode *inode = NULL;
1772
1773         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1774                                             slot_num);
1775         if (inode == NULL) {
1776                 mlog(ML_ERROR, "access error\n");
1777                 status = -EACCES;
1778                 goto bail;
1779         }
1780         if (is_bad_inode(inode)) {
1781                 mlog(ML_ERROR, "access error (bad inode)\n");
1782                 iput(inode);
1783                 inode = NULL;
1784                 status = -EACCES;
1785                 goto bail;
1786         }
1787         SET_INODE_JOURNAL(inode);
1788
1789         flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1790         status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1791         if (status < 0) {
1792                 if (status != -EAGAIN)
1793                         mlog_errno(status);
1794                 goto bail;
1795         }
1796
1797         ocfs2_inode_unlock(inode, 1);
1798 bail:
1799         iput(inode);
1800
1801         return status;
1802 }
1803
1804 /* Call this underneath ocfs2_super_lock. It also assumes that the
1805  * slot info struct has been updated from disk. */
1806 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1807 {
1808         unsigned int node_num;
1809         int status, i;
1810         u32 gen;
1811         struct buffer_head *bh = NULL;
1812         struct ocfs2_dinode *di;
1813
1814         /* This is called with the super block cluster lock, so we
1815          * know that the slot map can't change underneath us. */
1816
1817         for (i = 0; i < osb->max_slots; i++) {
1818                 /* Read journal inode to get the recovery generation */
1819                 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1820                 if (status) {
1821                         mlog_errno(status);
1822                         goto bail;
1823                 }
1824                 di = (struct ocfs2_dinode *)bh->b_data;
1825                 gen = ocfs2_get_recovery_generation(di);
1826                 brelse(bh);
1827                 bh = NULL;
1828
1829                 spin_lock(&osb->osb_lock);
1830                 osb->slot_recovery_generations[i] = gen;
1831
1832                 trace_ocfs2_mark_dead_nodes(i,
1833                                             osb->slot_recovery_generations[i]);
1834
1835                 if (i == osb->slot_num) {
1836                         spin_unlock(&osb->osb_lock);
1837                         continue;
1838                 }
1839
1840                 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1841                 if (status == -ENOENT) {
1842                         spin_unlock(&osb->osb_lock);
1843                         continue;
1844                 }
1845
1846                 if (__ocfs2_recovery_map_test(osb, node_num)) {
1847                         spin_unlock(&osb->osb_lock);
1848                         continue;
1849                 }
1850                 spin_unlock(&osb->osb_lock);
1851
1852                 /* Ok, we have a slot occupied by another node which
1853                  * is not in the recovery map. We trylock his journal
1854                  * file here to test if he's alive. */
1855                 status = ocfs2_trylock_journal(osb, i);
1856                 if (!status) {
1857                         /* Since we're called from mount, we know that
1858                          * the recovery thread can't race us on
1859                          * setting / checking the recovery bits. */
1860                         ocfs2_recovery_thread(osb, node_num);
1861                 } else if ((status < 0) && (status != -EAGAIN)) {
1862                         mlog_errno(status);
1863                         goto bail;
1864                 }
1865         }
1866
1867         status = 0;
1868 bail:
1869         return status;
1870 }
1871
1872 /*
1873  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1874  * randomness to the timeout to minimize multple nodes firing the timer at the
1875  * same time.
1876  */
1877 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1878 {
1879         unsigned long time;
1880
1881         get_random_bytes(&time, sizeof(time));
1882         time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1883         return msecs_to_jiffies(time);
1884 }
1885
1886 /*
1887  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1888  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1889  * is done to catch any orphans that are left over in orphan directories.
1890  *
1891  * It scans all slots, even ones that are in use. It does so to handle the
1892  * case described below:
1893  *
1894  *   Node 1 has an inode it was using. The dentry went away due to memory
1895  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1896  *   has the open lock.
1897  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1898  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1899  *   open lock, sees that another node has a PR, and does nothing.
1900  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1901  *   open lock, sees the PR still, and does nothing.
1902  *   Basically, we have to trigger an orphan iput on node 1. The only way
1903  *   for this to happen is if node 1 runs node 2's orphan dir.
1904  *
1905  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1906  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1907  * stored in LVB. If the sequence number has changed, it means some other
1908  * node has done the scan.  This node skips the scan and tracks the
1909  * sequence number.  If the sequence number didn't change, it means a scan
1910  * hasn't happened.  The node queues a scan and increments the
1911  * sequence number in the LVB.
1912  */
1913 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1914 {
1915         struct ocfs2_orphan_scan *os;
1916         int status, i;
1917         u32 seqno = 0;
1918
1919         os = &osb->osb_orphan_scan;
1920
1921         if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1922                 goto out;
1923
1924         trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1925                                             atomic_read(&os->os_state));
1926
1927         status = ocfs2_orphan_scan_lock(osb, &seqno);
1928         if (status < 0) {
1929                 if (status != -EAGAIN)
1930                         mlog_errno(status);
1931                 goto out;
1932         }
1933
1934         /* Do no queue the tasks if the volume is being umounted */
1935         if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1936                 goto unlock;
1937
1938         if (os->os_seqno != seqno) {
1939                 os->os_seqno = seqno;
1940                 goto unlock;
1941         }
1942
1943         for (i = 0; i < osb->max_slots; i++)
1944                 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1945                                                 NULL, ORPHAN_NO_NEED_TRUNCATE);
1946         /*
1947          * We queued a recovery on orphan slots, increment the sequence
1948          * number and update LVB so other node will skip the scan for a while
1949          */
1950         seqno++;
1951         os->os_count++;
1952         os->os_scantime = ktime_get_seconds();
1953 unlock:
1954         ocfs2_orphan_scan_unlock(osb, seqno);
1955 out:
1956         trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1957                                           atomic_read(&os->os_state));
1958         return;
1959 }
1960
1961 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1962 static void ocfs2_orphan_scan_work(struct work_struct *work)
1963 {
1964         struct ocfs2_orphan_scan *os;
1965         struct ocfs2_super *osb;
1966
1967         os = container_of(work, struct ocfs2_orphan_scan,
1968                           os_orphan_scan_work.work);
1969         osb = os->os_osb;
1970
1971         mutex_lock(&os->os_lock);
1972         ocfs2_queue_orphan_scan(osb);
1973         if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1974                 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
1975                                       ocfs2_orphan_scan_timeout());
1976         mutex_unlock(&os->os_lock);
1977 }
1978
1979 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1980 {
1981         struct ocfs2_orphan_scan *os;
1982
1983         os = &osb->osb_orphan_scan;
1984         if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1985                 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1986                 mutex_lock(&os->os_lock);
1987                 cancel_delayed_work(&os->os_orphan_scan_work);
1988                 mutex_unlock(&os->os_lock);
1989         }
1990 }
1991
1992 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1993 {
1994         struct ocfs2_orphan_scan *os;
1995
1996         os = &osb->osb_orphan_scan;
1997         os->os_osb = osb;
1998         os->os_count = 0;
1999         os->os_seqno = 0;
2000         mutex_init(&os->os_lock);
2001         INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2002 }
2003
2004 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2005 {
2006         struct ocfs2_orphan_scan *os;
2007
2008         os = &osb->osb_orphan_scan;
2009         os->os_scantime = ktime_get_seconds();
2010         if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2011                 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2012         else {
2013                 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2014                 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2015                                    ocfs2_orphan_scan_timeout());
2016         }
2017 }
2018
2019 struct ocfs2_orphan_filldir_priv {
2020         struct dir_context      ctx;
2021         struct inode            *head;
2022         struct ocfs2_super      *osb;
2023         enum ocfs2_orphan_reco_type orphan_reco_type;
2024 };
2025
2026 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2027                                 int name_len, loff_t pos, u64 ino,
2028                                 unsigned type)
2029 {
2030         struct ocfs2_orphan_filldir_priv *p =
2031                 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2032         struct inode *iter;
2033
2034         if (name_len == 1 && !strncmp(".", name, 1))
2035                 return 0;
2036         if (name_len == 2 && !strncmp("..", name, 2))
2037                 return 0;
2038
2039         /* do not include dio entry in case of orphan scan */
2040         if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2041                         (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2042                         OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2043                 return 0;
2044
2045         /* Skip bad inodes so that recovery can continue */
2046         iter = ocfs2_iget(p->osb, ino,
2047                           OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2048         if (IS_ERR(iter))
2049                 return 0;
2050
2051         if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2052                         OCFS2_DIO_ORPHAN_PREFIX_LEN))
2053                 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2054
2055         /* Skip inodes which are already added to recover list, since dio may
2056          * happen concurrently with unlink/rename */
2057         if (OCFS2_I(iter)->ip_next_orphan) {
2058                 iput(iter);
2059                 return 0;
2060         }
2061
2062         trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2063         /* No locking is required for the next_orphan queue as there
2064          * is only ever a single process doing orphan recovery. */
2065         OCFS2_I(iter)->ip_next_orphan = p->head;
2066         p->head = iter;
2067
2068         return 0;
2069 }
2070
2071 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2072                                int slot,
2073                                struct inode **head,
2074                                enum ocfs2_orphan_reco_type orphan_reco_type)
2075 {
2076         int status;
2077         struct inode *orphan_dir_inode = NULL;
2078         struct ocfs2_orphan_filldir_priv priv = {
2079                 .ctx.actor = ocfs2_orphan_filldir,
2080                 .osb = osb,
2081                 .head = *head,
2082                 .orphan_reco_type = orphan_reco_type
2083         };
2084
2085         orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2086                                                        ORPHAN_DIR_SYSTEM_INODE,
2087                                                        slot);
2088         if  (!orphan_dir_inode) {
2089                 status = -ENOENT;
2090                 mlog_errno(status);
2091                 return status;
2092         }
2093
2094         inode_lock(orphan_dir_inode);
2095         status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2096         if (status < 0) {
2097                 mlog_errno(status);
2098                 goto out;
2099         }
2100
2101         status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2102         if (status) {
2103                 mlog_errno(status);
2104                 goto out_cluster;
2105         }
2106
2107         *head = priv.head;
2108
2109 out_cluster:
2110         ocfs2_inode_unlock(orphan_dir_inode, 0);
2111 out:
2112         inode_unlock(orphan_dir_inode);
2113         iput(orphan_dir_inode);
2114         return status;
2115 }
2116
2117 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2118                                               int slot)
2119 {
2120         int ret;
2121
2122         spin_lock(&osb->osb_lock);
2123         ret = !osb->osb_orphan_wipes[slot];
2124         spin_unlock(&osb->osb_lock);
2125         return ret;
2126 }
2127
2128 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2129                                              int slot)
2130 {
2131         spin_lock(&osb->osb_lock);
2132         /* Mark ourselves such that new processes in delete_inode()
2133          * know to quit early. */
2134         ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2135         while (osb->osb_orphan_wipes[slot]) {
2136                 /* If any processes are already in the middle of an
2137                  * orphan wipe on this dir, then we need to wait for
2138                  * them. */
2139                 spin_unlock(&osb->osb_lock);
2140                 wait_event_interruptible(osb->osb_wipe_event,
2141                                          ocfs2_orphan_recovery_can_continue(osb, slot));
2142                 spin_lock(&osb->osb_lock);
2143         }
2144         spin_unlock(&osb->osb_lock);
2145 }
2146
2147 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2148                                               int slot)
2149 {
2150         ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2151 }
2152
2153 /*
2154  * Orphan recovery. Each mounted node has it's own orphan dir which we
2155  * must run during recovery. Our strategy here is to build a list of
2156  * the inodes in the orphan dir and iget/iput them. The VFS does
2157  * (most) of the rest of the work.
2158  *
2159  * Orphan recovery can happen at any time, not just mount so we have a
2160  * couple of extra considerations.
2161  *
2162  * - We grab as many inodes as we can under the orphan dir lock -
2163  *   doing iget() outside the orphan dir risks getting a reference on
2164  *   an invalid inode.
2165  * - We must be sure not to deadlock with other processes on the
2166  *   system wanting to run delete_inode(). This can happen when they go
2167  *   to lock the orphan dir and the orphan recovery process attempts to
2168  *   iget() inside the orphan dir lock. This can be avoided by
2169  *   advertising our state to ocfs2_delete_inode().
2170  */
2171 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2172                                  int slot,
2173                                  enum ocfs2_orphan_reco_type orphan_reco_type)
2174 {
2175         int ret = 0;
2176         struct inode *inode = NULL;
2177         struct inode *iter;
2178         struct ocfs2_inode_info *oi;
2179         struct buffer_head *di_bh = NULL;
2180         struct ocfs2_dinode *di = NULL;
2181
2182         trace_ocfs2_recover_orphans(slot);
2183
2184         ocfs2_mark_recovering_orphan_dir(osb, slot);
2185         ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2186         ocfs2_clear_recovering_orphan_dir(osb, slot);
2187
2188         /* Error here should be noted, but we want to continue with as
2189          * many queued inodes as we've got. */
2190         if (ret)
2191                 mlog_errno(ret);
2192
2193         while (inode) {
2194                 oi = OCFS2_I(inode);
2195                 trace_ocfs2_recover_orphans_iput(
2196                                         (unsigned long long)oi->ip_blkno);
2197
2198                 iter = oi->ip_next_orphan;
2199                 oi->ip_next_orphan = NULL;
2200
2201                 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2202                         inode_lock(inode);
2203                         ret = ocfs2_rw_lock(inode, 1);
2204                         if (ret < 0) {
2205                                 mlog_errno(ret);
2206                                 goto unlock_mutex;
2207                         }
2208                         /*
2209                          * We need to take and drop the inode lock to
2210                          * force read inode from disk.
2211                          */
2212                         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2213                         if (ret) {
2214                                 mlog_errno(ret);
2215                                 goto unlock_rw;
2216                         }
2217
2218                         di = (struct ocfs2_dinode *)di_bh->b_data;
2219
2220                         if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2221                                 ret = ocfs2_truncate_file(inode, di_bh,
2222                                                 i_size_read(inode));
2223                                 if (ret < 0) {
2224                                         if (ret != -ENOSPC)
2225                                                 mlog_errno(ret);
2226                                         goto unlock_inode;
2227                                 }
2228
2229                                 ret = ocfs2_del_inode_from_orphan(osb, inode,
2230                                                 di_bh, 0, 0);
2231                                 if (ret)
2232                                         mlog_errno(ret);
2233                         }
2234 unlock_inode:
2235                         ocfs2_inode_unlock(inode, 1);
2236                         brelse(di_bh);
2237                         di_bh = NULL;
2238 unlock_rw:
2239                         ocfs2_rw_unlock(inode, 1);
2240 unlock_mutex:
2241                         inode_unlock(inode);
2242
2243                         /* clear dio flag in ocfs2_inode_info */
2244                         oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2245                 } else {
2246                         spin_lock(&oi->ip_lock);
2247                         /* Set the proper information to get us going into
2248                          * ocfs2_delete_inode. */
2249                         oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2250                         spin_unlock(&oi->ip_lock);
2251                 }
2252
2253                 iput(inode);
2254                 inode = iter;
2255         }
2256
2257         return ret;
2258 }
2259
2260 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2261 {
2262         /* This check is good because ocfs2 will wait on our recovery
2263          * thread before changing it to something other than MOUNTED
2264          * or DISABLED. */
2265         wait_event(osb->osb_mount_event,
2266                   (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2267                    atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2268                    atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2269
2270         /* If there's an error on mount, then we may never get to the
2271          * MOUNTED flag, but this is set right before
2272          * dismount_volume() so we can trust it. */
2273         if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2274                 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2275                 mlog(0, "mount error, exiting!\n");
2276                 return -EBUSY;
2277         }
2278
2279         return 0;
2280 }
2281
2282 static int ocfs2_commit_thread(void *arg)
2283 {
2284         int status;
2285         struct ocfs2_super *osb = arg;
2286         struct ocfs2_journal *journal = osb->journal;
2287
2288         /* we can trust j_num_trans here because _should_stop() is only set in
2289          * shutdown and nobody other than ourselves should be able to start
2290          * transactions.  committing on shutdown might take a few iterations
2291          * as final transactions put deleted inodes on the list */
2292         while (!(kthread_should_stop() &&
2293                  atomic_read(&journal->j_num_trans) == 0)) {
2294
2295                 wait_event_interruptible(osb->checkpoint_event,
2296                                          atomic_read(&journal->j_num_trans)
2297                                          || kthread_should_stop());
2298
2299                 status = ocfs2_commit_cache(osb);
2300                 if (status < 0) {
2301                         static unsigned long abort_warn_time;
2302
2303                         /* Warn about this once per minute */
2304                         if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2305                                 mlog(ML_ERROR, "status = %d, journal is "
2306                                                 "already aborted.\n", status);
2307                         /*
2308                          * After ocfs2_commit_cache() fails, j_num_trans has a
2309                          * non-zero value.  Sleep here to avoid a busy-wait
2310                          * loop.
2311                          */
2312                         msleep_interruptible(1000);
2313                 }
2314
2315                 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2316                         mlog(ML_KTHREAD,
2317                              "commit_thread: %u transactions pending on "
2318                              "shutdown\n",
2319                              atomic_read(&journal->j_num_trans));
2320                 }
2321         }
2322
2323         return 0;
2324 }
2325
2326 /* Reads all the journal inodes without taking any cluster locks. Used
2327  * for hard readonly access to determine whether any journal requires
2328  * recovery. Also used to refresh the recovery generation numbers after
2329  * a journal has been recovered by another node.
2330  */
2331 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2332 {
2333         int ret = 0;
2334         unsigned int slot;
2335         struct buffer_head *di_bh = NULL;
2336         struct ocfs2_dinode *di;
2337         int journal_dirty = 0;
2338
2339         for(slot = 0; slot < osb->max_slots; slot++) {
2340                 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2341                 if (ret) {
2342                         mlog_errno(ret);
2343                         goto out;
2344                 }
2345
2346                 di = (struct ocfs2_dinode *) di_bh->b_data;
2347
2348                 osb->slot_recovery_generations[slot] =
2349                                         ocfs2_get_recovery_generation(di);
2350
2351                 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2352                     OCFS2_JOURNAL_DIRTY_FL)
2353                         journal_dirty = 1;
2354
2355                 brelse(di_bh);
2356                 di_bh = NULL;
2357         }
2358
2359 out:
2360         if (journal_dirty)
2361                 ret = -EROFS;
2362         return ret;
2363 }