]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/udf/super.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 enum {
68         VDS_POS_PRIMARY_VOL_DESC,
69         VDS_POS_UNALLOC_SPACE_DESC,
70         VDS_POS_LOGICAL_VOL_DESC,
71         VDS_POS_IMP_USE_VOL_DESC,
72         VDS_POS_LENGTH
73 };
74
75 #define VSD_FIRST_SECTOR_OFFSET         32768
76 #define VSD_MAX_SECTOR_OFFSET           0x800000
77
78 /*
79  * Maximum number of Terminating Descriptor / Logical Volume Integrity
80  * Descriptor redirections. The chosen numbers are arbitrary - just that we
81  * hopefully don't limit any real use of rewritten inode on write-once media
82  * but avoid looping for too long on corrupted media.
83  */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86
87 enum { UDF_MAX_LINKS = 0xffff };
88
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
96                             struct kernel_lb_addr *);
97 static void udf_load_fileset(struct super_block *, struct buffer_head *,
98                              struct kernel_lb_addr *);
99 static void udf_open_lvid(struct super_block *);
100 static void udf_close_lvid(struct super_block *);
101 static unsigned int udf_count_free(struct super_block *);
102 static int udf_statfs(struct dentry *, struct kstatfs *);
103 static int udf_show_options(struct seq_file *, struct dentry *);
104
105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
106 {
107         struct logicalVolIntegrityDesc *lvid;
108         unsigned int partnum;
109         unsigned int offset;
110
111         if (!UDF_SB(sb)->s_lvid_bh)
112                 return NULL;
113         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
114         partnum = le32_to_cpu(lvid->numOfPartitions);
115         if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
116              offsetof(struct logicalVolIntegrityDesc, impUse)) /
117              (2 * sizeof(uint32_t)) < partnum) {
118                 udf_err(sb, "Logical volume integrity descriptor corrupted "
119                         "(numOfPartitions = %u)!\n", partnum);
120                 return NULL;
121         }
122         /* The offset is to skip freeSpaceTable and sizeTable arrays */
123         offset = partnum * 2 * sizeof(uint32_t);
124         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
125 }
126
127 /* UDF filesystem type */
128 static struct dentry *udf_mount(struct file_system_type *fs_type,
129                       int flags, const char *dev_name, void *data)
130 {
131         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
132 }
133
134 static struct file_system_type udf_fstype = {
135         .owner          = THIS_MODULE,
136         .name           = "udf",
137         .mount          = udf_mount,
138         .kill_sb        = kill_block_super,
139         .fs_flags       = FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("udf");
142
143 static struct kmem_cache *udf_inode_cachep;
144
145 static struct inode *udf_alloc_inode(struct super_block *sb)
146 {
147         struct udf_inode_info *ei;
148         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
149         if (!ei)
150                 return NULL;
151
152         ei->i_unique = 0;
153         ei->i_lenExtents = 0;
154         ei->i_next_alloc_block = 0;
155         ei->i_next_alloc_goal = 0;
156         ei->i_strat4096 = 0;
157         init_rwsem(&ei->i_data_sem);
158         ei->cached_extent.lstart = -1;
159         spin_lock_init(&ei->i_extent_cache_lock);
160
161         return &ei->vfs_inode;
162 }
163
164 static void udf_i_callback(struct rcu_head *head)
165 {
166         struct inode *inode = container_of(head, struct inode, i_rcu);
167         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
168 }
169
170 static void udf_destroy_inode(struct inode *inode)
171 {
172         call_rcu(&inode->i_rcu, udf_i_callback);
173 }
174
175 static void init_once(void *foo)
176 {
177         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
178
179         ei->i_ext.i_data = NULL;
180         inode_init_once(&ei->vfs_inode);
181 }
182
183 static int __init init_inodecache(void)
184 {
185         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
186                                              sizeof(struct udf_inode_info),
187                                              0, (SLAB_RECLAIM_ACCOUNT |
188                                                  SLAB_MEM_SPREAD |
189                                                  SLAB_ACCOUNT),
190                                              init_once);
191         if (!udf_inode_cachep)
192                 return -ENOMEM;
193         return 0;
194 }
195
196 static void destroy_inodecache(void)
197 {
198         /*
199          * Make sure all delayed rcu free inodes are flushed before we
200          * destroy cache.
201          */
202         rcu_barrier();
203         kmem_cache_destroy(udf_inode_cachep);
204 }
205
206 /* Superblock operations */
207 static const struct super_operations udf_sb_ops = {
208         .alloc_inode    = udf_alloc_inode,
209         .destroy_inode  = udf_destroy_inode,
210         .write_inode    = udf_write_inode,
211         .evict_inode    = udf_evict_inode,
212         .put_super      = udf_put_super,
213         .sync_fs        = udf_sync_fs,
214         .statfs         = udf_statfs,
215         .remount_fs     = udf_remount_fs,
216         .show_options   = udf_show_options,
217 };
218
219 struct udf_options {
220         unsigned char novrs;
221         unsigned int blocksize;
222         unsigned int session;
223         unsigned int lastblock;
224         unsigned int anchor;
225         unsigned int flags;
226         umode_t umask;
227         kgid_t gid;
228         kuid_t uid;
229         umode_t fmode;
230         umode_t dmode;
231         struct nls_table *nls_map;
232 };
233
234 static int __init init_udf_fs(void)
235 {
236         int err;
237
238         err = init_inodecache();
239         if (err)
240                 goto out1;
241         err = register_filesystem(&udf_fstype);
242         if (err)
243                 goto out;
244
245         return 0;
246
247 out:
248         destroy_inodecache();
249
250 out1:
251         return err;
252 }
253
254 static void __exit exit_udf_fs(void)
255 {
256         unregister_filesystem(&udf_fstype);
257         destroy_inodecache();
258 }
259
260 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
261 {
262         struct udf_sb_info *sbi = UDF_SB(sb);
263
264         sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
265         if (!sbi->s_partmaps) {
266                 sbi->s_partitions = 0;
267                 return -ENOMEM;
268         }
269
270         sbi->s_partitions = count;
271         return 0;
272 }
273
274 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
275 {
276         int i;
277         int nr_groups = bitmap->s_nr_groups;
278
279         for (i = 0; i < nr_groups; i++)
280                 if (bitmap->s_block_bitmap[i])
281                         brelse(bitmap->s_block_bitmap[i]);
282
283         kvfree(bitmap);
284 }
285
286 static void udf_free_partition(struct udf_part_map *map)
287 {
288         int i;
289         struct udf_meta_data *mdata;
290
291         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
292                 iput(map->s_uspace.s_table);
293         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
294                 iput(map->s_fspace.s_table);
295         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
296                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
297         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
298                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
299         if (map->s_partition_type == UDF_SPARABLE_MAP15)
300                 for (i = 0; i < 4; i++)
301                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
302         else if (map->s_partition_type == UDF_METADATA_MAP25) {
303                 mdata = &map->s_type_specific.s_metadata;
304                 iput(mdata->s_metadata_fe);
305                 mdata->s_metadata_fe = NULL;
306
307                 iput(mdata->s_mirror_fe);
308                 mdata->s_mirror_fe = NULL;
309
310                 iput(mdata->s_bitmap_fe);
311                 mdata->s_bitmap_fe = NULL;
312         }
313 }
314
315 static void udf_sb_free_partitions(struct super_block *sb)
316 {
317         struct udf_sb_info *sbi = UDF_SB(sb);
318         int i;
319
320         if (!sbi->s_partmaps)
321                 return;
322         for (i = 0; i < sbi->s_partitions; i++)
323                 udf_free_partition(&sbi->s_partmaps[i]);
324         kfree(sbi->s_partmaps);
325         sbi->s_partmaps = NULL;
326 }
327
328 static int udf_show_options(struct seq_file *seq, struct dentry *root)
329 {
330         struct super_block *sb = root->d_sb;
331         struct udf_sb_info *sbi = UDF_SB(sb);
332
333         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
334                 seq_puts(seq, ",nostrict");
335         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
336                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
337         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
338                 seq_puts(seq, ",unhide");
339         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
340                 seq_puts(seq, ",undelete");
341         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
342                 seq_puts(seq, ",noadinicb");
343         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
344                 seq_puts(seq, ",shortad");
345         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
346                 seq_puts(seq, ",uid=forget");
347         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
348                 seq_puts(seq, ",gid=forget");
349         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
350                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
351         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
352                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
353         if (sbi->s_umask != 0)
354                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
355         if (sbi->s_fmode != UDF_INVALID_MODE)
356                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
357         if (sbi->s_dmode != UDF_INVALID_MODE)
358                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
359         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
360                 seq_printf(seq, ",session=%d", sbi->s_session);
361         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
362                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
363         if (sbi->s_anchor != 0)
364                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
365         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
366                 seq_puts(seq, ",utf8");
367         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
368                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
369
370         return 0;
371 }
372
373 /*
374  * udf_parse_options
375  *
376  * PURPOSE
377  *      Parse mount options.
378  *
379  * DESCRIPTION
380  *      The following mount options are supported:
381  *
382  *      gid=            Set the default group.
383  *      umask=          Set the default umask.
384  *      mode=           Set the default file permissions.
385  *      dmode=          Set the default directory permissions.
386  *      uid=            Set the default user.
387  *      bs=             Set the block size.
388  *      unhide          Show otherwise hidden files.
389  *      undelete        Show deleted files in lists.
390  *      adinicb         Embed data in the inode (default)
391  *      noadinicb       Don't embed data in the inode
392  *      shortad         Use short ad's
393  *      longad          Use long ad's (default)
394  *      nostrict        Unset strict conformance
395  *      iocharset=      Set the NLS character set
396  *
397  *      The remaining are for debugging and disaster recovery:
398  *
399  *      novrs           Skip volume sequence recognition
400  *
401  *      The following expect a offset from 0.
402  *
403  *      session=        Set the CDROM session (default= last session)
404  *      anchor=         Override standard anchor location. (default= 256)
405  *      volume=         Override the VolumeDesc location. (unused)
406  *      partition=      Override the PartitionDesc location. (unused)
407  *      lastblock=      Set the last block of the filesystem/
408  *
409  *      The following expect a offset from the partition root.
410  *
411  *      fileset=        Override the fileset block location. (unused)
412  *      rootdir=        Override the root directory location. (unused)
413  *              WARNING: overriding the rootdir to a non-directory may
414  *              yield highly unpredictable results.
415  *
416  * PRE-CONDITIONS
417  *      options         Pointer to mount options string.
418  *      uopts           Pointer to mount options variable.
419  *
420  * POST-CONDITIONS
421  *      <return>        1       Mount options parsed okay.
422  *      <return>        0       Error parsing mount options.
423  *
424  * HISTORY
425  *      July 1, 1997 - Andrew E. Mileski
426  *      Written, tested, and released.
427  */
428
429 enum {
430         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
431         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
432         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
433         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
434         Opt_rootdir, Opt_utf8, Opt_iocharset,
435         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
436         Opt_fmode, Opt_dmode
437 };
438
439 static const match_table_t tokens = {
440         {Opt_novrs,     "novrs"},
441         {Opt_nostrict,  "nostrict"},
442         {Opt_bs,        "bs=%u"},
443         {Opt_unhide,    "unhide"},
444         {Opt_undelete,  "undelete"},
445         {Opt_noadinicb, "noadinicb"},
446         {Opt_adinicb,   "adinicb"},
447         {Opt_shortad,   "shortad"},
448         {Opt_longad,    "longad"},
449         {Opt_uforget,   "uid=forget"},
450         {Opt_uignore,   "uid=ignore"},
451         {Opt_gforget,   "gid=forget"},
452         {Opt_gignore,   "gid=ignore"},
453         {Opt_gid,       "gid=%u"},
454         {Opt_uid,       "uid=%u"},
455         {Opt_umask,     "umask=%o"},
456         {Opt_session,   "session=%u"},
457         {Opt_lastblock, "lastblock=%u"},
458         {Opt_anchor,    "anchor=%u"},
459         {Opt_volume,    "volume=%u"},
460         {Opt_partition, "partition=%u"},
461         {Opt_fileset,   "fileset=%u"},
462         {Opt_rootdir,   "rootdir=%u"},
463         {Opt_utf8,      "utf8"},
464         {Opt_iocharset, "iocharset=%s"},
465         {Opt_fmode,     "mode=%o"},
466         {Opt_dmode,     "dmode=%o"},
467         {Opt_err,       NULL}
468 };
469
470 static int udf_parse_options(char *options, struct udf_options *uopt,
471                              bool remount)
472 {
473         char *p;
474         int option;
475
476         uopt->novrs = 0;
477         uopt->session = 0xFFFFFFFF;
478         uopt->lastblock = 0;
479         uopt->anchor = 0;
480
481         if (!options)
482                 return 1;
483
484         while ((p = strsep(&options, ",")) != NULL) {
485                 substring_t args[MAX_OPT_ARGS];
486                 int token;
487                 unsigned n;
488                 if (!*p)
489                         continue;
490
491                 token = match_token(p, tokens, args);
492                 switch (token) {
493                 case Opt_novrs:
494                         uopt->novrs = 1;
495                         break;
496                 case Opt_bs:
497                         if (match_int(&args[0], &option))
498                                 return 0;
499                         n = option;
500                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
501                                 return 0;
502                         uopt->blocksize = n;
503                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
504                         break;
505                 case Opt_unhide:
506                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
507                         break;
508                 case Opt_undelete:
509                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
510                         break;
511                 case Opt_noadinicb:
512                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
513                         break;
514                 case Opt_adinicb:
515                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
516                         break;
517                 case Opt_shortad:
518                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
519                         break;
520                 case Opt_longad:
521                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
522                         break;
523                 case Opt_gid:
524                         if (match_int(args, &option))
525                                 return 0;
526                         uopt->gid = make_kgid(current_user_ns(), option);
527                         if (!gid_valid(uopt->gid))
528                                 return 0;
529                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
530                         break;
531                 case Opt_uid:
532                         if (match_int(args, &option))
533                                 return 0;
534                         uopt->uid = make_kuid(current_user_ns(), option);
535                         if (!uid_valid(uopt->uid))
536                                 return 0;
537                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
538                         break;
539                 case Opt_umask:
540                         if (match_octal(args, &option))
541                                 return 0;
542                         uopt->umask = option;
543                         break;
544                 case Opt_nostrict:
545                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
546                         break;
547                 case Opt_session:
548                         if (match_int(args, &option))
549                                 return 0;
550                         uopt->session = option;
551                         if (!remount)
552                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
553                         break;
554                 case Opt_lastblock:
555                         if (match_int(args, &option))
556                                 return 0;
557                         uopt->lastblock = option;
558                         if (!remount)
559                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
560                         break;
561                 case Opt_anchor:
562                         if (match_int(args, &option))
563                                 return 0;
564                         uopt->anchor = option;
565                         break;
566                 case Opt_volume:
567                 case Opt_partition:
568                 case Opt_fileset:
569                 case Opt_rootdir:
570                         /* Ignored (never implemented properly) */
571                         break;
572                 case Opt_utf8:
573                         uopt->flags |= (1 << UDF_FLAG_UTF8);
574                         break;
575                 case Opt_iocharset:
576                         if (!remount) {
577                                 if (uopt->nls_map)
578                                         unload_nls(uopt->nls_map);
579                                 uopt->nls_map = load_nls(args[0].from);
580                                 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
581                         }
582                         break;
583                 case Opt_uforget:
584                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
585                         break;
586                 case Opt_uignore:
587                 case Opt_gignore:
588                         /* These options are superseeded by uid=<number> */
589                         break;
590                 case Opt_gforget:
591                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
592                         break;
593                 case Opt_fmode:
594                         if (match_octal(args, &option))
595                                 return 0;
596                         uopt->fmode = option & 0777;
597                         break;
598                 case Opt_dmode:
599                         if (match_octal(args, &option))
600                                 return 0;
601                         uopt->dmode = option & 0777;
602                         break;
603                 default:
604                         pr_err("bad mount option \"%s\" or missing value\n", p);
605                         return 0;
606                 }
607         }
608         return 1;
609 }
610
611 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
612 {
613         struct udf_options uopt;
614         struct udf_sb_info *sbi = UDF_SB(sb);
615         int error = 0;
616         struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
617
618         sync_filesystem(sb);
619         if (lvidiu) {
620                 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
621                 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & SB_RDONLY))
622                         return -EACCES;
623         }
624
625         uopt.flags = sbi->s_flags;
626         uopt.uid   = sbi->s_uid;
627         uopt.gid   = sbi->s_gid;
628         uopt.umask = sbi->s_umask;
629         uopt.fmode = sbi->s_fmode;
630         uopt.dmode = sbi->s_dmode;
631         uopt.nls_map = NULL;
632
633         if (!udf_parse_options(options, &uopt, true))
634                 return -EINVAL;
635
636         write_lock(&sbi->s_cred_lock);
637         sbi->s_flags = uopt.flags;
638         sbi->s_uid   = uopt.uid;
639         sbi->s_gid   = uopt.gid;
640         sbi->s_umask = uopt.umask;
641         sbi->s_fmode = uopt.fmode;
642         sbi->s_dmode = uopt.dmode;
643         write_unlock(&sbi->s_cred_lock);
644
645         if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
646                 goto out_unlock;
647
648         if (*flags & SB_RDONLY)
649                 udf_close_lvid(sb);
650         else
651                 udf_open_lvid(sb);
652
653 out_unlock:
654         return error;
655 }
656
657 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
658 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
659 static loff_t udf_check_vsd(struct super_block *sb)
660 {
661         struct volStructDesc *vsd = NULL;
662         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
663         int sectorsize;
664         struct buffer_head *bh = NULL;
665         int nsr02 = 0;
666         int nsr03 = 0;
667         struct udf_sb_info *sbi;
668
669         sbi = UDF_SB(sb);
670         if (sb->s_blocksize < sizeof(struct volStructDesc))
671                 sectorsize = sizeof(struct volStructDesc);
672         else
673                 sectorsize = sb->s_blocksize;
674
675         sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
676
677         udf_debug("Starting at sector %u (%lu byte sectors)\n",
678                   (unsigned int)(sector >> sb->s_blocksize_bits),
679                   sb->s_blocksize);
680         /* Process the sequence (if applicable). The hard limit on the sector
681          * offset is arbitrary, hopefully large enough so that all valid UDF
682          * filesystems will be recognised. There is no mention of an upper
683          * bound to the size of the volume recognition area in the standard.
684          *  The limit will prevent the code to read all the sectors of a
685          * specially crafted image (like a bluray disc full of CD001 sectors),
686          * potentially causing minutes or even hours of uninterruptible I/O
687          * activity. This actually happened with uninitialised SSD partitions
688          * (all 0xFF) before the check for the limit and all valid IDs were
689          * added */
690         for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
691              sector += sectorsize) {
692                 /* Read a block */
693                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
694                 if (!bh)
695                         break;
696
697                 /* Look for ISO  descriptors */
698                 vsd = (struct volStructDesc *)(bh->b_data +
699                                               (sector & (sb->s_blocksize - 1)));
700
701                 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
702                                     VSD_STD_ID_LEN)) {
703                         switch (vsd->structType) {
704                         case 0:
705                                 udf_debug("ISO9660 Boot Record found\n");
706                                 break;
707                         case 1:
708                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
709                                 break;
710                         case 2:
711                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
712                                 break;
713                         case 3:
714                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
715                                 break;
716                         case 255:
717                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
718                                 break;
719                         default:
720                                 udf_debug("ISO9660 VRS (%u) found\n",
721                                           vsd->structType);
722                                 break;
723                         }
724                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
725                                     VSD_STD_ID_LEN))
726                         ; /* nothing */
727                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
728                                     VSD_STD_ID_LEN)) {
729                         brelse(bh);
730                         break;
731                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
732                                     VSD_STD_ID_LEN))
733                         nsr02 = sector;
734                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
735                                     VSD_STD_ID_LEN))
736                         nsr03 = sector;
737                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
738                                     VSD_STD_ID_LEN))
739                         ; /* nothing */
740                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
741                                     VSD_STD_ID_LEN))
742                         ; /* nothing */
743                 else {
744                         /* invalid id : end of volume recognition area */
745                         brelse(bh);
746                         break;
747                 }
748                 brelse(bh);
749         }
750
751         if (nsr03)
752                 return nsr03;
753         else if (nsr02)
754                 return nsr02;
755         else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
756                         VSD_FIRST_SECTOR_OFFSET)
757                 return -1;
758         else
759                 return 0;
760 }
761
762 static int udf_find_fileset(struct super_block *sb,
763                             struct kernel_lb_addr *fileset,
764                             struct kernel_lb_addr *root)
765 {
766         struct buffer_head *bh = NULL;
767         uint16_t ident;
768
769         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
770             fileset->partitionReferenceNum != 0xFFFF) {
771                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
772
773                 if (!bh) {
774                         return 1;
775                 } else if (ident != TAG_IDENT_FSD) {
776                         brelse(bh);
777                         return 1;
778                 }
779
780                 udf_debug("Fileset at block=%u, partition=%u\n",
781                           fileset->logicalBlockNum,
782                           fileset->partitionReferenceNum);
783
784                 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
785                 udf_load_fileset(sb, bh, root);
786                 brelse(bh);
787                 return 0;
788         }
789         return 1;
790 }
791
792 /*
793  * Load primary Volume Descriptor Sequence
794  *
795  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
796  * should be tried.
797  */
798 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
799 {
800         struct primaryVolDesc *pvoldesc;
801         uint8_t *outstr;
802         struct buffer_head *bh;
803         uint16_t ident;
804         int ret = -ENOMEM;
805 #ifdef UDFFS_DEBUG
806         struct timestamp *ts;
807 #endif
808
809         outstr = kmalloc(128, GFP_NOFS);
810         if (!outstr)
811                 return -ENOMEM;
812
813         bh = udf_read_tagged(sb, block, block, &ident);
814         if (!bh) {
815                 ret = -EAGAIN;
816                 goto out2;
817         }
818
819         if (ident != TAG_IDENT_PVD) {
820                 ret = -EIO;
821                 goto out_bh;
822         }
823
824         pvoldesc = (struct primaryVolDesc *)bh->b_data;
825
826         udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
827                               pvoldesc->recordingDateAndTime);
828 #ifdef UDFFS_DEBUG
829         ts = &pvoldesc->recordingDateAndTime;
830         udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
831                   le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
832                   ts->minute, le16_to_cpu(ts->typeAndTimezone));
833 #endif
834
835
836         ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
837         if (ret < 0)
838                 goto out_bh;
839
840         strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
841         udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
842
843         ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
844         if (ret < 0)
845                 goto out_bh;
846
847         outstr[ret] = 0;
848         udf_debug("volSetIdent[] = '%s'\n", outstr);
849
850         ret = 0;
851 out_bh:
852         brelse(bh);
853 out2:
854         kfree(outstr);
855         return ret;
856 }
857
858 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
859                                         u32 meta_file_loc, u32 partition_ref)
860 {
861         struct kernel_lb_addr addr;
862         struct inode *metadata_fe;
863
864         addr.logicalBlockNum = meta_file_loc;
865         addr.partitionReferenceNum = partition_ref;
866
867         metadata_fe = udf_iget_special(sb, &addr);
868
869         if (IS_ERR(metadata_fe)) {
870                 udf_warn(sb, "metadata inode efe not found\n");
871                 return metadata_fe;
872         }
873         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
874                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
875                 iput(metadata_fe);
876                 return ERR_PTR(-EIO);
877         }
878
879         return metadata_fe;
880 }
881
882 static int udf_load_metadata_files(struct super_block *sb, int partition,
883                                    int type1_index)
884 {
885         struct udf_sb_info *sbi = UDF_SB(sb);
886         struct udf_part_map *map;
887         struct udf_meta_data *mdata;
888         struct kernel_lb_addr addr;
889         struct inode *fe;
890
891         map = &sbi->s_partmaps[partition];
892         mdata = &map->s_type_specific.s_metadata;
893         mdata->s_phys_partition_ref = type1_index;
894
895         /* metadata address */
896         udf_debug("Metadata file location: block = %u part = %u\n",
897                   mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
898
899         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
900                                          mdata->s_phys_partition_ref);
901         if (IS_ERR(fe)) {
902                 /* mirror file entry */
903                 udf_debug("Mirror metadata file location: block = %u part = %u\n",
904                           mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
905
906                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
907                                                  mdata->s_phys_partition_ref);
908
909                 if (IS_ERR(fe)) {
910                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
911                         return PTR_ERR(fe);
912                 }
913                 mdata->s_mirror_fe = fe;
914         } else
915                 mdata->s_metadata_fe = fe;
916
917
918         /*
919          * bitmap file entry
920          * Note:
921          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
922         */
923         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
924                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
925                 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
926
927                 udf_debug("Bitmap file location: block = %u part = %u\n",
928                           addr.logicalBlockNum, addr.partitionReferenceNum);
929
930                 fe = udf_iget_special(sb, &addr);
931                 if (IS_ERR(fe)) {
932                         if (sb_rdonly(sb))
933                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
934                         else {
935                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
936                                 return PTR_ERR(fe);
937                         }
938                 } else
939                         mdata->s_bitmap_fe = fe;
940         }
941
942         udf_debug("udf_load_metadata_files Ok\n");
943         return 0;
944 }
945
946 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
947                              struct kernel_lb_addr *root)
948 {
949         struct fileSetDesc *fset;
950
951         fset = (struct fileSetDesc *)bh->b_data;
952
953         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
954
955         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
956
957         udf_debug("Rootdir at block=%u, partition=%u\n",
958                   root->logicalBlockNum, root->partitionReferenceNum);
959 }
960
961 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
962 {
963         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
964         return DIV_ROUND_UP(map->s_partition_len +
965                             (sizeof(struct spaceBitmapDesc) << 3),
966                             sb->s_blocksize * 8);
967 }
968
969 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
970 {
971         struct udf_bitmap *bitmap;
972         int nr_groups;
973         int size;
974
975         nr_groups = udf_compute_nr_groups(sb, index);
976         size = sizeof(struct udf_bitmap) +
977                 (sizeof(struct buffer_head *) * nr_groups);
978
979         if (size <= PAGE_SIZE)
980                 bitmap = kzalloc(size, GFP_KERNEL);
981         else
982                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
983
984         if (!bitmap)
985                 return NULL;
986
987         bitmap->s_nr_groups = nr_groups;
988         return bitmap;
989 }
990
991 static int udf_fill_partdesc_info(struct super_block *sb,
992                 struct partitionDesc *p, int p_index)
993 {
994         struct udf_part_map *map;
995         struct udf_sb_info *sbi = UDF_SB(sb);
996         struct partitionHeaderDesc *phd;
997
998         map = &sbi->s_partmaps[p_index];
999
1000         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1001         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1002
1003         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1004                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1005         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1006                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1007         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1008                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1009         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1010                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1011
1012         udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1013                   p_index, map->s_partition_type,
1014                   map->s_partition_root, map->s_partition_len);
1015
1016         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1017             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1018                 return 0;
1019
1020         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1021         if (phd->unallocSpaceTable.extLength) {
1022                 struct kernel_lb_addr loc = {
1023                         .logicalBlockNum = le32_to_cpu(
1024                                 phd->unallocSpaceTable.extPosition),
1025                         .partitionReferenceNum = p_index,
1026                 };
1027                 struct inode *inode;
1028
1029                 inode = udf_iget_special(sb, &loc);
1030                 if (IS_ERR(inode)) {
1031                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1032                                   p_index);
1033                         return PTR_ERR(inode);
1034                 }
1035                 map->s_uspace.s_table = inode;
1036                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1037                 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1038                           p_index, map->s_uspace.s_table->i_ino);
1039         }
1040
1041         if (phd->unallocSpaceBitmap.extLength) {
1042                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1043                 if (!bitmap)
1044                         return -ENOMEM;
1045                 map->s_uspace.s_bitmap = bitmap;
1046                 bitmap->s_extPosition = le32_to_cpu(
1047                                 phd->unallocSpaceBitmap.extPosition);
1048                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1049                 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1050                           p_index, bitmap->s_extPosition);
1051         }
1052
1053         if (phd->partitionIntegrityTable.extLength)
1054                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1055
1056         if (phd->freedSpaceTable.extLength) {
1057                 struct kernel_lb_addr loc = {
1058                         .logicalBlockNum = le32_to_cpu(
1059                                 phd->freedSpaceTable.extPosition),
1060                         .partitionReferenceNum = p_index,
1061                 };
1062                 struct inode *inode;
1063
1064                 inode = udf_iget_special(sb, &loc);
1065                 if (IS_ERR(inode)) {
1066                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1067                                   p_index);
1068                         return PTR_ERR(inode);
1069                 }
1070                 map->s_fspace.s_table = inode;
1071                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1072                 udf_debug("freedSpaceTable (part %d) @ %lu\n",
1073                           p_index, map->s_fspace.s_table->i_ino);
1074         }
1075
1076         if (phd->freedSpaceBitmap.extLength) {
1077                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1078                 if (!bitmap)
1079                         return -ENOMEM;
1080                 map->s_fspace.s_bitmap = bitmap;
1081                 bitmap->s_extPosition = le32_to_cpu(
1082                                 phd->freedSpaceBitmap.extPosition);
1083                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1084                 udf_debug("freedSpaceBitmap (part %d) @ %u\n",
1085                           p_index, bitmap->s_extPosition);
1086         }
1087         return 0;
1088 }
1089
1090 static void udf_find_vat_block(struct super_block *sb, int p_index,
1091                                int type1_index, sector_t start_block)
1092 {
1093         struct udf_sb_info *sbi = UDF_SB(sb);
1094         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1095         sector_t vat_block;
1096         struct kernel_lb_addr ino;
1097         struct inode *inode;
1098
1099         /*
1100          * VAT file entry is in the last recorded block. Some broken disks have
1101          * it a few blocks before so try a bit harder...
1102          */
1103         ino.partitionReferenceNum = type1_index;
1104         for (vat_block = start_block;
1105              vat_block >= map->s_partition_root &&
1106              vat_block >= start_block - 3; vat_block--) {
1107                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1108                 inode = udf_iget_special(sb, &ino);
1109                 if (!IS_ERR(inode)) {
1110                         sbi->s_vat_inode = inode;
1111                         break;
1112                 }
1113         }
1114 }
1115
1116 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1117 {
1118         struct udf_sb_info *sbi = UDF_SB(sb);
1119         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1120         struct buffer_head *bh = NULL;
1121         struct udf_inode_info *vati;
1122         uint32_t pos;
1123         struct virtualAllocationTable20 *vat20;
1124         sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1125                           sb->s_blocksize_bits;
1126
1127         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1128         if (!sbi->s_vat_inode &&
1129             sbi->s_last_block != blocks - 1) {
1130                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1131                           (unsigned long)sbi->s_last_block,
1132                           (unsigned long)blocks - 1);
1133                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1134         }
1135         if (!sbi->s_vat_inode)
1136                 return -EIO;
1137
1138         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1139                 map->s_type_specific.s_virtual.s_start_offset = 0;
1140                 map->s_type_specific.s_virtual.s_num_entries =
1141                         (sbi->s_vat_inode->i_size - 36) >> 2;
1142         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1143                 vati = UDF_I(sbi->s_vat_inode);
1144                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1145                         pos = udf_block_map(sbi->s_vat_inode, 0);
1146                         bh = sb_bread(sb, pos);
1147                         if (!bh)
1148                                 return -EIO;
1149                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1150                 } else {
1151                         vat20 = (struct virtualAllocationTable20 *)
1152                                                         vati->i_ext.i_data;
1153                 }
1154
1155                 map->s_type_specific.s_virtual.s_start_offset =
1156                         le16_to_cpu(vat20->lengthHeader);
1157                 map->s_type_specific.s_virtual.s_num_entries =
1158                         (sbi->s_vat_inode->i_size -
1159                                 map->s_type_specific.s_virtual.
1160                                         s_start_offset) >> 2;
1161                 brelse(bh);
1162         }
1163         return 0;
1164 }
1165
1166 /*
1167  * Load partition descriptor block
1168  *
1169  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1170  * sequence.
1171  */
1172 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1173 {
1174         struct buffer_head *bh;
1175         struct partitionDesc *p;
1176         struct udf_part_map *map;
1177         struct udf_sb_info *sbi = UDF_SB(sb);
1178         int i, type1_idx;
1179         uint16_t partitionNumber;
1180         uint16_t ident;
1181         int ret;
1182
1183         bh = udf_read_tagged(sb, block, block, &ident);
1184         if (!bh)
1185                 return -EAGAIN;
1186         if (ident != TAG_IDENT_PD) {
1187                 ret = 0;
1188                 goto out_bh;
1189         }
1190
1191         p = (struct partitionDesc *)bh->b_data;
1192         partitionNumber = le16_to_cpu(p->partitionNumber);
1193
1194         /* First scan for TYPE1 and SPARABLE partitions */
1195         for (i = 0; i < sbi->s_partitions; i++) {
1196                 map = &sbi->s_partmaps[i];
1197                 udf_debug("Searching map: (%u == %u)\n",
1198                           map->s_partition_num, partitionNumber);
1199                 if (map->s_partition_num == partitionNumber &&
1200                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1201                      map->s_partition_type == UDF_SPARABLE_MAP15))
1202                         break;
1203         }
1204
1205         if (i >= sbi->s_partitions) {
1206                 udf_debug("Partition (%u) not found in partition map\n",
1207                           partitionNumber);
1208                 ret = 0;
1209                 goto out_bh;
1210         }
1211
1212         ret = udf_fill_partdesc_info(sb, p, i);
1213         if (ret < 0)
1214                 goto out_bh;
1215
1216         /*
1217          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1218          * PHYSICAL partitions are already set up
1219          */
1220         type1_idx = i;
1221 #ifdef UDFFS_DEBUG
1222         map = NULL; /* supress 'maybe used uninitialized' warning */
1223 #endif
1224         for (i = 0; i < sbi->s_partitions; i++) {
1225                 map = &sbi->s_partmaps[i];
1226
1227                 if (map->s_partition_num == partitionNumber &&
1228                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1229                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1230                      map->s_partition_type == UDF_METADATA_MAP25))
1231                         break;
1232         }
1233
1234         if (i >= sbi->s_partitions) {
1235                 ret = 0;
1236                 goto out_bh;
1237         }
1238
1239         ret = udf_fill_partdesc_info(sb, p, i);
1240         if (ret < 0)
1241                 goto out_bh;
1242
1243         if (map->s_partition_type == UDF_METADATA_MAP25) {
1244                 ret = udf_load_metadata_files(sb, i, type1_idx);
1245                 if (ret < 0) {
1246                         udf_err(sb, "error loading MetaData partition map %d\n",
1247                                 i);
1248                         goto out_bh;
1249                 }
1250         } else {
1251                 /*
1252                  * If we have a partition with virtual map, we don't handle
1253                  * writing to it (we overwrite blocks instead of relocating
1254                  * them).
1255                  */
1256                 if (!sb_rdonly(sb)) {
1257                         ret = -EACCES;
1258                         goto out_bh;
1259                 }
1260                 ret = udf_load_vat(sb, i, type1_idx);
1261                 if (ret < 0)
1262                         goto out_bh;
1263         }
1264         ret = 0;
1265 out_bh:
1266         /* In case loading failed, we handle cleanup in udf_fill_super */
1267         brelse(bh);
1268         return ret;
1269 }
1270
1271 static int udf_load_sparable_map(struct super_block *sb,
1272                                  struct udf_part_map *map,
1273                                  struct sparablePartitionMap *spm)
1274 {
1275         uint32_t loc;
1276         uint16_t ident;
1277         struct sparingTable *st;
1278         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1279         int i;
1280         struct buffer_head *bh;
1281
1282         map->s_partition_type = UDF_SPARABLE_MAP15;
1283         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1284         if (!is_power_of_2(sdata->s_packet_len)) {
1285                 udf_err(sb, "error loading logical volume descriptor: "
1286                         "Invalid packet length %u\n",
1287                         (unsigned)sdata->s_packet_len);
1288                 return -EIO;
1289         }
1290         if (spm->numSparingTables > 4) {
1291                 udf_err(sb, "error loading logical volume descriptor: "
1292                         "Too many sparing tables (%d)\n",
1293                         (int)spm->numSparingTables);
1294                 return -EIO;
1295         }
1296
1297         for (i = 0; i < spm->numSparingTables; i++) {
1298                 loc = le32_to_cpu(spm->locSparingTable[i]);
1299                 bh = udf_read_tagged(sb, loc, loc, &ident);
1300                 if (!bh)
1301                         continue;
1302
1303                 st = (struct sparingTable *)bh->b_data;
1304                 if (ident != 0 ||
1305                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1306                             strlen(UDF_ID_SPARING)) ||
1307                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1308                                                         sb->s_blocksize) {
1309                         brelse(bh);
1310                         continue;
1311                 }
1312
1313                 sdata->s_spar_map[i] = bh;
1314         }
1315         map->s_partition_func = udf_get_pblock_spar15;
1316         return 0;
1317 }
1318
1319 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1320                                struct kernel_lb_addr *fileset)
1321 {
1322         struct logicalVolDesc *lvd;
1323         int i, offset;
1324         uint8_t type;
1325         struct udf_sb_info *sbi = UDF_SB(sb);
1326         struct genericPartitionMap *gpm;
1327         uint16_t ident;
1328         struct buffer_head *bh;
1329         unsigned int table_len;
1330         int ret;
1331
1332         bh = udf_read_tagged(sb, block, block, &ident);
1333         if (!bh)
1334                 return -EAGAIN;
1335         BUG_ON(ident != TAG_IDENT_LVD);
1336         lvd = (struct logicalVolDesc *)bh->b_data;
1337         table_len = le32_to_cpu(lvd->mapTableLength);
1338         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1339                 udf_err(sb, "error loading logical volume descriptor: "
1340                         "Partition table too long (%u > %lu)\n", table_len,
1341                         sb->s_blocksize - sizeof(*lvd));
1342                 ret = -EIO;
1343                 goto out_bh;
1344         }
1345
1346         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1347         if (ret)
1348                 goto out_bh;
1349
1350         for (i = 0, offset = 0;
1351              i < sbi->s_partitions && offset < table_len;
1352              i++, offset += gpm->partitionMapLength) {
1353                 struct udf_part_map *map = &sbi->s_partmaps[i];
1354                 gpm = (struct genericPartitionMap *)
1355                                 &(lvd->partitionMaps[offset]);
1356                 type = gpm->partitionMapType;
1357                 if (type == 1) {
1358                         struct genericPartitionMap1 *gpm1 =
1359                                 (struct genericPartitionMap1 *)gpm;
1360                         map->s_partition_type = UDF_TYPE1_MAP15;
1361                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1362                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1363                         map->s_partition_func = NULL;
1364                 } else if (type == 2) {
1365                         struct udfPartitionMap2 *upm2 =
1366                                                 (struct udfPartitionMap2 *)gpm;
1367                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1368                                                 strlen(UDF_ID_VIRTUAL))) {
1369                                 u16 suf =
1370                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1371                                                         identSuffix)[0]);
1372                                 if (suf < 0x0200) {
1373                                         map->s_partition_type =
1374                                                         UDF_VIRTUAL_MAP15;
1375                                         map->s_partition_func =
1376                                                         udf_get_pblock_virt15;
1377                                 } else {
1378                                         map->s_partition_type =
1379                                                         UDF_VIRTUAL_MAP20;
1380                                         map->s_partition_func =
1381                                                         udf_get_pblock_virt20;
1382                                 }
1383                         } else if (!strncmp(upm2->partIdent.ident,
1384                                                 UDF_ID_SPARABLE,
1385                                                 strlen(UDF_ID_SPARABLE))) {
1386                                 ret = udf_load_sparable_map(sb, map,
1387                                         (struct sparablePartitionMap *)gpm);
1388                                 if (ret < 0)
1389                                         goto out_bh;
1390                         } else if (!strncmp(upm2->partIdent.ident,
1391                                                 UDF_ID_METADATA,
1392                                                 strlen(UDF_ID_METADATA))) {
1393                                 struct udf_meta_data *mdata =
1394                                         &map->s_type_specific.s_metadata;
1395                                 struct metadataPartitionMap *mdm =
1396                                                 (struct metadataPartitionMap *)
1397                                                 &(lvd->partitionMaps[offset]);
1398                                 udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1399                                           i, type, UDF_ID_METADATA);
1400
1401                                 map->s_partition_type = UDF_METADATA_MAP25;
1402                                 map->s_partition_func = udf_get_pblock_meta25;
1403
1404                                 mdata->s_meta_file_loc   =
1405                                         le32_to_cpu(mdm->metadataFileLoc);
1406                                 mdata->s_mirror_file_loc =
1407                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1408                                 mdata->s_bitmap_file_loc =
1409                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1410                                 mdata->s_alloc_unit_size =
1411                                         le32_to_cpu(mdm->allocUnitSize);
1412                                 mdata->s_align_unit_size =
1413                                         le16_to_cpu(mdm->alignUnitSize);
1414                                 if (mdm->flags & 0x01)
1415                                         mdata->s_flags |= MF_DUPLICATE_MD;
1416
1417                                 udf_debug("Metadata Ident suffix=0x%x\n",
1418                                           le16_to_cpu(*(__le16 *)
1419                                                       mdm->partIdent.identSuffix));
1420                                 udf_debug("Metadata part num=%u\n",
1421                                           le16_to_cpu(mdm->partitionNum));
1422                                 udf_debug("Metadata part alloc unit size=%u\n",
1423                                           le32_to_cpu(mdm->allocUnitSize));
1424                                 udf_debug("Metadata file loc=%u\n",
1425                                           le32_to_cpu(mdm->metadataFileLoc));
1426                                 udf_debug("Mirror file loc=%u\n",
1427                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1428                                 udf_debug("Bitmap file loc=%u\n",
1429                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1430                                 udf_debug("Flags: %d %u\n",
1431                                           mdata->s_flags, mdm->flags);
1432                         } else {
1433                                 udf_debug("Unknown ident: %s\n",
1434                                           upm2->partIdent.ident);
1435                                 continue;
1436                         }
1437                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1438                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1439                 }
1440                 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1441                           i, map->s_partition_num, type, map->s_volumeseqnum);
1442         }
1443
1444         if (fileset) {
1445                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1446
1447                 *fileset = lelb_to_cpu(la->extLocation);
1448                 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1449                           fileset->logicalBlockNum,
1450                           fileset->partitionReferenceNum);
1451         }
1452         if (lvd->integritySeqExt.extLength)
1453                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1454         ret = 0;
1455 out_bh:
1456         brelse(bh);
1457         return ret;
1458 }
1459
1460 /*
1461  * Find the prevailing Logical Volume Integrity Descriptor.
1462  */
1463 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1464 {
1465         struct buffer_head *bh, *final_bh;
1466         uint16_t ident;
1467         struct udf_sb_info *sbi = UDF_SB(sb);
1468         struct logicalVolIntegrityDesc *lvid;
1469         int indirections = 0;
1470
1471         while (++indirections <= UDF_MAX_LVID_NESTING) {
1472                 final_bh = NULL;
1473                 while (loc.extLength > 0 &&
1474                         (bh = udf_read_tagged(sb, loc.extLocation,
1475                                         loc.extLocation, &ident))) {
1476                         if (ident != TAG_IDENT_LVID) {
1477                                 brelse(bh);
1478                                 break;
1479                         }
1480
1481                         brelse(final_bh);
1482                         final_bh = bh;
1483
1484                         loc.extLength -= sb->s_blocksize;
1485                         loc.extLocation++;
1486                 }
1487
1488                 if (!final_bh)
1489                         return;
1490
1491                 brelse(sbi->s_lvid_bh);
1492                 sbi->s_lvid_bh = final_bh;
1493
1494                 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1495                 if (lvid->nextIntegrityExt.extLength == 0)
1496                         return;
1497
1498                 loc = leea_to_cpu(lvid->nextIntegrityExt);
1499         }
1500
1501         udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1502                 UDF_MAX_LVID_NESTING);
1503         brelse(sbi->s_lvid_bh);
1504         sbi->s_lvid_bh = NULL;
1505 }
1506
1507 /*
1508  * Step for reallocation of table of partition descriptor sequence numbers.
1509  * Must be power of 2.
1510  */
1511 #define PART_DESC_ALLOC_STEP 32
1512
1513 struct part_desc_seq_scan_data {
1514         struct udf_vds_record rec;
1515         u32 partnum;
1516 };
1517
1518 struct desc_seq_scan_data {
1519         struct udf_vds_record vds[VDS_POS_LENGTH];
1520         unsigned int size_part_descs;
1521         unsigned int num_part_descs;
1522         struct part_desc_seq_scan_data *part_descs_loc;
1523 };
1524
1525 static struct udf_vds_record *handle_partition_descriptor(
1526                                 struct buffer_head *bh,
1527                                 struct desc_seq_scan_data *data)
1528 {
1529         struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1530         int partnum;
1531         int i;
1532
1533         partnum = le16_to_cpu(desc->partitionNumber);
1534         for (i = 0; i < data->num_part_descs; i++)
1535                 if (partnum == data->part_descs_loc[i].partnum)
1536                         return &(data->part_descs_loc[i].rec);
1537         if (data->num_part_descs >= data->size_part_descs) {
1538                 struct part_desc_seq_scan_data *new_loc;
1539                 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1540
1541                 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1542                 if (!new_loc)
1543                         return ERR_PTR(-ENOMEM);
1544                 memcpy(new_loc, data->part_descs_loc,
1545                        data->size_part_descs * sizeof(*new_loc));
1546                 kfree(data->part_descs_loc);
1547                 data->part_descs_loc = new_loc;
1548                 data->size_part_descs = new_size;
1549         }
1550         return &(data->part_descs_loc[data->num_part_descs++].rec);
1551 }
1552
1553
1554 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1555                 struct buffer_head *bh, struct desc_seq_scan_data *data)
1556 {
1557         switch (ident) {
1558         case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1559                 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1560         case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1561                 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1562         case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1563                 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1564         case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1565                 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1566         case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1567                 return handle_partition_descriptor(bh, data);
1568         }
1569         return NULL;
1570 }
1571
1572 /*
1573  * Process a main/reserve volume descriptor sequence.
1574  *   @block             First block of first extent of the sequence.
1575  *   @lastblock         Lastblock of first extent of the sequence.
1576  *   @fileset           There we store extent containing root fileset
1577  *
1578  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1579  * sequence
1580  */
1581 static noinline int udf_process_sequence(
1582                 struct super_block *sb,
1583                 sector_t block, sector_t lastblock,
1584                 struct kernel_lb_addr *fileset)
1585 {
1586         struct buffer_head *bh = NULL;
1587         struct udf_vds_record *curr;
1588         struct generic_desc *gd;
1589         struct volDescPtr *vdp;
1590         bool done = false;
1591         uint32_t vdsn;
1592         uint16_t ident;
1593         int ret;
1594         unsigned int indirections = 0;
1595         struct desc_seq_scan_data data;
1596         unsigned int i;
1597
1598         memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1599         data.size_part_descs = PART_DESC_ALLOC_STEP;
1600         data.num_part_descs = 0;
1601         data.part_descs_loc = kcalloc(data.size_part_descs,
1602                                       sizeof(*data.part_descs_loc),
1603                                       GFP_KERNEL);
1604         if (!data.part_descs_loc)
1605                 return -ENOMEM;
1606
1607         /*
1608          * Read the main descriptor sequence and find which descriptors
1609          * are in it.
1610          */
1611         for (; (!done && block <= lastblock); block++) {
1612                 bh = udf_read_tagged(sb, block, block, &ident);
1613                 if (!bh)
1614                         break;
1615
1616                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1617                 gd = (struct generic_desc *)bh->b_data;
1618                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1619                 switch (ident) {
1620                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1621                         if (++indirections > UDF_MAX_TD_NESTING) {
1622                                 udf_err(sb, "too many Volume Descriptor "
1623                                         "Pointers (max %u supported)\n",
1624                                         UDF_MAX_TD_NESTING);
1625                                 brelse(bh);
1626                                 return -EIO;
1627                         }
1628
1629                         vdp = (struct volDescPtr *)bh->b_data;
1630                         block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1631                         lastblock = le32_to_cpu(
1632                                 vdp->nextVolDescSeqExt.extLength) >>
1633                                 sb->s_blocksize_bits;
1634                         lastblock += block - 1;
1635                         /* For loop is going to increment 'block' again */
1636                         block--;
1637                         break;
1638                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1639                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1640                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1641                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1642                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1643                         curr = get_volume_descriptor_record(ident, bh, &data);
1644                         if (IS_ERR(curr)) {
1645                                 brelse(bh);
1646                                 return PTR_ERR(curr);
1647                         }
1648                         /* Descriptor we don't care about? */
1649                         if (!curr)
1650                                 break;
1651                         if (vdsn >= curr->volDescSeqNum) {
1652                                 curr->volDescSeqNum = vdsn;
1653                                 curr->block = block;
1654                         }
1655                         break;
1656                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1657                         done = true;
1658                         break;
1659                 }
1660                 brelse(bh);
1661         }
1662         /*
1663          * Now read interesting descriptors again and process them
1664          * in a suitable order
1665          */
1666         if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1667                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1668                 return -EAGAIN;
1669         }
1670         ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1671         if (ret < 0)
1672                 return ret;
1673
1674         if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1675                 ret = udf_load_logicalvol(sb,
1676                                 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1677                                 fileset);
1678                 if (ret < 0)
1679                         return ret;
1680         }
1681
1682         /* Now handle prevailing Partition Descriptors */
1683         for (i = 0; i < data.num_part_descs; i++) {
1684                 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1685                 if (ret < 0)
1686                         return ret;
1687         }
1688
1689         return 0;
1690 }
1691
1692 /*
1693  * Load Volume Descriptor Sequence described by anchor in bh
1694  *
1695  * Returns <0 on error, 0 on success
1696  */
1697 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1698                              struct kernel_lb_addr *fileset)
1699 {
1700         struct anchorVolDescPtr *anchor;
1701         sector_t main_s, main_e, reserve_s, reserve_e;
1702         int ret;
1703
1704         anchor = (struct anchorVolDescPtr *)bh->b_data;
1705
1706         /* Locate the main sequence */
1707         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1708         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1709         main_e = main_e >> sb->s_blocksize_bits;
1710         main_e += main_s - 1;
1711
1712         /* Locate the reserve sequence */
1713         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1714         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1715         reserve_e = reserve_e >> sb->s_blocksize_bits;
1716         reserve_e += reserve_s - 1;
1717
1718         /* Process the main & reserve sequences */
1719         /* responsible for finding the PartitionDesc(s) */
1720         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1721         if (ret != -EAGAIN)
1722                 return ret;
1723         udf_sb_free_partitions(sb);
1724         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1725         if (ret < 0) {
1726                 udf_sb_free_partitions(sb);
1727                 /* No sequence was OK, return -EIO */
1728                 if (ret == -EAGAIN)
1729                         ret = -EIO;
1730         }
1731         return ret;
1732 }
1733
1734 /*
1735  * Check whether there is an anchor block in the given block and
1736  * load Volume Descriptor Sequence if so.
1737  *
1738  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1739  * block
1740  */
1741 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1742                                   struct kernel_lb_addr *fileset)
1743 {
1744         struct buffer_head *bh;
1745         uint16_t ident;
1746         int ret;
1747
1748         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1749             udf_fixed_to_variable(block) >=
1750             i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1751                 return -EAGAIN;
1752
1753         bh = udf_read_tagged(sb, block, block, &ident);
1754         if (!bh)
1755                 return -EAGAIN;
1756         if (ident != TAG_IDENT_AVDP) {
1757                 brelse(bh);
1758                 return -EAGAIN;
1759         }
1760         ret = udf_load_sequence(sb, bh, fileset);
1761         brelse(bh);
1762         return ret;
1763 }
1764
1765 /*
1766  * Search for an anchor volume descriptor pointer.
1767  *
1768  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1769  * of anchors.
1770  */
1771 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1772                             struct kernel_lb_addr *fileset)
1773 {
1774         sector_t last[6];
1775         int i;
1776         struct udf_sb_info *sbi = UDF_SB(sb);
1777         int last_count = 0;
1778         int ret;
1779
1780         /* First try user provided anchor */
1781         if (sbi->s_anchor) {
1782                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1783                 if (ret != -EAGAIN)
1784                         return ret;
1785         }
1786         /*
1787          * according to spec, anchor is in either:
1788          *     block 256
1789          *     lastblock-256
1790          *     lastblock
1791          *  however, if the disc isn't closed, it could be 512.
1792          */
1793         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1794         if (ret != -EAGAIN)
1795                 return ret;
1796         /*
1797          * The trouble is which block is the last one. Drives often misreport
1798          * this so we try various possibilities.
1799          */
1800         last[last_count++] = *lastblock;
1801         if (*lastblock >= 1)
1802                 last[last_count++] = *lastblock - 1;
1803         last[last_count++] = *lastblock + 1;
1804         if (*lastblock >= 2)
1805                 last[last_count++] = *lastblock - 2;
1806         if (*lastblock >= 150)
1807                 last[last_count++] = *lastblock - 150;
1808         if (*lastblock >= 152)
1809                 last[last_count++] = *lastblock - 152;
1810
1811         for (i = 0; i < last_count; i++) {
1812                 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1813                                 sb->s_blocksize_bits)
1814                         continue;
1815                 ret = udf_check_anchor_block(sb, last[i], fileset);
1816                 if (ret != -EAGAIN) {
1817                         if (!ret)
1818                                 *lastblock = last[i];
1819                         return ret;
1820                 }
1821                 if (last[i] < 256)
1822                         continue;
1823                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1824                 if (ret != -EAGAIN) {
1825                         if (!ret)
1826                                 *lastblock = last[i];
1827                         return ret;
1828                 }
1829         }
1830
1831         /* Finally try block 512 in case media is open */
1832         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1833 }
1834
1835 /*
1836  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1837  * area specified by it. The function expects sbi->s_lastblock to be the last
1838  * block on the media.
1839  *
1840  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1841  * was not found.
1842  */
1843 static int udf_find_anchor(struct super_block *sb,
1844                            struct kernel_lb_addr *fileset)
1845 {
1846         struct udf_sb_info *sbi = UDF_SB(sb);
1847         sector_t lastblock = sbi->s_last_block;
1848         int ret;
1849
1850         ret = udf_scan_anchors(sb, &lastblock, fileset);
1851         if (ret != -EAGAIN)
1852                 goto out;
1853
1854         /* No anchor found? Try VARCONV conversion of block numbers */
1855         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1856         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1857         /* Firstly, we try to not convert number of the last block */
1858         ret = udf_scan_anchors(sb, &lastblock, fileset);
1859         if (ret != -EAGAIN)
1860                 goto out;
1861
1862         lastblock = sbi->s_last_block;
1863         /* Secondly, we try with converted number of the last block */
1864         ret = udf_scan_anchors(sb, &lastblock, fileset);
1865         if (ret < 0) {
1866                 /* VARCONV didn't help. Clear it. */
1867                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1868         }
1869 out:
1870         if (ret == 0)
1871                 sbi->s_last_block = lastblock;
1872         return ret;
1873 }
1874
1875 /*
1876  * Check Volume Structure Descriptor, find Anchor block and load Volume
1877  * Descriptor Sequence.
1878  *
1879  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1880  * block was not found.
1881  */
1882 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1883                         int silent, struct kernel_lb_addr *fileset)
1884 {
1885         struct udf_sb_info *sbi = UDF_SB(sb);
1886         loff_t nsr_off;
1887         int ret;
1888
1889         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1890                 if (!silent)
1891                         udf_warn(sb, "Bad block size\n");
1892                 return -EINVAL;
1893         }
1894         sbi->s_last_block = uopt->lastblock;
1895         if (!uopt->novrs) {
1896                 /* Check that it is NSR02 compliant */
1897                 nsr_off = udf_check_vsd(sb);
1898                 if (!nsr_off) {
1899                         if (!silent)
1900                                 udf_warn(sb, "No VRS found\n");
1901                         return -EINVAL;
1902                 }
1903                 if (nsr_off == -1)
1904                         udf_debug("Failed to read sector at offset %d. "
1905                                   "Assuming open disc. Skipping validity "
1906                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1907                 if (!sbi->s_last_block)
1908                         sbi->s_last_block = udf_get_last_block(sb);
1909         } else {
1910                 udf_debug("Validity check skipped because of novrs option\n");
1911         }
1912
1913         /* Look for anchor block and load Volume Descriptor Sequence */
1914         sbi->s_anchor = uopt->anchor;
1915         ret = udf_find_anchor(sb, fileset);
1916         if (ret < 0) {
1917                 if (!silent && ret == -EAGAIN)
1918                         udf_warn(sb, "No anchor found\n");
1919                 return ret;
1920         }
1921         return 0;
1922 }
1923
1924 static void udf_open_lvid(struct super_block *sb)
1925 {
1926         struct udf_sb_info *sbi = UDF_SB(sb);
1927         struct buffer_head *bh = sbi->s_lvid_bh;
1928         struct logicalVolIntegrityDesc *lvid;
1929         struct logicalVolIntegrityDescImpUse *lvidiu;
1930         struct timespec64 ts;
1931
1932         if (!bh)
1933                 return;
1934         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1935         lvidiu = udf_sb_lvidiu(sb);
1936         if (!lvidiu)
1937                 return;
1938
1939         mutex_lock(&sbi->s_alloc_mutex);
1940         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1941         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1942         ktime_get_real_ts64(&ts);
1943         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1944         if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
1945                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1946         else
1947                 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
1948
1949         lvid->descTag.descCRC = cpu_to_le16(
1950                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1951                         le16_to_cpu(lvid->descTag.descCRCLength)));
1952
1953         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1954         mark_buffer_dirty(bh);
1955         sbi->s_lvid_dirty = 0;
1956         mutex_unlock(&sbi->s_alloc_mutex);
1957         /* Make opening of filesystem visible on the media immediately */
1958         sync_dirty_buffer(bh);
1959 }
1960
1961 static void udf_close_lvid(struct super_block *sb)
1962 {
1963         struct udf_sb_info *sbi = UDF_SB(sb);
1964         struct buffer_head *bh = sbi->s_lvid_bh;
1965         struct logicalVolIntegrityDesc *lvid;
1966         struct logicalVolIntegrityDescImpUse *lvidiu;
1967         struct timespec64 ts;
1968
1969         if (!bh)
1970                 return;
1971         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1972         lvidiu = udf_sb_lvidiu(sb);
1973         if (!lvidiu)
1974                 return;
1975
1976         mutex_lock(&sbi->s_alloc_mutex);
1977         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1978         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1979         ktime_get_real_ts64(&ts);
1980         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1981         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1982                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1983         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1984                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1985         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1986                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1987         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
1988                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1989
1990         lvid->descTag.descCRC = cpu_to_le16(
1991                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1992                                 le16_to_cpu(lvid->descTag.descCRCLength)));
1993
1994         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1995         /*
1996          * We set buffer uptodate unconditionally here to avoid spurious
1997          * warnings from mark_buffer_dirty() when previous EIO has marked
1998          * the buffer as !uptodate
1999          */
2000         set_buffer_uptodate(bh);
2001         mark_buffer_dirty(bh);
2002         sbi->s_lvid_dirty = 0;
2003         mutex_unlock(&sbi->s_alloc_mutex);
2004         /* Make closing of filesystem visible on the media immediately */
2005         sync_dirty_buffer(bh);
2006 }
2007
2008 u64 lvid_get_unique_id(struct super_block *sb)
2009 {
2010         struct buffer_head *bh;
2011         struct udf_sb_info *sbi = UDF_SB(sb);
2012         struct logicalVolIntegrityDesc *lvid;
2013         struct logicalVolHeaderDesc *lvhd;
2014         u64 uniqueID;
2015         u64 ret;
2016
2017         bh = sbi->s_lvid_bh;
2018         if (!bh)
2019                 return 0;
2020
2021         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2022         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2023
2024         mutex_lock(&sbi->s_alloc_mutex);
2025         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2026         if (!(++uniqueID & 0xFFFFFFFF))
2027                 uniqueID += 16;
2028         lvhd->uniqueID = cpu_to_le64(uniqueID);
2029         mutex_unlock(&sbi->s_alloc_mutex);
2030         mark_buffer_dirty(bh);
2031
2032         return ret;
2033 }
2034
2035 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2036 {
2037         int ret = -EINVAL;
2038         struct inode *inode = NULL;
2039         struct udf_options uopt;
2040         struct kernel_lb_addr rootdir, fileset;
2041         struct udf_sb_info *sbi;
2042         bool lvid_open = false;
2043
2044         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2045         /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2046         uopt.uid = make_kuid(current_user_ns(), overflowuid);
2047         uopt.gid = make_kgid(current_user_ns(), overflowgid);
2048         uopt.umask = 0;
2049         uopt.fmode = UDF_INVALID_MODE;
2050         uopt.dmode = UDF_INVALID_MODE;
2051         uopt.nls_map = NULL;
2052
2053         sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2054         if (!sbi)
2055                 return -ENOMEM;
2056
2057         sb->s_fs_info = sbi;
2058
2059         mutex_init(&sbi->s_alloc_mutex);
2060
2061         if (!udf_parse_options((char *)options, &uopt, false))
2062                 goto parse_options_failure;
2063
2064         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2065             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2066                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2067                 goto parse_options_failure;
2068         }
2069         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2070                 uopt.nls_map = load_nls_default();
2071                 if (!uopt.nls_map)
2072                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2073                 else
2074                         udf_debug("Using default NLS map\n");
2075         }
2076         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2077                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2078
2079         fileset.logicalBlockNum = 0xFFFFFFFF;
2080         fileset.partitionReferenceNum = 0xFFFF;
2081
2082         sbi->s_flags = uopt.flags;
2083         sbi->s_uid = uopt.uid;
2084         sbi->s_gid = uopt.gid;
2085         sbi->s_umask = uopt.umask;
2086         sbi->s_fmode = uopt.fmode;
2087         sbi->s_dmode = uopt.dmode;
2088         sbi->s_nls_map = uopt.nls_map;
2089         rwlock_init(&sbi->s_cred_lock);
2090
2091         if (uopt.session == 0xFFFFFFFF)
2092                 sbi->s_session = udf_get_last_session(sb);
2093         else
2094                 sbi->s_session = uopt.session;
2095
2096         udf_debug("Multi-session=%d\n", sbi->s_session);
2097
2098         /* Fill in the rest of the superblock */
2099         sb->s_op = &udf_sb_ops;
2100         sb->s_export_op = &udf_export_ops;
2101
2102         sb->s_magic = UDF_SUPER_MAGIC;
2103         sb->s_time_gran = 1000;
2104
2105         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2106                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2107         } else {
2108                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2109                 while (uopt.blocksize <= 4096) {
2110                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2111                         if (ret < 0) {
2112                                 if (!silent && ret != -EACCES) {
2113                                         pr_notice("Scanning with blocksize %u failed\n",
2114                                                   uopt.blocksize);
2115                                 }
2116                                 brelse(sbi->s_lvid_bh);
2117                                 sbi->s_lvid_bh = NULL;
2118                                 /*
2119                                  * EACCES is special - we want to propagate to
2120                                  * upper layers that we cannot handle RW mount.
2121                                  */
2122                                 if (ret == -EACCES)
2123                                         break;
2124                         } else
2125                                 break;
2126
2127                         uopt.blocksize <<= 1;
2128                 }
2129         }
2130         if (ret < 0) {
2131                 if (ret == -EAGAIN) {
2132                         udf_warn(sb, "No partition found (1)\n");
2133                         ret = -EINVAL;
2134                 }
2135                 goto error_out;
2136         }
2137
2138         udf_debug("Lastblock=%u\n", sbi->s_last_block);
2139
2140         if (sbi->s_lvid_bh) {
2141                 struct logicalVolIntegrityDescImpUse *lvidiu =
2142                                                         udf_sb_lvidiu(sb);
2143                 uint16_t minUDFReadRev;
2144                 uint16_t minUDFWriteRev;
2145
2146                 if (!lvidiu) {
2147                         ret = -EINVAL;
2148                         goto error_out;
2149                 }
2150                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2151                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2152                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2153                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2154                                 minUDFReadRev,
2155                                 UDF_MAX_READ_VERSION);
2156                         ret = -EINVAL;
2157                         goto error_out;
2158                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2159                            !sb_rdonly(sb)) {
2160                         ret = -EACCES;
2161                         goto error_out;
2162                 }
2163
2164                 sbi->s_udfrev = minUDFWriteRev;
2165
2166                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2167                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2168                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2169                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2170         }
2171
2172         if (!sbi->s_partitions) {
2173                 udf_warn(sb, "No partition found (2)\n");
2174                 ret = -EINVAL;
2175                 goto error_out;
2176         }
2177
2178         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2179                         UDF_PART_FLAG_READ_ONLY &&
2180             !sb_rdonly(sb)) {
2181                 ret = -EACCES;
2182                 goto error_out;
2183         }
2184
2185         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2186                 udf_warn(sb, "No fileset found\n");
2187                 ret = -EINVAL;
2188                 goto error_out;
2189         }
2190
2191         if (!silent) {
2192                 struct timestamp ts;
2193                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2194                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2195                          sbi->s_volume_ident,
2196                          le16_to_cpu(ts.year), ts.month, ts.day,
2197                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2198         }
2199         if (!sb_rdonly(sb)) {
2200                 udf_open_lvid(sb);
2201                 lvid_open = true;
2202         }
2203
2204         /* Assign the root inode */
2205         /* assign inodes by physical block number */
2206         /* perhaps it's not extensible enough, but for now ... */
2207         inode = udf_iget(sb, &rootdir);
2208         if (IS_ERR(inode)) {
2209                 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2210                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2211                 ret = PTR_ERR(inode);
2212                 goto error_out;
2213         }
2214
2215         /* Allocate a dentry for the root inode */
2216         sb->s_root = d_make_root(inode);
2217         if (!sb->s_root) {
2218                 udf_err(sb, "Couldn't allocate root dentry\n");
2219                 ret = -ENOMEM;
2220                 goto error_out;
2221         }
2222         sb->s_maxbytes = MAX_LFS_FILESIZE;
2223         sb->s_max_links = UDF_MAX_LINKS;
2224         return 0;
2225
2226 error_out:
2227         iput(sbi->s_vat_inode);
2228 parse_options_failure:
2229         if (uopt.nls_map)
2230                 unload_nls(uopt.nls_map);
2231         if (lvid_open)
2232                 udf_close_lvid(sb);
2233         brelse(sbi->s_lvid_bh);
2234         udf_sb_free_partitions(sb);
2235         kfree(sbi);
2236         sb->s_fs_info = NULL;
2237
2238         return ret;
2239 }
2240
2241 void _udf_err(struct super_block *sb, const char *function,
2242               const char *fmt, ...)
2243 {
2244         struct va_format vaf;
2245         va_list args;
2246
2247         va_start(args, fmt);
2248
2249         vaf.fmt = fmt;
2250         vaf.va = &args;
2251
2252         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2253
2254         va_end(args);
2255 }
2256
2257 void _udf_warn(struct super_block *sb, const char *function,
2258                const char *fmt, ...)
2259 {
2260         struct va_format vaf;
2261         va_list args;
2262
2263         va_start(args, fmt);
2264
2265         vaf.fmt = fmt;
2266         vaf.va = &args;
2267
2268         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2269
2270         va_end(args);
2271 }
2272
2273 static void udf_put_super(struct super_block *sb)
2274 {
2275         struct udf_sb_info *sbi;
2276
2277         sbi = UDF_SB(sb);
2278
2279         iput(sbi->s_vat_inode);
2280         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2281                 unload_nls(sbi->s_nls_map);
2282         if (!sb_rdonly(sb))
2283                 udf_close_lvid(sb);
2284         brelse(sbi->s_lvid_bh);
2285         udf_sb_free_partitions(sb);
2286         mutex_destroy(&sbi->s_alloc_mutex);
2287         kfree(sb->s_fs_info);
2288         sb->s_fs_info = NULL;
2289 }
2290
2291 static int udf_sync_fs(struct super_block *sb, int wait)
2292 {
2293         struct udf_sb_info *sbi = UDF_SB(sb);
2294
2295         mutex_lock(&sbi->s_alloc_mutex);
2296         if (sbi->s_lvid_dirty) {
2297                 /*
2298                  * Blockdevice will be synced later so we don't have to submit
2299                  * the buffer for IO
2300                  */
2301                 mark_buffer_dirty(sbi->s_lvid_bh);
2302                 sbi->s_lvid_dirty = 0;
2303         }
2304         mutex_unlock(&sbi->s_alloc_mutex);
2305
2306         return 0;
2307 }
2308
2309 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2310 {
2311         struct super_block *sb = dentry->d_sb;
2312         struct udf_sb_info *sbi = UDF_SB(sb);
2313         struct logicalVolIntegrityDescImpUse *lvidiu;
2314         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2315
2316         lvidiu = udf_sb_lvidiu(sb);
2317         buf->f_type = UDF_SUPER_MAGIC;
2318         buf->f_bsize = sb->s_blocksize;
2319         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2320         buf->f_bfree = udf_count_free(sb);
2321         buf->f_bavail = buf->f_bfree;
2322         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2323                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2324                         + buf->f_bfree;
2325         buf->f_ffree = buf->f_bfree;
2326         buf->f_namelen = UDF_NAME_LEN;
2327         buf->f_fsid.val[0] = (u32)id;
2328         buf->f_fsid.val[1] = (u32)(id >> 32);
2329
2330         return 0;
2331 }
2332
2333 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2334                                           struct udf_bitmap *bitmap)
2335 {
2336         struct buffer_head *bh = NULL;
2337         unsigned int accum = 0;
2338         int index;
2339         udf_pblk_t block = 0, newblock;
2340         struct kernel_lb_addr loc;
2341         uint32_t bytes;
2342         uint8_t *ptr;
2343         uint16_t ident;
2344         struct spaceBitmapDesc *bm;
2345
2346         loc.logicalBlockNum = bitmap->s_extPosition;
2347         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2348         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2349
2350         if (!bh) {
2351                 udf_err(sb, "udf_count_free failed\n");
2352                 goto out;
2353         } else if (ident != TAG_IDENT_SBD) {
2354                 brelse(bh);
2355                 udf_err(sb, "udf_count_free failed\n");
2356                 goto out;
2357         }
2358
2359         bm = (struct spaceBitmapDesc *)bh->b_data;
2360         bytes = le32_to_cpu(bm->numOfBytes);
2361         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2362         ptr = (uint8_t *)bh->b_data;
2363
2364         while (bytes > 0) {
2365                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2366                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2367                                         cur_bytes * 8);
2368                 bytes -= cur_bytes;
2369                 if (bytes) {
2370                         brelse(bh);
2371                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2372                         bh = udf_tread(sb, newblock);
2373                         if (!bh) {
2374                                 udf_debug("read failed\n");
2375                                 goto out;
2376                         }
2377                         index = 0;
2378                         ptr = (uint8_t *)bh->b_data;
2379                 }
2380         }
2381         brelse(bh);
2382 out:
2383         return accum;
2384 }
2385
2386 static unsigned int udf_count_free_table(struct super_block *sb,
2387                                          struct inode *table)
2388 {
2389         unsigned int accum = 0;
2390         uint32_t elen;
2391         struct kernel_lb_addr eloc;
2392         int8_t etype;
2393         struct extent_position epos;
2394
2395         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2396         epos.block = UDF_I(table)->i_location;
2397         epos.offset = sizeof(struct unallocSpaceEntry);
2398         epos.bh = NULL;
2399
2400         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2401                 accum += (elen >> table->i_sb->s_blocksize_bits);
2402
2403         brelse(epos.bh);
2404         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2405
2406         return accum;
2407 }
2408
2409 static unsigned int udf_count_free(struct super_block *sb)
2410 {
2411         unsigned int accum = 0;
2412         struct udf_sb_info *sbi;
2413         struct udf_part_map *map;
2414
2415         sbi = UDF_SB(sb);
2416         if (sbi->s_lvid_bh) {
2417                 struct logicalVolIntegrityDesc *lvid =
2418                         (struct logicalVolIntegrityDesc *)
2419                         sbi->s_lvid_bh->b_data;
2420                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2421                         accum = le32_to_cpu(
2422                                         lvid->freeSpaceTable[sbi->s_partition]);
2423                         if (accum == 0xFFFFFFFF)
2424                                 accum = 0;
2425                 }
2426         }
2427
2428         if (accum)
2429                 return accum;
2430
2431         map = &sbi->s_partmaps[sbi->s_partition];
2432         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2433                 accum += udf_count_free_bitmap(sb,
2434                                                map->s_uspace.s_bitmap);
2435         }
2436         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2437                 accum += udf_count_free_bitmap(sb,
2438                                                map->s_fspace.s_bitmap);
2439         }
2440         if (accum)
2441                 return accum;
2442
2443         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2444                 accum += udf_count_free_table(sb,
2445                                               map->s_uspace.s_table);
2446         }
2447         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2448                 accum += udf_count_free_table(sb,
2449                                               map->s_fspace.s_table);
2450         }
2451
2452         return accum;
2453 }
2454
2455 MODULE_AUTHOR("Ben Fennema");
2456 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2457 MODULE_LICENSE("GPL");
2458 module_init(init_udf_fs)
2459 module_exit(exit_udf_fs)