]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/udf/super.c
cifs: pass flags down into wait_for_free_credits()
[linux.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 enum {
68         VDS_POS_PRIMARY_VOL_DESC,
69         VDS_POS_UNALLOC_SPACE_DESC,
70         VDS_POS_LOGICAL_VOL_DESC,
71         VDS_POS_IMP_USE_VOL_DESC,
72         VDS_POS_LENGTH
73 };
74
75 #define VSD_FIRST_SECTOR_OFFSET         32768
76 #define VSD_MAX_SECTOR_OFFSET           0x800000
77
78 /*
79  * Maximum number of Terminating Descriptor / Logical Volume Integrity
80  * Descriptor redirections. The chosen numbers are arbitrary - just that we
81  * hopefully don't limit any real use of rewritten inode on write-once media
82  * but avoid looping for too long on corrupted media.
83  */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86
87 enum { UDF_MAX_LINKS = 0xffff };
88
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
96                             struct kernel_lb_addr *);
97 static void udf_load_fileset(struct super_block *, struct buffer_head *,
98                              struct kernel_lb_addr *);
99 static void udf_open_lvid(struct super_block *);
100 static void udf_close_lvid(struct super_block *);
101 static unsigned int udf_count_free(struct super_block *);
102 static int udf_statfs(struct dentry *, struct kstatfs *);
103 static int udf_show_options(struct seq_file *, struct dentry *);
104
105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
106 {
107         struct logicalVolIntegrityDesc *lvid;
108         unsigned int partnum;
109         unsigned int offset;
110
111         if (!UDF_SB(sb)->s_lvid_bh)
112                 return NULL;
113         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
114         partnum = le32_to_cpu(lvid->numOfPartitions);
115         if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
116              offsetof(struct logicalVolIntegrityDesc, impUse)) /
117              (2 * sizeof(uint32_t)) < partnum) {
118                 udf_err(sb, "Logical volume integrity descriptor corrupted "
119                         "(numOfPartitions = %u)!\n", partnum);
120                 return NULL;
121         }
122         /* The offset is to skip freeSpaceTable and sizeTable arrays */
123         offset = partnum * 2 * sizeof(uint32_t);
124         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
125 }
126
127 /* UDF filesystem type */
128 static struct dentry *udf_mount(struct file_system_type *fs_type,
129                       int flags, const char *dev_name, void *data)
130 {
131         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
132 }
133
134 static struct file_system_type udf_fstype = {
135         .owner          = THIS_MODULE,
136         .name           = "udf",
137         .mount          = udf_mount,
138         .kill_sb        = kill_block_super,
139         .fs_flags       = FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("udf");
142
143 static struct kmem_cache *udf_inode_cachep;
144
145 static struct inode *udf_alloc_inode(struct super_block *sb)
146 {
147         struct udf_inode_info *ei;
148         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
149         if (!ei)
150                 return NULL;
151
152         ei->i_unique = 0;
153         ei->i_lenExtents = 0;
154         ei->i_next_alloc_block = 0;
155         ei->i_next_alloc_goal = 0;
156         ei->i_strat4096 = 0;
157         init_rwsem(&ei->i_data_sem);
158         ei->cached_extent.lstart = -1;
159         spin_lock_init(&ei->i_extent_cache_lock);
160
161         return &ei->vfs_inode;
162 }
163
164 static void udf_i_callback(struct rcu_head *head)
165 {
166         struct inode *inode = container_of(head, struct inode, i_rcu);
167         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
168 }
169
170 static void udf_destroy_inode(struct inode *inode)
171 {
172         call_rcu(&inode->i_rcu, udf_i_callback);
173 }
174
175 static void init_once(void *foo)
176 {
177         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
178
179         ei->i_ext.i_data = NULL;
180         inode_init_once(&ei->vfs_inode);
181 }
182
183 static int __init init_inodecache(void)
184 {
185         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
186                                              sizeof(struct udf_inode_info),
187                                              0, (SLAB_RECLAIM_ACCOUNT |
188                                                  SLAB_MEM_SPREAD |
189                                                  SLAB_ACCOUNT),
190                                              init_once);
191         if (!udf_inode_cachep)
192                 return -ENOMEM;
193         return 0;
194 }
195
196 static void destroy_inodecache(void)
197 {
198         /*
199          * Make sure all delayed rcu free inodes are flushed before we
200          * destroy cache.
201          */
202         rcu_barrier();
203         kmem_cache_destroy(udf_inode_cachep);
204 }
205
206 /* Superblock operations */
207 static const struct super_operations udf_sb_ops = {
208         .alloc_inode    = udf_alloc_inode,
209         .destroy_inode  = udf_destroy_inode,
210         .write_inode    = udf_write_inode,
211         .evict_inode    = udf_evict_inode,
212         .put_super      = udf_put_super,
213         .sync_fs        = udf_sync_fs,
214         .statfs         = udf_statfs,
215         .remount_fs     = udf_remount_fs,
216         .show_options   = udf_show_options,
217 };
218
219 struct udf_options {
220         unsigned char novrs;
221         unsigned int blocksize;
222         unsigned int session;
223         unsigned int lastblock;
224         unsigned int anchor;
225         unsigned int flags;
226         umode_t umask;
227         kgid_t gid;
228         kuid_t uid;
229         umode_t fmode;
230         umode_t dmode;
231         struct nls_table *nls_map;
232 };
233
234 static int __init init_udf_fs(void)
235 {
236         int err;
237
238         err = init_inodecache();
239         if (err)
240                 goto out1;
241         err = register_filesystem(&udf_fstype);
242         if (err)
243                 goto out;
244
245         return 0;
246
247 out:
248         destroy_inodecache();
249
250 out1:
251         return err;
252 }
253
254 static void __exit exit_udf_fs(void)
255 {
256         unregister_filesystem(&udf_fstype);
257         destroy_inodecache();
258 }
259
260 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
261 {
262         struct udf_sb_info *sbi = UDF_SB(sb);
263
264         sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
265         if (!sbi->s_partmaps) {
266                 sbi->s_partitions = 0;
267                 return -ENOMEM;
268         }
269
270         sbi->s_partitions = count;
271         return 0;
272 }
273
274 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
275 {
276         int i;
277         int nr_groups = bitmap->s_nr_groups;
278
279         for (i = 0; i < nr_groups; i++)
280                 if (bitmap->s_block_bitmap[i])
281                         brelse(bitmap->s_block_bitmap[i]);
282
283         kvfree(bitmap);
284 }
285
286 static void udf_free_partition(struct udf_part_map *map)
287 {
288         int i;
289         struct udf_meta_data *mdata;
290
291         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
292                 iput(map->s_uspace.s_table);
293         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
294                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
295         if (map->s_partition_type == UDF_SPARABLE_MAP15)
296                 for (i = 0; i < 4; i++)
297                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
298         else if (map->s_partition_type == UDF_METADATA_MAP25) {
299                 mdata = &map->s_type_specific.s_metadata;
300                 iput(mdata->s_metadata_fe);
301                 mdata->s_metadata_fe = NULL;
302
303                 iput(mdata->s_mirror_fe);
304                 mdata->s_mirror_fe = NULL;
305
306                 iput(mdata->s_bitmap_fe);
307                 mdata->s_bitmap_fe = NULL;
308         }
309 }
310
311 static void udf_sb_free_partitions(struct super_block *sb)
312 {
313         struct udf_sb_info *sbi = UDF_SB(sb);
314         int i;
315
316         if (!sbi->s_partmaps)
317                 return;
318         for (i = 0; i < sbi->s_partitions; i++)
319                 udf_free_partition(&sbi->s_partmaps[i]);
320         kfree(sbi->s_partmaps);
321         sbi->s_partmaps = NULL;
322 }
323
324 static int udf_show_options(struct seq_file *seq, struct dentry *root)
325 {
326         struct super_block *sb = root->d_sb;
327         struct udf_sb_info *sbi = UDF_SB(sb);
328
329         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
330                 seq_puts(seq, ",nostrict");
331         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
332                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
333         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
334                 seq_puts(seq, ",unhide");
335         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
336                 seq_puts(seq, ",undelete");
337         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
338                 seq_puts(seq, ",noadinicb");
339         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
340                 seq_puts(seq, ",shortad");
341         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
342                 seq_puts(seq, ",uid=forget");
343         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
344                 seq_puts(seq, ",gid=forget");
345         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
346                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
347         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
348                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
349         if (sbi->s_umask != 0)
350                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
351         if (sbi->s_fmode != UDF_INVALID_MODE)
352                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
353         if (sbi->s_dmode != UDF_INVALID_MODE)
354                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
355         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
356                 seq_printf(seq, ",session=%d", sbi->s_session);
357         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
358                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
359         if (sbi->s_anchor != 0)
360                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
361         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
362                 seq_puts(seq, ",utf8");
363         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
364                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
365
366         return 0;
367 }
368
369 /*
370  * udf_parse_options
371  *
372  * PURPOSE
373  *      Parse mount options.
374  *
375  * DESCRIPTION
376  *      The following mount options are supported:
377  *
378  *      gid=            Set the default group.
379  *      umask=          Set the default umask.
380  *      mode=           Set the default file permissions.
381  *      dmode=          Set the default directory permissions.
382  *      uid=            Set the default user.
383  *      bs=             Set the block size.
384  *      unhide          Show otherwise hidden files.
385  *      undelete        Show deleted files in lists.
386  *      adinicb         Embed data in the inode (default)
387  *      noadinicb       Don't embed data in the inode
388  *      shortad         Use short ad's
389  *      longad          Use long ad's (default)
390  *      nostrict        Unset strict conformance
391  *      iocharset=      Set the NLS character set
392  *
393  *      The remaining are for debugging and disaster recovery:
394  *
395  *      novrs           Skip volume sequence recognition
396  *
397  *      The following expect a offset from 0.
398  *
399  *      session=        Set the CDROM session (default= last session)
400  *      anchor=         Override standard anchor location. (default= 256)
401  *      volume=         Override the VolumeDesc location. (unused)
402  *      partition=      Override the PartitionDesc location. (unused)
403  *      lastblock=      Set the last block of the filesystem/
404  *
405  *      The following expect a offset from the partition root.
406  *
407  *      fileset=        Override the fileset block location. (unused)
408  *      rootdir=        Override the root directory location. (unused)
409  *              WARNING: overriding the rootdir to a non-directory may
410  *              yield highly unpredictable results.
411  *
412  * PRE-CONDITIONS
413  *      options         Pointer to mount options string.
414  *      uopts           Pointer to mount options variable.
415  *
416  * POST-CONDITIONS
417  *      <return>        1       Mount options parsed okay.
418  *      <return>        0       Error parsing mount options.
419  *
420  * HISTORY
421  *      July 1, 1997 - Andrew E. Mileski
422  *      Written, tested, and released.
423  */
424
425 enum {
426         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
427         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
428         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
429         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
430         Opt_rootdir, Opt_utf8, Opt_iocharset,
431         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
432         Opt_fmode, Opt_dmode
433 };
434
435 static const match_table_t tokens = {
436         {Opt_novrs,     "novrs"},
437         {Opt_nostrict,  "nostrict"},
438         {Opt_bs,        "bs=%u"},
439         {Opt_unhide,    "unhide"},
440         {Opt_undelete,  "undelete"},
441         {Opt_noadinicb, "noadinicb"},
442         {Opt_adinicb,   "adinicb"},
443         {Opt_shortad,   "shortad"},
444         {Opt_longad,    "longad"},
445         {Opt_uforget,   "uid=forget"},
446         {Opt_uignore,   "uid=ignore"},
447         {Opt_gforget,   "gid=forget"},
448         {Opt_gignore,   "gid=ignore"},
449         {Opt_gid,       "gid=%u"},
450         {Opt_uid,       "uid=%u"},
451         {Opt_umask,     "umask=%o"},
452         {Opt_session,   "session=%u"},
453         {Opt_lastblock, "lastblock=%u"},
454         {Opt_anchor,    "anchor=%u"},
455         {Opt_volume,    "volume=%u"},
456         {Opt_partition, "partition=%u"},
457         {Opt_fileset,   "fileset=%u"},
458         {Opt_rootdir,   "rootdir=%u"},
459         {Opt_utf8,      "utf8"},
460         {Opt_iocharset, "iocharset=%s"},
461         {Opt_fmode,     "mode=%o"},
462         {Opt_dmode,     "dmode=%o"},
463         {Opt_err,       NULL}
464 };
465
466 static int udf_parse_options(char *options, struct udf_options *uopt,
467                              bool remount)
468 {
469         char *p;
470         int option;
471
472         uopt->novrs = 0;
473         uopt->session = 0xFFFFFFFF;
474         uopt->lastblock = 0;
475         uopt->anchor = 0;
476
477         if (!options)
478                 return 1;
479
480         while ((p = strsep(&options, ",")) != NULL) {
481                 substring_t args[MAX_OPT_ARGS];
482                 int token;
483                 unsigned n;
484                 if (!*p)
485                         continue;
486
487                 token = match_token(p, tokens, args);
488                 switch (token) {
489                 case Opt_novrs:
490                         uopt->novrs = 1;
491                         break;
492                 case Opt_bs:
493                         if (match_int(&args[0], &option))
494                                 return 0;
495                         n = option;
496                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
497                                 return 0;
498                         uopt->blocksize = n;
499                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
500                         break;
501                 case Opt_unhide:
502                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
503                         break;
504                 case Opt_undelete:
505                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
506                         break;
507                 case Opt_noadinicb:
508                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
509                         break;
510                 case Opt_adinicb:
511                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
512                         break;
513                 case Opt_shortad:
514                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
515                         break;
516                 case Opt_longad:
517                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
518                         break;
519                 case Opt_gid:
520                         if (match_int(args, &option))
521                                 return 0;
522                         uopt->gid = make_kgid(current_user_ns(), option);
523                         if (!gid_valid(uopt->gid))
524                                 return 0;
525                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
526                         break;
527                 case Opt_uid:
528                         if (match_int(args, &option))
529                                 return 0;
530                         uopt->uid = make_kuid(current_user_ns(), option);
531                         if (!uid_valid(uopt->uid))
532                                 return 0;
533                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
534                         break;
535                 case Opt_umask:
536                         if (match_octal(args, &option))
537                                 return 0;
538                         uopt->umask = option;
539                         break;
540                 case Opt_nostrict:
541                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
542                         break;
543                 case Opt_session:
544                         if (match_int(args, &option))
545                                 return 0;
546                         uopt->session = option;
547                         if (!remount)
548                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
549                         break;
550                 case Opt_lastblock:
551                         if (match_int(args, &option))
552                                 return 0;
553                         uopt->lastblock = option;
554                         if (!remount)
555                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
556                         break;
557                 case Opt_anchor:
558                         if (match_int(args, &option))
559                                 return 0;
560                         uopt->anchor = option;
561                         break;
562                 case Opt_volume:
563                 case Opt_partition:
564                 case Opt_fileset:
565                 case Opt_rootdir:
566                         /* Ignored (never implemented properly) */
567                         break;
568                 case Opt_utf8:
569                         uopt->flags |= (1 << UDF_FLAG_UTF8);
570                         break;
571                 case Opt_iocharset:
572                         if (!remount) {
573                                 if (uopt->nls_map)
574                                         unload_nls(uopt->nls_map);
575                                 uopt->nls_map = load_nls(args[0].from);
576                                 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
577                         }
578                         break;
579                 case Opt_uforget:
580                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
581                         break;
582                 case Opt_uignore:
583                 case Opt_gignore:
584                         /* These options are superseeded by uid=<number> */
585                         break;
586                 case Opt_gforget:
587                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
588                         break;
589                 case Opt_fmode:
590                         if (match_octal(args, &option))
591                                 return 0;
592                         uopt->fmode = option & 0777;
593                         break;
594                 case Opt_dmode:
595                         if (match_octal(args, &option))
596                                 return 0;
597                         uopt->dmode = option & 0777;
598                         break;
599                 default:
600                         pr_err("bad mount option \"%s\" or missing value\n", p);
601                         return 0;
602                 }
603         }
604         return 1;
605 }
606
607 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
608 {
609         struct udf_options uopt;
610         struct udf_sb_info *sbi = UDF_SB(sb);
611         int error = 0;
612
613         if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
614                 return -EACCES;
615
616         sync_filesystem(sb);
617
618         uopt.flags = sbi->s_flags;
619         uopt.uid   = sbi->s_uid;
620         uopt.gid   = sbi->s_gid;
621         uopt.umask = sbi->s_umask;
622         uopt.fmode = sbi->s_fmode;
623         uopt.dmode = sbi->s_dmode;
624         uopt.nls_map = NULL;
625
626         if (!udf_parse_options(options, &uopt, true))
627                 return -EINVAL;
628
629         write_lock(&sbi->s_cred_lock);
630         sbi->s_flags = uopt.flags;
631         sbi->s_uid   = uopt.uid;
632         sbi->s_gid   = uopt.gid;
633         sbi->s_umask = uopt.umask;
634         sbi->s_fmode = uopt.fmode;
635         sbi->s_dmode = uopt.dmode;
636         write_unlock(&sbi->s_cred_lock);
637
638         if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
639                 goto out_unlock;
640
641         if (*flags & SB_RDONLY)
642                 udf_close_lvid(sb);
643         else
644                 udf_open_lvid(sb);
645
646 out_unlock:
647         return error;
648 }
649
650 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
651 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
652 static loff_t udf_check_vsd(struct super_block *sb)
653 {
654         struct volStructDesc *vsd = NULL;
655         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
656         int sectorsize;
657         struct buffer_head *bh = NULL;
658         int nsr02 = 0;
659         int nsr03 = 0;
660         struct udf_sb_info *sbi;
661
662         sbi = UDF_SB(sb);
663         if (sb->s_blocksize < sizeof(struct volStructDesc))
664                 sectorsize = sizeof(struct volStructDesc);
665         else
666                 sectorsize = sb->s_blocksize;
667
668         sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
669
670         udf_debug("Starting at sector %u (%lu byte sectors)\n",
671                   (unsigned int)(sector >> sb->s_blocksize_bits),
672                   sb->s_blocksize);
673         /* Process the sequence (if applicable). The hard limit on the sector
674          * offset is arbitrary, hopefully large enough so that all valid UDF
675          * filesystems will be recognised. There is no mention of an upper
676          * bound to the size of the volume recognition area in the standard.
677          *  The limit will prevent the code to read all the sectors of a
678          * specially crafted image (like a bluray disc full of CD001 sectors),
679          * potentially causing minutes or even hours of uninterruptible I/O
680          * activity. This actually happened with uninitialised SSD partitions
681          * (all 0xFF) before the check for the limit and all valid IDs were
682          * added */
683         for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
684              sector += sectorsize) {
685                 /* Read a block */
686                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
687                 if (!bh)
688                         break;
689
690                 /* Look for ISO  descriptors */
691                 vsd = (struct volStructDesc *)(bh->b_data +
692                                               (sector & (sb->s_blocksize - 1)));
693
694                 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
695                                     VSD_STD_ID_LEN)) {
696                         switch (vsd->structType) {
697                         case 0:
698                                 udf_debug("ISO9660 Boot Record found\n");
699                                 break;
700                         case 1:
701                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
702                                 break;
703                         case 2:
704                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
705                                 break;
706                         case 3:
707                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
708                                 break;
709                         case 255:
710                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
711                                 break;
712                         default:
713                                 udf_debug("ISO9660 VRS (%u) found\n",
714                                           vsd->structType);
715                                 break;
716                         }
717                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
718                                     VSD_STD_ID_LEN))
719                         ; /* nothing */
720                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
721                                     VSD_STD_ID_LEN)) {
722                         brelse(bh);
723                         break;
724                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
725                                     VSD_STD_ID_LEN))
726                         nsr02 = sector;
727                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
728                                     VSD_STD_ID_LEN))
729                         nsr03 = sector;
730                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
731                                     VSD_STD_ID_LEN))
732                         ; /* nothing */
733                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
734                                     VSD_STD_ID_LEN))
735                         ; /* nothing */
736                 else {
737                         /* invalid id : end of volume recognition area */
738                         brelse(bh);
739                         break;
740                 }
741                 brelse(bh);
742         }
743
744         if (nsr03)
745                 return nsr03;
746         else if (nsr02)
747                 return nsr02;
748         else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
749                         VSD_FIRST_SECTOR_OFFSET)
750                 return -1;
751         else
752                 return 0;
753 }
754
755 static int udf_find_fileset(struct super_block *sb,
756                             struct kernel_lb_addr *fileset,
757                             struct kernel_lb_addr *root)
758 {
759         struct buffer_head *bh = NULL;
760         uint16_t ident;
761
762         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
763             fileset->partitionReferenceNum != 0xFFFF) {
764                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
765
766                 if (!bh) {
767                         return 1;
768                 } else if (ident != TAG_IDENT_FSD) {
769                         brelse(bh);
770                         return 1;
771                 }
772
773                 udf_debug("Fileset at block=%u, partition=%u\n",
774                           fileset->logicalBlockNum,
775                           fileset->partitionReferenceNum);
776
777                 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
778                 udf_load_fileset(sb, bh, root);
779                 brelse(bh);
780                 return 0;
781         }
782         return 1;
783 }
784
785 /*
786  * Load primary Volume Descriptor Sequence
787  *
788  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
789  * should be tried.
790  */
791 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
792 {
793         struct primaryVolDesc *pvoldesc;
794         uint8_t *outstr;
795         struct buffer_head *bh;
796         uint16_t ident;
797         int ret = -ENOMEM;
798 #ifdef UDFFS_DEBUG
799         struct timestamp *ts;
800 #endif
801
802         outstr = kmalloc(128, GFP_NOFS);
803         if (!outstr)
804                 return -ENOMEM;
805
806         bh = udf_read_tagged(sb, block, block, &ident);
807         if (!bh) {
808                 ret = -EAGAIN;
809                 goto out2;
810         }
811
812         if (ident != TAG_IDENT_PVD) {
813                 ret = -EIO;
814                 goto out_bh;
815         }
816
817         pvoldesc = (struct primaryVolDesc *)bh->b_data;
818
819         udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
820                               pvoldesc->recordingDateAndTime);
821 #ifdef UDFFS_DEBUG
822         ts = &pvoldesc->recordingDateAndTime;
823         udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
824                   le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
825                   ts->minute, le16_to_cpu(ts->typeAndTimezone));
826 #endif
827
828
829         ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
830         if (ret < 0) {
831                 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
832                 pr_warn("incorrect volume identification, setting to "
833                         "'InvalidName'\n");
834         } else {
835                 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
836         }
837         udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
838
839         ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
840         if (ret < 0) {
841                 ret = 0;
842                 goto out_bh;
843         }
844         outstr[ret] = 0;
845         udf_debug("volSetIdent[] = '%s'\n", outstr);
846
847         ret = 0;
848 out_bh:
849         brelse(bh);
850 out2:
851         kfree(outstr);
852         return ret;
853 }
854
855 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
856                                         u32 meta_file_loc, u32 partition_ref)
857 {
858         struct kernel_lb_addr addr;
859         struct inode *metadata_fe;
860
861         addr.logicalBlockNum = meta_file_loc;
862         addr.partitionReferenceNum = partition_ref;
863
864         metadata_fe = udf_iget_special(sb, &addr);
865
866         if (IS_ERR(metadata_fe)) {
867                 udf_warn(sb, "metadata inode efe not found\n");
868                 return metadata_fe;
869         }
870         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
871                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
872                 iput(metadata_fe);
873                 return ERR_PTR(-EIO);
874         }
875
876         return metadata_fe;
877 }
878
879 static int udf_load_metadata_files(struct super_block *sb, int partition,
880                                    int type1_index)
881 {
882         struct udf_sb_info *sbi = UDF_SB(sb);
883         struct udf_part_map *map;
884         struct udf_meta_data *mdata;
885         struct kernel_lb_addr addr;
886         struct inode *fe;
887
888         map = &sbi->s_partmaps[partition];
889         mdata = &map->s_type_specific.s_metadata;
890         mdata->s_phys_partition_ref = type1_index;
891
892         /* metadata address */
893         udf_debug("Metadata file location: block = %u part = %u\n",
894                   mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
895
896         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
897                                          mdata->s_phys_partition_ref);
898         if (IS_ERR(fe)) {
899                 /* mirror file entry */
900                 udf_debug("Mirror metadata file location: block = %u part = %u\n",
901                           mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
902
903                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
904                                                  mdata->s_phys_partition_ref);
905
906                 if (IS_ERR(fe)) {
907                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
908                         return PTR_ERR(fe);
909                 }
910                 mdata->s_mirror_fe = fe;
911         } else
912                 mdata->s_metadata_fe = fe;
913
914
915         /*
916          * bitmap file entry
917          * Note:
918          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
919         */
920         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
921                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
922                 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
923
924                 udf_debug("Bitmap file location: block = %u part = %u\n",
925                           addr.logicalBlockNum, addr.partitionReferenceNum);
926
927                 fe = udf_iget_special(sb, &addr);
928                 if (IS_ERR(fe)) {
929                         if (sb_rdonly(sb))
930                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
931                         else {
932                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
933                                 return PTR_ERR(fe);
934                         }
935                 } else
936                         mdata->s_bitmap_fe = fe;
937         }
938
939         udf_debug("udf_load_metadata_files Ok\n");
940         return 0;
941 }
942
943 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
944                              struct kernel_lb_addr *root)
945 {
946         struct fileSetDesc *fset;
947
948         fset = (struct fileSetDesc *)bh->b_data;
949
950         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
951
952         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
953
954         udf_debug("Rootdir at block=%u, partition=%u\n",
955                   root->logicalBlockNum, root->partitionReferenceNum);
956 }
957
958 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
959 {
960         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
961         return DIV_ROUND_UP(map->s_partition_len +
962                             (sizeof(struct spaceBitmapDesc) << 3),
963                             sb->s_blocksize * 8);
964 }
965
966 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
967 {
968         struct udf_bitmap *bitmap;
969         int nr_groups;
970         int size;
971
972         nr_groups = udf_compute_nr_groups(sb, index);
973         size = sizeof(struct udf_bitmap) +
974                 (sizeof(struct buffer_head *) * nr_groups);
975
976         if (size <= PAGE_SIZE)
977                 bitmap = kzalloc(size, GFP_KERNEL);
978         else
979                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
980
981         if (!bitmap)
982                 return NULL;
983
984         bitmap->s_nr_groups = nr_groups;
985         return bitmap;
986 }
987
988 static int check_partition_desc(struct super_block *sb,
989                                 struct partitionDesc *p,
990                                 struct udf_part_map *map)
991 {
992         bool umap, utable, fmap, ftable;
993         struct partitionHeaderDesc *phd;
994
995         switch (le32_to_cpu(p->accessType)) {
996         case PD_ACCESS_TYPE_READ_ONLY:
997         case PD_ACCESS_TYPE_WRITE_ONCE:
998         case PD_ACCESS_TYPE_REWRITABLE:
999         case PD_ACCESS_TYPE_NONE:
1000                 goto force_ro;
1001         }
1002
1003         /* No Partition Header Descriptor? */
1004         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1005             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1006                 goto force_ro;
1007
1008         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1009         utable = phd->unallocSpaceTable.extLength;
1010         umap = phd->unallocSpaceBitmap.extLength;
1011         ftable = phd->freedSpaceTable.extLength;
1012         fmap = phd->freedSpaceBitmap.extLength;
1013
1014         /* No allocation info? */
1015         if (!utable && !umap && !ftable && !fmap)
1016                 goto force_ro;
1017
1018         /* We don't support blocks that require erasing before overwrite */
1019         if (ftable || fmap)
1020                 goto force_ro;
1021         /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1022         if (utable && umap)
1023                 goto force_ro;
1024
1025         if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1026             map->s_partition_type == UDF_VIRTUAL_MAP20)
1027                 goto force_ro;
1028
1029         return 0;
1030 force_ro:
1031         if (!sb_rdonly(sb))
1032                 return -EACCES;
1033         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1034         return 0;
1035 }
1036
1037 static int udf_fill_partdesc_info(struct super_block *sb,
1038                 struct partitionDesc *p, int p_index)
1039 {
1040         struct udf_part_map *map;
1041         struct udf_sb_info *sbi = UDF_SB(sb);
1042         struct partitionHeaderDesc *phd;
1043         int err;
1044
1045         map = &sbi->s_partmaps[p_index];
1046
1047         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1048         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1049
1050         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1051                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1052         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1053                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1054         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1055                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1056         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1057                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1058
1059         udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1060                   p_index, map->s_partition_type,
1061                   map->s_partition_root, map->s_partition_len);
1062
1063         err = check_partition_desc(sb, p, map);
1064         if (err)
1065                 return err;
1066
1067         /*
1068          * Skip loading allocation info it we cannot ever write to the fs.
1069          * This is a correctness thing as we may have decided to force ro mount
1070          * to avoid allocation info we don't support.
1071          */
1072         if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1073                 return 0;
1074
1075         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1076         if (phd->unallocSpaceTable.extLength) {
1077                 struct kernel_lb_addr loc = {
1078                         .logicalBlockNum = le32_to_cpu(
1079                                 phd->unallocSpaceTable.extPosition),
1080                         .partitionReferenceNum = p_index,
1081                 };
1082                 struct inode *inode;
1083
1084                 inode = udf_iget_special(sb, &loc);
1085                 if (IS_ERR(inode)) {
1086                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1087                                   p_index);
1088                         return PTR_ERR(inode);
1089                 }
1090                 map->s_uspace.s_table = inode;
1091                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1092                 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1093                           p_index, map->s_uspace.s_table->i_ino);
1094         }
1095
1096         if (phd->unallocSpaceBitmap.extLength) {
1097                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1098                 if (!bitmap)
1099                         return -ENOMEM;
1100                 map->s_uspace.s_bitmap = bitmap;
1101                 bitmap->s_extPosition = le32_to_cpu(
1102                                 phd->unallocSpaceBitmap.extPosition);
1103                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1104                 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1105                           p_index, bitmap->s_extPosition);
1106         }
1107
1108         return 0;
1109 }
1110
1111 static void udf_find_vat_block(struct super_block *sb, int p_index,
1112                                int type1_index, sector_t start_block)
1113 {
1114         struct udf_sb_info *sbi = UDF_SB(sb);
1115         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1116         sector_t vat_block;
1117         struct kernel_lb_addr ino;
1118         struct inode *inode;
1119
1120         /*
1121          * VAT file entry is in the last recorded block. Some broken disks have
1122          * it a few blocks before so try a bit harder...
1123          */
1124         ino.partitionReferenceNum = type1_index;
1125         for (vat_block = start_block;
1126              vat_block >= map->s_partition_root &&
1127              vat_block >= start_block - 3; vat_block--) {
1128                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1129                 inode = udf_iget_special(sb, &ino);
1130                 if (!IS_ERR(inode)) {
1131                         sbi->s_vat_inode = inode;
1132                         break;
1133                 }
1134         }
1135 }
1136
1137 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1138 {
1139         struct udf_sb_info *sbi = UDF_SB(sb);
1140         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1141         struct buffer_head *bh = NULL;
1142         struct udf_inode_info *vati;
1143         uint32_t pos;
1144         struct virtualAllocationTable20 *vat20;
1145         sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1146                           sb->s_blocksize_bits;
1147
1148         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1149         if (!sbi->s_vat_inode &&
1150             sbi->s_last_block != blocks - 1) {
1151                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1152                           (unsigned long)sbi->s_last_block,
1153                           (unsigned long)blocks - 1);
1154                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1155         }
1156         if (!sbi->s_vat_inode)
1157                 return -EIO;
1158
1159         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1160                 map->s_type_specific.s_virtual.s_start_offset = 0;
1161                 map->s_type_specific.s_virtual.s_num_entries =
1162                         (sbi->s_vat_inode->i_size - 36) >> 2;
1163         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1164                 vati = UDF_I(sbi->s_vat_inode);
1165                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1166                         pos = udf_block_map(sbi->s_vat_inode, 0);
1167                         bh = sb_bread(sb, pos);
1168                         if (!bh)
1169                                 return -EIO;
1170                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1171                 } else {
1172                         vat20 = (struct virtualAllocationTable20 *)
1173                                                         vati->i_ext.i_data;
1174                 }
1175
1176                 map->s_type_specific.s_virtual.s_start_offset =
1177                         le16_to_cpu(vat20->lengthHeader);
1178                 map->s_type_specific.s_virtual.s_num_entries =
1179                         (sbi->s_vat_inode->i_size -
1180                                 map->s_type_specific.s_virtual.
1181                                         s_start_offset) >> 2;
1182                 brelse(bh);
1183         }
1184         return 0;
1185 }
1186
1187 /*
1188  * Load partition descriptor block
1189  *
1190  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1191  * sequence.
1192  */
1193 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1194 {
1195         struct buffer_head *bh;
1196         struct partitionDesc *p;
1197         struct udf_part_map *map;
1198         struct udf_sb_info *sbi = UDF_SB(sb);
1199         int i, type1_idx;
1200         uint16_t partitionNumber;
1201         uint16_t ident;
1202         int ret;
1203
1204         bh = udf_read_tagged(sb, block, block, &ident);
1205         if (!bh)
1206                 return -EAGAIN;
1207         if (ident != TAG_IDENT_PD) {
1208                 ret = 0;
1209                 goto out_bh;
1210         }
1211
1212         p = (struct partitionDesc *)bh->b_data;
1213         partitionNumber = le16_to_cpu(p->partitionNumber);
1214
1215         /* First scan for TYPE1 and SPARABLE partitions */
1216         for (i = 0; i < sbi->s_partitions; i++) {
1217                 map = &sbi->s_partmaps[i];
1218                 udf_debug("Searching map: (%u == %u)\n",
1219                           map->s_partition_num, partitionNumber);
1220                 if (map->s_partition_num == partitionNumber &&
1221                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1222                      map->s_partition_type == UDF_SPARABLE_MAP15))
1223                         break;
1224         }
1225
1226         if (i >= sbi->s_partitions) {
1227                 udf_debug("Partition (%u) not found in partition map\n",
1228                           partitionNumber);
1229                 ret = 0;
1230                 goto out_bh;
1231         }
1232
1233         ret = udf_fill_partdesc_info(sb, p, i);
1234         if (ret < 0)
1235                 goto out_bh;
1236
1237         /*
1238          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1239          * PHYSICAL partitions are already set up
1240          */
1241         type1_idx = i;
1242 #ifdef UDFFS_DEBUG
1243         map = NULL; /* supress 'maybe used uninitialized' warning */
1244 #endif
1245         for (i = 0; i < sbi->s_partitions; i++) {
1246                 map = &sbi->s_partmaps[i];
1247
1248                 if (map->s_partition_num == partitionNumber &&
1249                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1250                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1251                      map->s_partition_type == UDF_METADATA_MAP25))
1252                         break;
1253         }
1254
1255         if (i >= sbi->s_partitions) {
1256                 ret = 0;
1257                 goto out_bh;
1258         }
1259
1260         ret = udf_fill_partdesc_info(sb, p, i);
1261         if (ret < 0)
1262                 goto out_bh;
1263
1264         if (map->s_partition_type == UDF_METADATA_MAP25) {
1265                 ret = udf_load_metadata_files(sb, i, type1_idx);
1266                 if (ret < 0) {
1267                         udf_err(sb, "error loading MetaData partition map %d\n",
1268                                 i);
1269                         goto out_bh;
1270                 }
1271         } else {
1272                 /*
1273                  * If we have a partition with virtual map, we don't handle
1274                  * writing to it (we overwrite blocks instead of relocating
1275                  * them).
1276                  */
1277                 if (!sb_rdonly(sb)) {
1278                         ret = -EACCES;
1279                         goto out_bh;
1280                 }
1281                 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1282                 ret = udf_load_vat(sb, i, type1_idx);
1283                 if (ret < 0)
1284                         goto out_bh;
1285         }
1286         ret = 0;
1287 out_bh:
1288         /* In case loading failed, we handle cleanup in udf_fill_super */
1289         brelse(bh);
1290         return ret;
1291 }
1292
1293 static int udf_load_sparable_map(struct super_block *sb,
1294                                  struct udf_part_map *map,
1295                                  struct sparablePartitionMap *spm)
1296 {
1297         uint32_t loc;
1298         uint16_t ident;
1299         struct sparingTable *st;
1300         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1301         int i;
1302         struct buffer_head *bh;
1303
1304         map->s_partition_type = UDF_SPARABLE_MAP15;
1305         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1306         if (!is_power_of_2(sdata->s_packet_len)) {
1307                 udf_err(sb, "error loading logical volume descriptor: "
1308                         "Invalid packet length %u\n",
1309                         (unsigned)sdata->s_packet_len);
1310                 return -EIO;
1311         }
1312         if (spm->numSparingTables > 4) {
1313                 udf_err(sb, "error loading logical volume descriptor: "
1314                         "Too many sparing tables (%d)\n",
1315                         (int)spm->numSparingTables);
1316                 return -EIO;
1317         }
1318
1319         for (i = 0; i < spm->numSparingTables; i++) {
1320                 loc = le32_to_cpu(spm->locSparingTable[i]);
1321                 bh = udf_read_tagged(sb, loc, loc, &ident);
1322                 if (!bh)
1323                         continue;
1324
1325                 st = (struct sparingTable *)bh->b_data;
1326                 if (ident != 0 ||
1327                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1328                             strlen(UDF_ID_SPARING)) ||
1329                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1330                                                         sb->s_blocksize) {
1331                         brelse(bh);
1332                         continue;
1333                 }
1334
1335                 sdata->s_spar_map[i] = bh;
1336         }
1337         map->s_partition_func = udf_get_pblock_spar15;
1338         return 0;
1339 }
1340
1341 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1342                                struct kernel_lb_addr *fileset)
1343 {
1344         struct logicalVolDesc *lvd;
1345         int i, offset;
1346         uint8_t type;
1347         struct udf_sb_info *sbi = UDF_SB(sb);
1348         struct genericPartitionMap *gpm;
1349         uint16_t ident;
1350         struct buffer_head *bh;
1351         unsigned int table_len;
1352         int ret;
1353
1354         bh = udf_read_tagged(sb, block, block, &ident);
1355         if (!bh)
1356                 return -EAGAIN;
1357         BUG_ON(ident != TAG_IDENT_LVD);
1358         lvd = (struct logicalVolDesc *)bh->b_data;
1359         table_len = le32_to_cpu(lvd->mapTableLength);
1360         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1361                 udf_err(sb, "error loading logical volume descriptor: "
1362                         "Partition table too long (%u > %lu)\n", table_len,
1363                         sb->s_blocksize - sizeof(*lvd));
1364                 ret = -EIO;
1365                 goto out_bh;
1366         }
1367
1368         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1369         if (ret)
1370                 goto out_bh;
1371
1372         for (i = 0, offset = 0;
1373              i < sbi->s_partitions && offset < table_len;
1374              i++, offset += gpm->partitionMapLength) {
1375                 struct udf_part_map *map = &sbi->s_partmaps[i];
1376                 gpm = (struct genericPartitionMap *)
1377                                 &(lvd->partitionMaps[offset]);
1378                 type = gpm->partitionMapType;
1379                 if (type == 1) {
1380                         struct genericPartitionMap1 *gpm1 =
1381                                 (struct genericPartitionMap1 *)gpm;
1382                         map->s_partition_type = UDF_TYPE1_MAP15;
1383                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1384                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1385                         map->s_partition_func = NULL;
1386                 } else if (type == 2) {
1387                         struct udfPartitionMap2 *upm2 =
1388                                                 (struct udfPartitionMap2 *)gpm;
1389                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1390                                                 strlen(UDF_ID_VIRTUAL))) {
1391                                 u16 suf =
1392                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1393                                                         identSuffix)[0]);
1394                                 if (suf < 0x0200) {
1395                                         map->s_partition_type =
1396                                                         UDF_VIRTUAL_MAP15;
1397                                         map->s_partition_func =
1398                                                         udf_get_pblock_virt15;
1399                                 } else {
1400                                         map->s_partition_type =
1401                                                         UDF_VIRTUAL_MAP20;
1402                                         map->s_partition_func =
1403                                                         udf_get_pblock_virt20;
1404                                 }
1405                         } else if (!strncmp(upm2->partIdent.ident,
1406                                                 UDF_ID_SPARABLE,
1407                                                 strlen(UDF_ID_SPARABLE))) {
1408                                 ret = udf_load_sparable_map(sb, map,
1409                                         (struct sparablePartitionMap *)gpm);
1410                                 if (ret < 0)
1411                                         goto out_bh;
1412                         } else if (!strncmp(upm2->partIdent.ident,
1413                                                 UDF_ID_METADATA,
1414                                                 strlen(UDF_ID_METADATA))) {
1415                                 struct udf_meta_data *mdata =
1416                                         &map->s_type_specific.s_metadata;
1417                                 struct metadataPartitionMap *mdm =
1418                                                 (struct metadataPartitionMap *)
1419                                                 &(lvd->partitionMaps[offset]);
1420                                 udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1421                                           i, type, UDF_ID_METADATA);
1422
1423                                 map->s_partition_type = UDF_METADATA_MAP25;
1424                                 map->s_partition_func = udf_get_pblock_meta25;
1425
1426                                 mdata->s_meta_file_loc   =
1427                                         le32_to_cpu(mdm->metadataFileLoc);
1428                                 mdata->s_mirror_file_loc =
1429                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1430                                 mdata->s_bitmap_file_loc =
1431                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1432                                 mdata->s_alloc_unit_size =
1433                                         le32_to_cpu(mdm->allocUnitSize);
1434                                 mdata->s_align_unit_size =
1435                                         le16_to_cpu(mdm->alignUnitSize);
1436                                 if (mdm->flags & 0x01)
1437                                         mdata->s_flags |= MF_DUPLICATE_MD;
1438
1439                                 udf_debug("Metadata Ident suffix=0x%x\n",
1440                                           le16_to_cpu(*(__le16 *)
1441                                                       mdm->partIdent.identSuffix));
1442                                 udf_debug("Metadata part num=%u\n",
1443                                           le16_to_cpu(mdm->partitionNum));
1444                                 udf_debug("Metadata part alloc unit size=%u\n",
1445                                           le32_to_cpu(mdm->allocUnitSize));
1446                                 udf_debug("Metadata file loc=%u\n",
1447                                           le32_to_cpu(mdm->metadataFileLoc));
1448                                 udf_debug("Mirror file loc=%u\n",
1449                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1450                                 udf_debug("Bitmap file loc=%u\n",
1451                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1452                                 udf_debug("Flags: %d %u\n",
1453                                           mdata->s_flags, mdm->flags);
1454                         } else {
1455                                 udf_debug("Unknown ident: %s\n",
1456                                           upm2->partIdent.ident);
1457                                 continue;
1458                         }
1459                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1460                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1461                 }
1462                 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1463                           i, map->s_partition_num, type, map->s_volumeseqnum);
1464         }
1465
1466         if (fileset) {
1467                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1468
1469                 *fileset = lelb_to_cpu(la->extLocation);
1470                 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1471                           fileset->logicalBlockNum,
1472                           fileset->partitionReferenceNum);
1473         }
1474         if (lvd->integritySeqExt.extLength)
1475                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1476         ret = 0;
1477
1478         if (!sbi->s_lvid_bh) {
1479                 /* We can't generate unique IDs without a valid LVID */
1480                 if (sb_rdonly(sb)) {
1481                         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1482                 } else {
1483                         udf_warn(sb, "Damaged or missing LVID, forcing "
1484                                      "readonly mount\n");
1485                         ret = -EACCES;
1486                 }
1487         }
1488 out_bh:
1489         brelse(bh);
1490         return ret;
1491 }
1492
1493 /*
1494  * Find the prevailing Logical Volume Integrity Descriptor.
1495  */
1496 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1497 {
1498         struct buffer_head *bh, *final_bh;
1499         uint16_t ident;
1500         struct udf_sb_info *sbi = UDF_SB(sb);
1501         struct logicalVolIntegrityDesc *lvid;
1502         int indirections = 0;
1503
1504         while (++indirections <= UDF_MAX_LVID_NESTING) {
1505                 final_bh = NULL;
1506                 while (loc.extLength > 0 &&
1507                         (bh = udf_read_tagged(sb, loc.extLocation,
1508                                         loc.extLocation, &ident))) {
1509                         if (ident != TAG_IDENT_LVID) {
1510                                 brelse(bh);
1511                                 break;
1512                         }
1513
1514                         brelse(final_bh);
1515                         final_bh = bh;
1516
1517                         loc.extLength -= sb->s_blocksize;
1518                         loc.extLocation++;
1519                 }
1520
1521                 if (!final_bh)
1522                         return;
1523
1524                 brelse(sbi->s_lvid_bh);
1525                 sbi->s_lvid_bh = final_bh;
1526
1527                 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1528                 if (lvid->nextIntegrityExt.extLength == 0)
1529                         return;
1530
1531                 loc = leea_to_cpu(lvid->nextIntegrityExt);
1532         }
1533
1534         udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1535                 UDF_MAX_LVID_NESTING);
1536         brelse(sbi->s_lvid_bh);
1537         sbi->s_lvid_bh = NULL;
1538 }
1539
1540 /*
1541  * Step for reallocation of table of partition descriptor sequence numbers.
1542  * Must be power of 2.
1543  */
1544 #define PART_DESC_ALLOC_STEP 32
1545
1546 struct part_desc_seq_scan_data {
1547         struct udf_vds_record rec;
1548         u32 partnum;
1549 };
1550
1551 struct desc_seq_scan_data {
1552         struct udf_vds_record vds[VDS_POS_LENGTH];
1553         unsigned int size_part_descs;
1554         unsigned int num_part_descs;
1555         struct part_desc_seq_scan_data *part_descs_loc;
1556 };
1557
1558 static struct udf_vds_record *handle_partition_descriptor(
1559                                 struct buffer_head *bh,
1560                                 struct desc_seq_scan_data *data)
1561 {
1562         struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1563         int partnum;
1564         int i;
1565
1566         partnum = le16_to_cpu(desc->partitionNumber);
1567         for (i = 0; i < data->num_part_descs; i++)
1568                 if (partnum == data->part_descs_loc[i].partnum)
1569                         return &(data->part_descs_loc[i].rec);
1570         if (data->num_part_descs >= data->size_part_descs) {
1571                 struct part_desc_seq_scan_data *new_loc;
1572                 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1573
1574                 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1575                 if (!new_loc)
1576                         return ERR_PTR(-ENOMEM);
1577                 memcpy(new_loc, data->part_descs_loc,
1578                        data->size_part_descs * sizeof(*new_loc));
1579                 kfree(data->part_descs_loc);
1580                 data->part_descs_loc = new_loc;
1581                 data->size_part_descs = new_size;
1582         }
1583         return &(data->part_descs_loc[data->num_part_descs++].rec);
1584 }
1585
1586
1587 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1588                 struct buffer_head *bh, struct desc_seq_scan_data *data)
1589 {
1590         switch (ident) {
1591         case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1592                 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1593         case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1594                 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1595         case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1596                 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1597         case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1598                 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1599         case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1600                 return handle_partition_descriptor(bh, data);
1601         }
1602         return NULL;
1603 }
1604
1605 /*
1606  * Process a main/reserve volume descriptor sequence.
1607  *   @block             First block of first extent of the sequence.
1608  *   @lastblock         Lastblock of first extent of the sequence.
1609  *   @fileset           There we store extent containing root fileset
1610  *
1611  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1612  * sequence
1613  */
1614 static noinline int udf_process_sequence(
1615                 struct super_block *sb,
1616                 sector_t block, sector_t lastblock,
1617                 struct kernel_lb_addr *fileset)
1618 {
1619         struct buffer_head *bh = NULL;
1620         struct udf_vds_record *curr;
1621         struct generic_desc *gd;
1622         struct volDescPtr *vdp;
1623         bool done = false;
1624         uint32_t vdsn;
1625         uint16_t ident;
1626         int ret;
1627         unsigned int indirections = 0;
1628         struct desc_seq_scan_data data;
1629         unsigned int i;
1630
1631         memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1632         data.size_part_descs = PART_DESC_ALLOC_STEP;
1633         data.num_part_descs = 0;
1634         data.part_descs_loc = kcalloc(data.size_part_descs,
1635                                       sizeof(*data.part_descs_loc),
1636                                       GFP_KERNEL);
1637         if (!data.part_descs_loc)
1638                 return -ENOMEM;
1639
1640         /*
1641          * Read the main descriptor sequence and find which descriptors
1642          * are in it.
1643          */
1644         for (; (!done && block <= lastblock); block++) {
1645                 bh = udf_read_tagged(sb, block, block, &ident);
1646                 if (!bh)
1647                         break;
1648
1649                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1650                 gd = (struct generic_desc *)bh->b_data;
1651                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1652                 switch (ident) {
1653                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1654                         if (++indirections > UDF_MAX_TD_NESTING) {
1655                                 udf_err(sb, "too many Volume Descriptor "
1656                                         "Pointers (max %u supported)\n",
1657                                         UDF_MAX_TD_NESTING);
1658                                 brelse(bh);
1659                                 return -EIO;
1660                         }
1661
1662                         vdp = (struct volDescPtr *)bh->b_data;
1663                         block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1664                         lastblock = le32_to_cpu(
1665                                 vdp->nextVolDescSeqExt.extLength) >>
1666                                 sb->s_blocksize_bits;
1667                         lastblock += block - 1;
1668                         /* For loop is going to increment 'block' again */
1669                         block--;
1670                         break;
1671                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1672                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1673                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1674                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1675                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1676                         curr = get_volume_descriptor_record(ident, bh, &data);
1677                         if (IS_ERR(curr)) {
1678                                 brelse(bh);
1679                                 return PTR_ERR(curr);
1680                         }
1681                         /* Descriptor we don't care about? */
1682                         if (!curr)
1683                                 break;
1684                         if (vdsn >= curr->volDescSeqNum) {
1685                                 curr->volDescSeqNum = vdsn;
1686                                 curr->block = block;
1687                         }
1688                         break;
1689                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1690                         done = true;
1691                         break;
1692                 }
1693                 brelse(bh);
1694         }
1695         /*
1696          * Now read interesting descriptors again and process them
1697          * in a suitable order
1698          */
1699         if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1700                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1701                 return -EAGAIN;
1702         }
1703         ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1704         if (ret < 0)
1705                 return ret;
1706
1707         if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1708                 ret = udf_load_logicalvol(sb,
1709                                 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1710                                 fileset);
1711                 if (ret < 0)
1712                         return ret;
1713         }
1714
1715         /* Now handle prevailing Partition Descriptors */
1716         for (i = 0; i < data.num_part_descs; i++) {
1717                 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1718                 if (ret < 0)
1719                         return ret;
1720         }
1721
1722         return 0;
1723 }
1724
1725 /*
1726  * Load Volume Descriptor Sequence described by anchor in bh
1727  *
1728  * Returns <0 on error, 0 on success
1729  */
1730 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1731                              struct kernel_lb_addr *fileset)
1732 {
1733         struct anchorVolDescPtr *anchor;
1734         sector_t main_s, main_e, reserve_s, reserve_e;
1735         int ret;
1736
1737         anchor = (struct anchorVolDescPtr *)bh->b_data;
1738
1739         /* Locate the main sequence */
1740         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1741         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1742         main_e = main_e >> sb->s_blocksize_bits;
1743         main_e += main_s - 1;
1744
1745         /* Locate the reserve sequence */
1746         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1747         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1748         reserve_e = reserve_e >> sb->s_blocksize_bits;
1749         reserve_e += reserve_s - 1;
1750
1751         /* Process the main & reserve sequences */
1752         /* responsible for finding the PartitionDesc(s) */
1753         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1754         if (ret != -EAGAIN)
1755                 return ret;
1756         udf_sb_free_partitions(sb);
1757         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1758         if (ret < 0) {
1759                 udf_sb_free_partitions(sb);
1760                 /* No sequence was OK, return -EIO */
1761                 if (ret == -EAGAIN)
1762                         ret = -EIO;
1763         }
1764         return ret;
1765 }
1766
1767 /*
1768  * Check whether there is an anchor block in the given block and
1769  * load Volume Descriptor Sequence if so.
1770  *
1771  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1772  * block
1773  */
1774 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1775                                   struct kernel_lb_addr *fileset)
1776 {
1777         struct buffer_head *bh;
1778         uint16_t ident;
1779         int ret;
1780
1781         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1782             udf_fixed_to_variable(block) >=
1783             i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1784                 return -EAGAIN;
1785
1786         bh = udf_read_tagged(sb, block, block, &ident);
1787         if (!bh)
1788                 return -EAGAIN;
1789         if (ident != TAG_IDENT_AVDP) {
1790                 brelse(bh);
1791                 return -EAGAIN;
1792         }
1793         ret = udf_load_sequence(sb, bh, fileset);
1794         brelse(bh);
1795         return ret;
1796 }
1797
1798 /*
1799  * Search for an anchor volume descriptor pointer.
1800  *
1801  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1802  * of anchors.
1803  */
1804 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1805                             struct kernel_lb_addr *fileset)
1806 {
1807         sector_t last[6];
1808         int i;
1809         struct udf_sb_info *sbi = UDF_SB(sb);
1810         int last_count = 0;
1811         int ret;
1812
1813         /* First try user provided anchor */
1814         if (sbi->s_anchor) {
1815                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1816                 if (ret != -EAGAIN)
1817                         return ret;
1818         }
1819         /*
1820          * according to spec, anchor is in either:
1821          *     block 256
1822          *     lastblock-256
1823          *     lastblock
1824          *  however, if the disc isn't closed, it could be 512.
1825          */
1826         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1827         if (ret != -EAGAIN)
1828                 return ret;
1829         /*
1830          * The trouble is which block is the last one. Drives often misreport
1831          * this so we try various possibilities.
1832          */
1833         last[last_count++] = *lastblock;
1834         if (*lastblock >= 1)
1835                 last[last_count++] = *lastblock - 1;
1836         last[last_count++] = *lastblock + 1;
1837         if (*lastblock >= 2)
1838                 last[last_count++] = *lastblock - 2;
1839         if (*lastblock >= 150)
1840                 last[last_count++] = *lastblock - 150;
1841         if (*lastblock >= 152)
1842                 last[last_count++] = *lastblock - 152;
1843
1844         for (i = 0; i < last_count; i++) {
1845                 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1846                                 sb->s_blocksize_bits)
1847                         continue;
1848                 ret = udf_check_anchor_block(sb, last[i], fileset);
1849                 if (ret != -EAGAIN) {
1850                         if (!ret)
1851                                 *lastblock = last[i];
1852                         return ret;
1853                 }
1854                 if (last[i] < 256)
1855                         continue;
1856                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1857                 if (ret != -EAGAIN) {
1858                         if (!ret)
1859                                 *lastblock = last[i];
1860                         return ret;
1861                 }
1862         }
1863
1864         /* Finally try block 512 in case media is open */
1865         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1866 }
1867
1868 /*
1869  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1870  * area specified by it. The function expects sbi->s_lastblock to be the last
1871  * block on the media.
1872  *
1873  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1874  * was not found.
1875  */
1876 static int udf_find_anchor(struct super_block *sb,
1877                            struct kernel_lb_addr *fileset)
1878 {
1879         struct udf_sb_info *sbi = UDF_SB(sb);
1880         sector_t lastblock = sbi->s_last_block;
1881         int ret;
1882
1883         ret = udf_scan_anchors(sb, &lastblock, fileset);
1884         if (ret != -EAGAIN)
1885                 goto out;
1886
1887         /* No anchor found? Try VARCONV conversion of block numbers */
1888         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1889         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1890         /* Firstly, we try to not convert number of the last block */
1891         ret = udf_scan_anchors(sb, &lastblock, fileset);
1892         if (ret != -EAGAIN)
1893                 goto out;
1894
1895         lastblock = sbi->s_last_block;
1896         /* Secondly, we try with converted number of the last block */
1897         ret = udf_scan_anchors(sb, &lastblock, fileset);
1898         if (ret < 0) {
1899                 /* VARCONV didn't help. Clear it. */
1900                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1901         }
1902 out:
1903         if (ret == 0)
1904                 sbi->s_last_block = lastblock;
1905         return ret;
1906 }
1907
1908 /*
1909  * Check Volume Structure Descriptor, find Anchor block and load Volume
1910  * Descriptor Sequence.
1911  *
1912  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1913  * block was not found.
1914  */
1915 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1916                         int silent, struct kernel_lb_addr *fileset)
1917 {
1918         struct udf_sb_info *sbi = UDF_SB(sb);
1919         loff_t nsr_off;
1920         int ret;
1921
1922         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1923                 if (!silent)
1924                         udf_warn(sb, "Bad block size\n");
1925                 return -EINVAL;
1926         }
1927         sbi->s_last_block = uopt->lastblock;
1928         if (!uopt->novrs) {
1929                 /* Check that it is NSR02 compliant */
1930                 nsr_off = udf_check_vsd(sb);
1931                 if (!nsr_off) {
1932                         if (!silent)
1933                                 udf_warn(sb, "No VRS found\n");
1934                         return -EINVAL;
1935                 }
1936                 if (nsr_off == -1)
1937                         udf_debug("Failed to read sector at offset %d. "
1938                                   "Assuming open disc. Skipping validity "
1939                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1940                 if (!sbi->s_last_block)
1941                         sbi->s_last_block = udf_get_last_block(sb);
1942         } else {
1943                 udf_debug("Validity check skipped because of novrs option\n");
1944         }
1945
1946         /* Look for anchor block and load Volume Descriptor Sequence */
1947         sbi->s_anchor = uopt->anchor;
1948         ret = udf_find_anchor(sb, fileset);
1949         if (ret < 0) {
1950                 if (!silent && ret == -EAGAIN)
1951                         udf_warn(sb, "No anchor found\n");
1952                 return ret;
1953         }
1954         return 0;
1955 }
1956
1957 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
1958 {
1959         struct timespec64 ts;
1960
1961         ktime_get_real_ts64(&ts);
1962         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1963         lvid->descTag.descCRC = cpu_to_le16(
1964                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1965                         le16_to_cpu(lvid->descTag.descCRCLength)));
1966         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1967 }
1968
1969 static void udf_open_lvid(struct super_block *sb)
1970 {
1971         struct udf_sb_info *sbi = UDF_SB(sb);
1972         struct buffer_head *bh = sbi->s_lvid_bh;
1973         struct logicalVolIntegrityDesc *lvid;
1974         struct logicalVolIntegrityDescImpUse *lvidiu;
1975
1976         if (!bh)
1977                 return;
1978         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1979         lvidiu = udf_sb_lvidiu(sb);
1980         if (!lvidiu)
1981                 return;
1982
1983         mutex_lock(&sbi->s_alloc_mutex);
1984         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1985         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1986         if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
1987                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1988         else
1989                 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
1990
1991         udf_finalize_lvid(lvid);
1992         mark_buffer_dirty(bh);
1993         sbi->s_lvid_dirty = 0;
1994         mutex_unlock(&sbi->s_alloc_mutex);
1995         /* Make opening of filesystem visible on the media immediately */
1996         sync_dirty_buffer(bh);
1997 }
1998
1999 static void udf_close_lvid(struct super_block *sb)
2000 {
2001         struct udf_sb_info *sbi = UDF_SB(sb);
2002         struct buffer_head *bh = sbi->s_lvid_bh;
2003         struct logicalVolIntegrityDesc *lvid;
2004         struct logicalVolIntegrityDescImpUse *lvidiu;
2005
2006         if (!bh)
2007                 return;
2008         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2009         lvidiu = udf_sb_lvidiu(sb);
2010         if (!lvidiu)
2011                 return;
2012
2013         mutex_lock(&sbi->s_alloc_mutex);
2014         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2015         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2016         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2017                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2018         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2019                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2020         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2021                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2022         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2023                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2024
2025         /*
2026          * We set buffer uptodate unconditionally here to avoid spurious
2027          * warnings from mark_buffer_dirty() when previous EIO has marked
2028          * the buffer as !uptodate
2029          */
2030         set_buffer_uptodate(bh);
2031         udf_finalize_lvid(lvid);
2032         mark_buffer_dirty(bh);
2033         sbi->s_lvid_dirty = 0;
2034         mutex_unlock(&sbi->s_alloc_mutex);
2035         /* Make closing of filesystem visible on the media immediately */
2036         sync_dirty_buffer(bh);
2037 }
2038
2039 u64 lvid_get_unique_id(struct super_block *sb)
2040 {
2041         struct buffer_head *bh;
2042         struct udf_sb_info *sbi = UDF_SB(sb);
2043         struct logicalVolIntegrityDesc *lvid;
2044         struct logicalVolHeaderDesc *lvhd;
2045         u64 uniqueID;
2046         u64 ret;
2047
2048         bh = sbi->s_lvid_bh;
2049         if (!bh)
2050                 return 0;
2051
2052         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2053         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2054
2055         mutex_lock(&sbi->s_alloc_mutex);
2056         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2057         if (!(++uniqueID & 0xFFFFFFFF))
2058                 uniqueID += 16;
2059         lvhd->uniqueID = cpu_to_le64(uniqueID);
2060         udf_updated_lvid(sb);
2061         mutex_unlock(&sbi->s_alloc_mutex);
2062
2063         return ret;
2064 }
2065
2066 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2067 {
2068         int ret = -EINVAL;
2069         struct inode *inode = NULL;
2070         struct udf_options uopt;
2071         struct kernel_lb_addr rootdir, fileset;
2072         struct udf_sb_info *sbi;
2073         bool lvid_open = false;
2074
2075         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2076         /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2077         uopt.uid = make_kuid(current_user_ns(), overflowuid);
2078         uopt.gid = make_kgid(current_user_ns(), overflowgid);
2079         uopt.umask = 0;
2080         uopt.fmode = UDF_INVALID_MODE;
2081         uopt.dmode = UDF_INVALID_MODE;
2082         uopt.nls_map = NULL;
2083
2084         sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2085         if (!sbi)
2086                 return -ENOMEM;
2087
2088         sb->s_fs_info = sbi;
2089
2090         mutex_init(&sbi->s_alloc_mutex);
2091
2092         if (!udf_parse_options((char *)options, &uopt, false))
2093                 goto parse_options_failure;
2094
2095         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2096             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2097                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2098                 goto parse_options_failure;
2099         }
2100         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2101                 uopt.nls_map = load_nls_default();
2102                 if (!uopt.nls_map)
2103                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2104                 else
2105                         udf_debug("Using default NLS map\n");
2106         }
2107         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2108                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2109
2110         fileset.logicalBlockNum = 0xFFFFFFFF;
2111         fileset.partitionReferenceNum = 0xFFFF;
2112
2113         sbi->s_flags = uopt.flags;
2114         sbi->s_uid = uopt.uid;
2115         sbi->s_gid = uopt.gid;
2116         sbi->s_umask = uopt.umask;
2117         sbi->s_fmode = uopt.fmode;
2118         sbi->s_dmode = uopt.dmode;
2119         sbi->s_nls_map = uopt.nls_map;
2120         rwlock_init(&sbi->s_cred_lock);
2121
2122         if (uopt.session == 0xFFFFFFFF)
2123                 sbi->s_session = udf_get_last_session(sb);
2124         else
2125                 sbi->s_session = uopt.session;
2126
2127         udf_debug("Multi-session=%d\n", sbi->s_session);
2128
2129         /* Fill in the rest of the superblock */
2130         sb->s_op = &udf_sb_ops;
2131         sb->s_export_op = &udf_export_ops;
2132
2133         sb->s_magic = UDF_SUPER_MAGIC;
2134         sb->s_time_gran = 1000;
2135
2136         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2137                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2138         } else {
2139                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2140                 while (uopt.blocksize <= 4096) {
2141                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2142                         if (ret < 0) {
2143                                 if (!silent && ret != -EACCES) {
2144                                         pr_notice("Scanning with blocksize %u failed\n",
2145                                                   uopt.blocksize);
2146                                 }
2147                                 brelse(sbi->s_lvid_bh);
2148                                 sbi->s_lvid_bh = NULL;
2149                                 /*
2150                                  * EACCES is special - we want to propagate to
2151                                  * upper layers that we cannot handle RW mount.
2152                                  */
2153                                 if (ret == -EACCES)
2154                                         break;
2155                         } else
2156                                 break;
2157
2158                         uopt.blocksize <<= 1;
2159                 }
2160         }
2161         if (ret < 0) {
2162                 if (ret == -EAGAIN) {
2163                         udf_warn(sb, "No partition found (1)\n");
2164                         ret = -EINVAL;
2165                 }
2166                 goto error_out;
2167         }
2168
2169         udf_debug("Lastblock=%u\n", sbi->s_last_block);
2170
2171         if (sbi->s_lvid_bh) {
2172                 struct logicalVolIntegrityDescImpUse *lvidiu =
2173                                                         udf_sb_lvidiu(sb);
2174                 uint16_t minUDFReadRev;
2175                 uint16_t minUDFWriteRev;
2176
2177                 if (!lvidiu) {
2178                         ret = -EINVAL;
2179                         goto error_out;
2180                 }
2181                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2182                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2183                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2184                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2185                                 minUDFReadRev,
2186                                 UDF_MAX_READ_VERSION);
2187                         ret = -EINVAL;
2188                         goto error_out;
2189                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2190                         if (!sb_rdonly(sb)) {
2191                                 ret = -EACCES;
2192                                 goto error_out;
2193                         }
2194                         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2195                 }
2196
2197                 sbi->s_udfrev = minUDFWriteRev;
2198
2199                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2200                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2201                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2202                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2203         }
2204
2205         if (!sbi->s_partitions) {
2206                 udf_warn(sb, "No partition found (2)\n");
2207                 ret = -EINVAL;
2208                 goto error_out;
2209         }
2210
2211         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2212                         UDF_PART_FLAG_READ_ONLY) {
2213                 if (!sb_rdonly(sb)) {
2214                         ret = -EACCES;
2215                         goto error_out;
2216                 }
2217                 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2218         }
2219
2220         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2221                 udf_warn(sb, "No fileset found\n");
2222                 ret = -EINVAL;
2223                 goto error_out;
2224         }
2225
2226         if (!silent) {
2227                 struct timestamp ts;
2228                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2229                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2230                          sbi->s_volume_ident,
2231                          le16_to_cpu(ts.year), ts.month, ts.day,
2232                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2233         }
2234         if (!sb_rdonly(sb)) {
2235                 udf_open_lvid(sb);
2236                 lvid_open = true;
2237         }
2238
2239         /* Assign the root inode */
2240         /* assign inodes by physical block number */
2241         /* perhaps it's not extensible enough, but for now ... */
2242         inode = udf_iget(sb, &rootdir);
2243         if (IS_ERR(inode)) {
2244                 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2245                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2246                 ret = PTR_ERR(inode);
2247                 goto error_out;
2248         }
2249
2250         /* Allocate a dentry for the root inode */
2251         sb->s_root = d_make_root(inode);
2252         if (!sb->s_root) {
2253                 udf_err(sb, "Couldn't allocate root dentry\n");
2254                 ret = -ENOMEM;
2255                 goto error_out;
2256         }
2257         sb->s_maxbytes = MAX_LFS_FILESIZE;
2258         sb->s_max_links = UDF_MAX_LINKS;
2259         return 0;
2260
2261 error_out:
2262         iput(sbi->s_vat_inode);
2263 parse_options_failure:
2264         if (uopt.nls_map)
2265                 unload_nls(uopt.nls_map);
2266         if (lvid_open)
2267                 udf_close_lvid(sb);
2268         brelse(sbi->s_lvid_bh);
2269         udf_sb_free_partitions(sb);
2270         kfree(sbi);
2271         sb->s_fs_info = NULL;
2272
2273         return ret;
2274 }
2275
2276 void _udf_err(struct super_block *sb, const char *function,
2277               const char *fmt, ...)
2278 {
2279         struct va_format vaf;
2280         va_list args;
2281
2282         va_start(args, fmt);
2283
2284         vaf.fmt = fmt;
2285         vaf.va = &args;
2286
2287         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2288
2289         va_end(args);
2290 }
2291
2292 void _udf_warn(struct super_block *sb, const char *function,
2293                const char *fmt, ...)
2294 {
2295         struct va_format vaf;
2296         va_list args;
2297
2298         va_start(args, fmt);
2299
2300         vaf.fmt = fmt;
2301         vaf.va = &args;
2302
2303         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2304
2305         va_end(args);
2306 }
2307
2308 static void udf_put_super(struct super_block *sb)
2309 {
2310         struct udf_sb_info *sbi;
2311
2312         sbi = UDF_SB(sb);
2313
2314         iput(sbi->s_vat_inode);
2315         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2316                 unload_nls(sbi->s_nls_map);
2317         if (!sb_rdonly(sb))
2318                 udf_close_lvid(sb);
2319         brelse(sbi->s_lvid_bh);
2320         udf_sb_free_partitions(sb);
2321         mutex_destroy(&sbi->s_alloc_mutex);
2322         kfree(sb->s_fs_info);
2323         sb->s_fs_info = NULL;
2324 }
2325
2326 static int udf_sync_fs(struct super_block *sb, int wait)
2327 {
2328         struct udf_sb_info *sbi = UDF_SB(sb);
2329
2330         mutex_lock(&sbi->s_alloc_mutex);
2331         if (sbi->s_lvid_dirty) {
2332                 struct buffer_head *bh = sbi->s_lvid_bh;
2333                 struct logicalVolIntegrityDesc *lvid;
2334
2335                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2336                 udf_finalize_lvid(lvid);
2337
2338                 /*
2339                  * Blockdevice will be synced later so we don't have to submit
2340                  * the buffer for IO
2341                  */
2342                 mark_buffer_dirty(bh);
2343                 sbi->s_lvid_dirty = 0;
2344         }
2345         mutex_unlock(&sbi->s_alloc_mutex);
2346
2347         return 0;
2348 }
2349
2350 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2351 {
2352         struct super_block *sb = dentry->d_sb;
2353         struct udf_sb_info *sbi = UDF_SB(sb);
2354         struct logicalVolIntegrityDescImpUse *lvidiu;
2355         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2356
2357         lvidiu = udf_sb_lvidiu(sb);
2358         buf->f_type = UDF_SUPER_MAGIC;
2359         buf->f_bsize = sb->s_blocksize;
2360         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2361         buf->f_bfree = udf_count_free(sb);
2362         buf->f_bavail = buf->f_bfree;
2363         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2364                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2365                         + buf->f_bfree;
2366         buf->f_ffree = buf->f_bfree;
2367         buf->f_namelen = UDF_NAME_LEN;
2368         buf->f_fsid.val[0] = (u32)id;
2369         buf->f_fsid.val[1] = (u32)(id >> 32);
2370
2371         return 0;
2372 }
2373
2374 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2375                                           struct udf_bitmap *bitmap)
2376 {
2377         struct buffer_head *bh = NULL;
2378         unsigned int accum = 0;
2379         int index;
2380         udf_pblk_t block = 0, newblock;
2381         struct kernel_lb_addr loc;
2382         uint32_t bytes;
2383         uint8_t *ptr;
2384         uint16_t ident;
2385         struct spaceBitmapDesc *bm;
2386
2387         loc.logicalBlockNum = bitmap->s_extPosition;
2388         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2389         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2390
2391         if (!bh) {
2392                 udf_err(sb, "udf_count_free failed\n");
2393                 goto out;
2394         } else if (ident != TAG_IDENT_SBD) {
2395                 brelse(bh);
2396                 udf_err(sb, "udf_count_free failed\n");
2397                 goto out;
2398         }
2399
2400         bm = (struct spaceBitmapDesc *)bh->b_data;
2401         bytes = le32_to_cpu(bm->numOfBytes);
2402         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2403         ptr = (uint8_t *)bh->b_data;
2404
2405         while (bytes > 0) {
2406                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2407                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2408                                         cur_bytes * 8);
2409                 bytes -= cur_bytes;
2410                 if (bytes) {
2411                         brelse(bh);
2412                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2413                         bh = udf_tread(sb, newblock);
2414                         if (!bh) {
2415                                 udf_debug("read failed\n");
2416                                 goto out;
2417                         }
2418                         index = 0;
2419                         ptr = (uint8_t *)bh->b_data;
2420                 }
2421         }
2422         brelse(bh);
2423 out:
2424         return accum;
2425 }
2426
2427 static unsigned int udf_count_free_table(struct super_block *sb,
2428                                          struct inode *table)
2429 {
2430         unsigned int accum = 0;
2431         uint32_t elen;
2432         struct kernel_lb_addr eloc;
2433         int8_t etype;
2434         struct extent_position epos;
2435
2436         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2437         epos.block = UDF_I(table)->i_location;
2438         epos.offset = sizeof(struct unallocSpaceEntry);
2439         epos.bh = NULL;
2440
2441         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2442                 accum += (elen >> table->i_sb->s_blocksize_bits);
2443
2444         brelse(epos.bh);
2445         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2446
2447         return accum;
2448 }
2449
2450 static unsigned int udf_count_free(struct super_block *sb)
2451 {
2452         unsigned int accum = 0;
2453         struct udf_sb_info *sbi;
2454         struct udf_part_map *map;
2455
2456         sbi = UDF_SB(sb);
2457         if (sbi->s_lvid_bh) {
2458                 struct logicalVolIntegrityDesc *lvid =
2459                         (struct logicalVolIntegrityDesc *)
2460                         sbi->s_lvid_bh->b_data;
2461                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2462                         accum = le32_to_cpu(
2463                                         lvid->freeSpaceTable[sbi->s_partition]);
2464                         if (accum == 0xFFFFFFFF)
2465                                 accum = 0;
2466                 }
2467         }
2468
2469         if (accum)
2470                 return accum;
2471
2472         map = &sbi->s_partmaps[sbi->s_partition];
2473         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2474                 accum += udf_count_free_bitmap(sb,
2475                                                map->s_uspace.s_bitmap);
2476         }
2477         if (accum)
2478                 return accum;
2479
2480         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2481                 accum += udf_count_free_table(sb,
2482                                               map->s_uspace.s_table);
2483         }
2484         return accum;
2485 }
2486
2487 MODULE_AUTHOR("Ben Fennema");
2488 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2489 MODULE_LICENSE("GPL");
2490 module_init(init_udf_fs)
2491 module_exit(exit_udf_fs)