]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/xfs/libxfs/xfs_alloc_btree.c
a4a001f2e130f92bc3d0d338f6b2cf912653849b
[linux.git] / fs / xfs / libxfs / xfs_alloc_btree.c
1 /*
2  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_sb.h"
25 #include "xfs_mount.h"
26 #include "xfs_btree.h"
27 #include "xfs_alloc_btree.h"
28 #include "xfs_alloc.h"
29 #include "xfs_extent_busy.h"
30 #include "xfs_error.h"
31 #include "xfs_trace.h"
32 #include "xfs_cksum.h"
33 #include "xfs_trans.h"
34
35
36 STATIC struct xfs_btree_cur *
37 xfs_allocbt_dup_cursor(
38         struct xfs_btree_cur    *cur)
39 {
40         return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
41                         cur->bc_private.a.agbp, cur->bc_private.a.agno,
42                         cur->bc_btnum);
43 }
44
45 STATIC void
46 xfs_allocbt_set_root(
47         struct xfs_btree_cur    *cur,
48         union xfs_btree_ptr     *ptr,
49         int                     inc)
50 {
51         struct xfs_buf          *agbp = cur->bc_private.a.agbp;
52         struct xfs_agf          *agf = XFS_BUF_TO_AGF(agbp);
53         xfs_agnumber_t          seqno = be32_to_cpu(agf->agf_seqno);
54         int                     btnum = cur->bc_btnum;
55         struct xfs_perag        *pag = xfs_perag_get(cur->bc_mp, seqno);
56
57         ASSERT(ptr->s != 0);
58
59         agf->agf_roots[btnum] = ptr->s;
60         be32_add_cpu(&agf->agf_levels[btnum], inc);
61         pag->pagf_levels[btnum] += inc;
62         xfs_perag_put(pag);
63
64         xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
65 }
66
67 STATIC int
68 xfs_allocbt_alloc_block(
69         struct xfs_btree_cur    *cur,
70         union xfs_btree_ptr     *start,
71         union xfs_btree_ptr     *new,
72         int                     *stat)
73 {
74         int                     error;
75         xfs_agblock_t           bno;
76
77         /* Allocate the new block from the freelist. If we can't, give up.  */
78         error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
79                                        &bno, 1);
80         if (error)
81                 return error;
82
83         if (bno == NULLAGBLOCK) {
84                 *stat = 0;
85                 return 0;
86         }
87
88         xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1, false);
89
90         xfs_trans_agbtree_delta(cur->bc_tp, 1);
91         new->s = cpu_to_be32(bno);
92
93         *stat = 1;
94         return 0;
95 }
96
97 STATIC int
98 xfs_allocbt_free_block(
99         struct xfs_btree_cur    *cur,
100         struct xfs_buf          *bp)
101 {
102         struct xfs_buf          *agbp = cur->bc_private.a.agbp;
103         struct xfs_agf          *agf = XFS_BUF_TO_AGF(agbp);
104         xfs_agblock_t           bno;
105         int                     error;
106
107         bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
108         error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
109         if (error)
110                 return error;
111
112         xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
113                               XFS_EXTENT_BUSY_SKIP_DISCARD);
114         xfs_trans_agbtree_delta(cur->bc_tp, -1);
115         return 0;
116 }
117
118 /*
119  * Update the longest extent in the AGF
120  */
121 STATIC void
122 xfs_allocbt_update_lastrec(
123         struct xfs_btree_cur    *cur,
124         struct xfs_btree_block  *block,
125         union xfs_btree_rec     *rec,
126         int                     ptr,
127         int                     reason)
128 {
129         struct xfs_agf          *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
130         xfs_agnumber_t          seqno = be32_to_cpu(agf->agf_seqno);
131         struct xfs_perag        *pag;
132         __be32                  len;
133         int                     numrecs;
134
135         ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
136
137         switch (reason) {
138         case LASTREC_UPDATE:
139                 /*
140                  * If this is the last leaf block and it's the last record,
141                  * then update the size of the longest extent in the AG.
142                  */
143                 if (ptr != xfs_btree_get_numrecs(block))
144                         return;
145                 len = rec->alloc.ar_blockcount;
146                 break;
147         case LASTREC_INSREC:
148                 if (be32_to_cpu(rec->alloc.ar_blockcount) <=
149                     be32_to_cpu(agf->agf_longest))
150                         return;
151                 len = rec->alloc.ar_blockcount;
152                 break;
153         case LASTREC_DELREC:
154                 numrecs = xfs_btree_get_numrecs(block);
155                 if (ptr <= numrecs)
156                         return;
157                 ASSERT(ptr == numrecs + 1);
158
159                 if (numrecs) {
160                         xfs_alloc_rec_t *rrp;
161
162                         rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
163                         len = rrp->ar_blockcount;
164                 } else {
165                         len = 0;
166                 }
167
168                 break;
169         default:
170                 ASSERT(0);
171                 return;
172         }
173
174         agf->agf_longest = len;
175         pag = xfs_perag_get(cur->bc_mp, seqno);
176         pag->pagf_longest = be32_to_cpu(len);
177         xfs_perag_put(pag);
178         xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp, XFS_AGF_LONGEST);
179 }
180
181 STATIC int
182 xfs_allocbt_get_minrecs(
183         struct xfs_btree_cur    *cur,
184         int                     level)
185 {
186         return cur->bc_mp->m_alloc_mnr[level != 0];
187 }
188
189 STATIC int
190 xfs_allocbt_get_maxrecs(
191         struct xfs_btree_cur    *cur,
192         int                     level)
193 {
194         return cur->bc_mp->m_alloc_mxr[level != 0];
195 }
196
197 STATIC void
198 xfs_allocbt_init_key_from_rec(
199         union xfs_btree_key     *key,
200         union xfs_btree_rec     *rec)
201 {
202         key->alloc.ar_startblock = rec->alloc.ar_startblock;
203         key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
204 }
205
206 STATIC void
207 xfs_bnobt_init_high_key_from_rec(
208         union xfs_btree_key     *key,
209         union xfs_btree_rec     *rec)
210 {
211         __u32                   x;
212
213         x = be32_to_cpu(rec->alloc.ar_startblock);
214         x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
215         key->alloc.ar_startblock = cpu_to_be32(x);
216         key->alloc.ar_blockcount = 0;
217 }
218
219 STATIC void
220 xfs_cntbt_init_high_key_from_rec(
221         union xfs_btree_key     *key,
222         union xfs_btree_rec     *rec)
223 {
224         key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
225         key->alloc.ar_startblock = 0;
226 }
227
228 STATIC void
229 xfs_allocbt_init_rec_from_cur(
230         struct xfs_btree_cur    *cur,
231         union xfs_btree_rec     *rec)
232 {
233         rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
234         rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
235 }
236
237 STATIC void
238 xfs_allocbt_init_ptr_from_cur(
239         struct xfs_btree_cur    *cur,
240         union xfs_btree_ptr     *ptr)
241 {
242         struct xfs_agf          *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
243
244         ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
245
246         ptr->s = agf->agf_roots[cur->bc_btnum];
247 }
248
249 STATIC int64_t
250 xfs_bnobt_key_diff(
251         struct xfs_btree_cur    *cur,
252         union xfs_btree_key     *key)
253 {
254         xfs_alloc_rec_incore_t  *rec = &cur->bc_rec.a;
255         xfs_alloc_key_t         *kp = &key->alloc;
256
257         return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
258 }
259
260 STATIC int64_t
261 xfs_cntbt_key_diff(
262         struct xfs_btree_cur    *cur,
263         union xfs_btree_key     *key)
264 {
265         xfs_alloc_rec_incore_t  *rec = &cur->bc_rec.a;
266         xfs_alloc_key_t         *kp = &key->alloc;
267         int64_t                 diff;
268
269         diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
270         if (diff)
271                 return diff;
272
273         return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
274 }
275
276 STATIC int64_t
277 xfs_bnobt_diff_two_keys(
278         struct xfs_btree_cur    *cur,
279         union xfs_btree_key     *k1,
280         union xfs_btree_key     *k2)
281 {
282         return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
283                           be32_to_cpu(k2->alloc.ar_startblock);
284 }
285
286 STATIC int64_t
287 xfs_cntbt_diff_two_keys(
288         struct xfs_btree_cur    *cur,
289         union xfs_btree_key     *k1,
290         union xfs_btree_key     *k2)
291 {
292         int64_t                 diff;
293
294         diff =  be32_to_cpu(k1->alloc.ar_blockcount) -
295                 be32_to_cpu(k2->alloc.ar_blockcount);
296         if (diff)
297                 return diff;
298
299         return  be32_to_cpu(k1->alloc.ar_startblock) -
300                 be32_to_cpu(k2->alloc.ar_startblock);
301 }
302
303 static xfs_failaddr_t
304 xfs_allocbt_verify(
305         struct xfs_buf          *bp)
306 {
307         struct xfs_mount        *mp = bp->b_target->bt_mount;
308         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
309         struct xfs_perag        *pag = bp->b_pag;
310         xfs_failaddr_t          fa;
311         unsigned int            level;
312
313         /*
314          * magic number and level verification
315          *
316          * During growfs operations, we can't verify the exact level or owner as
317          * the perag is not fully initialised and hence not attached to the
318          * buffer.  In this case, check against the maximum tree depth.
319          *
320          * Similarly, during log recovery we will have a perag structure
321          * attached, but the agf information will not yet have been initialised
322          * from the on disk AGF. Again, we can only check against maximum limits
323          * in this case.
324          */
325         level = be16_to_cpu(block->bb_level);
326         switch (block->bb_magic) {
327         case cpu_to_be32(XFS_ABTB_CRC_MAGIC):
328                 fa = xfs_btree_sblock_v5hdr_verify(bp);
329                 if (fa)
330                         return fa;
331                 /* fall through */
332         case cpu_to_be32(XFS_ABTB_MAGIC):
333                 if (pag && pag->pagf_init) {
334                         if (level >= pag->pagf_levels[XFS_BTNUM_BNOi])
335                                 return __this_address;
336                 } else if (level >= mp->m_ag_maxlevels)
337                         return __this_address;
338                 break;
339         case cpu_to_be32(XFS_ABTC_CRC_MAGIC):
340                 fa = xfs_btree_sblock_v5hdr_verify(bp);
341                 if (fa)
342                         return fa;
343                 /* fall through */
344         case cpu_to_be32(XFS_ABTC_MAGIC):
345                 if (pag && pag->pagf_init) {
346                         if (level >= pag->pagf_levels[XFS_BTNUM_CNTi])
347                                 return __this_address;
348                 } else if (level >= mp->m_ag_maxlevels)
349                         return __this_address;
350                 break;
351         default:
352                 return __this_address;
353         }
354
355         return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
356 }
357
358 static void
359 xfs_allocbt_read_verify(
360         struct xfs_buf  *bp)
361 {
362         xfs_failaddr_t  fa;
363
364         if (!xfs_btree_sblock_verify_crc(bp))
365                 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
366         else {
367                 fa = xfs_allocbt_verify(bp);
368                 if (fa)
369                         xfs_verifier_error(bp, -EFSCORRUPTED, fa);
370         }
371
372         if (bp->b_error)
373                 trace_xfs_btree_corrupt(bp, _RET_IP_);
374 }
375
376 static void
377 xfs_allocbt_write_verify(
378         struct xfs_buf  *bp)
379 {
380         xfs_failaddr_t  fa;
381
382         fa = xfs_allocbt_verify(bp);
383         if (fa) {
384                 trace_xfs_btree_corrupt(bp, _RET_IP_);
385                 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
386                 return;
387         }
388         xfs_btree_sblock_calc_crc(bp);
389
390 }
391
392 const struct xfs_buf_ops xfs_allocbt_buf_ops = {
393         .name = "xfs_allocbt",
394         .verify_read = xfs_allocbt_read_verify,
395         .verify_write = xfs_allocbt_write_verify,
396         .verify_struct = xfs_allocbt_verify,
397 };
398
399
400 STATIC int
401 xfs_bnobt_keys_inorder(
402         struct xfs_btree_cur    *cur,
403         union xfs_btree_key     *k1,
404         union xfs_btree_key     *k2)
405 {
406         return be32_to_cpu(k1->alloc.ar_startblock) <
407                be32_to_cpu(k2->alloc.ar_startblock);
408 }
409
410 STATIC int
411 xfs_bnobt_recs_inorder(
412         struct xfs_btree_cur    *cur,
413         union xfs_btree_rec     *r1,
414         union xfs_btree_rec     *r2)
415 {
416         return be32_to_cpu(r1->alloc.ar_startblock) +
417                 be32_to_cpu(r1->alloc.ar_blockcount) <=
418                 be32_to_cpu(r2->alloc.ar_startblock);
419 }
420
421 STATIC int
422 xfs_cntbt_keys_inorder(
423         struct xfs_btree_cur    *cur,
424         union xfs_btree_key     *k1,
425         union xfs_btree_key     *k2)
426 {
427         return be32_to_cpu(k1->alloc.ar_blockcount) <
428                 be32_to_cpu(k2->alloc.ar_blockcount) ||
429                 (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
430                  be32_to_cpu(k1->alloc.ar_startblock) <
431                  be32_to_cpu(k2->alloc.ar_startblock));
432 }
433
434 STATIC int
435 xfs_cntbt_recs_inorder(
436         struct xfs_btree_cur    *cur,
437         union xfs_btree_rec     *r1,
438         union xfs_btree_rec     *r2)
439 {
440         return be32_to_cpu(r1->alloc.ar_blockcount) <
441                 be32_to_cpu(r2->alloc.ar_blockcount) ||
442                 (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
443                  be32_to_cpu(r1->alloc.ar_startblock) <
444                  be32_to_cpu(r2->alloc.ar_startblock));
445 }
446
447 static const struct xfs_btree_ops xfs_bnobt_ops = {
448         .rec_len                = sizeof(xfs_alloc_rec_t),
449         .key_len                = sizeof(xfs_alloc_key_t),
450
451         .dup_cursor             = xfs_allocbt_dup_cursor,
452         .set_root               = xfs_allocbt_set_root,
453         .alloc_block            = xfs_allocbt_alloc_block,
454         .free_block             = xfs_allocbt_free_block,
455         .update_lastrec         = xfs_allocbt_update_lastrec,
456         .get_minrecs            = xfs_allocbt_get_minrecs,
457         .get_maxrecs            = xfs_allocbt_get_maxrecs,
458         .init_key_from_rec      = xfs_allocbt_init_key_from_rec,
459         .init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec,
460         .init_rec_from_cur      = xfs_allocbt_init_rec_from_cur,
461         .init_ptr_from_cur      = xfs_allocbt_init_ptr_from_cur,
462         .key_diff               = xfs_bnobt_key_diff,
463         .buf_ops                = &xfs_allocbt_buf_ops,
464         .diff_two_keys          = xfs_bnobt_diff_two_keys,
465         .keys_inorder           = xfs_bnobt_keys_inorder,
466         .recs_inorder           = xfs_bnobt_recs_inorder,
467 };
468
469 static const struct xfs_btree_ops xfs_cntbt_ops = {
470         .rec_len                = sizeof(xfs_alloc_rec_t),
471         .key_len                = sizeof(xfs_alloc_key_t),
472
473         .dup_cursor             = xfs_allocbt_dup_cursor,
474         .set_root               = xfs_allocbt_set_root,
475         .alloc_block            = xfs_allocbt_alloc_block,
476         .free_block             = xfs_allocbt_free_block,
477         .update_lastrec         = xfs_allocbt_update_lastrec,
478         .get_minrecs            = xfs_allocbt_get_minrecs,
479         .get_maxrecs            = xfs_allocbt_get_maxrecs,
480         .init_key_from_rec      = xfs_allocbt_init_key_from_rec,
481         .init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec,
482         .init_rec_from_cur      = xfs_allocbt_init_rec_from_cur,
483         .init_ptr_from_cur      = xfs_allocbt_init_ptr_from_cur,
484         .key_diff               = xfs_cntbt_key_diff,
485         .buf_ops                = &xfs_allocbt_buf_ops,
486         .diff_two_keys          = xfs_cntbt_diff_two_keys,
487         .keys_inorder           = xfs_cntbt_keys_inorder,
488         .recs_inorder           = xfs_cntbt_recs_inorder,
489 };
490
491 /*
492  * Allocate a new allocation btree cursor.
493  */
494 struct xfs_btree_cur *                  /* new alloc btree cursor */
495 xfs_allocbt_init_cursor(
496         struct xfs_mount        *mp,            /* file system mount point */
497         struct xfs_trans        *tp,            /* transaction pointer */
498         struct xfs_buf          *agbp,          /* buffer for agf structure */
499         xfs_agnumber_t          agno,           /* allocation group number */
500         xfs_btnum_t             btnum)          /* btree identifier */
501 {
502         struct xfs_agf          *agf = XFS_BUF_TO_AGF(agbp);
503         struct xfs_btree_cur    *cur;
504
505         ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
506
507         cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
508
509         cur->bc_tp = tp;
510         cur->bc_mp = mp;
511         cur->bc_btnum = btnum;
512         cur->bc_blocklog = mp->m_sb.sb_blocklog;
513
514         if (btnum == XFS_BTNUM_CNT) {
515                 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
516                 cur->bc_ops = &xfs_cntbt_ops;
517                 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
518                 cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
519         } else {
520                 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
521                 cur->bc_ops = &xfs_bnobt_ops;
522                 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
523         }
524
525         cur->bc_private.a.agbp = agbp;
526         cur->bc_private.a.agno = agno;
527
528         if (xfs_sb_version_hascrc(&mp->m_sb))
529                 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
530
531         return cur;
532 }
533
534 /*
535  * Calculate number of records in an alloc btree block.
536  */
537 int
538 xfs_allocbt_maxrecs(
539         struct xfs_mount        *mp,
540         int                     blocklen,
541         int                     leaf)
542 {
543         blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
544
545         if (leaf)
546                 return blocklen / sizeof(xfs_alloc_rec_t);
547         return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
548 }
549
550 /* Calculate the freespace btree size for some records. */
551 xfs_extlen_t
552 xfs_allocbt_calc_size(
553         struct xfs_mount        *mp,
554         unsigned long long      len)
555 {
556         return xfs_btree_calc_size(mp->m_alloc_mnr, len);
557 }