]> asedeno.scripts.mit.edu Git - linux.git/blob - fs/xfs/xfs_log.c
xfs: remove the XLOG_STATE_DO_CALLBACK state
[linux.git] / fs / xfs / xfs_log.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
23
24 kmem_zone_t     *xfs_log_ticket_zone;
25
26 /* Local miscellaneous function prototypes */
27 STATIC int
28 xlog_commit_record(
29         struct xlog             *log,
30         struct xlog_ticket      *ticket,
31         struct xlog_in_core     **iclog,
32         xfs_lsn_t               *commitlsnp);
33
34 STATIC struct xlog *
35 xlog_alloc_log(
36         struct xfs_mount        *mp,
37         struct xfs_buftarg      *log_target,
38         xfs_daddr_t             blk_offset,
39         int                     num_bblks);
40 STATIC int
41 xlog_space_left(
42         struct xlog             *log,
43         atomic64_t              *head);
44 STATIC void
45 xlog_dealloc_log(
46         struct xlog             *log);
47
48 /* local state machine functions */
49 STATIC void xlog_state_done_syncing(
50         struct xlog_in_core     *iclog,
51         bool                    aborted);
52 STATIC int
53 xlog_state_get_iclog_space(
54         struct xlog             *log,
55         int                     len,
56         struct xlog_in_core     **iclog,
57         struct xlog_ticket      *ticket,
58         int                     *continued_write,
59         int                     *logoffsetp);
60 STATIC void
61 xlog_state_switch_iclogs(
62         struct xlog             *log,
63         struct xlog_in_core     *iclog,
64         int                     eventual_size);
65 STATIC void
66 xlog_state_want_sync(
67         struct xlog             *log,
68         struct xlog_in_core     *iclog);
69
70 STATIC void
71 xlog_grant_push_ail(
72         struct xlog             *log,
73         int                     need_bytes);
74 STATIC void
75 xlog_regrant_reserve_log_space(
76         struct xlog             *log,
77         struct xlog_ticket      *ticket);
78 STATIC void
79 xlog_ungrant_log_space(
80         struct xlog             *log,
81         struct xlog_ticket      *ticket);
82 STATIC void
83 xlog_sync(
84         struct xlog             *log,
85         struct xlog_in_core     *iclog);
86 #if defined(DEBUG)
87 STATIC void
88 xlog_verify_dest_ptr(
89         struct xlog             *log,
90         void                    *ptr);
91 STATIC void
92 xlog_verify_grant_tail(
93         struct xlog *log);
94 STATIC void
95 xlog_verify_iclog(
96         struct xlog             *log,
97         struct xlog_in_core     *iclog,
98         int                     count);
99 STATIC void
100 xlog_verify_tail_lsn(
101         struct xlog             *log,
102         struct xlog_in_core     *iclog,
103         xfs_lsn_t               tail_lsn);
104 #else
105 #define xlog_verify_dest_ptr(a,b)
106 #define xlog_verify_grant_tail(a)
107 #define xlog_verify_iclog(a,b,c)
108 #define xlog_verify_tail_lsn(a,b,c)
109 #endif
110
111 STATIC int
112 xlog_iclogs_empty(
113         struct xlog             *log);
114
115 static void
116 xlog_grant_sub_space(
117         struct xlog             *log,
118         atomic64_t              *head,
119         int                     bytes)
120 {
121         int64_t head_val = atomic64_read(head);
122         int64_t new, old;
123
124         do {
125                 int     cycle, space;
126
127                 xlog_crack_grant_head_val(head_val, &cycle, &space);
128
129                 space -= bytes;
130                 if (space < 0) {
131                         space += log->l_logsize;
132                         cycle--;
133                 }
134
135                 old = head_val;
136                 new = xlog_assign_grant_head_val(cycle, space);
137                 head_val = atomic64_cmpxchg(head, old, new);
138         } while (head_val != old);
139 }
140
141 static void
142 xlog_grant_add_space(
143         struct xlog             *log,
144         atomic64_t              *head,
145         int                     bytes)
146 {
147         int64_t head_val = atomic64_read(head);
148         int64_t new, old;
149
150         do {
151                 int             tmp;
152                 int             cycle, space;
153
154                 xlog_crack_grant_head_val(head_val, &cycle, &space);
155
156                 tmp = log->l_logsize - space;
157                 if (tmp > bytes)
158                         space += bytes;
159                 else {
160                         space = bytes - tmp;
161                         cycle++;
162                 }
163
164                 old = head_val;
165                 new = xlog_assign_grant_head_val(cycle, space);
166                 head_val = atomic64_cmpxchg(head, old, new);
167         } while (head_val != old);
168 }
169
170 STATIC void
171 xlog_grant_head_init(
172         struct xlog_grant_head  *head)
173 {
174         xlog_assign_grant_head(&head->grant, 1, 0);
175         INIT_LIST_HEAD(&head->waiters);
176         spin_lock_init(&head->lock);
177 }
178
179 STATIC void
180 xlog_grant_head_wake_all(
181         struct xlog_grant_head  *head)
182 {
183         struct xlog_ticket      *tic;
184
185         spin_lock(&head->lock);
186         list_for_each_entry(tic, &head->waiters, t_queue)
187                 wake_up_process(tic->t_task);
188         spin_unlock(&head->lock);
189 }
190
191 static inline int
192 xlog_ticket_reservation(
193         struct xlog             *log,
194         struct xlog_grant_head  *head,
195         struct xlog_ticket      *tic)
196 {
197         if (head == &log->l_write_head) {
198                 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
199                 return tic->t_unit_res;
200         } else {
201                 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
202                         return tic->t_unit_res * tic->t_cnt;
203                 else
204                         return tic->t_unit_res;
205         }
206 }
207
208 STATIC bool
209 xlog_grant_head_wake(
210         struct xlog             *log,
211         struct xlog_grant_head  *head,
212         int                     *free_bytes)
213 {
214         struct xlog_ticket      *tic;
215         int                     need_bytes;
216         bool                    woken_task = false;
217
218         list_for_each_entry(tic, &head->waiters, t_queue) {
219
220                 /*
221                  * There is a chance that the size of the CIL checkpoints in
222                  * progress at the last AIL push target calculation resulted in
223                  * limiting the target to the log head (l_last_sync_lsn) at the
224                  * time. This may not reflect where the log head is now as the
225                  * CIL checkpoints may have completed.
226                  *
227                  * Hence when we are woken here, it may be that the head of the
228                  * log that has moved rather than the tail. As the tail didn't
229                  * move, there still won't be space available for the
230                  * reservation we require.  However, if the AIL has already
231                  * pushed to the target defined by the old log head location, we
232                  * will hang here waiting for something else to update the AIL
233                  * push target.
234                  *
235                  * Therefore, if there isn't space to wake the first waiter on
236                  * the grant head, we need to push the AIL again to ensure the
237                  * target reflects both the current log tail and log head
238                  * position before we wait for the tail to move again.
239                  */
240
241                 need_bytes = xlog_ticket_reservation(log, head, tic);
242                 if (*free_bytes < need_bytes) {
243                         if (!woken_task)
244                                 xlog_grant_push_ail(log, need_bytes);
245                         return false;
246                 }
247
248                 *free_bytes -= need_bytes;
249                 trace_xfs_log_grant_wake_up(log, tic);
250                 wake_up_process(tic->t_task);
251                 woken_task = true;
252         }
253
254         return true;
255 }
256
257 STATIC int
258 xlog_grant_head_wait(
259         struct xlog             *log,
260         struct xlog_grant_head  *head,
261         struct xlog_ticket      *tic,
262         int                     need_bytes) __releases(&head->lock)
263                                             __acquires(&head->lock)
264 {
265         list_add_tail(&tic->t_queue, &head->waiters);
266
267         do {
268                 if (XLOG_FORCED_SHUTDOWN(log))
269                         goto shutdown;
270                 xlog_grant_push_ail(log, need_bytes);
271
272                 __set_current_state(TASK_UNINTERRUPTIBLE);
273                 spin_unlock(&head->lock);
274
275                 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
276
277                 trace_xfs_log_grant_sleep(log, tic);
278                 schedule();
279                 trace_xfs_log_grant_wake(log, tic);
280
281                 spin_lock(&head->lock);
282                 if (XLOG_FORCED_SHUTDOWN(log))
283                         goto shutdown;
284         } while (xlog_space_left(log, &head->grant) < need_bytes);
285
286         list_del_init(&tic->t_queue);
287         return 0;
288 shutdown:
289         list_del_init(&tic->t_queue);
290         return -EIO;
291 }
292
293 /*
294  * Atomically get the log space required for a log ticket.
295  *
296  * Once a ticket gets put onto head->waiters, it will only return after the
297  * needed reservation is satisfied.
298  *
299  * This function is structured so that it has a lock free fast path. This is
300  * necessary because every new transaction reservation will come through this
301  * path. Hence any lock will be globally hot if we take it unconditionally on
302  * every pass.
303  *
304  * As tickets are only ever moved on and off head->waiters under head->lock, we
305  * only need to take that lock if we are going to add the ticket to the queue
306  * and sleep. We can avoid taking the lock if the ticket was never added to
307  * head->waiters because the t_queue list head will be empty and we hold the
308  * only reference to it so it can safely be checked unlocked.
309  */
310 STATIC int
311 xlog_grant_head_check(
312         struct xlog             *log,
313         struct xlog_grant_head  *head,
314         struct xlog_ticket      *tic,
315         int                     *need_bytes)
316 {
317         int                     free_bytes;
318         int                     error = 0;
319
320         ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
321
322         /*
323          * If there are other waiters on the queue then give them a chance at
324          * logspace before us.  Wake up the first waiters, if we do not wake
325          * up all the waiters then go to sleep waiting for more free space,
326          * otherwise try to get some space for this transaction.
327          */
328         *need_bytes = xlog_ticket_reservation(log, head, tic);
329         free_bytes = xlog_space_left(log, &head->grant);
330         if (!list_empty_careful(&head->waiters)) {
331                 spin_lock(&head->lock);
332                 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
333                     free_bytes < *need_bytes) {
334                         error = xlog_grant_head_wait(log, head, tic,
335                                                      *need_bytes);
336                 }
337                 spin_unlock(&head->lock);
338         } else if (free_bytes < *need_bytes) {
339                 spin_lock(&head->lock);
340                 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
341                 spin_unlock(&head->lock);
342         }
343
344         return error;
345 }
346
347 static void
348 xlog_tic_reset_res(xlog_ticket_t *tic)
349 {
350         tic->t_res_num = 0;
351         tic->t_res_arr_sum = 0;
352         tic->t_res_num_ophdrs = 0;
353 }
354
355 static void
356 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
357 {
358         if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
359                 /* add to overflow and start again */
360                 tic->t_res_o_flow += tic->t_res_arr_sum;
361                 tic->t_res_num = 0;
362                 tic->t_res_arr_sum = 0;
363         }
364
365         tic->t_res_arr[tic->t_res_num].r_len = len;
366         tic->t_res_arr[tic->t_res_num].r_type = type;
367         tic->t_res_arr_sum += len;
368         tic->t_res_num++;
369 }
370
371 /*
372  * Replenish the byte reservation required by moving the grant write head.
373  */
374 int
375 xfs_log_regrant(
376         struct xfs_mount        *mp,
377         struct xlog_ticket      *tic)
378 {
379         struct xlog             *log = mp->m_log;
380         int                     need_bytes;
381         int                     error = 0;
382
383         if (XLOG_FORCED_SHUTDOWN(log))
384                 return -EIO;
385
386         XFS_STATS_INC(mp, xs_try_logspace);
387
388         /*
389          * This is a new transaction on the ticket, so we need to change the
390          * transaction ID so that the next transaction has a different TID in
391          * the log. Just add one to the existing tid so that we can see chains
392          * of rolling transactions in the log easily.
393          */
394         tic->t_tid++;
395
396         xlog_grant_push_ail(log, tic->t_unit_res);
397
398         tic->t_curr_res = tic->t_unit_res;
399         xlog_tic_reset_res(tic);
400
401         if (tic->t_cnt > 0)
402                 return 0;
403
404         trace_xfs_log_regrant(log, tic);
405
406         error = xlog_grant_head_check(log, &log->l_write_head, tic,
407                                       &need_bytes);
408         if (error)
409                 goto out_error;
410
411         xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
412         trace_xfs_log_regrant_exit(log, tic);
413         xlog_verify_grant_tail(log);
414         return 0;
415
416 out_error:
417         /*
418          * If we are failing, make sure the ticket doesn't have any current
419          * reservations.  We don't want to add this back when the ticket/
420          * transaction gets cancelled.
421          */
422         tic->t_curr_res = 0;
423         tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
424         return error;
425 }
426
427 /*
428  * Reserve log space and return a ticket corresponding to the reservation.
429  *
430  * Each reservation is going to reserve extra space for a log record header.
431  * When writes happen to the on-disk log, we don't subtract the length of the
432  * log record header from any reservation.  By wasting space in each
433  * reservation, we prevent over allocation problems.
434  */
435 int
436 xfs_log_reserve(
437         struct xfs_mount        *mp,
438         int                     unit_bytes,
439         int                     cnt,
440         struct xlog_ticket      **ticp,
441         uint8_t                 client,
442         bool                    permanent)
443 {
444         struct xlog             *log = mp->m_log;
445         struct xlog_ticket      *tic;
446         int                     need_bytes;
447         int                     error = 0;
448
449         ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
450
451         if (XLOG_FORCED_SHUTDOWN(log))
452                 return -EIO;
453
454         XFS_STATS_INC(mp, xs_try_logspace);
455
456         ASSERT(*ticp == NULL);
457         tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 0);
458         *ticp = tic;
459
460         xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
461                                             : tic->t_unit_res);
462
463         trace_xfs_log_reserve(log, tic);
464
465         error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
466                                       &need_bytes);
467         if (error)
468                 goto out_error;
469
470         xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
471         xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
472         trace_xfs_log_reserve_exit(log, tic);
473         xlog_verify_grant_tail(log);
474         return 0;
475
476 out_error:
477         /*
478          * If we are failing, make sure the ticket doesn't have any current
479          * reservations.  We don't want to add this back when the ticket/
480          * transaction gets cancelled.
481          */
482         tic->t_curr_res = 0;
483         tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
484         return error;
485 }
486
487
488 /*
489  * NOTES:
490  *
491  *      1. currblock field gets updated at startup and after in-core logs
492  *              marked as with WANT_SYNC.
493  */
494
495 /*
496  * This routine is called when a user of a log manager ticket is done with
497  * the reservation.  If the ticket was ever used, then a commit record for
498  * the associated transaction is written out as a log operation header with
499  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
500  * a given ticket.  If the ticket was one with a permanent reservation, then
501  * a few operations are done differently.  Permanent reservation tickets by
502  * default don't release the reservation.  They just commit the current
503  * transaction with the belief that the reservation is still needed.  A flag
504  * must be passed in before permanent reservations are actually released.
505  * When these type of tickets are not released, they need to be set into
506  * the inited state again.  By doing this, a start record will be written
507  * out when the next write occurs.
508  */
509 xfs_lsn_t
510 xfs_log_done(
511         struct xfs_mount        *mp,
512         struct xlog_ticket      *ticket,
513         struct xlog_in_core     **iclog,
514         bool                    regrant)
515 {
516         struct xlog             *log = mp->m_log;
517         xfs_lsn_t               lsn = 0;
518
519         if (XLOG_FORCED_SHUTDOWN(log) ||
520             /*
521              * If nothing was ever written, don't write out commit record.
522              * If we get an error, just continue and give back the log ticket.
523              */
524             (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
525              (xlog_commit_record(log, ticket, iclog, &lsn)))) {
526                 lsn = (xfs_lsn_t) -1;
527                 regrant = false;
528         }
529
530
531         if (!regrant) {
532                 trace_xfs_log_done_nonperm(log, ticket);
533
534                 /*
535                  * Release ticket if not permanent reservation or a specific
536                  * request has been made to release a permanent reservation.
537                  */
538                 xlog_ungrant_log_space(log, ticket);
539         } else {
540                 trace_xfs_log_done_perm(log, ticket);
541
542                 xlog_regrant_reserve_log_space(log, ticket);
543                 /* If this ticket was a permanent reservation and we aren't
544                  * trying to release it, reset the inited flags; so next time
545                  * we write, a start record will be written out.
546                  */
547                 ticket->t_flags |= XLOG_TIC_INITED;
548         }
549
550         xfs_log_ticket_put(ticket);
551         return lsn;
552 }
553
554 static bool
555 __xlog_state_release_iclog(
556         struct xlog             *log,
557         struct xlog_in_core     *iclog)
558 {
559         lockdep_assert_held(&log->l_icloglock);
560
561         if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
562                 /* update tail before writing to iclog */
563                 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
564
565                 iclog->ic_state = XLOG_STATE_SYNCING;
566                 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
567                 xlog_verify_tail_lsn(log, iclog, tail_lsn);
568                 /* cycle incremented when incrementing curr_block */
569                 return true;
570         }
571
572         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
573         return false;
574 }
575
576 /*
577  * Flush iclog to disk if this is the last reference to the given iclog and the
578  * it is in the WANT_SYNC state.
579  */
580 static int
581 xlog_state_release_iclog(
582         struct xlog             *log,
583         struct xlog_in_core     *iclog)
584 {
585         lockdep_assert_held(&log->l_icloglock);
586
587         if (iclog->ic_state == XLOG_STATE_IOERROR)
588                 return -EIO;
589
590         if (atomic_dec_and_test(&iclog->ic_refcnt) &&
591             __xlog_state_release_iclog(log, iclog)) {
592                 spin_unlock(&log->l_icloglock);
593                 xlog_sync(log, iclog);
594                 spin_lock(&log->l_icloglock);
595         }
596
597         return 0;
598 }
599
600 int
601 xfs_log_release_iclog(
602         struct xfs_mount        *mp,
603         struct xlog_in_core     *iclog)
604 {
605         struct xlog             *log = mp->m_log;
606         bool                    sync;
607
608         if (iclog->ic_state == XLOG_STATE_IOERROR) {
609                 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
610                 return -EIO;
611         }
612
613         if (atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) {
614                 sync = __xlog_state_release_iclog(log, iclog);
615                 spin_unlock(&log->l_icloglock);
616                 if (sync)
617                         xlog_sync(log, iclog);
618         }
619         return 0;
620 }
621
622 /*
623  * Mount a log filesystem
624  *
625  * mp           - ubiquitous xfs mount point structure
626  * log_target   - buftarg of on-disk log device
627  * blk_offset   - Start block # where block size is 512 bytes (BBSIZE)
628  * num_bblocks  - Number of BBSIZE blocks in on-disk log
629  *
630  * Return error or zero.
631  */
632 int
633 xfs_log_mount(
634         xfs_mount_t     *mp,
635         xfs_buftarg_t   *log_target,
636         xfs_daddr_t     blk_offset,
637         int             num_bblks)
638 {
639         bool            fatal = xfs_sb_version_hascrc(&mp->m_sb);
640         int             error = 0;
641         int             min_logfsbs;
642
643         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
644                 xfs_notice(mp, "Mounting V%d Filesystem",
645                            XFS_SB_VERSION_NUM(&mp->m_sb));
646         } else {
647                 xfs_notice(mp,
648 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
649                            XFS_SB_VERSION_NUM(&mp->m_sb));
650                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
651         }
652
653         mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
654         if (IS_ERR(mp->m_log)) {
655                 error = PTR_ERR(mp->m_log);
656                 goto out;
657         }
658
659         /*
660          * Validate the given log space and drop a critical message via syslog
661          * if the log size is too small that would lead to some unexpected
662          * situations in transaction log space reservation stage.
663          *
664          * Note: we can't just reject the mount if the validation fails.  This
665          * would mean that people would have to downgrade their kernel just to
666          * remedy the situation as there is no way to grow the log (short of
667          * black magic surgery with xfs_db).
668          *
669          * We can, however, reject mounts for CRC format filesystems, as the
670          * mkfs binary being used to make the filesystem should never create a
671          * filesystem with a log that is too small.
672          */
673         min_logfsbs = xfs_log_calc_minimum_size(mp);
674
675         if (mp->m_sb.sb_logblocks < min_logfsbs) {
676                 xfs_warn(mp,
677                 "Log size %d blocks too small, minimum size is %d blocks",
678                          mp->m_sb.sb_logblocks, min_logfsbs);
679                 error = -EINVAL;
680         } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
681                 xfs_warn(mp,
682                 "Log size %d blocks too large, maximum size is %lld blocks",
683                          mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
684                 error = -EINVAL;
685         } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
686                 xfs_warn(mp,
687                 "log size %lld bytes too large, maximum size is %lld bytes",
688                          XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
689                          XFS_MAX_LOG_BYTES);
690                 error = -EINVAL;
691         } else if (mp->m_sb.sb_logsunit > 1 &&
692                    mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
693                 xfs_warn(mp,
694                 "log stripe unit %u bytes must be a multiple of block size",
695                          mp->m_sb.sb_logsunit);
696                 error = -EINVAL;
697                 fatal = true;
698         }
699         if (error) {
700                 /*
701                  * Log check errors are always fatal on v5; or whenever bad
702                  * metadata leads to a crash.
703                  */
704                 if (fatal) {
705                         xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
706                         ASSERT(0);
707                         goto out_free_log;
708                 }
709                 xfs_crit(mp, "Log size out of supported range.");
710                 xfs_crit(mp,
711 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
712         }
713
714         /*
715          * Initialize the AIL now we have a log.
716          */
717         error = xfs_trans_ail_init(mp);
718         if (error) {
719                 xfs_warn(mp, "AIL initialisation failed: error %d", error);
720                 goto out_free_log;
721         }
722         mp->m_log->l_ailp = mp->m_ail;
723
724         /*
725          * skip log recovery on a norecovery mount.  pretend it all
726          * just worked.
727          */
728         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
729                 int     readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
730
731                 if (readonly)
732                         mp->m_flags &= ~XFS_MOUNT_RDONLY;
733
734                 error = xlog_recover(mp->m_log);
735
736                 if (readonly)
737                         mp->m_flags |= XFS_MOUNT_RDONLY;
738                 if (error) {
739                         xfs_warn(mp, "log mount/recovery failed: error %d",
740                                 error);
741                         xlog_recover_cancel(mp->m_log);
742                         goto out_destroy_ail;
743                 }
744         }
745
746         error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
747                                "log");
748         if (error)
749                 goto out_destroy_ail;
750
751         /* Normal transactions can now occur */
752         mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
753
754         /*
755          * Now the log has been fully initialised and we know were our
756          * space grant counters are, we can initialise the permanent ticket
757          * needed for delayed logging to work.
758          */
759         xlog_cil_init_post_recovery(mp->m_log);
760
761         return 0;
762
763 out_destroy_ail:
764         xfs_trans_ail_destroy(mp);
765 out_free_log:
766         xlog_dealloc_log(mp->m_log);
767 out:
768         return error;
769 }
770
771 /*
772  * Finish the recovery of the file system.  This is separate from the
773  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
774  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
775  * here.
776  *
777  * If we finish recovery successfully, start the background log work. If we are
778  * not doing recovery, then we have a RO filesystem and we don't need to start
779  * it.
780  */
781 int
782 xfs_log_mount_finish(
783         struct xfs_mount        *mp)
784 {
785         int     error = 0;
786         bool    readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
787         bool    recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
788
789         if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
790                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
791                 return 0;
792         } else if (readonly) {
793                 /* Allow unlinked processing to proceed */
794                 mp->m_flags &= ~XFS_MOUNT_RDONLY;
795         }
796
797         /*
798          * During the second phase of log recovery, we need iget and
799          * iput to behave like they do for an active filesystem.
800          * xfs_fs_drop_inode needs to be able to prevent the deletion
801          * of inodes before we're done replaying log items on those
802          * inodes.  Turn it off immediately after recovery finishes
803          * so that we don't leak the quota inodes if subsequent mount
804          * activities fail.
805          *
806          * We let all inodes involved in redo item processing end up on
807          * the LRU instead of being evicted immediately so that if we do
808          * something to an unlinked inode, the irele won't cause
809          * premature truncation and freeing of the inode, which results
810          * in log recovery failure.  We have to evict the unreferenced
811          * lru inodes after clearing SB_ACTIVE because we don't
812          * otherwise clean up the lru if there's a subsequent failure in
813          * xfs_mountfs, which leads to us leaking the inodes if nothing
814          * else (e.g. quotacheck) references the inodes before the
815          * mount failure occurs.
816          */
817         mp->m_super->s_flags |= SB_ACTIVE;
818         error = xlog_recover_finish(mp->m_log);
819         if (!error)
820                 xfs_log_work_queue(mp);
821         mp->m_super->s_flags &= ~SB_ACTIVE;
822         evict_inodes(mp->m_super);
823
824         /*
825          * Drain the buffer LRU after log recovery. This is required for v4
826          * filesystems to avoid leaving around buffers with NULL verifier ops,
827          * but we do it unconditionally to make sure we're always in a clean
828          * cache state after mount.
829          *
830          * Don't push in the error case because the AIL may have pending intents
831          * that aren't removed until recovery is cancelled.
832          */
833         if (!error && recovered) {
834                 xfs_log_force(mp, XFS_LOG_SYNC);
835                 xfs_ail_push_all_sync(mp->m_ail);
836         }
837         xfs_wait_buftarg(mp->m_ddev_targp);
838
839         if (readonly)
840                 mp->m_flags |= XFS_MOUNT_RDONLY;
841
842         return error;
843 }
844
845 /*
846  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
847  * the log.
848  */
849 void
850 xfs_log_mount_cancel(
851         struct xfs_mount        *mp)
852 {
853         xlog_recover_cancel(mp->m_log);
854         xfs_log_unmount(mp);
855 }
856
857 /*
858  * Final log writes as part of unmount.
859  *
860  * Mark the filesystem clean as unmount happens.  Note that during relocation
861  * this routine needs to be executed as part of source-bag while the
862  * deallocation must not be done until source-end.
863  */
864
865 /* Actually write the unmount record to disk. */
866 static void
867 xfs_log_write_unmount_record(
868         struct xfs_mount        *mp)
869 {
870         /* the data section must be 32 bit size aligned */
871         struct xfs_unmount_log_format magic = {
872                 .magic = XLOG_UNMOUNT_TYPE,
873         };
874         struct xfs_log_iovec reg = {
875                 .i_addr = &magic,
876                 .i_len = sizeof(magic),
877                 .i_type = XLOG_REG_TYPE_UNMOUNT,
878         };
879         struct xfs_log_vec vec = {
880                 .lv_niovecs = 1,
881                 .lv_iovecp = &reg,
882         };
883         struct xlog             *log = mp->m_log;
884         struct xlog_in_core     *iclog;
885         struct xlog_ticket      *tic = NULL;
886         xfs_lsn_t               lsn;
887         uint                    flags = XLOG_UNMOUNT_TRANS;
888         int                     error;
889
890         error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
891         if (error)
892                 goto out_err;
893
894         /*
895          * If we think the summary counters are bad, clear the unmount header
896          * flag in the unmount record so that the summary counters will be
897          * recalculated during log recovery at next mount.  Refer to
898          * xlog_check_unmount_rec for more details.
899          */
900         if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
901                         XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
902                 xfs_alert(mp, "%s: will fix summary counters at next mount",
903                                 __func__);
904                 flags &= ~XLOG_UNMOUNT_TRANS;
905         }
906
907         /* remove inited flag, and account for space used */
908         tic->t_flags = 0;
909         tic->t_curr_res -= sizeof(magic);
910         error = xlog_write(log, &vec, tic, &lsn, NULL, flags);
911         /*
912          * At this point, we're umounting anyway, so there's no point in
913          * transitioning log state to IOERROR. Just continue...
914          */
915 out_err:
916         if (error)
917                 xfs_alert(mp, "%s: unmount record failed", __func__);
918
919         spin_lock(&log->l_icloglock);
920         iclog = log->l_iclog;
921         atomic_inc(&iclog->ic_refcnt);
922         xlog_state_want_sync(log, iclog);
923         error = xlog_state_release_iclog(log, iclog);
924         switch (iclog->ic_state) {
925         default:
926                 if (!XLOG_FORCED_SHUTDOWN(log)) {
927                         xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
928                         break;
929                 }
930                 /* fall through */
931         case XLOG_STATE_ACTIVE:
932         case XLOG_STATE_DIRTY:
933                 spin_unlock(&log->l_icloglock);
934                 break;
935         }
936
937         if (tic) {
938                 trace_xfs_log_umount_write(log, tic);
939                 xlog_ungrant_log_space(log, tic);
940                 xfs_log_ticket_put(tic);
941         }
942 }
943
944 /*
945  * Unmount record used to have a string "Unmount filesystem--" in the
946  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
947  * We just write the magic number now since that particular field isn't
948  * currently architecture converted and "Unmount" is a bit foo.
949  * As far as I know, there weren't any dependencies on the old behaviour.
950  */
951
952 static int
953 xfs_log_unmount_write(xfs_mount_t *mp)
954 {
955         struct xlog      *log = mp->m_log;
956         xlog_in_core_t   *iclog;
957 #ifdef DEBUG
958         xlog_in_core_t   *first_iclog;
959 #endif
960         int              error;
961
962         /*
963          * Don't write out unmount record on norecovery mounts or ro devices.
964          * Or, if we are doing a forced umount (typically because of IO errors).
965          */
966         if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
967             xfs_readonly_buftarg(log->l_targ)) {
968                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
969                 return 0;
970         }
971
972         error = xfs_log_force(mp, XFS_LOG_SYNC);
973         ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
974
975 #ifdef DEBUG
976         first_iclog = iclog = log->l_iclog;
977         do {
978                 if (iclog->ic_state != XLOG_STATE_IOERROR) {
979                         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
980                         ASSERT(iclog->ic_offset == 0);
981                 }
982                 iclog = iclog->ic_next;
983         } while (iclog != first_iclog);
984 #endif
985         if (! (XLOG_FORCED_SHUTDOWN(log))) {
986                 xfs_log_write_unmount_record(mp);
987         } else {
988                 /*
989                  * We're already in forced_shutdown mode, couldn't
990                  * even attempt to write out the unmount transaction.
991                  *
992                  * Go through the motions of sync'ing and releasing
993                  * the iclog, even though no I/O will actually happen,
994                  * we need to wait for other log I/Os that may already
995                  * be in progress.  Do this as a separate section of
996                  * code so we'll know if we ever get stuck here that
997                  * we're in this odd situation of trying to unmount
998                  * a file system that went into forced_shutdown as
999                  * the result of an unmount..
1000                  */
1001                 spin_lock(&log->l_icloglock);
1002                 iclog = log->l_iclog;
1003                 atomic_inc(&iclog->ic_refcnt);
1004                 xlog_state_want_sync(log, iclog);
1005                 error =  xlog_state_release_iclog(log, iclog);
1006                 switch (iclog->ic_state) {
1007                 case XLOG_STATE_ACTIVE:
1008                 case XLOG_STATE_DIRTY:
1009                 case XLOG_STATE_IOERROR:
1010                         spin_unlock(&log->l_icloglock);
1011                         break;
1012                 default:
1013                         xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
1014                         break;
1015                 }
1016         }
1017
1018         return error;
1019 }       /* xfs_log_unmount_write */
1020
1021 /*
1022  * Empty the log for unmount/freeze.
1023  *
1024  * To do this, we first need to shut down the background log work so it is not
1025  * trying to cover the log as we clean up. We then need to unpin all objects in
1026  * the log so we can then flush them out. Once they have completed their IO and
1027  * run the callbacks removing themselves from the AIL, we can write the unmount
1028  * record.
1029  */
1030 void
1031 xfs_log_quiesce(
1032         struct xfs_mount        *mp)
1033 {
1034         cancel_delayed_work_sync(&mp->m_log->l_work);
1035         xfs_log_force(mp, XFS_LOG_SYNC);
1036
1037         /*
1038          * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1039          * will push it, xfs_wait_buftarg() will not wait for it. Further,
1040          * xfs_buf_iowait() cannot be used because it was pushed with the
1041          * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1042          * the IO to complete.
1043          */
1044         xfs_ail_push_all_sync(mp->m_ail);
1045         xfs_wait_buftarg(mp->m_ddev_targp);
1046         xfs_buf_lock(mp->m_sb_bp);
1047         xfs_buf_unlock(mp->m_sb_bp);
1048
1049         xfs_log_unmount_write(mp);
1050 }
1051
1052 /*
1053  * Shut down and release the AIL and Log.
1054  *
1055  * During unmount, we need to ensure we flush all the dirty metadata objects
1056  * from the AIL so that the log is empty before we write the unmount record to
1057  * the log. Once this is done, we can tear down the AIL and the log.
1058  */
1059 void
1060 xfs_log_unmount(
1061         struct xfs_mount        *mp)
1062 {
1063         xfs_log_quiesce(mp);
1064
1065         xfs_trans_ail_destroy(mp);
1066
1067         xfs_sysfs_del(&mp->m_log->l_kobj);
1068
1069         xlog_dealloc_log(mp->m_log);
1070 }
1071
1072 void
1073 xfs_log_item_init(
1074         struct xfs_mount        *mp,
1075         struct xfs_log_item     *item,
1076         int                     type,
1077         const struct xfs_item_ops *ops)
1078 {
1079         item->li_mountp = mp;
1080         item->li_ailp = mp->m_ail;
1081         item->li_type = type;
1082         item->li_ops = ops;
1083         item->li_lv = NULL;
1084
1085         INIT_LIST_HEAD(&item->li_ail);
1086         INIT_LIST_HEAD(&item->li_cil);
1087         INIT_LIST_HEAD(&item->li_bio_list);
1088         INIT_LIST_HEAD(&item->li_trans);
1089 }
1090
1091 /*
1092  * Wake up processes waiting for log space after we have moved the log tail.
1093  */
1094 void
1095 xfs_log_space_wake(
1096         struct xfs_mount        *mp)
1097 {
1098         struct xlog             *log = mp->m_log;
1099         int                     free_bytes;
1100
1101         if (XLOG_FORCED_SHUTDOWN(log))
1102                 return;
1103
1104         if (!list_empty_careful(&log->l_write_head.waiters)) {
1105                 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1106
1107                 spin_lock(&log->l_write_head.lock);
1108                 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1109                 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1110                 spin_unlock(&log->l_write_head.lock);
1111         }
1112
1113         if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1114                 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1115
1116                 spin_lock(&log->l_reserve_head.lock);
1117                 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1118                 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1119                 spin_unlock(&log->l_reserve_head.lock);
1120         }
1121 }
1122
1123 /*
1124  * Determine if we have a transaction that has gone to disk that needs to be
1125  * covered. To begin the transition to the idle state firstly the log needs to
1126  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1127  * we start attempting to cover the log.
1128  *
1129  * Only if we are then in a state where covering is needed, the caller is
1130  * informed that dummy transactions are required to move the log into the idle
1131  * state.
1132  *
1133  * If there are any items in the AIl or CIL, then we do not want to attempt to
1134  * cover the log as we may be in a situation where there isn't log space
1135  * available to run a dummy transaction and this can lead to deadlocks when the
1136  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1137  * there's no point in running a dummy transaction at this point because we
1138  * can't start trying to idle the log until both the CIL and AIL are empty.
1139  */
1140 static int
1141 xfs_log_need_covered(xfs_mount_t *mp)
1142 {
1143         struct xlog     *log = mp->m_log;
1144         int             needed = 0;
1145
1146         if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1147                 return 0;
1148
1149         if (!xlog_cil_empty(log))
1150                 return 0;
1151
1152         spin_lock(&log->l_icloglock);
1153         switch (log->l_covered_state) {
1154         case XLOG_STATE_COVER_DONE:
1155         case XLOG_STATE_COVER_DONE2:
1156         case XLOG_STATE_COVER_IDLE:
1157                 break;
1158         case XLOG_STATE_COVER_NEED:
1159         case XLOG_STATE_COVER_NEED2:
1160                 if (xfs_ail_min_lsn(log->l_ailp))
1161                         break;
1162                 if (!xlog_iclogs_empty(log))
1163                         break;
1164
1165                 needed = 1;
1166                 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1167                         log->l_covered_state = XLOG_STATE_COVER_DONE;
1168                 else
1169                         log->l_covered_state = XLOG_STATE_COVER_DONE2;
1170                 break;
1171         default:
1172                 needed = 1;
1173                 break;
1174         }
1175         spin_unlock(&log->l_icloglock);
1176         return needed;
1177 }
1178
1179 /*
1180  * We may be holding the log iclog lock upon entering this routine.
1181  */
1182 xfs_lsn_t
1183 xlog_assign_tail_lsn_locked(
1184         struct xfs_mount        *mp)
1185 {
1186         struct xlog             *log = mp->m_log;
1187         struct xfs_log_item     *lip;
1188         xfs_lsn_t               tail_lsn;
1189
1190         assert_spin_locked(&mp->m_ail->ail_lock);
1191
1192         /*
1193          * To make sure we always have a valid LSN for the log tail we keep
1194          * track of the last LSN which was committed in log->l_last_sync_lsn,
1195          * and use that when the AIL was empty.
1196          */
1197         lip = xfs_ail_min(mp->m_ail);
1198         if (lip)
1199                 tail_lsn = lip->li_lsn;
1200         else
1201                 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1202         trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1203         atomic64_set(&log->l_tail_lsn, tail_lsn);
1204         return tail_lsn;
1205 }
1206
1207 xfs_lsn_t
1208 xlog_assign_tail_lsn(
1209         struct xfs_mount        *mp)
1210 {
1211         xfs_lsn_t               tail_lsn;
1212
1213         spin_lock(&mp->m_ail->ail_lock);
1214         tail_lsn = xlog_assign_tail_lsn_locked(mp);
1215         spin_unlock(&mp->m_ail->ail_lock);
1216
1217         return tail_lsn;
1218 }
1219
1220 /*
1221  * Return the space in the log between the tail and the head.  The head
1222  * is passed in the cycle/bytes formal parms.  In the special case where
1223  * the reserve head has wrapped passed the tail, this calculation is no
1224  * longer valid.  In this case, just return 0 which means there is no space
1225  * in the log.  This works for all places where this function is called
1226  * with the reserve head.  Of course, if the write head were to ever
1227  * wrap the tail, we should blow up.  Rather than catch this case here,
1228  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1229  *
1230  * This code also handles the case where the reservation head is behind
1231  * the tail.  The details of this case are described below, but the end
1232  * result is that we return the size of the log as the amount of space left.
1233  */
1234 STATIC int
1235 xlog_space_left(
1236         struct xlog     *log,
1237         atomic64_t      *head)
1238 {
1239         int             free_bytes;
1240         int             tail_bytes;
1241         int             tail_cycle;
1242         int             head_cycle;
1243         int             head_bytes;
1244
1245         xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1246         xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1247         tail_bytes = BBTOB(tail_bytes);
1248         if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1249                 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1250         else if (tail_cycle + 1 < head_cycle)
1251                 return 0;
1252         else if (tail_cycle < head_cycle) {
1253                 ASSERT(tail_cycle == (head_cycle - 1));
1254                 free_bytes = tail_bytes - head_bytes;
1255         } else {
1256                 /*
1257                  * The reservation head is behind the tail.
1258                  * In this case we just want to return the size of the
1259                  * log as the amount of space left.
1260                  */
1261                 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1262                 xfs_alert(log->l_mp,
1263                           "  tail_cycle = %d, tail_bytes = %d",
1264                           tail_cycle, tail_bytes);
1265                 xfs_alert(log->l_mp,
1266                           "  GH   cycle = %d, GH   bytes = %d",
1267                           head_cycle, head_bytes);
1268                 ASSERT(0);
1269                 free_bytes = log->l_logsize;
1270         }
1271         return free_bytes;
1272 }
1273
1274
1275 static void
1276 xlog_ioend_work(
1277         struct work_struct      *work)
1278 {
1279         struct xlog_in_core     *iclog =
1280                 container_of(work, struct xlog_in_core, ic_end_io_work);
1281         struct xlog             *log = iclog->ic_log;
1282         bool                    aborted = false;
1283         int                     error;
1284
1285         error = blk_status_to_errno(iclog->ic_bio.bi_status);
1286 #ifdef DEBUG
1287         /* treat writes with injected CRC errors as failed */
1288         if (iclog->ic_fail_crc)
1289                 error = -EIO;
1290 #endif
1291
1292         /*
1293          * Race to shutdown the filesystem if we see an error.
1294          */
1295         if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1296                 xfs_alert(log->l_mp, "log I/O error %d", error);
1297                 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1298                 /*
1299                  * This flag will be propagated to the trans-committed
1300                  * callback routines to let them know that the log-commit
1301                  * didn't succeed.
1302                  */
1303                 aborted = true;
1304         } else if (iclog->ic_state == XLOG_STATE_IOERROR) {
1305                 aborted = true;
1306         }
1307
1308         xlog_state_done_syncing(iclog, aborted);
1309         bio_uninit(&iclog->ic_bio);
1310
1311         /*
1312          * Drop the lock to signal that we are done. Nothing references the
1313          * iclog after this, so an unmount waiting on this lock can now tear it
1314          * down safely. As such, it is unsafe to reference the iclog after the
1315          * unlock as we could race with it being freed.
1316          */
1317         up(&iclog->ic_sema);
1318 }
1319
1320 /*
1321  * Return size of each in-core log record buffer.
1322  *
1323  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1324  *
1325  * If the filesystem blocksize is too large, we may need to choose a
1326  * larger size since the directory code currently logs entire blocks.
1327  */
1328 STATIC void
1329 xlog_get_iclog_buffer_size(
1330         struct xfs_mount        *mp,
1331         struct xlog             *log)
1332 {
1333         if (mp->m_logbufs <= 0)
1334                 mp->m_logbufs = XLOG_MAX_ICLOGS;
1335         if (mp->m_logbsize <= 0)
1336                 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1337
1338         log->l_iclog_bufs = mp->m_logbufs;
1339         log->l_iclog_size = mp->m_logbsize;
1340
1341         /*
1342          * # headers = size / 32k - one header holds cycles from 32k of data.
1343          */
1344         log->l_iclog_heads =
1345                 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1346         log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1347 }
1348
1349 void
1350 xfs_log_work_queue(
1351         struct xfs_mount        *mp)
1352 {
1353         queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1354                                 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1355 }
1356
1357 /*
1358  * Every sync period we need to unpin all items in the AIL and push them to
1359  * disk. If there is nothing dirty, then we might need to cover the log to
1360  * indicate that the filesystem is idle.
1361  */
1362 static void
1363 xfs_log_worker(
1364         struct work_struct      *work)
1365 {
1366         struct xlog             *log = container_of(to_delayed_work(work),
1367                                                 struct xlog, l_work);
1368         struct xfs_mount        *mp = log->l_mp;
1369
1370         /* dgc: errors ignored - not fatal and nowhere to report them */
1371         if (xfs_log_need_covered(mp)) {
1372                 /*
1373                  * Dump a transaction into the log that contains no real change.
1374                  * This is needed to stamp the current tail LSN into the log
1375                  * during the covering operation.
1376                  *
1377                  * We cannot use an inode here for this - that will push dirty
1378                  * state back up into the VFS and then periodic inode flushing
1379                  * will prevent log covering from making progress. Hence we
1380                  * synchronously log the superblock instead to ensure the
1381                  * superblock is immediately unpinned and can be written back.
1382                  */
1383                 xfs_sync_sb(mp, true);
1384         } else
1385                 xfs_log_force(mp, 0);
1386
1387         /* start pushing all the metadata that is currently dirty */
1388         xfs_ail_push_all(mp->m_ail);
1389
1390         /* queue us up again */
1391         xfs_log_work_queue(mp);
1392 }
1393
1394 /*
1395  * This routine initializes some of the log structure for a given mount point.
1396  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1397  * some other stuff may be filled in too.
1398  */
1399 STATIC struct xlog *
1400 xlog_alloc_log(
1401         struct xfs_mount        *mp,
1402         struct xfs_buftarg      *log_target,
1403         xfs_daddr_t             blk_offset,
1404         int                     num_bblks)
1405 {
1406         struct xlog             *log;
1407         xlog_rec_header_t       *head;
1408         xlog_in_core_t          **iclogp;
1409         xlog_in_core_t          *iclog, *prev_iclog=NULL;
1410         int                     i;
1411         int                     error = -ENOMEM;
1412         uint                    log2_size = 0;
1413
1414         log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1415         if (!log) {
1416                 xfs_warn(mp, "Log allocation failed: No memory!");
1417                 goto out;
1418         }
1419
1420         log->l_mp          = mp;
1421         log->l_targ        = log_target;
1422         log->l_logsize     = BBTOB(num_bblks);
1423         log->l_logBBstart  = blk_offset;
1424         log->l_logBBsize   = num_bblks;
1425         log->l_covered_state = XLOG_STATE_COVER_IDLE;
1426         log->l_flags       |= XLOG_ACTIVE_RECOVERY;
1427         INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1428
1429         log->l_prev_block  = -1;
1430         /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1431         xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1432         xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1433         log->l_curr_cycle  = 1;     /* 0 is bad since this is initial value */
1434
1435         xlog_grant_head_init(&log->l_reserve_head);
1436         xlog_grant_head_init(&log->l_write_head);
1437
1438         error = -EFSCORRUPTED;
1439         if (xfs_sb_version_hassector(&mp->m_sb)) {
1440                 log2_size = mp->m_sb.sb_logsectlog;
1441                 if (log2_size < BBSHIFT) {
1442                         xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1443                                 log2_size, BBSHIFT);
1444                         goto out_free_log;
1445                 }
1446
1447                 log2_size -= BBSHIFT;
1448                 if (log2_size > mp->m_sectbb_log) {
1449                         xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1450                                 log2_size, mp->m_sectbb_log);
1451                         goto out_free_log;
1452                 }
1453
1454                 /* for larger sector sizes, must have v2 or external log */
1455                 if (log2_size && log->l_logBBstart > 0 &&
1456                             !xfs_sb_version_haslogv2(&mp->m_sb)) {
1457                         xfs_warn(mp,
1458                 "log sector size (0x%x) invalid for configuration.",
1459                                 log2_size);
1460                         goto out_free_log;
1461                 }
1462         }
1463         log->l_sectBBsize = 1 << log2_size;
1464
1465         xlog_get_iclog_buffer_size(mp, log);
1466
1467         spin_lock_init(&log->l_icloglock);
1468         init_waitqueue_head(&log->l_flush_wait);
1469
1470         iclogp = &log->l_iclog;
1471         /*
1472          * The amount of memory to allocate for the iclog structure is
1473          * rather funky due to the way the structure is defined.  It is
1474          * done this way so that we can use different sizes for machines
1475          * with different amounts of memory.  See the definition of
1476          * xlog_in_core_t in xfs_log_priv.h for details.
1477          */
1478         ASSERT(log->l_iclog_size >= 4096);
1479         for (i = 0; i < log->l_iclog_bufs; i++) {
1480                 int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
1481                 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1482                                 sizeof(struct bio_vec);
1483
1484                 iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1485                 if (!iclog)
1486                         goto out_free_iclog;
1487
1488                 *iclogp = iclog;
1489                 iclog->ic_prev = prev_iclog;
1490                 prev_iclog = iclog;
1491
1492                 iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
1493                                                 KM_MAYFAIL | KM_ZERO);
1494                 if (!iclog->ic_data)
1495                         goto out_free_iclog;
1496 #ifdef DEBUG
1497                 log->l_iclog_bak[i] = &iclog->ic_header;
1498 #endif
1499                 head = &iclog->ic_header;
1500                 memset(head, 0, sizeof(xlog_rec_header_t));
1501                 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1502                 head->h_version = cpu_to_be32(
1503                         xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1504                 head->h_size = cpu_to_be32(log->l_iclog_size);
1505                 /* new fields */
1506                 head->h_fmt = cpu_to_be32(XLOG_FMT);
1507                 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1508
1509                 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1510                 iclog->ic_state = XLOG_STATE_ACTIVE;
1511                 iclog->ic_log = log;
1512                 atomic_set(&iclog->ic_refcnt, 0);
1513                 spin_lock_init(&iclog->ic_callback_lock);
1514                 INIT_LIST_HEAD(&iclog->ic_callbacks);
1515                 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1516
1517                 init_waitqueue_head(&iclog->ic_force_wait);
1518                 init_waitqueue_head(&iclog->ic_write_wait);
1519                 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1520                 sema_init(&iclog->ic_sema, 1);
1521
1522                 iclogp = &iclog->ic_next;
1523         }
1524         *iclogp = log->l_iclog;                 /* complete ring */
1525         log->l_iclog->ic_prev = prev_iclog;     /* re-write 1st prev ptr */
1526
1527         log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1528                         WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI, 0,
1529                         mp->m_fsname);
1530         if (!log->l_ioend_workqueue)
1531                 goto out_free_iclog;
1532
1533         error = xlog_cil_init(log);
1534         if (error)
1535                 goto out_destroy_workqueue;
1536         return log;
1537
1538 out_destroy_workqueue:
1539         destroy_workqueue(log->l_ioend_workqueue);
1540 out_free_iclog:
1541         for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1542                 prev_iclog = iclog->ic_next;
1543                 kmem_free(iclog->ic_data);
1544                 kmem_free(iclog);
1545         }
1546 out_free_log:
1547         kmem_free(log);
1548 out:
1549         return ERR_PTR(error);
1550 }       /* xlog_alloc_log */
1551
1552
1553 /*
1554  * Write out the commit record of a transaction associated with the given
1555  * ticket.  Return the lsn of the commit record.
1556  */
1557 STATIC int
1558 xlog_commit_record(
1559         struct xlog             *log,
1560         struct xlog_ticket      *ticket,
1561         struct xlog_in_core     **iclog,
1562         xfs_lsn_t               *commitlsnp)
1563 {
1564         struct xfs_mount *mp = log->l_mp;
1565         int     error;
1566         struct xfs_log_iovec reg = {
1567                 .i_addr = NULL,
1568                 .i_len = 0,
1569                 .i_type = XLOG_REG_TYPE_COMMIT,
1570         };
1571         struct xfs_log_vec vec = {
1572                 .lv_niovecs = 1,
1573                 .lv_iovecp = &reg,
1574         };
1575
1576         ASSERT_ALWAYS(iclog);
1577         error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1578                                         XLOG_COMMIT_TRANS);
1579         if (error)
1580                 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1581         return error;
1582 }
1583
1584 /*
1585  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1586  * log space.  This code pushes on the lsn which would supposedly free up
1587  * the 25% which we want to leave free.  We may need to adopt a policy which
1588  * pushes on an lsn which is further along in the log once we reach the high
1589  * water mark.  In this manner, we would be creating a low water mark.
1590  */
1591 STATIC void
1592 xlog_grant_push_ail(
1593         struct xlog     *log,
1594         int             need_bytes)
1595 {
1596         xfs_lsn_t       threshold_lsn = 0;
1597         xfs_lsn_t       last_sync_lsn;
1598         int             free_blocks;
1599         int             free_bytes;
1600         int             threshold_block;
1601         int             threshold_cycle;
1602         int             free_threshold;
1603
1604         ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1605
1606         free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1607         free_blocks = BTOBBT(free_bytes);
1608
1609         /*
1610          * Set the threshold for the minimum number of free blocks in the
1611          * log to the maximum of what the caller needs, one quarter of the
1612          * log, and 256 blocks.
1613          */
1614         free_threshold = BTOBB(need_bytes);
1615         free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1616         free_threshold = max(free_threshold, 256);
1617         if (free_blocks >= free_threshold)
1618                 return;
1619
1620         xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1621                                                 &threshold_block);
1622         threshold_block += free_threshold;
1623         if (threshold_block >= log->l_logBBsize) {
1624                 threshold_block -= log->l_logBBsize;
1625                 threshold_cycle += 1;
1626         }
1627         threshold_lsn = xlog_assign_lsn(threshold_cycle,
1628                                         threshold_block);
1629         /*
1630          * Don't pass in an lsn greater than the lsn of the last
1631          * log record known to be on disk. Use a snapshot of the last sync lsn
1632          * so that it doesn't change between the compare and the set.
1633          */
1634         last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1635         if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1636                 threshold_lsn = last_sync_lsn;
1637
1638         /*
1639          * Get the transaction layer to kick the dirty buffers out to
1640          * disk asynchronously. No point in trying to do this if
1641          * the filesystem is shutting down.
1642          */
1643         if (!XLOG_FORCED_SHUTDOWN(log))
1644                 xfs_ail_push(log->l_ailp, threshold_lsn);
1645 }
1646
1647 /*
1648  * Stamp cycle number in every block
1649  */
1650 STATIC void
1651 xlog_pack_data(
1652         struct xlog             *log,
1653         struct xlog_in_core     *iclog,
1654         int                     roundoff)
1655 {
1656         int                     i, j, k;
1657         int                     size = iclog->ic_offset + roundoff;
1658         __be32                  cycle_lsn;
1659         char                    *dp;
1660
1661         cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1662
1663         dp = iclog->ic_datap;
1664         for (i = 0; i < BTOBB(size); i++) {
1665                 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1666                         break;
1667                 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1668                 *(__be32 *)dp = cycle_lsn;
1669                 dp += BBSIZE;
1670         }
1671
1672         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1673                 xlog_in_core_2_t *xhdr = iclog->ic_data;
1674
1675                 for ( ; i < BTOBB(size); i++) {
1676                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1677                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1678                         xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1679                         *(__be32 *)dp = cycle_lsn;
1680                         dp += BBSIZE;
1681                 }
1682
1683                 for (i = 1; i < log->l_iclog_heads; i++)
1684                         xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1685         }
1686 }
1687
1688 /*
1689  * Calculate the checksum for a log buffer.
1690  *
1691  * This is a little more complicated than it should be because the various
1692  * headers and the actual data are non-contiguous.
1693  */
1694 __le32
1695 xlog_cksum(
1696         struct xlog             *log,
1697         struct xlog_rec_header  *rhead,
1698         char                    *dp,
1699         int                     size)
1700 {
1701         uint32_t                crc;
1702
1703         /* first generate the crc for the record header ... */
1704         crc = xfs_start_cksum_update((char *)rhead,
1705                               sizeof(struct xlog_rec_header),
1706                               offsetof(struct xlog_rec_header, h_crc));
1707
1708         /* ... then for additional cycle data for v2 logs ... */
1709         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1710                 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1711                 int             i;
1712                 int             xheads;
1713
1714                 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1715                 if (size % XLOG_HEADER_CYCLE_SIZE)
1716                         xheads++;
1717
1718                 for (i = 1; i < xheads; i++) {
1719                         crc = crc32c(crc, &xhdr[i].hic_xheader,
1720                                      sizeof(struct xlog_rec_ext_header));
1721                 }
1722         }
1723
1724         /* ... and finally for the payload */
1725         crc = crc32c(crc, dp, size);
1726
1727         return xfs_end_cksum(crc);
1728 }
1729
1730 static void
1731 xlog_bio_end_io(
1732         struct bio              *bio)
1733 {
1734         struct xlog_in_core     *iclog = bio->bi_private;
1735
1736         queue_work(iclog->ic_log->l_ioend_workqueue,
1737                    &iclog->ic_end_io_work);
1738 }
1739
1740 static void
1741 xlog_map_iclog_data(
1742         struct bio              *bio,
1743         void                    *data,
1744         size_t                  count)
1745 {
1746         do {
1747                 struct page     *page = kmem_to_page(data);
1748                 unsigned int    off = offset_in_page(data);
1749                 size_t          len = min_t(size_t, count, PAGE_SIZE - off);
1750
1751                 WARN_ON_ONCE(bio_add_page(bio, page, len, off) != len);
1752
1753                 data += len;
1754                 count -= len;
1755         } while (count);
1756 }
1757
1758 STATIC void
1759 xlog_write_iclog(
1760         struct xlog             *log,
1761         struct xlog_in_core     *iclog,
1762         uint64_t                bno,
1763         unsigned int            count,
1764         bool                    need_flush)
1765 {
1766         ASSERT(bno < log->l_logBBsize);
1767
1768         /*
1769          * We lock the iclogbufs here so that we can serialise against I/O
1770          * completion during unmount.  We might be processing a shutdown
1771          * triggered during unmount, and that can occur asynchronously to the
1772          * unmount thread, and hence we need to ensure that completes before
1773          * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1774          * across the log IO to archieve that.
1775          */
1776         down(&iclog->ic_sema);
1777         if (unlikely(iclog->ic_state == XLOG_STATE_IOERROR)) {
1778                 /*
1779                  * It would seem logical to return EIO here, but we rely on
1780                  * the log state machine to propagate I/O errors instead of
1781                  * doing it here.  We kick of the state machine and unlock
1782                  * the buffer manually, the code needs to be kept in sync
1783                  * with the I/O completion path.
1784                  */
1785                 xlog_state_done_syncing(iclog, true);
1786                 up(&iclog->ic_sema);
1787                 return;
1788         }
1789
1790         bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1791         bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1792         iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1793         iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1794         iclog->ic_bio.bi_private = iclog;
1795         iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_FUA;
1796         if (need_flush)
1797                 iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1798
1799         xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count);
1800         if (is_vmalloc_addr(iclog->ic_data))
1801                 flush_kernel_vmap_range(iclog->ic_data, count);
1802
1803         /*
1804          * If this log buffer would straddle the end of the log we will have
1805          * to split it up into two bios, so that we can continue at the start.
1806          */
1807         if (bno + BTOBB(count) > log->l_logBBsize) {
1808                 struct bio *split;
1809
1810                 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1811                                   GFP_NOIO, &fs_bio_set);
1812                 bio_chain(split, &iclog->ic_bio);
1813                 submit_bio(split);
1814
1815                 /* restart at logical offset zero for the remainder */
1816                 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1817         }
1818
1819         submit_bio(&iclog->ic_bio);
1820 }
1821
1822 /*
1823  * We need to bump cycle number for the part of the iclog that is
1824  * written to the start of the log. Watch out for the header magic
1825  * number case, though.
1826  */
1827 static void
1828 xlog_split_iclog(
1829         struct xlog             *log,
1830         void                    *data,
1831         uint64_t                bno,
1832         unsigned int            count)
1833 {
1834         unsigned int            split_offset = BBTOB(log->l_logBBsize - bno);
1835         unsigned int            i;
1836
1837         for (i = split_offset; i < count; i += BBSIZE) {
1838                 uint32_t cycle = get_unaligned_be32(data + i);
1839
1840                 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1841                         cycle++;
1842                 put_unaligned_be32(cycle, data + i);
1843         }
1844 }
1845
1846 static int
1847 xlog_calc_iclog_size(
1848         struct xlog             *log,
1849         struct xlog_in_core     *iclog,
1850         uint32_t                *roundoff)
1851 {
1852         uint32_t                count_init, count;
1853         bool                    use_lsunit;
1854
1855         use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1856                         log->l_mp->m_sb.sb_logsunit > 1;
1857
1858         /* Add for LR header */
1859         count_init = log->l_iclog_hsize + iclog->ic_offset;
1860
1861         /* Round out the log write size */
1862         if (use_lsunit) {
1863                 /* we have a v2 stripe unit to use */
1864                 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1865         } else {
1866                 count = BBTOB(BTOBB(count_init));
1867         }
1868
1869         ASSERT(count >= count_init);
1870         *roundoff = count - count_init;
1871
1872         if (use_lsunit)
1873                 ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit);
1874         else
1875                 ASSERT(*roundoff < BBTOB(1));
1876         return count;
1877 }
1878
1879 /*
1880  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1881  * fashion.  Previously, we should have moved the current iclog
1882  * ptr in the log to point to the next available iclog.  This allows further
1883  * write to continue while this code syncs out an iclog ready to go.
1884  * Before an in-core log can be written out, the data section must be scanned
1885  * to save away the 1st word of each BBSIZE block into the header.  We replace
1886  * it with the current cycle count.  Each BBSIZE block is tagged with the
1887  * cycle count because there in an implicit assumption that drives will
1888  * guarantee that entire 512 byte blocks get written at once.  In other words,
1889  * we can't have part of a 512 byte block written and part not written.  By
1890  * tagging each block, we will know which blocks are valid when recovering
1891  * after an unclean shutdown.
1892  *
1893  * This routine is single threaded on the iclog.  No other thread can be in
1894  * this routine with the same iclog.  Changing contents of iclog can there-
1895  * fore be done without grabbing the state machine lock.  Updating the global
1896  * log will require grabbing the lock though.
1897  *
1898  * The entire log manager uses a logical block numbering scheme.  Only
1899  * xlog_write_iclog knows about the fact that the log may not start with
1900  * block zero on a given device.
1901  */
1902 STATIC void
1903 xlog_sync(
1904         struct xlog             *log,
1905         struct xlog_in_core     *iclog)
1906 {
1907         unsigned int            count;          /* byte count of bwrite */
1908         unsigned int            roundoff;       /* roundoff to BB or stripe */
1909         uint64_t                bno;
1910         unsigned int            size;
1911         bool                    need_flush = true, split = false;
1912
1913         ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1914
1915         count = xlog_calc_iclog_size(log, iclog, &roundoff);
1916
1917         /* move grant heads by roundoff in sync */
1918         xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1919         xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1920
1921         /* put cycle number in every block */
1922         xlog_pack_data(log, iclog, roundoff); 
1923
1924         /* real byte length */
1925         size = iclog->ic_offset;
1926         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
1927                 size += roundoff;
1928         iclog->ic_header.h_len = cpu_to_be32(size);
1929
1930         XFS_STATS_INC(log->l_mp, xs_log_writes);
1931         XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1932
1933         bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1934
1935         /* Do we need to split this write into 2 parts? */
1936         if (bno + BTOBB(count) > log->l_logBBsize) {
1937                 xlog_split_iclog(log, &iclog->ic_header, bno, count);
1938                 split = true;
1939         }
1940
1941         /* calculcate the checksum */
1942         iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1943                                             iclog->ic_datap, size);
1944         /*
1945          * Intentionally corrupt the log record CRC based on the error injection
1946          * frequency, if defined. This facilitates testing log recovery in the
1947          * event of torn writes. Hence, set the IOABORT state to abort the log
1948          * write on I/O completion and shutdown the fs. The subsequent mount
1949          * detects the bad CRC and attempts to recover.
1950          */
1951 #ifdef DEBUG
1952         if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1953                 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1954                 iclog->ic_fail_crc = true;
1955                 xfs_warn(log->l_mp,
1956         "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1957                          be64_to_cpu(iclog->ic_header.h_lsn));
1958         }
1959 #endif
1960
1961         /*
1962          * Flush the data device before flushing the log to make sure all meta
1963          * data written back from the AIL actually made it to disk before
1964          * stamping the new log tail LSN into the log buffer.  For an external
1965          * log we need to issue the flush explicitly, and unfortunately
1966          * synchronously here; for an internal log we can simply use the block
1967          * layer state machine for preflushes.
1968          */
1969         if (log->l_targ != log->l_mp->m_ddev_targp || split) {
1970                 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1971                 need_flush = false;
1972         }
1973
1974         xlog_verify_iclog(log, iclog, count);
1975         xlog_write_iclog(log, iclog, bno, count, need_flush);
1976 }
1977
1978 /*
1979  * Deallocate a log structure
1980  */
1981 STATIC void
1982 xlog_dealloc_log(
1983         struct xlog     *log)
1984 {
1985         xlog_in_core_t  *iclog, *next_iclog;
1986         int             i;
1987
1988         xlog_cil_destroy(log);
1989
1990         /*
1991          * Cycle all the iclogbuf locks to make sure all log IO completion
1992          * is done before we tear down these buffers.
1993          */
1994         iclog = log->l_iclog;
1995         for (i = 0; i < log->l_iclog_bufs; i++) {
1996                 down(&iclog->ic_sema);
1997                 up(&iclog->ic_sema);
1998                 iclog = iclog->ic_next;
1999         }
2000
2001         iclog = log->l_iclog;
2002         for (i = 0; i < log->l_iclog_bufs; i++) {
2003                 next_iclog = iclog->ic_next;
2004                 kmem_free(iclog->ic_data);
2005                 kmem_free(iclog);
2006                 iclog = next_iclog;
2007         }
2008
2009         log->l_mp->m_log = NULL;
2010         destroy_workqueue(log->l_ioend_workqueue);
2011         kmem_free(log);
2012 }       /* xlog_dealloc_log */
2013
2014 /*
2015  * Update counters atomically now that memcpy is done.
2016  */
2017 static inline void
2018 xlog_state_finish_copy(
2019         struct xlog             *log,
2020         struct xlog_in_core     *iclog,
2021         int                     record_cnt,
2022         int                     copy_bytes)
2023 {
2024         lockdep_assert_held(&log->l_icloglock);
2025
2026         be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2027         iclog->ic_offset += copy_bytes;
2028 }
2029
2030 /*
2031  * print out info relating to regions written which consume
2032  * the reservation
2033  */
2034 void
2035 xlog_print_tic_res(
2036         struct xfs_mount        *mp,
2037         struct xlog_ticket      *ticket)
2038 {
2039         uint i;
2040         uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2041
2042         /* match with XLOG_REG_TYPE_* in xfs_log.h */
2043 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2044         static char *res_type_str[] = {
2045             REG_TYPE_STR(BFORMAT, "bformat"),
2046             REG_TYPE_STR(BCHUNK, "bchunk"),
2047             REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2048             REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2049             REG_TYPE_STR(IFORMAT, "iformat"),
2050             REG_TYPE_STR(ICORE, "icore"),
2051             REG_TYPE_STR(IEXT, "iext"),
2052             REG_TYPE_STR(IBROOT, "ibroot"),
2053             REG_TYPE_STR(ILOCAL, "ilocal"),
2054             REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2055             REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2056             REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2057             REG_TYPE_STR(QFORMAT, "qformat"),
2058             REG_TYPE_STR(DQUOT, "dquot"),
2059             REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2060             REG_TYPE_STR(LRHEADER, "LR header"),
2061             REG_TYPE_STR(UNMOUNT, "unmount"),
2062             REG_TYPE_STR(COMMIT, "commit"),
2063             REG_TYPE_STR(TRANSHDR, "trans header"),
2064             REG_TYPE_STR(ICREATE, "inode create"),
2065             REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2066             REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2067             REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2068             REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2069             REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2070             REG_TYPE_STR(BUD_FORMAT, "bud_format"),
2071         };
2072         BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
2073 #undef REG_TYPE_STR
2074
2075         xfs_warn(mp, "ticket reservation summary:");
2076         xfs_warn(mp, "  unit res    = %d bytes",
2077                  ticket->t_unit_res);
2078         xfs_warn(mp, "  current res = %d bytes",
2079                  ticket->t_curr_res);
2080         xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2081                  ticket->t_res_arr_sum, ticket->t_res_o_flow);
2082         xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2083                  ticket->t_res_num_ophdrs, ophdr_spc);
2084         xfs_warn(mp, "  ophdr + reg = %u bytes",
2085                  ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2086         xfs_warn(mp, "  num regions = %u",
2087                  ticket->t_res_num);
2088
2089         for (i = 0; i < ticket->t_res_num; i++) {
2090                 uint r_type = ticket->t_res_arr[i].r_type;
2091                 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2092                             ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2093                             "bad-rtype" : res_type_str[r_type]),
2094                             ticket->t_res_arr[i].r_len);
2095         }
2096 }
2097
2098 /*
2099  * Print a summary of the transaction.
2100  */
2101 void
2102 xlog_print_trans(
2103         struct xfs_trans        *tp)
2104 {
2105         struct xfs_mount        *mp = tp->t_mountp;
2106         struct xfs_log_item     *lip;
2107
2108         /* dump core transaction and ticket info */
2109         xfs_warn(mp, "transaction summary:");
2110         xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2111         xfs_warn(mp, "  log count = %d", tp->t_log_count);
2112         xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2113
2114         xlog_print_tic_res(mp, tp->t_ticket);
2115
2116         /* dump each log item */
2117         list_for_each_entry(lip, &tp->t_items, li_trans) {
2118                 struct xfs_log_vec      *lv = lip->li_lv;
2119                 struct xfs_log_iovec    *vec;
2120                 int                     i;
2121
2122                 xfs_warn(mp, "log item: ");
2123                 xfs_warn(mp, "  type    = 0x%x", lip->li_type);
2124                 xfs_warn(mp, "  flags   = 0x%lx", lip->li_flags);
2125                 if (!lv)
2126                         continue;
2127                 xfs_warn(mp, "  niovecs = %d", lv->lv_niovecs);
2128                 xfs_warn(mp, "  size    = %d", lv->lv_size);
2129                 xfs_warn(mp, "  bytes   = %d", lv->lv_bytes);
2130                 xfs_warn(mp, "  buf len = %d", lv->lv_buf_len);
2131
2132                 /* dump each iovec for the log item */
2133                 vec = lv->lv_iovecp;
2134                 for (i = 0; i < lv->lv_niovecs; i++) {
2135                         int dumplen = min(vec->i_len, 32);
2136
2137                         xfs_warn(mp, "  iovec[%d]", i);
2138                         xfs_warn(mp, "    type  = 0x%x", vec->i_type);
2139                         xfs_warn(mp, "    len   = %d", vec->i_len);
2140                         xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2141                         xfs_hex_dump(vec->i_addr, dumplen);
2142
2143                         vec++;
2144                 }
2145         }
2146 }
2147
2148 /*
2149  * Calculate the potential space needed by the log vector.  Each region gets
2150  * its own xlog_op_header_t and may need to be double word aligned.
2151  */
2152 static int
2153 xlog_write_calc_vec_length(
2154         struct xlog_ticket      *ticket,
2155         struct xfs_log_vec      *log_vector)
2156 {
2157         struct xfs_log_vec      *lv;
2158         int                     headers = 0;
2159         int                     len = 0;
2160         int                     i;
2161
2162         /* acct for start rec of xact */
2163         if (ticket->t_flags & XLOG_TIC_INITED)
2164                 headers++;
2165
2166         for (lv = log_vector; lv; lv = lv->lv_next) {
2167                 /* we don't write ordered log vectors */
2168                 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2169                         continue;
2170
2171                 headers += lv->lv_niovecs;
2172
2173                 for (i = 0; i < lv->lv_niovecs; i++) {
2174                         struct xfs_log_iovec    *vecp = &lv->lv_iovecp[i];
2175
2176                         len += vecp->i_len;
2177                         xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2178                 }
2179         }
2180
2181         ticket->t_res_num_ophdrs += headers;
2182         len += headers * sizeof(struct xlog_op_header);
2183
2184         return len;
2185 }
2186
2187 /*
2188  * If first write for transaction, insert start record  We can't be trying to
2189  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2190  */
2191 static int
2192 xlog_write_start_rec(
2193         struct xlog_op_header   *ophdr,
2194         struct xlog_ticket      *ticket)
2195 {
2196         if (!(ticket->t_flags & XLOG_TIC_INITED))
2197                 return 0;
2198
2199         ophdr->oh_tid   = cpu_to_be32(ticket->t_tid);
2200         ophdr->oh_clientid = ticket->t_clientid;
2201         ophdr->oh_len = 0;
2202         ophdr->oh_flags = XLOG_START_TRANS;
2203         ophdr->oh_res2 = 0;
2204
2205         ticket->t_flags &= ~XLOG_TIC_INITED;
2206
2207         return sizeof(struct xlog_op_header);
2208 }
2209
2210 static xlog_op_header_t *
2211 xlog_write_setup_ophdr(
2212         struct xlog             *log,
2213         struct xlog_op_header   *ophdr,
2214         struct xlog_ticket      *ticket,
2215         uint                    flags)
2216 {
2217         ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2218         ophdr->oh_clientid = ticket->t_clientid;
2219         ophdr->oh_res2 = 0;
2220
2221         /* are we copying a commit or unmount record? */
2222         ophdr->oh_flags = flags;
2223
2224         /*
2225          * We've seen logs corrupted with bad transaction client ids.  This
2226          * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2227          * and shut down the filesystem.
2228          */
2229         switch (ophdr->oh_clientid)  {
2230         case XFS_TRANSACTION:
2231         case XFS_VOLUME:
2232         case XFS_LOG:
2233                 break;
2234         default:
2235                 xfs_warn(log->l_mp,
2236                         "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2237                         ophdr->oh_clientid, ticket);
2238                 return NULL;
2239         }
2240
2241         return ophdr;
2242 }
2243
2244 /*
2245  * Set up the parameters of the region copy into the log. This has
2246  * to handle region write split across multiple log buffers - this
2247  * state is kept external to this function so that this code can
2248  * be written in an obvious, self documenting manner.
2249  */
2250 static int
2251 xlog_write_setup_copy(
2252         struct xlog_ticket      *ticket,
2253         struct xlog_op_header   *ophdr,
2254         int                     space_available,
2255         int                     space_required,
2256         int                     *copy_off,
2257         int                     *copy_len,
2258         int                     *last_was_partial_copy,
2259         int                     *bytes_consumed)
2260 {
2261         int                     still_to_copy;
2262
2263         still_to_copy = space_required - *bytes_consumed;
2264         *copy_off = *bytes_consumed;
2265
2266         if (still_to_copy <= space_available) {
2267                 /* write of region completes here */
2268                 *copy_len = still_to_copy;
2269                 ophdr->oh_len = cpu_to_be32(*copy_len);
2270                 if (*last_was_partial_copy)
2271                         ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2272                 *last_was_partial_copy = 0;
2273                 *bytes_consumed = 0;
2274                 return 0;
2275         }
2276
2277         /* partial write of region, needs extra log op header reservation */
2278         *copy_len = space_available;
2279         ophdr->oh_len = cpu_to_be32(*copy_len);
2280         ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2281         if (*last_was_partial_copy)
2282                 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2283         *bytes_consumed += *copy_len;
2284         (*last_was_partial_copy)++;
2285
2286         /* account for new log op header */
2287         ticket->t_curr_res -= sizeof(struct xlog_op_header);
2288         ticket->t_res_num_ophdrs++;
2289
2290         return sizeof(struct xlog_op_header);
2291 }
2292
2293 static int
2294 xlog_write_copy_finish(
2295         struct xlog             *log,
2296         struct xlog_in_core     *iclog,
2297         uint                    flags,
2298         int                     *record_cnt,
2299         int                     *data_cnt,
2300         int                     *partial_copy,
2301         int                     *partial_copy_len,
2302         int                     log_offset,
2303         struct xlog_in_core     **commit_iclog)
2304 {
2305         int                     error;
2306
2307         if (*partial_copy) {
2308                 /*
2309                  * This iclog has already been marked WANT_SYNC by
2310                  * xlog_state_get_iclog_space.
2311                  */
2312                 spin_lock(&log->l_icloglock);
2313                 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2314                 *record_cnt = 0;
2315                 *data_cnt = 0;
2316                 goto release_iclog;
2317         }
2318
2319         *partial_copy = 0;
2320         *partial_copy_len = 0;
2321
2322         if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2323                 /* no more space in this iclog - push it. */
2324                 spin_lock(&log->l_icloglock);
2325                 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2326                 *record_cnt = 0;
2327                 *data_cnt = 0;
2328
2329                 xlog_state_want_sync(log, iclog);
2330                 if (!commit_iclog)
2331                         goto release_iclog;
2332                 spin_unlock(&log->l_icloglock);
2333                 ASSERT(flags & XLOG_COMMIT_TRANS);
2334                 *commit_iclog = iclog;
2335         }
2336
2337         return 0;
2338
2339 release_iclog:
2340         error = xlog_state_release_iclog(log, iclog);
2341         spin_unlock(&log->l_icloglock);
2342         return error;
2343 }
2344
2345 /*
2346  * Write some region out to in-core log
2347  *
2348  * This will be called when writing externally provided regions or when
2349  * writing out a commit record for a given transaction.
2350  *
2351  * General algorithm:
2352  *      1. Find total length of this write.  This may include adding to the
2353  *              lengths passed in.
2354  *      2. Check whether we violate the tickets reservation.
2355  *      3. While writing to this iclog
2356  *          A. Reserve as much space in this iclog as can get
2357  *          B. If this is first write, save away start lsn
2358  *          C. While writing this region:
2359  *              1. If first write of transaction, write start record
2360  *              2. Write log operation header (header per region)
2361  *              3. Find out if we can fit entire region into this iclog
2362  *              4. Potentially, verify destination memcpy ptr
2363  *              5. Memcpy (partial) region
2364  *              6. If partial copy, release iclog; otherwise, continue
2365  *                      copying more regions into current iclog
2366  *      4. Mark want sync bit (in simulation mode)
2367  *      5. Release iclog for potential flush to on-disk log.
2368  *
2369  * ERRORS:
2370  * 1.   Panic if reservation is overrun.  This should never happen since
2371  *      reservation amounts are generated internal to the filesystem.
2372  * NOTES:
2373  * 1. Tickets are single threaded data structures.
2374  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2375  *      syncing routine.  When a single log_write region needs to span
2376  *      multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2377  *      on all log operation writes which don't contain the end of the
2378  *      region.  The XLOG_END_TRANS bit is used for the in-core log
2379  *      operation which contains the end of the continued log_write region.
2380  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2381  *      we don't really know exactly how much space will be used.  As a result,
2382  *      we don't update ic_offset until the end when we know exactly how many
2383  *      bytes have been written out.
2384  */
2385 int
2386 xlog_write(
2387         struct xlog             *log,
2388         struct xfs_log_vec      *log_vector,
2389         struct xlog_ticket      *ticket,
2390         xfs_lsn_t               *start_lsn,
2391         struct xlog_in_core     **commit_iclog,
2392         uint                    flags)
2393 {
2394         struct xlog_in_core     *iclog = NULL;
2395         struct xfs_log_iovec    *vecp;
2396         struct xfs_log_vec      *lv;
2397         int                     len;
2398         int                     index;
2399         int                     partial_copy = 0;
2400         int                     partial_copy_len = 0;
2401         int                     contwr = 0;
2402         int                     record_cnt = 0;
2403         int                     data_cnt = 0;
2404         int                     error = 0;
2405
2406         *start_lsn = 0;
2407
2408         len = xlog_write_calc_vec_length(ticket, log_vector);
2409
2410         /*
2411          * Region headers and bytes are already accounted for.
2412          * We only need to take into account start records and
2413          * split regions in this function.
2414          */
2415         if (ticket->t_flags & XLOG_TIC_INITED)
2416                 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2417
2418         /*
2419          * Commit record headers need to be accounted for. These
2420          * come in as separate writes so are easy to detect.
2421          */
2422         if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2423                 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2424
2425         if (ticket->t_curr_res < 0) {
2426                 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2427                      "ctx ticket reservation ran out. Need to up reservation");
2428                 xlog_print_tic_res(log->l_mp, ticket);
2429                 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2430         }
2431
2432         index = 0;
2433         lv = log_vector;
2434         vecp = lv->lv_iovecp;
2435         while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2436                 void            *ptr;
2437                 int             log_offset;
2438
2439                 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2440                                                    &contwr, &log_offset);
2441                 if (error)
2442                         return error;
2443
2444                 ASSERT(log_offset <= iclog->ic_size - 1);
2445                 ptr = iclog->ic_datap + log_offset;
2446
2447                 /* start_lsn is the first lsn written to. That's all we need. */
2448                 if (!*start_lsn)
2449                         *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2450
2451                 /*
2452                  * This loop writes out as many regions as can fit in the amount
2453                  * of space which was allocated by xlog_state_get_iclog_space().
2454                  */
2455                 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2456                         struct xfs_log_iovec    *reg;
2457                         struct xlog_op_header   *ophdr;
2458                         int                     start_rec_copy;
2459                         int                     copy_len;
2460                         int                     copy_off;
2461                         bool                    ordered = false;
2462
2463                         /* ordered log vectors have no regions to write */
2464                         if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2465                                 ASSERT(lv->lv_niovecs == 0);
2466                                 ordered = true;
2467                                 goto next_lv;
2468                         }
2469
2470                         reg = &vecp[index];
2471                         ASSERT(reg->i_len % sizeof(int32_t) == 0);
2472                         ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2473
2474                         start_rec_copy = xlog_write_start_rec(ptr, ticket);
2475                         if (start_rec_copy) {
2476                                 record_cnt++;
2477                                 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2478                                                    start_rec_copy);
2479                         }
2480
2481                         ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2482                         if (!ophdr)
2483                                 return -EIO;
2484
2485                         xlog_write_adv_cnt(&ptr, &len, &log_offset,
2486                                            sizeof(struct xlog_op_header));
2487
2488                         len += xlog_write_setup_copy(ticket, ophdr,
2489                                                      iclog->ic_size-log_offset,
2490                                                      reg->i_len,
2491                                                      &copy_off, &copy_len,
2492                                                      &partial_copy,
2493                                                      &partial_copy_len);
2494                         xlog_verify_dest_ptr(log, ptr);
2495
2496                         /*
2497                          * Copy region.
2498                          *
2499                          * Unmount records just log an opheader, so can have
2500                          * empty payloads with no data region to copy. Hence we
2501                          * only copy the payload if the vector says it has data
2502                          * to copy.
2503                          */
2504                         ASSERT(copy_len >= 0);
2505                         if (copy_len > 0) {
2506                                 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2507                                 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2508                                                    copy_len);
2509                         }
2510                         copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2511                         record_cnt++;
2512                         data_cnt += contwr ? copy_len : 0;
2513
2514                         error = xlog_write_copy_finish(log, iclog, flags,
2515                                                        &record_cnt, &data_cnt,
2516                                                        &partial_copy,
2517                                                        &partial_copy_len,
2518                                                        log_offset,
2519                                                        commit_iclog);
2520                         if (error)
2521                                 return error;
2522
2523                         /*
2524                          * if we had a partial copy, we need to get more iclog
2525                          * space but we don't want to increment the region
2526                          * index because there is still more is this region to
2527                          * write.
2528                          *
2529                          * If we completed writing this region, and we flushed
2530                          * the iclog (indicated by resetting of the record
2531                          * count), then we also need to get more log space. If
2532                          * this was the last record, though, we are done and
2533                          * can just return.
2534                          */
2535                         if (partial_copy)
2536                                 break;
2537
2538                         if (++index == lv->lv_niovecs) {
2539 next_lv:
2540                                 lv = lv->lv_next;
2541                                 index = 0;
2542                                 if (lv)
2543                                         vecp = lv->lv_iovecp;
2544                         }
2545                         if (record_cnt == 0 && !ordered) {
2546                                 if (!lv)
2547                                         return 0;
2548                                 break;
2549                         }
2550                 }
2551         }
2552
2553         ASSERT(len == 0);
2554
2555         spin_lock(&log->l_icloglock);
2556         xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2557         if (commit_iclog) {
2558                 ASSERT(flags & XLOG_COMMIT_TRANS);
2559                 *commit_iclog = iclog;
2560         } else {
2561                 error = xlog_state_release_iclog(log, iclog);
2562         }
2563         spin_unlock(&log->l_icloglock);
2564
2565         return error;
2566 }
2567
2568
2569 /*****************************************************************************
2570  *
2571  *              State Machine functions
2572  *
2573  *****************************************************************************
2574  */
2575
2576 /*
2577  * An iclog has just finished IO completion processing, so we need to update
2578  * the iclog state and propagate that up into the overall log state. Hence we
2579  * prepare the iclog for cleaning, and then clean all the pending dirty iclogs
2580  * starting from the head, and then wake up any threads that are waiting for the
2581  * iclog to be marked clean.
2582  *
2583  * The ordering of marking iclogs ACTIVE must be maintained, so an iclog
2584  * doesn't become ACTIVE beyond one that is SYNCING.  This is also required to
2585  * maintain the notion that we use a ordered wait queue to hold off would be
2586  * writers to the log when every iclog is trying to sync to disk.
2587  *
2588  * Caller must hold the icloglock before calling us.
2589  *
2590  * State Change: !IOERROR -> DIRTY -> ACTIVE
2591  */
2592 STATIC void
2593 xlog_state_clean_iclog(
2594         struct xlog             *log,
2595         struct xlog_in_core     *dirty_iclog)
2596 {
2597         struct xlog_in_core     *iclog;
2598         int                     changed = 0;
2599
2600         /* Prepare the completed iclog. */
2601         if (dirty_iclog->ic_state != XLOG_STATE_IOERROR)
2602                 dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2603
2604         /* Walk all the iclogs to update the ordered active state. */
2605         iclog = log->l_iclog;
2606         do {
2607                 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2608                         iclog->ic_state = XLOG_STATE_ACTIVE;
2609                         iclog->ic_offset       = 0;
2610                         ASSERT(list_empty_careful(&iclog->ic_callbacks));
2611                         /*
2612                          * If the number of ops in this iclog indicate it just
2613                          * contains the dummy transaction, we can
2614                          * change state into IDLE (the second time around).
2615                          * Otherwise we should change the state into
2616                          * NEED a dummy.
2617                          * We don't need to cover the dummy.
2618                          */
2619                         if (!changed &&
2620                            (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2621                                         XLOG_COVER_OPS)) {
2622                                 changed = 1;
2623                         } else {
2624                                 /*
2625                                  * We have two dirty iclogs so start over
2626                                  * This could also be num of ops indicates
2627                                  * this is not the dummy going out.
2628                                  */
2629                                 changed = 2;
2630                         }
2631                         iclog->ic_header.h_num_logops = 0;
2632                         memset(iclog->ic_header.h_cycle_data, 0,
2633                               sizeof(iclog->ic_header.h_cycle_data));
2634                         iclog->ic_header.h_lsn = 0;
2635                 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2636                         /* do nothing */;
2637                 else
2638                         break;  /* stop cleaning */
2639                 iclog = iclog->ic_next;
2640         } while (iclog != log->l_iclog);
2641
2642
2643         /*
2644          * Wake up threads waiting in xfs_log_force() for the dirty iclog
2645          * to be cleaned.
2646          */
2647         wake_up_all(&dirty_iclog->ic_force_wait);
2648
2649         /*
2650          * Change state for the dummy log recording.
2651          * We usually go to NEED. But we go to NEED2 if the changed indicates
2652          * we are done writing the dummy record.
2653          * If we are done with the second dummy recored (DONE2), then
2654          * we go to IDLE.
2655          */
2656         if (changed) {
2657                 switch (log->l_covered_state) {
2658                 case XLOG_STATE_COVER_IDLE:
2659                 case XLOG_STATE_COVER_NEED:
2660                 case XLOG_STATE_COVER_NEED2:
2661                         log->l_covered_state = XLOG_STATE_COVER_NEED;
2662                         break;
2663
2664                 case XLOG_STATE_COVER_DONE:
2665                         if (changed == 1)
2666                                 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2667                         else
2668                                 log->l_covered_state = XLOG_STATE_COVER_NEED;
2669                         break;
2670
2671                 case XLOG_STATE_COVER_DONE2:
2672                         if (changed == 1)
2673                                 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2674                         else
2675                                 log->l_covered_state = XLOG_STATE_COVER_NEED;
2676                         break;
2677
2678                 default:
2679                         ASSERT(0);
2680                 }
2681         }
2682 }
2683
2684 STATIC xfs_lsn_t
2685 xlog_get_lowest_lsn(
2686         struct xlog             *log)
2687 {
2688         struct xlog_in_core     *iclog = log->l_iclog;
2689         xfs_lsn_t               lowest_lsn = 0, lsn;
2690
2691         do {
2692                 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2693                     iclog->ic_state == XLOG_STATE_DIRTY)
2694                         continue;
2695
2696                 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2697                 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2698                         lowest_lsn = lsn;
2699         } while ((iclog = iclog->ic_next) != log->l_iclog);
2700
2701         return lowest_lsn;
2702 }
2703
2704 /*
2705  * Completion of a iclog IO does not imply that a transaction has completed, as
2706  * transactions can be large enough to span many iclogs. We cannot change the
2707  * tail of the log half way through a transaction as this may be the only
2708  * transaction in the log and moving the tail to point to the middle of it
2709  * will prevent recovery from finding the start of the transaction. Hence we
2710  * should only update the last_sync_lsn if this iclog contains transaction
2711  * completion callbacks on it.
2712  *
2713  * We have to do this before we drop the icloglock to ensure we are the only one
2714  * that can update it.
2715  *
2716  * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2717  * the reservation grant head pushing. This is due to the fact that the push
2718  * target is bound by the current last_sync_lsn value. Hence if we have a large
2719  * amount of log space bound up in this committing transaction then the
2720  * last_sync_lsn value may be the limiting factor preventing tail pushing from
2721  * freeing space in the log. Hence once we've updated the last_sync_lsn we
2722  * should push the AIL to ensure the push target (and hence the grant head) is
2723  * no longer bound by the old log head location and can move forwards and make
2724  * progress again.
2725  */
2726 static void
2727 xlog_state_set_callback(
2728         struct xlog             *log,
2729         struct xlog_in_core     *iclog,
2730         xfs_lsn_t               header_lsn)
2731 {
2732         iclog->ic_state = XLOG_STATE_CALLBACK;
2733
2734         ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2735                            header_lsn) <= 0);
2736
2737         if (list_empty_careful(&iclog->ic_callbacks))
2738                 return;
2739
2740         atomic64_set(&log->l_last_sync_lsn, header_lsn);
2741         xlog_grant_push_ail(log, 0);
2742 }
2743
2744 /*
2745  * Return true if we need to stop processing, false to continue to the next
2746  * iclog. The caller will need to run callbacks if the iclog is returned in the
2747  * XLOG_STATE_CALLBACK state.
2748  */
2749 static bool
2750 xlog_state_iodone_process_iclog(
2751         struct xlog             *log,
2752         struct xlog_in_core     *iclog,
2753         bool                    *ioerror)
2754 {
2755         xfs_lsn_t               lowest_lsn;
2756         xfs_lsn_t               header_lsn;
2757
2758         switch (iclog->ic_state) {
2759         case XLOG_STATE_ACTIVE:
2760         case XLOG_STATE_DIRTY:
2761                 /*
2762                  * Skip all iclogs in the ACTIVE & DIRTY states:
2763                  */
2764                 return false;
2765         case XLOG_STATE_IOERROR:
2766                 /*
2767                  * Between marking a filesystem SHUTDOWN and stopping the log,
2768                  * we do flush all iclogs to disk (if there wasn't a log I/O
2769                  * error). So, we do want things to go smoothly in case of just
2770                  * a SHUTDOWN w/o a LOG_IO_ERROR.
2771                  */
2772                 *ioerror = true;
2773                 return false;
2774         case XLOG_STATE_DONE_SYNC:
2775                 /*
2776                  * Now that we have an iclog that is in the DONE_SYNC state, do
2777                  * one more check here to see if we have chased our tail around.
2778                  * If this is not the lowest lsn iclog, then we will leave it
2779                  * for another completion to process.
2780                  */
2781                 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2782                 lowest_lsn = xlog_get_lowest_lsn(log);
2783                 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2784                         return false;
2785                 xlog_state_set_callback(log, iclog, header_lsn);
2786                 return false;
2787         default:
2788                 /*
2789                  * Can only perform callbacks in order.  Since this iclog is not
2790                  * in the DONE_SYNC state, we skip the rest and just try to
2791                  * clean up.
2792                  */
2793                 return true;
2794         }
2795 }
2796
2797 /*
2798  * Keep processing entries in the iclog callback list until we come around and
2799  * it is empty.  We need to atomically see that the list is empty and change the
2800  * state to DIRTY so that we don't miss any more callbacks being added.
2801  *
2802  * This function is called with the icloglock held and returns with it held. We
2803  * drop it while running callbacks, however, as holding it over thousands of
2804  * callbacks is unnecessary and causes excessive contention if we do.
2805  */
2806 static void
2807 xlog_state_do_iclog_callbacks(
2808         struct xlog             *log,
2809         struct xlog_in_core     *iclog,
2810         bool                    aborted)
2811 {
2812         spin_unlock(&log->l_icloglock);
2813         spin_lock(&iclog->ic_callback_lock);
2814         while (!list_empty(&iclog->ic_callbacks)) {
2815                 LIST_HEAD(tmp);
2816
2817                 list_splice_init(&iclog->ic_callbacks, &tmp);
2818
2819                 spin_unlock(&iclog->ic_callback_lock);
2820                 xlog_cil_process_committed(&tmp, aborted);
2821                 spin_lock(&iclog->ic_callback_lock);
2822         }
2823
2824         /*
2825          * Pick up the icloglock while still holding the callback lock so we
2826          * serialise against anyone trying to add more callbacks to this iclog
2827          * now we've finished processing.
2828          */
2829         spin_lock(&log->l_icloglock);
2830         spin_unlock(&iclog->ic_callback_lock);
2831 }
2832
2833 STATIC void
2834 xlog_state_do_callback(
2835         struct xlog             *log,
2836         bool                    aborted)
2837 {
2838         struct xlog_in_core     *iclog;
2839         struct xlog_in_core     *first_iclog;
2840         bool                    cycled_icloglock;
2841         bool                    ioerror;
2842         int                     flushcnt = 0;
2843         int                     repeats = 0;
2844
2845         spin_lock(&log->l_icloglock);
2846         do {
2847                 /*
2848                  * Scan all iclogs starting with the one pointed to by the
2849                  * log.  Reset this starting point each time the log is
2850                  * unlocked (during callbacks).
2851                  *
2852                  * Keep looping through iclogs until one full pass is made
2853                  * without running any callbacks.
2854                  */
2855                 first_iclog = log->l_iclog;
2856                 iclog = log->l_iclog;
2857                 cycled_icloglock = false;
2858                 ioerror = false;
2859                 repeats++;
2860
2861                 do {
2862                         if (xlog_state_iodone_process_iclog(log, iclog,
2863                                                         &ioerror))
2864                                 break;
2865
2866                         if (iclog->ic_state != XLOG_STATE_CALLBACK &&
2867                             iclog->ic_state != XLOG_STATE_IOERROR) {
2868                                 iclog = iclog->ic_next;
2869                                 continue;
2870                         }
2871
2872                         /*
2873                          * Running callbacks will drop the icloglock which means
2874                          * we'll have to run at least one more complete loop.
2875                          */
2876                         cycled_icloglock = true;
2877                         xlog_state_do_iclog_callbacks(log, iclog, aborted);
2878
2879                         xlog_state_clean_iclog(log, iclog);
2880                         iclog = iclog->ic_next;
2881                 } while (first_iclog != iclog);
2882
2883                 if (repeats > 5000) {
2884                         flushcnt += repeats;
2885                         repeats = 0;
2886                         xfs_warn(log->l_mp,
2887                                 "%s: possible infinite loop (%d iterations)",
2888                                 __func__, flushcnt);
2889                 }
2890         } while (!ioerror && cycled_icloglock);
2891
2892         if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE ||
2893             log->l_iclog->ic_state == XLOG_STATE_IOERROR)
2894                 wake_up_all(&log->l_flush_wait);
2895
2896         spin_unlock(&log->l_icloglock);
2897 }
2898
2899
2900 /*
2901  * Finish transitioning this iclog to the dirty state.
2902  *
2903  * Make sure that we completely execute this routine only when this is
2904  * the last call to the iclog.  There is a good chance that iclog flushes,
2905  * when we reach the end of the physical log, get turned into 2 separate
2906  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2907  * routine.  By using the reference count bwritecnt, we guarantee that only
2908  * the second completion goes through.
2909  *
2910  * Callbacks could take time, so they are done outside the scope of the
2911  * global state machine log lock.
2912  */
2913 STATIC void
2914 xlog_state_done_syncing(
2915         struct xlog_in_core     *iclog,
2916         bool                    aborted)
2917 {
2918         struct xlog             *log = iclog->ic_log;
2919
2920         spin_lock(&log->l_icloglock);
2921
2922         ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2923
2924         /*
2925          * If we got an error, either on the first buffer, or in the case of
2926          * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2927          * and none should ever be attempted to be written to disk
2928          * again.
2929          */
2930         if (iclog->ic_state == XLOG_STATE_SYNCING)
2931                 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2932         else
2933                 ASSERT(iclog->ic_state == XLOG_STATE_IOERROR);
2934
2935         /*
2936          * Someone could be sleeping prior to writing out the next
2937          * iclog buffer, we wake them all, one will get to do the
2938          * I/O, the others get to wait for the result.
2939          */
2940         wake_up_all(&iclog->ic_write_wait);
2941         spin_unlock(&log->l_icloglock);
2942         xlog_state_do_callback(log, aborted);   /* also cleans log */
2943 }       /* xlog_state_done_syncing */
2944
2945
2946 /*
2947  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2948  * sleep.  We wait on the flush queue on the head iclog as that should be
2949  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2950  * we will wait here and all new writes will sleep until a sync completes.
2951  *
2952  * The in-core logs are used in a circular fashion. They are not used
2953  * out-of-order even when an iclog past the head is free.
2954  *
2955  * return:
2956  *      * log_offset where xlog_write() can start writing into the in-core
2957  *              log's data space.
2958  *      * in-core log pointer to which xlog_write() should write.
2959  *      * boolean indicating this is a continued write to an in-core log.
2960  *              If this is the last write, then the in-core log's offset field
2961  *              needs to be incremented, depending on the amount of data which
2962  *              is copied.
2963  */
2964 STATIC int
2965 xlog_state_get_iclog_space(
2966         struct xlog             *log,
2967         int                     len,
2968         struct xlog_in_core     **iclogp,
2969         struct xlog_ticket      *ticket,
2970         int                     *continued_write,
2971         int                     *logoffsetp)
2972 {
2973         int               log_offset;
2974         xlog_rec_header_t *head;
2975         xlog_in_core_t    *iclog;
2976
2977 restart:
2978         spin_lock(&log->l_icloglock);
2979         if (XLOG_FORCED_SHUTDOWN(log)) {
2980                 spin_unlock(&log->l_icloglock);
2981                 return -EIO;
2982         }
2983
2984         iclog = log->l_iclog;
2985         if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2986                 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2987
2988                 /* Wait for log writes to have flushed */
2989                 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2990                 goto restart;
2991         }
2992
2993         head = &iclog->ic_header;
2994
2995         atomic_inc(&iclog->ic_refcnt);  /* prevents sync */
2996         log_offset = iclog->ic_offset;
2997
2998         /* On the 1st write to an iclog, figure out lsn.  This works
2999          * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3000          * committing to.  If the offset is set, that's how many blocks
3001          * must be written.
3002          */
3003         if (log_offset == 0) {
3004                 ticket->t_curr_res -= log->l_iclog_hsize;
3005                 xlog_tic_add_region(ticket,
3006                                     log->l_iclog_hsize,
3007                                     XLOG_REG_TYPE_LRHEADER);
3008                 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3009                 head->h_lsn = cpu_to_be64(
3010                         xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3011                 ASSERT(log->l_curr_block >= 0);
3012         }
3013
3014         /* If there is enough room to write everything, then do it.  Otherwise,
3015          * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3016          * bit is on, so this will get flushed out.  Don't update ic_offset
3017          * until you know exactly how many bytes get copied.  Therefore, wait
3018          * until later to update ic_offset.
3019          *
3020          * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3021          * can fit into remaining data section.
3022          */
3023         if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3024                 int             error = 0;
3025
3026                 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3027
3028                 /*
3029                  * If we are the only one writing to this iclog, sync it to
3030                  * disk.  We need to do an atomic compare and decrement here to
3031                  * avoid racing with concurrent atomic_dec_and_lock() calls in
3032                  * xlog_state_release_iclog() when there is more than one
3033                  * reference to the iclog.
3034                  */
3035                 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
3036                         error = xlog_state_release_iclog(log, iclog);
3037                 spin_unlock(&log->l_icloglock);
3038                 if (error)
3039                         return error;
3040                 goto restart;
3041         }
3042
3043         /* Do we have enough room to write the full amount in the remainder
3044          * of this iclog?  Or must we continue a write on the next iclog and
3045          * mark this iclog as completely taken?  In the case where we switch
3046          * iclogs (to mark it taken), this particular iclog will release/sync
3047          * to disk in xlog_write().
3048          */
3049         if (len <= iclog->ic_size - iclog->ic_offset) {
3050                 *continued_write = 0;
3051                 iclog->ic_offset += len;
3052         } else {
3053                 *continued_write = 1;
3054                 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3055         }
3056         *iclogp = iclog;
3057
3058         ASSERT(iclog->ic_offset <= iclog->ic_size);
3059         spin_unlock(&log->l_icloglock);
3060
3061         *logoffsetp = log_offset;
3062         return 0;
3063 }       /* xlog_state_get_iclog_space */
3064
3065 /* The first cnt-1 times through here we don't need to
3066  * move the grant write head because the permanent
3067  * reservation has reserved cnt times the unit amount.
3068  * Release part of current permanent unit reservation and
3069  * reset current reservation to be one units worth.  Also
3070  * move grant reservation head forward.
3071  */
3072 STATIC void
3073 xlog_regrant_reserve_log_space(
3074         struct xlog             *log,
3075         struct xlog_ticket      *ticket)
3076 {
3077         trace_xfs_log_regrant_reserve_enter(log, ticket);
3078
3079         if (ticket->t_cnt > 0)
3080                 ticket->t_cnt--;
3081
3082         xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3083                                         ticket->t_curr_res);
3084         xlog_grant_sub_space(log, &log->l_write_head.grant,
3085                                         ticket->t_curr_res);
3086         ticket->t_curr_res = ticket->t_unit_res;
3087         xlog_tic_reset_res(ticket);
3088
3089         trace_xfs_log_regrant_reserve_sub(log, ticket);
3090
3091         /* just return if we still have some of the pre-reserved space */
3092         if (ticket->t_cnt > 0)
3093                 return;
3094
3095         xlog_grant_add_space(log, &log->l_reserve_head.grant,
3096                                         ticket->t_unit_res);
3097
3098         trace_xfs_log_regrant_reserve_exit(log, ticket);
3099
3100         ticket->t_curr_res = ticket->t_unit_res;
3101         xlog_tic_reset_res(ticket);
3102 }       /* xlog_regrant_reserve_log_space */
3103
3104
3105 /*
3106  * Give back the space left from a reservation.
3107  *
3108  * All the information we need to make a correct determination of space left
3109  * is present.  For non-permanent reservations, things are quite easy.  The
3110  * count should have been decremented to zero.  We only need to deal with the
3111  * space remaining in the current reservation part of the ticket.  If the
3112  * ticket contains a permanent reservation, there may be left over space which
3113  * needs to be released.  A count of N means that N-1 refills of the current
3114  * reservation can be done before we need to ask for more space.  The first
3115  * one goes to fill up the first current reservation.  Once we run out of
3116  * space, the count will stay at zero and the only space remaining will be
3117  * in the current reservation field.
3118  */
3119 STATIC void
3120 xlog_ungrant_log_space(
3121         struct xlog             *log,
3122         struct xlog_ticket      *ticket)
3123 {
3124         int     bytes;
3125
3126         if (ticket->t_cnt > 0)
3127                 ticket->t_cnt--;
3128
3129         trace_xfs_log_ungrant_enter(log, ticket);
3130         trace_xfs_log_ungrant_sub(log, ticket);
3131
3132         /*
3133          * If this is a permanent reservation ticket, we may be able to free
3134          * up more space based on the remaining count.
3135          */
3136         bytes = ticket->t_curr_res;
3137         if (ticket->t_cnt > 0) {
3138                 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3139                 bytes += ticket->t_unit_res*ticket->t_cnt;
3140         }
3141
3142         xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3143         xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3144
3145         trace_xfs_log_ungrant_exit(log, ticket);
3146
3147         xfs_log_space_wake(log->l_mp);
3148 }
3149
3150 /*
3151  * This routine will mark the current iclog in the ring as WANT_SYNC
3152  * and move the current iclog pointer to the next iclog in the ring.
3153  * When this routine is called from xlog_state_get_iclog_space(), the
3154  * exact size of the iclog has not yet been determined.  All we know is
3155  * that every data block.  We have run out of space in this log record.
3156  */
3157 STATIC void
3158 xlog_state_switch_iclogs(
3159         struct xlog             *log,
3160         struct xlog_in_core     *iclog,
3161         int                     eventual_size)
3162 {
3163         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3164         if (!eventual_size)
3165                 eventual_size = iclog->ic_offset;
3166         iclog->ic_state = XLOG_STATE_WANT_SYNC;
3167         iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3168         log->l_prev_block = log->l_curr_block;
3169         log->l_prev_cycle = log->l_curr_cycle;
3170
3171         /* roll log?: ic_offset changed later */
3172         log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3173
3174         /* Round up to next log-sunit */
3175         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3176             log->l_mp->m_sb.sb_logsunit > 1) {
3177                 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3178                 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3179         }
3180
3181         if (log->l_curr_block >= log->l_logBBsize) {
3182                 /*
3183                  * Rewind the current block before the cycle is bumped to make
3184                  * sure that the combined LSN never transiently moves forward
3185                  * when the log wraps to the next cycle. This is to support the
3186                  * unlocked sample of these fields from xlog_valid_lsn(). Most
3187                  * other cases should acquire l_icloglock.
3188                  */
3189                 log->l_curr_block -= log->l_logBBsize;
3190                 ASSERT(log->l_curr_block >= 0);
3191                 smp_wmb();
3192                 log->l_curr_cycle++;
3193                 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3194                         log->l_curr_cycle++;
3195         }
3196         ASSERT(iclog == log->l_iclog);
3197         log->l_iclog = iclog->ic_next;
3198 }       /* xlog_state_switch_iclogs */
3199
3200 /*
3201  * Write out all data in the in-core log as of this exact moment in time.
3202  *
3203  * Data may be written to the in-core log during this call.  However,
3204  * we don't guarantee this data will be written out.  A change from past
3205  * implementation means this routine will *not* write out zero length LRs.
3206  *
3207  * Basically, we try and perform an intelligent scan of the in-core logs.
3208  * If we determine there is no flushable data, we just return.  There is no
3209  * flushable data if:
3210  *
3211  *      1. the current iclog is active and has no data; the previous iclog
3212  *              is in the active or dirty state.
3213  *      2. the current iclog is drity, and the previous iclog is in the
3214  *              active or dirty state.
3215  *
3216  * We may sleep if:
3217  *
3218  *      1. the current iclog is not in the active nor dirty state.
3219  *      2. the current iclog dirty, and the previous iclog is not in the
3220  *              active nor dirty state.
3221  *      3. the current iclog is active, and there is another thread writing
3222  *              to this particular iclog.
3223  *      4. a) the current iclog is active and has no other writers
3224  *         b) when we return from flushing out this iclog, it is still
3225  *              not in the active nor dirty state.
3226  */
3227 int
3228 xfs_log_force(
3229         struct xfs_mount        *mp,
3230         uint                    flags)
3231 {
3232         struct xlog             *log = mp->m_log;
3233         struct xlog_in_core     *iclog;
3234         xfs_lsn_t               lsn;
3235
3236         XFS_STATS_INC(mp, xs_log_force);
3237         trace_xfs_log_force(mp, 0, _RET_IP_);
3238
3239         xlog_cil_force(log);
3240
3241         spin_lock(&log->l_icloglock);
3242         iclog = log->l_iclog;
3243         if (iclog->ic_state == XLOG_STATE_IOERROR)
3244                 goto out_error;
3245
3246         if (iclog->ic_state == XLOG_STATE_DIRTY ||
3247             (iclog->ic_state == XLOG_STATE_ACTIVE &&
3248              atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3249                 /*
3250                  * If the head is dirty or (active and empty), then we need to
3251                  * look at the previous iclog.
3252                  *
3253                  * If the previous iclog is active or dirty we are done.  There
3254                  * is nothing to sync out. Otherwise, we attach ourselves to the
3255                  * previous iclog and go to sleep.
3256                  */
3257                 iclog = iclog->ic_prev;
3258                 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3259                     iclog->ic_state == XLOG_STATE_DIRTY)
3260                         goto out_unlock;
3261         } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3262                 if (atomic_read(&iclog->ic_refcnt) == 0) {
3263                         /*
3264                          * We are the only one with access to this iclog.
3265                          *
3266                          * Flush it out now.  There should be a roundoff of zero
3267                          * to show that someone has already taken care of the
3268                          * roundoff from the previous sync.
3269                          */
3270                         atomic_inc(&iclog->ic_refcnt);
3271                         lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3272                         xlog_state_switch_iclogs(log, iclog, 0);
3273                         if (xlog_state_release_iclog(log, iclog))
3274                                 goto out_error;
3275
3276                         if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn ||
3277                             iclog->ic_state == XLOG_STATE_DIRTY)
3278                                 goto out_unlock;
3279                 } else {
3280                         /*
3281                          * Someone else is writing to this iclog.
3282                          *
3283                          * Use its call to flush out the data.  However, the
3284                          * other thread may not force out this LR, so we mark
3285                          * it WANT_SYNC.
3286                          */
3287                         xlog_state_switch_iclogs(log, iclog, 0);
3288                 }
3289         } else {
3290                 /*
3291                  * If the head iclog is not active nor dirty, we just attach
3292                  * ourselves to the head and go to sleep if necessary.
3293                  */
3294                 ;
3295         }
3296
3297         if (!(flags & XFS_LOG_SYNC))
3298                 goto out_unlock;
3299
3300         if (iclog->ic_state == XLOG_STATE_IOERROR)
3301                 goto out_error;
3302         XFS_STATS_INC(mp, xs_log_force_sleep);
3303         xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3304         if (iclog->ic_state == XLOG_STATE_IOERROR)
3305                 return -EIO;
3306         return 0;
3307
3308 out_unlock:
3309         spin_unlock(&log->l_icloglock);
3310         return 0;
3311 out_error:
3312         spin_unlock(&log->l_icloglock);
3313         return -EIO;
3314 }
3315
3316 static int
3317 __xfs_log_force_lsn(
3318         struct xfs_mount        *mp,
3319         xfs_lsn_t               lsn,
3320         uint                    flags,
3321         int                     *log_flushed,
3322         bool                    already_slept)
3323 {
3324         struct xlog             *log = mp->m_log;
3325         struct xlog_in_core     *iclog;
3326
3327         spin_lock(&log->l_icloglock);
3328         iclog = log->l_iclog;
3329         if (iclog->ic_state == XLOG_STATE_IOERROR)
3330                 goto out_error;
3331
3332         while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3333                 iclog = iclog->ic_next;
3334                 if (iclog == log->l_iclog)
3335                         goto out_unlock;
3336         }
3337
3338         if (iclog->ic_state == XLOG_STATE_DIRTY)
3339                 goto out_unlock;
3340
3341         if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3342                 /*
3343                  * We sleep here if we haven't already slept (e.g. this is the
3344                  * first time we've looked at the correct iclog buf) and the
3345                  * buffer before us is going to be sync'ed.  The reason for this
3346                  * is that if we are doing sync transactions here, by waiting
3347                  * for the previous I/O to complete, we can allow a few more
3348                  * transactions into this iclog before we close it down.
3349                  *
3350                  * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3351                  * refcnt so we can release the log (which drops the ref count).
3352                  * The state switch keeps new transaction commits from using
3353                  * this buffer.  When the current commits finish writing into
3354                  * the buffer, the refcount will drop to zero and the buffer
3355                  * will go out then.
3356                  */
3357                 if (!already_slept &&
3358                     (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3359                      iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3360                         XFS_STATS_INC(mp, xs_log_force_sleep);
3361
3362                         xlog_wait(&iclog->ic_prev->ic_write_wait,
3363                                         &log->l_icloglock);
3364                         return -EAGAIN;
3365                 }
3366                 atomic_inc(&iclog->ic_refcnt);
3367                 xlog_state_switch_iclogs(log, iclog, 0);
3368                 if (xlog_state_release_iclog(log, iclog))
3369                         goto out_error;
3370                 if (log_flushed)
3371                         *log_flushed = 1;
3372         }
3373
3374         if (!(flags & XFS_LOG_SYNC) ||
3375             (iclog->ic_state == XLOG_STATE_ACTIVE ||
3376              iclog->ic_state == XLOG_STATE_DIRTY))
3377                 goto out_unlock;
3378
3379         if (iclog->ic_state == XLOG_STATE_IOERROR)
3380                 goto out_error;
3381
3382         XFS_STATS_INC(mp, xs_log_force_sleep);
3383         xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3384         if (iclog->ic_state == XLOG_STATE_IOERROR)
3385                 return -EIO;
3386         return 0;
3387
3388 out_unlock:
3389         spin_unlock(&log->l_icloglock);
3390         return 0;
3391 out_error:
3392         spin_unlock(&log->l_icloglock);
3393         return -EIO;
3394 }
3395
3396 /*
3397  * Force the in-core log to disk for a specific LSN.
3398  *
3399  * Find in-core log with lsn.
3400  *      If it is in the DIRTY state, just return.
3401  *      If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3402  *              state and go to sleep or return.
3403  *      If it is in any other state, go to sleep or return.
3404  *
3405  * Synchronous forces are implemented with a wait queue.  All callers trying
3406  * to force a given lsn to disk must wait on the queue attached to the
3407  * specific in-core log.  When given in-core log finally completes its write
3408  * to disk, that thread will wake up all threads waiting on the queue.
3409  */
3410 int
3411 xfs_log_force_lsn(
3412         struct xfs_mount        *mp,
3413         xfs_lsn_t               lsn,
3414         uint                    flags,
3415         int                     *log_flushed)
3416 {
3417         int                     ret;
3418         ASSERT(lsn != 0);
3419
3420         XFS_STATS_INC(mp, xs_log_force);
3421         trace_xfs_log_force(mp, lsn, _RET_IP_);
3422
3423         lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3424         if (lsn == NULLCOMMITLSN)
3425                 return 0;
3426
3427         ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3428         if (ret == -EAGAIN)
3429                 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3430         return ret;
3431 }
3432
3433 /*
3434  * Called when we want to mark the current iclog as being ready to sync to
3435  * disk.
3436  */
3437 STATIC void
3438 xlog_state_want_sync(
3439         struct xlog             *log,
3440         struct xlog_in_core     *iclog)
3441 {
3442         assert_spin_locked(&log->l_icloglock);
3443
3444         if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3445                 xlog_state_switch_iclogs(log, iclog, 0);
3446         } else {
3447                 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
3448                        iclog->ic_state == XLOG_STATE_IOERROR);
3449         }
3450 }
3451
3452
3453 /*****************************************************************************
3454  *
3455  *              TICKET functions
3456  *
3457  *****************************************************************************
3458  */
3459
3460 /*
3461  * Free a used ticket when its refcount falls to zero.
3462  */
3463 void
3464 xfs_log_ticket_put(
3465         xlog_ticket_t   *ticket)
3466 {
3467         ASSERT(atomic_read(&ticket->t_ref) > 0);
3468         if (atomic_dec_and_test(&ticket->t_ref))
3469                 kmem_zone_free(xfs_log_ticket_zone, ticket);
3470 }
3471
3472 xlog_ticket_t *
3473 xfs_log_ticket_get(
3474         xlog_ticket_t   *ticket)
3475 {
3476         ASSERT(atomic_read(&ticket->t_ref) > 0);
3477         atomic_inc(&ticket->t_ref);
3478         return ticket;
3479 }
3480
3481 /*
3482  * Figure out the total log space unit (in bytes) that would be
3483  * required for a log ticket.
3484  */
3485 int
3486 xfs_log_calc_unit_res(
3487         struct xfs_mount        *mp,
3488         int                     unit_bytes)
3489 {
3490         struct xlog             *log = mp->m_log;
3491         int                     iclog_space;
3492         uint                    num_headers;
3493
3494         /*
3495          * Permanent reservations have up to 'cnt'-1 active log operations
3496          * in the log.  A unit in this case is the amount of space for one
3497          * of these log operations.  Normal reservations have a cnt of 1
3498          * and their unit amount is the total amount of space required.
3499          *
3500          * The following lines of code account for non-transaction data
3501          * which occupy space in the on-disk log.
3502          *
3503          * Normal form of a transaction is:
3504          * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3505          * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3506          *
3507          * We need to account for all the leadup data and trailer data
3508          * around the transaction data.
3509          * And then we need to account for the worst case in terms of using
3510          * more space.
3511          * The worst case will happen if:
3512          * - the placement of the transaction happens to be such that the
3513          *   roundoff is at its maximum
3514          * - the transaction data is synced before the commit record is synced
3515          *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3516          *   Therefore the commit record is in its own Log Record.
3517          *   This can happen as the commit record is called with its
3518          *   own region to xlog_write().
3519          *   This then means that in the worst case, roundoff can happen for
3520          *   the commit-rec as well.
3521          *   The commit-rec is smaller than padding in this scenario and so it is
3522          *   not added separately.
3523          */
3524
3525         /* for trans header */
3526         unit_bytes += sizeof(xlog_op_header_t);
3527         unit_bytes += sizeof(xfs_trans_header_t);
3528
3529         /* for start-rec */
3530         unit_bytes += sizeof(xlog_op_header_t);
3531
3532         /*
3533          * for LR headers - the space for data in an iclog is the size minus
3534          * the space used for the headers. If we use the iclog size, then we
3535          * undercalculate the number of headers required.
3536          *
3537          * Furthermore - the addition of op headers for split-recs might
3538          * increase the space required enough to require more log and op
3539          * headers, so take that into account too.
3540          *
3541          * IMPORTANT: This reservation makes the assumption that if this
3542          * transaction is the first in an iclog and hence has the LR headers
3543          * accounted to it, then the remaining space in the iclog is
3544          * exclusively for this transaction.  i.e. if the transaction is larger
3545          * than the iclog, it will be the only thing in that iclog.
3546          * Fundamentally, this means we must pass the entire log vector to
3547          * xlog_write to guarantee this.
3548          */
3549         iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3550         num_headers = howmany(unit_bytes, iclog_space);
3551
3552         /* for split-recs - ophdrs added when data split over LRs */
3553         unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3554
3555         /* add extra header reservations if we overrun */
3556         while (!num_headers ||
3557                howmany(unit_bytes, iclog_space) > num_headers) {
3558                 unit_bytes += sizeof(xlog_op_header_t);
3559                 num_headers++;
3560         }
3561         unit_bytes += log->l_iclog_hsize * num_headers;
3562
3563         /* for commit-rec LR header - note: padding will subsume the ophdr */
3564         unit_bytes += log->l_iclog_hsize;
3565
3566         /* for roundoff padding for transaction data and one for commit record */
3567         if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3568                 /* log su roundoff */
3569                 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3570         } else {
3571                 /* BB roundoff */
3572                 unit_bytes += 2 * BBSIZE;
3573         }
3574
3575         return unit_bytes;
3576 }
3577
3578 /*
3579  * Allocate and initialise a new log ticket.
3580  */
3581 struct xlog_ticket *
3582 xlog_ticket_alloc(
3583         struct xlog             *log,
3584         int                     unit_bytes,
3585         int                     cnt,
3586         char                    client,
3587         bool                    permanent,
3588         xfs_km_flags_t          alloc_flags)
3589 {
3590         struct xlog_ticket      *tic;
3591         int                     unit_res;
3592
3593         tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3594         if (!tic)
3595                 return NULL;
3596
3597         unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3598
3599         atomic_set(&tic->t_ref, 1);
3600         tic->t_task             = current;
3601         INIT_LIST_HEAD(&tic->t_queue);
3602         tic->t_unit_res         = unit_res;
3603         tic->t_curr_res         = unit_res;
3604         tic->t_cnt              = cnt;
3605         tic->t_ocnt             = cnt;
3606         tic->t_tid              = prandom_u32();
3607         tic->t_clientid         = client;
3608         tic->t_flags            = XLOG_TIC_INITED;
3609         if (permanent)
3610                 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3611
3612         xlog_tic_reset_res(tic);
3613
3614         return tic;
3615 }
3616
3617
3618 /******************************************************************************
3619  *
3620  *              Log debug routines
3621  *
3622  ******************************************************************************
3623  */
3624 #if defined(DEBUG)
3625 /*
3626  * Make sure that the destination ptr is within the valid data region of
3627  * one of the iclogs.  This uses backup pointers stored in a different
3628  * part of the log in case we trash the log structure.
3629  */
3630 STATIC void
3631 xlog_verify_dest_ptr(
3632         struct xlog     *log,
3633         void            *ptr)
3634 {
3635         int i;
3636         int good_ptr = 0;
3637
3638         for (i = 0; i < log->l_iclog_bufs; i++) {
3639                 if (ptr >= log->l_iclog_bak[i] &&
3640                     ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3641                         good_ptr++;
3642         }
3643
3644         if (!good_ptr)
3645                 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3646 }
3647
3648 /*
3649  * Check to make sure the grant write head didn't just over lap the tail.  If
3650  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3651  * the cycles differ by exactly one and check the byte count.
3652  *
3653  * This check is run unlocked, so can give false positives. Rather than assert
3654  * on failures, use a warn-once flag and a panic tag to allow the admin to
3655  * determine if they want to panic the machine when such an error occurs. For
3656  * debug kernels this will have the same effect as using an assert but, unlinke
3657  * an assert, it can be turned off at runtime.
3658  */
3659 STATIC void
3660 xlog_verify_grant_tail(
3661         struct xlog     *log)
3662 {
3663         int             tail_cycle, tail_blocks;
3664         int             cycle, space;
3665
3666         xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3667         xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3668         if (tail_cycle != cycle) {
3669                 if (cycle - 1 != tail_cycle &&
3670                     !(log->l_flags & XLOG_TAIL_WARN)) {
3671                         xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3672                                 "%s: cycle - 1 != tail_cycle", __func__);
3673                         log->l_flags |= XLOG_TAIL_WARN;
3674                 }
3675
3676                 if (space > BBTOB(tail_blocks) &&
3677                     !(log->l_flags & XLOG_TAIL_WARN)) {
3678                         xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3679                                 "%s: space > BBTOB(tail_blocks)", __func__);
3680                         log->l_flags |= XLOG_TAIL_WARN;
3681                 }
3682         }
3683 }
3684
3685 /* check if it will fit */
3686 STATIC void
3687 xlog_verify_tail_lsn(
3688         struct xlog             *log,
3689         struct xlog_in_core     *iclog,
3690         xfs_lsn_t               tail_lsn)
3691 {
3692     int blocks;
3693
3694     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3695         blocks =
3696             log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3697         if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3698                 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3699     } else {
3700         ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3701
3702         if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3703                 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3704
3705         blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3706         if (blocks < BTOBB(iclog->ic_offset) + 1)
3707                 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3708     }
3709 }       /* xlog_verify_tail_lsn */
3710
3711 /*
3712  * Perform a number of checks on the iclog before writing to disk.
3713  *
3714  * 1. Make sure the iclogs are still circular
3715  * 2. Make sure we have a good magic number
3716  * 3. Make sure we don't have magic numbers in the data
3717  * 4. Check fields of each log operation header for:
3718  *      A. Valid client identifier
3719  *      B. tid ptr value falls in valid ptr space (user space code)
3720  *      C. Length in log record header is correct according to the
3721  *              individual operation headers within record.
3722  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3723  *      log, check the preceding blocks of the physical log to make sure all
3724  *      the cycle numbers agree with the current cycle number.
3725  */
3726 STATIC void
3727 xlog_verify_iclog(
3728         struct xlog             *log,
3729         struct xlog_in_core     *iclog,
3730         int                     count)
3731 {
3732         xlog_op_header_t        *ophead;
3733         xlog_in_core_t          *icptr;
3734         xlog_in_core_2_t        *xhdr;
3735         void                    *base_ptr, *ptr, *p;
3736         ptrdiff_t               field_offset;
3737         uint8_t                 clientid;
3738         int                     len, i, j, k, op_len;
3739         int                     idx;
3740
3741         /* check validity of iclog pointers */
3742         spin_lock(&log->l_icloglock);
3743         icptr = log->l_iclog;
3744         for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3745                 ASSERT(icptr);
3746
3747         if (icptr != log->l_iclog)
3748                 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3749         spin_unlock(&log->l_icloglock);
3750
3751         /* check log magic numbers */
3752         if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3753                 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3754
3755         base_ptr = ptr = &iclog->ic_header;
3756         p = &iclog->ic_header;
3757         for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3758                 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3759                         xfs_emerg(log->l_mp, "%s: unexpected magic num",
3760                                 __func__);
3761         }
3762
3763         /* check fields */
3764         len = be32_to_cpu(iclog->ic_header.h_num_logops);
3765         base_ptr = ptr = iclog->ic_datap;
3766         ophead = ptr;
3767         xhdr = iclog->ic_data;
3768         for (i = 0; i < len; i++) {
3769                 ophead = ptr;
3770
3771                 /* clientid is only 1 byte */
3772                 p = &ophead->oh_clientid;
3773                 field_offset = p - base_ptr;
3774                 if (field_offset & 0x1ff) {
3775                         clientid = ophead->oh_clientid;
3776                 } else {
3777                         idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3778                         if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3779                                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3780                                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3781                                 clientid = xlog_get_client_id(
3782                                         xhdr[j].hic_xheader.xh_cycle_data[k]);
3783                         } else {
3784                                 clientid = xlog_get_client_id(
3785                                         iclog->ic_header.h_cycle_data[idx]);
3786                         }
3787                 }
3788                 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3789                         xfs_warn(log->l_mp,
3790                                 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3791                                 __func__, clientid, ophead,
3792                                 (unsigned long)field_offset);
3793
3794                 /* check length */
3795                 p = &ophead->oh_len;
3796                 field_offset = p - base_ptr;
3797                 if (field_offset & 0x1ff) {
3798                         op_len = be32_to_cpu(ophead->oh_len);
3799                 } else {
3800                         idx = BTOBBT((uintptr_t)&ophead->oh_len -
3801                                     (uintptr_t)iclog->ic_datap);
3802                         if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3803                                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3804                                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3805                                 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3806                         } else {
3807                                 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3808                         }
3809                 }
3810                 ptr += sizeof(xlog_op_header_t) + op_len;
3811         }
3812 }       /* xlog_verify_iclog */
3813 #endif
3814
3815 /*
3816  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3817  */
3818 STATIC int
3819 xlog_state_ioerror(
3820         struct xlog     *log)
3821 {
3822         xlog_in_core_t  *iclog, *ic;
3823
3824         iclog = log->l_iclog;
3825         if (iclog->ic_state != XLOG_STATE_IOERROR) {
3826                 /*
3827                  * Mark all the incore logs IOERROR.
3828                  * From now on, no log flushes will result.
3829                  */
3830                 ic = iclog;
3831                 do {
3832                         ic->ic_state = XLOG_STATE_IOERROR;
3833                         ic = ic->ic_next;
3834                 } while (ic != iclog);
3835                 return 0;
3836         }
3837         /*
3838          * Return non-zero, if state transition has already happened.
3839          */
3840         return 1;
3841 }
3842
3843 /*
3844  * This is called from xfs_force_shutdown, when we're forcibly
3845  * shutting down the filesystem, typically because of an IO error.
3846  * Our main objectives here are to make sure that:
3847  *      a. if !logerror, flush the logs to disk. Anything modified
3848  *         after this is ignored.
3849  *      b. the filesystem gets marked 'SHUTDOWN' for all interested
3850  *         parties to find out, 'atomically'.
3851  *      c. those who're sleeping on log reservations, pinned objects and
3852  *          other resources get woken up, and be told the bad news.
3853  *      d. nothing new gets queued up after (b) and (c) are done.
3854  *
3855  * Note: for the !logerror case we need to flush the regions held in memory out
3856  * to disk first. This needs to be done before the log is marked as shutdown,
3857  * otherwise the iclog writes will fail.
3858  */
3859 int
3860 xfs_log_force_umount(
3861         struct xfs_mount        *mp,
3862         int                     logerror)
3863 {
3864         struct xlog     *log;
3865         int             retval;
3866
3867         log = mp->m_log;
3868
3869         /*
3870          * If this happens during log recovery, don't worry about
3871          * locking; the log isn't open for business yet.
3872          */
3873         if (!log ||
3874             log->l_flags & XLOG_ACTIVE_RECOVERY) {
3875                 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3876                 if (mp->m_sb_bp)
3877                         mp->m_sb_bp->b_flags |= XBF_DONE;
3878                 return 0;
3879         }
3880
3881         /*
3882          * Somebody could've already done the hard work for us.
3883          * No need to get locks for this.
3884          */
3885         if (logerror && log->l_iclog->ic_state == XLOG_STATE_IOERROR) {
3886                 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3887                 return 1;
3888         }
3889
3890         /*
3891          * Flush all the completed transactions to disk before marking the log
3892          * being shut down. We need to do it in this order to ensure that
3893          * completed operations are safely on disk before we shut down, and that
3894          * we don't have to issue any buffer IO after the shutdown flags are set
3895          * to guarantee this.
3896          */
3897         if (!logerror)
3898                 xfs_log_force(mp, XFS_LOG_SYNC);
3899
3900         /*
3901          * mark the filesystem and the as in a shutdown state and wake
3902          * everybody up to tell them the bad news.
3903          */
3904         spin_lock(&log->l_icloglock);
3905         mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3906         if (mp->m_sb_bp)
3907                 mp->m_sb_bp->b_flags |= XBF_DONE;
3908
3909         /*
3910          * Mark the log and the iclogs with IO error flags to prevent any
3911          * further log IO from being issued or completed.
3912          */
3913         log->l_flags |= XLOG_IO_ERROR;
3914         retval = xlog_state_ioerror(log);
3915         spin_unlock(&log->l_icloglock);
3916
3917         /*
3918          * We don't want anybody waiting for log reservations after this. That
3919          * means we have to wake up everybody queued up on reserveq as well as
3920          * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3921          * we don't enqueue anything once the SHUTDOWN flag is set, and this
3922          * action is protected by the grant locks.
3923          */
3924         xlog_grant_head_wake_all(&log->l_reserve_head);
3925         xlog_grant_head_wake_all(&log->l_write_head);
3926
3927         /*
3928          * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3929          * as if the log writes were completed. The abort handling in the log
3930          * item committed callback functions will do this again under lock to
3931          * avoid races.
3932          */
3933         spin_lock(&log->l_cilp->xc_push_lock);
3934         wake_up_all(&log->l_cilp->xc_commit_wait);
3935         spin_unlock(&log->l_cilp->xc_push_lock);
3936         xlog_state_do_callback(log, true);
3937
3938         /* return non-zero if log IOERROR transition had already happened */
3939         return retval;
3940 }
3941
3942 STATIC int
3943 xlog_iclogs_empty(
3944         struct xlog     *log)
3945 {
3946         xlog_in_core_t  *iclog;
3947
3948         iclog = log->l_iclog;
3949         do {
3950                 /* endianness does not matter here, zero is zero in
3951                  * any language.
3952                  */
3953                 if (iclog->ic_header.h_num_logops)
3954                         return 0;
3955                 iclog = iclog->ic_next;
3956         } while (iclog != log->l_iclog);
3957         return 1;
3958 }
3959
3960 /*
3961  * Verify that an LSN stamped into a piece of metadata is valid. This is
3962  * intended for use in read verifiers on v5 superblocks.
3963  */
3964 bool
3965 xfs_log_check_lsn(
3966         struct xfs_mount        *mp,
3967         xfs_lsn_t               lsn)
3968 {
3969         struct xlog             *log = mp->m_log;
3970         bool                    valid;
3971
3972         /*
3973          * norecovery mode skips mount-time log processing and unconditionally
3974          * resets the in-core LSN. We can't validate in this mode, but
3975          * modifications are not allowed anyways so just return true.
3976          */
3977         if (mp->m_flags & XFS_MOUNT_NORECOVERY)
3978                 return true;
3979
3980         /*
3981          * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3982          * handled by recovery and thus safe to ignore here.
3983          */
3984         if (lsn == NULLCOMMITLSN)
3985                 return true;
3986
3987         valid = xlog_valid_lsn(mp->m_log, lsn);
3988
3989         /* warn the user about what's gone wrong before verifier failure */
3990         if (!valid) {
3991                 spin_lock(&log->l_icloglock);
3992                 xfs_warn(mp,
3993 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3994 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3995                          CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3996                          log->l_curr_cycle, log->l_curr_block);
3997                 spin_unlock(&log->l_icloglock);
3998         }
3999
4000         return valid;
4001 }
4002
4003 bool
4004 xfs_log_in_recovery(
4005         struct xfs_mount        *mp)
4006 {
4007         struct xlog             *log = mp->m_log;
4008
4009         return log->l_flags & XLOG_ACTIVE_RECOVERY;
4010 }