]> asedeno.scripts.mit.edu Git - linux.git/blob - kernel/bpf/btf.c
Merge tag 'staging-5.5-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[linux.git] / kernel / bpf / btf.c
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/skmsg.h>
22 #include <linux/perf_event.h>
23 #include <net/sock.h>
24
25 /* BTF (BPF Type Format) is the meta data format which describes
26  * the data types of BPF program/map.  Hence, it basically focus
27  * on the C programming language which the modern BPF is primary
28  * using.
29  *
30  * ELF Section:
31  * ~~~~~~~~~~~
32  * The BTF data is stored under the ".BTF" ELF section
33  *
34  * struct btf_type:
35  * ~~~~~~~~~~~~~~~
36  * Each 'struct btf_type' object describes a C data type.
37  * Depending on the type it is describing, a 'struct btf_type'
38  * object may be followed by more data.  F.e.
39  * To describe an array, 'struct btf_type' is followed by
40  * 'struct btf_array'.
41  *
42  * 'struct btf_type' and any extra data following it are
43  * 4 bytes aligned.
44  *
45  * Type section:
46  * ~~~~~~~~~~~~~
47  * The BTF type section contains a list of 'struct btf_type' objects.
48  * Each one describes a C type.  Recall from the above section
49  * that a 'struct btf_type' object could be immediately followed by extra
50  * data in order to desribe some particular C types.
51  *
52  * type_id:
53  * ~~~~~~~
54  * Each btf_type object is identified by a type_id.  The type_id
55  * is implicitly implied by the location of the btf_type object in
56  * the BTF type section.  The first one has type_id 1.  The second
57  * one has type_id 2...etc.  Hence, an earlier btf_type has
58  * a smaller type_id.
59  *
60  * A btf_type object may refer to another btf_type object by using
61  * type_id (i.e. the "type" in the "struct btf_type").
62  *
63  * NOTE that we cannot assume any reference-order.
64  * A btf_type object can refer to an earlier btf_type object
65  * but it can also refer to a later btf_type object.
66  *
67  * For example, to describe "const void *".  A btf_type
68  * object describing "const" may refer to another btf_type
69  * object describing "void *".  This type-reference is done
70  * by specifying type_id:
71  *
72  * [1] CONST (anon) type_id=2
73  * [2] PTR (anon) type_id=0
74  *
75  * The above is the btf_verifier debug log:
76  *   - Each line started with "[?]" is a btf_type object
77  *   - [?] is the type_id of the btf_type object.
78  *   - CONST/PTR is the BTF_KIND_XXX
79  *   - "(anon)" is the name of the type.  It just
80  *     happens that CONST and PTR has no name.
81  *   - type_id=XXX is the 'u32 type' in btf_type
82  *
83  * NOTE: "void" has type_id 0
84  *
85  * String section:
86  * ~~~~~~~~~~~~~~
87  * The BTF string section contains the names used by the type section.
88  * Each string is referred by an "offset" from the beginning of the
89  * string section.
90  *
91  * Each string is '\0' terminated.
92  *
93  * The first character in the string section must be '\0'
94  * which is used to mean 'anonymous'. Some btf_type may not
95  * have a name.
96  */
97
98 /* BTF verification:
99  *
100  * To verify BTF data, two passes are needed.
101  *
102  * Pass #1
103  * ~~~~~~~
104  * The first pass is to collect all btf_type objects to
105  * an array: "btf->types".
106  *
107  * Depending on the C type that a btf_type is describing,
108  * a btf_type may be followed by extra data.  We don't know
109  * how many btf_type is there, and more importantly we don't
110  * know where each btf_type is located in the type section.
111  *
112  * Without knowing the location of each type_id, most verifications
113  * cannot be done.  e.g. an earlier btf_type may refer to a later
114  * btf_type (recall the "const void *" above), so we cannot
115  * check this type-reference in the first pass.
116  *
117  * In the first pass, it still does some verifications (e.g.
118  * checking the name is a valid offset to the string section).
119  *
120  * Pass #2
121  * ~~~~~~~
122  * The main focus is to resolve a btf_type that is referring
123  * to another type.
124  *
125  * We have to ensure the referring type:
126  * 1) does exist in the BTF (i.e. in btf->types[])
127  * 2) does not cause a loop:
128  *      struct A {
129  *              struct B b;
130  *      };
131  *
132  *      struct B {
133  *              struct A a;
134  *      };
135  *
136  * btf_type_needs_resolve() decides if a btf_type needs
137  * to be resolved.
138  *
139  * The needs_resolve type implements the "resolve()" ops which
140  * essentially does a DFS and detects backedge.
141  *
142  * During resolve (or DFS), different C types have different
143  * "RESOLVED" conditions.
144  *
145  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
146  * members because a member is always referring to another
147  * type.  A struct's member can be treated as "RESOLVED" if
148  * it is referring to a BTF_KIND_PTR.  Otherwise, the
149  * following valid C struct would be rejected:
150  *
151  *      struct A {
152  *              int m;
153  *              struct A *a;
154  *      };
155  *
156  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
157  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
158  * detect a pointer loop, e.g.:
159  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
160  *                        ^                                         |
161  *                        +-----------------------------------------+
162  *
163  */
164
165 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
166 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
167 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
168 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
169 #define BITS_ROUNDUP_BYTES(bits) \
170         (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
171
172 #define BTF_INFO_MASK 0x8f00ffff
173 #define BTF_INT_MASK 0x0fffffff
174 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
175 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
176
177 /* 16MB for 64k structs and each has 16 members and
178  * a few MB spaces for the string section.
179  * The hard limit is S32_MAX.
180  */
181 #define BTF_MAX_SIZE (16 * 1024 * 1024)
182
183 #define for_each_member(i, struct_type, member)                 \
184         for (i = 0, member = btf_type_member(struct_type);      \
185              i < btf_type_vlen(struct_type);                    \
186              i++, member++)
187
188 #define for_each_member_from(i, from, struct_type, member)              \
189         for (i = from, member = btf_type_member(struct_type) + from;    \
190              i < btf_type_vlen(struct_type);                            \
191              i++, member++)
192
193 #define for_each_vsi(i, struct_type, member)                    \
194         for (i = 0, member = btf_type_var_secinfo(struct_type); \
195              i < btf_type_vlen(struct_type);                    \
196              i++, member++)
197
198 #define for_each_vsi_from(i, from, struct_type, member)                         \
199         for (i = from, member = btf_type_var_secinfo(struct_type) + from;       \
200              i < btf_type_vlen(struct_type);                                    \
201              i++, member++)
202
203 DEFINE_IDR(btf_idr);
204 DEFINE_SPINLOCK(btf_idr_lock);
205
206 struct btf {
207         void *data;
208         struct btf_type **types;
209         u32 *resolved_ids;
210         u32 *resolved_sizes;
211         const char *strings;
212         void *nohdr_data;
213         struct btf_header hdr;
214         u32 nr_types;
215         u32 types_size;
216         u32 data_size;
217         refcount_t refcnt;
218         u32 id;
219         struct rcu_head rcu;
220 };
221
222 enum verifier_phase {
223         CHECK_META,
224         CHECK_TYPE,
225 };
226
227 struct resolve_vertex {
228         const struct btf_type *t;
229         u32 type_id;
230         u16 next_member;
231 };
232
233 enum visit_state {
234         NOT_VISITED,
235         VISITED,
236         RESOLVED,
237 };
238
239 enum resolve_mode {
240         RESOLVE_TBD,    /* To Be Determined */
241         RESOLVE_PTR,    /* Resolving for Pointer */
242         RESOLVE_STRUCT_OR_ARRAY,        /* Resolving for struct/union
243                                          * or array
244                                          */
245 };
246
247 #define MAX_RESOLVE_DEPTH 32
248
249 struct btf_sec_info {
250         u32 off;
251         u32 len;
252 };
253
254 struct btf_verifier_env {
255         struct btf *btf;
256         u8 *visit_states;
257         struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
258         struct bpf_verifier_log log;
259         u32 log_type_id;
260         u32 top_stack;
261         enum verifier_phase phase;
262         enum resolve_mode resolve_mode;
263 };
264
265 static const char * const btf_kind_str[NR_BTF_KINDS] = {
266         [BTF_KIND_UNKN]         = "UNKNOWN",
267         [BTF_KIND_INT]          = "INT",
268         [BTF_KIND_PTR]          = "PTR",
269         [BTF_KIND_ARRAY]        = "ARRAY",
270         [BTF_KIND_STRUCT]       = "STRUCT",
271         [BTF_KIND_UNION]        = "UNION",
272         [BTF_KIND_ENUM]         = "ENUM",
273         [BTF_KIND_FWD]          = "FWD",
274         [BTF_KIND_TYPEDEF]      = "TYPEDEF",
275         [BTF_KIND_VOLATILE]     = "VOLATILE",
276         [BTF_KIND_CONST]        = "CONST",
277         [BTF_KIND_RESTRICT]     = "RESTRICT",
278         [BTF_KIND_FUNC]         = "FUNC",
279         [BTF_KIND_FUNC_PROTO]   = "FUNC_PROTO",
280         [BTF_KIND_VAR]          = "VAR",
281         [BTF_KIND_DATASEC]      = "DATASEC",
282 };
283
284 struct btf_kind_operations {
285         s32 (*check_meta)(struct btf_verifier_env *env,
286                           const struct btf_type *t,
287                           u32 meta_left);
288         int (*resolve)(struct btf_verifier_env *env,
289                        const struct resolve_vertex *v);
290         int (*check_member)(struct btf_verifier_env *env,
291                             const struct btf_type *struct_type,
292                             const struct btf_member *member,
293                             const struct btf_type *member_type);
294         int (*check_kflag_member)(struct btf_verifier_env *env,
295                                   const struct btf_type *struct_type,
296                                   const struct btf_member *member,
297                                   const struct btf_type *member_type);
298         void (*log_details)(struct btf_verifier_env *env,
299                             const struct btf_type *t);
300         void (*seq_show)(const struct btf *btf, const struct btf_type *t,
301                          u32 type_id, void *data, u8 bits_offsets,
302                          struct seq_file *m);
303 };
304
305 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
306 static struct btf_type btf_void;
307
308 static int btf_resolve(struct btf_verifier_env *env,
309                        const struct btf_type *t, u32 type_id);
310
311 static bool btf_type_is_modifier(const struct btf_type *t)
312 {
313         /* Some of them is not strictly a C modifier
314          * but they are grouped into the same bucket
315          * for BTF concern:
316          *   A type (t) that refers to another
317          *   type through t->type AND its size cannot
318          *   be determined without following the t->type.
319          *
320          * ptr does not fall into this bucket
321          * because its size is always sizeof(void *).
322          */
323         switch (BTF_INFO_KIND(t->info)) {
324         case BTF_KIND_TYPEDEF:
325         case BTF_KIND_VOLATILE:
326         case BTF_KIND_CONST:
327         case BTF_KIND_RESTRICT:
328                 return true;
329         }
330
331         return false;
332 }
333
334 bool btf_type_is_void(const struct btf_type *t)
335 {
336         return t == &btf_void;
337 }
338
339 static bool btf_type_is_fwd(const struct btf_type *t)
340 {
341         return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
342 }
343
344 static bool btf_type_nosize(const struct btf_type *t)
345 {
346         return btf_type_is_void(t) || btf_type_is_fwd(t) ||
347                btf_type_is_func(t) || btf_type_is_func_proto(t);
348 }
349
350 static bool btf_type_nosize_or_null(const struct btf_type *t)
351 {
352         return !t || btf_type_nosize(t);
353 }
354
355 /* union is only a special case of struct:
356  * all its offsetof(member) == 0
357  */
358 static bool btf_type_is_struct(const struct btf_type *t)
359 {
360         u8 kind = BTF_INFO_KIND(t->info);
361
362         return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION;
363 }
364
365 static bool __btf_type_is_struct(const struct btf_type *t)
366 {
367         return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
368 }
369
370 static bool btf_type_is_array(const struct btf_type *t)
371 {
372         return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
373 }
374
375 static bool btf_type_is_var(const struct btf_type *t)
376 {
377         return BTF_INFO_KIND(t->info) == BTF_KIND_VAR;
378 }
379
380 static bool btf_type_is_datasec(const struct btf_type *t)
381 {
382         return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
383 }
384
385 /* Types that act only as a source, not sink or intermediate
386  * type when resolving.
387  */
388 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
389 {
390         return btf_type_is_var(t) ||
391                btf_type_is_datasec(t);
392 }
393
394 /* What types need to be resolved?
395  *
396  * btf_type_is_modifier() is an obvious one.
397  *
398  * btf_type_is_struct() because its member refers to
399  * another type (through member->type).
400  *
401  * btf_type_is_var() because the variable refers to
402  * another type. btf_type_is_datasec() holds multiple
403  * btf_type_is_var() types that need resolving.
404  *
405  * btf_type_is_array() because its element (array->type)
406  * refers to another type.  Array can be thought of a
407  * special case of struct while array just has the same
408  * member-type repeated by array->nelems of times.
409  */
410 static bool btf_type_needs_resolve(const struct btf_type *t)
411 {
412         return btf_type_is_modifier(t) ||
413                btf_type_is_ptr(t) ||
414                btf_type_is_struct(t) ||
415                btf_type_is_array(t) ||
416                btf_type_is_var(t) ||
417                btf_type_is_datasec(t);
418 }
419
420 /* t->size can be used */
421 static bool btf_type_has_size(const struct btf_type *t)
422 {
423         switch (BTF_INFO_KIND(t->info)) {
424         case BTF_KIND_INT:
425         case BTF_KIND_STRUCT:
426         case BTF_KIND_UNION:
427         case BTF_KIND_ENUM:
428         case BTF_KIND_DATASEC:
429                 return true;
430         }
431
432         return false;
433 }
434
435 static const char *btf_int_encoding_str(u8 encoding)
436 {
437         if (encoding == 0)
438                 return "(none)";
439         else if (encoding == BTF_INT_SIGNED)
440                 return "SIGNED";
441         else if (encoding == BTF_INT_CHAR)
442                 return "CHAR";
443         else if (encoding == BTF_INT_BOOL)
444                 return "BOOL";
445         else
446                 return "UNKN";
447 }
448
449 static u16 btf_type_vlen(const struct btf_type *t)
450 {
451         return BTF_INFO_VLEN(t->info);
452 }
453
454 static bool btf_type_kflag(const struct btf_type *t)
455 {
456         return BTF_INFO_KFLAG(t->info);
457 }
458
459 static u32 btf_member_bit_offset(const struct btf_type *struct_type,
460                              const struct btf_member *member)
461 {
462         return btf_type_kflag(struct_type) ? BTF_MEMBER_BIT_OFFSET(member->offset)
463                                            : member->offset;
464 }
465
466 static u32 btf_member_bitfield_size(const struct btf_type *struct_type,
467                                     const struct btf_member *member)
468 {
469         return btf_type_kflag(struct_type) ? BTF_MEMBER_BITFIELD_SIZE(member->offset)
470                                            : 0;
471 }
472
473 static u32 btf_type_int(const struct btf_type *t)
474 {
475         return *(u32 *)(t + 1);
476 }
477
478 static const struct btf_array *btf_type_array(const struct btf_type *t)
479 {
480         return (const struct btf_array *)(t + 1);
481 }
482
483 static const struct btf_member *btf_type_member(const struct btf_type *t)
484 {
485         return (const struct btf_member *)(t + 1);
486 }
487
488 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
489 {
490         return (const struct btf_enum *)(t + 1);
491 }
492
493 static const struct btf_var *btf_type_var(const struct btf_type *t)
494 {
495         return (const struct btf_var *)(t + 1);
496 }
497
498 static const struct btf_var_secinfo *btf_type_var_secinfo(const struct btf_type *t)
499 {
500         return (const struct btf_var_secinfo *)(t + 1);
501 }
502
503 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
504 {
505         return kind_ops[BTF_INFO_KIND(t->info)];
506 }
507
508 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
509 {
510         return BTF_STR_OFFSET_VALID(offset) &&
511                 offset < btf->hdr.str_len;
512 }
513
514 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
515 {
516         if ((first ? !isalpha(c) :
517                      !isalnum(c)) &&
518             c != '_' &&
519             ((c == '.' && !dot_ok) ||
520               c != '.'))
521                 return false;
522         return true;
523 }
524
525 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
526 {
527         /* offset must be valid */
528         const char *src = &btf->strings[offset];
529         const char *src_limit;
530
531         if (!__btf_name_char_ok(*src, true, dot_ok))
532                 return false;
533
534         /* set a limit on identifier length */
535         src_limit = src + KSYM_NAME_LEN;
536         src++;
537         while (*src && src < src_limit) {
538                 if (!__btf_name_char_ok(*src, false, dot_ok))
539                         return false;
540                 src++;
541         }
542
543         return !*src;
544 }
545
546 /* Only C-style identifier is permitted. This can be relaxed if
547  * necessary.
548  */
549 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
550 {
551         return __btf_name_valid(btf, offset, false);
552 }
553
554 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
555 {
556         return __btf_name_valid(btf, offset, true);
557 }
558
559 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
560 {
561         if (!offset)
562                 return "(anon)";
563         else if (offset < btf->hdr.str_len)
564                 return &btf->strings[offset];
565         else
566                 return "(invalid-name-offset)";
567 }
568
569 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
570 {
571         if (offset < btf->hdr.str_len)
572                 return &btf->strings[offset];
573
574         return NULL;
575 }
576
577 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
578 {
579         if (type_id > btf->nr_types)
580                 return NULL;
581
582         return btf->types[type_id];
583 }
584
585 /*
586  * Regular int is not a bit field and it must be either
587  * u8/u16/u32/u64 or __int128.
588  */
589 static bool btf_type_int_is_regular(const struct btf_type *t)
590 {
591         u8 nr_bits, nr_bytes;
592         u32 int_data;
593
594         int_data = btf_type_int(t);
595         nr_bits = BTF_INT_BITS(int_data);
596         nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
597         if (BITS_PER_BYTE_MASKED(nr_bits) ||
598             BTF_INT_OFFSET(int_data) ||
599             (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
600              nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
601              nr_bytes != (2 * sizeof(u64)))) {
602                 return false;
603         }
604
605         return true;
606 }
607
608 /*
609  * Check that given struct member is a regular int with expected
610  * offset and size.
611  */
612 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
613                            const struct btf_member *m,
614                            u32 expected_offset, u32 expected_size)
615 {
616         const struct btf_type *t;
617         u32 id, int_data;
618         u8 nr_bits;
619
620         id = m->type;
621         t = btf_type_id_size(btf, &id, NULL);
622         if (!t || !btf_type_is_int(t))
623                 return false;
624
625         int_data = btf_type_int(t);
626         nr_bits = BTF_INT_BITS(int_data);
627         if (btf_type_kflag(s)) {
628                 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
629                 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
630
631                 /* if kflag set, int should be a regular int and
632                  * bit offset should be at byte boundary.
633                  */
634                 return !bitfield_size &&
635                        BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
636                        BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
637         }
638
639         if (BTF_INT_OFFSET(int_data) ||
640             BITS_PER_BYTE_MASKED(m->offset) ||
641             BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
642             BITS_PER_BYTE_MASKED(nr_bits) ||
643             BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
644                 return false;
645
646         return true;
647 }
648
649 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
650                                               const char *fmt, ...)
651 {
652         va_list args;
653
654         va_start(args, fmt);
655         bpf_verifier_vlog(log, fmt, args);
656         va_end(args);
657 }
658
659 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
660                                             const char *fmt, ...)
661 {
662         struct bpf_verifier_log *log = &env->log;
663         va_list args;
664
665         if (!bpf_verifier_log_needed(log))
666                 return;
667
668         va_start(args, fmt);
669         bpf_verifier_vlog(log, fmt, args);
670         va_end(args);
671 }
672
673 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
674                                                    const struct btf_type *t,
675                                                    bool log_details,
676                                                    const char *fmt, ...)
677 {
678         struct bpf_verifier_log *log = &env->log;
679         u8 kind = BTF_INFO_KIND(t->info);
680         struct btf *btf = env->btf;
681         va_list args;
682
683         if (!bpf_verifier_log_needed(log))
684                 return;
685
686         /* btf verifier prints all types it is processing via
687          * btf_verifier_log_type(..., fmt = NULL).
688          * Skip those prints for in-kernel BTF verification.
689          */
690         if (log->level == BPF_LOG_KERNEL && !fmt)
691                 return;
692
693         __btf_verifier_log(log, "[%u] %s %s%s",
694                            env->log_type_id,
695                            btf_kind_str[kind],
696                            __btf_name_by_offset(btf, t->name_off),
697                            log_details ? " " : "");
698
699         if (log_details)
700                 btf_type_ops(t)->log_details(env, t);
701
702         if (fmt && *fmt) {
703                 __btf_verifier_log(log, " ");
704                 va_start(args, fmt);
705                 bpf_verifier_vlog(log, fmt, args);
706                 va_end(args);
707         }
708
709         __btf_verifier_log(log, "\n");
710 }
711
712 #define btf_verifier_log_type(env, t, ...) \
713         __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
714 #define btf_verifier_log_basic(env, t, ...) \
715         __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
716
717 __printf(4, 5)
718 static void btf_verifier_log_member(struct btf_verifier_env *env,
719                                     const struct btf_type *struct_type,
720                                     const struct btf_member *member,
721                                     const char *fmt, ...)
722 {
723         struct bpf_verifier_log *log = &env->log;
724         struct btf *btf = env->btf;
725         va_list args;
726
727         if (!bpf_verifier_log_needed(log))
728                 return;
729
730         if (log->level == BPF_LOG_KERNEL && !fmt)
731                 return;
732         /* The CHECK_META phase already did a btf dump.
733          *
734          * If member is logged again, it must hit an error in
735          * parsing this member.  It is useful to print out which
736          * struct this member belongs to.
737          */
738         if (env->phase != CHECK_META)
739                 btf_verifier_log_type(env, struct_type, NULL);
740
741         if (btf_type_kflag(struct_type))
742                 __btf_verifier_log(log,
743                                    "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
744                                    __btf_name_by_offset(btf, member->name_off),
745                                    member->type,
746                                    BTF_MEMBER_BITFIELD_SIZE(member->offset),
747                                    BTF_MEMBER_BIT_OFFSET(member->offset));
748         else
749                 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
750                                    __btf_name_by_offset(btf, member->name_off),
751                                    member->type, member->offset);
752
753         if (fmt && *fmt) {
754                 __btf_verifier_log(log, " ");
755                 va_start(args, fmt);
756                 bpf_verifier_vlog(log, fmt, args);
757                 va_end(args);
758         }
759
760         __btf_verifier_log(log, "\n");
761 }
762
763 __printf(4, 5)
764 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
765                                  const struct btf_type *datasec_type,
766                                  const struct btf_var_secinfo *vsi,
767                                  const char *fmt, ...)
768 {
769         struct bpf_verifier_log *log = &env->log;
770         va_list args;
771
772         if (!bpf_verifier_log_needed(log))
773                 return;
774         if (log->level == BPF_LOG_KERNEL && !fmt)
775                 return;
776         if (env->phase != CHECK_META)
777                 btf_verifier_log_type(env, datasec_type, NULL);
778
779         __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
780                            vsi->type, vsi->offset, vsi->size);
781         if (fmt && *fmt) {
782                 __btf_verifier_log(log, " ");
783                 va_start(args, fmt);
784                 bpf_verifier_vlog(log, fmt, args);
785                 va_end(args);
786         }
787
788         __btf_verifier_log(log, "\n");
789 }
790
791 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
792                                  u32 btf_data_size)
793 {
794         struct bpf_verifier_log *log = &env->log;
795         const struct btf *btf = env->btf;
796         const struct btf_header *hdr;
797
798         if (!bpf_verifier_log_needed(log))
799                 return;
800
801         if (log->level == BPF_LOG_KERNEL)
802                 return;
803         hdr = &btf->hdr;
804         __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
805         __btf_verifier_log(log, "version: %u\n", hdr->version);
806         __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
807         __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
808         __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
809         __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
810         __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
811         __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
812         __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
813 }
814
815 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
816 {
817         struct btf *btf = env->btf;
818
819         /* < 2 because +1 for btf_void which is always in btf->types[0].
820          * btf_void is not accounted in btf->nr_types because btf_void
821          * does not come from the BTF file.
822          */
823         if (btf->types_size - btf->nr_types < 2) {
824                 /* Expand 'types' array */
825
826                 struct btf_type **new_types;
827                 u32 expand_by, new_size;
828
829                 if (btf->types_size == BTF_MAX_TYPE) {
830                         btf_verifier_log(env, "Exceeded max num of types");
831                         return -E2BIG;
832                 }
833
834                 expand_by = max_t(u32, btf->types_size >> 2, 16);
835                 new_size = min_t(u32, BTF_MAX_TYPE,
836                                  btf->types_size + expand_by);
837
838                 new_types = kvcalloc(new_size, sizeof(*new_types),
839                                      GFP_KERNEL | __GFP_NOWARN);
840                 if (!new_types)
841                         return -ENOMEM;
842
843                 if (btf->nr_types == 0)
844                         new_types[0] = &btf_void;
845                 else
846                         memcpy(new_types, btf->types,
847                                sizeof(*btf->types) * (btf->nr_types + 1));
848
849                 kvfree(btf->types);
850                 btf->types = new_types;
851                 btf->types_size = new_size;
852         }
853
854         btf->types[++(btf->nr_types)] = t;
855
856         return 0;
857 }
858
859 static int btf_alloc_id(struct btf *btf)
860 {
861         int id;
862
863         idr_preload(GFP_KERNEL);
864         spin_lock_bh(&btf_idr_lock);
865         id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
866         if (id > 0)
867                 btf->id = id;
868         spin_unlock_bh(&btf_idr_lock);
869         idr_preload_end();
870
871         if (WARN_ON_ONCE(!id))
872                 return -ENOSPC;
873
874         return id > 0 ? 0 : id;
875 }
876
877 static void btf_free_id(struct btf *btf)
878 {
879         unsigned long flags;
880
881         /*
882          * In map-in-map, calling map_delete_elem() on outer
883          * map will call bpf_map_put on the inner map.
884          * It will then eventually call btf_free_id()
885          * on the inner map.  Some of the map_delete_elem()
886          * implementation may have irq disabled, so
887          * we need to use the _irqsave() version instead
888          * of the _bh() version.
889          */
890         spin_lock_irqsave(&btf_idr_lock, flags);
891         idr_remove(&btf_idr, btf->id);
892         spin_unlock_irqrestore(&btf_idr_lock, flags);
893 }
894
895 static void btf_free(struct btf *btf)
896 {
897         kvfree(btf->types);
898         kvfree(btf->resolved_sizes);
899         kvfree(btf->resolved_ids);
900         kvfree(btf->data);
901         kfree(btf);
902 }
903
904 static void btf_free_rcu(struct rcu_head *rcu)
905 {
906         struct btf *btf = container_of(rcu, struct btf, rcu);
907
908         btf_free(btf);
909 }
910
911 void btf_put(struct btf *btf)
912 {
913         if (btf && refcount_dec_and_test(&btf->refcnt)) {
914                 btf_free_id(btf);
915                 call_rcu(&btf->rcu, btf_free_rcu);
916         }
917 }
918
919 static int env_resolve_init(struct btf_verifier_env *env)
920 {
921         struct btf *btf = env->btf;
922         u32 nr_types = btf->nr_types;
923         u32 *resolved_sizes = NULL;
924         u32 *resolved_ids = NULL;
925         u8 *visit_states = NULL;
926
927         /* +1 for btf_void */
928         resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes),
929                                   GFP_KERNEL | __GFP_NOWARN);
930         if (!resolved_sizes)
931                 goto nomem;
932
933         resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids),
934                                 GFP_KERNEL | __GFP_NOWARN);
935         if (!resolved_ids)
936                 goto nomem;
937
938         visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states),
939                                 GFP_KERNEL | __GFP_NOWARN);
940         if (!visit_states)
941                 goto nomem;
942
943         btf->resolved_sizes = resolved_sizes;
944         btf->resolved_ids = resolved_ids;
945         env->visit_states = visit_states;
946
947         return 0;
948
949 nomem:
950         kvfree(resolved_sizes);
951         kvfree(resolved_ids);
952         kvfree(visit_states);
953         return -ENOMEM;
954 }
955
956 static void btf_verifier_env_free(struct btf_verifier_env *env)
957 {
958         kvfree(env->visit_states);
959         kfree(env);
960 }
961
962 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
963                                      const struct btf_type *next_type)
964 {
965         switch (env->resolve_mode) {
966         case RESOLVE_TBD:
967                 /* int, enum or void is a sink */
968                 return !btf_type_needs_resolve(next_type);
969         case RESOLVE_PTR:
970                 /* int, enum, void, struct, array, func or func_proto is a sink
971                  * for ptr
972                  */
973                 return !btf_type_is_modifier(next_type) &&
974                         !btf_type_is_ptr(next_type);
975         case RESOLVE_STRUCT_OR_ARRAY:
976                 /* int, enum, void, ptr, func or func_proto is a sink
977                  * for struct and array
978                  */
979                 return !btf_type_is_modifier(next_type) &&
980                         !btf_type_is_array(next_type) &&
981                         !btf_type_is_struct(next_type);
982         default:
983                 BUG();
984         }
985 }
986
987 static bool env_type_is_resolved(const struct btf_verifier_env *env,
988                                  u32 type_id)
989 {
990         return env->visit_states[type_id] == RESOLVED;
991 }
992
993 static int env_stack_push(struct btf_verifier_env *env,
994                           const struct btf_type *t, u32 type_id)
995 {
996         struct resolve_vertex *v;
997
998         if (env->top_stack == MAX_RESOLVE_DEPTH)
999                 return -E2BIG;
1000
1001         if (env->visit_states[type_id] != NOT_VISITED)
1002                 return -EEXIST;
1003
1004         env->visit_states[type_id] = VISITED;
1005
1006         v = &env->stack[env->top_stack++];
1007         v->t = t;
1008         v->type_id = type_id;
1009         v->next_member = 0;
1010
1011         if (env->resolve_mode == RESOLVE_TBD) {
1012                 if (btf_type_is_ptr(t))
1013                         env->resolve_mode = RESOLVE_PTR;
1014                 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1015                         env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1016         }
1017
1018         return 0;
1019 }
1020
1021 static void env_stack_set_next_member(struct btf_verifier_env *env,
1022                                       u16 next_member)
1023 {
1024         env->stack[env->top_stack - 1].next_member = next_member;
1025 }
1026
1027 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1028                                    u32 resolved_type_id,
1029                                    u32 resolved_size)
1030 {
1031         u32 type_id = env->stack[--(env->top_stack)].type_id;
1032         struct btf *btf = env->btf;
1033
1034         btf->resolved_sizes[type_id] = resolved_size;
1035         btf->resolved_ids[type_id] = resolved_type_id;
1036         env->visit_states[type_id] = RESOLVED;
1037 }
1038
1039 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1040 {
1041         return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1042 }
1043
1044 /* Resolve the size of a passed-in "type"
1045  *
1046  * type: is an array (e.g. u32 array[x][y])
1047  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1048  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1049  *             corresponds to the return type.
1050  * *elem_type: u32
1051  * *total_nelems: (x * y).  Hence, individual elem size is
1052  *                (*type_size / *total_nelems)
1053  *
1054  * type: is not an array (e.g. const struct X)
1055  * return type: type "struct X"
1056  * *type_size: sizeof(struct X)
1057  * *elem_type: same as return type ("struct X")
1058  * *total_nelems: 1
1059  */
1060 static const struct btf_type *
1061 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1062                  u32 *type_size, const struct btf_type **elem_type,
1063                  u32 *total_nelems)
1064 {
1065         const struct btf_type *array_type = NULL;
1066         const struct btf_array *array;
1067         u32 i, size, nelems = 1;
1068
1069         for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1070                 switch (BTF_INFO_KIND(type->info)) {
1071                 /* type->size can be used */
1072                 case BTF_KIND_INT:
1073                 case BTF_KIND_STRUCT:
1074                 case BTF_KIND_UNION:
1075                 case BTF_KIND_ENUM:
1076                         size = type->size;
1077                         goto resolved;
1078
1079                 case BTF_KIND_PTR:
1080                         size = sizeof(void *);
1081                         goto resolved;
1082
1083                 /* Modifiers */
1084                 case BTF_KIND_TYPEDEF:
1085                 case BTF_KIND_VOLATILE:
1086                 case BTF_KIND_CONST:
1087                 case BTF_KIND_RESTRICT:
1088                         type = btf_type_by_id(btf, type->type);
1089                         break;
1090
1091                 case BTF_KIND_ARRAY:
1092                         if (!array_type)
1093                                 array_type = type;
1094                         array = btf_type_array(type);
1095                         if (nelems && array->nelems > U32_MAX / nelems)
1096                                 return ERR_PTR(-EINVAL);
1097                         nelems *= array->nelems;
1098                         type = btf_type_by_id(btf, array->type);
1099                         break;
1100
1101                 /* type without size */
1102                 default:
1103                         return ERR_PTR(-EINVAL);
1104                 }
1105         }
1106
1107         return ERR_PTR(-EINVAL);
1108
1109 resolved:
1110         if (nelems && size > U32_MAX / nelems)
1111                 return ERR_PTR(-EINVAL);
1112
1113         *type_size = nelems * size;
1114         *total_nelems = nelems;
1115         *elem_type = type;
1116
1117         return array_type ? : type;
1118 }
1119
1120 /* The input param "type_id" must point to a needs_resolve type */
1121 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1122                                                   u32 *type_id)
1123 {
1124         *type_id = btf->resolved_ids[*type_id];
1125         return btf_type_by_id(btf, *type_id);
1126 }
1127
1128 const struct btf_type *btf_type_id_size(const struct btf *btf,
1129                                         u32 *type_id, u32 *ret_size)
1130 {
1131         const struct btf_type *size_type;
1132         u32 size_type_id = *type_id;
1133         u32 size = 0;
1134
1135         size_type = btf_type_by_id(btf, size_type_id);
1136         if (btf_type_nosize_or_null(size_type))
1137                 return NULL;
1138
1139         if (btf_type_has_size(size_type)) {
1140                 size = size_type->size;
1141         } else if (btf_type_is_array(size_type)) {
1142                 size = btf->resolved_sizes[size_type_id];
1143         } else if (btf_type_is_ptr(size_type)) {
1144                 size = sizeof(void *);
1145         } else {
1146                 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1147                                  !btf_type_is_var(size_type)))
1148                         return NULL;
1149
1150                 size_type_id = btf->resolved_ids[size_type_id];
1151                 size_type = btf_type_by_id(btf, size_type_id);
1152                 if (btf_type_nosize_or_null(size_type))
1153                         return NULL;
1154                 else if (btf_type_has_size(size_type))
1155                         size = size_type->size;
1156                 else if (btf_type_is_array(size_type))
1157                         size = btf->resolved_sizes[size_type_id];
1158                 else if (btf_type_is_ptr(size_type))
1159                         size = sizeof(void *);
1160                 else
1161                         return NULL;
1162         }
1163
1164         *type_id = size_type_id;
1165         if (ret_size)
1166                 *ret_size = size;
1167
1168         return size_type;
1169 }
1170
1171 static int btf_df_check_member(struct btf_verifier_env *env,
1172                                const struct btf_type *struct_type,
1173                                const struct btf_member *member,
1174                                const struct btf_type *member_type)
1175 {
1176         btf_verifier_log_basic(env, struct_type,
1177                                "Unsupported check_member");
1178         return -EINVAL;
1179 }
1180
1181 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1182                                      const struct btf_type *struct_type,
1183                                      const struct btf_member *member,
1184                                      const struct btf_type *member_type)
1185 {
1186         btf_verifier_log_basic(env, struct_type,
1187                                "Unsupported check_kflag_member");
1188         return -EINVAL;
1189 }
1190
1191 /* Used for ptr, array and struct/union type members.
1192  * int, enum and modifier types have their specific callback functions.
1193  */
1194 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1195                                           const struct btf_type *struct_type,
1196                                           const struct btf_member *member,
1197                                           const struct btf_type *member_type)
1198 {
1199         if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1200                 btf_verifier_log_member(env, struct_type, member,
1201                                         "Invalid member bitfield_size");
1202                 return -EINVAL;
1203         }
1204
1205         /* bitfield size is 0, so member->offset represents bit offset only.
1206          * It is safe to call non kflag check_member variants.
1207          */
1208         return btf_type_ops(member_type)->check_member(env, struct_type,
1209                                                        member,
1210                                                        member_type);
1211 }
1212
1213 static int btf_df_resolve(struct btf_verifier_env *env,
1214                           const struct resolve_vertex *v)
1215 {
1216         btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1217         return -EINVAL;
1218 }
1219
1220 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t,
1221                             u32 type_id, void *data, u8 bits_offsets,
1222                             struct seq_file *m)
1223 {
1224         seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1225 }
1226
1227 static int btf_int_check_member(struct btf_verifier_env *env,
1228                                 const struct btf_type *struct_type,
1229                                 const struct btf_member *member,
1230                                 const struct btf_type *member_type)
1231 {
1232         u32 int_data = btf_type_int(member_type);
1233         u32 struct_bits_off = member->offset;
1234         u32 struct_size = struct_type->size;
1235         u32 nr_copy_bits;
1236         u32 bytes_offset;
1237
1238         if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1239                 btf_verifier_log_member(env, struct_type, member,
1240                                         "bits_offset exceeds U32_MAX");
1241                 return -EINVAL;
1242         }
1243
1244         struct_bits_off += BTF_INT_OFFSET(int_data);
1245         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1246         nr_copy_bits = BTF_INT_BITS(int_data) +
1247                 BITS_PER_BYTE_MASKED(struct_bits_off);
1248
1249         if (nr_copy_bits > BITS_PER_U128) {
1250                 btf_verifier_log_member(env, struct_type, member,
1251                                         "nr_copy_bits exceeds 128");
1252                 return -EINVAL;
1253         }
1254
1255         if (struct_size < bytes_offset ||
1256             struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1257                 btf_verifier_log_member(env, struct_type, member,
1258                                         "Member exceeds struct_size");
1259                 return -EINVAL;
1260         }
1261
1262         return 0;
1263 }
1264
1265 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1266                                       const struct btf_type *struct_type,
1267                                       const struct btf_member *member,
1268                                       const struct btf_type *member_type)
1269 {
1270         u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1271         u32 int_data = btf_type_int(member_type);
1272         u32 struct_size = struct_type->size;
1273         u32 nr_copy_bits;
1274
1275         /* a regular int type is required for the kflag int member */
1276         if (!btf_type_int_is_regular(member_type)) {
1277                 btf_verifier_log_member(env, struct_type, member,
1278                                         "Invalid member base type");
1279                 return -EINVAL;
1280         }
1281
1282         /* check sanity of bitfield size */
1283         nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1284         struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1285         nr_int_data_bits = BTF_INT_BITS(int_data);
1286         if (!nr_bits) {
1287                 /* Not a bitfield member, member offset must be at byte
1288                  * boundary.
1289                  */
1290                 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1291                         btf_verifier_log_member(env, struct_type, member,
1292                                                 "Invalid member offset");
1293                         return -EINVAL;
1294                 }
1295
1296                 nr_bits = nr_int_data_bits;
1297         } else if (nr_bits > nr_int_data_bits) {
1298                 btf_verifier_log_member(env, struct_type, member,
1299                                         "Invalid member bitfield_size");
1300                 return -EINVAL;
1301         }
1302
1303         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1304         nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1305         if (nr_copy_bits > BITS_PER_U128) {
1306                 btf_verifier_log_member(env, struct_type, member,
1307                                         "nr_copy_bits exceeds 128");
1308                 return -EINVAL;
1309         }
1310
1311         if (struct_size < bytes_offset ||
1312             struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1313                 btf_verifier_log_member(env, struct_type, member,
1314                                         "Member exceeds struct_size");
1315                 return -EINVAL;
1316         }
1317
1318         return 0;
1319 }
1320
1321 static s32 btf_int_check_meta(struct btf_verifier_env *env,
1322                               const struct btf_type *t,
1323                               u32 meta_left)
1324 {
1325         u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1326         u16 encoding;
1327
1328         if (meta_left < meta_needed) {
1329                 btf_verifier_log_basic(env, t,
1330                                        "meta_left:%u meta_needed:%u",
1331                                        meta_left, meta_needed);
1332                 return -EINVAL;
1333         }
1334
1335         if (btf_type_vlen(t)) {
1336                 btf_verifier_log_type(env, t, "vlen != 0");
1337                 return -EINVAL;
1338         }
1339
1340         if (btf_type_kflag(t)) {
1341                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1342                 return -EINVAL;
1343         }
1344
1345         int_data = btf_type_int(t);
1346         if (int_data & ~BTF_INT_MASK) {
1347                 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
1348                                        int_data);
1349                 return -EINVAL;
1350         }
1351
1352         nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
1353
1354         if (nr_bits > BITS_PER_U128) {
1355                 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
1356                                       BITS_PER_U128);
1357                 return -EINVAL;
1358         }
1359
1360         if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
1361                 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
1362                 return -EINVAL;
1363         }
1364
1365         /*
1366          * Only one of the encoding bits is allowed and it
1367          * should be sufficient for the pretty print purpose (i.e. decoding).
1368          * Multiple bits can be allowed later if it is found
1369          * to be insufficient.
1370          */
1371         encoding = BTF_INT_ENCODING(int_data);
1372         if (encoding &&
1373             encoding != BTF_INT_SIGNED &&
1374             encoding != BTF_INT_CHAR &&
1375             encoding != BTF_INT_BOOL) {
1376                 btf_verifier_log_type(env, t, "Unsupported encoding");
1377                 return -ENOTSUPP;
1378         }
1379
1380         btf_verifier_log_type(env, t, NULL);
1381
1382         return meta_needed;
1383 }
1384
1385 static void btf_int_log(struct btf_verifier_env *env,
1386                         const struct btf_type *t)
1387 {
1388         int int_data = btf_type_int(t);
1389
1390         btf_verifier_log(env,
1391                          "size=%u bits_offset=%u nr_bits=%u encoding=%s",
1392                          t->size, BTF_INT_OFFSET(int_data),
1393                          BTF_INT_BITS(int_data),
1394                          btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
1395 }
1396
1397 static void btf_int128_print(struct seq_file *m, void *data)
1398 {
1399         /* data points to a __int128 number.
1400          * Suppose
1401          *     int128_num = *(__int128 *)data;
1402          * The below formulas shows what upper_num and lower_num represents:
1403          *     upper_num = int128_num >> 64;
1404          *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
1405          */
1406         u64 upper_num, lower_num;
1407
1408 #ifdef __BIG_ENDIAN_BITFIELD
1409         upper_num = *(u64 *)data;
1410         lower_num = *(u64 *)(data + 8);
1411 #else
1412         upper_num = *(u64 *)(data + 8);
1413         lower_num = *(u64 *)data;
1414 #endif
1415         if (upper_num == 0)
1416                 seq_printf(m, "0x%llx", lower_num);
1417         else
1418                 seq_printf(m, "0x%llx%016llx", upper_num, lower_num);
1419 }
1420
1421 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
1422                              u16 right_shift_bits)
1423 {
1424         u64 upper_num, lower_num;
1425
1426 #ifdef __BIG_ENDIAN_BITFIELD
1427         upper_num = print_num[0];
1428         lower_num = print_num[1];
1429 #else
1430         upper_num = print_num[1];
1431         lower_num = print_num[0];
1432 #endif
1433
1434         /* shake out un-needed bits by shift/or operations */
1435         if (left_shift_bits >= 64) {
1436                 upper_num = lower_num << (left_shift_bits - 64);
1437                 lower_num = 0;
1438         } else {
1439                 upper_num = (upper_num << left_shift_bits) |
1440                             (lower_num >> (64 - left_shift_bits));
1441                 lower_num = lower_num << left_shift_bits;
1442         }
1443
1444         if (right_shift_bits >= 64) {
1445                 lower_num = upper_num >> (right_shift_bits - 64);
1446                 upper_num = 0;
1447         } else {
1448                 lower_num = (lower_num >> right_shift_bits) |
1449                             (upper_num << (64 - right_shift_bits));
1450                 upper_num = upper_num >> right_shift_bits;
1451         }
1452
1453 #ifdef __BIG_ENDIAN_BITFIELD
1454         print_num[0] = upper_num;
1455         print_num[1] = lower_num;
1456 #else
1457         print_num[0] = lower_num;
1458         print_num[1] = upper_num;
1459 #endif
1460 }
1461
1462 static void btf_bitfield_seq_show(void *data, u8 bits_offset,
1463                                   u8 nr_bits, struct seq_file *m)
1464 {
1465         u16 left_shift_bits, right_shift_bits;
1466         u8 nr_copy_bytes;
1467         u8 nr_copy_bits;
1468         u64 print_num[2] = {};
1469
1470         nr_copy_bits = nr_bits + bits_offset;
1471         nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
1472
1473         memcpy(print_num, data, nr_copy_bytes);
1474
1475 #ifdef __BIG_ENDIAN_BITFIELD
1476         left_shift_bits = bits_offset;
1477 #else
1478         left_shift_bits = BITS_PER_U128 - nr_copy_bits;
1479 #endif
1480         right_shift_bits = BITS_PER_U128 - nr_bits;
1481
1482         btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
1483         btf_int128_print(m, print_num);
1484 }
1485
1486
1487 static void btf_int_bits_seq_show(const struct btf *btf,
1488                                   const struct btf_type *t,
1489                                   void *data, u8 bits_offset,
1490                                   struct seq_file *m)
1491 {
1492         u32 int_data = btf_type_int(t);
1493         u8 nr_bits = BTF_INT_BITS(int_data);
1494         u8 total_bits_offset;
1495
1496         /*
1497          * bits_offset is at most 7.
1498          * BTF_INT_OFFSET() cannot exceed 128 bits.
1499          */
1500         total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
1501         data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
1502         bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
1503         btf_bitfield_seq_show(data, bits_offset, nr_bits, m);
1504 }
1505
1506 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t,
1507                              u32 type_id, void *data, u8 bits_offset,
1508                              struct seq_file *m)
1509 {
1510         u32 int_data = btf_type_int(t);
1511         u8 encoding = BTF_INT_ENCODING(int_data);
1512         bool sign = encoding & BTF_INT_SIGNED;
1513         u8 nr_bits = BTF_INT_BITS(int_data);
1514
1515         if (bits_offset || BTF_INT_OFFSET(int_data) ||
1516             BITS_PER_BYTE_MASKED(nr_bits)) {
1517                 btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1518                 return;
1519         }
1520
1521         switch (nr_bits) {
1522         case 128:
1523                 btf_int128_print(m, data);
1524                 break;
1525         case 64:
1526                 if (sign)
1527                         seq_printf(m, "%lld", *(s64 *)data);
1528                 else
1529                         seq_printf(m, "%llu", *(u64 *)data);
1530                 break;
1531         case 32:
1532                 if (sign)
1533                         seq_printf(m, "%d", *(s32 *)data);
1534                 else
1535                         seq_printf(m, "%u", *(u32 *)data);
1536                 break;
1537         case 16:
1538                 if (sign)
1539                         seq_printf(m, "%d", *(s16 *)data);
1540                 else
1541                         seq_printf(m, "%u", *(u16 *)data);
1542                 break;
1543         case 8:
1544                 if (sign)
1545                         seq_printf(m, "%d", *(s8 *)data);
1546                 else
1547                         seq_printf(m, "%u", *(u8 *)data);
1548                 break;
1549         default:
1550                 btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1551         }
1552 }
1553
1554 static const struct btf_kind_operations int_ops = {
1555         .check_meta = btf_int_check_meta,
1556         .resolve = btf_df_resolve,
1557         .check_member = btf_int_check_member,
1558         .check_kflag_member = btf_int_check_kflag_member,
1559         .log_details = btf_int_log,
1560         .seq_show = btf_int_seq_show,
1561 };
1562
1563 static int btf_modifier_check_member(struct btf_verifier_env *env,
1564                                      const struct btf_type *struct_type,
1565                                      const struct btf_member *member,
1566                                      const struct btf_type *member_type)
1567 {
1568         const struct btf_type *resolved_type;
1569         u32 resolved_type_id = member->type;
1570         struct btf_member resolved_member;
1571         struct btf *btf = env->btf;
1572
1573         resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1574         if (!resolved_type) {
1575                 btf_verifier_log_member(env, struct_type, member,
1576                                         "Invalid member");
1577                 return -EINVAL;
1578         }
1579
1580         resolved_member = *member;
1581         resolved_member.type = resolved_type_id;
1582
1583         return btf_type_ops(resolved_type)->check_member(env, struct_type,
1584                                                          &resolved_member,
1585                                                          resolved_type);
1586 }
1587
1588 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
1589                                            const struct btf_type *struct_type,
1590                                            const struct btf_member *member,
1591                                            const struct btf_type *member_type)
1592 {
1593         const struct btf_type *resolved_type;
1594         u32 resolved_type_id = member->type;
1595         struct btf_member resolved_member;
1596         struct btf *btf = env->btf;
1597
1598         resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1599         if (!resolved_type) {
1600                 btf_verifier_log_member(env, struct_type, member,
1601                                         "Invalid member");
1602                 return -EINVAL;
1603         }
1604
1605         resolved_member = *member;
1606         resolved_member.type = resolved_type_id;
1607
1608         return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
1609                                                                &resolved_member,
1610                                                                resolved_type);
1611 }
1612
1613 static int btf_ptr_check_member(struct btf_verifier_env *env,
1614                                 const struct btf_type *struct_type,
1615                                 const struct btf_member *member,
1616                                 const struct btf_type *member_type)
1617 {
1618         u32 struct_size, struct_bits_off, bytes_offset;
1619
1620         struct_size = struct_type->size;
1621         struct_bits_off = member->offset;
1622         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1623
1624         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1625                 btf_verifier_log_member(env, struct_type, member,
1626                                         "Member is not byte aligned");
1627                 return -EINVAL;
1628         }
1629
1630         if (struct_size - bytes_offset < sizeof(void *)) {
1631                 btf_verifier_log_member(env, struct_type, member,
1632                                         "Member exceeds struct_size");
1633                 return -EINVAL;
1634         }
1635
1636         return 0;
1637 }
1638
1639 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
1640                                    const struct btf_type *t,
1641                                    u32 meta_left)
1642 {
1643         if (btf_type_vlen(t)) {
1644                 btf_verifier_log_type(env, t, "vlen != 0");
1645                 return -EINVAL;
1646         }
1647
1648         if (btf_type_kflag(t)) {
1649                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1650                 return -EINVAL;
1651         }
1652
1653         if (!BTF_TYPE_ID_VALID(t->type)) {
1654                 btf_verifier_log_type(env, t, "Invalid type_id");
1655                 return -EINVAL;
1656         }
1657
1658         /* typedef type must have a valid name, and other ref types,
1659          * volatile, const, restrict, should have a null name.
1660          */
1661         if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
1662                 if (!t->name_off ||
1663                     !btf_name_valid_identifier(env->btf, t->name_off)) {
1664                         btf_verifier_log_type(env, t, "Invalid name");
1665                         return -EINVAL;
1666                 }
1667         } else {
1668                 if (t->name_off) {
1669                         btf_verifier_log_type(env, t, "Invalid name");
1670                         return -EINVAL;
1671                 }
1672         }
1673
1674         btf_verifier_log_type(env, t, NULL);
1675
1676         return 0;
1677 }
1678
1679 static int btf_modifier_resolve(struct btf_verifier_env *env,
1680                                 const struct resolve_vertex *v)
1681 {
1682         const struct btf_type *t = v->t;
1683         const struct btf_type *next_type;
1684         u32 next_type_id = t->type;
1685         struct btf *btf = env->btf;
1686
1687         next_type = btf_type_by_id(btf, next_type_id);
1688         if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1689                 btf_verifier_log_type(env, v->t, "Invalid type_id");
1690                 return -EINVAL;
1691         }
1692
1693         if (!env_type_is_resolve_sink(env, next_type) &&
1694             !env_type_is_resolved(env, next_type_id))
1695                 return env_stack_push(env, next_type, next_type_id);
1696
1697         /* Figure out the resolved next_type_id with size.
1698          * They will be stored in the current modifier's
1699          * resolved_ids and resolved_sizes such that it can
1700          * save us a few type-following when we use it later (e.g. in
1701          * pretty print).
1702          */
1703         if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1704                 if (env_type_is_resolved(env, next_type_id))
1705                         next_type = btf_type_id_resolve(btf, &next_type_id);
1706
1707                 /* "typedef void new_void", "const void"...etc */
1708                 if (!btf_type_is_void(next_type) &&
1709                     !btf_type_is_fwd(next_type) &&
1710                     !btf_type_is_func_proto(next_type)) {
1711                         btf_verifier_log_type(env, v->t, "Invalid type_id");
1712                         return -EINVAL;
1713                 }
1714         }
1715
1716         env_stack_pop_resolved(env, next_type_id, 0);
1717
1718         return 0;
1719 }
1720
1721 static int btf_var_resolve(struct btf_verifier_env *env,
1722                            const struct resolve_vertex *v)
1723 {
1724         const struct btf_type *next_type;
1725         const struct btf_type *t = v->t;
1726         u32 next_type_id = t->type;
1727         struct btf *btf = env->btf;
1728
1729         next_type = btf_type_by_id(btf, next_type_id);
1730         if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1731                 btf_verifier_log_type(env, v->t, "Invalid type_id");
1732                 return -EINVAL;
1733         }
1734
1735         if (!env_type_is_resolve_sink(env, next_type) &&
1736             !env_type_is_resolved(env, next_type_id))
1737                 return env_stack_push(env, next_type, next_type_id);
1738
1739         if (btf_type_is_modifier(next_type)) {
1740                 const struct btf_type *resolved_type;
1741                 u32 resolved_type_id;
1742
1743                 resolved_type_id = next_type_id;
1744                 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1745
1746                 if (btf_type_is_ptr(resolved_type) &&
1747                     !env_type_is_resolve_sink(env, resolved_type) &&
1748                     !env_type_is_resolved(env, resolved_type_id))
1749                         return env_stack_push(env, resolved_type,
1750                                               resolved_type_id);
1751         }
1752
1753         /* We must resolve to something concrete at this point, no
1754          * forward types or similar that would resolve to size of
1755          * zero is allowed.
1756          */
1757         if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1758                 btf_verifier_log_type(env, v->t, "Invalid type_id");
1759                 return -EINVAL;
1760         }
1761
1762         env_stack_pop_resolved(env, next_type_id, 0);
1763
1764         return 0;
1765 }
1766
1767 static int btf_ptr_resolve(struct btf_verifier_env *env,
1768                            const struct resolve_vertex *v)
1769 {
1770         const struct btf_type *next_type;
1771         const struct btf_type *t = v->t;
1772         u32 next_type_id = t->type;
1773         struct btf *btf = env->btf;
1774
1775         next_type = btf_type_by_id(btf, next_type_id);
1776         if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1777                 btf_verifier_log_type(env, v->t, "Invalid type_id");
1778                 return -EINVAL;
1779         }
1780
1781         if (!env_type_is_resolve_sink(env, next_type) &&
1782             !env_type_is_resolved(env, next_type_id))
1783                 return env_stack_push(env, next_type, next_type_id);
1784
1785         /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
1786          * the modifier may have stopped resolving when it was resolved
1787          * to a ptr (last-resolved-ptr).
1788          *
1789          * We now need to continue from the last-resolved-ptr to
1790          * ensure the last-resolved-ptr will not referring back to
1791          * the currenct ptr (t).
1792          */
1793         if (btf_type_is_modifier(next_type)) {
1794                 const struct btf_type *resolved_type;
1795                 u32 resolved_type_id;
1796
1797                 resolved_type_id = next_type_id;
1798                 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1799
1800                 if (btf_type_is_ptr(resolved_type) &&
1801                     !env_type_is_resolve_sink(env, resolved_type) &&
1802                     !env_type_is_resolved(env, resolved_type_id))
1803                         return env_stack_push(env, resolved_type,
1804                                               resolved_type_id);
1805         }
1806
1807         if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1808                 if (env_type_is_resolved(env, next_type_id))
1809                         next_type = btf_type_id_resolve(btf, &next_type_id);
1810
1811                 if (!btf_type_is_void(next_type) &&
1812                     !btf_type_is_fwd(next_type) &&
1813                     !btf_type_is_func_proto(next_type)) {
1814                         btf_verifier_log_type(env, v->t, "Invalid type_id");
1815                         return -EINVAL;
1816                 }
1817         }
1818
1819         env_stack_pop_resolved(env, next_type_id, 0);
1820
1821         return 0;
1822 }
1823
1824 static void btf_modifier_seq_show(const struct btf *btf,
1825                                   const struct btf_type *t,
1826                                   u32 type_id, void *data,
1827                                   u8 bits_offset, struct seq_file *m)
1828 {
1829         t = btf_type_id_resolve(btf, &type_id);
1830
1831         btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1832 }
1833
1834 static void btf_var_seq_show(const struct btf *btf, const struct btf_type *t,
1835                              u32 type_id, void *data, u8 bits_offset,
1836                              struct seq_file *m)
1837 {
1838         t = btf_type_id_resolve(btf, &type_id);
1839
1840         btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1841 }
1842
1843 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t,
1844                              u32 type_id, void *data, u8 bits_offset,
1845                              struct seq_file *m)
1846 {
1847         /* It is a hashed value */
1848         seq_printf(m, "%p", *(void **)data);
1849 }
1850
1851 static void btf_ref_type_log(struct btf_verifier_env *env,
1852                              const struct btf_type *t)
1853 {
1854         btf_verifier_log(env, "type_id=%u", t->type);
1855 }
1856
1857 static struct btf_kind_operations modifier_ops = {
1858         .check_meta = btf_ref_type_check_meta,
1859         .resolve = btf_modifier_resolve,
1860         .check_member = btf_modifier_check_member,
1861         .check_kflag_member = btf_modifier_check_kflag_member,
1862         .log_details = btf_ref_type_log,
1863         .seq_show = btf_modifier_seq_show,
1864 };
1865
1866 static struct btf_kind_operations ptr_ops = {
1867         .check_meta = btf_ref_type_check_meta,
1868         .resolve = btf_ptr_resolve,
1869         .check_member = btf_ptr_check_member,
1870         .check_kflag_member = btf_generic_check_kflag_member,
1871         .log_details = btf_ref_type_log,
1872         .seq_show = btf_ptr_seq_show,
1873 };
1874
1875 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
1876                               const struct btf_type *t,
1877                               u32 meta_left)
1878 {
1879         if (btf_type_vlen(t)) {
1880                 btf_verifier_log_type(env, t, "vlen != 0");
1881                 return -EINVAL;
1882         }
1883
1884         if (t->type) {
1885                 btf_verifier_log_type(env, t, "type != 0");
1886                 return -EINVAL;
1887         }
1888
1889         /* fwd type must have a valid name */
1890         if (!t->name_off ||
1891             !btf_name_valid_identifier(env->btf, t->name_off)) {
1892                 btf_verifier_log_type(env, t, "Invalid name");
1893                 return -EINVAL;
1894         }
1895
1896         btf_verifier_log_type(env, t, NULL);
1897
1898         return 0;
1899 }
1900
1901 static void btf_fwd_type_log(struct btf_verifier_env *env,
1902                              const struct btf_type *t)
1903 {
1904         btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
1905 }
1906
1907 static struct btf_kind_operations fwd_ops = {
1908         .check_meta = btf_fwd_check_meta,
1909         .resolve = btf_df_resolve,
1910         .check_member = btf_df_check_member,
1911         .check_kflag_member = btf_df_check_kflag_member,
1912         .log_details = btf_fwd_type_log,
1913         .seq_show = btf_df_seq_show,
1914 };
1915
1916 static int btf_array_check_member(struct btf_verifier_env *env,
1917                                   const struct btf_type *struct_type,
1918                                   const struct btf_member *member,
1919                                   const struct btf_type *member_type)
1920 {
1921         u32 struct_bits_off = member->offset;
1922         u32 struct_size, bytes_offset;
1923         u32 array_type_id, array_size;
1924         struct btf *btf = env->btf;
1925
1926         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1927                 btf_verifier_log_member(env, struct_type, member,
1928                                         "Member is not byte aligned");
1929                 return -EINVAL;
1930         }
1931
1932         array_type_id = member->type;
1933         btf_type_id_size(btf, &array_type_id, &array_size);
1934         struct_size = struct_type->size;
1935         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1936         if (struct_size - bytes_offset < array_size) {
1937                 btf_verifier_log_member(env, struct_type, member,
1938                                         "Member exceeds struct_size");
1939                 return -EINVAL;
1940         }
1941
1942         return 0;
1943 }
1944
1945 static s32 btf_array_check_meta(struct btf_verifier_env *env,
1946                                 const struct btf_type *t,
1947                                 u32 meta_left)
1948 {
1949         const struct btf_array *array = btf_type_array(t);
1950         u32 meta_needed = sizeof(*array);
1951
1952         if (meta_left < meta_needed) {
1953                 btf_verifier_log_basic(env, t,
1954                                        "meta_left:%u meta_needed:%u",
1955                                        meta_left, meta_needed);
1956                 return -EINVAL;
1957         }
1958
1959         /* array type should not have a name */
1960         if (t->name_off) {
1961                 btf_verifier_log_type(env, t, "Invalid name");
1962                 return -EINVAL;
1963         }
1964
1965         if (btf_type_vlen(t)) {
1966                 btf_verifier_log_type(env, t, "vlen != 0");
1967                 return -EINVAL;
1968         }
1969
1970         if (btf_type_kflag(t)) {
1971                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1972                 return -EINVAL;
1973         }
1974
1975         if (t->size) {
1976                 btf_verifier_log_type(env, t, "size != 0");
1977                 return -EINVAL;
1978         }
1979
1980         /* Array elem type and index type cannot be in type void,
1981          * so !array->type and !array->index_type are not allowed.
1982          */
1983         if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
1984                 btf_verifier_log_type(env, t, "Invalid elem");
1985                 return -EINVAL;
1986         }
1987
1988         if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
1989                 btf_verifier_log_type(env, t, "Invalid index");
1990                 return -EINVAL;
1991         }
1992
1993         btf_verifier_log_type(env, t, NULL);
1994
1995         return meta_needed;
1996 }
1997
1998 static int btf_array_resolve(struct btf_verifier_env *env,
1999                              const struct resolve_vertex *v)
2000 {
2001         const struct btf_array *array = btf_type_array(v->t);
2002         const struct btf_type *elem_type, *index_type;
2003         u32 elem_type_id, index_type_id;
2004         struct btf *btf = env->btf;
2005         u32 elem_size;
2006
2007         /* Check array->index_type */
2008         index_type_id = array->index_type;
2009         index_type = btf_type_by_id(btf, index_type_id);
2010         if (btf_type_nosize_or_null(index_type) ||
2011             btf_type_is_resolve_source_only(index_type)) {
2012                 btf_verifier_log_type(env, v->t, "Invalid index");
2013                 return -EINVAL;
2014         }
2015
2016         if (!env_type_is_resolve_sink(env, index_type) &&
2017             !env_type_is_resolved(env, index_type_id))
2018                 return env_stack_push(env, index_type, index_type_id);
2019
2020         index_type = btf_type_id_size(btf, &index_type_id, NULL);
2021         if (!index_type || !btf_type_is_int(index_type) ||
2022             !btf_type_int_is_regular(index_type)) {
2023                 btf_verifier_log_type(env, v->t, "Invalid index");
2024                 return -EINVAL;
2025         }
2026
2027         /* Check array->type */
2028         elem_type_id = array->type;
2029         elem_type = btf_type_by_id(btf, elem_type_id);
2030         if (btf_type_nosize_or_null(elem_type) ||
2031             btf_type_is_resolve_source_only(elem_type)) {
2032                 btf_verifier_log_type(env, v->t,
2033                                       "Invalid elem");
2034                 return -EINVAL;
2035         }
2036
2037         if (!env_type_is_resolve_sink(env, elem_type) &&
2038             !env_type_is_resolved(env, elem_type_id))
2039                 return env_stack_push(env, elem_type, elem_type_id);
2040
2041         elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2042         if (!elem_type) {
2043                 btf_verifier_log_type(env, v->t, "Invalid elem");
2044                 return -EINVAL;
2045         }
2046
2047         if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2048                 btf_verifier_log_type(env, v->t, "Invalid array of int");
2049                 return -EINVAL;
2050         }
2051
2052         if (array->nelems && elem_size > U32_MAX / array->nelems) {
2053                 btf_verifier_log_type(env, v->t,
2054                                       "Array size overflows U32_MAX");
2055                 return -EINVAL;
2056         }
2057
2058         env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2059
2060         return 0;
2061 }
2062
2063 static void btf_array_log(struct btf_verifier_env *env,
2064                           const struct btf_type *t)
2065 {
2066         const struct btf_array *array = btf_type_array(t);
2067
2068         btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2069                          array->type, array->index_type, array->nelems);
2070 }
2071
2072 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t,
2073                                u32 type_id, void *data, u8 bits_offset,
2074                                struct seq_file *m)
2075 {
2076         const struct btf_array *array = btf_type_array(t);
2077         const struct btf_kind_operations *elem_ops;
2078         const struct btf_type *elem_type;
2079         u32 i, elem_size, elem_type_id;
2080
2081         elem_type_id = array->type;
2082         elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2083         elem_ops = btf_type_ops(elem_type);
2084         seq_puts(m, "[");
2085         for (i = 0; i < array->nelems; i++) {
2086                 if (i)
2087                         seq_puts(m, ",");
2088
2089                 elem_ops->seq_show(btf, elem_type, elem_type_id, data,
2090                                    bits_offset, m);
2091                 data += elem_size;
2092         }
2093         seq_puts(m, "]");
2094 }
2095
2096 static struct btf_kind_operations array_ops = {
2097         .check_meta = btf_array_check_meta,
2098         .resolve = btf_array_resolve,
2099         .check_member = btf_array_check_member,
2100         .check_kflag_member = btf_generic_check_kflag_member,
2101         .log_details = btf_array_log,
2102         .seq_show = btf_array_seq_show,
2103 };
2104
2105 static int btf_struct_check_member(struct btf_verifier_env *env,
2106                                    const struct btf_type *struct_type,
2107                                    const struct btf_member *member,
2108                                    const struct btf_type *member_type)
2109 {
2110         u32 struct_bits_off = member->offset;
2111         u32 struct_size, bytes_offset;
2112
2113         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2114                 btf_verifier_log_member(env, struct_type, member,
2115                                         "Member is not byte aligned");
2116                 return -EINVAL;
2117         }
2118
2119         struct_size = struct_type->size;
2120         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2121         if (struct_size - bytes_offset < member_type->size) {
2122                 btf_verifier_log_member(env, struct_type, member,
2123                                         "Member exceeds struct_size");
2124                 return -EINVAL;
2125         }
2126
2127         return 0;
2128 }
2129
2130 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2131                                  const struct btf_type *t,
2132                                  u32 meta_left)
2133 {
2134         bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2135         const struct btf_member *member;
2136         u32 meta_needed, last_offset;
2137         struct btf *btf = env->btf;
2138         u32 struct_size = t->size;
2139         u32 offset;
2140         u16 i;
2141
2142         meta_needed = btf_type_vlen(t) * sizeof(*member);
2143         if (meta_left < meta_needed) {
2144                 btf_verifier_log_basic(env, t,
2145                                        "meta_left:%u meta_needed:%u",
2146                                        meta_left, meta_needed);
2147                 return -EINVAL;
2148         }
2149
2150         /* struct type either no name or a valid one */
2151         if (t->name_off &&
2152             !btf_name_valid_identifier(env->btf, t->name_off)) {
2153                 btf_verifier_log_type(env, t, "Invalid name");
2154                 return -EINVAL;
2155         }
2156
2157         btf_verifier_log_type(env, t, NULL);
2158
2159         last_offset = 0;
2160         for_each_member(i, t, member) {
2161                 if (!btf_name_offset_valid(btf, member->name_off)) {
2162                         btf_verifier_log_member(env, t, member,
2163                                                 "Invalid member name_offset:%u",
2164                                                 member->name_off);
2165                         return -EINVAL;
2166                 }
2167
2168                 /* struct member either no name or a valid one */
2169                 if (member->name_off &&
2170                     !btf_name_valid_identifier(btf, member->name_off)) {
2171                         btf_verifier_log_member(env, t, member, "Invalid name");
2172                         return -EINVAL;
2173                 }
2174                 /* A member cannot be in type void */
2175                 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
2176                         btf_verifier_log_member(env, t, member,
2177                                                 "Invalid type_id");
2178                         return -EINVAL;
2179                 }
2180
2181                 offset = btf_member_bit_offset(t, member);
2182                 if (is_union && offset) {
2183                         btf_verifier_log_member(env, t, member,
2184                                                 "Invalid member bits_offset");
2185                         return -EINVAL;
2186                 }
2187
2188                 /*
2189                  * ">" instead of ">=" because the last member could be
2190                  * "char a[0];"
2191                  */
2192                 if (last_offset > offset) {
2193                         btf_verifier_log_member(env, t, member,
2194                                                 "Invalid member bits_offset");
2195                         return -EINVAL;
2196                 }
2197
2198                 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
2199                         btf_verifier_log_member(env, t, member,
2200                                                 "Member bits_offset exceeds its struct size");
2201                         return -EINVAL;
2202                 }
2203
2204                 btf_verifier_log_member(env, t, member, NULL);
2205                 last_offset = offset;
2206         }
2207
2208         return meta_needed;
2209 }
2210
2211 static int btf_struct_resolve(struct btf_verifier_env *env,
2212                               const struct resolve_vertex *v)
2213 {
2214         const struct btf_member *member;
2215         int err;
2216         u16 i;
2217
2218         /* Before continue resolving the next_member,
2219          * ensure the last member is indeed resolved to a
2220          * type with size info.
2221          */
2222         if (v->next_member) {
2223                 const struct btf_type *last_member_type;
2224                 const struct btf_member *last_member;
2225                 u16 last_member_type_id;
2226
2227                 last_member = btf_type_member(v->t) + v->next_member - 1;
2228                 last_member_type_id = last_member->type;
2229                 if (WARN_ON_ONCE(!env_type_is_resolved(env,
2230                                                        last_member_type_id)))
2231                         return -EINVAL;
2232
2233                 last_member_type = btf_type_by_id(env->btf,
2234                                                   last_member_type_id);
2235                 if (btf_type_kflag(v->t))
2236                         err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
2237                                                                 last_member,
2238                                                                 last_member_type);
2239                 else
2240                         err = btf_type_ops(last_member_type)->check_member(env, v->t,
2241                                                                 last_member,
2242                                                                 last_member_type);
2243                 if (err)
2244                         return err;
2245         }
2246
2247         for_each_member_from(i, v->next_member, v->t, member) {
2248                 u32 member_type_id = member->type;
2249                 const struct btf_type *member_type = btf_type_by_id(env->btf,
2250                                                                 member_type_id);
2251
2252                 if (btf_type_nosize_or_null(member_type) ||
2253                     btf_type_is_resolve_source_only(member_type)) {
2254                         btf_verifier_log_member(env, v->t, member,
2255                                                 "Invalid member");
2256                         return -EINVAL;
2257                 }
2258
2259                 if (!env_type_is_resolve_sink(env, member_type) &&
2260                     !env_type_is_resolved(env, member_type_id)) {
2261                         env_stack_set_next_member(env, i + 1);
2262                         return env_stack_push(env, member_type, member_type_id);
2263                 }
2264
2265                 if (btf_type_kflag(v->t))
2266                         err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
2267                                                                             member,
2268                                                                             member_type);
2269                 else
2270                         err = btf_type_ops(member_type)->check_member(env, v->t,
2271                                                                       member,
2272                                                                       member_type);
2273                 if (err)
2274                         return err;
2275         }
2276
2277         env_stack_pop_resolved(env, 0, 0);
2278
2279         return 0;
2280 }
2281
2282 static void btf_struct_log(struct btf_verifier_env *env,
2283                            const struct btf_type *t)
2284 {
2285         btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2286 }
2287
2288 /* find 'struct bpf_spin_lock' in map value.
2289  * return >= 0 offset if found
2290  * and < 0 in case of error
2291  */
2292 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
2293 {
2294         const struct btf_member *member;
2295         u32 i, off = -ENOENT;
2296
2297         if (!__btf_type_is_struct(t))
2298                 return -EINVAL;
2299
2300         for_each_member(i, t, member) {
2301                 const struct btf_type *member_type = btf_type_by_id(btf,
2302                                                                     member->type);
2303                 if (!__btf_type_is_struct(member_type))
2304                         continue;
2305                 if (member_type->size != sizeof(struct bpf_spin_lock))
2306                         continue;
2307                 if (strcmp(__btf_name_by_offset(btf, member_type->name_off),
2308                            "bpf_spin_lock"))
2309                         continue;
2310                 if (off != -ENOENT)
2311                         /* only one 'struct bpf_spin_lock' is allowed */
2312                         return -E2BIG;
2313                 off = btf_member_bit_offset(t, member);
2314                 if (off % 8)
2315                         /* valid C code cannot generate such BTF */
2316                         return -EINVAL;
2317                 off /= 8;
2318                 if (off % __alignof__(struct bpf_spin_lock))
2319                         /* valid struct bpf_spin_lock will be 4 byte aligned */
2320                         return -EINVAL;
2321         }
2322         return off;
2323 }
2324
2325 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t,
2326                                 u32 type_id, void *data, u8 bits_offset,
2327                                 struct seq_file *m)
2328 {
2329         const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ",";
2330         const struct btf_member *member;
2331         u32 i;
2332
2333         seq_puts(m, "{");
2334         for_each_member(i, t, member) {
2335                 const struct btf_type *member_type = btf_type_by_id(btf,
2336                                                                 member->type);
2337                 const struct btf_kind_operations *ops;
2338                 u32 member_offset, bitfield_size;
2339                 u32 bytes_offset;
2340                 u8 bits8_offset;
2341
2342                 if (i)
2343                         seq_puts(m, seq);
2344
2345                 member_offset = btf_member_bit_offset(t, member);
2346                 bitfield_size = btf_member_bitfield_size(t, member);
2347                 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
2348                 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
2349                 if (bitfield_size) {
2350                         btf_bitfield_seq_show(data + bytes_offset, bits8_offset,
2351                                               bitfield_size, m);
2352                 } else {
2353                         ops = btf_type_ops(member_type);
2354                         ops->seq_show(btf, member_type, member->type,
2355                                       data + bytes_offset, bits8_offset, m);
2356                 }
2357         }
2358         seq_puts(m, "}");
2359 }
2360
2361 static struct btf_kind_operations struct_ops = {
2362         .check_meta = btf_struct_check_meta,
2363         .resolve = btf_struct_resolve,
2364         .check_member = btf_struct_check_member,
2365         .check_kflag_member = btf_generic_check_kflag_member,
2366         .log_details = btf_struct_log,
2367         .seq_show = btf_struct_seq_show,
2368 };
2369
2370 static int btf_enum_check_member(struct btf_verifier_env *env,
2371                                  const struct btf_type *struct_type,
2372                                  const struct btf_member *member,
2373                                  const struct btf_type *member_type)
2374 {
2375         u32 struct_bits_off = member->offset;
2376         u32 struct_size, bytes_offset;
2377
2378         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2379                 btf_verifier_log_member(env, struct_type, member,
2380                                         "Member is not byte aligned");
2381                 return -EINVAL;
2382         }
2383
2384         struct_size = struct_type->size;
2385         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2386         if (struct_size - bytes_offset < sizeof(int)) {
2387                 btf_verifier_log_member(env, struct_type, member,
2388                                         "Member exceeds struct_size");
2389                 return -EINVAL;
2390         }
2391
2392         return 0;
2393 }
2394
2395 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
2396                                        const struct btf_type *struct_type,
2397                                        const struct btf_member *member,
2398                                        const struct btf_type *member_type)
2399 {
2400         u32 struct_bits_off, nr_bits, bytes_end, struct_size;
2401         u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
2402
2403         struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2404         nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2405         if (!nr_bits) {
2406                 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2407                         btf_verifier_log_member(env, struct_type, member,
2408                                                 "Member is not byte aligned");
2409                         return -EINVAL;
2410                 }
2411
2412                 nr_bits = int_bitsize;
2413         } else if (nr_bits > int_bitsize) {
2414                 btf_verifier_log_member(env, struct_type, member,
2415                                         "Invalid member bitfield_size");
2416                 return -EINVAL;
2417         }
2418
2419         struct_size = struct_type->size;
2420         bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
2421         if (struct_size < bytes_end) {
2422                 btf_verifier_log_member(env, struct_type, member,
2423                                         "Member exceeds struct_size");
2424                 return -EINVAL;
2425         }
2426
2427         return 0;
2428 }
2429
2430 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
2431                                const struct btf_type *t,
2432                                u32 meta_left)
2433 {
2434         const struct btf_enum *enums = btf_type_enum(t);
2435         struct btf *btf = env->btf;
2436         u16 i, nr_enums;
2437         u32 meta_needed;
2438
2439         nr_enums = btf_type_vlen(t);
2440         meta_needed = nr_enums * sizeof(*enums);
2441
2442         if (meta_left < meta_needed) {
2443                 btf_verifier_log_basic(env, t,
2444                                        "meta_left:%u meta_needed:%u",
2445                                        meta_left, meta_needed);
2446                 return -EINVAL;
2447         }
2448
2449         if (btf_type_kflag(t)) {
2450                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2451                 return -EINVAL;
2452         }
2453
2454         if (t->size > 8 || !is_power_of_2(t->size)) {
2455                 btf_verifier_log_type(env, t, "Unexpected size");
2456                 return -EINVAL;
2457         }
2458
2459         /* enum type either no name or a valid one */
2460         if (t->name_off &&
2461             !btf_name_valid_identifier(env->btf, t->name_off)) {
2462                 btf_verifier_log_type(env, t, "Invalid name");
2463                 return -EINVAL;
2464         }
2465
2466         btf_verifier_log_type(env, t, NULL);
2467
2468         for (i = 0; i < nr_enums; i++) {
2469                 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
2470                         btf_verifier_log(env, "\tInvalid name_offset:%u",
2471                                          enums[i].name_off);
2472                         return -EINVAL;
2473                 }
2474
2475                 /* enum member must have a valid name */
2476                 if (!enums[i].name_off ||
2477                     !btf_name_valid_identifier(btf, enums[i].name_off)) {
2478                         btf_verifier_log_type(env, t, "Invalid name");
2479                         return -EINVAL;
2480                 }
2481
2482                 if (env->log.level == BPF_LOG_KERNEL)
2483                         continue;
2484                 btf_verifier_log(env, "\t%s val=%d\n",
2485                                  __btf_name_by_offset(btf, enums[i].name_off),
2486                                  enums[i].val);
2487         }
2488
2489         return meta_needed;
2490 }
2491
2492 static void btf_enum_log(struct btf_verifier_env *env,
2493                          const struct btf_type *t)
2494 {
2495         btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2496 }
2497
2498 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t,
2499                               u32 type_id, void *data, u8 bits_offset,
2500                               struct seq_file *m)
2501 {
2502         const struct btf_enum *enums = btf_type_enum(t);
2503         u32 i, nr_enums = btf_type_vlen(t);
2504         int v = *(int *)data;
2505
2506         for (i = 0; i < nr_enums; i++) {
2507                 if (v == enums[i].val) {
2508                         seq_printf(m, "%s",
2509                                    __btf_name_by_offset(btf,
2510                                                         enums[i].name_off));
2511                         return;
2512                 }
2513         }
2514
2515         seq_printf(m, "%d", v);
2516 }
2517
2518 static struct btf_kind_operations enum_ops = {
2519         .check_meta = btf_enum_check_meta,
2520         .resolve = btf_df_resolve,
2521         .check_member = btf_enum_check_member,
2522         .check_kflag_member = btf_enum_check_kflag_member,
2523         .log_details = btf_enum_log,
2524         .seq_show = btf_enum_seq_show,
2525 };
2526
2527 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
2528                                      const struct btf_type *t,
2529                                      u32 meta_left)
2530 {
2531         u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
2532
2533         if (meta_left < meta_needed) {
2534                 btf_verifier_log_basic(env, t,
2535                                        "meta_left:%u meta_needed:%u",
2536                                        meta_left, meta_needed);
2537                 return -EINVAL;
2538         }
2539
2540         if (t->name_off) {
2541                 btf_verifier_log_type(env, t, "Invalid name");
2542                 return -EINVAL;
2543         }
2544
2545         if (btf_type_kflag(t)) {
2546                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2547                 return -EINVAL;
2548         }
2549
2550         btf_verifier_log_type(env, t, NULL);
2551
2552         return meta_needed;
2553 }
2554
2555 static void btf_func_proto_log(struct btf_verifier_env *env,
2556                                const struct btf_type *t)
2557 {
2558         const struct btf_param *args = (const struct btf_param *)(t + 1);
2559         u16 nr_args = btf_type_vlen(t), i;
2560
2561         btf_verifier_log(env, "return=%u args=(", t->type);
2562         if (!nr_args) {
2563                 btf_verifier_log(env, "void");
2564                 goto done;
2565         }
2566
2567         if (nr_args == 1 && !args[0].type) {
2568                 /* Only one vararg */
2569                 btf_verifier_log(env, "vararg");
2570                 goto done;
2571         }
2572
2573         btf_verifier_log(env, "%u %s", args[0].type,
2574                          __btf_name_by_offset(env->btf,
2575                                               args[0].name_off));
2576         for (i = 1; i < nr_args - 1; i++)
2577                 btf_verifier_log(env, ", %u %s", args[i].type,
2578                                  __btf_name_by_offset(env->btf,
2579                                                       args[i].name_off));
2580
2581         if (nr_args > 1) {
2582                 const struct btf_param *last_arg = &args[nr_args - 1];
2583
2584                 if (last_arg->type)
2585                         btf_verifier_log(env, ", %u %s", last_arg->type,
2586                                          __btf_name_by_offset(env->btf,
2587                                                               last_arg->name_off));
2588                 else
2589                         btf_verifier_log(env, ", vararg");
2590         }
2591
2592 done:
2593         btf_verifier_log(env, ")");
2594 }
2595
2596 static struct btf_kind_operations func_proto_ops = {
2597         .check_meta = btf_func_proto_check_meta,
2598         .resolve = btf_df_resolve,
2599         /*
2600          * BTF_KIND_FUNC_PROTO cannot be directly referred by
2601          * a struct's member.
2602          *
2603          * It should be a funciton pointer instead.
2604          * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
2605          *
2606          * Hence, there is no btf_func_check_member().
2607          */
2608         .check_member = btf_df_check_member,
2609         .check_kflag_member = btf_df_check_kflag_member,
2610         .log_details = btf_func_proto_log,
2611         .seq_show = btf_df_seq_show,
2612 };
2613
2614 static s32 btf_func_check_meta(struct btf_verifier_env *env,
2615                                const struct btf_type *t,
2616                                u32 meta_left)
2617 {
2618         if (!t->name_off ||
2619             !btf_name_valid_identifier(env->btf, t->name_off)) {
2620                 btf_verifier_log_type(env, t, "Invalid name");
2621                 return -EINVAL;
2622         }
2623
2624         if (btf_type_vlen(t)) {
2625                 btf_verifier_log_type(env, t, "vlen != 0");
2626                 return -EINVAL;
2627         }
2628
2629         if (btf_type_kflag(t)) {
2630                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2631                 return -EINVAL;
2632         }
2633
2634         btf_verifier_log_type(env, t, NULL);
2635
2636         return 0;
2637 }
2638
2639 static struct btf_kind_operations func_ops = {
2640         .check_meta = btf_func_check_meta,
2641         .resolve = btf_df_resolve,
2642         .check_member = btf_df_check_member,
2643         .check_kflag_member = btf_df_check_kflag_member,
2644         .log_details = btf_ref_type_log,
2645         .seq_show = btf_df_seq_show,
2646 };
2647
2648 static s32 btf_var_check_meta(struct btf_verifier_env *env,
2649                               const struct btf_type *t,
2650                               u32 meta_left)
2651 {
2652         const struct btf_var *var;
2653         u32 meta_needed = sizeof(*var);
2654
2655         if (meta_left < meta_needed) {
2656                 btf_verifier_log_basic(env, t,
2657                                        "meta_left:%u meta_needed:%u",
2658                                        meta_left, meta_needed);
2659                 return -EINVAL;
2660         }
2661
2662         if (btf_type_vlen(t)) {
2663                 btf_verifier_log_type(env, t, "vlen != 0");
2664                 return -EINVAL;
2665         }
2666
2667         if (btf_type_kflag(t)) {
2668                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2669                 return -EINVAL;
2670         }
2671
2672         if (!t->name_off ||
2673             !__btf_name_valid(env->btf, t->name_off, true)) {
2674                 btf_verifier_log_type(env, t, "Invalid name");
2675                 return -EINVAL;
2676         }
2677
2678         /* A var cannot be in type void */
2679         if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
2680                 btf_verifier_log_type(env, t, "Invalid type_id");
2681                 return -EINVAL;
2682         }
2683
2684         var = btf_type_var(t);
2685         if (var->linkage != BTF_VAR_STATIC &&
2686             var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2687                 btf_verifier_log_type(env, t, "Linkage not supported");
2688                 return -EINVAL;
2689         }
2690
2691         btf_verifier_log_type(env, t, NULL);
2692
2693         return meta_needed;
2694 }
2695
2696 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
2697 {
2698         const struct btf_var *var = btf_type_var(t);
2699
2700         btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
2701 }
2702
2703 static const struct btf_kind_operations var_ops = {
2704         .check_meta             = btf_var_check_meta,
2705         .resolve                = btf_var_resolve,
2706         .check_member           = btf_df_check_member,
2707         .check_kflag_member     = btf_df_check_kflag_member,
2708         .log_details            = btf_var_log,
2709         .seq_show               = btf_var_seq_show,
2710 };
2711
2712 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
2713                                   const struct btf_type *t,
2714                                   u32 meta_left)
2715 {
2716         const struct btf_var_secinfo *vsi;
2717         u64 last_vsi_end_off = 0, sum = 0;
2718         u32 i, meta_needed;
2719
2720         meta_needed = btf_type_vlen(t) * sizeof(*vsi);
2721         if (meta_left < meta_needed) {
2722                 btf_verifier_log_basic(env, t,
2723                                        "meta_left:%u meta_needed:%u",
2724                                        meta_left, meta_needed);
2725                 return -EINVAL;
2726         }
2727
2728         if (!btf_type_vlen(t)) {
2729                 btf_verifier_log_type(env, t, "vlen == 0");
2730                 return -EINVAL;
2731         }
2732
2733         if (!t->size) {
2734                 btf_verifier_log_type(env, t, "size == 0");
2735                 return -EINVAL;
2736         }
2737
2738         if (btf_type_kflag(t)) {
2739                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2740                 return -EINVAL;
2741         }
2742
2743         if (!t->name_off ||
2744             !btf_name_valid_section(env->btf, t->name_off)) {
2745                 btf_verifier_log_type(env, t, "Invalid name");
2746                 return -EINVAL;
2747         }
2748
2749         btf_verifier_log_type(env, t, NULL);
2750
2751         for_each_vsi(i, t, vsi) {
2752                 /* A var cannot be in type void */
2753                 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
2754                         btf_verifier_log_vsi(env, t, vsi,
2755                                              "Invalid type_id");
2756                         return -EINVAL;
2757                 }
2758
2759                 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
2760                         btf_verifier_log_vsi(env, t, vsi,
2761                                              "Invalid offset");
2762                         return -EINVAL;
2763                 }
2764
2765                 if (!vsi->size || vsi->size > t->size) {
2766                         btf_verifier_log_vsi(env, t, vsi,
2767                                              "Invalid size");
2768                         return -EINVAL;
2769                 }
2770
2771                 last_vsi_end_off = vsi->offset + vsi->size;
2772                 if (last_vsi_end_off > t->size) {
2773                         btf_verifier_log_vsi(env, t, vsi,
2774                                              "Invalid offset+size");
2775                         return -EINVAL;
2776                 }
2777
2778                 btf_verifier_log_vsi(env, t, vsi, NULL);
2779                 sum += vsi->size;
2780         }
2781
2782         if (t->size < sum) {
2783                 btf_verifier_log_type(env, t, "Invalid btf_info size");
2784                 return -EINVAL;
2785         }
2786
2787         return meta_needed;
2788 }
2789
2790 static int btf_datasec_resolve(struct btf_verifier_env *env,
2791                                const struct resolve_vertex *v)
2792 {
2793         const struct btf_var_secinfo *vsi;
2794         struct btf *btf = env->btf;
2795         u16 i;
2796
2797         for_each_vsi_from(i, v->next_member, v->t, vsi) {
2798                 u32 var_type_id = vsi->type, type_id, type_size = 0;
2799                 const struct btf_type *var_type = btf_type_by_id(env->btf,
2800                                                                  var_type_id);
2801                 if (!var_type || !btf_type_is_var(var_type)) {
2802                         btf_verifier_log_vsi(env, v->t, vsi,
2803                                              "Not a VAR kind member");
2804                         return -EINVAL;
2805                 }
2806
2807                 if (!env_type_is_resolve_sink(env, var_type) &&
2808                     !env_type_is_resolved(env, var_type_id)) {
2809                         env_stack_set_next_member(env, i + 1);
2810                         return env_stack_push(env, var_type, var_type_id);
2811                 }
2812
2813                 type_id = var_type->type;
2814                 if (!btf_type_id_size(btf, &type_id, &type_size)) {
2815                         btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
2816                         return -EINVAL;
2817                 }
2818
2819                 if (vsi->size < type_size) {
2820                         btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
2821                         return -EINVAL;
2822                 }
2823         }
2824
2825         env_stack_pop_resolved(env, 0, 0);
2826         return 0;
2827 }
2828
2829 static void btf_datasec_log(struct btf_verifier_env *env,
2830                             const struct btf_type *t)
2831 {
2832         btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2833 }
2834
2835 static void btf_datasec_seq_show(const struct btf *btf,
2836                                  const struct btf_type *t, u32 type_id,
2837                                  void *data, u8 bits_offset,
2838                                  struct seq_file *m)
2839 {
2840         const struct btf_var_secinfo *vsi;
2841         const struct btf_type *var;
2842         u32 i;
2843
2844         seq_printf(m, "section (\"%s\") = {", __btf_name_by_offset(btf, t->name_off));
2845         for_each_vsi(i, t, vsi) {
2846                 var = btf_type_by_id(btf, vsi->type);
2847                 if (i)
2848                         seq_puts(m, ",");
2849                 btf_type_ops(var)->seq_show(btf, var, vsi->type,
2850                                             data + vsi->offset, bits_offset, m);
2851         }
2852         seq_puts(m, "}");
2853 }
2854
2855 static const struct btf_kind_operations datasec_ops = {
2856         .check_meta             = btf_datasec_check_meta,
2857         .resolve                = btf_datasec_resolve,
2858         .check_member           = btf_df_check_member,
2859         .check_kflag_member     = btf_df_check_kflag_member,
2860         .log_details            = btf_datasec_log,
2861         .seq_show               = btf_datasec_seq_show,
2862 };
2863
2864 static int btf_func_proto_check(struct btf_verifier_env *env,
2865                                 const struct btf_type *t)
2866 {
2867         const struct btf_type *ret_type;
2868         const struct btf_param *args;
2869         const struct btf *btf;
2870         u16 nr_args, i;
2871         int err;
2872
2873         btf = env->btf;
2874         args = (const struct btf_param *)(t + 1);
2875         nr_args = btf_type_vlen(t);
2876
2877         /* Check func return type which could be "void" (t->type == 0) */
2878         if (t->type) {
2879                 u32 ret_type_id = t->type;
2880
2881                 ret_type = btf_type_by_id(btf, ret_type_id);
2882                 if (!ret_type) {
2883                         btf_verifier_log_type(env, t, "Invalid return type");
2884                         return -EINVAL;
2885                 }
2886
2887                 if (btf_type_needs_resolve(ret_type) &&
2888                     !env_type_is_resolved(env, ret_type_id)) {
2889                         err = btf_resolve(env, ret_type, ret_type_id);
2890                         if (err)
2891                                 return err;
2892                 }
2893
2894                 /* Ensure the return type is a type that has a size */
2895                 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
2896                         btf_verifier_log_type(env, t, "Invalid return type");
2897                         return -EINVAL;
2898                 }
2899         }
2900
2901         if (!nr_args)
2902                 return 0;
2903
2904         /* Last func arg type_id could be 0 if it is a vararg */
2905         if (!args[nr_args - 1].type) {
2906                 if (args[nr_args - 1].name_off) {
2907                         btf_verifier_log_type(env, t, "Invalid arg#%u",
2908                                               nr_args);
2909                         return -EINVAL;
2910                 }
2911                 nr_args--;
2912         }
2913
2914         err = 0;
2915         for (i = 0; i < nr_args; i++) {
2916                 const struct btf_type *arg_type;
2917                 u32 arg_type_id;
2918
2919                 arg_type_id = args[i].type;
2920                 arg_type = btf_type_by_id(btf, arg_type_id);
2921                 if (!arg_type) {
2922                         btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2923                         err = -EINVAL;
2924                         break;
2925                 }
2926
2927                 if (args[i].name_off &&
2928                     (!btf_name_offset_valid(btf, args[i].name_off) ||
2929                      !btf_name_valid_identifier(btf, args[i].name_off))) {
2930                         btf_verifier_log_type(env, t,
2931                                               "Invalid arg#%u", i + 1);
2932                         err = -EINVAL;
2933                         break;
2934                 }
2935
2936                 if (btf_type_needs_resolve(arg_type) &&
2937                     !env_type_is_resolved(env, arg_type_id)) {
2938                         err = btf_resolve(env, arg_type, arg_type_id);
2939                         if (err)
2940                                 break;
2941                 }
2942
2943                 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
2944                         btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2945                         err = -EINVAL;
2946                         break;
2947                 }
2948         }
2949
2950         return err;
2951 }
2952
2953 static int btf_func_check(struct btf_verifier_env *env,
2954                           const struct btf_type *t)
2955 {
2956         const struct btf_type *proto_type;
2957         const struct btf_param *args;
2958         const struct btf *btf;
2959         u16 nr_args, i;
2960
2961         btf = env->btf;
2962         proto_type = btf_type_by_id(btf, t->type);
2963
2964         if (!proto_type || !btf_type_is_func_proto(proto_type)) {
2965                 btf_verifier_log_type(env, t, "Invalid type_id");
2966                 return -EINVAL;
2967         }
2968
2969         args = (const struct btf_param *)(proto_type + 1);
2970         nr_args = btf_type_vlen(proto_type);
2971         for (i = 0; i < nr_args; i++) {
2972                 if (!args[i].name_off && args[i].type) {
2973                         btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2974                         return -EINVAL;
2975                 }
2976         }
2977
2978         return 0;
2979 }
2980
2981 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
2982         [BTF_KIND_INT] = &int_ops,
2983         [BTF_KIND_PTR] = &ptr_ops,
2984         [BTF_KIND_ARRAY] = &array_ops,
2985         [BTF_KIND_STRUCT] = &struct_ops,
2986         [BTF_KIND_UNION] = &struct_ops,
2987         [BTF_KIND_ENUM] = &enum_ops,
2988         [BTF_KIND_FWD] = &fwd_ops,
2989         [BTF_KIND_TYPEDEF] = &modifier_ops,
2990         [BTF_KIND_VOLATILE] = &modifier_ops,
2991         [BTF_KIND_CONST] = &modifier_ops,
2992         [BTF_KIND_RESTRICT] = &modifier_ops,
2993         [BTF_KIND_FUNC] = &func_ops,
2994         [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
2995         [BTF_KIND_VAR] = &var_ops,
2996         [BTF_KIND_DATASEC] = &datasec_ops,
2997 };
2998
2999 static s32 btf_check_meta(struct btf_verifier_env *env,
3000                           const struct btf_type *t,
3001                           u32 meta_left)
3002 {
3003         u32 saved_meta_left = meta_left;
3004         s32 var_meta_size;
3005
3006         if (meta_left < sizeof(*t)) {
3007                 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
3008                                  env->log_type_id, meta_left, sizeof(*t));
3009                 return -EINVAL;
3010         }
3011         meta_left -= sizeof(*t);
3012
3013         if (t->info & ~BTF_INFO_MASK) {
3014                 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
3015                                  env->log_type_id, t->info);
3016                 return -EINVAL;
3017         }
3018
3019         if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
3020             BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
3021                 btf_verifier_log(env, "[%u] Invalid kind:%u",
3022                                  env->log_type_id, BTF_INFO_KIND(t->info));
3023                 return -EINVAL;
3024         }
3025
3026         if (!btf_name_offset_valid(env->btf, t->name_off)) {
3027                 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
3028                                  env->log_type_id, t->name_off);
3029                 return -EINVAL;
3030         }
3031
3032         var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
3033         if (var_meta_size < 0)
3034                 return var_meta_size;
3035
3036         meta_left -= var_meta_size;
3037
3038         return saved_meta_left - meta_left;
3039 }
3040
3041 static int btf_check_all_metas(struct btf_verifier_env *env)
3042 {
3043         struct btf *btf = env->btf;
3044         struct btf_header *hdr;
3045         void *cur, *end;
3046
3047         hdr = &btf->hdr;
3048         cur = btf->nohdr_data + hdr->type_off;
3049         end = cur + hdr->type_len;
3050
3051         env->log_type_id = 1;
3052         while (cur < end) {
3053                 struct btf_type *t = cur;
3054                 s32 meta_size;
3055
3056                 meta_size = btf_check_meta(env, t, end - cur);
3057                 if (meta_size < 0)
3058                         return meta_size;
3059
3060                 btf_add_type(env, t);
3061                 cur += meta_size;
3062                 env->log_type_id++;
3063         }
3064
3065         return 0;
3066 }
3067
3068 static bool btf_resolve_valid(struct btf_verifier_env *env,
3069                               const struct btf_type *t,
3070                               u32 type_id)
3071 {
3072         struct btf *btf = env->btf;
3073
3074         if (!env_type_is_resolved(env, type_id))
3075                 return false;
3076
3077         if (btf_type_is_struct(t) || btf_type_is_datasec(t))
3078                 return !btf->resolved_ids[type_id] &&
3079                        !btf->resolved_sizes[type_id];
3080
3081         if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
3082             btf_type_is_var(t)) {
3083                 t = btf_type_id_resolve(btf, &type_id);
3084                 return t &&
3085                        !btf_type_is_modifier(t) &&
3086                        !btf_type_is_var(t) &&
3087                        !btf_type_is_datasec(t);
3088         }
3089
3090         if (btf_type_is_array(t)) {
3091                 const struct btf_array *array = btf_type_array(t);
3092                 const struct btf_type *elem_type;
3093                 u32 elem_type_id = array->type;
3094                 u32 elem_size;
3095
3096                 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3097                 return elem_type && !btf_type_is_modifier(elem_type) &&
3098                         (array->nelems * elem_size ==
3099                          btf->resolved_sizes[type_id]);
3100         }
3101
3102         return false;
3103 }
3104
3105 static int btf_resolve(struct btf_verifier_env *env,
3106                        const struct btf_type *t, u32 type_id)
3107 {
3108         u32 save_log_type_id = env->log_type_id;
3109         const struct resolve_vertex *v;
3110         int err = 0;
3111
3112         env->resolve_mode = RESOLVE_TBD;
3113         env_stack_push(env, t, type_id);
3114         while (!err && (v = env_stack_peak(env))) {
3115                 env->log_type_id = v->type_id;
3116                 err = btf_type_ops(v->t)->resolve(env, v);
3117         }
3118
3119         env->log_type_id = type_id;
3120         if (err == -E2BIG) {
3121                 btf_verifier_log_type(env, t,
3122                                       "Exceeded max resolving depth:%u",
3123                                       MAX_RESOLVE_DEPTH);
3124         } else if (err == -EEXIST) {
3125                 btf_verifier_log_type(env, t, "Loop detected");
3126         }
3127
3128         /* Final sanity check */
3129         if (!err && !btf_resolve_valid(env, t, type_id)) {
3130                 btf_verifier_log_type(env, t, "Invalid resolve state");
3131                 err = -EINVAL;
3132         }
3133
3134         env->log_type_id = save_log_type_id;
3135         return err;
3136 }
3137
3138 static int btf_check_all_types(struct btf_verifier_env *env)
3139 {
3140         struct btf *btf = env->btf;
3141         u32 type_id;
3142         int err;
3143
3144         err = env_resolve_init(env);
3145         if (err)
3146                 return err;
3147
3148         env->phase++;
3149         for (type_id = 1; type_id <= btf->nr_types; type_id++) {
3150                 const struct btf_type *t = btf_type_by_id(btf, type_id);
3151
3152                 env->log_type_id = type_id;
3153                 if (btf_type_needs_resolve(t) &&
3154                     !env_type_is_resolved(env, type_id)) {
3155                         err = btf_resolve(env, t, type_id);
3156                         if (err)
3157                                 return err;
3158                 }
3159
3160                 if (btf_type_is_func_proto(t)) {
3161                         err = btf_func_proto_check(env, t);
3162                         if (err)
3163                                 return err;
3164                 }
3165
3166                 if (btf_type_is_func(t)) {
3167                         err = btf_func_check(env, t);
3168                         if (err)
3169                                 return err;
3170                 }
3171         }
3172
3173         return 0;
3174 }
3175
3176 static int btf_parse_type_sec(struct btf_verifier_env *env)
3177 {
3178         const struct btf_header *hdr = &env->btf->hdr;
3179         int err;
3180
3181         /* Type section must align to 4 bytes */
3182         if (hdr->type_off & (sizeof(u32) - 1)) {
3183                 btf_verifier_log(env, "Unaligned type_off");
3184                 return -EINVAL;
3185         }
3186
3187         if (!hdr->type_len) {
3188                 btf_verifier_log(env, "No type found");
3189                 return -EINVAL;
3190         }
3191
3192         err = btf_check_all_metas(env);
3193         if (err)
3194                 return err;
3195
3196         return btf_check_all_types(env);
3197 }
3198
3199 static int btf_parse_str_sec(struct btf_verifier_env *env)
3200 {
3201         const struct btf_header *hdr;
3202         struct btf *btf = env->btf;
3203         const char *start, *end;
3204
3205         hdr = &btf->hdr;
3206         start = btf->nohdr_data + hdr->str_off;
3207         end = start + hdr->str_len;
3208
3209         if (end != btf->data + btf->data_size) {
3210                 btf_verifier_log(env, "String section is not at the end");
3211                 return -EINVAL;
3212         }
3213
3214         if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET ||
3215             start[0] || end[-1]) {
3216                 btf_verifier_log(env, "Invalid string section");
3217                 return -EINVAL;
3218         }
3219
3220         btf->strings = start;
3221
3222         return 0;
3223 }
3224
3225 static const size_t btf_sec_info_offset[] = {
3226         offsetof(struct btf_header, type_off),
3227         offsetof(struct btf_header, str_off),
3228 };
3229
3230 static int btf_sec_info_cmp(const void *a, const void *b)
3231 {
3232         const struct btf_sec_info *x = a;
3233         const struct btf_sec_info *y = b;
3234
3235         return (int)(x->off - y->off) ? : (int)(x->len - y->len);
3236 }
3237
3238 static int btf_check_sec_info(struct btf_verifier_env *env,
3239                               u32 btf_data_size)
3240 {
3241         struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
3242         u32 total, expected_total, i;
3243         const struct btf_header *hdr;
3244         const struct btf *btf;
3245
3246         btf = env->btf;
3247         hdr = &btf->hdr;
3248
3249         /* Populate the secs from hdr */
3250         for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
3251                 secs[i] = *(struct btf_sec_info *)((void *)hdr +
3252                                                    btf_sec_info_offset[i]);
3253
3254         sort(secs, ARRAY_SIZE(btf_sec_info_offset),
3255              sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
3256
3257         /* Check for gaps and overlap among sections */
3258         total = 0;
3259         expected_total = btf_data_size - hdr->hdr_len;
3260         for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
3261                 if (expected_total < secs[i].off) {
3262                         btf_verifier_log(env, "Invalid section offset");
3263                         return -EINVAL;
3264                 }
3265                 if (total < secs[i].off) {
3266                         /* gap */
3267                         btf_verifier_log(env, "Unsupported section found");
3268                         return -EINVAL;
3269                 }
3270                 if (total > secs[i].off) {
3271                         btf_verifier_log(env, "Section overlap found");
3272                         return -EINVAL;
3273                 }
3274                 if (expected_total - total < secs[i].len) {
3275                         btf_verifier_log(env,
3276                                          "Total section length too long");
3277                         return -EINVAL;
3278                 }
3279                 total += secs[i].len;
3280         }
3281
3282         /* There is data other than hdr and known sections */
3283         if (expected_total != total) {
3284                 btf_verifier_log(env, "Unsupported section found");
3285                 return -EINVAL;
3286         }
3287
3288         return 0;
3289 }
3290
3291 static int btf_parse_hdr(struct btf_verifier_env *env)
3292 {
3293         u32 hdr_len, hdr_copy, btf_data_size;
3294         const struct btf_header *hdr;
3295         struct btf *btf;
3296         int err;
3297
3298         btf = env->btf;
3299         btf_data_size = btf->data_size;
3300
3301         if (btf_data_size <
3302             offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
3303                 btf_verifier_log(env, "hdr_len not found");
3304                 return -EINVAL;
3305         }
3306
3307         hdr = btf->data;
3308         hdr_len = hdr->hdr_len;
3309         if (btf_data_size < hdr_len) {
3310                 btf_verifier_log(env, "btf_header not found");
3311                 return -EINVAL;
3312         }
3313
3314         /* Ensure the unsupported header fields are zero */
3315         if (hdr_len > sizeof(btf->hdr)) {
3316                 u8 *expected_zero = btf->data + sizeof(btf->hdr);
3317                 u8 *end = btf->data + hdr_len;
3318
3319                 for (; expected_zero < end; expected_zero++) {
3320                         if (*expected_zero) {
3321                                 btf_verifier_log(env, "Unsupported btf_header");
3322                                 return -E2BIG;
3323                         }
3324                 }
3325         }
3326
3327         hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
3328         memcpy(&btf->hdr, btf->data, hdr_copy);
3329
3330         hdr = &btf->hdr;
3331
3332         btf_verifier_log_hdr(env, btf_data_size);
3333
3334         if (hdr->magic != BTF_MAGIC) {
3335                 btf_verifier_log(env, "Invalid magic");
3336                 return -EINVAL;
3337         }
3338
3339         if (hdr->version != BTF_VERSION) {
3340                 btf_verifier_log(env, "Unsupported version");
3341                 return -ENOTSUPP;
3342         }
3343
3344         if (hdr->flags) {
3345                 btf_verifier_log(env, "Unsupported flags");
3346                 return -ENOTSUPP;
3347         }
3348
3349         if (btf_data_size == hdr->hdr_len) {
3350                 btf_verifier_log(env, "No data");
3351                 return -EINVAL;
3352         }
3353
3354         err = btf_check_sec_info(env, btf_data_size);
3355         if (err)
3356                 return err;
3357
3358         return 0;
3359 }
3360
3361 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
3362                              u32 log_level, char __user *log_ubuf, u32 log_size)
3363 {
3364         struct btf_verifier_env *env = NULL;
3365         struct bpf_verifier_log *log;
3366         struct btf *btf = NULL;
3367         u8 *data;
3368         int err;
3369
3370         if (btf_data_size > BTF_MAX_SIZE)
3371                 return ERR_PTR(-E2BIG);
3372
3373         env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
3374         if (!env)
3375                 return ERR_PTR(-ENOMEM);
3376
3377         log = &env->log;
3378         if (log_level || log_ubuf || log_size) {
3379                 /* user requested verbose verifier output
3380                  * and supplied buffer to store the verification trace
3381                  */
3382                 log->level = log_level;
3383                 log->ubuf = log_ubuf;
3384                 log->len_total = log_size;
3385
3386                 /* log attributes have to be sane */
3387                 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
3388                     !log->level || !log->ubuf) {
3389                         err = -EINVAL;
3390                         goto errout;
3391                 }
3392         }
3393
3394         btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
3395         if (!btf) {
3396                 err = -ENOMEM;
3397                 goto errout;
3398         }
3399         env->btf = btf;
3400
3401         data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
3402         if (!data) {
3403                 err = -ENOMEM;
3404                 goto errout;
3405         }
3406
3407         btf->data = data;
3408         btf->data_size = btf_data_size;
3409
3410         if (copy_from_user(data, btf_data, btf_data_size)) {
3411                 err = -EFAULT;
3412                 goto errout;
3413         }
3414
3415         err = btf_parse_hdr(env);
3416         if (err)
3417                 goto errout;
3418
3419         btf->nohdr_data = btf->data + btf->hdr.hdr_len;
3420
3421         err = btf_parse_str_sec(env);
3422         if (err)
3423                 goto errout;
3424
3425         err = btf_parse_type_sec(env);
3426         if (err)
3427                 goto errout;
3428
3429         if (log->level && bpf_verifier_log_full(log)) {
3430                 err = -ENOSPC;
3431                 goto errout;
3432         }
3433
3434         btf_verifier_env_free(env);
3435         refcount_set(&btf->refcnt, 1);
3436         return btf;
3437
3438 errout:
3439         btf_verifier_env_free(env);
3440         if (btf)
3441                 btf_free(btf);
3442         return ERR_PTR(err);
3443 }
3444
3445 extern char __weak _binary__btf_vmlinux_bin_start[];
3446 extern char __weak _binary__btf_vmlinux_bin_end[];
3447 extern struct btf *btf_vmlinux;
3448
3449 #define BPF_MAP_TYPE(_id, _ops)
3450 static union {
3451         struct bpf_ctx_convert {
3452 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
3453         prog_ctx_type _id##_prog; \
3454         kern_ctx_type _id##_kern;
3455 #include <linux/bpf_types.h>
3456 #undef BPF_PROG_TYPE
3457         } *__t;
3458         /* 't' is written once under lock. Read many times. */
3459         const struct btf_type *t;
3460 } bpf_ctx_convert;
3461 enum {
3462 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
3463         __ctx_convert##_id,
3464 #include <linux/bpf_types.h>
3465 #undef BPF_PROG_TYPE
3466         __ctx_convert_unused, /* to avoid empty enum in extreme .config */
3467 };
3468 static u8 bpf_ctx_convert_map[] = {
3469 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
3470         [_id] = __ctx_convert##_id,
3471 #include <linux/bpf_types.h>
3472 #undef BPF_PROG_TYPE
3473 };
3474 #undef BPF_MAP_TYPE
3475
3476 static const struct btf_member *
3477 btf_get_prog_ctx_type(struct bpf_verifier_log *log, struct btf *btf,
3478                       const struct btf_type *t, enum bpf_prog_type prog_type)
3479 {
3480         const struct btf_type *conv_struct;
3481         const struct btf_type *ctx_struct;
3482         const struct btf_member *ctx_type;
3483         const char *tname, *ctx_tname;
3484
3485         conv_struct = bpf_ctx_convert.t;
3486         if (!conv_struct) {
3487                 bpf_log(log, "btf_vmlinux is malformed\n");
3488                 return NULL;
3489         }
3490         t = btf_type_by_id(btf, t->type);
3491         while (btf_type_is_modifier(t))
3492                 t = btf_type_by_id(btf, t->type);
3493         if (!btf_type_is_struct(t)) {
3494                 /* Only pointer to struct is supported for now.
3495                  * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
3496                  * is not supported yet.
3497                  * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
3498                  */
3499                 bpf_log(log, "BPF program ctx type is not a struct\n");
3500                 return NULL;
3501         }
3502         tname = btf_name_by_offset(btf, t->name_off);
3503         if (!tname) {
3504                 bpf_log(log, "BPF program ctx struct doesn't have a name\n");
3505                 return NULL;
3506         }
3507         /* prog_type is valid bpf program type. No need for bounds check. */
3508         ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
3509         /* ctx_struct is a pointer to prog_ctx_type in vmlinux.
3510          * Like 'struct __sk_buff'
3511          */
3512         ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
3513         if (!ctx_struct)
3514                 /* should not happen */
3515                 return NULL;
3516         ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
3517         if (!ctx_tname) {
3518                 /* should not happen */
3519                 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
3520                 return NULL;
3521         }
3522         /* only compare that prog's ctx type name is the same as
3523          * kernel expects. No need to compare field by field.
3524          * It's ok for bpf prog to do:
3525          * struct __sk_buff {};
3526          * int socket_filter_bpf_prog(struct __sk_buff *skb)
3527          * { // no fields of skb are ever used }
3528          */
3529         if (strcmp(ctx_tname, tname))
3530                 return NULL;
3531         return ctx_type;
3532 }
3533
3534 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
3535                                      struct btf *btf,
3536                                      const struct btf_type *t,
3537                                      enum bpf_prog_type prog_type)
3538 {
3539         const struct btf_member *prog_ctx_type, *kern_ctx_type;
3540
3541         prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type);
3542         if (!prog_ctx_type)
3543                 return -ENOENT;
3544         kern_ctx_type = prog_ctx_type + 1;
3545         return kern_ctx_type->type;
3546 }
3547
3548 struct btf *btf_parse_vmlinux(void)
3549 {
3550         struct btf_verifier_env *env = NULL;
3551         struct bpf_verifier_log *log;
3552         struct btf *btf = NULL;
3553         int err, i;
3554
3555         env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
3556         if (!env)
3557                 return ERR_PTR(-ENOMEM);
3558
3559         log = &env->log;
3560         log->level = BPF_LOG_KERNEL;
3561
3562         btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
3563         if (!btf) {
3564                 err = -ENOMEM;
3565                 goto errout;
3566         }
3567         env->btf = btf;
3568
3569         btf->data = _binary__btf_vmlinux_bin_start;
3570         btf->data_size = _binary__btf_vmlinux_bin_end -
3571                 _binary__btf_vmlinux_bin_start;
3572
3573         err = btf_parse_hdr(env);
3574         if (err)
3575                 goto errout;
3576
3577         btf->nohdr_data = btf->data + btf->hdr.hdr_len;
3578
3579         err = btf_parse_str_sec(env);
3580         if (err)
3581                 goto errout;
3582
3583         err = btf_check_all_metas(env);
3584         if (err)
3585                 goto errout;
3586
3587         /* find struct bpf_ctx_convert for type checking later */
3588         for (i = 1; i <= btf->nr_types; i++) {
3589                 const struct btf_type *t;
3590                 const char *tname;
3591
3592                 t = btf_type_by_id(btf, i);
3593                 if (!__btf_type_is_struct(t))
3594                         continue;
3595                 tname = __btf_name_by_offset(btf, t->name_off);
3596                 if (!strcmp(tname, "bpf_ctx_convert")) {
3597                         /* btf_parse_vmlinux() runs under bpf_verifier_lock */
3598                         bpf_ctx_convert.t = t;
3599                         break;
3600                 }
3601         }
3602         if (i > btf->nr_types) {
3603                 err = -ENOENT;
3604                 goto errout;
3605         }
3606
3607         btf_verifier_env_free(env);
3608         refcount_set(&btf->refcnt, 1);
3609         return btf;
3610
3611 errout:
3612         btf_verifier_env_free(env);
3613         if (btf) {
3614                 kvfree(btf->types);
3615                 kfree(btf);
3616         }
3617         return ERR_PTR(err);
3618 }
3619
3620 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
3621 {
3622         struct bpf_prog *tgt_prog = prog->aux->linked_prog;
3623
3624         if (tgt_prog) {
3625                 return tgt_prog->aux->btf;
3626         } else {
3627                 return btf_vmlinux;
3628         }
3629 }
3630
3631 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
3632                     const struct bpf_prog *prog,
3633                     struct bpf_insn_access_aux *info)
3634 {
3635         const struct btf_type *t = prog->aux->attach_func_proto;
3636         struct bpf_prog *tgt_prog = prog->aux->linked_prog;
3637         struct btf *btf = bpf_prog_get_target_btf(prog);
3638         const char *tname = prog->aux->attach_func_name;
3639         struct bpf_verifier_log *log = info->log;
3640         const struct btf_param *args;
3641         u32 nr_args, arg;
3642         int ret;
3643
3644         if (off % 8) {
3645                 bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
3646                         tname, off);
3647                 return false;
3648         }
3649         arg = off / 8;
3650         args = (const struct btf_param *)(t + 1);
3651         /* if (t == NULL) Fall back to default BPF prog with 5 u64 arguments */
3652         nr_args = t ? btf_type_vlen(t) : 5;
3653         if (prog->aux->attach_btf_trace) {
3654                 /* skip first 'void *__data' argument in btf_trace_##name typedef */
3655                 args++;
3656                 nr_args--;
3657         }
3658
3659         if (prog->expected_attach_type == BPF_TRACE_FEXIT &&
3660             arg == nr_args) {
3661                 if (!t)
3662                         /* Default prog with 5 args. 6th arg is retval. */
3663                         return true;
3664                 /* function return type */
3665                 t = btf_type_by_id(btf, t->type);
3666         } else if (arg >= nr_args) {
3667                 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
3668                         tname, arg + 1);
3669                 return false;
3670         } else {
3671                 if (!t)
3672                         /* Default prog with 5 args */
3673                         return true;
3674                 t = btf_type_by_id(btf, args[arg].type);
3675         }
3676         /* skip modifiers */
3677         while (btf_type_is_modifier(t))
3678                 t = btf_type_by_id(btf, t->type);
3679         if (btf_type_is_int(t))
3680                 /* accessing a scalar */
3681                 return true;
3682         if (!btf_type_is_ptr(t)) {
3683                 bpf_log(log,
3684                         "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
3685                         tname, arg,
3686                         __btf_name_by_offset(btf, t->name_off),
3687                         btf_kind_str[BTF_INFO_KIND(t->info)]);
3688                 return false;
3689         }
3690         if (t->type == 0)
3691                 /* This is a pointer to void.
3692                  * It is the same as scalar from the verifier safety pov.
3693                  * No further pointer walking is allowed.
3694                  */
3695                 return true;
3696
3697         /* this is a pointer to another type */
3698         info->reg_type = PTR_TO_BTF_ID;
3699         info->btf_id = t->type;
3700
3701         if (tgt_prog) {
3702                 ret = btf_translate_to_vmlinux(log, btf, t, tgt_prog->type);
3703                 if (ret > 0) {
3704                         info->btf_id = ret;
3705                         return true;
3706                 } else {
3707                         return false;
3708                 }
3709         }
3710         t = btf_type_by_id(btf, t->type);
3711         /* skip modifiers */
3712         while (btf_type_is_modifier(t))
3713                 t = btf_type_by_id(btf, t->type);
3714         if (!btf_type_is_struct(t)) {
3715                 bpf_log(log,
3716                         "func '%s' arg%d type %s is not a struct\n",
3717                         tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
3718                 return false;
3719         }
3720         bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
3721                 tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
3722                 __btf_name_by_offset(btf, t->name_off));
3723         return true;
3724 }
3725
3726 int btf_struct_access(struct bpf_verifier_log *log,
3727                       const struct btf_type *t, int off, int size,
3728                       enum bpf_access_type atype,
3729                       u32 *next_btf_id)
3730 {
3731         u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
3732         const struct btf_type *mtype, *elem_type = NULL;
3733         const struct btf_member *member;
3734         const char *tname, *mname;
3735
3736 again:
3737         tname = __btf_name_by_offset(btf_vmlinux, t->name_off);
3738         if (!btf_type_is_struct(t)) {
3739                 bpf_log(log, "Type '%s' is not a struct", tname);
3740                 return -EINVAL;
3741         }
3742
3743         for_each_member(i, t, member) {
3744                 if (btf_member_bitfield_size(t, member))
3745                         /* bitfields are not supported yet */
3746                         continue;
3747
3748                 /* offset of the field in bytes */
3749                 moff = btf_member_bit_offset(t, member) / 8;
3750                 if (off + size <= moff)
3751                         /* won't find anything, field is already too far */
3752                         break;
3753                 /* In case of "off" is pointing to holes of a struct */
3754                 if (off < moff)
3755                         continue;
3756
3757                 /* type of the field */
3758                 mtype = btf_type_by_id(btf_vmlinux, member->type);
3759                 mname = __btf_name_by_offset(btf_vmlinux, member->name_off);
3760
3761                 mtype = btf_resolve_size(btf_vmlinux, mtype, &msize,
3762                                          &elem_type, &total_nelems);
3763                 if (IS_ERR(mtype)) {
3764                         bpf_log(log, "field %s doesn't have size\n", mname);
3765                         return -EFAULT;
3766                 }
3767
3768                 mtrue_end = moff + msize;
3769                 if (off >= mtrue_end)
3770                         /* no overlap with member, keep iterating */
3771                         continue;
3772
3773                 if (btf_type_is_array(mtype)) {
3774                         u32 elem_idx;
3775
3776                         /* btf_resolve_size() above helps to
3777                          * linearize a multi-dimensional array.
3778                          *
3779                          * The logic here is treating an array
3780                          * in a struct as the following way:
3781                          *
3782                          * struct outer {
3783                          *      struct inner array[2][2];
3784                          * };
3785                          *
3786                          * looks like:
3787                          *
3788                          * struct outer {
3789                          *      struct inner array_elem0;
3790                          *      struct inner array_elem1;
3791                          *      struct inner array_elem2;
3792                          *      struct inner array_elem3;
3793                          * };
3794                          *
3795                          * When accessing outer->array[1][0], it moves
3796                          * moff to "array_elem2", set mtype to
3797                          * "struct inner", and msize also becomes
3798                          * sizeof(struct inner).  Then most of the
3799                          * remaining logic will fall through without
3800                          * caring the current member is an array or
3801                          * not.
3802                          *
3803                          * Unlike mtype/msize/moff, mtrue_end does not
3804                          * change.  The naming difference ("_true") tells
3805                          * that it is not always corresponding to
3806                          * the current mtype/msize/moff.
3807                          * It is the true end of the current
3808                          * member (i.e. array in this case).  That
3809                          * will allow an int array to be accessed like
3810                          * a scratch space,
3811                          * i.e. allow access beyond the size of
3812                          *      the array's element as long as it is
3813                          *      within the mtrue_end boundary.
3814                          */
3815
3816                         /* skip empty array */
3817                         if (moff == mtrue_end)
3818                                 continue;
3819
3820                         msize /= total_nelems;
3821                         elem_idx = (off - moff) / msize;
3822                         moff += elem_idx * msize;
3823                         mtype = elem_type;
3824                 }
3825
3826                 /* the 'off' we're looking for is either equal to start
3827                  * of this field or inside of this struct
3828                  */
3829                 if (btf_type_is_struct(mtype)) {
3830                         /* our field must be inside that union or struct */
3831                         t = mtype;
3832
3833                         /* adjust offset we're looking for */
3834                         off -= moff;
3835                         goto again;
3836                 }
3837
3838                 if (btf_type_is_ptr(mtype)) {
3839                         const struct btf_type *stype;
3840
3841                         if (msize != size || off != moff) {
3842                                 bpf_log(log,
3843                                         "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
3844                                         mname, moff, tname, off, size);
3845                                 return -EACCES;
3846                         }
3847
3848                         stype = btf_type_by_id(btf_vmlinux, mtype->type);
3849                         /* skip modifiers */
3850                         while (btf_type_is_modifier(stype))
3851                                 stype = btf_type_by_id(btf_vmlinux, stype->type);
3852                         if (btf_type_is_struct(stype)) {
3853                                 *next_btf_id = mtype->type;
3854                                 return PTR_TO_BTF_ID;
3855                         }
3856                 }
3857
3858                 /* Allow more flexible access within an int as long as
3859                  * it is within mtrue_end.
3860                  * Since mtrue_end could be the end of an array,
3861                  * that also allows using an array of int as a scratch
3862                  * space. e.g. skb->cb[].
3863                  */
3864                 if (off + size > mtrue_end) {
3865                         bpf_log(log,
3866                                 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
3867                                 mname, mtrue_end, tname, off, size);
3868                         return -EACCES;
3869                 }
3870
3871                 return SCALAR_VALUE;
3872         }
3873         bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
3874         return -EINVAL;
3875 }
3876
3877 static int __btf_resolve_helper_id(struct bpf_verifier_log *log, void *fn,
3878                                    int arg)
3879 {
3880         char fnname[KSYM_SYMBOL_LEN + 4] = "btf_";
3881         const struct btf_param *args;
3882         const struct btf_type *t;
3883         const char *tname, *sym;
3884         u32 btf_id, i;
3885
3886         if (IS_ERR(btf_vmlinux)) {
3887                 bpf_log(log, "btf_vmlinux is malformed\n");
3888                 return -EINVAL;
3889         }
3890
3891         sym = kallsyms_lookup((long)fn, NULL, NULL, NULL, fnname + 4);
3892         if (!sym) {
3893                 bpf_log(log, "kernel doesn't have kallsyms\n");
3894                 return -EFAULT;
3895         }
3896
3897         for (i = 1; i <= btf_vmlinux->nr_types; i++) {
3898                 t = btf_type_by_id(btf_vmlinux, i);
3899                 if (BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF)
3900                         continue;
3901                 tname = __btf_name_by_offset(btf_vmlinux, t->name_off);
3902                 if (!strcmp(tname, fnname))
3903                         break;
3904         }
3905         if (i > btf_vmlinux->nr_types) {
3906                 bpf_log(log, "helper %s type is not found\n", fnname);
3907                 return -ENOENT;
3908         }
3909
3910         t = btf_type_by_id(btf_vmlinux, t->type);
3911         if (!btf_type_is_ptr(t))
3912                 return -EFAULT;
3913         t = btf_type_by_id(btf_vmlinux, t->type);
3914         if (!btf_type_is_func_proto(t))
3915                 return -EFAULT;
3916
3917         args = (const struct btf_param *)(t + 1);
3918         if (arg >= btf_type_vlen(t)) {
3919                 bpf_log(log, "bpf helper %s doesn't have %d-th argument\n",
3920                         fnname, arg);
3921                 return -EINVAL;
3922         }
3923
3924         t = btf_type_by_id(btf_vmlinux, args[arg].type);
3925         if (!btf_type_is_ptr(t) || !t->type) {
3926                 /* anything but the pointer to struct is a helper config bug */
3927                 bpf_log(log, "ARG_PTR_TO_BTF is misconfigured\n");
3928                 return -EFAULT;
3929         }
3930         btf_id = t->type;
3931         t = btf_type_by_id(btf_vmlinux, t->type);
3932         /* skip modifiers */
3933         while (btf_type_is_modifier(t)) {
3934                 btf_id = t->type;
3935                 t = btf_type_by_id(btf_vmlinux, t->type);
3936         }
3937         if (!btf_type_is_struct(t)) {
3938                 bpf_log(log, "ARG_PTR_TO_BTF is not a struct\n");
3939                 return -EFAULT;
3940         }
3941         bpf_log(log, "helper %s arg%d has btf_id %d struct %s\n", fnname + 4,
3942                 arg, btf_id, __btf_name_by_offset(btf_vmlinux, t->name_off));
3943         return btf_id;
3944 }
3945
3946 int btf_resolve_helper_id(struct bpf_verifier_log *log,
3947                           const struct bpf_func_proto *fn, int arg)
3948 {
3949         int *btf_id = &fn->btf_id[arg];
3950         int ret;
3951
3952         if (fn->arg_type[arg] != ARG_PTR_TO_BTF_ID)
3953                 return -EINVAL;
3954
3955         ret = READ_ONCE(*btf_id);
3956         if (ret)
3957                 return ret;
3958         /* ok to race the search. The result is the same */
3959         ret = __btf_resolve_helper_id(log, fn->func, arg);
3960         if (!ret) {
3961                 /* Function argument cannot be type 'void' */
3962                 bpf_log(log, "BTF resolution bug\n");
3963                 return -EFAULT;
3964         }
3965         WRITE_ONCE(*btf_id, ret);
3966         return ret;
3967 }
3968
3969 static int __get_type_size(struct btf *btf, u32 btf_id,
3970                            const struct btf_type **bad_type)
3971 {
3972         const struct btf_type *t;
3973
3974         if (!btf_id)
3975                 /* void */
3976                 return 0;
3977         t = btf_type_by_id(btf, btf_id);
3978         while (t && btf_type_is_modifier(t))
3979                 t = btf_type_by_id(btf, t->type);
3980         if (!t) {
3981                 *bad_type = btf->types[0];
3982                 return -EINVAL;
3983         }
3984         if (btf_type_is_ptr(t))
3985                 /* kernel size of pointer. Not BPF's size of pointer*/
3986                 return sizeof(void *);
3987         if (btf_type_is_int(t) || btf_type_is_enum(t))
3988                 return t->size;
3989         *bad_type = t;
3990         return -EINVAL;
3991 }
3992
3993 int btf_distill_func_proto(struct bpf_verifier_log *log,
3994                            struct btf *btf,
3995                            const struct btf_type *func,
3996                            const char *tname,
3997                            struct btf_func_model *m)
3998 {
3999         const struct btf_param *args;
4000         const struct btf_type *t;
4001         u32 i, nargs;
4002         int ret;
4003
4004         if (!func) {
4005                 /* BTF function prototype doesn't match the verifier types.
4006                  * Fall back to 5 u64 args.
4007                  */
4008                 for (i = 0; i < 5; i++)
4009                         m->arg_size[i] = 8;
4010                 m->ret_size = 8;
4011                 m->nr_args = 5;
4012                 return 0;
4013         }
4014         args = (const struct btf_param *)(func + 1);
4015         nargs = btf_type_vlen(func);
4016         if (nargs >= MAX_BPF_FUNC_ARGS) {
4017                 bpf_log(log,
4018                         "The function %s has %d arguments. Too many.\n",
4019                         tname, nargs);
4020                 return -EINVAL;
4021         }
4022         ret = __get_type_size(btf, func->type, &t);
4023         if (ret < 0) {
4024                 bpf_log(log,
4025                         "The function %s return type %s is unsupported.\n",
4026                         tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
4027                 return -EINVAL;
4028         }
4029         m->ret_size = ret;
4030
4031         for (i = 0; i < nargs; i++) {
4032                 ret = __get_type_size(btf, args[i].type, &t);
4033                 if (ret < 0) {
4034                         bpf_log(log,
4035                                 "The function %s arg%d type %s is unsupported.\n",
4036                                 tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
4037                         return -EINVAL;
4038                 }
4039                 m->arg_size[i] = ret;
4040         }
4041         m->nr_args = nargs;
4042         return 0;
4043 }
4044
4045 int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog)
4046 {
4047         struct bpf_verifier_state *st = env->cur_state;
4048         struct bpf_func_state *func = st->frame[st->curframe];
4049         struct bpf_reg_state *reg = func->regs;
4050         struct bpf_verifier_log *log = &env->log;
4051         struct bpf_prog *prog = env->prog;
4052         struct btf *btf = prog->aux->btf;
4053         const struct btf_param *args;
4054         const struct btf_type *t;
4055         u32 i, nargs, btf_id;
4056         const char *tname;
4057
4058         if (!prog->aux->func_info)
4059                 return 0;
4060
4061         btf_id = prog->aux->func_info[subprog].type_id;
4062         if (!btf_id)
4063                 return 0;
4064
4065         if (prog->aux->func_info_aux[subprog].unreliable)
4066                 return 0;
4067
4068         t = btf_type_by_id(btf, btf_id);
4069         if (!t || !btf_type_is_func(t)) {
4070                 bpf_log(log, "BTF of subprog %d doesn't point to KIND_FUNC\n",
4071                         subprog);
4072                 return -EINVAL;
4073         }
4074         tname = btf_name_by_offset(btf, t->name_off);
4075
4076         t = btf_type_by_id(btf, t->type);
4077         if (!t || !btf_type_is_func_proto(t)) {
4078                 bpf_log(log, "Invalid type of func %s\n", tname);
4079                 return -EINVAL;
4080         }
4081         args = (const struct btf_param *)(t + 1);
4082         nargs = btf_type_vlen(t);
4083         if (nargs > 5) {
4084                 bpf_log(log, "Function %s has %d > 5 args\n", tname, nargs);
4085                 goto out;
4086         }
4087         /* check that BTF function arguments match actual types that the
4088          * verifier sees.
4089          */
4090         for (i = 0; i < nargs; i++) {
4091                 t = btf_type_by_id(btf, args[i].type);
4092                 while (btf_type_is_modifier(t))
4093                         t = btf_type_by_id(btf, t->type);
4094                 if (btf_type_is_int(t) || btf_type_is_enum(t)) {
4095                         if (reg[i + 1].type == SCALAR_VALUE)
4096                                 continue;
4097                         bpf_log(log, "R%d is not a scalar\n", i + 1);
4098                         goto out;
4099                 }
4100                 if (btf_type_is_ptr(t)) {
4101                         if (reg[i + 1].type == SCALAR_VALUE) {
4102                                 bpf_log(log, "R%d is not a pointer\n", i + 1);
4103                                 goto out;
4104                         }
4105                         /* If program is passing PTR_TO_CTX into subprogram
4106                          * check that BTF type matches.
4107                          */
4108                         if (reg[i + 1].type == PTR_TO_CTX &&
4109                             !btf_get_prog_ctx_type(log, btf, t, prog->type))
4110                                 goto out;
4111                         /* All other pointers are ok */
4112                         continue;
4113                 }
4114                 bpf_log(log, "Unrecognized argument type %s\n",
4115                         btf_kind_str[BTF_INFO_KIND(t->info)]);
4116                 goto out;
4117         }
4118         return 0;
4119 out:
4120         /* LLVM optimizations can remove arguments from static functions. */
4121         bpf_log(log,
4122                 "Type info disagrees with actual arguments due to compiler optimizations\n");
4123         prog->aux->func_info_aux[subprog].unreliable = true;
4124         return 0;
4125 }
4126
4127 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
4128                        struct seq_file *m)
4129 {
4130         const struct btf_type *t = btf_type_by_id(btf, type_id);
4131
4132         btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m);
4133 }
4134
4135 #ifdef CONFIG_PROC_FS
4136 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
4137 {
4138         const struct btf *btf = filp->private_data;
4139
4140         seq_printf(m, "btf_id:\t%u\n", btf->id);
4141 }
4142 #endif
4143
4144 static int btf_release(struct inode *inode, struct file *filp)
4145 {
4146         btf_put(filp->private_data);
4147         return 0;
4148 }
4149
4150 const struct file_operations btf_fops = {
4151 #ifdef CONFIG_PROC_FS
4152         .show_fdinfo    = bpf_btf_show_fdinfo,
4153 #endif
4154         .release        = btf_release,
4155 };
4156
4157 static int __btf_new_fd(struct btf *btf)
4158 {
4159         return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
4160 }
4161
4162 int btf_new_fd(const union bpf_attr *attr)
4163 {
4164         struct btf *btf;
4165         int ret;
4166
4167         btf = btf_parse(u64_to_user_ptr(attr->btf),
4168                         attr->btf_size, attr->btf_log_level,
4169                         u64_to_user_ptr(attr->btf_log_buf),
4170                         attr->btf_log_size);
4171         if (IS_ERR(btf))
4172                 return PTR_ERR(btf);
4173
4174         ret = btf_alloc_id(btf);
4175         if (ret) {
4176                 btf_free(btf);
4177                 return ret;
4178         }
4179
4180         /*
4181          * The BTF ID is published to the userspace.
4182          * All BTF free must go through call_rcu() from
4183          * now on (i.e. free by calling btf_put()).
4184          */
4185
4186         ret = __btf_new_fd(btf);
4187         if (ret < 0)
4188                 btf_put(btf);
4189
4190         return ret;
4191 }
4192
4193 struct btf *btf_get_by_fd(int fd)
4194 {
4195         struct btf *btf;
4196         struct fd f;
4197
4198         f = fdget(fd);
4199
4200         if (!f.file)
4201                 return ERR_PTR(-EBADF);
4202
4203         if (f.file->f_op != &btf_fops) {
4204                 fdput(f);
4205                 return ERR_PTR(-EINVAL);
4206         }
4207
4208         btf = f.file->private_data;
4209         refcount_inc(&btf->refcnt);
4210         fdput(f);
4211
4212         return btf;
4213 }
4214
4215 int btf_get_info_by_fd(const struct btf *btf,
4216                        const union bpf_attr *attr,
4217                        union bpf_attr __user *uattr)
4218 {
4219         struct bpf_btf_info __user *uinfo;
4220         struct bpf_btf_info info = {};
4221         u32 info_copy, btf_copy;
4222         void __user *ubtf;
4223         u32 uinfo_len;
4224
4225         uinfo = u64_to_user_ptr(attr->info.info);
4226         uinfo_len = attr->info.info_len;
4227
4228         info_copy = min_t(u32, uinfo_len, sizeof(info));
4229         if (copy_from_user(&info, uinfo, info_copy))
4230                 return -EFAULT;
4231
4232         info.id = btf->id;
4233         ubtf = u64_to_user_ptr(info.btf);
4234         btf_copy = min_t(u32, btf->data_size, info.btf_size);
4235         if (copy_to_user(ubtf, btf->data, btf_copy))
4236                 return -EFAULT;
4237         info.btf_size = btf->data_size;
4238
4239         if (copy_to_user(uinfo, &info, info_copy) ||
4240             put_user(info_copy, &uattr->info.info_len))
4241                 return -EFAULT;
4242
4243         return 0;
4244 }
4245
4246 int btf_get_fd_by_id(u32 id)
4247 {
4248         struct btf *btf;
4249         int fd;
4250
4251         rcu_read_lock();
4252         btf = idr_find(&btf_idr, id);
4253         if (!btf || !refcount_inc_not_zero(&btf->refcnt))
4254                 btf = ERR_PTR(-ENOENT);
4255         rcu_read_unlock();
4256
4257         if (IS_ERR(btf))
4258                 return PTR_ERR(btf);
4259
4260         fd = __btf_new_fd(btf);
4261         if (fd < 0)
4262                 btf_put(btf);
4263
4264         return fd;
4265 }
4266
4267 u32 btf_id(const struct btf *btf)
4268 {
4269         return btf->id;
4270 }