]> asedeno.scripts.mit.edu Git - linux.git/blob - kernel/events/core.c
PM / QoS: Remove global notifiers
[linux.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49
50 #include "internal.h"
51
52 #include <asm/irq_regs.h>
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57         struct task_struct      *p;
58         remote_function_f       func;
59         void                    *info;
60         int                     ret;
61 };
62
63 static void remote_function(void *data)
64 {
65         struct remote_function_call *tfc = data;
66         struct task_struct *p = tfc->p;
67
68         if (p) {
69                 /* -EAGAIN */
70                 if (task_cpu(p) != smp_processor_id())
71                         return;
72
73                 /*
74                  * Now that we're on right CPU with IRQs disabled, we can test
75                  * if we hit the right task without races.
76                  */
77
78                 tfc->ret = -ESRCH; /* No such (running) process */
79                 if (p != current)
80                         return;
81         }
82
83         tfc->ret = tfc->func(tfc->info);
84 }
85
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:          the task to evaluate
89  * @func:       the function to be called
90  * @info:       the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *          -ESRCH  - when the process isn't running
97  *          -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102         struct remote_function_call data = {
103                 .p      = p,
104                 .func   = func,
105                 .info   = info,
106                 .ret    = -EAGAIN,
107         };
108         int ret;
109
110         do {
111                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112                 if (!ret)
113                         ret = data.ret;
114         } while (ret == -EAGAIN);
115
116         return ret;
117 }
118
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:       the function to be called
122  * @info:       the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130         struct remote_function_call data = {
131                 .p      = NULL,
132                 .func   = func,
133                 .info   = info,
134                 .ret    = -ENXIO, /* No such CPU */
135         };
136
137         smp_call_function_single(cpu, remote_function, &data, 1);
138
139         return data.ret;
140 }
141
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149                           struct perf_event_context *ctx)
150 {
151         raw_spin_lock(&cpuctx->ctx.lock);
152         if (ctx)
153                 raw_spin_lock(&ctx->lock);
154 }
155
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157                             struct perf_event_context *ctx)
158 {
159         if (ctx)
160                 raw_spin_unlock(&ctx->lock);
161         raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163
164 #define TASK_TOMBSTONE ((void *)-1L)
165
166 static bool is_kernel_event(struct perf_event *event)
167 {
168         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191                         struct perf_event_context *, void *);
192
193 struct event_function_struct {
194         struct perf_event *event;
195         event_f func;
196         void *data;
197 };
198
199 static int event_function(void *info)
200 {
201         struct event_function_struct *efs = info;
202         struct perf_event *event = efs->event;
203         struct perf_event_context *ctx = event->ctx;
204         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205         struct perf_event_context *task_ctx = cpuctx->task_ctx;
206         int ret = 0;
207
208         WARN_ON_ONCE(!irqs_disabled());
209
210         perf_ctx_lock(cpuctx, task_ctx);
211         /*
212          * Since we do the IPI call without holding ctx->lock things can have
213          * changed, double check we hit the task we set out to hit.
214          */
215         if (ctx->task) {
216                 if (ctx->task != current) {
217                         ret = -ESRCH;
218                         goto unlock;
219                 }
220
221                 /*
222                  * We only use event_function_call() on established contexts,
223                  * and event_function() is only ever called when active (or
224                  * rather, we'll have bailed in task_function_call() or the
225                  * above ctx->task != current test), therefore we must have
226                  * ctx->is_active here.
227                  */
228                 WARN_ON_ONCE(!ctx->is_active);
229                 /*
230                  * And since we have ctx->is_active, cpuctx->task_ctx must
231                  * match.
232                  */
233                 WARN_ON_ONCE(task_ctx != ctx);
234         } else {
235                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236         }
237
238         efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240         perf_ctx_unlock(cpuctx, task_ctx);
241
242         return ret;
243 }
244
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
246 {
247         struct perf_event_context *ctx = event->ctx;
248         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249         struct event_function_struct efs = {
250                 .event = event,
251                 .func = func,
252                 .data = data,
253         };
254
255         if (!event->parent) {
256                 /*
257                  * If this is a !child event, we must hold ctx::mutex to
258                  * stabilize the the event->ctx relation. See
259                  * perf_event_ctx_lock().
260                  */
261                 lockdep_assert_held(&ctx->mutex);
262         }
263
264         if (!task) {
265                 cpu_function_call(event->cpu, event_function, &efs);
266                 return;
267         }
268
269         if (task == TASK_TOMBSTONE)
270                 return;
271
272 again:
273         if (!task_function_call(task, event_function, &efs))
274                 return;
275
276         raw_spin_lock_irq(&ctx->lock);
277         /*
278          * Reload the task pointer, it might have been changed by
279          * a concurrent perf_event_context_sched_out().
280          */
281         task = ctx->task;
282         if (task == TASK_TOMBSTONE) {
283                 raw_spin_unlock_irq(&ctx->lock);
284                 return;
285         }
286         if (ctx->is_active) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 goto again;
289         }
290         func(event, NULL, ctx, data);
291         raw_spin_unlock_irq(&ctx->lock);
292 }
293
294 /*
295  * Similar to event_function_call() + event_function(), but hard assumes IRQs
296  * are already disabled and we're on the right CPU.
297  */
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
299 {
300         struct perf_event_context *ctx = event->ctx;
301         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302         struct task_struct *task = READ_ONCE(ctx->task);
303         struct perf_event_context *task_ctx = NULL;
304
305         WARN_ON_ONCE(!irqs_disabled());
306
307         if (task) {
308                 if (task == TASK_TOMBSTONE)
309                         return;
310
311                 task_ctx = ctx;
312         }
313
314         perf_ctx_lock(cpuctx, task_ctx);
315
316         task = ctx->task;
317         if (task == TASK_TOMBSTONE)
318                 goto unlock;
319
320         if (task) {
321                 /*
322                  * We must be either inactive or active and the right task,
323                  * otherwise we're screwed, since we cannot IPI to somewhere
324                  * else.
325                  */
326                 if (ctx->is_active) {
327                         if (WARN_ON_ONCE(task != current))
328                                 goto unlock;
329
330                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331                                 goto unlock;
332                 }
333         } else {
334                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
335         }
336
337         func(event, cpuctx, ctx, data);
338 unlock:
339         perf_ctx_unlock(cpuctx, task_ctx);
340 }
341
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343                        PERF_FLAG_FD_OUTPUT  |\
344                        PERF_FLAG_PID_CGROUP |\
345                        PERF_FLAG_FD_CLOEXEC)
346
347 /*
348  * branch priv levels that need permission checks
349  */
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351         (PERF_SAMPLE_BRANCH_KERNEL |\
352          PERF_SAMPLE_BRANCH_HV)
353
354 enum event_type_t {
355         EVENT_FLEXIBLE = 0x1,
356         EVENT_PINNED = 0x2,
357         EVENT_TIME = 0x4,
358         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359 };
360
361 /*
362  * perf_sched_events : >0 events exist
363  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364  */
365
366 static void perf_sched_delayed(struct work_struct *work);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369 static DEFINE_MUTEX(perf_sched_mutex);
370 static atomic_t perf_sched_count;
371
372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
375
376 static atomic_t nr_mmap_events __read_mostly;
377 static atomic_t nr_comm_events __read_mostly;
378 static atomic_t nr_task_events __read_mostly;
379 static atomic_t nr_freq_events __read_mostly;
380 static atomic_t nr_switch_events __read_mostly;
381
382 static LIST_HEAD(pmus);
383 static DEFINE_MUTEX(pmus_lock);
384 static struct srcu_struct pmus_srcu;
385
386 /*
387  * perf event paranoia level:
388  *  -1 - not paranoid at all
389  *   0 - disallow raw tracepoint access for unpriv
390  *   1 - disallow cpu events for unpriv
391  *   2 - disallow kernel profiling for unpriv
392  */
393 int sysctl_perf_event_paranoid __read_mostly = 2;
394
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
397
398 /*
399  * max perf event sample rate
400  */
401 #define DEFAULT_MAX_SAMPLE_RATE         100000
402 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
404
405 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
406
407 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
409
410 static int perf_sample_allowed_ns __read_mostly =
411         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
412
413 static void update_perf_cpu_limits(void)
414 {
415         u64 tmp = perf_sample_period_ns;
416
417         tmp *= sysctl_perf_cpu_time_max_percent;
418         tmp = div_u64(tmp, 100);
419         if (!tmp)
420                 tmp = 1;
421
422         WRITE_ONCE(perf_sample_allowed_ns, tmp);
423 }
424
425 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
426
427 int perf_proc_update_handler(struct ctl_table *table, int write,
428                 void __user *buffer, size_t *lenp,
429                 loff_t *ppos)
430 {
431         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
432
433         if (ret || !write)
434                 return ret;
435
436         /*
437          * If throttling is disabled don't allow the write:
438          */
439         if (sysctl_perf_cpu_time_max_percent == 100 ||
440             sysctl_perf_cpu_time_max_percent == 0)
441                 return -EINVAL;
442
443         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445         update_perf_cpu_limits();
446
447         return 0;
448 }
449
450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
451
452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453                                 void __user *buffer, size_t *lenp,
454                                 loff_t *ppos)
455 {
456         int ret = proc_dointvec(table, write, buffer, lenp, ppos);
457
458         if (ret || !write)
459                 return ret;
460
461         if (sysctl_perf_cpu_time_max_percent == 100 ||
462             sysctl_perf_cpu_time_max_percent == 0) {
463                 printk(KERN_WARNING
464                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465                 WRITE_ONCE(perf_sample_allowed_ns, 0);
466         } else {
467                 update_perf_cpu_limits();
468         }
469
470         return 0;
471 }
472
473 /*
474  * perf samples are done in some very critical code paths (NMIs).
475  * If they take too much CPU time, the system can lock up and not
476  * get any real work done.  This will drop the sample rate when
477  * we detect that events are taking too long.
478  */
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64, running_sample_length);
481
482 static u64 __report_avg;
483 static u64 __report_allowed;
484
485 static void perf_duration_warn(struct irq_work *w)
486 {
487         printk_ratelimited(KERN_INFO
488                 "perf: interrupt took too long (%lld > %lld), lowering "
489                 "kernel.perf_event_max_sample_rate to %d\n",
490                 __report_avg, __report_allowed,
491                 sysctl_perf_event_sample_rate);
492 }
493
494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
495
496 void perf_sample_event_took(u64 sample_len_ns)
497 {
498         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499         u64 running_len;
500         u64 avg_len;
501         u32 max;
502
503         if (max_len == 0)
504                 return;
505
506         /* Decay the counter by 1 average sample. */
507         running_len = __this_cpu_read(running_sample_length);
508         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509         running_len += sample_len_ns;
510         __this_cpu_write(running_sample_length, running_len);
511
512         /*
513          * Note: this will be biased artifically low until we have
514          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515          * from having to maintain a count.
516          */
517         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518         if (avg_len <= max_len)
519                 return;
520
521         __report_avg = avg_len;
522         __report_allowed = max_len;
523
524         /*
525          * Compute a throttle threshold 25% below the current duration.
526          */
527         avg_len += avg_len / 4;
528         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529         if (avg_len < max)
530                 max /= (u32)avg_len;
531         else
532                 max = 1;
533
534         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535         WRITE_ONCE(max_samples_per_tick, max);
536
537         sysctl_perf_event_sample_rate = max * HZ;
538         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
539
540         if (!irq_work_queue(&perf_duration_work)) {
541                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542                              "kernel.perf_event_max_sample_rate to %d\n",
543                              __report_avg, __report_allowed,
544                              sysctl_perf_event_sample_rate);
545         }
546 }
547
548 static atomic64_t perf_event_id;
549
550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551                               enum event_type_t event_type);
552
553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
554                              enum event_type_t event_type,
555                              struct task_struct *task);
556
557 static void update_context_time(struct perf_event_context *ctx);
558 static u64 perf_event_time(struct perf_event *event);
559
560 void __weak perf_event_print_debug(void)        { }
561
562 extern __weak const char *perf_pmu_name(void)
563 {
564         return "pmu";
565 }
566
567 static inline u64 perf_clock(void)
568 {
569         return local_clock();
570 }
571
572 static inline u64 perf_event_clock(struct perf_event *event)
573 {
574         return event->clock();
575 }
576
577 #ifdef CONFIG_CGROUP_PERF
578
579 static inline bool
580 perf_cgroup_match(struct perf_event *event)
581 {
582         struct perf_event_context *ctx = event->ctx;
583         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
584
585         /* @event doesn't care about cgroup */
586         if (!event->cgrp)
587                 return true;
588
589         /* wants specific cgroup scope but @cpuctx isn't associated with any */
590         if (!cpuctx->cgrp)
591                 return false;
592
593         /*
594          * Cgroup scoping is recursive.  An event enabled for a cgroup is
595          * also enabled for all its descendant cgroups.  If @cpuctx's
596          * cgroup is a descendant of @event's (the test covers identity
597          * case), it's a match.
598          */
599         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600                                     event->cgrp->css.cgroup);
601 }
602
603 static inline void perf_detach_cgroup(struct perf_event *event)
604 {
605         css_put(&event->cgrp->css);
606         event->cgrp = NULL;
607 }
608
609 static inline int is_cgroup_event(struct perf_event *event)
610 {
611         return event->cgrp != NULL;
612 }
613
614 static inline u64 perf_cgroup_event_time(struct perf_event *event)
615 {
616         struct perf_cgroup_info *t;
617
618         t = per_cpu_ptr(event->cgrp->info, event->cpu);
619         return t->time;
620 }
621
622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
623 {
624         struct perf_cgroup_info *info;
625         u64 now;
626
627         now = perf_clock();
628
629         info = this_cpu_ptr(cgrp->info);
630
631         info->time += now - info->timestamp;
632         info->timestamp = now;
633 }
634
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
636 {
637         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638         if (cgrp_out)
639                 __update_cgrp_time(cgrp_out);
640 }
641
642 static inline void update_cgrp_time_from_event(struct perf_event *event)
643 {
644         struct perf_cgroup *cgrp;
645
646         /*
647          * ensure we access cgroup data only when needed and
648          * when we know the cgroup is pinned (css_get)
649          */
650         if (!is_cgroup_event(event))
651                 return;
652
653         cgrp = perf_cgroup_from_task(current, event->ctx);
654         /*
655          * Do not update time when cgroup is not active
656          */
657         if (cgrp == event->cgrp)
658                 __update_cgrp_time(event->cgrp);
659 }
660
661 static inline void
662 perf_cgroup_set_timestamp(struct task_struct *task,
663                           struct perf_event_context *ctx)
664 {
665         struct perf_cgroup *cgrp;
666         struct perf_cgroup_info *info;
667
668         /*
669          * ctx->lock held by caller
670          * ensure we do not access cgroup data
671          * unless we have the cgroup pinned (css_get)
672          */
673         if (!task || !ctx->nr_cgroups)
674                 return;
675
676         cgrp = perf_cgroup_from_task(task, ctx);
677         info = this_cpu_ptr(cgrp->info);
678         info->timestamp = ctx->timestamp;
679 }
680
681 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
682 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
683
684 /*
685  * reschedule events based on the cgroup constraint of task.
686  *
687  * mode SWOUT : schedule out everything
688  * mode SWIN : schedule in based on cgroup for next
689  */
690 static void perf_cgroup_switch(struct task_struct *task, int mode)
691 {
692         struct perf_cpu_context *cpuctx;
693         struct pmu *pmu;
694         unsigned long flags;
695
696         /*
697          * disable interrupts to avoid geting nr_cgroup
698          * changes via __perf_event_disable(). Also
699          * avoids preemption.
700          */
701         local_irq_save(flags);
702
703         /*
704          * we reschedule only in the presence of cgroup
705          * constrained events.
706          */
707
708         list_for_each_entry_rcu(pmu, &pmus, entry) {
709                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710                 if (cpuctx->unique_pmu != pmu)
711                         continue; /* ensure we process each cpuctx once */
712
713                 /*
714                  * perf_cgroup_events says at least one
715                  * context on this CPU has cgroup events.
716                  *
717                  * ctx->nr_cgroups reports the number of cgroup
718                  * events for a context.
719                  */
720                 if (cpuctx->ctx.nr_cgroups > 0) {
721                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722                         perf_pmu_disable(cpuctx->ctx.pmu);
723
724                         if (mode & PERF_CGROUP_SWOUT) {
725                                 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726                                 /*
727                                  * must not be done before ctxswout due
728                                  * to event_filter_match() in event_sched_out()
729                                  */
730                                 cpuctx->cgrp = NULL;
731                         }
732
733                         if (mode & PERF_CGROUP_SWIN) {
734                                 WARN_ON_ONCE(cpuctx->cgrp);
735                                 /*
736                                  * set cgrp before ctxsw in to allow
737                                  * event_filter_match() to not have to pass
738                                  * task around
739                                  * we pass the cpuctx->ctx to perf_cgroup_from_task()
740                                  * because cgorup events are only per-cpu
741                                  */
742                                 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
743                                 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
744                         }
745                         perf_pmu_enable(cpuctx->ctx.pmu);
746                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
747                 }
748         }
749
750         local_irq_restore(flags);
751 }
752
753 static inline void perf_cgroup_sched_out(struct task_struct *task,
754                                          struct task_struct *next)
755 {
756         struct perf_cgroup *cgrp1;
757         struct perf_cgroup *cgrp2 = NULL;
758
759         rcu_read_lock();
760         /*
761          * we come here when we know perf_cgroup_events > 0
762          * we do not need to pass the ctx here because we know
763          * we are holding the rcu lock
764          */
765         cgrp1 = perf_cgroup_from_task(task, NULL);
766         cgrp2 = perf_cgroup_from_task(next, NULL);
767
768         /*
769          * only schedule out current cgroup events if we know
770          * that we are switching to a different cgroup. Otherwise,
771          * do no touch the cgroup events.
772          */
773         if (cgrp1 != cgrp2)
774                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
775
776         rcu_read_unlock();
777 }
778
779 static inline void perf_cgroup_sched_in(struct task_struct *prev,
780                                         struct task_struct *task)
781 {
782         struct perf_cgroup *cgrp1;
783         struct perf_cgroup *cgrp2 = NULL;
784
785         rcu_read_lock();
786         /*
787          * we come here when we know perf_cgroup_events > 0
788          * we do not need to pass the ctx here because we know
789          * we are holding the rcu lock
790          */
791         cgrp1 = perf_cgroup_from_task(task, NULL);
792         cgrp2 = perf_cgroup_from_task(prev, NULL);
793
794         /*
795          * only need to schedule in cgroup events if we are changing
796          * cgroup during ctxsw. Cgroup events were not scheduled
797          * out of ctxsw out if that was not the case.
798          */
799         if (cgrp1 != cgrp2)
800                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
801
802         rcu_read_unlock();
803 }
804
805 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806                                       struct perf_event_attr *attr,
807                                       struct perf_event *group_leader)
808 {
809         struct perf_cgroup *cgrp;
810         struct cgroup_subsys_state *css;
811         struct fd f = fdget(fd);
812         int ret = 0;
813
814         if (!f.file)
815                 return -EBADF;
816
817         css = css_tryget_online_from_dir(f.file->f_path.dentry,
818                                          &perf_event_cgrp_subsys);
819         if (IS_ERR(css)) {
820                 ret = PTR_ERR(css);
821                 goto out;
822         }
823
824         cgrp = container_of(css, struct perf_cgroup, css);
825         event->cgrp = cgrp;
826
827         /*
828          * all events in a group must monitor
829          * the same cgroup because a task belongs
830          * to only one perf cgroup at a time
831          */
832         if (group_leader && group_leader->cgrp != cgrp) {
833                 perf_detach_cgroup(event);
834                 ret = -EINVAL;
835         }
836 out:
837         fdput(f);
838         return ret;
839 }
840
841 static inline void
842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843 {
844         struct perf_cgroup_info *t;
845         t = per_cpu_ptr(event->cgrp->info, event->cpu);
846         event->shadow_ctx_time = now - t->timestamp;
847 }
848
849 static inline void
850 perf_cgroup_defer_enabled(struct perf_event *event)
851 {
852         /*
853          * when the current task's perf cgroup does not match
854          * the event's, we need to remember to call the
855          * perf_mark_enable() function the first time a task with
856          * a matching perf cgroup is scheduled in.
857          */
858         if (is_cgroup_event(event) && !perf_cgroup_match(event))
859                 event->cgrp_defer_enabled = 1;
860 }
861
862 static inline void
863 perf_cgroup_mark_enabled(struct perf_event *event,
864                          struct perf_event_context *ctx)
865 {
866         struct perf_event *sub;
867         u64 tstamp = perf_event_time(event);
868
869         if (!event->cgrp_defer_enabled)
870                 return;
871
872         event->cgrp_defer_enabled = 0;
873
874         event->tstamp_enabled = tstamp - event->total_time_enabled;
875         list_for_each_entry(sub, &event->sibling_list, group_entry) {
876                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878                         sub->cgrp_defer_enabled = 0;
879                 }
880         }
881 }
882
883 /*
884  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885  * cleared when last cgroup event is removed.
886  */
887 static inline void
888 list_update_cgroup_event(struct perf_event *event,
889                          struct perf_event_context *ctx, bool add)
890 {
891         struct perf_cpu_context *cpuctx;
892
893         if (!is_cgroup_event(event))
894                 return;
895
896         if (add && ctx->nr_cgroups++)
897                 return;
898         else if (!add && --ctx->nr_cgroups)
899                 return;
900         /*
901          * Because cgroup events are always per-cpu events,
902          * this will always be called from the right CPU.
903          */
904         cpuctx = __get_cpu_context(ctx);
905
906         /*
907          * cpuctx->cgrp is NULL until a cgroup event is sched in or
908          * ctx->nr_cgroup == 0 .
909          */
910         if (add && perf_cgroup_from_task(current, ctx) == event->cgrp)
911                 cpuctx->cgrp = event->cgrp;
912         else if (!add)
913                 cpuctx->cgrp = NULL;
914 }
915
916 #else /* !CONFIG_CGROUP_PERF */
917
918 static inline bool
919 perf_cgroup_match(struct perf_event *event)
920 {
921         return true;
922 }
923
924 static inline void perf_detach_cgroup(struct perf_event *event)
925 {}
926
927 static inline int is_cgroup_event(struct perf_event *event)
928 {
929         return 0;
930 }
931
932 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
933 {
934         return 0;
935 }
936
937 static inline void update_cgrp_time_from_event(struct perf_event *event)
938 {
939 }
940
941 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
942 {
943 }
944
945 static inline void perf_cgroup_sched_out(struct task_struct *task,
946                                          struct task_struct *next)
947 {
948 }
949
950 static inline void perf_cgroup_sched_in(struct task_struct *prev,
951                                         struct task_struct *task)
952 {
953 }
954
955 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
956                                       struct perf_event_attr *attr,
957                                       struct perf_event *group_leader)
958 {
959         return -EINVAL;
960 }
961
962 static inline void
963 perf_cgroup_set_timestamp(struct task_struct *task,
964                           struct perf_event_context *ctx)
965 {
966 }
967
968 void
969 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
970 {
971 }
972
973 static inline void
974 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
975 {
976 }
977
978 static inline u64 perf_cgroup_event_time(struct perf_event *event)
979 {
980         return 0;
981 }
982
983 static inline void
984 perf_cgroup_defer_enabled(struct perf_event *event)
985 {
986 }
987
988 static inline void
989 perf_cgroup_mark_enabled(struct perf_event *event,
990                          struct perf_event_context *ctx)
991 {
992 }
993
994 static inline void
995 list_update_cgroup_event(struct perf_event *event,
996                          struct perf_event_context *ctx, bool add)
997 {
998 }
999
1000 #endif
1001
1002 /*
1003  * set default to be dependent on timer tick just
1004  * like original code
1005  */
1006 #define PERF_CPU_HRTIMER (1000 / HZ)
1007 /*
1008  * function must be called with interrupts disbled
1009  */
1010 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1011 {
1012         struct perf_cpu_context *cpuctx;
1013         int rotations = 0;
1014
1015         WARN_ON(!irqs_disabled());
1016
1017         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1018         rotations = perf_rotate_context(cpuctx);
1019
1020         raw_spin_lock(&cpuctx->hrtimer_lock);
1021         if (rotations)
1022                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1023         else
1024                 cpuctx->hrtimer_active = 0;
1025         raw_spin_unlock(&cpuctx->hrtimer_lock);
1026
1027         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1028 }
1029
1030 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1031 {
1032         struct hrtimer *timer = &cpuctx->hrtimer;
1033         struct pmu *pmu = cpuctx->ctx.pmu;
1034         u64 interval;
1035
1036         /* no multiplexing needed for SW PMU */
1037         if (pmu->task_ctx_nr == perf_sw_context)
1038                 return;
1039
1040         /*
1041          * check default is sane, if not set then force to
1042          * default interval (1/tick)
1043          */
1044         interval = pmu->hrtimer_interval_ms;
1045         if (interval < 1)
1046                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1047
1048         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1049
1050         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1051         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1052         timer->function = perf_mux_hrtimer_handler;
1053 }
1054
1055 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1056 {
1057         struct hrtimer *timer = &cpuctx->hrtimer;
1058         struct pmu *pmu = cpuctx->ctx.pmu;
1059         unsigned long flags;
1060
1061         /* not for SW PMU */
1062         if (pmu->task_ctx_nr == perf_sw_context)
1063                 return 0;
1064
1065         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1066         if (!cpuctx->hrtimer_active) {
1067                 cpuctx->hrtimer_active = 1;
1068                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1069                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1070         }
1071         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1072
1073         return 0;
1074 }
1075
1076 void perf_pmu_disable(struct pmu *pmu)
1077 {
1078         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1079         if (!(*count)++)
1080                 pmu->pmu_disable(pmu);
1081 }
1082
1083 void perf_pmu_enable(struct pmu *pmu)
1084 {
1085         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1086         if (!--(*count))
1087                 pmu->pmu_enable(pmu);
1088 }
1089
1090 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1091
1092 /*
1093  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1094  * perf_event_task_tick() are fully serialized because they're strictly cpu
1095  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1096  * disabled, while perf_event_task_tick is called from IRQ context.
1097  */
1098 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1099 {
1100         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1101
1102         WARN_ON(!irqs_disabled());
1103
1104         WARN_ON(!list_empty(&ctx->active_ctx_list));
1105
1106         list_add(&ctx->active_ctx_list, head);
1107 }
1108
1109 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1110 {
1111         WARN_ON(!irqs_disabled());
1112
1113         WARN_ON(list_empty(&ctx->active_ctx_list));
1114
1115         list_del_init(&ctx->active_ctx_list);
1116 }
1117
1118 static void get_ctx(struct perf_event_context *ctx)
1119 {
1120         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1121 }
1122
1123 static void free_ctx(struct rcu_head *head)
1124 {
1125         struct perf_event_context *ctx;
1126
1127         ctx = container_of(head, struct perf_event_context, rcu_head);
1128         kfree(ctx->task_ctx_data);
1129         kfree(ctx);
1130 }
1131
1132 static void put_ctx(struct perf_event_context *ctx)
1133 {
1134         if (atomic_dec_and_test(&ctx->refcount)) {
1135                 if (ctx->parent_ctx)
1136                         put_ctx(ctx->parent_ctx);
1137                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1138                         put_task_struct(ctx->task);
1139                 call_rcu(&ctx->rcu_head, free_ctx);
1140         }
1141 }
1142
1143 /*
1144  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1145  * perf_pmu_migrate_context() we need some magic.
1146  *
1147  * Those places that change perf_event::ctx will hold both
1148  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1149  *
1150  * Lock ordering is by mutex address. There are two other sites where
1151  * perf_event_context::mutex nests and those are:
1152  *
1153  *  - perf_event_exit_task_context()    [ child , 0 ]
1154  *      perf_event_exit_event()
1155  *        put_event()                   [ parent, 1 ]
1156  *
1157  *  - perf_event_init_context()         [ parent, 0 ]
1158  *      inherit_task_group()
1159  *        inherit_group()
1160  *          inherit_event()
1161  *            perf_event_alloc()
1162  *              perf_init_event()
1163  *                perf_try_init_event() [ child , 1 ]
1164  *
1165  * While it appears there is an obvious deadlock here -- the parent and child
1166  * nesting levels are inverted between the two. This is in fact safe because
1167  * life-time rules separate them. That is an exiting task cannot fork, and a
1168  * spawning task cannot (yet) exit.
1169  *
1170  * But remember that that these are parent<->child context relations, and
1171  * migration does not affect children, therefore these two orderings should not
1172  * interact.
1173  *
1174  * The change in perf_event::ctx does not affect children (as claimed above)
1175  * because the sys_perf_event_open() case will install a new event and break
1176  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1177  * concerned with cpuctx and that doesn't have children.
1178  *
1179  * The places that change perf_event::ctx will issue:
1180  *
1181  *   perf_remove_from_context();
1182  *   synchronize_rcu();
1183  *   perf_install_in_context();
1184  *
1185  * to affect the change. The remove_from_context() + synchronize_rcu() should
1186  * quiesce the event, after which we can install it in the new location. This
1187  * means that only external vectors (perf_fops, prctl) can perturb the event
1188  * while in transit. Therefore all such accessors should also acquire
1189  * perf_event_context::mutex to serialize against this.
1190  *
1191  * However; because event->ctx can change while we're waiting to acquire
1192  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1193  * function.
1194  *
1195  * Lock order:
1196  *    cred_guard_mutex
1197  *      task_struct::perf_event_mutex
1198  *        perf_event_context::mutex
1199  *          perf_event::child_mutex;
1200  *            perf_event_context::lock
1201  *          perf_event::mmap_mutex
1202  *          mmap_sem
1203  */
1204 static struct perf_event_context *
1205 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1206 {
1207         struct perf_event_context *ctx;
1208
1209 again:
1210         rcu_read_lock();
1211         ctx = ACCESS_ONCE(event->ctx);
1212         if (!atomic_inc_not_zero(&ctx->refcount)) {
1213                 rcu_read_unlock();
1214                 goto again;
1215         }
1216         rcu_read_unlock();
1217
1218         mutex_lock_nested(&ctx->mutex, nesting);
1219         if (event->ctx != ctx) {
1220                 mutex_unlock(&ctx->mutex);
1221                 put_ctx(ctx);
1222                 goto again;
1223         }
1224
1225         return ctx;
1226 }
1227
1228 static inline struct perf_event_context *
1229 perf_event_ctx_lock(struct perf_event *event)
1230 {
1231         return perf_event_ctx_lock_nested(event, 0);
1232 }
1233
1234 static void perf_event_ctx_unlock(struct perf_event *event,
1235                                   struct perf_event_context *ctx)
1236 {
1237         mutex_unlock(&ctx->mutex);
1238         put_ctx(ctx);
1239 }
1240
1241 /*
1242  * This must be done under the ctx->lock, such as to serialize against
1243  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1244  * calling scheduler related locks and ctx->lock nests inside those.
1245  */
1246 static __must_check struct perf_event_context *
1247 unclone_ctx(struct perf_event_context *ctx)
1248 {
1249         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1250
1251         lockdep_assert_held(&ctx->lock);
1252
1253         if (parent_ctx)
1254                 ctx->parent_ctx = NULL;
1255         ctx->generation++;
1256
1257         return parent_ctx;
1258 }
1259
1260 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1261 {
1262         /*
1263          * only top level events have the pid namespace they were created in
1264          */
1265         if (event->parent)
1266                 event = event->parent;
1267
1268         return task_tgid_nr_ns(p, event->ns);
1269 }
1270
1271 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1272 {
1273         /*
1274          * only top level events have the pid namespace they were created in
1275          */
1276         if (event->parent)
1277                 event = event->parent;
1278
1279         return task_pid_nr_ns(p, event->ns);
1280 }
1281
1282 /*
1283  * If we inherit events we want to return the parent event id
1284  * to userspace.
1285  */
1286 static u64 primary_event_id(struct perf_event *event)
1287 {
1288         u64 id = event->id;
1289
1290         if (event->parent)
1291                 id = event->parent->id;
1292
1293         return id;
1294 }
1295
1296 /*
1297  * Get the perf_event_context for a task and lock it.
1298  *
1299  * This has to cope with with the fact that until it is locked,
1300  * the context could get moved to another task.
1301  */
1302 static struct perf_event_context *
1303 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1304 {
1305         struct perf_event_context *ctx;
1306
1307 retry:
1308         /*
1309          * One of the few rules of preemptible RCU is that one cannot do
1310          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1311          * part of the read side critical section was irqs-enabled -- see
1312          * rcu_read_unlock_special().
1313          *
1314          * Since ctx->lock nests under rq->lock we must ensure the entire read
1315          * side critical section has interrupts disabled.
1316          */
1317         local_irq_save(*flags);
1318         rcu_read_lock();
1319         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1320         if (ctx) {
1321                 /*
1322                  * If this context is a clone of another, it might
1323                  * get swapped for another underneath us by
1324                  * perf_event_task_sched_out, though the
1325                  * rcu_read_lock() protects us from any context
1326                  * getting freed.  Lock the context and check if it
1327                  * got swapped before we could get the lock, and retry
1328                  * if so.  If we locked the right context, then it
1329                  * can't get swapped on us any more.
1330                  */
1331                 raw_spin_lock(&ctx->lock);
1332                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1333                         raw_spin_unlock(&ctx->lock);
1334                         rcu_read_unlock();
1335                         local_irq_restore(*flags);
1336                         goto retry;
1337                 }
1338
1339                 if (ctx->task == TASK_TOMBSTONE ||
1340                     !atomic_inc_not_zero(&ctx->refcount)) {
1341                         raw_spin_unlock(&ctx->lock);
1342                         ctx = NULL;
1343                 } else {
1344                         WARN_ON_ONCE(ctx->task != task);
1345                 }
1346         }
1347         rcu_read_unlock();
1348         if (!ctx)
1349                 local_irq_restore(*flags);
1350         return ctx;
1351 }
1352
1353 /*
1354  * Get the context for a task and increment its pin_count so it
1355  * can't get swapped to another task.  This also increments its
1356  * reference count so that the context can't get freed.
1357  */
1358 static struct perf_event_context *
1359 perf_pin_task_context(struct task_struct *task, int ctxn)
1360 {
1361         struct perf_event_context *ctx;
1362         unsigned long flags;
1363
1364         ctx = perf_lock_task_context(task, ctxn, &flags);
1365         if (ctx) {
1366                 ++ctx->pin_count;
1367                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1368         }
1369         return ctx;
1370 }
1371
1372 static void perf_unpin_context(struct perf_event_context *ctx)
1373 {
1374         unsigned long flags;
1375
1376         raw_spin_lock_irqsave(&ctx->lock, flags);
1377         --ctx->pin_count;
1378         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1379 }
1380
1381 /*
1382  * Update the record of the current time in a context.
1383  */
1384 static void update_context_time(struct perf_event_context *ctx)
1385 {
1386         u64 now = perf_clock();
1387
1388         ctx->time += now - ctx->timestamp;
1389         ctx->timestamp = now;
1390 }
1391
1392 static u64 perf_event_time(struct perf_event *event)
1393 {
1394         struct perf_event_context *ctx = event->ctx;
1395
1396         if (is_cgroup_event(event))
1397                 return perf_cgroup_event_time(event);
1398
1399         return ctx ? ctx->time : 0;
1400 }
1401
1402 /*
1403  * Update the total_time_enabled and total_time_running fields for a event.
1404  */
1405 static void update_event_times(struct perf_event *event)
1406 {
1407         struct perf_event_context *ctx = event->ctx;
1408         u64 run_end;
1409
1410         lockdep_assert_held(&ctx->lock);
1411
1412         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1413             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1414                 return;
1415
1416         /*
1417          * in cgroup mode, time_enabled represents
1418          * the time the event was enabled AND active
1419          * tasks were in the monitored cgroup. This is
1420          * independent of the activity of the context as
1421          * there may be a mix of cgroup and non-cgroup events.
1422          *
1423          * That is why we treat cgroup events differently
1424          * here.
1425          */
1426         if (is_cgroup_event(event))
1427                 run_end = perf_cgroup_event_time(event);
1428         else if (ctx->is_active)
1429                 run_end = ctx->time;
1430         else
1431                 run_end = event->tstamp_stopped;
1432
1433         event->total_time_enabled = run_end - event->tstamp_enabled;
1434
1435         if (event->state == PERF_EVENT_STATE_INACTIVE)
1436                 run_end = event->tstamp_stopped;
1437         else
1438                 run_end = perf_event_time(event);
1439
1440         event->total_time_running = run_end - event->tstamp_running;
1441
1442 }
1443
1444 /*
1445  * Update total_time_enabled and total_time_running for all events in a group.
1446  */
1447 static void update_group_times(struct perf_event *leader)
1448 {
1449         struct perf_event *event;
1450
1451         update_event_times(leader);
1452         list_for_each_entry(event, &leader->sibling_list, group_entry)
1453                 update_event_times(event);
1454 }
1455
1456 static struct list_head *
1457 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1458 {
1459         if (event->attr.pinned)
1460                 return &ctx->pinned_groups;
1461         else
1462                 return &ctx->flexible_groups;
1463 }
1464
1465 /*
1466  * Add a event from the lists for its context.
1467  * Must be called with ctx->mutex and ctx->lock held.
1468  */
1469 static void
1470 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1471 {
1472
1473         lockdep_assert_held(&ctx->lock);
1474
1475         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1476         event->attach_state |= PERF_ATTACH_CONTEXT;
1477
1478         /*
1479          * If we're a stand alone event or group leader, we go to the context
1480          * list, group events are kept attached to the group so that
1481          * perf_group_detach can, at all times, locate all siblings.
1482          */
1483         if (event->group_leader == event) {
1484                 struct list_head *list;
1485
1486                 event->group_caps = event->event_caps;
1487
1488                 list = ctx_group_list(event, ctx);
1489                 list_add_tail(&event->group_entry, list);
1490         }
1491
1492         list_update_cgroup_event(event, ctx, true);
1493
1494         list_add_rcu(&event->event_entry, &ctx->event_list);
1495         ctx->nr_events++;
1496         if (event->attr.inherit_stat)
1497                 ctx->nr_stat++;
1498
1499         ctx->generation++;
1500 }
1501
1502 /*
1503  * Initialize event state based on the perf_event_attr::disabled.
1504  */
1505 static inline void perf_event__state_init(struct perf_event *event)
1506 {
1507         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1508                                               PERF_EVENT_STATE_INACTIVE;
1509 }
1510
1511 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1512 {
1513         int entry = sizeof(u64); /* value */
1514         int size = 0;
1515         int nr = 1;
1516
1517         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1518                 size += sizeof(u64);
1519
1520         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1521                 size += sizeof(u64);
1522
1523         if (event->attr.read_format & PERF_FORMAT_ID)
1524                 entry += sizeof(u64);
1525
1526         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1527                 nr += nr_siblings;
1528                 size += sizeof(u64);
1529         }
1530
1531         size += entry * nr;
1532         event->read_size = size;
1533 }
1534
1535 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1536 {
1537         struct perf_sample_data *data;
1538         u16 size = 0;
1539
1540         if (sample_type & PERF_SAMPLE_IP)
1541                 size += sizeof(data->ip);
1542
1543         if (sample_type & PERF_SAMPLE_ADDR)
1544                 size += sizeof(data->addr);
1545
1546         if (sample_type & PERF_SAMPLE_PERIOD)
1547                 size += sizeof(data->period);
1548
1549         if (sample_type & PERF_SAMPLE_WEIGHT)
1550                 size += sizeof(data->weight);
1551
1552         if (sample_type & PERF_SAMPLE_READ)
1553                 size += event->read_size;
1554
1555         if (sample_type & PERF_SAMPLE_DATA_SRC)
1556                 size += sizeof(data->data_src.val);
1557
1558         if (sample_type & PERF_SAMPLE_TRANSACTION)
1559                 size += sizeof(data->txn);
1560
1561         event->header_size = size;
1562 }
1563
1564 /*
1565  * Called at perf_event creation and when events are attached/detached from a
1566  * group.
1567  */
1568 static void perf_event__header_size(struct perf_event *event)
1569 {
1570         __perf_event_read_size(event,
1571                                event->group_leader->nr_siblings);
1572         __perf_event_header_size(event, event->attr.sample_type);
1573 }
1574
1575 static void perf_event__id_header_size(struct perf_event *event)
1576 {
1577         struct perf_sample_data *data;
1578         u64 sample_type = event->attr.sample_type;
1579         u16 size = 0;
1580
1581         if (sample_type & PERF_SAMPLE_TID)
1582                 size += sizeof(data->tid_entry);
1583
1584         if (sample_type & PERF_SAMPLE_TIME)
1585                 size += sizeof(data->time);
1586
1587         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1588                 size += sizeof(data->id);
1589
1590         if (sample_type & PERF_SAMPLE_ID)
1591                 size += sizeof(data->id);
1592
1593         if (sample_type & PERF_SAMPLE_STREAM_ID)
1594                 size += sizeof(data->stream_id);
1595
1596         if (sample_type & PERF_SAMPLE_CPU)
1597                 size += sizeof(data->cpu_entry);
1598
1599         event->id_header_size = size;
1600 }
1601
1602 static bool perf_event_validate_size(struct perf_event *event)
1603 {
1604         /*
1605          * The values computed here will be over-written when we actually
1606          * attach the event.
1607          */
1608         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1609         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1610         perf_event__id_header_size(event);
1611
1612         /*
1613          * Sum the lot; should not exceed the 64k limit we have on records.
1614          * Conservative limit to allow for callchains and other variable fields.
1615          */
1616         if (event->read_size + event->header_size +
1617             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1618                 return false;
1619
1620         return true;
1621 }
1622
1623 static void perf_group_attach(struct perf_event *event)
1624 {
1625         struct perf_event *group_leader = event->group_leader, *pos;
1626
1627         /*
1628          * We can have double attach due to group movement in perf_event_open.
1629          */
1630         if (event->attach_state & PERF_ATTACH_GROUP)
1631                 return;
1632
1633         event->attach_state |= PERF_ATTACH_GROUP;
1634
1635         if (group_leader == event)
1636                 return;
1637
1638         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1639
1640         group_leader->group_caps &= event->event_caps;
1641
1642         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1643         group_leader->nr_siblings++;
1644
1645         perf_event__header_size(group_leader);
1646
1647         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1648                 perf_event__header_size(pos);
1649 }
1650
1651 /*
1652  * Remove a event from the lists for its context.
1653  * Must be called with ctx->mutex and ctx->lock held.
1654  */
1655 static void
1656 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1657 {
1658         WARN_ON_ONCE(event->ctx != ctx);
1659         lockdep_assert_held(&ctx->lock);
1660
1661         /*
1662          * We can have double detach due to exit/hot-unplug + close.
1663          */
1664         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1665                 return;
1666
1667         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1668
1669         list_update_cgroup_event(event, ctx, false);
1670
1671         ctx->nr_events--;
1672         if (event->attr.inherit_stat)
1673                 ctx->nr_stat--;
1674
1675         list_del_rcu(&event->event_entry);
1676
1677         if (event->group_leader == event)
1678                 list_del_init(&event->group_entry);
1679
1680         update_group_times(event);
1681
1682         /*
1683          * If event was in error state, then keep it
1684          * that way, otherwise bogus counts will be
1685          * returned on read(). The only way to get out
1686          * of error state is by explicit re-enabling
1687          * of the event
1688          */
1689         if (event->state > PERF_EVENT_STATE_OFF)
1690                 event->state = PERF_EVENT_STATE_OFF;
1691
1692         ctx->generation++;
1693 }
1694
1695 static void perf_group_detach(struct perf_event *event)
1696 {
1697         struct perf_event *sibling, *tmp;
1698         struct list_head *list = NULL;
1699
1700         /*
1701          * We can have double detach due to exit/hot-unplug + close.
1702          */
1703         if (!(event->attach_state & PERF_ATTACH_GROUP))
1704                 return;
1705
1706         event->attach_state &= ~PERF_ATTACH_GROUP;
1707
1708         /*
1709          * If this is a sibling, remove it from its group.
1710          */
1711         if (event->group_leader != event) {
1712                 list_del_init(&event->group_entry);
1713                 event->group_leader->nr_siblings--;
1714                 goto out;
1715         }
1716
1717         if (!list_empty(&event->group_entry))
1718                 list = &event->group_entry;
1719
1720         /*
1721          * If this was a group event with sibling events then
1722          * upgrade the siblings to singleton events by adding them
1723          * to whatever list we are on.
1724          */
1725         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1726                 if (list)
1727                         list_move_tail(&sibling->group_entry, list);
1728                 sibling->group_leader = sibling;
1729
1730                 /* Inherit group flags from the previous leader */
1731                 sibling->group_caps = event->group_caps;
1732
1733                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1734         }
1735
1736 out:
1737         perf_event__header_size(event->group_leader);
1738
1739         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1740                 perf_event__header_size(tmp);
1741 }
1742
1743 static bool is_orphaned_event(struct perf_event *event)
1744 {
1745         return event->state == PERF_EVENT_STATE_DEAD;
1746 }
1747
1748 static inline int __pmu_filter_match(struct perf_event *event)
1749 {
1750         struct pmu *pmu = event->pmu;
1751         return pmu->filter_match ? pmu->filter_match(event) : 1;
1752 }
1753
1754 /*
1755  * Check whether we should attempt to schedule an event group based on
1756  * PMU-specific filtering. An event group can consist of HW and SW events,
1757  * potentially with a SW leader, so we must check all the filters, to
1758  * determine whether a group is schedulable:
1759  */
1760 static inline int pmu_filter_match(struct perf_event *event)
1761 {
1762         struct perf_event *child;
1763
1764         if (!__pmu_filter_match(event))
1765                 return 0;
1766
1767         list_for_each_entry(child, &event->sibling_list, group_entry) {
1768                 if (!__pmu_filter_match(child))
1769                         return 0;
1770         }
1771
1772         return 1;
1773 }
1774
1775 static inline int
1776 event_filter_match(struct perf_event *event)
1777 {
1778         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1779                perf_cgroup_match(event) && pmu_filter_match(event);
1780 }
1781
1782 static void
1783 event_sched_out(struct perf_event *event,
1784                   struct perf_cpu_context *cpuctx,
1785                   struct perf_event_context *ctx)
1786 {
1787         u64 tstamp = perf_event_time(event);
1788         u64 delta;
1789
1790         WARN_ON_ONCE(event->ctx != ctx);
1791         lockdep_assert_held(&ctx->lock);
1792
1793         /*
1794          * An event which could not be activated because of
1795          * filter mismatch still needs to have its timings
1796          * maintained, otherwise bogus information is return
1797          * via read() for time_enabled, time_running:
1798          */
1799         if (event->state == PERF_EVENT_STATE_INACTIVE &&
1800             !event_filter_match(event)) {
1801                 delta = tstamp - event->tstamp_stopped;
1802                 event->tstamp_running += delta;
1803                 event->tstamp_stopped = tstamp;
1804         }
1805
1806         if (event->state != PERF_EVENT_STATE_ACTIVE)
1807                 return;
1808
1809         perf_pmu_disable(event->pmu);
1810
1811         event->tstamp_stopped = tstamp;
1812         event->pmu->del(event, 0);
1813         event->oncpu = -1;
1814         event->state = PERF_EVENT_STATE_INACTIVE;
1815         if (event->pending_disable) {
1816                 event->pending_disable = 0;
1817                 event->state = PERF_EVENT_STATE_OFF;
1818         }
1819
1820         if (!is_software_event(event))
1821                 cpuctx->active_oncpu--;
1822         if (!--ctx->nr_active)
1823                 perf_event_ctx_deactivate(ctx);
1824         if (event->attr.freq && event->attr.sample_freq)
1825                 ctx->nr_freq--;
1826         if (event->attr.exclusive || !cpuctx->active_oncpu)
1827                 cpuctx->exclusive = 0;
1828
1829         perf_pmu_enable(event->pmu);
1830 }
1831
1832 static void
1833 group_sched_out(struct perf_event *group_event,
1834                 struct perf_cpu_context *cpuctx,
1835                 struct perf_event_context *ctx)
1836 {
1837         struct perf_event *event;
1838         int state = group_event->state;
1839
1840         perf_pmu_disable(ctx->pmu);
1841
1842         event_sched_out(group_event, cpuctx, ctx);
1843
1844         /*
1845          * Schedule out siblings (if any):
1846          */
1847         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1848                 event_sched_out(event, cpuctx, ctx);
1849
1850         perf_pmu_enable(ctx->pmu);
1851
1852         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1853                 cpuctx->exclusive = 0;
1854 }
1855
1856 #define DETACH_GROUP    0x01UL
1857
1858 /*
1859  * Cross CPU call to remove a performance event
1860  *
1861  * We disable the event on the hardware level first. After that we
1862  * remove it from the context list.
1863  */
1864 static void
1865 __perf_remove_from_context(struct perf_event *event,
1866                            struct perf_cpu_context *cpuctx,
1867                            struct perf_event_context *ctx,
1868                            void *info)
1869 {
1870         unsigned long flags = (unsigned long)info;
1871
1872         event_sched_out(event, cpuctx, ctx);
1873         if (flags & DETACH_GROUP)
1874                 perf_group_detach(event);
1875         list_del_event(event, ctx);
1876
1877         if (!ctx->nr_events && ctx->is_active) {
1878                 ctx->is_active = 0;
1879                 if (ctx->task) {
1880                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1881                         cpuctx->task_ctx = NULL;
1882                 }
1883         }
1884 }
1885
1886 /*
1887  * Remove the event from a task's (or a CPU's) list of events.
1888  *
1889  * If event->ctx is a cloned context, callers must make sure that
1890  * every task struct that event->ctx->task could possibly point to
1891  * remains valid.  This is OK when called from perf_release since
1892  * that only calls us on the top-level context, which can't be a clone.
1893  * When called from perf_event_exit_task, it's OK because the
1894  * context has been detached from its task.
1895  */
1896 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1897 {
1898         lockdep_assert_held(&event->ctx->mutex);
1899
1900         event_function_call(event, __perf_remove_from_context, (void *)flags);
1901 }
1902
1903 /*
1904  * Cross CPU call to disable a performance event
1905  */
1906 static void __perf_event_disable(struct perf_event *event,
1907                                  struct perf_cpu_context *cpuctx,
1908                                  struct perf_event_context *ctx,
1909                                  void *info)
1910 {
1911         if (event->state < PERF_EVENT_STATE_INACTIVE)
1912                 return;
1913
1914         update_context_time(ctx);
1915         update_cgrp_time_from_event(event);
1916         update_group_times(event);
1917         if (event == event->group_leader)
1918                 group_sched_out(event, cpuctx, ctx);
1919         else
1920                 event_sched_out(event, cpuctx, ctx);
1921         event->state = PERF_EVENT_STATE_OFF;
1922 }
1923
1924 /*
1925  * Disable a event.
1926  *
1927  * If event->ctx is a cloned context, callers must make sure that
1928  * every task struct that event->ctx->task could possibly point to
1929  * remains valid.  This condition is satisifed when called through
1930  * perf_event_for_each_child or perf_event_for_each because they
1931  * hold the top-level event's child_mutex, so any descendant that
1932  * goes to exit will block in perf_event_exit_event().
1933  *
1934  * When called from perf_pending_event it's OK because event->ctx
1935  * is the current context on this CPU and preemption is disabled,
1936  * hence we can't get into perf_event_task_sched_out for this context.
1937  */
1938 static void _perf_event_disable(struct perf_event *event)
1939 {
1940         struct perf_event_context *ctx = event->ctx;
1941
1942         raw_spin_lock_irq(&ctx->lock);
1943         if (event->state <= PERF_EVENT_STATE_OFF) {
1944                 raw_spin_unlock_irq(&ctx->lock);
1945                 return;
1946         }
1947         raw_spin_unlock_irq(&ctx->lock);
1948
1949         event_function_call(event, __perf_event_disable, NULL);
1950 }
1951
1952 void perf_event_disable_local(struct perf_event *event)
1953 {
1954         event_function_local(event, __perf_event_disable, NULL);
1955 }
1956
1957 /*
1958  * Strictly speaking kernel users cannot create groups and therefore this
1959  * interface does not need the perf_event_ctx_lock() magic.
1960  */
1961 void perf_event_disable(struct perf_event *event)
1962 {
1963         struct perf_event_context *ctx;
1964
1965         ctx = perf_event_ctx_lock(event);
1966         _perf_event_disable(event);
1967         perf_event_ctx_unlock(event, ctx);
1968 }
1969 EXPORT_SYMBOL_GPL(perf_event_disable);
1970
1971 void perf_event_disable_inatomic(struct perf_event *event)
1972 {
1973         event->pending_disable = 1;
1974         irq_work_queue(&event->pending);
1975 }
1976
1977 static void perf_set_shadow_time(struct perf_event *event,
1978                                  struct perf_event_context *ctx,
1979                                  u64 tstamp)
1980 {
1981         /*
1982          * use the correct time source for the time snapshot
1983          *
1984          * We could get by without this by leveraging the
1985          * fact that to get to this function, the caller
1986          * has most likely already called update_context_time()
1987          * and update_cgrp_time_xx() and thus both timestamp
1988          * are identical (or very close). Given that tstamp is,
1989          * already adjusted for cgroup, we could say that:
1990          *    tstamp - ctx->timestamp
1991          * is equivalent to
1992          *    tstamp - cgrp->timestamp.
1993          *
1994          * Then, in perf_output_read(), the calculation would
1995          * work with no changes because:
1996          * - event is guaranteed scheduled in
1997          * - no scheduled out in between
1998          * - thus the timestamp would be the same
1999          *
2000          * But this is a bit hairy.
2001          *
2002          * So instead, we have an explicit cgroup call to remain
2003          * within the time time source all along. We believe it
2004          * is cleaner and simpler to understand.
2005          */
2006         if (is_cgroup_event(event))
2007                 perf_cgroup_set_shadow_time(event, tstamp);
2008         else
2009                 event->shadow_ctx_time = tstamp - ctx->timestamp;
2010 }
2011
2012 #define MAX_INTERRUPTS (~0ULL)
2013
2014 static void perf_log_throttle(struct perf_event *event, int enable);
2015 static void perf_log_itrace_start(struct perf_event *event);
2016
2017 static int
2018 event_sched_in(struct perf_event *event,
2019                  struct perf_cpu_context *cpuctx,
2020                  struct perf_event_context *ctx)
2021 {
2022         u64 tstamp = perf_event_time(event);
2023         int ret = 0;
2024
2025         lockdep_assert_held(&ctx->lock);
2026
2027         if (event->state <= PERF_EVENT_STATE_OFF)
2028                 return 0;
2029
2030         WRITE_ONCE(event->oncpu, smp_processor_id());
2031         /*
2032          * Order event::oncpu write to happen before the ACTIVE state
2033          * is visible.
2034          */
2035         smp_wmb();
2036         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2037
2038         /*
2039          * Unthrottle events, since we scheduled we might have missed several
2040          * ticks already, also for a heavily scheduling task there is little
2041          * guarantee it'll get a tick in a timely manner.
2042          */
2043         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2044                 perf_log_throttle(event, 1);
2045                 event->hw.interrupts = 0;
2046         }
2047
2048         /*
2049          * The new state must be visible before we turn it on in the hardware:
2050          */
2051         smp_wmb();
2052
2053         perf_pmu_disable(event->pmu);
2054
2055         perf_set_shadow_time(event, ctx, tstamp);
2056
2057         perf_log_itrace_start(event);
2058
2059         if (event->pmu->add(event, PERF_EF_START)) {
2060                 event->state = PERF_EVENT_STATE_INACTIVE;
2061                 event->oncpu = -1;
2062                 ret = -EAGAIN;
2063                 goto out;
2064         }
2065
2066         event->tstamp_running += tstamp - event->tstamp_stopped;
2067
2068         if (!is_software_event(event))
2069                 cpuctx->active_oncpu++;
2070         if (!ctx->nr_active++)
2071                 perf_event_ctx_activate(ctx);
2072         if (event->attr.freq && event->attr.sample_freq)
2073                 ctx->nr_freq++;
2074
2075         if (event->attr.exclusive)
2076                 cpuctx->exclusive = 1;
2077
2078 out:
2079         perf_pmu_enable(event->pmu);
2080
2081         return ret;
2082 }
2083
2084 static int
2085 group_sched_in(struct perf_event *group_event,
2086                struct perf_cpu_context *cpuctx,
2087                struct perf_event_context *ctx)
2088 {
2089         struct perf_event *event, *partial_group = NULL;
2090         struct pmu *pmu = ctx->pmu;
2091         u64 now = ctx->time;
2092         bool simulate = false;
2093
2094         if (group_event->state == PERF_EVENT_STATE_OFF)
2095                 return 0;
2096
2097         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2098
2099         if (event_sched_in(group_event, cpuctx, ctx)) {
2100                 pmu->cancel_txn(pmu);
2101                 perf_mux_hrtimer_restart(cpuctx);
2102                 return -EAGAIN;
2103         }
2104
2105         /*
2106          * Schedule in siblings as one group (if any):
2107          */
2108         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2109                 if (event_sched_in(event, cpuctx, ctx)) {
2110                         partial_group = event;
2111                         goto group_error;
2112                 }
2113         }
2114
2115         if (!pmu->commit_txn(pmu))
2116                 return 0;
2117
2118 group_error:
2119         /*
2120          * Groups can be scheduled in as one unit only, so undo any
2121          * partial group before returning:
2122          * The events up to the failed event are scheduled out normally,
2123          * tstamp_stopped will be updated.
2124          *
2125          * The failed events and the remaining siblings need to have
2126          * their timings updated as if they had gone thru event_sched_in()
2127          * and event_sched_out(). This is required to get consistent timings
2128          * across the group. This also takes care of the case where the group
2129          * could never be scheduled by ensuring tstamp_stopped is set to mark
2130          * the time the event was actually stopped, such that time delta
2131          * calculation in update_event_times() is correct.
2132          */
2133         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2134                 if (event == partial_group)
2135                         simulate = true;
2136
2137                 if (simulate) {
2138                         event->tstamp_running += now - event->tstamp_stopped;
2139                         event->tstamp_stopped = now;
2140                 } else {
2141                         event_sched_out(event, cpuctx, ctx);
2142                 }
2143         }
2144         event_sched_out(group_event, cpuctx, ctx);
2145
2146         pmu->cancel_txn(pmu);
2147
2148         perf_mux_hrtimer_restart(cpuctx);
2149
2150         return -EAGAIN;
2151 }
2152
2153 /*
2154  * Work out whether we can put this event group on the CPU now.
2155  */
2156 static int group_can_go_on(struct perf_event *event,
2157                            struct perf_cpu_context *cpuctx,
2158                            int can_add_hw)
2159 {
2160         /*
2161          * Groups consisting entirely of software events can always go on.
2162          */
2163         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2164                 return 1;
2165         /*
2166          * If an exclusive group is already on, no other hardware
2167          * events can go on.
2168          */
2169         if (cpuctx->exclusive)
2170                 return 0;
2171         /*
2172          * If this group is exclusive and there are already
2173          * events on the CPU, it can't go on.
2174          */
2175         if (event->attr.exclusive && cpuctx->active_oncpu)
2176                 return 0;
2177         /*
2178          * Otherwise, try to add it if all previous groups were able
2179          * to go on.
2180          */
2181         return can_add_hw;
2182 }
2183
2184 static void add_event_to_ctx(struct perf_event *event,
2185                                struct perf_event_context *ctx)
2186 {
2187         u64 tstamp = perf_event_time(event);
2188
2189         list_add_event(event, ctx);
2190         perf_group_attach(event);
2191         event->tstamp_enabled = tstamp;
2192         event->tstamp_running = tstamp;
2193         event->tstamp_stopped = tstamp;
2194 }
2195
2196 static void ctx_sched_out(struct perf_event_context *ctx,
2197                           struct perf_cpu_context *cpuctx,
2198                           enum event_type_t event_type);
2199 static void
2200 ctx_sched_in(struct perf_event_context *ctx,
2201              struct perf_cpu_context *cpuctx,
2202              enum event_type_t event_type,
2203              struct task_struct *task);
2204
2205 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2206                                struct perf_event_context *ctx)
2207 {
2208         if (!cpuctx->task_ctx)
2209                 return;
2210
2211         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2212                 return;
2213
2214         ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2215 }
2216
2217 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2218                                 struct perf_event_context *ctx,
2219                                 struct task_struct *task)
2220 {
2221         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2222         if (ctx)
2223                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2224         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2225         if (ctx)
2226                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2227 }
2228
2229 static void ctx_resched(struct perf_cpu_context *cpuctx,
2230                         struct perf_event_context *task_ctx)
2231 {
2232         perf_pmu_disable(cpuctx->ctx.pmu);
2233         if (task_ctx)
2234                 task_ctx_sched_out(cpuctx, task_ctx);
2235         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2236         perf_event_sched_in(cpuctx, task_ctx, current);
2237         perf_pmu_enable(cpuctx->ctx.pmu);
2238 }
2239
2240 /*
2241  * Cross CPU call to install and enable a performance event
2242  *
2243  * Very similar to remote_function() + event_function() but cannot assume that
2244  * things like ctx->is_active and cpuctx->task_ctx are set.
2245  */
2246 static int  __perf_install_in_context(void *info)
2247 {
2248         struct perf_event *event = info;
2249         struct perf_event_context *ctx = event->ctx;
2250         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2251         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2252         bool reprogram = true;
2253         int ret = 0;
2254
2255         raw_spin_lock(&cpuctx->ctx.lock);
2256         if (ctx->task) {
2257                 raw_spin_lock(&ctx->lock);
2258                 task_ctx = ctx;
2259
2260                 reprogram = (ctx->task == current);
2261
2262                 /*
2263                  * If the task is running, it must be running on this CPU,
2264                  * otherwise we cannot reprogram things.
2265                  *
2266                  * If its not running, we don't care, ctx->lock will
2267                  * serialize against it becoming runnable.
2268                  */
2269                 if (task_curr(ctx->task) && !reprogram) {
2270                         ret = -ESRCH;
2271                         goto unlock;
2272                 }
2273
2274                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2275         } else if (task_ctx) {
2276                 raw_spin_lock(&task_ctx->lock);
2277         }
2278
2279         if (reprogram) {
2280                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2281                 add_event_to_ctx(event, ctx);
2282                 ctx_resched(cpuctx, task_ctx);
2283         } else {
2284                 add_event_to_ctx(event, ctx);
2285         }
2286
2287 unlock:
2288         perf_ctx_unlock(cpuctx, task_ctx);
2289
2290         return ret;
2291 }
2292
2293 /*
2294  * Attach a performance event to a context.
2295  *
2296  * Very similar to event_function_call, see comment there.
2297  */
2298 static void
2299 perf_install_in_context(struct perf_event_context *ctx,
2300                         struct perf_event *event,
2301                         int cpu)
2302 {
2303         struct task_struct *task = READ_ONCE(ctx->task);
2304
2305         lockdep_assert_held(&ctx->mutex);
2306
2307         if (event->cpu != -1)
2308                 event->cpu = cpu;
2309
2310         /*
2311          * Ensures that if we can observe event->ctx, both the event and ctx
2312          * will be 'complete'. See perf_iterate_sb_cpu().
2313          */
2314         smp_store_release(&event->ctx, ctx);
2315
2316         if (!task) {
2317                 cpu_function_call(cpu, __perf_install_in_context, event);
2318                 return;
2319         }
2320
2321         /*
2322          * Should not happen, we validate the ctx is still alive before calling.
2323          */
2324         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2325                 return;
2326
2327         /*
2328          * Installing events is tricky because we cannot rely on ctx->is_active
2329          * to be set in case this is the nr_events 0 -> 1 transition.
2330          *
2331          * Instead we use task_curr(), which tells us if the task is running.
2332          * However, since we use task_curr() outside of rq::lock, we can race
2333          * against the actual state. This means the result can be wrong.
2334          *
2335          * If we get a false positive, we retry, this is harmless.
2336          *
2337          * If we get a false negative, things are complicated. If we are after
2338          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2339          * value must be correct. If we're before, it doesn't matter since
2340          * perf_event_context_sched_in() will program the counter.
2341          *
2342          * However, this hinges on the remote context switch having observed
2343          * our task->perf_event_ctxp[] store, such that it will in fact take
2344          * ctx::lock in perf_event_context_sched_in().
2345          *
2346          * We do this by task_function_call(), if the IPI fails to hit the task
2347          * we know any future context switch of task must see the
2348          * perf_event_ctpx[] store.
2349          */
2350
2351         /*
2352          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2353          * task_cpu() load, such that if the IPI then does not find the task
2354          * running, a future context switch of that task must observe the
2355          * store.
2356          */
2357         smp_mb();
2358 again:
2359         if (!task_function_call(task, __perf_install_in_context, event))
2360                 return;
2361
2362         raw_spin_lock_irq(&ctx->lock);
2363         task = ctx->task;
2364         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2365                 /*
2366                  * Cannot happen because we already checked above (which also
2367                  * cannot happen), and we hold ctx->mutex, which serializes us
2368                  * against perf_event_exit_task_context().
2369                  */
2370                 raw_spin_unlock_irq(&ctx->lock);
2371                 return;
2372         }
2373         /*
2374          * If the task is not running, ctx->lock will avoid it becoming so,
2375          * thus we can safely install the event.
2376          */
2377         if (task_curr(task)) {
2378                 raw_spin_unlock_irq(&ctx->lock);
2379                 goto again;
2380         }
2381         add_event_to_ctx(event, ctx);
2382         raw_spin_unlock_irq(&ctx->lock);
2383 }
2384
2385 /*
2386  * Put a event into inactive state and update time fields.
2387  * Enabling the leader of a group effectively enables all
2388  * the group members that aren't explicitly disabled, so we
2389  * have to update their ->tstamp_enabled also.
2390  * Note: this works for group members as well as group leaders
2391  * since the non-leader members' sibling_lists will be empty.
2392  */
2393 static void __perf_event_mark_enabled(struct perf_event *event)
2394 {
2395         struct perf_event *sub;
2396         u64 tstamp = perf_event_time(event);
2397
2398         event->state = PERF_EVENT_STATE_INACTIVE;
2399         event->tstamp_enabled = tstamp - event->total_time_enabled;
2400         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2401                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2402                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2403         }
2404 }
2405
2406 /*
2407  * Cross CPU call to enable a performance event
2408  */
2409 static void __perf_event_enable(struct perf_event *event,
2410                                 struct perf_cpu_context *cpuctx,
2411                                 struct perf_event_context *ctx,
2412                                 void *info)
2413 {
2414         struct perf_event *leader = event->group_leader;
2415         struct perf_event_context *task_ctx;
2416
2417         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2418             event->state <= PERF_EVENT_STATE_ERROR)
2419                 return;
2420
2421         if (ctx->is_active)
2422                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2423
2424         __perf_event_mark_enabled(event);
2425
2426         if (!ctx->is_active)
2427                 return;
2428
2429         if (!event_filter_match(event)) {
2430                 if (is_cgroup_event(event))
2431                         perf_cgroup_defer_enabled(event);
2432                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2433                 return;
2434         }
2435
2436         /*
2437          * If the event is in a group and isn't the group leader,
2438          * then don't put it on unless the group is on.
2439          */
2440         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2441                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2442                 return;
2443         }
2444
2445         task_ctx = cpuctx->task_ctx;
2446         if (ctx->task)
2447                 WARN_ON_ONCE(task_ctx != ctx);
2448
2449         ctx_resched(cpuctx, task_ctx);
2450 }
2451
2452 /*
2453  * Enable a event.
2454  *
2455  * If event->ctx is a cloned context, callers must make sure that
2456  * every task struct that event->ctx->task could possibly point to
2457  * remains valid.  This condition is satisfied when called through
2458  * perf_event_for_each_child or perf_event_for_each as described
2459  * for perf_event_disable.
2460  */
2461 static void _perf_event_enable(struct perf_event *event)
2462 {
2463         struct perf_event_context *ctx = event->ctx;
2464
2465         raw_spin_lock_irq(&ctx->lock);
2466         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2467             event->state <  PERF_EVENT_STATE_ERROR) {
2468                 raw_spin_unlock_irq(&ctx->lock);
2469                 return;
2470         }
2471
2472         /*
2473          * If the event is in error state, clear that first.
2474          *
2475          * That way, if we see the event in error state below, we know that it
2476          * has gone back into error state, as distinct from the task having
2477          * been scheduled away before the cross-call arrived.
2478          */
2479         if (event->state == PERF_EVENT_STATE_ERROR)
2480                 event->state = PERF_EVENT_STATE_OFF;
2481         raw_spin_unlock_irq(&ctx->lock);
2482
2483         event_function_call(event, __perf_event_enable, NULL);
2484 }
2485
2486 /*
2487  * See perf_event_disable();
2488  */
2489 void perf_event_enable(struct perf_event *event)
2490 {
2491         struct perf_event_context *ctx;
2492
2493         ctx = perf_event_ctx_lock(event);
2494         _perf_event_enable(event);
2495         perf_event_ctx_unlock(event, ctx);
2496 }
2497 EXPORT_SYMBOL_GPL(perf_event_enable);
2498
2499 struct stop_event_data {
2500         struct perf_event       *event;
2501         unsigned int            restart;
2502 };
2503
2504 static int __perf_event_stop(void *info)
2505 {
2506         struct stop_event_data *sd = info;
2507         struct perf_event *event = sd->event;
2508
2509         /* if it's already INACTIVE, do nothing */
2510         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2511                 return 0;
2512
2513         /* matches smp_wmb() in event_sched_in() */
2514         smp_rmb();
2515
2516         /*
2517          * There is a window with interrupts enabled before we get here,
2518          * so we need to check again lest we try to stop another CPU's event.
2519          */
2520         if (READ_ONCE(event->oncpu) != smp_processor_id())
2521                 return -EAGAIN;
2522
2523         event->pmu->stop(event, PERF_EF_UPDATE);
2524
2525         /*
2526          * May race with the actual stop (through perf_pmu_output_stop()),
2527          * but it is only used for events with AUX ring buffer, and such
2528          * events will refuse to restart because of rb::aux_mmap_count==0,
2529          * see comments in perf_aux_output_begin().
2530          *
2531          * Since this is happening on a event-local CPU, no trace is lost
2532          * while restarting.
2533          */
2534         if (sd->restart)
2535                 event->pmu->start(event, 0);
2536
2537         return 0;
2538 }
2539
2540 static int perf_event_stop(struct perf_event *event, int restart)
2541 {
2542         struct stop_event_data sd = {
2543                 .event          = event,
2544                 .restart        = restart,
2545         };
2546         int ret = 0;
2547
2548         do {
2549                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2550                         return 0;
2551
2552                 /* matches smp_wmb() in event_sched_in() */
2553                 smp_rmb();
2554
2555                 /*
2556                  * We only want to restart ACTIVE events, so if the event goes
2557                  * inactive here (event->oncpu==-1), there's nothing more to do;
2558                  * fall through with ret==-ENXIO.
2559                  */
2560                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2561                                         __perf_event_stop, &sd);
2562         } while (ret == -EAGAIN);
2563
2564         return ret;
2565 }
2566
2567 /*
2568  * In order to contain the amount of racy and tricky in the address filter
2569  * configuration management, it is a two part process:
2570  *
2571  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2572  *      we update the addresses of corresponding vmas in
2573  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2574  * (p2) when an event is scheduled in (pmu::add), it calls
2575  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2576  *      if the generation has changed since the previous call.
2577  *
2578  * If (p1) happens while the event is active, we restart it to force (p2).
2579  *
2580  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2581  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2582  *     ioctl;
2583  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2584  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2585  *     for reading;
2586  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2587  *     of exec.
2588  */
2589 void perf_event_addr_filters_sync(struct perf_event *event)
2590 {
2591         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2592
2593         if (!has_addr_filter(event))
2594                 return;
2595
2596         raw_spin_lock(&ifh->lock);
2597         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2598                 event->pmu->addr_filters_sync(event);
2599                 event->hw.addr_filters_gen = event->addr_filters_gen;
2600         }
2601         raw_spin_unlock(&ifh->lock);
2602 }
2603 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2604
2605 static int _perf_event_refresh(struct perf_event *event, int refresh)
2606 {
2607         /*
2608          * not supported on inherited events
2609          */
2610         if (event->attr.inherit || !is_sampling_event(event))
2611                 return -EINVAL;
2612
2613         atomic_add(refresh, &event->event_limit);
2614         _perf_event_enable(event);
2615
2616         return 0;
2617 }
2618
2619 /*
2620  * See perf_event_disable()
2621  */
2622 int perf_event_refresh(struct perf_event *event, int refresh)
2623 {
2624         struct perf_event_context *ctx;
2625         int ret;
2626
2627         ctx = perf_event_ctx_lock(event);
2628         ret = _perf_event_refresh(event, refresh);
2629         perf_event_ctx_unlock(event, ctx);
2630
2631         return ret;
2632 }
2633 EXPORT_SYMBOL_GPL(perf_event_refresh);
2634
2635 static void ctx_sched_out(struct perf_event_context *ctx,
2636                           struct perf_cpu_context *cpuctx,
2637                           enum event_type_t event_type)
2638 {
2639         int is_active = ctx->is_active;
2640         struct perf_event *event;
2641
2642         lockdep_assert_held(&ctx->lock);
2643
2644         if (likely(!ctx->nr_events)) {
2645                 /*
2646                  * See __perf_remove_from_context().
2647                  */
2648                 WARN_ON_ONCE(ctx->is_active);
2649                 if (ctx->task)
2650                         WARN_ON_ONCE(cpuctx->task_ctx);
2651                 return;
2652         }
2653
2654         ctx->is_active &= ~event_type;
2655         if (!(ctx->is_active & EVENT_ALL))
2656                 ctx->is_active = 0;
2657
2658         if (ctx->task) {
2659                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2660                 if (!ctx->is_active)
2661                         cpuctx->task_ctx = NULL;
2662         }
2663
2664         /*
2665          * Always update time if it was set; not only when it changes.
2666          * Otherwise we can 'forget' to update time for any but the last
2667          * context we sched out. For example:
2668          *
2669          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2670          *   ctx_sched_out(.event_type = EVENT_PINNED)
2671          *
2672          * would only update time for the pinned events.
2673          */
2674         if (is_active & EVENT_TIME) {
2675                 /* update (and stop) ctx time */
2676                 update_context_time(ctx);
2677                 update_cgrp_time_from_cpuctx(cpuctx);
2678         }
2679
2680         is_active ^= ctx->is_active; /* changed bits */
2681
2682         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2683                 return;
2684
2685         perf_pmu_disable(ctx->pmu);
2686         if (is_active & EVENT_PINNED) {
2687                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2688                         group_sched_out(event, cpuctx, ctx);
2689         }
2690
2691         if (is_active & EVENT_FLEXIBLE) {
2692                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2693                         group_sched_out(event, cpuctx, ctx);
2694         }
2695         perf_pmu_enable(ctx->pmu);
2696 }
2697
2698 /*
2699  * Test whether two contexts are equivalent, i.e. whether they have both been
2700  * cloned from the same version of the same context.
2701  *
2702  * Equivalence is measured using a generation number in the context that is
2703  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2704  * and list_del_event().
2705  */
2706 static int context_equiv(struct perf_event_context *ctx1,
2707                          struct perf_event_context *ctx2)
2708 {
2709         lockdep_assert_held(&ctx1->lock);
2710         lockdep_assert_held(&ctx2->lock);
2711
2712         /* Pinning disables the swap optimization */
2713         if (ctx1->pin_count || ctx2->pin_count)
2714                 return 0;
2715
2716         /* If ctx1 is the parent of ctx2 */
2717         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2718                 return 1;
2719
2720         /* If ctx2 is the parent of ctx1 */
2721         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2722                 return 1;
2723
2724         /*
2725          * If ctx1 and ctx2 have the same parent; we flatten the parent
2726          * hierarchy, see perf_event_init_context().
2727          */
2728         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2729                         ctx1->parent_gen == ctx2->parent_gen)
2730                 return 1;
2731
2732         /* Unmatched */
2733         return 0;
2734 }
2735
2736 static void __perf_event_sync_stat(struct perf_event *event,
2737                                      struct perf_event *next_event)
2738 {
2739         u64 value;
2740
2741         if (!event->attr.inherit_stat)
2742                 return;
2743
2744         /*
2745          * Update the event value, we cannot use perf_event_read()
2746          * because we're in the middle of a context switch and have IRQs
2747          * disabled, which upsets smp_call_function_single(), however
2748          * we know the event must be on the current CPU, therefore we
2749          * don't need to use it.
2750          */
2751         switch (event->state) {
2752         case PERF_EVENT_STATE_ACTIVE:
2753                 event->pmu->read(event);
2754                 /* fall-through */
2755
2756         case PERF_EVENT_STATE_INACTIVE:
2757                 update_event_times(event);
2758                 break;
2759
2760         default:
2761                 break;
2762         }
2763
2764         /*
2765          * In order to keep per-task stats reliable we need to flip the event
2766          * values when we flip the contexts.
2767          */
2768         value = local64_read(&next_event->count);
2769         value = local64_xchg(&event->count, value);
2770         local64_set(&next_event->count, value);
2771
2772         swap(event->total_time_enabled, next_event->total_time_enabled);
2773         swap(event->total_time_running, next_event->total_time_running);
2774
2775         /*
2776          * Since we swizzled the values, update the user visible data too.
2777          */
2778         perf_event_update_userpage(event);
2779         perf_event_update_userpage(next_event);
2780 }
2781
2782 static void perf_event_sync_stat(struct perf_event_context *ctx,
2783                                    struct perf_event_context *next_ctx)
2784 {
2785         struct perf_event *event, *next_event;
2786
2787         if (!ctx->nr_stat)
2788                 return;
2789
2790         update_context_time(ctx);
2791
2792         event = list_first_entry(&ctx->event_list,
2793                                    struct perf_event, event_entry);
2794
2795         next_event = list_first_entry(&next_ctx->event_list,
2796                                         struct perf_event, event_entry);
2797
2798         while (&event->event_entry != &ctx->event_list &&
2799                &next_event->event_entry != &next_ctx->event_list) {
2800
2801                 __perf_event_sync_stat(event, next_event);
2802
2803                 event = list_next_entry(event, event_entry);
2804                 next_event = list_next_entry(next_event, event_entry);
2805         }
2806 }
2807
2808 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2809                                          struct task_struct *next)
2810 {
2811         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2812         struct perf_event_context *next_ctx;
2813         struct perf_event_context *parent, *next_parent;
2814         struct perf_cpu_context *cpuctx;
2815         int do_switch = 1;
2816
2817         if (likely(!ctx))
2818                 return;
2819
2820         cpuctx = __get_cpu_context(ctx);
2821         if (!cpuctx->task_ctx)
2822                 return;
2823
2824         rcu_read_lock();
2825         next_ctx = next->perf_event_ctxp[ctxn];
2826         if (!next_ctx)
2827                 goto unlock;
2828
2829         parent = rcu_dereference(ctx->parent_ctx);
2830         next_parent = rcu_dereference(next_ctx->parent_ctx);
2831
2832         /* If neither context have a parent context; they cannot be clones. */
2833         if (!parent && !next_parent)
2834                 goto unlock;
2835
2836         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2837                 /*
2838                  * Looks like the two contexts are clones, so we might be
2839                  * able to optimize the context switch.  We lock both
2840                  * contexts and check that they are clones under the
2841                  * lock (including re-checking that neither has been
2842                  * uncloned in the meantime).  It doesn't matter which
2843                  * order we take the locks because no other cpu could
2844                  * be trying to lock both of these tasks.
2845                  */
2846                 raw_spin_lock(&ctx->lock);
2847                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2848                 if (context_equiv(ctx, next_ctx)) {
2849                         WRITE_ONCE(ctx->task, next);
2850                         WRITE_ONCE(next_ctx->task, task);
2851
2852                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2853
2854                         /*
2855                          * RCU_INIT_POINTER here is safe because we've not
2856                          * modified the ctx and the above modification of
2857                          * ctx->task and ctx->task_ctx_data are immaterial
2858                          * since those values are always verified under
2859                          * ctx->lock which we're now holding.
2860                          */
2861                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2862                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2863
2864                         do_switch = 0;
2865
2866                         perf_event_sync_stat(ctx, next_ctx);
2867                 }
2868                 raw_spin_unlock(&next_ctx->lock);
2869                 raw_spin_unlock(&ctx->lock);
2870         }
2871 unlock:
2872         rcu_read_unlock();
2873
2874         if (do_switch) {
2875                 raw_spin_lock(&ctx->lock);
2876                 task_ctx_sched_out(cpuctx, ctx);
2877                 raw_spin_unlock(&ctx->lock);
2878         }
2879 }
2880
2881 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2882
2883 void perf_sched_cb_dec(struct pmu *pmu)
2884 {
2885         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2886
2887         this_cpu_dec(perf_sched_cb_usages);
2888
2889         if (!--cpuctx->sched_cb_usage)
2890                 list_del(&cpuctx->sched_cb_entry);
2891 }
2892
2893
2894 void perf_sched_cb_inc(struct pmu *pmu)
2895 {
2896         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2897
2898         if (!cpuctx->sched_cb_usage++)
2899                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2900
2901         this_cpu_inc(perf_sched_cb_usages);
2902 }
2903
2904 /*
2905  * This function provides the context switch callback to the lower code
2906  * layer. It is invoked ONLY when the context switch callback is enabled.
2907  *
2908  * This callback is relevant even to per-cpu events; for example multi event
2909  * PEBS requires this to provide PID/TID information. This requires we flush
2910  * all queued PEBS records before we context switch to a new task.
2911  */
2912 static void perf_pmu_sched_task(struct task_struct *prev,
2913                                 struct task_struct *next,
2914                                 bool sched_in)
2915 {
2916         struct perf_cpu_context *cpuctx;
2917         struct pmu *pmu;
2918
2919         if (prev == next)
2920                 return;
2921
2922         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2923                 pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */
2924
2925                 if (WARN_ON_ONCE(!pmu->sched_task))
2926                         continue;
2927
2928                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2929                 perf_pmu_disable(pmu);
2930
2931                 pmu->sched_task(cpuctx->task_ctx, sched_in);
2932
2933                 perf_pmu_enable(pmu);
2934                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2935         }
2936 }
2937
2938 static void perf_event_switch(struct task_struct *task,
2939                               struct task_struct *next_prev, bool sched_in);
2940
2941 #define for_each_task_context_nr(ctxn)                                  \
2942         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2943
2944 /*
2945  * Called from scheduler to remove the events of the current task,
2946  * with interrupts disabled.
2947  *
2948  * We stop each event and update the event value in event->count.
2949  *
2950  * This does not protect us against NMI, but disable()
2951  * sets the disabled bit in the control field of event _before_
2952  * accessing the event control register. If a NMI hits, then it will
2953  * not restart the event.
2954  */
2955 void __perf_event_task_sched_out(struct task_struct *task,
2956                                  struct task_struct *next)
2957 {
2958         int ctxn;
2959
2960         if (__this_cpu_read(perf_sched_cb_usages))
2961                 perf_pmu_sched_task(task, next, false);
2962
2963         if (atomic_read(&nr_switch_events))
2964                 perf_event_switch(task, next, false);
2965
2966         for_each_task_context_nr(ctxn)
2967                 perf_event_context_sched_out(task, ctxn, next);
2968
2969         /*
2970          * if cgroup events exist on this CPU, then we need
2971          * to check if we have to switch out PMU state.
2972          * cgroup event are system-wide mode only
2973          */
2974         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2975                 perf_cgroup_sched_out(task, next);
2976 }
2977
2978 /*
2979  * Called with IRQs disabled
2980  */
2981 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2982                               enum event_type_t event_type)
2983 {
2984         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2985 }
2986
2987 static void
2988 ctx_pinned_sched_in(struct perf_event_context *ctx,
2989                     struct perf_cpu_context *cpuctx)
2990 {
2991         struct perf_event *event;
2992
2993         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2994                 if (event->state <= PERF_EVENT_STATE_OFF)
2995                         continue;
2996                 if (!event_filter_match(event))
2997                         continue;
2998
2999                 /* may need to reset tstamp_enabled */
3000                 if (is_cgroup_event(event))
3001                         perf_cgroup_mark_enabled(event, ctx);
3002
3003                 if (group_can_go_on(event, cpuctx, 1))
3004                         group_sched_in(event, cpuctx, ctx);
3005
3006                 /*
3007                  * If this pinned group hasn't been scheduled,
3008                  * put it in error state.
3009                  */
3010                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3011                         update_group_times(event);
3012                         event->state = PERF_EVENT_STATE_ERROR;
3013                 }
3014         }
3015 }
3016
3017 static void
3018 ctx_flexible_sched_in(struct perf_event_context *ctx,
3019                       struct perf_cpu_context *cpuctx)
3020 {
3021         struct perf_event *event;
3022         int can_add_hw = 1;
3023
3024         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3025                 /* Ignore events in OFF or ERROR state */
3026                 if (event->state <= PERF_EVENT_STATE_OFF)
3027                         continue;
3028                 /*
3029                  * Listen to the 'cpu' scheduling filter constraint
3030                  * of events:
3031                  */
3032                 if (!event_filter_match(event))
3033                         continue;
3034
3035                 /* may need to reset tstamp_enabled */
3036                 if (is_cgroup_event(event))
3037                         perf_cgroup_mark_enabled(event, ctx);
3038
3039                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3040                         if (group_sched_in(event, cpuctx, ctx))
3041                                 can_add_hw = 0;
3042                 }
3043         }
3044 }
3045
3046 static void
3047 ctx_sched_in(struct perf_event_context *ctx,
3048              struct perf_cpu_context *cpuctx,
3049              enum event_type_t event_type,
3050              struct task_struct *task)
3051 {
3052         int is_active = ctx->is_active;
3053         u64 now;
3054
3055         lockdep_assert_held(&ctx->lock);
3056
3057         if (likely(!ctx->nr_events))
3058                 return;
3059
3060         ctx->is_active |= (event_type | EVENT_TIME);
3061         if (ctx->task) {
3062                 if (!is_active)
3063                         cpuctx->task_ctx = ctx;
3064                 else
3065                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3066         }
3067
3068         is_active ^= ctx->is_active; /* changed bits */
3069
3070         if (is_active & EVENT_TIME) {
3071                 /* start ctx time */
3072                 now = perf_clock();
3073                 ctx->timestamp = now;
3074                 perf_cgroup_set_timestamp(task, ctx);
3075         }
3076
3077         /*
3078          * First go through the list and put on any pinned groups
3079          * in order to give them the best chance of going on.
3080          */
3081         if (is_active & EVENT_PINNED)
3082                 ctx_pinned_sched_in(ctx, cpuctx);
3083
3084         /* Then walk through the lower prio flexible groups */
3085         if (is_active & EVENT_FLEXIBLE)
3086                 ctx_flexible_sched_in(ctx, cpuctx);
3087 }
3088
3089 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3090                              enum event_type_t event_type,
3091                              struct task_struct *task)
3092 {
3093         struct perf_event_context *ctx = &cpuctx->ctx;
3094
3095         ctx_sched_in(ctx, cpuctx, event_type, task);
3096 }
3097
3098 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3099                                         struct task_struct *task)
3100 {
3101         struct perf_cpu_context *cpuctx;
3102
3103         cpuctx = __get_cpu_context(ctx);
3104         if (cpuctx->task_ctx == ctx)
3105                 return;
3106
3107         perf_ctx_lock(cpuctx, ctx);
3108         perf_pmu_disable(ctx->pmu);
3109         /*
3110          * We want to keep the following priority order:
3111          * cpu pinned (that don't need to move), task pinned,
3112          * cpu flexible, task flexible.
3113          */
3114         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3115         perf_event_sched_in(cpuctx, ctx, task);
3116         perf_pmu_enable(ctx->pmu);
3117         perf_ctx_unlock(cpuctx, ctx);
3118 }
3119
3120 /*
3121  * Called from scheduler to add the events of the current task
3122  * with interrupts disabled.
3123  *
3124  * We restore the event value and then enable it.
3125  *
3126  * This does not protect us against NMI, but enable()
3127  * sets the enabled bit in the control field of event _before_
3128  * accessing the event control register. If a NMI hits, then it will
3129  * keep the event running.
3130  */
3131 void __perf_event_task_sched_in(struct task_struct *prev,
3132                                 struct task_struct *task)
3133 {
3134         struct perf_event_context *ctx;
3135         int ctxn;
3136
3137         /*
3138          * If cgroup events exist on this CPU, then we need to check if we have
3139          * to switch in PMU state; cgroup event are system-wide mode only.
3140          *
3141          * Since cgroup events are CPU events, we must schedule these in before
3142          * we schedule in the task events.
3143          */
3144         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3145                 perf_cgroup_sched_in(prev, task);
3146
3147         for_each_task_context_nr(ctxn) {
3148                 ctx = task->perf_event_ctxp[ctxn];
3149                 if (likely(!ctx))
3150                         continue;
3151
3152                 perf_event_context_sched_in(ctx, task);
3153         }
3154
3155         if (atomic_read(&nr_switch_events))
3156                 perf_event_switch(task, prev, true);
3157
3158         if (__this_cpu_read(perf_sched_cb_usages))
3159                 perf_pmu_sched_task(prev, task, true);
3160 }
3161
3162 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3163 {
3164         u64 frequency = event->attr.sample_freq;
3165         u64 sec = NSEC_PER_SEC;
3166         u64 divisor, dividend;
3167
3168         int count_fls, nsec_fls, frequency_fls, sec_fls;
3169
3170         count_fls = fls64(count);
3171         nsec_fls = fls64(nsec);
3172         frequency_fls = fls64(frequency);
3173         sec_fls = 30;
3174
3175         /*
3176          * We got @count in @nsec, with a target of sample_freq HZ
3177          * the target period becomes:
3178          *
3179          *             @count * 10^9
3180          * period = -------------------
3181          *          @nsec * sample_freq
3182          *
3183          */
3184
3185         /*
3186          * Reduce accuracy by one bit such that @a and @b converge
3187          * to a similar magnitude.
3188          */
3189 #define REDUCE_FLS(a, b)                \
3190 do {                                    \
3191         if (a##_fls > b##_fls) {        \
3192                 a >>= 1;                \
3193                 a##_fls--;              \
3194         } else {                        \
3195                 b >>= 1;                \
3196                 b##_fls--;              \
3197         }                               \
3198 } while (0)
3199
3200         /*
3201          * Reduce accuracy until either term fits in a u64, then proceed with
3202          * the other, so that finally we can do a u64/u64 division.
3203          */
3204         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3205                 REDUCE_FLS(nsec, frequency);
3206                 REDUCE_FLS(sec, count);
3207         }
3208
3209         if (count_fls + sec_fls > 64) {
3210                 divisor = nsec * frequency;
3211
3212                 while (count_fls + sec_fls > 64) {
3213                         REDUCE_FLS(count, sec);
3214                         divisor >>= 1;
3215                 }
3216
3217                 dividend = count * sec;
3218         } else {
3219                 dividend = count * sec;
3220
3221                 while (nsec_fls + frequency_fls > 64) {
3222                         REDUCE_FLS(nsec, frequency);
3223                         dividend >>= 1;
3224                 }
3225
3226                 divisor = nsec * frequency;
3227         }
3228
3229         if (!divisor)
3230                 return dividend;
3231
3232         return div64_u64(dividend, divisor);
3233 }
3234
3235 static DEFINE_PER_CPU(int, perf_throttled_count);
3236 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3237
3238 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3239 {
3240         struct hw_perf_event *hwc = &event->hw;
3241         s64 period, sample_period;
3242         s64 delta;
3243
3244         period = perf_calculate_period(event, nsec, count);
3245
3246         delta = (s64)(period - hwc->sample_period);
3247         delta = (delta + 7) / 8; /* low pass filter */
3248
3249         sample_period = hwc->sample_period + delta;
3250
3251         if (!sample_period)
3252                 sample_period = 1;
3253
3254         hwc->sample_period = sample_period;
3255
3256         if (local64_read(&hwc->period_left) > 8*sample_period) {
3257                 if (disable)
3258                         event->pmu->stop(event, PERF_EF_UPDATE);
3259
3260                 local64_set(&hwc->period_left, 0);
3261
3262                 if (disable)
3263                         event->pmu->start(event, PERF_EF_RELOAD);
3264         }
3265 }
3266
3267 /*
3268  * combine freq adjustment with unthrottling to avoid two passes over the
3269  * events. At the same time, make sure, having freq events does not change
3270  * the rate of unthrottling as that would introduce bias.
3271  */
3272 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3273                                            int needs_unthr)
3274 {
3275         struct perf_event *event;
3276         struct hw_perf_event *hwc;
3277         u64 now, period = TICK_NSEC;
3278         s64 delta;
3279
3280         /*
3281          * only need to iterate over all events iff:
3282          * - context have events in frequency mode (needs freq adjust)
3283          * - there are events to unthrottle on this cpu
3284          */
3285         if (!(ctx->nr_freq || needs_unthr))
3286                 return;
3287
3288         raw_spin_lock(&ctx->lock);
3289         perf_pmu_disable(ctx->pmu);
3290
3291         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3292                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3293                         continue;
3294
3295                 if (!event_filter_match(event))
3296                         continue;
3297
3298                 perf_pmu_disable(event->pmu);
3299
3300                 hwc = &event->hw;
3301
3302                 if (hwc->interrupts == MAX_INTERRUPTS) {
3303                         hwc->interrupts = 0;
3304                         perf_log_throttle(event, 1);
3305                         event->pmu->start(event, 0);
3306                 }
3307
3308                 if (!event->attr.freq || !event->attr.sample_freq)
3309                         goto next;
3310
3311                 /*
3312                  * stop the event and update event->count
3313                  */
3314                 event->pmu->stop(event, PERF_EF_UPDATE);
3315
3316                 now = local64_read(&event->count);
3317                 delta = now - hwc->freq_count_stamp;
3318                 hwc->freq_count_stamp = now;
3319
3320                 /*
3321                  * restart the event
3322                  * reload only if value has changed
3323                  * we have stopped the event so tell that
3324                  * to perf_adjust_period() to avoid stopping it
3325                  * twice.
3326                  */
3327                 if (delta > 0)
3328                         perf_adjust_period(event, period, delta, false);
3329
3330                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3331         next:
3332                 perf_pmu_enable(event->pmu);
3333         }
3334
3335         perf_pmu_enable(ctx->pmu);
3336         raw_spin_unlock(&ctx->lock);
3337 }
3338
3339 /*
3340  * Round-robin a context's events:
3341  */
3342 static void rotate_ctx(struct perf_event_context *ctx)
3343 {
3344         /*
3345          * Rotate the first entry last of non-pinned groups. Rotation might be
3346          * disabled by the inheritance code.
3347          */
3348         if (!ctx->rotate_disable)
3349                 list_rotate_left(&ctx->flexible_groups);
3350 }
3351
3352 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3353 {
3354         struct perf_event_context *ctx = NULL;
3355         int rotate = 0;
3356
3357         if (cpuctx->ctx.nr_events) {
3358                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3359                         rotate = 1;
3360         }
3361
3362         ctx = cpuctx->task_ctx;
3363         if (ctx && ctx->nr_events) {
3364                 if (ctx->nr_events != ctx->nr_active)
3365                         rotate = 1;
3366         }
3367
3368         if (!rotate)
3369                 goto done;
3370
3371         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3372         perf_pmu_disable(cpuctx->ctx.pmu);
3373
3374         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3375         if (ctx)
3376                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3377
3378         rotate_ctx(&cpuctx->ctx);
3379         if (ctx)
3380                 rotate_ctx(ctx);
3381
3382         perf_event_sched_in(cpuctx, ctx, current);
3383
3384         perf_pmu_enable(cpuctx->ctx.pmu);
3385         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3386 done:
3387
3388         return rotate;
3389 }
3390
3391 void perf_event_task_tick(void)
3392 {
3393         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3394         struct perf_event_context *ctx, *tmp;
3395         int throttled;
3396
3397         WARN_ON(!irqs_disabled());
3398
3399         __this_cpu_inc(perf_throttled_seq);
3400         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3401         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3402
3403         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3404                 perf_adjust_freq_unthr_context(ctx, throttled);
3405 }
3406
3407 static int event_enable_on_exec(struct perf_event *event,
3408                                 struct perf_event_context *ctx)
3409 {
3410         if (!event->attr.enable_on_exec)
3411                 return 0;
3412
3413         event->attr.enable_on_exec = 0;
3414         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3415                 return 0;
3416
3417         __perf_event_mark_enabled(event);
3418
3419         return 1;
3420 }
3421
3422 /*
3423  * Enable all of a task's events that have been marked enable-on-exec.
3424  * This expects task == current.
3425  */
3426 static void perf_event_enable_on_exec(int ctxn)
3427 {
3428         struct perf_event_context *ctx, *clone_ctx = NULL;
3429         struct perf_cpu_context *cpuctx;
3430         struct perf_event *event;
3431         unsigned long flags;
3432         int enabled = 0;
3433
3434         local_irq_save(flags);
3435         ctx = current->perf_event_ctxp[ctxn];
3436         if (!ctx || !ctx->nr_events)
3437                 goto out;
3438
3439         cpuctx = __get_cpu_context(ctx);
3440         perf_ctx_lock(cpuctx, ctx);
3441         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3442         list_for_each_entry(event, &ctx->event_list, event_entry)
3443                 enabled |= event_enable_on_exec(event, ctx);
3444
3445         /*
3446          * Unclone and reschedule this context if we enabled any event.
3447          */
3448         if (enabled) {
3449                 clone_ctx = unclone_ctx(ctx);
3450                 ctx_resched(cpuctx, ctx);
3451         }
3452         perf_ctx_unlock(cpuctx, ctx);
3453
3454 out:
3455         local_irq_restore(flags);
3456
3457         if (clone_ctx)
3458                 put_ctx(clone_ctx);
3459 }
3460
3461 struct perf_read_data {
3462         struct perf_event *event;
3463         bool group;
3464         int ret;
3465 };
3466
3467 static int find_cpu_to_read(struct perf_event *event, int local_cpu)
3468 {
3469         int event_cpu = event->oncpu;
3470         u16 local_pkg, event_pkg;
3471
3472         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3473                 event_pkg =  topology_physical_package_id(event_cpu);
3474                 local_pkg =  topology_physical_package_id(local_cpu);
3475
3476                 if (event_pkg == local_pkg)
3477                         return local_cpu;
3478         }
3479
3480         return event_cpu;
3481 }
3482
3483 /*
3484  * Cross CPU call to read the hardware event
3485  */
3486 static void __perf_event_read(void *info)
3487 {
3488         struct perf_read_data *data = info;
3489         struct perf_event *sub, *event = data->event;
3490         struct perf_event_context *ctx = event->ctx;
3491         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3492         struct pmu *pmu = event->pmu;
3493
3494         /*
3495          * If this is a task context, we need to check whether it is
3496          * the current task context of this cpu.  If not it has been
3497          * scheduled out before the smp call arrived.  In that case
3498          * event->count would have been updated to a recent sample
3499          * when the event was scheduled out.
3500          */
3501         if (ctx->task && cpuctx->task_ctx != ctx)
3502                 return;
3503
3504         raw_spin_lock(&ctx->lock);
3505         if (ctx->is_active) {
3506                 update_context_time(ctx);
3507                 update_cgrp_time_from_event(event);
3508         }
3509
3510         update_event_times(event);
3511         if (event->state != PERF_EVENT_STATE_ACTIVE)
3512                 goto unlock;
3513
3514         if (!data->group) {
3515                 pmu->read(event);
3516                 data->ret = 0;
3517                 goto unlock;
3518         }
3519
3520         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3521
3522         pmu->read(event);
3523
3524         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3525                 update_event_times(sub);
3526                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3527                         /*
3528                          * Use sibling's PMU rather than @event's since
3529                          * sibling could be on different (eg: software) PMU.
3530                          */
3531                         sub->pmu->read(sub);
3532                 }
3533         }
3534
3535         data->ret = pmu->commit_txn(pmu);
3536
3537 unlock:
3538         raw_spin_unlock(&ctx->lock);
3539 }
3540
3541 static inline u64 perf_event_count(struct perf_event *event)
3542 {
3543         if (event->pmu->count)
3544                 return event->pmu->count(event);
3545
3546         return __perf_event_count(event);
3547 }
3548
3549 /*
3550  * NMI-safe method to read a local event, that is an event that
3551  * is:
3552  *   - either for the current task, or for this CPU
3553  *   - does not have inherit set, for inherited task events
3554  *     will not be local and we cannot read them atomically
3555  *   - must not have a pmu::count method
3556  */
3557 u64 perf_event_read_local(struct perf_event *event)
3558 {
3559         unsigned long flags;
3560         u64 val;
3561
3562         /*
3563          * Disabling interrupts avoids all counter scheduling (context
3564          * switches, timer based rotation and IPIs).
3565          */
3566         local_irq_save(flags);
3567
3568         /* If this is a per-task event, it must be for current */
3569         WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3570                      event->hw.target != current);
3571
3572         /* If this is a per-CPU event, it must be for this CPU */
3573         WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3574                      event->cpu != smp_processor_id());
3575
3576         /*
3577          * It must not be an event with inherit set, we cannot read
3578          * all child counters from atomic context.
3579          */
3580         WARN_ON_ONCE(event->attr.inherit);
3581
3582         /*
3583          * It must not have a pmu::count method, those are not
3584          * NMI safe.
3585          */
3586         WARN_ON_ONCE(event->pmu->count);
3587
3588         /*
3589          * If the event is currently on this CPU, its either a per-task event,
3590          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3591          * oncpu == -1).
3592          */
3593         if (event->oncpu == smp_processor_id())
3594                 event->pmu->read(event);
3595
3596         val = local64_read(&event->count);
3597         local_irq_restore(flags);
3598
3599         return val;
3600 }
3601
3602 static int perf_event_read(struct perf_event *event, bool group)
3603 {
3604         int ret = 0, cpu_to_read, local_cpu;
3605
3606         /*
3607          * If event is enabled and currently active on a CPU, update the
3608          * value in the event structure:
3609          */
3610         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3611                 struct perf_read_data data = {
3612                         .event = event,
3613                         .group = group,
3614                         .ret = 0,
3615                 };
3616
3617                 local_cpu = get_cpu();
3618                 cpu_to_read = find_cpu_to_read(event, local_cpu);
3619                 put_cpu();
3620
3621                 /*
3622                  * Purposely ignore the smp_call_function_single() return
3623                  * value.
3624                  *
3625                  * If event->oncpu isn't a valid CPU it means the event got
3626                  * scheduled out and that will have updated the event count.
3627                  *
3628                  * Therefore, either way, we'll have an up-to-date event count
3629                  * after this.
3630                  */
3631                 (void)smp_call_function_single(cpu_to_read, __perf_event_read, &data, 1);
3632                 ret = data.ret;
3633         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3634                 struct perf_event_context *ctx = event->ctx;
3635                 unsigned long flags;
3636
3637                 raw_spin_lock_irqsave(&ctx->lock, flags);
3638                 /*
3639                  * may read while context is not active
3640                  * (e.g., thread is blocked), in that case
3641                  * we cannot update context time
3642                  */
3643                 if (ctx->is_active) {
3644                         update_context_time(ctx);
3645                         update_cgrp_time_from_event(event);
3646                 }
3647                 if (group)
3648                         update_group_times(event);
3649                 else
3650                         update_event_times(event);
3651                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3652         }
3653
3654         return ret;
3655 }
3656
3657 /*
3658  * Initialize the perf_event context in a task_struct:
3659  */
3660 static void __perf_event_init_context(struct perf_event_context *ctx)
3661 {
3662         raw_spin_lock_init(&ctx->lock);
3663         mutex_init(&ctx->mutex);
3664         INIT_LIST_HEAD(&ctx->active_ctx_list);
3665         INIT_LIST_HEAD(&ctx->pinned_groups);
3666         INIT_LIST_HEAD(&ctx->flexible_groups);
3667         INIT_LIST_HEAD(&ctx->event_list);
3668         atomic_set(&ctx->refcount, 1);
3669 }
3670
3671 static struct perf_event_context *
3672 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3673 {
3674         struct perf_event_context *ctx;
3675
3676         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3677         if (!ctx)
3678                 return NULL;
3679
3680         __perf_event_init_context(ctx);
3681         if (task) {
3682                 ctx->task = task;
3683                 get_task_struct(task);
3684         }
3685         ctx->pmu = pmu;
3686
3687         return ctx;
3688 }
3689
3690 static struct task_struct *
3691 find_lively_task_by_vpid(pid_t vpid)
3692 {
3693         struct task_struct *task;
3694
3695         rcu_read_lock();
3696         if (!vpid)
3697                 task = current;
3698         else
3699                 task = find_task_by_vpid(vpid);
3700         if (task)
3701                 get_task_struct(task);
3702         rcu_read_unlock();
3703
3704         if (!task)
3705                 return ERR_PTR(-ESRCH);
3706
3707         return task;
3708 }
3709
3710 /*
3711  * Returns a matching context with refcount and pincount.
3712  */
3713 static struct perf_event_context *
3714 find_get_context(struct pmu *pmu, struct task_struct *task,
3715                 struct perf_event *event)
3716 {
3717         struct perf_event_context *ctx, *clone_ctx = NULL;
3718         struct perf_cpu_context *cpuctx;
3719         void *task_ctx_data = NULL;
3720         unsigned long flags;
3721         int ctxn, err;
3722         int cpu = event->cpu;
3723
3724         if (!task) {
3725                 /* Must be root to operate on a CPU event: */
3726                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3727                         return ERR_PTR(-EACCES);
3728
3729                 /*
3730                  * We could be clever and allow to attach a event to an
3731                  * offline CPU and activate it when the CPU comes up, but
3732                  * that's for later.
3733                  */
3734                 if (!cpu_online(cpu))
3735                         return ERR_PTR(-ENODEV);
3736
3737                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3738                 ctx = &cpuctx->ctx;
3739                 get_ctx(ctx);
3740                 ++ctx->pin_count;
3741
3742                 return ctx;
3743         }
3744
3745         err = -EINVAL;
3746         ctxn = pmu->task_ctx_nr;
3747         if (ctxn < 0)
3748                 goto errout;
3749
3750         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3751                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3752                 if (!task_ctx_data) {
3753                         err = -ENOMEM;
3754                         goto errout;
3755                 }
3756         }
3757
3758 retry:
3759         ctx = perf_lock_task_context(task, ctxn, &flags);
3760         if (ctx) {
3761                 clone_ctx = unclone_ctx(ctx);
3762                 ++ctx->pin_count;
3763
3764                 if (task_ctx_data && !ctx->task_ctx_data) {
3765                         ctx->task_ctx_data = task_ctx_data;
3766                         task_ctx_data = NULL;
3767                 }
3768                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3769
3770                 if (clone_ctx)
3771                         put_ctx(clone_ctx);
3772         } else {
3773                 ctx = alloc_perf_context(pmu, task);
3774                 err = -ENOMEM;
3775                 if (!ctx)
3776                         goto errout;
3777
3778                 if (task_ctx_data) {
3779                         ctx->task_ctx_data = task_ctx_data;
3780                         task_ctx_data = NULL;
3781                 }
3782
3783                 err = 0;
3784                 mutex_lock(&task->perf_event_mutex);
3785                 /*
3786                  * If it has already passed perf_event_exit_task().
3787                  * we must see PF_EXITING, it takes this mutex too.
3788                  */
3789                 if (task->flags & PF_EXITING)
3790                         err = -ESRCH;
3791                 else if (task->perf_event_ctxp[ctxn])
3792                         err = -EAGAIN;
3793                 else {
3794                         get_ctx(ctx);
3795                         ++ctx->pin_count;
3796                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3797                 }
3798                 mutex_unlock(&task->perf_event_mutex);
3799
3800                 if (unlikely(err)) {
3801                         put_ctx(ctx);
3802
3803                         if (err == -EAGAIN)
3804                                 goto retry;
3805                         goto errout;
3806                 }
3807         }
3808
3809         kfree(task_ctx_data);
3810         return ctx;
3811
3812 errout:
3813         kfree(task_ctx_data);
3814         return ERR_PTR(err);
3815 }
3816
3817 static void perf_event_free_filter(struct perf_event *event);
3818 static void perf_event_free_bpf_prog(struct perf_event *event);
3819
3820 static void free_event_rcu(struct rcu_head *head)
3821 {
3822         struct perf_event *event;
3823
3824         event = container_of(head, struct perf_event, rcu_head);
3825         if (event->ns)
3826                 put_pid_ns(event->ns);
3827         perf_event_free_filter(event);
3828         kfree(event);
3829 }
3830
3831 static void ring_buffer_attach(struct perf_event *event,
3832                                struct ring_buffer *rb);
3833
3834 static void detach_sb_event(struct perf_event *event)
3835 {
3836         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3837
3838         raw_spin_lock(&pel->lock);
3839         list_del_rcu(&event->sb_list);
3840         raw_spin_unlock(&pel->lock);
3841 }
3842
3843 static bool is_sb_event(struct perf_event *event)
3844 {
3845         struct perf_event_attr *attr = &event->attr;
3846
3847         if (event->parent)
3848                 return false;
3849
3850         if (event->attach_state & PERF_ATTACH_TASK)
3851                 return false;
3852
3853         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3854             attr->comm || attr->comm_exec ||
3855             attr->task ||
3856             attr->context_switch)
3857                 return true;
3858         return false;
3859 }
3860
3861 static void unaccount_pmu_sb_event(struct perf_event *event)
3862 {
3863         if (is_sb_event(event))
3864                 detach_sb_event(event);
3865 }
3866
3867 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3868 {
3869         if (event->parent)
3870                 return;
3871
3872         if (is_cgroup_event(event))
3873                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3874 }
3875
3876 #ifdef CONFIG_NO_HZ_FULL
3877 static DEFINE_SPINLOCK(nr_freq_lock);
3878 #endif
3879
3880 static void unaccount_freq_event_nohz(void)
3881 {
3882 #ifdef CONFIG_NO_HZ_FULL
3883         spin_lock(&nr_freq_lock);
3884         if (atomic_dec_and_test(&nr_freq_events))
3885                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3886         spin_unlock(&nr_freq_lock);
3887 #endif
3888 }
3889
3890 static void unaccount_freq_event(void)
3891 {
3892         if (tick_nohz_full_enabled())
3893                 unaccount_freq_event_nohz();
3894         else
3895                 atomic_dec(&nr_freq_events);
3896 }
3897
3898 static void unaccount_event(struct perf_event *event)
3899 {
3900         bool dec = false;
3901
3902         if (event->parent)
3903                 return;
3904
3905         if (event->attach_state & PERF_ATTACH_TASK)
3906                 dec = true;
3907         if (event->attr.mmap || event->attr.mmap_data)
3908                 atomic_dec(&nr_mmap_events);
3909         if (event->attr.comm)
3910                 atomic_dec(&nr_comm_events);
3911         if (event->attr.task)
3912                 atomic_dec(&nr_task_events);
3913         if (event->attr.freq)
3914                 unaccount_freq_event();
3915         if (event->attr.context_switch) {
3916                 dec = true;
3917                 atomic_dec(&nr_switch_events);
3918         }
3919         if (is_cgroup_event(event))
3920                 dec = true;
3921         if (has_branch_stack(event))
3922                 dec = true;
3923
3924         if (dec) {
3925                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3926                         schedule_delayed_work(&perf_sched_work, HZ);
3927         }
3928
3929         unaccount_event_cpu(event, event->cpu);
3930
3931         unaccount_pmu_sb_event(event);
3932 }
3933
3934 static void perf_sched_delayed(struct work_struct *work)
3935 {
3936         mutex_lock(&perf_sched_mutex);
3937         if (atomic_dec_and_test(&perf_sched_count))
3938                 static_branch_disable(&perf_sched_events);
3939         mutex_unlock(&perf_sched_mutex);
3940 }
3941
3942 /*
3943  * The following implement mutual exclusion of events on "exclusive" pmus
3944  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3945  * at a time, so we disallow creating events that might conflict, namely:
3946  *
3947  *  1) cpu-wide events in the presence of per-task events,
3948  *  2) per-task events in the presence of cpu-wide events,
3949  *  3) two matching events on the same context.
3950  *
3951  * The former two cases are handled in the allocation path (perf_event_alloc(),
3952  * _free_event()), the latter -- before the first perf_install_in_context().
3953  */
3954 static int exclusive_event_init(struct perf_event *event)
3955 {
3956         struct pmu *pmu = event->pmu;
3957
3958         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3959                 return 0;
3960
3961         /*
3962          * Prevent co-existence of per-task and cpu-wide events on the
3963          * same exclusive pmu.
3964          *
3965          * Negative pmu::exclusive_cnt means there are cpu-wide
3966          * events on this "exclusive" pmu, positive means there are
3967          * per-task events.
3968          *
3969          * Since this is called in perf_event_alloc() path, event::ctx
3970          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3971          * to mean "per-task event", because unlike other attach states it
3972          * never gets cleared.
3973          */
3974         if (event->attach_state & PERF_ATTACH_TASK) {
3975                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3976                         return -EBUSY;
3977         } else {
3978                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3979                         return -EBUSY;
3980         }
3981
3982         return 0;
3983 }
3984
3985 static void exclusive_event_destroy(struct perf_event *event)
3986 {
3987         struct pmu *pmu = event->pmu;
3988
3989         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3990                 return;
3991
3992         /* see comment in exclusive_event_init() */
3993         if (event->attach_state & PERF_ATTACH_TASK)
3994                 atomic_dec(&pmu->exclusive_cnt);
3995         else
3996                 atomic_inc(&pmu->exclusive_cnt);
3997 }
3998
3999 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4000 {
4001         if ((e1->pmu == e2->pmu) &&
4002             (e1->cpu == e2->cpu ||
4003              e1->cpu == -1 ||
4004              e2->cpu == -1))
4005                 return true;
4006         return false;
4007 }
4008
4009 /* Called under the same ctx::mutex as perf_install_in_context() */
4010 static bool exclusive_event_installable(struct perf_event *event,
4011                                         struct perf_event_context *ctx)
4012 {
4013         struct perf_event *iter_event;
4014         struct pmu *pmu = event->pmu;
4015
4016         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4017                 return true;
4018
4019         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4020                 if (exclusive_event_match(iter_event, event))
4021                         return false;
4022         }
4023
4024         return true;
4025 }
4026
4027 static void perf_addr_filters_splice(struct perf_event *event,
4028                                        struct list_head *head);
4029
4030 static void _free_event(struct perf_event *event)
4031 {
4032         irq_work_sync(&event->pending);
4033
4034         unaccount_event(event);
4035
4036         if (event->rb) {
4037                 /*
4038                  * Can happen when we close an event with re-directed output.
4039                  *
4040                  * Since we have a 0 refcount, perf_mmap_close() will skip
4041                  * over us; possibly making our ring_buffer_put() the last.
4042                  */
4043                 mutex_lock(&event->mmap_mutex);
4044                 ring_buffer_attach(event, NULL);
4045                 mutex_unlock(&event->mmap_mutex);
4046         }
4047
4048         if (is_cgroup_event(event))
4049                 perf_detach_cgroup(event);
4050
4051         if (!event->parent) {
4052                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4053                         put_callchain_buffers();
4054         }
4055
4056         perf_event_free_bpf_prog(event);
4057         perf_addr_filters_splice(event, NULL);
4058         kfree(event->addr_filters_offs);
4059
4060         if (event->destroy)
4061                 event->destroy(event);
4062
4063         if (event->ctx)
4064                 put_ctx(event->ctx);
4065
4066         exclusive_event_destroy(event);
4067         module_put(event->pmu->module);
4068
4069         call_rcu(&event->rcu_head, free_event_rcu);
4070 }
4071
4072 /*
4073  * Used to free events which have a known refcount of 1, such as in error paths
4074  * where the event isn't exposed yet and inherited events.
4075  */
4076 static void free_event(struct perf_event *event)
4077 {
4078         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4079                                 "unexpected event refcount: %ld; ptr=%p\n",
4080                                 atomic_long_read(&event->refcount), event)) {
4081                 /* leak to avoid use-after-free */
4082                 return;
4083         }
4084
4085         _free_event(event);
4086 }
4087
4088 /*
4089  * Remove user event from the owner task.
4090  */
4091 static void perf_remove_from_owner(struct perf_event *event)
4092 {
4093         struct task_struct *owner;
4094
4095         rcu_read_lock();
4096         /*
4097          * Matches the smp_store_release() in perf_event_exit_task(). If we
4098          * observe !owner it means the list deletion is complete and we can
4099          * indeed free this event, otherwise we need to serialize on
4100          * owner->perf_event_mutex.
4101          */
4102         owner = lockless_dereference(event->owner);
4103         if (owner) {
4104                 /*
4105                  * Since delayed_put_task_struct() also drops the last
4106                  * task reference we can safely take a new reference
4107                  * while holding the rcu_read_lock().
4108                  */
4109                 get_task_struct(owner);
4110         }
4111         rcu_read_unlock();
4112
4113         if (owner) {
4114                 /*
4115                  * If we're here through perf_event_exit_task() we're already
4116                  * holding ctx->mutex which would be an inversion wrt. the
4117                  * normal lock order.
4118                  *
4119                  * However we can safely take this lock because its the child
4120                  * ctx->mutex.
4121                  */
4122                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4123
4124                 /*
4125                  * We have to re-check the event->owner field, if it is cleared
4126                  * we raced with perf_event_exit_task(), acquiring the mutex
4127                  * ensured they're done, and we can proceed with freeing the
4128                  * event.
4129                  */
4130                 if (event->owner) {
4131                         list_del_init(&event->owner_entry);
4132                         smp_store_release(&event->owner, NULL);
4133                 }
4134                 mutex_unlock(&owner->perf_event_mutex);
4135                 put_task_struct(owner);
4136         }
4137 }
4138
4139 static void put_event(struct perf_event *event)
4140 {
4141         if (!atomic_long_dec_and_test(&event->refcount))
4142                 return;
4143
4144         _free_event(event);
4145 }
4146
4147 /*
4148  * Kill an event dead; while event:refcount will preserve the event
4149  * object, it will not preserve its functionality. Once the last 'user'
4150  * gives up the object, we'll destroy the thing.
4151  */
4152 int perf_event_release_kernel(struct perf_event *event)
4153 {
4154         struct perf_event_context *ctx = event->ctx;
4155         struct perf_event *child, *tmp;
4156
4157         /*
4158          * If we got here through err_file: fput(event_file); we will not have
4159          * attached to a context yet.
4160          */
4161         if (!ctx) {
4162                 WARN_ON_ONCE(event->attach_state &
4163                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4164                 goto no_ctx;
4165         }
4166
4167         if (!is_kernel_event(event))
4168                 perf_remove_from_owner(event);
4169
4170         ctx = perf_event_ctx_lock(event);
4171         WARN_ON_ONCE(ctx->parent_ctx);
4172         perf_remove_from_context(event, DETACH_GROUP);
4173
4174         raw_spin_lock_irq(&ctx->lock);
4175         /*
4176          * Mark this even as STATE_DEAD, there is no external reference to it
4177          * anymore.
4178          *
4179          * Anybody acquiring event->child_mutex after the below loop _must_
4180          * also see this, most importantly inherit_event() which will avoid
4181          * placing more children on the list.
4182          *
4183          * Thus this guarantees that we will in fact observe and kill _ALL_
4184          * child events.
4185          */
4186         event->state = PERF_EVENT_STATE_DEAD;
4187         raw_spin_unlock_irq(&ctx->lock);
4188
4189         perf_event_ctx_unlock(event, ctx);
4190
4191 again:
4192         mutex_lock(&event->child_mutex);
4193         list_for_each_entry(child, &event->child_list, child_list) {
4194
4195                 /*
4196                  * Cannot change, child events are not migrated, see the
4197                  * comment with perf_event_ctx_lock_nested().
4198                  */
4199                 ctx = lockless_dereference(child->ctx);
4200                 /*
4201                  * Since child_mutex nests inside ctx::mutex, we must jump
4202                  * through hoops. We start by grabbing a reference on the ctx.
4203                  *
4204                  * Since the event cannot get freed while we hold the
4205                  * child_mutex, the context must also exist and have a !0
4206                  * reference count.
4207                  */
4208                 get_ctx(ctx);
4209
4210                 /*
4211                  * Now that we have a ctx ref, we can drop child_mutex, and
4212                  * acquire ctx::mutex without fear of it going away. Then we
4213                  * can re-acquire child_mutex.
4214                  */
4215                 mutex_unlock(&event->child_mutex);
4216                 mutex_lock(&ctx->mutex);
4217                 mutex_lock(&event->child_mutex);
4218
4219                 /*
4220                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4221                  * state, if child is still the first entry, it didn't get freed
4222                  * and we can continue doing so.
4223                  */
4224                 tmp = list_first_entry_or_null(&event->child_list,
4225                                                struct perf_event, child_list);
4226                 if (tmp == child) {
4227                         perf_remove_from_context(child, DETACH_GROUP);
4228                         list_del(&child->child_list);
4229                         free_event(child);
4230                         /*
4231                          * This matches the refcount bump in inherit_event();
4232                          * this can't be the last reference.
4233                          */
4234                         put_event(event);
4235                 }
4236
4237                 mutex_unlock(&event->child_mutex);
4238                 mutex_unlock(&ctx->mutex);
4239                 put_ctx(ctx);
4240                 goto again;
4241         }
4242         mutex_unlock(&event->child_mutex);
4243
4244 no_ctx:
4245         put_event(event); /* Must be the 'last' reference */
4246         return 0;
4247 }
4248 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4249
4250 /*
4251  * Called when the last reference to the file is gone.
4252  */
4253 static int perf_release(struct inode *inode, struct file *file)
4254 {
4255         perf_event_release_kernel(file->private_data);
4256         return 0;
4257 }
4258
4259 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4260 {
4261         struct perf_event *child;
4262         u64 total = 0;
4263
4264         *enabled = 0;
4265         *running = 0;
4266
4267         mutex_lock(&event->child_mutex);
4268
4269         (void)perf_event_read(event, false);
4270         total += perf_event_count(event);
4271
4272         *enabled += event->total_time_enabled +
4273                         atomic64_read(&event->child_total_time_enabled);
4274         *running += event->total_time_running +
4275                         atomic64_read(&event->child_total_time_running);
4276
4277         list_for_each_entry(child, &event->child_list, child_list) {
4278                 (void)perf_event_read(child, false);
4279                 total += perf_event_count(child);
4280                 *enabled += child->total_time_enabled;
4281                 *running += child->total_time_running;
4282         }
4283         mutex_unlock(&event->child_mutex);
4284
4285         return total;
4286 }
4287 EXPORT_SYMBOL_GPL(perf_event_read_value);
4288
4289 static int __perf_read_group_add(struct perf_event *leader,
4290                                         u64 read_format, u64 *values)
4291 {
4292         struct perf_event *sub;
4293         int n = 1; /* skip @nr */
4294         int ret;
4295
4296         ret = perf_event_read(leader, true);
4297         if (ret)
4298                 return ret;
4299
4300         /*
4301          * Since we co-schedule groups, {enabled,running} times of siblings
4302          * will be identical to those of the leader, so we only publish one
4303          * set.
4304          */
4305         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4306                 values[n++] += leader->total_time_enabled +
4307                         atomic64_read(&leader->child_total_time_enabled);
4308         }
4309
4310         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4311                 values[n++] += leader->total_time_running +
4312                         atomic64_read(&leader->child_total_time_running);
4313         }
4314
4315         /*
4316          * Write {count,id} tuples for every sibling.
4317          */
4318         values[n++] += perf_event_count(leader);
4319         if (read_format & PERF_FORMAT_ID)
4320                 values[n++] = primary_event_id(leader);
4321
4322         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4323                 values[n++] += perf_event_count(sub);
4324                 if (read_format & PERF_FORMAT_ID)
4325                         values[n++] = primary_event_id(sub);
4326         }
4327
4328         return 0;
4329 }
4330
4331 static int perf_read_group(struct perf_event *event,
4332                                    u64 read_format, char __user *buf)
4333 {
4334         struct perf_event *leader = event->group_leader, *child;
4335         struct perf_event_context *ctx = leader->ctx;
4336         int ret;
4337         u64 *values;
4338
4339         lockdep_assert_held(&ctx->mutex);
4340
4341         values = kzalloc(event->read_size, GFP_KERNEL);
4342         if (!values)
4343                 return -ENOMEM;
4344
4345         values[0] = 1 + leader->nr_siblings;
4346
4347         /*
4348          * By locking the child_mutex of the leader we effectively
4349          * lock the child list of all siblings.. XXX explain how.
4350          */
4351         mutex_lock(&leader->child_mutex);
4352
4353         ret = __perf_read_group_add(leader, read_format, values);
4354         if (ret)
4355                 goto unlock;
4356
4357         list_for_each_entry(child, &leader->child_list, child_list) {
4358                 ret = __perf_read_group_add(child, read_format, values);
4359                 if (ret)
4360                         goto unlock;
4361         }
4362
4363         mutex_unlock(&leader->child_mutex);
4364
4365         ret = event->read_size;
4366         if (copy_to_user(buf, values, event->read_size))
4367                 ret = -EFAULT;
4368         goto out;
4369
4370 unlock:
4371         mutex_unlock(&leader->child_mutex);
4372 out:
4373         kfree(values);
4374         return ret;
4375 }
4376
4377 static int perf_read_one(struct perf_event *event,
4378                                  u64 read_format, char __user *buf)
4379 {
4380         u64 enabled, running;
4381         u64 values[4];
4382         int n = 0;
4383
4384         values[n++] = perf_event_read_value(event, &enabled, &running);
4385         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4386                 values[n++] = enabled;
4387         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4388                 values[n++] = running;
4389         if (read_format & PERF_FORMAT_ID)
4390                 values[n++] = primary_event_id(event);
4391
4392         if (copy_to_user(buf, values, n * sizeof(u64)))
4393                 return -EFAULT;
4394
4395         return n * sizeof(u64);
4396 }
4397
4398 static bool is_event_hup(struct perf_event *event)
4399 {
4400         bool no_children;
4401
4402         if (event->state > PERF_EVENT_STATE_EXIT)
4403                 return false;
4404
4405         mutex_lock(&event->child_mutex);
4406         no_children = list_empty(&event->child_list);
4407         mutex_unlock(&event->child_mutex);
4408         return no_children;
4409 }
4410
4411 /*
4412  * Read the performance event - simple non blocking version for now
4413  */
4414 static ssize_t
4415 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4416 {
4417         u64 read_format = event->attr.read_format;
4418         int ret;
4419
4420         /*
4421          * Return end-of-file for a read on a event that is in
4422          * error state (i.e. because it was pinned but it couldn't be
4423          * scheduled on to the CPU at some point).
4424          */
4425         if (event->state == PERF_EVENT_STATE_ERROR)
4426                 return 0;
4427
4428         if (count < event->read_size)
4429                 return -ENOSPC;
4430
4431         WARN_ON_ONCE(event->ctx->parent_ctx);
4432         if (read_format & PERF_FORMAT_GROUP)
4433                 ret = perf_read_group(event, read_format, buf);
4434         else
4435                 ret = perf_read_one(event, read_format, buf);
4436
4437         return ret;
4438 }
4439
4440 static ssize_t
4441 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4442 {
4443         struct perf_event *event = file->private_data;
4444         struct perf_event_context *ctx;
4445         int ret;
4446
4447         ctx = perf_event_ctx_lock(event);
4448         ret = __perf_read(event, buf, count);
4449         perf_event_ctx_unlock(event, ctx);
4450
4451         return ret;
4452 }
4453
4454 static unsigned int perf_poll(struct file *file, poll_table *wait)
4455 {
4456         struct perf_event *event = file->private_data;
4457         struct ring_buffer *rb;
4458         unsigned int events = POLLHUP;
4459
4460         poll_wait(file, &event->waitq, wait);
4461
4462         if (is_event_hup(event))
4463                 return events;
4464
4465         /*
4466          * Pin the event->rb by taking event->mmap_mutex; otherwise
4467          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4468          */
4469         mutex_lock(&event->mmap_mutex);
4470         rb = event->rb;
4471         if (rb)
4472                 events = atomic_xchg(&rb->poll, 0);
4473         mutex_unlock(&event->mmap_mutex);
4474         return events;
4475 }
4476
4477 static void _perf_event_reset(struct perf_event *event)
4478 {
4479         (void)perf_event_read(event, false);
4480         local64_set(&event->count, 0);
4481         perf_event_update_userpage(event);
4482 }
4483
4484 /*
4485  * Holding the top-level event's child_mutex means that any
4486  * descendant process that has inherited this event will block
4487  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4488  * task existence requirements of perf_event_enable/disable.
4489  */
4490 static void perf_event_for_each_child(struct perf_event *event,
4491                                         void (*func)(struct perf_event *))
4492 {
4493         struct perf_event *child;
4494
4495         WARN_ON_ONCE(event->ctx->parent_ctx);
4496
4497         mutex_lock(&event->child_mutex);
4498         func(event);
4499         list_for_each_entry(child, &event->child_list, child_list)
4500                 func(child);
4501         mutex_unlock(&event->child_mutex);
4502 }
4503
4504 static void perf_event_for_each(struct perf_event *event,
4505                                   void (*func)(struct perf_event *))
4506 {
4507         struct perf_event_context *ctx = event->ctx;
4508         struct perf_event *sibling;
4509
4510         lockdep_assert_held(&ctx->mutex);
4511
4512         event = event->group_leader;
4513
4514         perf_event_for_each_child(event, func);
4515         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4516                 perf_event_for_each_child(sibling, func);
4517 }
4518
4519 static void __perf_event_period(struct perf_event *event,
4520                                 struct perf_cpu_context *cpuctx,
4521                                 struct perf_event_context *ctx,
4522                                 void *info)
4523 {
4524         u64 value = *((u64 *)info);
4525         bool active;
4526
4527         if (event->attr.freq) {
4528                 event->attr.sample_freq = value;
4529         } else {
4530                 event->attr.sample_period = value;
4531                 event->hw.sample_period = value;
4532         }
4533
4534         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4535         if (active) {
4536                 perf_pmu_disable(ctx->pmu);
4537                 /*
4538                  * We could be throttled; unthrottle now to avoid the tick
4539                  * trying to unthrottle while we already re-started the event.
4540                  */
4541                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4542                         event->hw.interrupts = 0;
4543                         perf_log_throttle(event, 1);
4544                 }
4545                 event->pmu->stop(event, PERF_EF_UPDATE);
4546         }
4547
4548         local64_set(&event->hw.period_left, 0);
4549
4550         if (active) {
4551                 event->pmu->start(event, PERF_EF_RELOAD);
4552                 perf_pmu_enable(ctx->pmu);
4553         }
4554 }
4555
4556 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4557 {
4558         u64 value;
4559
4560         if (!is_sampling_event(event))
4561                 return -EINVAL;
4562
4563         if (copy_from_user(&value, arg, sizeof(value)))
4564                 return -EFAULT;
4565
4566         if (!value)
4567                 return -EINVAL;
4568
4569         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4570                 return -EINVAL;
4571
4572         event_function_call(event, __perf_event_period, &value);
4573
4574         return 0;
4575 }
4576
4577 static const struct file_operations perf_fops;
4578
4579 static inline int perf_fget_light(int fd, struct fd *p)
4580 {
4581         struct fd f = fdget(fd);
4582         if (!f.file)
4583                 return -EBADF;
4584
4585         if (f.file->f_op != &perf_fops) {
4586                 fdput(f);
4587                 return -EBADF;
4588         }
4589         *p = f;
4590         return 0;
4591 }
4592
4593 static int perf_event_set_output(struct perf_event *event,
4594                                  struct perf_event *output_event);
4595 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4596 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4597
4598 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4599 {
4600         void (*func)(struct perf_event *);
4601         u32 flags = arg;
4602
4603         switch (cmd) {
4604         case PERF_EVENT_IOC_ENABLE:
4605                 func = _perf_event_enable;
4606                 break;
4607         case PERF_EVENT_IOC_DISABLE:
4608                 func = _perf_event_disable;
4609                 break;
4610         case PERF_EVENT_IOC_RESET:
4611                 func = _perf_event_reset;
4612                 break;
4613
4614         case PERF_EVENT_IOC_REFRESH:
4615                 return _perf_event_refresh(event, arg);
4616
4617         case PERF_EVENT_IOC_PERIOD:
4618                 return perf_event_period(event, (u64 __user *)arg);
4619
4620         case PERF_EVENT_IOC_ID:
4621         {
4622                 u64 id = primary_event_id(event);
4623
4624                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4625                         return -EFAULT;
4626                 return 0;
4627         }
4628
4629         case PERF_EVENT_IOC_SET_OUTPUT:
4630         {
4631                 int ret;
4632                 if (arg != -1) {
4633                         struct perf_event *output_event;
4634                         struct fd output;
4635                         ret = perf_fget_light(arg, &output);
4636                         if (ret)
4637                                 return ret;
4638                         output_event = output.file->private_data;
4639                         ret = perf_event_set_output(event, output_event);
4640                         fdput(output);
4641                 } else {
4642                         ret = perf_event_set_output(event, NULL);
4643                 }
4644                 return ret;
4645         }
4646
4647         case PERF_EVENT_IOC_SET_FILTER:
4648                 return perf_event_set_filter(event, (void __user *)arg);
4649
4650         case PERF_EVENT_IOC_SET_BPF:
4651                 return perf_event_set_bpf_prog(event, arg);
4652
4653         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4654                 struct ring_buffer *rb;
4655
4656                 rcu_read_lock();
4657                 rb = rcu_dereference(event->rb);
4658                 if (!rb || !rb->nr_pages) {
4659                         rcu_read_unlock();
4660                         return -EINVAL;
4661                 }
4662                 rb_toggle_paused(rb, !!arg);
4663                 rcu_read_unlock();
4664                 return 0;
4665         }
4666         default:
4667                 return -ENOTTY;
4668         }
4669
4670         if (flags & PERF_IOC_FLAG_GROUP)
4671                 perf_event_for_each(event, func);
4672         else
4673                 perf_event_for_each_child(event, func);
4674
4675         return 0;
4676 }
4677
4678 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4679 {
4680         struct perf_event *event = file->private_data;
4681         struct perf_event_context *ctx;
4682         long ret;
4683
4684         ctx = perf_event_ctx_lock(event);
4685         ret = _perf_ioctl(event, cmd, arg);
4686         perf_event_ctx_unlock(event, ctx);
4687
4688         return ret;
4689 }
4690
4691 #ifdef CONFIG_COMPAT
4692 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4693                                 unsigned long arg)
4694 {
4695         switch (_IOC_NR(cmd)) {
4696         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4697         case _IOC_NR(PERF_EVENT_IOC_ID):
4698                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4699                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4700                         cmd &= ~IOCSIZE_MASK;
4701                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4702                 }
4703                 break;
4704         }
4705         return perf_ioctl(file, cmd, arg);
4706 }
4707 #else
4708 # define perf_compat_ioctl NULL
4709 #endif
4710
4711 int perf_event_task_enable(void)
4712 {
4713         struct perf_event_context *ctx;
4714         struct perf_event *event;
4715
4716         mutex_lock(&current->perf_event_mutex);
4717         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4718                 ctx = perf_event_ctx_lock(event);
4719                 perf_event_for_each_child(event, _perf_event_enable);
4720                 perf_event_ctx_unlock(event, ctx);
4721         }
4722         mutex_unlock(&current->perf_event_mutex);
4723
4724         return 0;
4725 }
4726
4727 int perf_event_task_disable(void)
4728 {
4729         struct perf_event_context *ctx;
4730         struct perf_event *event;
4731
4732         mutex_lock(&current->perf_event_mutex);
4733         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4734                 ctx = perf_event_ctx_lock(event);
4735                 perf_event_for_each_child(event, _perf_event_disable);
4736                 perf_event_ctx_unlock(event, ctx);
4737         }
4738         mutex_unlock(&current->perf_event_mutex);
4739
4740         return 0;
4741 }
4742
4743 static int perf_event_index(struct perf_event *event)
4744 {
4745         if (event->hw.state & PERF_HES_STOPPED)
4746                 return 0;
4747
4748         if (event->state != PERF_EVENT_STATE_ACTIVE)
4749                 return 0;
4750
4751         return event->pmu->event_idx(event);
4752 }
4753
4754 static void calc_timer_values(struct perf_event *event,
4755                                 u64 *now,
4756                                 u64 *enabled,
4757                                 u64 *running)
4758 {
4759         u64 ctx_time;
4760
4761         *now = perf_clock();
4762         ctx_time = event->shadow_ctx_time + *now;
4763         *enabled = ctx_time - event->tstamp_enabled;
4764         *running = ctx_time - event->tstamp_running;
4765 }
4766
4767 static void perf_event_init_userpage(struct perf_event *event)
4768 {
4769         struct perf_event_mmap_page *userpg;
4770         struct ring_buffer *rb;
4771
4772         rcu_read_lock();
4773         rb = rcu_dereference(event->rb);
4774         if (!rb)
4775                 goto unlock;
4776
4777         userpg = rb->user_page;
4778
4779         /* Allow new userspace to detect that bit 0 is deprecated */
4780         userpg->cap_bit0_is_deprecated = 1;
4781         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4782         userpg->data_offset = PAGE_SIZE;
4783         userpg->data_size = perf_data_size(rb);
4784
4785 unlock:
4786         rcu_read_unlock();
4787 }
4788
4789 void __weak arch_perf_update_userpage(
4790         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4791 {
4792 }
4793
4794 /*
4795  * Callers need to ensure there can be no nesting of this function, otherwise
4796  * the seqlock logic goes bad. We can not serialize this because the arch
4797  * code calls this from NMI context.
4798  */
4799 void perf_event_update_userpage(struct perf_event *event)
4800 {
4801         struct perf_event_mmap_page *userpg;
4802         struct ring_buffer *rb;
4803         u64 enabled, running, now;
4804
4805         rcu_read_lock();
4806         rb = rcu_dereference(event->rb);
4807         if (!rb)
4808                 goto unlock;
4809
4810         /*
4811          * compute total_time_enabled, total_time_running
4812          * based on snapshot values taken when the event
4813          * was last scheduled in.
4814          *
4815          * we cannot simply called update_context_time()
4816          * because of locking issue as we can be called in
4817          * NMI context
4818          */
4819         calc_timer_values(event, &now, &enabled, &running);
4820
4821         userpg = rb->user_page;
4822         /*
4823          * Disable preemption so as to not let the corresponding user-space
4824          * spin too long if we get preempted.
4825          */
4826         preempt_disable();
4827         ++userpg->lock;
4828         barrier();
4829         userpg->index = perf_event_index(event);
4830         userpg->offset = perf_event_count(event);
4831         if (userpg->index)
4832                 userpg->offset -= local64_read(&event->hw.prev_count);
4833
4834         userpg->time_enabled = enabled +
4835                         atomic64_read(&event->child_total_time_enabled);
4836
4837         userpg->time_running = running +
4838                         atomic64_read(&event->child_total_time_running);
4839
4840         arch_perf_update_userpage(event, userpg, now);
4841
4842         barrier();
4843         ++userpg->lock;
4844         preempt_enable();
4845 unlock:
4846         rcu_read_unlock();
4847 }
4848
4849 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4850 {
4851         struct perf_event *event = vma->vm_file->private_data;
4852         struct ring_buffer *rb;
4853         int ret = VM_FAULT_SIGBUS;
4854
4855         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4856                 if (vmf->pgoff == 0)
4857                         ret = 0;
4858                 return ret;
4859         }
4860
4861         rcu_read_lock();
4862         rb = rcu_dereference(event->rb);
4863         if (!rb)
4864                 goto unlock;
4865
4866         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4867                 goto unlock;
4868
4869         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4870         if (!vmf->page)
4871                 goto unlock;
4872
4873         get_page(vmf->page);
4874         vmf->page->mapping = vma->vm_file->f_mapping;
4875         vmf->page->index   = vmf->pgoff;
4876
4877         ret = 0;
4878 unlock:
4879         rcu_read_unlock();
4880
4881         return ret;
4882 }
4883
4884 static void ring_buffer_attach(struct perf_event *event,
4885                                struct ring_buffer *rb)
4886 {
4887         struct ring_buffer *old_rb = NULL;
4888         unsigned long flags;
4889
4890         if (event->rb) {
4891                 /*
4892                  * Should be impossible, we set this when removing
4893                  * event->rb_entry and wait/clear when adding event->rb_entry.
4894                  */
4895                 WARN_ON_ONCE(event->rcu_pending);
4896
4897                 old_rb = event->rb;
4898                 spin_lock_irqsave(&old_rb->event_lock, flags);
4899                 list_del_rcu(&event->rb_entry);
4900                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4901
4902                 event->rcu_batches = get_state_synchronize_rcu();
4903                 event->rcu_pending = 1;
4904         }
4905
4906         if (rb) {
4907                 if (event->rcu_pending) {
4908                         cond_synchronize_rcu(event->rcu_batches);
4909                         event->rcu_pending = 0;
4910                 }
4911
4912                 spin_lock_irqsave(&rb->event_lock, flags);
4913                 list_add_rcu(&event->rb_entry, &rb->event_list);
4914                 spin_unlock_irqrestore(&rb->event_lock, flags);
4915         }
4916
4917         /*
4918          * Avoid racing with perf_mmap_close(AUX): stop the event
4919          * before swizzling the event::rb pointer; if it's getting
4920          * unmapped, its aux_mmap_count will be 0 and it won't
4921          * restart. See the comment in __perf_pmu_output_stop().
4922          *
4923          * Data will inevitably be lost when set_output is done in
4924          * mid-air, but then again, whoever does it like this is
4925          * not in for the data anyway.
4926          */
4927         if (has_aux(event))
4928                 perf_event_stop(event, 0);
4929
4930         rcu_assign_pointer(event->rb, rb);
4931
4932         if (old_rb) {
4933                 ring_buffer_put(old_rb);
4934                 /*
4935                  * Since we detached before setting the new rb, so that we
4936                  * could attach the new rb, we could have missed a wakeup.
4937                  * Provide it now.
4938                  */
4939                 wake_up_all(&event->waitq);
4940         }
4941 }
4942
4943 static void ring_buffer_wakeup(struct perf_event *event)
4944 {
4945         struct ring_buffer *rb;
4946
4947         rcu_read_lock();
4948         rb = rcu_dereference(event->rb);
4949         if (rb) {
4950                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4951                         wake_up_all(&event->waitq);
4952         }
4953         rcu_read_unlock();
4954 }
4955
4956 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4957 {
4958         struct ring_buffer *rb;
4959
4960         rcu_read_lock();
4961         rb = rcu_dereference(event->rb);
4962         if (rb) {
4963                 if (!atomic_inc_not_zero(&rb->refcount))
4964                         rb = NULL;
4965         }
4966         rcu_read_unlock();
4967
4968         return rb;
4969 }
4970
4971 void ring_buffer_put(struct ring_buffer *rb)
4972 {
4973         if (!atomic_dec_and_test(&rb->refcount))
4974                 return;
4975
4976         WARN_ON_ONCE(!list_empty(&rb->event_list));
4977
4978         call_rcu(&rb->rcu_head, rb_free_rcu);
4979 }
4980
4981 static void perf_mmap_open(struct vm_area_struct *vma)
4982 {
4983         struct perf_event *event = vma->vm_file->private_data;
4984
4985         atomic_inc(&event->mmap_count);
4986         atomic_inc(&event->rb->mmap_count);
4987
4988         if (vma->vm_pgoff)
4989                 atomic_inc(&event->rb->aux_mmap_count);
4990
4991         if (event->pmu->event_mapped)
4992                 event->pmu->event_mapped(event);
4993 }
4994
4995 static void perf_pmu_output_stop(struct perf_event *event);
4996
4997 /*
4998  * A buffer can be mmap()ed multiple times; either directly through the same
4999  * event, or through other events by use of perf_event_set_output().
5000  *
5001  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5002  * the buffer here, where we still have a VM context. This means we need
5003  * to detach all events redirecting to us.
5004  */
5005 static void perf_mmap_close(struct vm_area_struct *vma)
5006 {
5007         struct perf_event *event = vma->vm_file->private_data;
5008
5009         struct ring_buffer *rb = ring_buffer_get(event);
5010         struct user_struct *mmap_user = rb->mmap_user;
5011         int mmap_locked = rb->mmap_locked;
5012         unsigned long size = perf_data_size(rb);
5013
5014         if (event->pmu->event_unmapped)
5015                 event->pmu->event_unmapped(event);
5016
5017         /*
5018          * rb->aux_mmap_count will always drop before rb->mmap_count and
5019          * event->mmap_count, so it is ok to use event->mmap_mutex to
5020          * serialize with perf_mmap here.
5021          */
5022         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5023             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5024                 /*
5025                  * Stop all AUX events that are writing to this buffer,
5026                  * so that we can free its AUX pages and corresponding PMU
5027                  * data. Note that after rb::aux_mmap_count dropped to zero,
5028                  * they won't start any more (see perf_aux_output_begin()).
5029                  */
5030                 perf_pmu_output_stop(event);
5031
5032                 /* now it's safe to free the pages */
5033                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5034                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5035
5036                 /* this has to be the last one */
5037                 rb_free_aux(rb);
5038                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5039
5040                 mutex_unlock(&event->mmap_mutex);
5041         }
5042
5043         atomic_dec(&rb->mmap_count);
5044
5045         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5046                 goto out_put;
5047
5048         ring_buffer_attach(event, NULL);
5049         mutex_unlock(&event->mmap_mutex);
5050
5051         /* If there's still other mmap()s of this buffer, we're done. */
5052         if (atomic_read(&rb->mmap_count))
5053                 goto out_put;
5054
5055         /*
5056          * No other mmap()s, detach from all other events that might redirect
5057          * into the now unreachable buffer. Somewhat complicated by the
5058          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5059          */
5060 again:
5061         rcu_read_lock();
5062         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5063                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5064                         /*
5065                          * This event is en-route to free_event() which will
5066                          * detach it and remove it from the list.
5067                          */
5068                         continue;
5069                 }
5070                 rcu_read_unlock();
5071
5072                 mutex_lock(&event->mmap_mutex);
5073                 /*
5074                  * Check we didn't race with perf_event_set_output() which can
5075                  * swizzle the rb from under us while we were waiting to
5076                  * acquire mmap_mutex.
5077                  *
5078                  * If we find a different rb; ignore this event, a next
5079                  * iteration will no longer find it on the list. We have to
5080                  * still restart the iteration to make sure we're not now
5081                  * iterating the wrong list.
5082                  */
5083                 if (event->rb == rb)
5084                         ring_buffer_attach(event, NULL);
5085
5086                 mutex_unlock(&event->mmap_mutex);
5087                 put_event(event);
5088
5089                 /*
5090                  * Restart the iteration; either we're on the wrong list or
5091                  * destroyed its integrity by doing a deletion.
5092                  */
5093                 goto again;
5094         }
5095         rcu_read_unlock();
5096
5097         /*
5098          * It could be there's still a few 0-ref events on the list; they'll
5099          * get cleaned up by free_event() -- they'll also still have their
5100          * ref on the rb and will free it whenever they are done with it.
5101          *
5102          * Aside from that, this buffer is 'fully' detached and unmapped,
5103          * undo the VM accounting.
5104          */
5105
5106         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5107         vma->vm_mm->pinned_vm -= mmap_locked;
5108         free_uid(mmap_user);
5109
5110 out_put:
5111         ring_buffer_put(rb); /* could be last */
5112 }
5113
5114 static const struct vm_operations_struct perf_mmap_vmops = {
5115         .open           = perf_mmap_open,
5116         .close          = perf_mmap_close, /* non mergable */
5117         .fault          = perf_mmap_fault,
5118         .page_mkwrite   = perf_mmap_fault,
5119 };
5120
5121 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5122 {
5123         struct perf_event *event = file->private_data;
5124         unsigned long user_locked, user_lock_limit;
5125         struct user_struct *user = current_user();
5126         unsigned long locked, lock_limit;
5127         struct ring_buffer *rb = NULL;
5128         unsigned long vma_size;
5129         unsigned long nr_pages;
5130         long user_extra = 0, extra = 0;
5131         int ret = 0, flags = 0;
5132
5133         /*
5134          * Don't allow mmap() of inherited per-task counters. This would
5135          * create a performance issue due to all children writing to the
5136          * same rb.
5137          */
5138         if (event->cpu == -1 && event->attr.inherit)
5139                 return -EINVAL;
5140
5141         if (!(vma->vm_flags & VM_SHARED))
5142                 return -EINVAL;
5143
5144         vma_size = vma->vm_end - vma->vm_start;
5145
5146         if (vma->vm_pgoff == 0) {
5147                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5148         } else {
5149                 /*
5150                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5151                  * mapped, all subsequent mappings should have the same size
5152                  * and offset. Must be above the normal perf buffer.
5153                  */
5154                 u64 aux_offset, aux_size;
5155
5156                 if (!event->rb)
5157                         return -EINVAL;
5158
5159                 nr_pages = vma_size / PAGE_SIZE;
5160
5161                 mutex_lock(&event->mmap_mutex);
5162                 ret = -EINVAL;
5163
5164                 rb = event->rb;
5165                 if (!rb)
5166                         goto aux_unlock;
5167
5168                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5169                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5170
5171                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5172                         goto aux_unlock;
5173
5174                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5175                         goto aux_unlock;
5176
5177                 /* already mapped with a different offset */
5178                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5179                         goto aux_unlock;
5180
5181                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5182                         goto aux_unlock;
5183
5184                 /* already mapped with a different size */
5185                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5186                         goto aux_unlock;
5187
5188                 if (!is_power_of_2(nr_pages))
5189                         goto aux_unlock;
5190
5191                 if (!atomic_inc_not_zero(&rb->mmap_count))
5192                         goto aux_unlock;
5193
5194                 if (rb_has_aux(rb)) {
5195                         atomic_inc(&rb->aux_mmap_count);
5196                         ret = 0;
5197                         goto unlock;
5198                 }
5199
5200                 atomic_set(&rb->aux_mmap_count, 1);
5201                 user_extra = nr_pages;
5202
5203                 goto accounting;
5204         }
5205
5206         /*
5207          * If we have rb pages ensure they're a power-of-two number, so we
5208          * can do bitmasks instead of modulo.
5209          */
5210         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5211                 return -EINVAL;
5212
5213         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5214                 return -EINVAL;
5215
5216         WARN_ON_ONCE(event->ctx->parent_ctx);
5217 again:
5218         mutex_lock(&event->mmap_mutex);
5219         if (event->rb) {
5220                 if (event->rb->nr_pages != nr_pages) {
5221                         ret = -EINVAL;
5222                         goto unlock;
5223                 }
5224
5225                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5226                         /*
5227                          * Raced against perf_mmap_close() through
5228                          * perf_event_set_output(). Try again, hope for better
5229                          * luck.
5230                          */
5231                         mutex_unlock(&event->mmap_mutex);
5232                         goto again;
5233                 }
5234
5235                 goto unlock;
5236         }
5237
5238         user_extra = nr_pages + 1;
5239
5240 accounting:
5241         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5242
5243         /*
5244          * Increase the limit linearly with more CPUs:
5245          */
5246         user_lock_limit *= num_online_cpus();
5247
5248         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5249
5250         if (user_locked > user_lock_limit)
5251                 extra = user_locked - user_lock_limit;
5252
5253         lock_limit = rlimit(RLIMIT_MEMLOCK);
5254         lock_limit >>= PAGE_SHIFT;
5255         locked = vma->vm_mm->pinned_vm + extra;
5256
5257         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5258                 !capable(CAP_IPC_LOCK)) {
5259                 ret = -EPERM;
5260                 goto unlock;
5261         }
5262
5263         WARN_ON(!rb && event->rb);
5264
5265         if (vma->vm_flags & VM_WRITE)
5266                 flags |= RING_BUFFER_WRITABLE;
5267
5268         if (!rb) {
5269                 rb = rb_alloc(nr_pages,
5270                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5271                               event->cpu, flags);
5272
5273                 if (!rb) {
5274                         ret = -ENOMEM;
5275                         goto unlock;
5276                 }
5277
5278                 atomic_set(&rb->mmap_count, 1);
5279                 rb->mmap_user = get_current_user();
5280                 rb->mmap_locked = extra;
5281
5282                 ring_buffer_attach(event, rb);
5283
5284                 perf_event_init_userpage(event);
5285                 perf_event_update_userpage(event);
5286         } else {
5287                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5288                                    event->attr.aux_watermark, flags);
5289                 if (!ret)
5290                         rb->aux_mmap_locked = extra;
5291         }
5292
5293 unlock:
5294         if (!ret) {
5295                 atomic_long_add(user_extra, &user->locked_vm);
5296                 vma->vm_mm->pinned_vm += extra;
5297
5298                 atomic_inc(&event->mmap_count);
5299         } else if (rb) {
5300                 atomic_dec(&rb->mmap_count);
5301         }
5302 aux_unlock:
5303         mutex_unlock(&event->mmap_mutex);
5304
5305         /*
5306          * Since pinned accounting is per vm we cannot allow fork() to copy our
5307          * vma.
5308          */
5309         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5310         vma->vm_ops = &perf_mmap_vmops;
5311
5312         if (event->pmu->event_mapped)
5313                 event->pmu->event_mapped(event);
5314
5315         return ret;
5316 }
5317
5318 static int perf_fasync(int fd, struct file *filp, int on)
5319 {
5320         struct inode *inode = file_inode(filp);
5321         struct perf_event *event = filp->private_data;
5322         int retval;
5323
5324         inode_lock(inode);
5325         retval = fasync_helper(fd, filp, on, &event->fasync);
5326         inode_unlock(inode);
5327
5328         if (retval < 0)
5329                 return retval;
5330
5331         return 0;
5332 }
5333
5334 static const struct file_operations perf_fops = {
5335         .llseek                 = no_llseek,
5336         .release                = perf_release,
5337         .read                   = perf_read,
5338         .poll                   = perf_poll,
5339         .unlocked_ioctl         = perf_ioctl,
5340         .compat_ioctl           = perf_compat_ioctl,
5341         .mmap                   = perf_mmap,
5342         .fasync                 = perf_fasync,
5343 };
5344
5345 /*
5346  * Perf event wakeup
5347  *
5348  * If there's data, ensure we set the poll() state and publish everything
5349  * to user-space before waking everybody up.
5350  */
5351
5352 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5353 {
5354         /* only the parent has fasync state */
5355         if (event->parent)
5356                 event = event->parent;
5357         return &event->fasync;
5358 }
5359
5360 void perf_event_wakeup(struct perf_event *event)
5361 {
5362         ring_buffer_wakeup(event);
5363
5364         if (event->pending_kill) {
5365                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5366                 event->pending_kill = 0;
5367         }
5368 }
5369
5370 static void perf_pending_event(struct irq_work *entry)
5371 {
5372         struct perf_event *event = container_of(entry,
5373                         struct perf_event, pending);
5374         int rctx;
5375
5376         rctx = perf_swevent_get_recursion_context();
5377         /*
5378          * If we 'fail' here, that's OK, it means recursion is already disabled
5379          * and we won't recurse 'further'.
5380          */
5381
5382         if (event->pending_disable) {
5383                 event->pending_disable = 0;
5384                 perf_event_disable_local(event);
5385         }
5386
5387         if (event->pending_wakeup) {
5388                 event->pending_wakeup = 0;
5389                 perf_event_wakeup(event);
5390         }
5391
5392         if (rctx >= 0)
5393                 perf_swevent_put_recursion_context(rctx);
5394 }
5395
5396 /*
5397  * We assume there is only KVM supporting the callbacks.
5398  * Later on, we might change it to a list if there is
5399  * another virtualization implementation supporting the callbacks.
5400  */
5401 struct perf_guest_info_callbacks *perf_guest_cbs;
5402
5403 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5404 {
5405         perf_guest_cbs = cbs;
5406         return 0;
5407 }
5408 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5409
5410 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5411 {
5412         perf_guest_cbs = NULL;
5413         return 0;
5414 }
5415 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5416
5417 static void
5418 perf_output_sample_regs(struct perf_output_handle *handle,
5419                         struct pt_regs *regs, u64 mask)
5420 {
5421         int bit;
5422         DECLARE_BITMAP(_mask, 64);
5423
5424         bitmap_from_u64(_mask, mask);
5425         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5426                 u64 val;
5427
5428                 val = perf_reg_value(regs, bit);
5429                 perf_output_put(handle, val);
5430         }
5431 }
5432
5433 static void perf_sample_regs_user(struct perf_regs *regs_user,
5434                                   struct pt_regs *regs,
5435                                   struct pt_regs *regs_user_copy)
5436 {
5437         if (user_mode(regs)) {
5438                 regs_user->abi = perf_reg_abi(current);
5439                 regs_user->regs = regs;
5440         } else if (current->mm) {
5441                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5442         } else {
5443                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5444                 regs_user->regs = NULL;
5445         }
5446 }
5447
5448 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5449                                   struct pt_regs *regs)
5450 {
5451         regs_intr->regs = regs;
5452         regs_intr->abi  = perf_reg_abi(current);
5453 }
5454
5455
5456 /*
5457  * Get remaining task size from user stack pointer.
5458  *
5459  * It'd be better to take stack vma map and limit this more
5460  * precisly, but there's no way to get it safely under interrupt,
5461  * so using TASK_SIZE as limit.
5462  */
5463 static u64 perf_ustack_task_size(struct pt_regs *regs)
5464 {
5465         unsigned long addr = perf_user_stack_pointer(regs);
5466
5467         if (!addr || addr >= TASK_SIZE)
5468                 return 0;
5469
5470         return TASK_SIZE - addr;
5471 }
5472
5473 static u16
5474 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5475                         struct pt_regs *regs)
5476 {
5477         u64 task_size;
5478
5479         /* No regs, no stack pointer, no dump. */
5480         if (!regs)
5481                 return 0;
5482
5483         /*
5484          * Check if we fit in with the requested stack size into the:
5485          * - TASK_SIZE
5486          *   If we don't, we limit the size to the TASK_SIZE.
5487          *
5488          * - remaining sample size
5489          *   If we don't, we customize the stack size to
5490          *   fit in to the remaining sample size.
5491          */
5492
5493         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5494         stack_size = min(stack_size, (u16) task_size);
5495
5496         /* Current header size plus static size and dynamic size. */
5497         header_size += 2 * sizeof(u64);
5498
5499         /* Do we fit in with the current stack dump size? */
5500         if ((u16) (header_size + stack_size) < header_size) {
5501                 /*
5502                  * If we overflow the maximum size for the sample,
5503                  * we customize the stack dump size to fit in.
5504                  */
5505                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5506                 stack_size = round_up(stack_size, sizeof(u64));
5507         }
5508
5509         return stack_size;
5510 }
5511
5512 static void
5513 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5514                           struct pt_regs *regs)
5515 {
5516         /* Case of a kernel thread, nothing to dump */
5517         if (!regs) {
5518                 u64 size = 0;
5519                 perf_output_put(handle, size);
5520         } else {
5521                 unsigned long sp;
5522                 unsigned int rem;
5523                 u64 dyn_size;
5524
5525                 /*
5526                  * We dump:
5527                  * static size
5528                  *   - the size requested by user or the best one we can fit
5529                  *     in to the sample max size
5530                  * data
5531                  *   - user stack dump data
5532                  * dynamic size
5533                  *   - the actual dumped size
5534                  */
5535
5536                 /* Static size. */
5537                 perf_output_put(handle, dump_size);
5538
5539                 /* Data. */
5540                 sp = perf_user_stack_pointer(regs);
5541                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5542                 dyn_size = dump_size - rem;
5543
5544                 perf_output_skip(handle, rem);
5545
5546                 /* Dynamic size. */
5547                 perf_output_put(handle, dyn_size);
5548         }
5549 }
5550
5551 static void __perf_event_header__init_id(struct perf_event_header *header,
5552                                          struct perf_sample_data *data,
5553                                          struct perf_event *event)
5554 {
5555         u64 sample_type = event->attr.sample_type;
5556
5557         data->type = sample_type;
5558         header->size += event->id_header_size;
5559
5560         if (sample_type & PERF_SAMPLE_TID) {
5561                 /* namespace issues */
5562                 data->tid_entry.pid = perf_event_pid(event, current);
5563                 data->tid_entry.tid = perf_event_tid(event, current);
5564         }
5565
5566         if (sample_type & PERF_SAMPLE_TIME)
5567                 data->time = perf_event_clock(event);
5568
5569         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5570                 data->id = primary_event_id(event);
5571
5572         if (sample_type & PERF_SAMPLE_STREAM_ID)
5573                 data->stream_id = event->id;
5574
5575         if (sample_type & PERF_SAMPLE_CPU) {
5576                 data->cpu_entry.cpu      = raw_smp_processor_id();
5577                 data->cpu_entry.reserved = 0;
5578         }
5579 }
5580
5581 void perf_event_header__init_id(struct perf_event_header *header,
5582                                 struct perf_sample_data *data,
5583                                 struct perf_event *event)
5584 {
5585         if (event->attr.sample_id_all)
5586                 __perf_event_header__init_id(header, data, event);
5587 }
5588
5589 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5590                                            struct perf_sample_data *data)
5591 {
5592         u64 sample_type = data->type;
5593
5594         if (sample_type & PERF_SAMPLE_TID)
5595                 perf_output_put(handle, data->tid_entry);
5596
5597         if (sample_type & PERF_SAMPLE_TIME)
5598                 perf_output_put(handle, data->time);
5599
5600         if (sample_type & PERF_SAMPLE_ID)
5601                 perf_output_put(handle, data->id);
5602
5603         if (sample_type & PERF_SAMPLE_STREAM_ID)
5604                 perf_output_put(handle, data->stream_id);
5605
5606         if (sample_type & PERF_SAMPLE_CPU)
5607                 perf_output_put(handle, data->cpu_entry);
5608
5609         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5610                 perf_output_put(handle, data->id);
5611 }
5612
5613 void perf_event__output_id_sample(struct perf_event *event,
5614                                   struct perf_output_handle *handle,
5615                                   struct perf_sample_data *sample)
5616 {
5617         if (event->attr.sample_id_all)
5618                 __perf_event__output_id_sample(handle, sample);
5619 }
5620
5621 static void perf_output_read_one(struct perf_output_handle *handle,
5622                                  struct perf_event *event,
5623                                  u64 enabled, u64 running)
5624 {
5625         u64 read_format = event->attr.read_format;
5626         u64 values[4];
5627         int n = 0;
5628
5629         values[n++] = perf_event_count(event);
5630         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5631                 values[n++] = enabled +
5632                         atomic64_read(&event->child_total_time_enabled);
5633         }
5634         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5635                 values[n++] = running +
5636                         atomic64_read(&event->child_total_time_running);
5637         }
5638         if (read_format & PERF_FORMAT_ID)
5639                 values[n++] = primary_event_id(event);
5640
5641         __output_copy(handle, values, n * sizeof(u64));
5642 }
5643
5644 /*
5645  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5646  */
5647 static void perf_output_read_group(struct perf_output_handle *handle,
5648                             struct perf_event *event,
5649                             u64 enabled, u64 running)
5650 {
5651         struct perf_event *leader = event->group_leader, *sub;
5652         u64 read_format = event->attr.read_format;
5653         u64 values[5];
5654         int n = 0;
5655
5656         values[n++] = 1 + leader->nr_siblings;
5657
5658         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5659                 values[n++] = enabled;
5660
5661         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5662                 values[n++] = running;
5663
5664         if (leader != event)
5665                 leader->pmu->read(leader);
5666
5667         values[n++] = perf_event_count(leader);
5668         if (read_format & PERF_FORMAT_ID)
5669                 values[n++] = primary_event_id(leader);
5670
5671         __output_copy(handle, values, n * sizeof(u64));
5672
5673         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5674                 n = 0;
5675
5676                 if ((sub != event) &&
5677                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5678                         sub->pmu->read(sub);
5679
5680                 values[n++] = perf_event_count(sub);
5681                 if (read_format & PERF_FORMAT_ID)
5682                         values[n++] = primary_event_id(sub);
5683
5684                 __output_copy(handle, values, n * sizeof(u64));
5685         }
5686 }
5687
5688 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5689                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5690
5691 static void perf_output_read(struct perf_output_handle *handle,
5692                              struct perf_event *event)
5693 {
5694         u64 enabled = 0, running = 0, now;
5695         u64 read_format = event->attr.read_format;
5696
5697         /*
5698          * compute total_time_enabled, total_time_running
5699          * based on snapshot values taken when the event
5700          * was last scheduled in.
5701          *
5702          * we cannot simply called update_context_time()
5703          * because of locking issue as we are called in
5704          * NMI context
5705          */
5706         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5707                 calc_timer_values(event, &now, &enabled, &running);
5708
5709         if (event->attr.read_format & PERF_FORMAT_GROUP)
5710                 perf_output_read_group(handle, event, enabled, running);
5711         else
5712                 perf_output_read_one(handle, event, enabled, running);
5713 }
5714
5715 void perf_output_sample(struct perf_output_handle *handle,
5716                         struct perf_event_header *header,
5717                         struct perf_sample_data *data,
5718                         struct perf_event *event)
5719 {
5720         u64 sample_type = data->type;
5721
5722         perf_output_put(handle, *header);
5723
5724         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5725                 perf_output_put(handle, data->id);
5726
5727         if (sample_type & PERF_SAMPLE_IP)
5728                 perf_output_put(handle, data->ip);
5729
5730         if (sample_type & PERF_SAMPLE_TID)
5731                 perf_output_put(handle, data->tid_entry);
5732
5733         if (sample_type & PERF_SAMPLE_TIME)
5734                 perf_output_put(handle, data->time);
5735
5736         if (sample_type & PERF_SAMPLE_ADDR)
5737                 perf_output_put(handle, data->addr);
5738
5739         if (sample_type & PERF_SAMPLE_ID)
5740                 perf_output_put(handle, data->id);
5741
5742         if (sample_type & PERF_SAMPLE_STREAM_ID)
5743                 perf_output_put(handle, data->stream_id);
5744
5745         if (sample_type & PERF_SAMPLE_CPU)
5746                 perf_output_put(handle, data->cpu_entry);
5747
5748         if (sample_type & PERF_SAMPLE_PERIOD)
5749                 perf_output_put(handle, data->period);
5750
5751         if (sample_type & PERF_SAMPLE_READ)
5752                 perf_output_read(handle, event);
5753
5754         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5755                 if (data->callchain) {
5756                         int size = 1;
5757
5758                         if (data->callchain)
5759                                 size += data->callchain->nr;
5760
5761                         size *= sizeof(u64);
5762
5763                         __output_copy(handle, data->callchain, size);
5764                 } else {
5765                         u64 nr = 0;
5766                         perf_output_put(handle, nr);
5767                 }
5768         }
5769
5770         if (sample_type & PERF_SAMPLE_RAW) {
5771                 struct perf_raw_record *raw = data->raw;
5772
5773                 if (raw) {
5774                         struct perf_raw_frag *frag = &raw->frag;
5775
5776                         perf_output_put(handle, raw->size);
5777                         do {
5778                                 if (frag->copy) {
5779                                         __output_custom(handle, frag->copy,
5780                                                         frag->data, frag->size);
5781                                 } else {
5782                                         __output_copy(handle, frag->data,
5783                                                       frag->size);
5784                                 }
5785                                 if (perf_raw_frag_last(frag))
5786                                         break;
5787                                 frag = frag->next;
5788                         } while (1);
5789                         if (frag->pad)
5790                                 __output_skip(handle, NULL, frag->pad);
5791                 } else {
5792                         struct {
5793                                 u32     size;
5794                                 u32     data;
5795                         } raw = {
5796                                 .size = sizeof(u32),
5797                                 .data = 0,
5798                         };
5799                         perf_output_put(handle, raw);
5800                 }
5801         }
5802
5803         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5804                 if (data->br_stack) {
5805                         size_t size;
5806
5807                         size = data->br_stack->nr
5808                              * sizeof(struct perf_branch_entry);
5809
5810                         perf_output_put(handle, data->br_stack->nr);
5811                         perf_output_copy(handle, data->br_stack->entries, size);
5812                 } else {
5813                         /*
5814                          * we always store at least the value of nr
5815                          */
5816                         u64 nr = 0;
5817                         perf_output_put(handle, nr);
5818                 }
5819         }
5820
5821         if (sample_type & PERF_SAMPLE_REGS_USER) {
5822                 u64 abi = data->regs_user.abi;
5823
5824                 /*
5825                  * If there are no regs to dump, notice it through
5826                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5827                  */
5828                 perf_output_put(handle, abi);
5829
5830                 if (abi) {
5831                         u64 mask = event->attr.sample_regs_user;
5832                         perf_output_sample_regs(handle,
5833                                                 data->regs_user.regs,
5834                                                 mask);
5835                 }
5836         }
5837
5838         if (sample_type & PERF_SAMPLE_STACK_USER) {
5839                 perf_output_sample_ustack(handle,
5840                                           data->stack_user_size,
5841                                           data->regs_user.regs);
5842         }
5843
5844         if (sample_type & PERF_SAMPLE_WEIGHT)
5845                 perf_output_put(handle, data->weight);
5846
5847         if (sample_type & PERF_SAMPLE_DATA_SRC)
5848                 perf_output_put(handle, data->data_src.val);
5849
5850         if (sample_type & PERF_SAMPLE_TRANSACTION)
5851                 perf_output_put(handle, data->txn);
5852
5853         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5854                 u64 abi = data->regs_intr.abi;
5855                 /*
5856                  * If there are no regs to dump, notice it through
5857                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5858                  */
5859                 perf_output_put(handle, abi);
5860
5861                 if (abi) {
5862                         u64 mask = event->attr.sample_regs_intr;
5863
5864                         perf_output_sample_regs(handle,
5865                                                 data->regs_intr.regs,
5866                                                 mask);
5867                 }
5868         }
5869
5870         if (!event->attr.watermark) {
5871                 int wakeup_events = event->attr.wakeup_events;
5872
5873                 if (wakeup_events) {
5874                         struct ring_buffer *rb = handle->rb;
5875                         int events = local_inc_return(&rb->events);
5876
5877                         if (events >= wakeup_events) {
5878                                 local_sub(wakeup_events, &rb->events);
5879                                 local_inc(&rb->wakeup);
5880                         }
5881                 }
5882         }
5883 }
5884
5885 void perf_prepare_sample(struct perf_event_header *header,
5886                          struct perf_sample_data *data,
5887                          struct perf_event *event,
5888                          struct pt_regs *regs)
5889 {
5890         u64 sample_type = event->attr.sample_type;
5891
5892         header->type = PERF_RECORD_SAMPLE;
5893         header->size = sizeof(*header) + event->header_size;
5894
5895         header->misc = 0;
5896         header->misc |= perf_misc_flags(regs);
5897
5898         __perf_event_header__init_id(header, data, event);
5899
5900         if (sample_type & PERF_SAMPLE_IP)
5901                 data->ip = perf_instruction_pointer(regs);
5902
5903         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5904                 int size = 1;
5905
5906                 data->callchain = perf_callchain(event, regs);
5907
5908                 if (data->callchain)
5909                         size += data->callchain->nr;
5910
5911                 header->size += size * sizeof(u64);
5912         }
5913
5914         if (sample_type & PERF_SAMPLE_RAW) {
5915                 struct perf_raw_record *raw = data->raw;
5916                 int size;
5917
5918                 if (raw) {
5919                         struct perf_raw_frag *frag = &raw->frag;
5920                         u32 sum = 0;
5921
5922                         do {
5923                                 sum += frag->size;
5924                                 if (perf_raw_frag_last(frag))
5925                                         break;
5926                                 frag = frag->next;
5927                         } while (1);
5928
5929                         size = round_up(sum + sizeof(u32), sizeof(u64));
5930                         raw->size = size - sizeof(u32);
5931                         frag->pad = raw->size - sum;
5932                 } else {
5933                         size = sizeof(u64);
5934                 }
5935
5936                 header->size += size;
5937         }
5938
5939         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5940                 int size = sizeof(u64); /* nr */
5941                 if (data->br_stack) {
5942                         size += data->br_stack->nr
5943                               * sizeof(struct perf_branch_entry);
5944                 }
5945                 header->size += size;
5946         }
5947
5948         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5949                 perf_sample_regs_user(&data->regs_user, regs,
5950                                       &data->regs_user_copy);
5951
5952         if (sample_type & PERF_SAMPLE_REGS_USER) {
5953                 /* regs dump ABI info */
5954                 int size = sizeof(u64);
5955
5956                 if (data->regs_user.regs) {
5957                         u64 mask = event->attr.sample_regs_user;
5958                         size += hweight64(mask) * sizeof(u64);
5959                 }
5960
5961                 header->size += size;
5962         }
5963
5964         if (sample_type & PERF_SAMPLE_STACK_USER) {
5965                 /*
5966                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5967                  * processed as the last one or have additional check added
5968                  * in case new sample type is added, because we could eat
5969                  * up the rest of the sample size.
5970                  */
5971                 u16 stack_size = event->attr.sample_stack_user;
5972                 u16 size = sizeof(u64);
5973
5974                 stack_size = perf_sample_ustack_size(stack_size, header->size,
5975                                                      data->regs_user.regs);
5976
5977                 /*
5978                  * If there is something to dump, add space for the dump
5979                  * itself and for the field that tells the dynamic size,
5980                  * which is how many have been actually dumped.
5981                  */
5982                 if (stack_size)
5983                         size += sizeof(u64) + stack_size;
5984
5985                 data->stack_user_size = stack_size;
5986                 header->size += size;
5987         }
5988
5989         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5990                 /* regs dump ABI info */
5991                 int size = sizeof(u64);
5992
5993                 perf_sample_regs_intr(&data->regs_intr, regs);
5994
5995                 if (data->regs_intr.regs) {
5996                         u64 mask = event->attr.sample_regs_intr;
5997
5998                         size += hweight64(mask) * sizeof(u64);
5999                 }
6000
6001                 header->size += size;
6002         }
6003 }
6004
6005 static void __always_inline
6006 __perf_event_output(struct perf_event *event,
6007                     struct perf_sample_data *data,
6008                     struct pt_regs *regs,
6009                     int (*output_begin)(struct perf_output_handle *,
6010                                         struct perf_event *,
6011                                         unsigned int))
6012 {
6013         struct perf_output_handle handle;
6014         struct perf_event_header header;
6015
6016         /* protect the callchain buffers */
6017         rcu_read_lock();
6018
6019         perf_prepare_sample(&header, data, event, regs);
6020
6021         if (output_begin(&handle, event, header.size))
6022                 goto exit;
6023
6024         perf_output_sample(&handle, &header, data, event);
6025
6026         perf_output_end(&handle);
6027
6028 exit:
6029         rcu_read_unlock();
6030 }
6031
6032 void
6033 perf_event_output_forward(struct perf_event *event,
6034                          struct perf_sample_data *data,
6035                          struct pt_regs *regs)
6036 {
6037         __perf_event_output(event, data, regs, perf_output_begin_forward);
6038 }
6039
6040 void
6041 perf_event_output_backward(struct perf_event *event,
6042                            struct perf_sample_data *data,
6043                            struct pt_regs *regs)
6044 {
6045         __perf_event_output(event, data, regs, perf_output_begin_backward);
6046 }
6047
6048 void
6049 perf_event_output(struct perf_event *event,
6050                   struct perf_sample_data *data,
6051                   struct pt_regs *regs)
6052 {
6053         __perf_event_output(event, data, regs, perf_output_begin);
6054 }
6055
6056 /*
6057  * read event_id
6058  */
6059
6060 struct perf_read_event {
6061         struct perf_event_header        header;
6062
6063         u32                             pid;
6064         u32                             tid;
6065 };
6066
6067 static void
6068 perf_event_read_event(struct perf_event *event,
6069                         struct task_struct *task)
6070 {
6071         struct perf_output_handle handle;
6072         struct perf_sample_data sample;
6073         struct perf_read_event read_event = {
6074                 .header = {
6075                         .type = PERF_RECORD_READ,
6076                         .misc = 0,
6077                         .size = sizeof(read_event) + event->read_size,
6078                 },
6079                 .pid = perf_event_pid(event, task),
6080                 .tid = perf_event_tid(event, task),
6081         };
6082         int ret;
6083
6084         perf_event_header__init_id(&read_event.header, &sample, event);
6085         ret = perf_output_begin(&handle, event, read_event.header.size);
6086         if (ret)
6087                 return;
6088
6089         perf_output_put(&handle, read_event);
6090         perf_output_read(&handle, event);
6091         perf_event__output_id_sample(event, &handle, &sample);
6092
6093         perf_output_end(&handle);
6094 }
6095
6096 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6097
6098 static void
6099 perf_iterate_ctx(struct perf_event_context *ctx,
6100                    perf_iterate_f output,
6101                    void *data, bool all)
6102 {
6103         struct perf_event *event;
6104
6105         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6106                 if (!all) {
6107                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6108                                 continue;
6109                         if (!event_filter_match(event))
6110                                 continue;
6111                 }
6112
6113                 output(event, data);
6114         }
6115 }
6116
6117 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6118 {
6119         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6120         struct perf_event *event;
6121
6122         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6123                 /*
6124                  * Skip events that are not fully formed yet; ensure that
6125                  * if we observe event->ctx, both event and ctx will be
6126                  * complete enough. See perf_install_in_context().
6127                  */
6128                 if (!smp_load_acquire(&event->ctx))
6129                         continue;
6130
6131                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6132                         continue;
6133                 if (!event_filter_match(event))
6134                         continue;
6135                 output(event, data);
6136         }
6137 }
6138
6139 /*
6140  * Iterate all events that need to receive side-band events.
6141  *
6142  * For new callers; ensure that account_pmu_sb_event() includes
6143  * your event, otherwise it might not get delivered.
6144  */
6145 static void
6146 perf_iterate_sb(perf_iterate_f output, void *data,
6147                struct perf_event_context *task_ctx)
6148 {
6149         struct perf_event_context *ctx;
6150         int ctxn;
6151
6152         rcu_read_lock();
6153         preempt_disable();
6154
6155         /*
6156          * If we have task_ctx != NULL we only notify the task context itself.
6157          * The task_ctx is set only for EXIT events before releasing task
6158          * context.
6159          */
6160         if (task_ctx) {
6161                 perf_iterate_ctx(task_ctx, output, data, false);
6162                 goto done;
6163         }
6164
6165         perf_iterate_sb_cpu(output, data);
6166
6167         for_each_task_context_nr(ctxn) {
6168                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6169                 if (ctx)
6170                         perf_iterate_ctx(ctx, output, data, false);
6171         }
6172 done:
6173         preempt_enable();
6174         rcu_read_unlock();
6175 }
6176
6177 /*
6178  * Clear all file-based filters at exec, they'll have to be
6179  * re-instated when/if these objects are mmapped again.
6180  */
6181 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6182 {
6183         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6184         struct perf_addr_filter *filter;
6185         unsigned int restart = 0, count = 0;
6186         unsigned long flags;
6187
6188         if (!has_addr_filter(event))
6189                 return;
6190
6191         raw_spin_lock_irqsave(&ifh->lock, flags);
6192         list_for_each_entry(filter, &ifh->list, entry) {
6193                 if (filter->inode) {
6194                         event->addr_filters_offs[count] = 0;
6195                         restart++;
6196                 }
6197
6198                 count++;
6199         }
6200
6201         if (restart)
6202                 event->addr_filters_gen++;
6203         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6204
6205         if (restart)
6206                 perf_event_stop(event, 1);
6207 }
6208
6209 void perf_event_exec(void)
6210 {
6211         struct perf_event_context *ctx;
6212         int ctxn;
6213
6214         rcu_read_lock();
6215         for_each_task_context_nr(ctxn) {
6216                 ctx = current->perf_event_ctxp[ctxn];
6217                 if (!ctx)
6218                         continue;
6219
6220                 perf_event_enable_on_exec(ctxn);
6221
6222                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6223                                    true);
6224         }
6225         rcu_read_unlock();
6226 }
6227
6228 struct remote_output {
6229         struct ring_buffer      *rb;
6230         int                     err;
6231 };
6232
6233 static void __perf_event_output_stop(struct perf_event *event, void *data)
6234 {
6235         struct perf_event *parent = event->parent;
6236         struct remote_output *ro = data;
6237         struct ring_buffer *rb = ro->rb;
6238         struct stop_event_data sd = {
6239                 .event  = event,
6240         };
6241
6242         if (!has_aux(event))
6243                 return;
6244
6245         if (!parent)
6246                 parent = event;
6247
6248         /*
6249          * In case of inheritance, it will be the parent that links to the
6250          * ring-buffer, but it will be the child that's actually using it.
6251          *
6252          * We are using event::rb to determine if the event should be stopped,
6253          * however this may race with ring_buffer_attach() (through set_output),
6254          * which will make us skip the event that actually needs to be stopped.
6255          * So ring_buffer_attach() has to stop an aux event before re-assigning
6256          * its rb pointer.
6257          */
6258         if (rcu_dereference(parent->rb) == rb)
6259                 ro->err = __perf_event_stop(&sd);
6260 }
6261
6262 static int __perf_pmu_output_stop(void *info)
6263 {
6264         struct perf_event *event = info;
6265         struct pmu *pmu = event->pmu;
6266         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6267         struct remote_output ro = {
6268                 .rb     = event->rb,
6269         };
6270
6271         rcu_read_lock();
6272         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6273         if (cpuctx->task_ctx)
6274                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6275                                    &ro, false);
6276         rcu_read_unlock();
6277
6278         return ro.err;
6279 }
6280
6281 static void perf_pmu_output_stop(struct perf_event *event)
6282 {
6283         struct perf_event *iter;
6284         int err, cpu;
6285
6286 restart:
6287         rcu_read_lock();
6288         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6289                 /*
6290                  * For per-CPU events, we need to make sure that neither they
6291                  * nor their children are running; for cpu==-1 events it's
6292                  * sufficient to stop the event itself if it's active, since
6293                  * it can't have children.
6294                  */
6295                 cpu = iter->cpu;
6296                 if (cpu == -1)
6297                         cpu = READ_ONCE(iter->oncpu);
6298
6299                 if (cpu == -1)
6300                         continue;
6301
6302                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6303                 if (err == -EAGAIN) {
6304                         rcu_read_unlock();
6305                         goto restart;
6306                 }
6307         }
6308         rcu_read_unlock();
6309 }
6310
6311 /*
6312  * task tracking -- fork/exit
6313  *
6314  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6315  */
6316
6317 struct perf_task_event {
6318         struct task_struct              *task;
6319         struct perf_event_context       *task_ctx;
6320
6321         struct {
6322                 struct perf_event_header        header;
6323
6324                 u32                             pid;
6325                 u32                             ppid;
6326                 u32                             tid;
6327                 u32                             ptid;
6328                 u64                             time;
6329         } event_id;
6330 };
6331
6332 static int perf_event_task_match(struct perf_event *event)
6333 {
6334         return event->attr.comm  || event->attr.mmap ||
6335                event->attr.mmap2 || event->attr.mmap_data ||
6336                event->attr.task;
6337 }
6338
6339 static void perf_event_task_output(struct perf_event *event,
6340                                    void *data)
6341 {
6342         struct perf_task_event *task_event = data;
6343         struct perf_output_handle handle;
6344         struct perf_sample_data sample;
6345         struct task_struct *task = task_event->task;
6346         int ret, size = task_event->event_id.header.size;
6347
6348         if (!perf_event_task_match(event))
6349                 return;
6350
6351         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6352
6353         ret = perf_output_begin(&handle, event,
6354                                 task_event->event_id.header.size);
6355         if (ret)
6356                 goto out;
6357
6358         task_event->event_id.pid = perf_event_pid(event, task);
6359         task_event->event_id.ppid = perf_event_pid(event, current);
6360
6361         task_event->event_id.tid = perf_event_tid(event, task);
6362         task_event->event_id.ptid = perf_event_tid(event, current);
6363
6364         task_event->event_id.time = perf_event_clock(event);
6365
6366         perf_output_put(&handle, task_event->event_id);
6367
6368         perf_event__output_id_sample(event, &handle, &sample);
6369
6370         perf_output_end(&handle);
6371 out:
6372         task_event->event_id.header.size = size;
6373 }
6374
6375 static void perf_event_task(struct task_struct *task,
6376                               struct perf_event_context *task_ctx,
6377                               int new)
6378 {
6379         struct perf_task_event task_event;
6380
6381         if (!atomic_read(&nr_comm_events) &&
6382             !atomic_read(&nr_mmap_events) &&
6383             !atomic_read(&nr_task_events))
6384                 return;
6385
6386         task_event = (struct perf_task_event){
6387                 .task     = task,
6388                 .task_ctx = task_ctx,
6389                 .event_id    = {
6390                         .header = {
6391                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6392                                 .misc = 0,
6393                                 .size = sizeof(task_event.event_id),
6394                         },
6395                         /* .pid  */
6396                         /* .ppid */
6397                         /* .tid  */
6398                         /* .ptid */
6399                         /* .time */
6400                 },
6401         };
6402
6403         perf_iterate_sb(perf_event_task_output,
6404                        &task_event,
6405                        task_ctx);
6406 }
6407
6408 void perf_event_fork(struct task_struct *task)
6409 {
6410         perf_event_task(task, NULL, 1);
6411 }
6412
6413 /*
6414  * comm tracking
6415  */
6416
6417 struct perf_comm_event {
6418         struct task_struct      *task;
6419         char                    *comm;
6420         int                     comm_size;
6421
6422         struct {
6423                 struct perf_event_header        header;
6424
6425                 u32                             pid;
6426                 u32                             tid;
6427         } event_id;
6428 };
6429
6430 static int perf_event_comm_match(struct perf_event *event)
6431 {
6432         return event->attr.comm;
6433 }
6434
6435 static void perf_event_comm_output(struct perf_event *event,
6436                                    void *data)
6437 {
6438         struct perf_comm_event *comm_event = data;
6439         struct perf_output_handle handle;
6440         struct perf_sample_data sample;
6441         int size = comm_event->event_id.header.size;
6442         int ret;
6443
6444         if (!perf_event_comm_match(event))
6445                 return;
6446
6447         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6448         ret = perf_output_begin(&handle, event,
6449                                 comm_event->event_id.header.size);
6450
6451         if (ret)
6452                 goto out;
6453
6454         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6455         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6456
6457         perf_output_put(&handle, comm_event->event_id);
6458         __output_copy(&handle, comm_event->comm,
6459                                    comm_event->comm_size);
6460
6461         perf_event__output_id_sample(event, &handle, &sample);
6462
6463         perf_output_end(&handle);
6464 out:
6465         comm_event->event_id.header.size = size;
6466 }
6467
6468 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6469 {
6470         char comm[TASK_COMM_LEN];
6471         unsigned int size;
6472
6473         memset(comm, 0, sizeof(comm));
6474         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6475         size = ALIGN(strlen(comm)+1, sizeof(u64));
6476
6477         comm_event->comm = comm;
6478         comm_event->comm_size = size;
6479
6480         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6481
6482         perf_iterate_sb(perf_event_comm_output,
6483                        comm_event,
6484                        NULL);
6485 }
6486
6487 void perf_event_comm(struct task_struct *task, bool exec)
6488 {
6489         struct perf_comm_event comm_event;
6490
6491         if (!atomic_read(&nr_comm_events))
6492                 return;
6493
6494         comm_event = (struct perf_comm_event){
6495                 .task   = task,
6496                 /* .comm      */
6497                 /* .comm_size */
6498                 .event_id  = {
6499                         .header = {
6500                                 .type = PERF_RECORD_COMM,
6501                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6502                                 /* .size */
6503                         },
6504                         /* .pid */
6505                         /* .tid */
6506                 },
6507         };
6508
6509         perf_event_comm_event(&comm_event);
6510 }
6511
6512 /*
6513  * mmap tracking
6514  */
6515
6516 struct perf_mmap_event {
6517         struct vm_area_struct   *vma;
6518
6519         const char              *file_name;
6520         int                     file_size;
6521         int                     maj, min;
6522         u64                     ino;
6523         u64                     ino_generation;
6524         u32                     prot, flags;
6525
6526         struct {
6527                 struct perf_event_header        header;
6528
6529                 u32                             pid;
6530                 u32                             tid;
6531                 u64                             start;
6532                 u64                             len;
6533                 u64                             pgoff;
6534         } event_id;
6535 };
6536
6537 static int perf_event_mmap_match(struct perf_event *event,
6538                                  void *data)
6539 {
6540         struct perf_mmap_event *mmap_event = data;
6541         struct vm_area_struct *vma = mmap_event->vma;
6542         int executable = vma->vm_flags & VM_EXEC;
6543
6544         return (!executable && event->attr.mmap_data) ||
6545                (executable && (event->attr.mmap || event->attr.mmap2));
6546 }
6547
6548 static void perf_event_mmap_output(struct perf_event *event,
6549                                    void *data)
6550 {
6551         struct perf_mmap_event *mmap_event = data;
6552         struct perf_output_handle handle;
6553         struct perf_sample_data sample;
6554         int size = mmap_event->event_id.header.size;
6555         int ret;
6556
6557         if (!perf_event_mmap_match(event, data))
6558                 return;
6559
6560         if (event->attr.mmap2) {
6561                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6562                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6563                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6564                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6565                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6566                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6567                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6568         }
6569
6570         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6571         ret = perf_output_begin(&handle, event,
6572                                 mmap_event->event_id.header.size);
6573         if (ret)
6574                 goto out;
6575
6576         mmap_event->event_id.pid = perf_event_pid(event, current);
6577         mmap_event->event_id.tid = perf_event_tid(event, current);
6578
6579         perf_output_put(&handle, mmap_event->event_id);
6580
6581         if (event->attr.mmap2) {
6582                 perf_output_put(&handle, mmap_event->maj);
6583                 perf_output_put(&handle, mmap_event->min);
6584                 perf_output_put(&handle, mmap_event->ino);
6585                 perf_output_put(&handle, mmap_event->ino_generation);
6586                 perf_output_put(&handle, mmap_event->prot);
6587                 perf_output_put(&handle, mmap_event->flags);
6588         }
6589
6590         __output_copy(&handle, mmap_event->file_name,
6591                                    mmap_event->file_size);
6592
6593         perf_event__output_id_sample(event, &handle, &sample);
6594
6595         perf_output_end(&handle);
6596 out:
6597         mmap_event->event_id.header.size = size;
6598 }
6599
6600 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6601 {
6602         struct vm_area_struct *vma = mmap_event->vma;
6603         struct file *file = vma->vm_file;
6604         int maj = 0, min = 0;
6605         u64 ino = 0, gen = 0;
6606         u32 prot = 0, flags = 0;
6607         unsigned int size;
6608         char tmp[16];
6609         char *buf = NULL;
6610         char *name;
6611
6612         if (file) {
6613                 struct inode *inode;
6614                 dev_t dev;
6615
6616                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6617                 if (!buf) {
6618                         name = "//enomem";
6619                         goto cpy_name;
6620                 }
6621                 /*
6622                  * d_path() works from the end of the rb backwards, so we
6623                  * need to add enough zero bytes after the string to handle
6624                  * the 64bit alignment we do later.
6625                  */
6626                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6627                 if (IS_ERR(name)) {
6628                         name = "//toolong";
6629                         goto cpy_name;
6630                 }
6631                 inode = file_inode(vma->vm_file);
6632                 dev = inode->i_sb->s_dev;
6633                 ino = inode->i_ino;
6634                 gen = inode->i_generation;
6635                 maj = MAJOR(dev);
6636                 min = MINOR(dev);
6637
6638                 if (vma->vm_flags & VM_READ)
6639                         prot |= PROT_READ;
6640                 if (vma->vm_flags & VM_WRITE)
6641                         prot |= PROT_WRITE;
6642                 if (vma->vm_flags & VM_EXEC)
6643                         prot |= PROT_EXEC;
6644
6645                 if (vma->vm_flags & VM_MAYSHARE)
6646                         flags = MAP_SHARED;
6647                 else
6648                         flags = MAP_PRIVATE;
6649
6650                 if (vma->vm_flags & VM_DENYWRITE)
6651                         flags |= MAP_DENYWRITE;
6652                 if (vma->vm_flags & VM_MAYEXEC)
6653                         flags |= MAP_EXECUTABLE;
6654                 if (vma->vm_flags & VM_LOCKED)
6655                         flags |= MAP_LOCKED;
6656                 if (vma->vm_flags & VM_HUGETLB)
6657                         flags |= MAP_HUGETLB;
6658
6659                 goto got_name;
6660         } else {
6661                 if (vma->vm_ops && vma->vm_ops->name) {
6662                         name = (char *) vma->vm_ops->name(vma);
6663                         if (name)
6664                                 goto cpy_name;
6665                 }
6666
6667                 name = (char *)arch_vma_name(vma);
6668                 if (name)
6669                         goto cpy_name;
6670
6671                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6672                                 vma->vm_end >= vma->vm_mm->brk) {
6673                         name = "[heap]";
6674                         goto cpy_name;
6675                 }
6676                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6677                                 vma->vm_end >= vma->vm_mm->start_stack) {
6678                         name = "[stack]";
6679                         goto cpy_name;
6680                 }
6681
6682                 name = "//anon";
6683                 goto cpy_name;
6684         }
6685
6686 cpy_name:
6687         strlcpy(tmp, name, sizeof(tmp));
6688         name = tmp;
6689 got_name:
6690         /*
6691          * Since our buffer works in 8 byte units we need to align our string
6692          * size to a multiple of 8. However, we must guarantee the tail end is
6693          * zero'd out to avoid leaking random bits to userspace.
6694          */
6695         size = strlen(name)+1;
6696         while (!IS_ALIGNED(size, sizeof(u64)))
6697                 name[size++] = '\0';
6698
6699         mmap_event->file_name = name;
6700         mmap_event->file_size = size;
6701         mmap_event->maj = maj;
6702         mmap_event->min = min;
6703         mmap_event->ino = ino;
6704         mmap_event->ino_generation = gen;
6705         mmap_event->prot = prot;
6706         mmap_event->flags = flags;
6707
6708         if (!(vma->vm_flags & VM_EXEC))
6709                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6710
6711         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6712
6713         perf_iterate_sb(perf_event_mmap_output,
6714                        mmap_event,
6715                        NULL);
6716
6717         kfree(buf);
6718 }
6719
6720 /*
6721  * Check whether inode and address range match filter criteria.
6722  */
6723 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6724                                      struct file *file, unsigned long offset,
6725                                      unsigned long size)
6726 {
6727         if (filter->inode != file_inode(file))
6728                 return false;
6729
6730         if (filter->offset > offset + size)
6731                 return false;
6732
6733         if (filter->offset + filter->size < offset)
6734                 return false;
6735
6736         return true;
6737 }
6738
6739 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6740 {
6741         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6742         struct vm_area_struct *vma = data;
6743         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6744         struct file *file = vma->vm_file;
6745         struct perf_addr_filter *filter;
6746         unsigned int restart = 0, count = 0;
6747
6748         if (!has_addr_filter(event))
6749                 return;
6750
6751         if (!file)
6752                 return;
6753
6754         raw_spin_lock_irqsave(&ifh->lock, flags);
6755         list_for_each_entry(filter, &ifh->list, entry) {
6756                 if (perf_addr_filter_match(filter, file, off,
6757                                              vma->vm_end - vma->vm_start)) {
6758                         event->addr_filters_offs[count] = vma->vm_start;
6759                         restart++;
6760                 }
6761
6762                 count++;
6763         }
6764
6765         if (restart)
6766                 event->addr_filters_gen++;
6767         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6768
6769         if (restart)
6770                 perf_event_stop(event, 1);
6771 }
6772
6773 /*
6774  * Adjust all task's events' filters to the new vma
6775  */
6776 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6777 {
6778         struct perf_event_context *ctx;
6779         int ctxn;
6780
6781         /*
6782          * Data tracing isn't supported yet and as such there is no need
6783          * to keep track of anything that isn't related to executable code:
6784          */
6785         if (!(vma->vm_flags & VM_EXEC))
6786                 return;
6787
6788         rcu_read_lock();
6789         for_each_task_context_nr(ctxn) {
6790                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6791                 if (!ctx)
6792                         continue;
6793
6794                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6795         }
6796         rcu_read_unlock();
6797 }
6798
6799 void perf_event_mmap(struct vm_area_struct *vma)
6800 {
6801         struct perf_mmap_event mmap_event;
6802
6803         if (!atomic_read(&nr_mmap_events))
6804                 return;
6805
6806         mmap_event = (struct perf_mmap_event){
6807                 .vma    = vma,
6808                 /* .file_name */
6809                 /* .file_size */
6810                 .event_id  = {
6811                         .header = {
6812                                 .type = PERF_RECORD_MMAP,
6813                                 .misc = PERF_RECORD_MISC_USER,
6814                                 /* .size */
6815                         },
6816                         /* .pid */
6817                         /* .tid */
6818                         .start  = vma->vm_start,
6819                         .len    = vma->vm_end - vma->vm_start,
6820                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6821                 },
6822                 /* .maj (attr_mmap2 only) */
6823                 /* .min (attr_mmap2 only) */
6824                 /* .ino (attr_mmap2 only) */
6825                 /* .ino_generation (attr_mmap2 only) */
6826                 /* .prot (attr_mmap2 only) */
6827                 /* .flags (attr_mmap2 only) */
6828         };
6829
6830         perf_addr_filters_adjust(vma);
6831         perf_event_mmap_event(&mmap_event);
6832 }
6833
6834 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6835                           unsigned long size, u64 flags)
6836 {
6837         struct perf_output_handle handle;
6838         struct perf_sample_data sample;
6839         struct perf_aux_event {
6840                 struct perf_event_header        header;
6841                 u64                             offset;
6842                 u64                             size;
6843                 u64                             flags;
6844         } rec = {
6845                 .header = {
6846                         .type = PERF_RECORD_AUX,
6847                         .misc = 0,
6848                         .size = sizeof(rec),
6849                 },
6850                 .offset         = head,
6851                 .size           = size,
6852                 .flags          = flags,
6853         };
6854         int ret;
6855
6856         perf_event_header__init_id(&rec.header, &sample, event);
6857         ret = perf_output_begin(&handle, event, rec.header.size);
6858
6859         if (ret)
6860                 return;
6861
6862         perf_output_put(&handle, rec);
6863         perf_event__output_id_sample(event, &handle, &sample);
6864
6865         perf_output_end(&handle);
6866 }
6867
6868 /*
6869  * Lost/dropped samples logging
6870  */
6871 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6872 {
6873         struct perf_output_handle handle;
6874         struct perf_sample_data sample;
6875         int ret;
6876
6877         struct {
6878                 struct perf_event_header        header;
6879                 u64                             lost;
6880         } lost_samples_event = {
6881                 .header = {
6882                         .type = PERF_RECORD_LOST_SAMPLES,
6883                         .misc = 0,
6884                         .size = sizeof(lost_samples_event),
6885                 },
6886                 .lost           = lost,
6887         };
6888
6889         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6890
6891         ret = perf_output_begin(&handle, event,
6892                                 lost_samples_event.header.size);
6893         if (ret)
6894                 return;
6895
6896         perf_output_put(&handle, lost_samples_event);
6897         perf_event__output_id_sample(event, &handle, &sample);
6898         perf_output_end(&handle);
6899 }
6900
6901 /*
6902  * context_switch tracking
6903  */
6904
6905 struct perf_switch_event {
6906         struct task_struct      *task;
6907         struct task_struct      *next_prev;
6908
6909         struct {
6910                 struct perf_event_header        header;
6911                 u32                             next_prev_pid;
6912                 u32                             next_prev_tid;
6913         } event_id;
6914 };
6915
6916 static int perf_event_switch_match(struct perf_event *event)
6917 {
6918         return event->attr.context_switch;
6919 }
6920
6921 static void perf_event_switch_output(struct perf_event *event, void *data)
6922 {
6923         struct perf_switch_event *se = data;
6924         struct perf_output_handle handle;
6925         struct perf_sample_data sample;
6926         int ret;
6927
6928         if (!perf_event_switch_match(event))
6929                 return;
6930
6931         /* Only CPU-wide events are allowed to see next/prev pid/tid */
6932         if (event->ctx->task) {
6933                 se->event_id.header.type = PERF_RECORD_SWITCH;
6934                 se->event_id.header.size = sizeof(se->event_id.header);
6935         } else {
6936                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6937                 se->event_id.header.size = sizeof(se->event_id);
6938                 se->event_id.next_prev_pid =
6939                                         perf_event_pid(event, se->next_prev);
6940                 se->event_id.next_prev_tid =
6941                                         perf_event_tid(event, se->next_prev);
6942         }
6943
6944         perf_event_header__init_id(&se->event_id.header, &sample, event);
6945
6946         ret = perf_output_begin(&handle, event, se->event_id.header.size);
6947         if (ret)
6948                 return;
6949
6950         if (event->ctx->task)
6951                 perf_output_put(&handle, se->event_id.header);
6952         else
6953                 perf_output_put(&handle, se->event_id);
6954
6955         perf_event__output_id_sample(event, &handle, &sample);
6956
6957         perf_output_end(&handle);
6958 }
6959
6960 static void perf_event_switch(struct task_struct *task,
6961                               struct task_struct *next_prev, bool sched_in)
6962 {
6963         struct perf_switch_event switch_event;
6964
6965         /* N.B. caller checks nr_switch_events != 0 */
6966
6967         switch_event = (struct perf_switch_event){
6968                 .task           = task,
6969                 .next_prev      = next_prev,
6970                 .event_id       = {
6971                         .header = {
6972                                 /* .type */
6973                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6974                                 /* .size */
6975                         },
6976                         /* .next_prev_pid */
6977                         /* .next_prev_tid */
6978                 },
6979         };
6980
6981         perf_iterate_sb(perf_event_switch_output,
6982                        &switch_event,
6983                        NULL);
6984 }
6985
6986 /*
6987  * IRQ throttle logging
6988  */
6989
6990 static void perf_log_throttle(struct perf_event *event, int enable)
6991 {
6992         struct perf_output_handle handle;
6993         struct perf_sample_data sample;
6994         int ret;
6995
6996         struct {
6997                 struct perf_event_header        header;
6998                 u64                             time;
6999                 u64                             id;
7000                 u64                             stream_id;
7001         } throttle_event = {
7002                 .header = {
7003                         .type = PERF_RECORD_THROTTLE,
7004                         .misc = 0,
7005                         .size = sizeof(throttle_event),
7006                 },
7007                 .time           = perf_event_clock(event),
7008                 .id             = primary_event_id(event),
7009                 .stream_id      = event->id,
7010         };
7011
7012         if (enable)
7013                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7014
7015         perf_event_header__init_id(&throttle_event.header, &sample, event);
7016
7017         ret = perf_output_begin(&handle, event,
7018                                 throttle_event.header.size);
7019         if (ret)
7020                 return;
7021
7022         perf_output_put(&handle, throttle_event);
7023         perf_event__output_id_sample(event, &handle, &sample);
7024         perf_output_end(&handle);
7025 }
7026
7027 static void perf_log_itrace_start(struct perf_event *event)
7028 {
7029         struct perf_output_handle handle;
7030         struct perf_sample_data sample;
7031         struct perf_aux_event {
7032                 struct perf_event_header        header;
7033                 u32                             pid;
7034                 u32                             tid;
7035         } rec;
7036         int ret;
7037
7038         if (event->parent)
7039                 event = event->parent;
7040
7041         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7042             event->hw.itrace_started)
7043                 return;
7044
7045         rec.header.type = PERF_RECORD_ITRACE_START;
7046         rec.header.misc = 0;
7047         rec.header.size = sizeof(rec);
7048         rec.pid = perf_event_pid(event, current);
7049         rec.tid = perf_event_tid(event, current);
7050
7051         perf_event_header__init_id(&rec.header, &sample, event);
7052         ret = perf_output_begin(&handle, event, rec.header.size);
7053
7054         if (ret)
7055                 return;
7056
7057         perf_output_put(&handle, rec);
7058         perf_event__output_id_sample(event, &handle, &sample);
7059
7060         perf_output_end(&handle);
7061 }
7062
7063 static int
7064 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7065 {
7066         struct hw_perf_event *hwc = &event->hw;
7067         int ret = 0;
7068         u64 seq;
7069
7070         seq = __this_cpu_read(perf_throttled_seq);
7071         if (seq != hwc->interrupts_seq) {
7072                 hwc->interrupts_seq = seq;
7073                 hwc->interrupts = 1;
7074         } else {
7075                 hwc->interrupts++;
7076                 if (unlikely(throttle
7077                              && hwc->interrupts >= max_samples_per_tick)) {
7078                         __this_cpu_inc(perf_throttled_count);
7079                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7080                         hwc->interrupts = MAX_INTERRUPTS;
7081                         perf_log_throttle(event, 0);
7082                         ret = 1;
7083                 }
7084         }
7085
7086         if (event->attr.freq) {
7087                 u64 now = perf_clock();
7088                 s64 delta = now - hwc->freq_time_stamp;
7089
7090                 hwc->freq_time_stamp = now;
7091
7092                 if (delta > 0 && delta < 2*TICK_NSEC)
7093                         perf_adjust_period(event, delta, hwc->last_period, true);
7094         }
7095
7096         return ret;
7097 }
7098
7099 int perf_event_account_interrupt(struct perf_event *event)
7100 {
7101         return __perf_event_account_interrupt(event, 1);
7102 }
7103
7104 /*
7105  * Generic event overflow handling, sampling.
7106  */
7107
7108 static int __perf_event_overflow(struct perf_event *event,
7109                                    int throttle, struct perf_sample_data *data,
7110                                    struct pt_regs *regs)
7111 {
7112         int events = atomic_read(&event->event_limit);
7113         int ret = 0;
7114
7115         /*
7116          * Non-sampling counters might still use the PMI to fold short
7117          * hardware counters, ignore those.
7118          */
7119         if (unlikely(!is_sampling_event(event)))
7120                 return 0;
7121
7122         ret = __perf_event_account_interrupt(event, throttle);
7123
7124         /*
7125          * XXX event_limit might not quite work as expected on inherited
7126          * events
7127          */
7128
7129         event->pending_kill = POLL_IN;
7130         if (events && atomic_dec_and_test(&event->event_limit)) {
7131                 ret = 1;
7132                 event->pending_kill = POLL_HUP;
7133
7134                 perf_event_disable_inatomic(event);
7135         }
7136
7137         READ_ONCE(event->overflow_handler)(event, data, regs);
7138
7139         if (*perf_event_fasync(event) && event->pending_kill) {
7140                 event->pending_wakeup = 1;
7141                 irq_work_queue(&event->pending);
7142         }
7143
7144         return ret;
7145 }
7146
7147 int perf_event_overflow(struct perf_event *event,
7148                           struct perf_sample_data *data,
7149                           struct pt_regs *regs)
7150 {
7151         return __perf_event_overflow(event, 1, data, regs);
7152 }
7153
7154 /*
7155  * Generic software event infrastructure
7156  */
7157
7158 struct swevent_htable {
7159         struct swevent_hlist            *swevent_hlist;
7160         struct mutex                    hlist_mutex;
7161         int                             hlist_refcount;
7162
7163         /* Recursion avoidance in each contexts */
7164         int                             recursion[PERF_NR_CONTEXTS];
7165 };
7166
7167 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7168
7169 /*
7170  * We directly increment event->count and keep a second value in
7171  * event->hw.period_left to count intervals. This period event
7172  * is kept in the range [-sample_period, 0] so that we can use the
7173  * sign as trigger.
7174  */
7175
7176 u64 perf_swevent_set_period(struct perf_event *event)
7177 {
7178         struct hw_perf_event *hwc = &event->hw;
7179         u64 period = hwc->last_period;
7180         u64 nr, offset;
7181         s64 old, val;
7182
7183         hwc->last_period = hwc->sample_period;
7184
7185 again:
7186         old = val = local64_read(&hwc->period_left);
7187         if (val < 0)
7188                 return 0;
7189
7190         nr = div64_u64(period + val, period);
7191         offset = nr * period;
7192         val -= offset;
7193         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7194                 goto again;
7195
7196         return nr;
7197 }
7198
7199 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7200                                     struct perf_sample_data *data,
7201                                     struct pt_regs *regs)
7202 {
7203         struct hw_perf_event *hwc = &event->hw;
7204         int throttle = 0;
7205
7206         if (!overflow)
7207                 overflow = perf_swevent_set_period(event);
7208
7209         if (hwc->interrupts == MAX_INTERRUPTS)
7210                 return;
7211
7212         for (; overflow; overflow--) {
7213                 if (__perf_event_overflow(event, throttle,
7214                                             data, regs)) {
7215                         /*
7216                          * We inhibit the overflow from happening when
7217                          * hwc->interrupts == MAX_INTERRUPTS.
7218                          */
7219                         break;
7220                 }
7221                 throttle = 1;
7222         }
7223 }
7224
7225 static void perf_swevent_event(struct perf_event *event, u64 nr,
7226                                struct perf_sample_data *data,
7227                                struct pt_regs *regs)
7228 {
7229         struct hw_perf_event *hwc = &event->hw;
7230
7231         local64_add(nr, &event->count);
7232
7233         if (!regs)
7234                 return;
7235
7236         if (!is_sampling_event(event))
7237                 return;
7238
7239         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7240                 data->period = nr;
7241                 return perf_swevent_overflow(event, 1, data, regs);
7242         } else
7243                 data->period = event->hw.last_period;
7244
7245         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7246                 return perf_swevent_overflow(event, 1, data, regs);
7247
7248         if (local64_add_negative(nr, &hwc->period_left))
7249                 return;
7250
7251         perf_swevent_overflow(event, 0, data, regs);
7252 }
7253
7254 static int perf_exclude_event(struct perf_event *event,
7255                               struct pt_regs *regs)
7256 {
7257         if (event->hw.state & PERF_HES_STOPPED)
7258                 return 1;
7259
7260         if (regs) {
7261                 if (event->attr.exclude_user && user_mode(regs))
7262                         return 1;
7263
7264                 if (event->attr.exclude_kernel && !user_mode(regs))
7265                         return 1;
7266         }
7267
7268         return 0;
7269 }
7270
7271 static int perf_swevent_match(struct perf_event *event,
7272                                 enum perf_type_id type,
7273                                 u32 event_id,
7274                                 struct perf_sample_data *data,
7275                                 struct pt_regs *regs)
7276 {
7277         if (event->attr.type != type)
7278                 return 0;
7279
7280         if (event->attr.config != event_id)
7281                 return 0;
7282
7283         if (perf_exclude_event(event, regs))
7284                 return 0;
7285
7286         return 1;
7287 }
7288
7289 static inline u64 swevent_hash(u64 type, u32 event_id)
7290 {
7291         u64 val = event_id | (type << 32);
7292
7293         return hash_64(val, SWEVENT_HLIST_BITS);
7294 }
7295
7296 static inline struct hlist_head *
7297 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7298 {
7299         u64 hash = swevent_hash(type, event_id);
7300
7301         return &hlist->heads[hash];
7302 }
7303
7304 /* For the read side: events when they trigger */
7305 static inline struct hlist_head *
7306 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7307 {
7308         struct swevent_hlist *hlist;
7309
7310         hlist = rcu_dereference(swhash->swevent_hlist);
7311         if (!hlist)
7312                 return NULL;
7313
7314         return __find_swevent_head(hlist, type, event_id);
7315 }
7316
7317 /* For the event head insertion and removal in the hlist */
7318 static inline struct hlist_head *
7319 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7320 {
7321         struct swevent_hlist *hlist;
7322         u32 event_id = event->attr.config;
7323         u64 type = event->attr.type;
7324
7325         /*
7326          * Event scheduling is always serialized against hlist allocation
7327          * and release. Which makes the protected version suitable here.
7328          * The context lock guarantees that.
7329          */
7330         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7331                                           lockdep_is_held(&event->ctx->lock));
7332         if (!hlist)
7333                 return NULL;
7334
7335         return __find_swevent_head(hlist, type, event_id);
7336 }
7337
7338 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7339                                     u64 nr,
7340                                     struct perf_sample_data *data,
7341                                     struct pt_regs *regs)
7342 {
7343         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7344         struct perf_event *event;
7345         struct hlist_head *head;
7346
7347         rcu_read_lock();
7348         head = find_swevent_head_rcu(swhash, type, event_id);
7349         if (!head)
7350                 goto end;
7351
7352         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7353                 if (perf_swevent_match(event, type, event_id, data, regs))
7354                         perf_swevent_event(event, nr, data, regs);
7355         }
7356 end:
7357         rcu_read_unlock();
7358 }
7359
7360 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7361
7362 int perf_swevent_get_recursion_context(void)
7363 {
7364         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7365
7366         return get_recursion_context(swhash->recursion);
7367 }
7368 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7369
7370 void perf_swevent_put_recursion_context(int rctx)
7371 {
7372         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7373
7374         put_recursion_context(swhash->recursion, rctx);
7375 }
7376
7377 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7378 {
7379         struct perf_sample_data data;
7380
7381         if (WARN_ON_ONCE(!regs))
7382                 return;
7383
7384         perf_sample_data_init(&data, addr, 0);
7385         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7386 }
7387
7388 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7389 {
7390         int rctx;
7391
7392         preempt_disable_notrace();
7393         rctx = perf_swevent_get_recursion_context();
7394         if (unlikely(rctx < 0))
7395                 goto fail;
7396
7397         ___perf_sw_event(event_id, nr, regs, addr);
7398
7399         perf_swevent_put_recursion_context(rctx);
7400 fail:
7401         preempt_enable_notrace();
7402 }
7403
7404 static void perf_swevent_read(struct perf_event *event)
7405 {
7406 }
7407
7408 static int perf_swevent_add(struct perf_event *event, int flags)
7409 {
7410         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7411         struct hw_perf_event *hwc = &event->hw;
7412         struct hlist_head *head;
7413
7414         if (is_sampling_event(event)) {
7415                 hwc->last_period = hwc->sample_period;
7416                 perf_swevent_set_period(event);
7417         }
7418
7419         hwc->state = !(flags & PERF_EF_START);
7420
7421         head = find_swevent_head(swhash, event);
7422         if (WARN_ON_ONCE(!head))
7423                 return -EINVAL;
7424
7425         hlist_add_head_rcu(&event->hlist_entry, head);
7426         perf_event_update_userpage(event);
7427
7428         return 0;
7429 }
7430
7431 static void perf_swevent_del(struct perf_event *event, int flags)
7432 {
7433         hlist_del_rcu(&event->hlist_entry);
7434 }
7435
7436 static void perf_swevent_start(struct perf_event *event, int flags)
7437 {
7438         event->hw.state = 0;
7439 }
7440
7441 static void perf_swevent_stop(struct perf_event *event, int flags)
7442 {
7443         event->hw.state = PERF_HES_STOPPED;
7444 }
7445
7446 /* Deref the hlist from the update side */
7447 static inline struct swevent_hlist *
7448 swevent_hlist_deref(struct swevent_htable *swhash)
7449 {
7450         return rcu_dereference_protected(swhash->swevent_hlist,
7451                                          lockdep_is_held(&swhash->hlist_mutex));
7452 }
7453
7454 static void swevent_hlist_release(struct swevent_htable *swhash)
7455 {
7456         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7457
7458         if (!hlist)
7459                 return;
7460
7461         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7462         kfree_rcu(hlist, rcu_head);
7463 }
7464
7465 static void swevent_hlist_put_cpu(int cpu)
7466 {
7467         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7468
7469         mutex_lock(&swhash->hlist_mutex);
7470
7471         if (!--swhash->hlist_refcount)
7472                 swevent_hlist_release(swhash);
7473
7474         mutex_unlock(&swhash->hlist_mutex);
7475 }
7476
7477 static void swevent_hlist_put(void)
7478 {
7479         int cpu;
7480
7481         for_each_possible_cpu(cpu)
7482                 swevent_hlist_put_cpu(cpu);
7483 }
7484
7485 static int swevent_hlist_get_cpu(int cpu)
7486 {
7487         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7488         int err = 0;
7489
7490         mutex_lock(&swhash->hlist_mutex);
7491         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7492                 struct swevent_hlist *hlist;
7493
7494                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7495                 if (!hlist) {
7496                         err = -ENOMEM;
7497                         goto exit;
7498                 }
7499                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7500         }
7501         swhash->hlist_refcount++;
7502 exit:
7503         mutex_unlock(&swhash->hlist_mutex);
7504
7505         return err;
7506 }
7507
7508 static int swevent_hlist_get(void)
7509 {
7510         int err, cpu, failed_cpu;
7511
7512         get_online_cpus();
7513         for_each_possible_cpu(cpu) {
7514                 err = swevent_hlist_get_cpu(cpu);
7515                 if (err) {
7516                         failed_cpu = cpu;
7517                         goto fail;
7518                 }
7519         }
7520         put_online_cpus();
7521
7522         return 0;
7523 fail:
7524         for_each_possible_cpu(cpu) {
7525                 if (cpu == failed_cpu)
7526                         break;
7527                 swevent_hlist_put_cpu(cpu);
7528         }
7529
7530         put_online_cpus();
7531         return err;
7532 }
7533
7534 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7535
7536 static void sw_perf_event_destroy(struct perf_event *event)
7537 {
7538         u64 event_id = event->attr.config;
7539
7540         WARN_ON(event->parent);
7541
7542         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7543         swevent_hlist_put();
7544 }
7545
7546 static int perf_swevent_init(struct perf_event *event)
7547 {
7548         u64 event_id = event->attr.config;
7549
7550         if (event->attr.type != PERF_TYPE_SOFTWARE)
7551                 return -ENOENT;
7552
7553         /*
7554          * no branch sampling for software events
7555          */
7556         if (has_branch_stack(event))
7557                 return -EOPNOTSUPP;
7558
7559         switch (event_id) {
7560         case PERF_COUNT_SW_CPU_CLOCK:
7561         case PERF_COUNT_SW_TASK_CLOCK:
7562                 return -ENOENT;
7563
7564         default:
7565                 break;
7566         }
7567
7568         if (event_id >= PERF_COUNT_SW_MAX)
7569                 return -ENOENT;
7570
7571         if (!event->parent) {
7572                 int err;
7573
7574                 err = swevent_hlist_get();
7575                 if (err)
7576                         return err;
7577
7578                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7579                 event->destroy = sw_perf_event_destroy;
7580         }
7581
7582         return 0;
7583 }
7584
7585 static struct pmu perf_swevent = {
7586         .task_ctx_nr    = perf_sw_context,
7587
7588         .capabilities   = PERF_PMU_CAP_NO_NMI,
7589
7590         .event_init     = perf_swevent_init,
7591         .add            = perf_swevent_add,
7592         .del            = perf_swevent_del,
7593         .start          = perf_swevent_start,
7594         .stop           = perf_swevent_stop,
7595         .read           = perf_swevent_read,
7596 };
7597
7598 #ifdef CONFIG_EVENT_TRACING
7599
7600 static int perf_tp_filter_match(struct perf_event *event,
7601                                 struct perf_sample_data *data)
7602 {
7603         void *record = data->raw->frag.data;
7604
7605         /* only top level events have filters set */
7606         if (event->parent)
7607                 event = event->parent;
7608
7609         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7610                 return 1;
7611         return 0;
7612 }
7613
7614 static int perf_tp_event_match(struct perf_event *event,
7615                                 struct perf_sample_data *data,
7616                                 struct pt_regs *regs)
7617 {
7618         if (event->hw.state & PERF_HES_STOPPED)
7619                 return 0;
7620         /*
7621          * All tracepoints are from kernel-space.
7622          */
7623         if (event->attr.exclude_kernel)
7624                 return 0;
7625
7626         if (!perf_tp_filter_match(event, data))
7627                 return 0;
7628
7629         return 1;
7630 }
7631
7632 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7633                                struct trace_event_call *call, u64 count,
7634                                struct pt_regs *regs, struct hlist_head *head,
7635                                struct task_struct *task)
7636 {
7637         struct bpf_prog *prog = call->prog;
7638
7639         if (prog) {
7640                 *(struct pt_regs **)raw_data = regs;
7641                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7642                         perf_swevent_put_recursion_context(rctx);
7643                         return;
7644                 }
7645         }
7646         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7647                       rctx, task);
7648 }
7649 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7650
7651 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7652                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7653                    struct task_struct *task)
7654 {
7655         struct perf_sample_data data;
7656         struct perf_event *event;
7657
7658         struct perf_raw_record raw = {
7659                 .frag = {
7660                         .size = entry_size,
7661                         .data = record,
7662                 },
7663         };
7664
7665         perf_sample_data_init(&data, 0, 0);
7666         data.raw = &raw;
7667
7668         perf_trace_buf_update(record, event_type);
7669
7670         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7671                 if (perf_tp_event_match(event, &data, regs))
7672                         perf_swevent_event(event, count, &data, regs);
7673         }
7674
7675         /*
7676          * If we got specified a target task, also iterate its context and
7677          * deliver this event there too.
7678          */
7679         if (task && task != current) {
7680                 struct perf_event_context *ctx;
7681                 struct trace_entry *entry = record;
7682
7683                 rcu_read_lock();
7684                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7685                 if (!ctx)
7686                         goto unlock;
7687
7688                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7689                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7690                                 continue;
7691                         if (event->attr.config != entry->type)
7692                                 continue;
7693                         if (perf_tp_event_match(event, &data, regs))
7694                                 perf_swevent_event(event, count, &data, regs);
7695                 }
7696 unlock:
7697                 rcu_read_unlock();
7698         }
7699
7700         perf_swevent_put_recursion_context(rctx);
7701 }
7702 EXPORT_SYMBOL_GPL(perf_tp_event);
7703
7704 static void tp_perf_event_destroy(struct perf_event *event)
7705 {
7706         perf_trace_destroy(event);
7707 }
7708
7709 static int perf_tp_event_init(struct perf_event *event)
7710 {
7711         int err;
7712
7713         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7714                 return -ENOENT;
7715
7716         /*
7717          * no branch sampling for tracepoint events
7718          */
7719         if (has_branch_stack(event))
7720                 return -EOPNOTSUPP;
7721
7722         err = perf_trace_init(event);
7723         if (err)
7724                 return err;
7725
7726         event->destroy = tp_perf_event_destroy;
7727
7728         return 0;
7729 }
7730
7731 static struct pmu perf_tracepoint = {
7732         .task_ctx_nr    = perf_sw_context,
7733
7734         .event_init     = perf_tp_event_init,
7735         .add            = perf_trace_add,
7736         .del            = perf_trace_del,
7737         .start          = perf_swevent_start,
7738         .stop           = perf_swevent_stop,
7739         .read           = perf_swevent_read,
7740 };
7741
7742 static inline void perf_tp_register(void)
7743 {
7744         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7745 }
7746
7747 static void perf_event_free_filter(struct perf_event *event)
7748 {
7749         ftrace_profile_free_filter(event);
7750 }
7751
7752 #ifdef CONFIG_BPF_SYSCALL
7753 static void bpf_overflow_handler(struct perf_event *event,
7754                                  struct perf_sample_data *data,
7755                                  struct pt_regs *regs)
7756 {
7757         struct bpf_perf_event_data_kern ctx = {
7758                 .data = data,
7759                 .regs = regs,
7760         };
7761         int ret = 0;
7762
7763         preempt_disable();
7764         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7765                 goto out;
7766         rcu_read_lock();
7767         ret = BPF_PROG_RUN(event->prog, &ctx);
7768         rcu_read_unlock();
7769 out:
7770         __this_cpu_dec(bpf_prog_active);
7771         preempt_enable();
7772         if (!ret)
7773                 return;
7774
7775         event->orig_overflow_handler(event, data, regs);
7776 }
7777
7778 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7779 {
7780         struct bpf_prog *prog;
7781
7782         if (event->overflow_handler_context)
7783                 /* hw breakpoint or kernel counter */
7784                 return -EINVAL;
7785
7786         if (event->prog)
7787                 return -EEXIST;
7788
7789         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7790         if (IS_ERR(prog))
7791                 return PTR_ERR(prog);
7792
7793         event->prog = prog;
7794         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7795         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7796         return 0;
7797 }
7798
7799 static void perf_event_free_bpf_handler(struct perf_event *event)
7800 {
7801         struct bpf_prog *prog = event->prog;
7802
7803         if (!prog)
7804                 return;
7805
7806         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7807         event->prog = NULL;
7808         bpf_prog_put(prog);
7809 }
7810 #else
7811 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7812 {
7813         return -EOPNOTSUPP;
7814 }
7815 static void perf_event_free_bpf_handler(struct perf_event *event)
7816 {
7817 }
7818 #endif
7819
7820 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7821 {
7822         bool is_kprobe, is_tracepoint;
7823         struct bpf_prog *prog;
7824
7825         if (event->attr.type == PERF_TYPE_HARDWARE ||
7826             event->attr.type == PERF_TYPE_SOFTWARE)
7827                 return perf_event_set_bpf_handler(event, prog_fd);
7828
7829         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7830                 return -EINVAL;
7831
7832         if (event->tp_event->prog)
7833                 return -EEXIST;
7834
7835         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7836         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7837         if (!is_kprobe && !is_tracepoint)
7838                 /* bpf programs can only be attached to u/kprobe or tracepoint */
7839                 return -EINVAL;
7840
7841         prog = bpf_prog_get(prog_fd);
7842         if (IS_ERR(prog))
7843                 return PTR_ERR(prog);
7844
7845         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7846             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7847                 /* valid fd, but invalid bpf program type */
7848                 bpf_prog_put(prog);
7849                 return -EINVAL;
7850         }
7851
7852         if (is_tracepoint) {
7853                 int off = trace_event_get_offsets(event->tp_event);
7854
7855                 if (prog->aux->max_ctx_offset > off) {
7856                         bpf_prog_put(prog);
7857                         return -EACCES;
7858                 }
7859         }
7860         event->tp_event->prog = prog;
7861
7862         return 0;
7863 }
7864
7865 static void perf_event_free_bpf_prog(struct perf_event *event)
7866 {
7867         struct bpf_prog *prog;
7868
7869         perf_event_free_bpf_handler(event);
7870
7871         if (!event->tp_event)
7872                 return;
7873
7874         prog = event->tp_event->prog;
7875         if (prog) {
7876                 event->tp_event->prog = NULL;
7877                 bpf_prog_put(prog);
7878         }
7879 }
7880
7881 #else
7882
7883 static inline void perf_tp_register(void)
7884 {
7885 }
7886
7887 static void perf_event_free_filter(struct perf_event *event)
7888 {
7889 }
7890
7891 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7892 {
7893         return -ENOENT;
7894 }
7895
7896 static void perf_event_free_bpf_prog(struct perf_event *event)
7897 {
7898 }
7899 #endif /* CONFIG_EVENT_TRACING */
7900
7901 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7902 void perf_bp_event(struct perf_event *bp, void *data)
7903 {
7904         struct perf_sample_data sample;
7905         struct pt_regs *regs = data;
7906
7907         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7908
7909         if (!bp->hw.state && !perf_exclude_event(bp, regs))
7910                 perf_swevent_event(bp, 1, &sample, regs);
7911 }
7912 #endif
7913
7914 /*
7915  * Allocate a new address filter
7916  */
7917 static struct perf_addr_filter *
7918 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7919 {
7920         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7921         struct perf_addr_filter *filter;
7922
7923         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7924         if (!filter)
7925                 return NULL;
7926
7927         INIT_LIST_HEAD(&filter->entry);
7928         list_add_tail(&filter->entry, filters);
7929
7930         return filter;
7931 }
7932
7933 static void free_filters_list(struct list_head *filters)
7934 {
7935         struct perf_addr_filter *filter, *iter;
7936
7937         list_for_each_entry_safe(filter, iter, filters, entry) {
7938                 if (filter->inode)
7939                         iput(filter->inode);
7940                 list_del(&filter->entry);
7941                 kfree(filter);
7942         }
7943 }
7944
7945 /*
7946  * Free existing address filters and optionally install new ones
7947  */
7948 static void perf_addr_filters_splice(struct perf_event *event,
7949                                      struct list_head *head)
7950 {
7951         unsigned long flags;
7952         LIST_HEAD(list);
7953
7954         if (!has_addr_filter(event))
7955                 return;
7956
7957         /* don't bother with children, they don't have their own filters */
7958         if (event->parent)
7959                 return;
7960
7961         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7962
7963         list_splice_init(&event->addr_filters.list, &list);
7964         if (head)
7965                 list_splice(head, &event->addr_filters.list);
7966
7967         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7968
7969         free_filters_list(&list);
7970 }
7971
7972 /*
7973  * Scan through mm's vmas and see if one of them matches the
7974  * @filter; if so, adjust filter's address range.
7975  * Called with mm::mmap_sem down for reading.
7976  */
7977 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7978                                             struct mm_struct *mm)
7979 {
7980         struct vm_area_struct *vma;
7981
7982         for (vma = mm->mmap; vma; vma = vma->vm_next) {
7983                 struct file *file = vma->vm_file;
7984                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7985                 unsigned long vma_size = vma->vm_end - vma->vm_start;
7986
7987                 if (!file)
7988                         continue;
7989
7990                 if (!perf_addr_filter_match(filter, file, off, vma_size))
7991                         continue;
7992
7993                 return vma->vm_start;
7994         }
7995
7996         return 0;
7997 }
7998
7999 /*
8000  * Update event's address range filters based on the
8001  * task's existing mappings, if any.
8002  */
8003 static void perf_event_addr_filters_apply(struct perf_event *event)
8004 {
8005         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8006         struct task_struct *task = READ_ONCE(event->ctx->task);
8007         struct perf_addr_filter *filter;
8008         struct mm_struct *mm = NULL;
8009         unsigned int count = 0;
8010         unsigned long flags;
8011
8012         /*
8013          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8014          * will stop on the parent's child_mutex that our caller is also holding
8015          */
8016         if (task == TASK_TOMBSTONE)
8017                 return;
8018
8019         mm = get_task_mm(event->ctx->task);
8020         if (!mm)
8021                 goto restart;
8022
8023         down_read(&mm->mmap_sem);
8024
8025         raw_spin_lock_irqsave(&ifh->lock, flags);
8026         list_for_each_entry(filter, &ifh->list, entry) {
8027                 event->addr_filters_offs[count] = 0;
8028
8029                 /*
8030                  * Adjust base offset if the filter is associated to a binary
8031                  * that needs to be mapped:
8032                  */
8033                 if (filter->inode)
8034                         event->addr_filters_offs[count] =
8035                                 perf_addr_filter_apply(filter, mm);
8036
8037                 count++;
8038         }
8039
8040         event->addr_filters_gen++;
8041         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8042
8043         up_read(&mm->mmap_sem);
8044
8045         mmput(mm);
8046
8047 restart:
8048         perf_event_stop(event, 1);
8049 }
8050
8051 /*
8052  * Address range filtering: limiting the data to certain
8053  * instruction address ranges. Filters are ioctl()ed to us from
8054  * userspace as ascii strings.
8055  *
8056  * Filter string format:
8057  *
8058  * ACTION RANGE_SPEC
8059  * where ACTION is one of the
8060  *  * "filter": limit the trace to this region
8061  *  * "start": start tracing from this address
8062  *  * "stop": stop tracing at this address/region;
8063  * RANGE_SPEC is
8064  *  * for kernel addresses: <start address>[/<size>]
8065  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8066  *
8067  * if <size> is not specified, the range is treated as a single address.
8068  */
8069 enum {
8070         IF_ACT_NONE = -1,
8071         IF_ACT_FILTER,
8072         IF_ACT_START,
8073         IF_ACT_STOP,
8074         IF_SRC_FILE,
8075         IF_SRC_KERNEL,
8076         IF_SRC_FILEADDR,
8077         IF_SRC_KERNELADDR,
8078 };
8079
8080 enum {
8081         IF_STATE_ACTION = 0,
8082         IF_STATE_SOURCE,
8083         IF_STATE_END,
8084 };
8085
8086 static const match_table_t if_tokens = {
8087         { IF_ACT_FILTER,        "filter" },
8088         { IF_ACT_START,         "start" },
8089         { IF_ACT_STOP,          "stop" },
8090         { IF_SRC_FILE,          "%u/%u@%s" },
8091         { IF_SRC_KERNEL,        "%u/%u" },
8092         { IF_SRC_FILEADDR,      "%u@%s" },
8093         { IF_SRC_KERNELADDR,    "%u" },
8094         { IF_ACT_NONE,          NULL },
8095 };
8096
8097 /*
8098  * Address filter string parser
8099  */
8100 static int
8101 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8102                              struct list_head *filters)
8103 {
8104         struct perf_addr_filter *filter = NULL;
8105         char *start, *orig, *filename = NULL;
8106         struct path path;
8107         substring_t args[MAX_OPT_ARGS];
8108         int state = IF_STATE_ACTION, token;
8109         unsigned int kernel = 0;
8110         int ret = -EINVAL;
8111
8112         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8113         if (!fstr)
8114                 return -ENOMEM;
8115
8116         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8117                 ret = -EINVAL;
8118
8119                 if (!*start)
8120                         continue;
8121
8122                 /* filter definition begins */
8123                 if (state == IF_STATE_ACTION) {
8124                         filter = perf_addr_filter_new(event, filters);
8125                         if (!filter)
8126                                 goto fail;
8127                 }
8128
8129                 token = match_token(start, if_tokens, args);
8130                 switch (token) {
8131                 case IF_ACT_FILTER:
8132                 case IF_ACT_START:
8133                         filter->filter = 1;
8134
8135                 case IF_ACT_STOP:
8136                         if (state != IF_STATE_ACTION)
8137                                 goto fail;
8138
8139                         state = IF_STATE_SOURCE;
8140                         break;
8141
8142                 case IF_SRC_KERNELADDR:
8143                 case IF_SRC_KERNEL:
8144                         kernel = 1;
8145
8146                 case IF_SRC_FILEADDR:
8147                 case IF_SRC_FILE:
8148                         if (state != IF_STATE_SOURCE)
8149                                 goto fail;
8150
8151                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8152                                 filter->range = 1;
8153
8154                         *args[0].to = 0;
8155                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8156                         if (ret)
8157                                 goto fail;
8158
8159                         if (filter->range) {
8160                                 *args[1].to = 0;
8161                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8162                                 if (ret)
8163                                         goto fail;
8164                         }
8165
8166                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8167                                 int fpos = filter->range ? 2 : 1;
8168
8169                                 filename = match_strdup(&args[fpos]);
8170                                 if (!filename) {
8171                                         ret = -ENOMEM;
8172                                         goto fail;
8173                                 }
8174                         }
8175
8176                         state = IF_STATE_END;
8177                         break;
8178
8179                 default:
8180                         goto fail;
8181                 }
8182
8183                 /*
8184                  * Filter definition is fully parsed, validate and install it.
8185                  * Make sure that it doesn't contradict itself or the event's
8186                  * attribute.
8187                  */
8188                 if (state == IF_STATE_END) {
8189                         if (kernel && event->attr.exclude_kernel)
8190                                 goto fail;
8191
8192                         if (!kernel) {
8193                                 if (!filename)
8194                                         goto fail;
8195
8196                                 /* look up the path and grab its inode */
8197                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8198                                 if (ret)
8199                                         goto fail_free_name;
8200
8201                                 filter->inode = igrab(d_inode(path.dentry));
8202                                 path_put(&path);
8203                                 kfree(filename);
8204                                 filename = NULL;
8205
8206                                 ret = -EINVAL;
8207                                 if (!filter->inode ||
8208                                     !S_ISREG(filter->inode->i_mode))
8209                                         /* free_filters_list() will iput() */
8210                                         goto fail;
8211                         }
8212
8213                         /* ready to consume more filters */
8214                         state = IF_STATE_ACTION;
8215                         filter = NULL;
8216                 }
8217         }
8218
8219         if (state != IF_STATE_ACTION)
8220                 goto fail;
8221
8222         kfree(orig);
8223
8224         return 0;
8225
8226 fail_free_name:
8227         kfree(filename);
8228 fail:
8229         free_filters_list(filters);
8230         kfree(orig);
8231
8232         return ret;
8233 }
8234
8235 static int
8236 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8237 {
8238         LIST_HEAD(filters);
8239         int ret;
8240
8241         /*
8242          * Since this is called in perf_ioctl() path, we're already holding
8243          * ctx::mutex.
8244          */
8245         lockdep_assert_held(&event->ctx->mutex);
8246
8247         if (WARN_ON_ONCE(event->parent))
8248                 return -EINVAL;
8249
8250         /*
8251          * For now, we only support filtering in per-task events; doing so
8252          * for CPU-wide events requires additional context switching trickery,
8253          * since same object code will be mapped at different virtual
8254          * addresses in different processes.
8255          */
8256         if (!event->ctx->task)
8257                 return -EOPNOTSUPP;
8258
8259         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8260         if (ret)
8261                 return ret;
8262
8263         ret = event->pmu->addr_filters_validate(&filters);
8264         if (ret) {
8265                 free_filters_list(&filters);
8266                 return ret;
8267         }
8268
8269         /* remove existing filters, if any */
8270         perf_addr_filters_splice(event, &filters);
8271
8272         /* install new filters */
8273         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8274
8275         return ret;
8276 }
8277
8278 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8279 {
8280         char *filter_str;
8281         int ret = -EINVAL;
8282
8283         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8284             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8285             !has_addr_filter(event))
8286                 return -EINVAL;
8287
8288         filter_str = strndup_user(arg, PAGE_SIZE);
8289         if (IS_ERR(filter_str))
8290                 return PTR_ERR(filter_str);
8291
8292         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8293             event->attr.type == PERF_TYPE_TRACEPOINT)
8294                 ret = ftrace_profile_set_filter(event, event->attr.config,
8295                                                 filter_str);
8296         else if (has_addr_filter(event))
8297                 ret = perf_event_set_addr_filter(event, filter_str);
8298
8299         kfree(filter_str);
8300         return ret;
8301 }
8302
8303 /*
8304  * hrtimer based swevent callback
8305  */
8306
8307 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8308 {
8309         enum hrtimer_restart ret = HRTIMER_RESTART;
8310         struct perf_sample_data data;
8311         struct pt_regs *regs;
8312         struct perf_event *event;
8313         u64 period;
8314
8315         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8316
8317         if (event->state != PERF_EVENT_STATE_ACTIVE)
8318                 return HRTIMER_NORESTART;
8319
8320         event->pmu->read(event);
8321
8322         perf_sample_data_init(&data, 0, event->hw.last_period);
8323         regs = get_irq_regs();
8324
8325         if (regs && !perf_exclude_event(event, regs)) {
8326                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8327                         if (__perf_event_overflow(event, 1, &data, regs))
8328                                 ret = HRTIMER_NORESTART;
8329         }
8330
8331         period = max_t(u64, 10000, event->hw.sample_period);
8332         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8333
8334         return ret;
8335 }
8336
8337 static void perf_swevent_start_hrtimer(struct perf_event *event)
8338 {
8339         struct hw_perf_event *hwc = &event->hw;
8340         s64 period;
8341
8342         if (!is_sampling_event(event))
8343                 return;
8344
8345         period = local64_read(&hwc->period_left);
8346         if (period) {
8347                 if (period < 0)
8348                         period = 10000;
8349
8350                 local64_set(&hwc->period_left, 0);
8351         } else {
8352                 period = max_t(u64, 10000, hwc->sample_period);
8353         }
8354         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8355                       HRTIMER_MODE_REL_PINNED);
8356 }
8357
8358 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8359 {
8360         struct hw_perf_event *hwc = &event->hw;
8361
8362         if (is_sampling_event(event)) {
8363                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8364                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8365
8366                 hrtimer_cancel(&hwc->hrtimer);
8367         }
8368 }
8369
8370 static void perf_swevent_init_hrtimer(struct perf_event *event)
8371 {
8372         struct hw_perf_event *hwc = &event->hw;
8373
8374         if (!is_sampling_event(event))
8375                 return;
8376
8377         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8378         hwc->hrtimer.function = perf_swevent_hrtimer;
8379
8380         /*
8381          * Since hrtimers have a fixed rate, we can do a static freq->period
8382          * mapping and avoid the whole period adjust feedback stuff.
8383          */
8384         if (event->attr.freq) {
8385                 long freq = event->attr.sample_freq;
8386
8387                 event->attr.sample_period = NSEC_PER_SEC / freq;
8388                 hwc->sample_period = event->attr.sample_period;
8389                 local64_set(&hwc->period_left, hwc->sample_period);
8390                 hwc->last_period = hwc->sample_period;
8391                 event->attr.freq = 0;
8392         }
8393 }
8394
8395 /*
8396  * Software event: cpu wall time clock
8397  */
8398
8399 static void cpu_clock_event_update(struct perf_event *event)
8400 {
8401         s64 prev;
8402         u64 now;
8403
8404         now = local_clock();
8405         prev = local64_xchg(&event->hw.prev_count, now);
8406         local64_add(now - prev, &event->count);
8407 }
8408
8409 static void cpu_clock_event_start(struct perf_event *event, int flags)
8410 {
8411         local64_set(&event->hw.prev_count, local_clock());
8412         perf_swevent_start_hrtimer(event);
8413 }
8414
8415 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8416 {
8417         perf_swevent_cancel_hrtimer(event);
8418         cpu_clock_event_update(event);
8419 }
8420
8421 static int cpu_clock_event_add(struct perf_event *event, int flags)
8422 {
8423         if (flags & PERF_EF_START)
8424                 cpu_clock_event_start(event, flags);
8425         perf_event_update_userpage(event);
8426
8427         return 0;
8428 }
8429
8430 static void cpu_clock_event_del(struct perf_event *event, int flags)
8431 {
8432         cpu_clock_event_stop(event, flags);
8433 }
8434
8435 static void cpu_clock_event_read(struct perf_event *event)
8436 {
8437         cpu_clock_event_update(event);
8438 }
8439
8440 static int cpu_clock_event_init(struct perf_event *event)
8441 {
8442         if (event->attr.type != PERF_TYPE_SOFTWARE)
8443                 return -ENOENT;
8444
8445         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8446                 return -ENOENT;
8447
8448         /*
8449          * no branch sampling for software events
8450          */
8451         if (has_branch_stack(event))
8452                 return -EOPNOTSUPP;
8453
8454         perf_swevent_init_hrtimer(event);
8455
8456         return 0;
8457 }
8458
8459 static struct pmu perf_cpu_clock = {
8460         .task_ctx_nr    = perf_sw_context,
8461
8462         .capabilities   = PERF_PMU_CAP_NO_NMI,
8463
8464         .event_init     = cpu_clock_event_init,
8465         .add            = cpu_clock_event_add,
8466         .del            = cpu_clock_event_del,
8467         .start          = cpu_clock_event_start,
8468         .stop           = cpu_clock_event_stop,
8469         .read           = cpu_clock_event_read,
8470 };
8471
8472 /*
8473  * Software event: task time clock
8474  */
8475
8476 static void task_clock_event_update(struct perf_event *event, u64 now)
8477 {
8478         u64 prev;
8479         s64 delta;
8480
8481         prev = local64_xchg(&event->hw.prev_count, now);
8482         delta = now - prev;
8483         local64_add(delta, &event->count);
8484 }
8485
8486 static void task_clock_event_start(struct perf_event *event, int flags)
8487 {
8488         local64_set(&event->hw.prev_count, event->ctx->time);
8489         perf_swevent_start_hrtimer(event);
8490 }
8491
8492 static void task_clock_event_stop(struct perf_event *event, int flags)
8493 {
8494         perf_swevent_cancel_hrtimer(event);
8495         task_clock_event_update(event, event->ctx->time);
8496 }
8497
8498 static int task_clock_event_add(struct perf_event *event, int flags)
8499 {
8500         if (flags & PERF_EF_START)
8501                 task_clock_event_start(event, flags);
8502         perf_event_update_userpage(event);
8503
8504         return 0;
8505 }
8506
8507 static void task_clock_event_del(struct perf_event *event, int flags)
8508 {
8509         task_clock_event_stop(event, PERF_EF_UPDATE);
8510 }
8511
8512 static void task_clock_event_read(struct perf_event *event)
8513 {
8514         u64 now = perf_clock();
8515         u64 delta = now - event->ctx->timestamp;
8516         u64 time = event->ctx->time + delta;
8517
8518         task_clock_event_update(event, time);
8519 }
8520
8521 static int task_clock_event_init(struct perf_event *event)
8522 {
8523         if (event->attr.type != PERF_TYPE_SOFTWARE)
8524                 return -ENOENT;
8525
8526         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8527                 return -ENOENT;
8528
8529         /*
8530          * no branch sampling for software events
8531          */
8532         if (has_branch_stack(event))
8533                 return -EOPNOTSUPP;
8534
8535         perf_swevent_init_hrtimer(event);
8536
8537         return 0;
8538 }
8539
8540 static struct pmu perf_task_clock = {
8541         .task_ctx_nr    = perf_sw_context,
8542
8543         .capabilities   = PERF_PMU_CAP_NO_NMI,
8544
8545         .event_init     = task_clock_event_init,
8546         .add            = task_clock_event_add,
8547         .del            = task_clock_event_del,
8548         .start          = task_clock_event_start,
8549         .stop           = task_clock_event_stop,
8550         .read           = task_clock_event_read,
8551 };
8552
8553 static void perf_pmu_nop_void(struct pmu *pmu)
8554 {
8555 }
8556
8557 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8558 {
8559 }
8560
8561 static int perf_pmu_nop_int(struct pmu *pmu)
8562 {
8563         return 0;
8564 }
8565
8566 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8567
8568 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8569 {
8570         __this_cpu_write(nop_txn_flags, flags);
8571
8572         if (flags & ~PERF_PMU_TXN_ADD)
8573                 return;
8574
8575         perf_pmu_disable(pmu);
8576 }
8577
8578 static int perf_pmu_commit_txn(struct pmu *pmu)
8579 {
8580         unsigned int flags = __this_cpu_read(nop_txn_flags);
8581
8582         __this_cpu_write(nop_txn_flags, 0);
8583
8584         if (flags & ~PERF_PMU_TXN_ADD)
8585                 return 0;
8586
8587         perf_pmu_enable(pmu);
8588         return 0;
8589 }
8590
8591 static void perf_pmu_cancel_txn(struct pmu *pmu)
8592 {
8593         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8594
8595         __this_cpu_write(nop_txn_flags, 0);
8596
8597         if (flags & ~PERF_PMU_TXN_ADD)
8598                 return;
8599
8600         perf_pmu_enable(pmu);
8601 }
8602
8603 static int perf_event_idx_default(struct perf_event *event)
8604 {
8605         return 0;
8606 }
8607
8608 /*
8609  * Ensures all contexts with the same task_ctx_nr have the same
8610  * pmu_cpu_context too.
8611  */
8612 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8613 {
8614         struct pmu *pmu;
8615
8616         if (ctxn < 0)
8617                 return NULL;
8618
8619         list_for_each_entry(pmu, &pmus, entry) {
8620                 if (pmu->task_ctx_nr == ctxn)
8621                         return pmu->pmu_cpu_context;
8622         }
8623
8624         return NULL;
8625 }
8626
8627 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8628 {
8629         int cpu;
8630
8631         for_each_possible_cpu(cpu) {
8632                 struct perf_cpu_context *cpuctx;
8633
8634                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8635
8636                 if (cpuctx->unique_pmu == old_pmu)
8637                         cpuctx->unique_pmu = pmu;
8638         }
8639 }
8640
8641 static void free_pmu_context(struct pmu *pmu)
8642 {
8643         struct pmu *i;
8644
8645         mutex_lock(&pmus_lock);
8646         /*
8647          * Like a real lame refcount.
8648          */
8649         list_for_each_entry(i, &pmus, entry) {
8650                 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8651                         update_pmu_context(i, pmu);
8652                         goto out;
8653                 }
8654         }
8655
8656         free_percpu(pmu->pmu_cpu_context);
8657 out:
8658         mutex_unlock(&pmus_lock);
8659 }
8660
8661 /*
8662  * Let userspace know that this PMU supports address range filtering:
8663  */
8664 static ssize_t nr_addr_filters_show(struct device *dev,
8665                                     struct device_attribute *attr,
8666                                     char *page)
8667 {
8668         struct pmu *pmu = dev_get_drvdata(dev);
8669
8670         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8671 }
8672 DEVICE_ATTR_RO(nr_addr_filters);
8673
8674 static struct idr pmu_idr;
8675
8676 static ssize_t
8677 type_show(struct device *dev, struct device_attribute *attr, char *page)
8678 {
8679         struct pmu *pmu = dev_get_drvdata(dev);
8680
8681         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8682 }
8683 static DEVICE_ATTR_RO(type);
8684
8685 static ssize_t
8686 perf_event_mux_interval_ms_show(struct device *dev,
8687                                 struct device_attribute *attr,
8688                                 char *page)
8689 {
8690         struct pmu *pmu = dev_get_drvdata(dev);
8691
8692         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8693 }
8694
8695 static DEFINE_MUTEX(mux_interval_mutex);
8696
8697 static ssize_t
8698 perf_event_mux_interval_ms_store(struct device *dev,
8699                                  struct device_attribute *attr,
8700                                  const char *buf, size_t count)
8701 {
8702         struct pmu *pmu = dev_get_drvdata(dev);
8703         int timer, cpu, ret;
8704
8705         ret = kstrtoint(buf, 0, &timer);
8706         if (ret)
8707                 return ret;
8708
8709         if (timer < 1)
8710                 return -EINVAL;
8711
8712         /* same value, noting to do */
8713         if (timer == pmu->hrtimer_interval_ms)
8714                 return count;
8715
8716         mutex_lock(&mux_interval_mutex);
8717         pmu->hrtimer_interval_ms = timer;
8718
8719         /* update all cpuctx for this PMU */
8720         get_online_cpus();
8721         for_each_online_cpu(cpu) {
8722                 struct perf_cpu_context *cpuctx;
8723                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8724                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8725
8726                 cpu_function_call(cpu,
8727                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8728         }
8729         put_online_cpus();
8730         mutex_unlock(&mux_interval_mutex);
8731
8732         return count;
8733 }
8734 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8735
8736 static struct attribute *pmu_dev_attrs[] = {
8737         &dev_attr_type.attr,
8738         &dev_attr_perf_event_mux_interval_ms.attr,
8739         NULL,
8740 };
8741 ATTRIBUTE_GROUPS(pmu_dev);
8742
8743 static int pmu_bus_running;
8744 static struct bus_type pmu_bus = {
8745         .name           = "event_source",
8746         .dev_groups     = pmu_dev_groups,
8747 };
8748
8749 static void pmu_dev_release(struct device *dev)
8750 {
8751         kfree(dev);
8752 }
8753
8754 static int pmu_dev_alloc(struct pmu *pmu)
8755 {
8756         int ret = -ENOMEM;
8757
8758         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8759         if (!pmu->dev)
8760                 goto out;
8761
8762         pmu->dev->groups = pmu->attr_groups;
8763         device_initialize(pmu->dev);
8764         ret = dev_set_name(pmu->dev, "%s", pmu->name);
8765         if (ret)
8766                 goto free_dev;
8767
8768         dev_set_drvdata(pmu->dev, pmu);
8769         pmu->dev->bus = &pmu_bus;
8770         pmu->dev->release = pmu_dev_release;
8771         ret = device_add(pmu->dev);
8772         if (ret)
8773                 goto free_dev;
8774
8775         /* For PMUs with address filters, throw in an extra attribute: */
8776         if (pmu->nr_addr_filters)
8777                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8778
8779         if (ret)
8780                 goto del_dev;
8781
8782 out:
8783         return ret;
8784
8785 del_dev:
8786         device_del(pmu->dev);
8787
8788 free_dev:
8789         put_device(pmu->dev);
8790         goto out;
8791 }
8792
8793 static struct lock_class_key cpuctx_mutex;
8794 static struct lock_class_key cpuctx_lock;
8795
8796 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8797 {
8798         int cpu, ret;
8799
8800         mutex_lock(&pmus_lock);
8801         ret = -ENOMEM;
8802         pmu->pmu_disable_count = alloc_percpu(int);
8803         if (!pmu->pmu_disable_count)
8804                 goto unlock;
8805
8806         pmu->type = -1;
8807         if (!name)
8808                 goto skip_type;
8809         pmu->name = name;
8810
8811         if (type < 0) {
8812                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8813                 if (type < 0) {
8814                         ret = type;
8815                         goto free_pdc;
8816                 }
8817         }
8818         pmu->type = type;
8819
8820         if (pmu_bus_running) {
8821                 ret = pmu_dev_alloc(pmu);
8822                 if (ret)
8823                         goto free_idr;
8824         }
8825
8826 skip_type:
8827         if (pmu->task_ctx_nr == perf_hw_context) {
8828                 static int hw_context_taken = 0;
8829
8830                 /*
8831                  * Other than systems with heterogeneous CPUs, it never makes
8832                  * sense for two PMUs to share perf_hw_context. PMUs which are
8833                  * uncore must use perf_invalid_context.
8834                  */
8835                 if (WARN_ON_ONCE(hw_context_taken &&
8836                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8837                         pmu->task_ctx_nr = perf_invalid_context;
8838
8839                 hw_context_taken = 1;
8840         }
8841
8842         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8843         if (pmu->pmu_cpu_context)
8844                 goto got_cpu_context;
8845
8846         ret = -ENOMEM;
8847         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8848         if (!pmu->pmu_cpu_context)
8849                 goto free_dev;
8850
8851         for_each_possible_cpu(cpu) {
8852                 struct perf_cpu_context *cpuctx;
8853
8854                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8855                 __perf_event_init_context(&cpuctx->ctx);
8856                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8857                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8858                 cpuctx->ctx.pmu = pmu;
8859
8860                 __perf_mux_hrtimer_init(cpuctx, cpu);
8861
8862                 cpuctx->unique_pmu = pmu;
8863         }
8864
8865 got_cpu_context:
8866         if (!pmu->start_txn) {
8867                 if (pmu->pmu_enable) {
8868                         /*
8869                          * If we have pmu_enable/pmu_disable calls, install
8870                          * transaction stubs that use that to try and batch
8871                          * hardware accesses.
8872                          */
8873                         pmu->start_txn  = perf_pmu_start_txn;
8874                         pmu->commit_txn = perf_pmu_commit_txn;
8875                         pmu->cancel_txn = perf_pmu_cancel_txn;
8876                 } else {
8877                         pmu->start_txn  = perf_pmu_nop_txn;
8878                         pmu->commit_txn = perf_pmu_nop_int;
8879                         pmu->cancel_txn = perf_pmu_nop_void;
8880                 }
8881         }
8882
8883         if (!pmu->pmu_enable) {
8884                 pmu->pmu_enable  = perf_pmu_nop_void;
8885                 pmu->pmu_disable = perf_pmu_nop_void;
8886         }
8887
8888         if (!pmu->event_idx)
8889                 pmu->event_idx = perf_event_idx_default;
8890
8891         list_add_rcu(&pmu->entry, &pmus);
8892         atomic_set(&pmu->exclusive_cnt, 0);
8893         ret = 0;
8894 unlock:
8895         mutex_unlock(&pmus_lock);
8896
8897         return ret;
8898
8899 free_dev:
8900         device_del(pmu->dev);
8901         put_device(pmu->dev);
8902
8903 free_idr:
8904         if (pmu->type >= PERF_TYPE_MAX)
8905                 idr_remove(&pmu_idr, pmu->type);
8906
8907 free_pdc:
8908         free_percpu(pmu->pmu_disable_count);
8909         goto unlock;
8910 }
8911 EXPORT_SYMBOL_GPL(perf_pmu_register);
8912
8913 void perf_pmu_unregister(struct pmu *pmu)
8914 {
8915         int remove_device;
8916
8917         mutex_lock(&pmus_lock);
8918         remove_device = pmu_bus_running;
8919         list_del_rcu(&pmu->entry);
8920         mutex_unlock(&pmus_lock);
8921
8922         /*
8923          * We dereference the pmu list under both SRCU and regular RCU, so
8924          * synchronize against both of those.
8925          */
8926         synchronize_srcu(&pmus_srcu);
8927         synchronize_rcu();
8928
8929         free_percpu(pmu->pmu_disable_count);
8930         if (pmu->type >= PERF_TYPE_MAX)
8931                 idr_remove(&pmu_idr, pmu->type);
8932         if (remove_device) {
8933                 if (pmu->nr_addr_filters)
8934                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8935                 device_del(pmu->dev);
8936                 put_device(pmu->dev);
8937         }
8938         free_pmu_context(pmu);
8939 }
8940 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8941
8942 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8943 {
8944         struct perf_event_context *ctx = NULL;
8945         int ret;
8946
8947         if (!try_module_get(pmu->module))
8948                 return -ENODEV;
8949
8950         if (event->group_leader != event) {
8951                 /*
8952                  * This ctx->mutex can nest when we're called through
8953                  * inheritance. See the perf_event_ctx_lock_nested() comment.
8954                  */
8955                 ctx = perf_event_ctx_lock_nested(event->group_leader,
8956                                                  SINGLE_DEPTH_NESTING);
8957                 BUG_ON(!ctx);
8958         }
8959
8960         event->pmu = pmu;
8961         ret = pmu->event_init(event);
8962
8963         if (ctx)
8964                 perf_event_ctx_unlock(event->group_leader, ctx);
8965
8966         if (ret)
8967                 module_put(pmu->module);
8968
8969         return ret;
8970 }
8971
8972 static struct pmu *perf_init_event(struct perf_event *event)
8973 {
8974         struct pmu *pmu = NULL;
8975         int idx;
8976         int ret;
8977
8978         idx = srcu_read_lock(&pmus_srcu);
8979
8980         rcu_read_lock();
8981         pmu = idr_find(&pmu_idr, event->attr.type);
8982         rcu_read_unlock();
8983         if (pmu) {
8984                 ret = perf_try_init_event(pmu, event);
8985                 if (ret)
8986                         pmu = ERR_PTR(ret);
8987                 goto unlock;
8988         }
8989
8990         list_for_each_entry_rcu(pmu, &pmus, entry) {
8991                 ret = perf_try_init_event(pmu, event);
8992                 if (!ret)
8993                         goto unlock;
8994
8995                 if (ret != -ENOENT) {
8996                         pmu = ERR_PTR(ret);
8997                         goto unlock;
8998                 }
8999         }
9000         pmu = ERR_PTR(-ENOENT);
9001 unlock:
9002         srcu_read_unlock(&pmus_srcu, idx);
9003
9004         return pmu;
9005 }
9006
9007 static void attach_sb_event(struct perf_event *event)
9008 {
9009         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9010
9011         raw_spin_lock(&pel->lock);
9012         list_add_rcu(&event->sb_list, &pel->list);
9013         raw_spin_unlock(&pel->lock);
9014 }
9015
9016 /*
9017  * We keep a list of all !task (and therefore per-cpu) events
9018  * that need to receive side-band records.
9019  *
9020  * This avoids having to scan all the various PMU per-cpu contexts
9021  * looking for them.
9022  */
9023 static void account_pmu_sb_event(struct perf_event *event)
9024 {
9025         if (is_sb_event(event))
9026                 attach_sb_event(event);
9027 }
9028
9029 static void account_event_cpu(struct perf_event *event, int cpu)
9030 {
9031         if (event->parent)
9032                 return;
9033
9034         if (is_cgroup_event(event))
9035                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9036 }
9037
9038 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9039 static void account_freq_event_nohz(void)
9040 {
9041 #ifdef CONFIG_NO_HZ_FULL
9042         /* Lock so we don't race with concurrent unaccount */
9043         spin_lock(&nr_freq_lock);
9044         if (atomic_inc_return(&nr_freq_events) == 1)
9045                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9046         spin_unlock(&nr_freq_lock);
9047 #endif
9048 }
9049
9050 static void account_freq_event(void)
9051 {
9052         if (tick_nohz_full_enabled())
9053                 account_freq_event_nohz();
9054         else
9055                 atomic_inc(&nr_freq_events);
9056 }
9057
9058
9059 static void account_event(struct perf_event *event)
9060 {
9061         bool inc = false;
9062
9063         if (event->parent)
9064                 return;
9065
9066         if (event->attach_state & PERF_ATTACH_TASK)
9067                 inc = true;
9068         if (event->attr.mmap || event->attr.mmap_data)
9069                 atomic_inc(&nr_mmap_events);
9070         if (event->attr.comm)
9071                 atomic_inc(&nr_comm_events);
9072         if (event->attr.task)
9073                 atomic_inc(&nr_task_events);
9074         if (event->attr.freq)
9075                 account_freq_event();
9076         if (event->attr.context_switch) {
9077                 atomic_inc(&nr_switch_events);
9078                 inc = true;
9079         }
9080         if (has_branch_stack(event))
9081                 inc = true;
9082         if (is_cgroup_event(event))
9083                 inc = true;
9084
9085         if (inc) {
9086                 if (atomic_inc_not_zero(&perf_sched_count))
9087                         goto enabled;
9088
9089                 mutex_lock(&perf_sched_mutex);
9090                 if (!atomic_read(&perf_sched_count)) {
9091                         static_branch_enable(&perf_sched_events);
9092                         /*
9093                          * Guarantee that all CPUs observe they key change and
9094                          * call the perf scheduling hooks before proceeding to
9095                          * install events that need them.
9096                          */
9097                         synchronize_sched();
9098                 }
9099                 /*
9100                  * Now that we have waited for the sync_sched(), allow further
9101                  * increments to by-pass the mutex.
9102                  */
9103                 atomic_inc(&perf_sched_count);
9104                 mutex_unlock(&perf_sched_mutex);
9105         }
9106 enabled:
9107
9108         account_event_cpu(event, event->cpu);
9109
9110         account_pmu_sb_event(event);
9111 }
9112
9113 /*
9114  * Allocate and initialize a event structure
9115  */
9116 static struct perf_event *
9117 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9118                  struct task_struct *task,
9119                  struct perf_event *group_leader,
9120                  struct perf_event *parent_event,
9121                  perf_overflow_handler_t overflow_handler,
9122                  void *context, int cgroup_fd)
9123 {
9124         struct pmu *pmu;
9125         struct perf_event *event;
9126         struct hw_perf_event *hwc;
9127         long err = -EINVAL;
9128
9129         if ((unsigned)cpu >= nr_cpu_ids) {
9130                 if (!task || cpu != -1)
9131                         return ERR_PTR(-EINVAL);
9132         }
9133
9134         event = kzalloc(sizeof(*event), GFP_KERNEL);
9135         if (!event)
9136                 return ERR_PTR(-ENOMEM);
9137
9138         /*
9139          * Single events are their own group leaders, with an
9140          * empty sibling list:
9141          */
9142         if (!group_leader)
9143                 group_leader = event;
9144
9145         mutex_init(&event->child_mutex);
9146         INIT_LIST_HEAD(&event->child_list);
9147
9148         INIT_LIST_HEAD(&event->group_entry);
9149         INIT_LIST_HEAD(&event->event_entry);
9150         INIT_LIST_HEAD(&event->sibling_list);
9151         INIT_LIST_HEAD(&event->rb_entry);
9152         INIT_LIST_HEAD(&event->active_entry);
9153         INIT_LIST_HEAD(&event->addr_filters.list);
9154         INIT_HLIST_NODE(&event->hlist_entry);
9155
9156
9157         init_waitqueue_head(&event->waitq);
9158         init_irq_work(&event->pending, perf_pending_event);
9159
9160         mutex_init(&event->mmap_mutex);
9161         raw_spin_lock_init(&event->addr_filters.lock);
9162
9163         atomic_long_set(&event->refcount, 1);
9164         event->cpu              = cpu;
9165         event->attr             = *attr;
9166         event->group_leader     = group_leader;
9167         event->pmu              = NULL;
9168         event->oncpu            = -1;
9169
9170         event->parent           = parent_event;
9171
9172         event->ns               = get_pid_ns(task_active_pid_ns(current));
9173         event->id               = atomic64_inc_return(&perf_event_id);
9174
9175         event->state            = PERF_EVENT_STATE_INACTIVE;
9176
9177         if (task) {
9178                 event->attach_state = PERF_ATTACH_TASK;
9179                 /*
9180                  * XXX pmu::event_init needs to know what task to account to
9181                  * and we cannot use the ctx information because we need the
9182                  * pmu before we get a ctx.
9183                  */
9184                 event->hw.target = task;
9185         }
9186
9187         event->clock = &local_clock;
9188         if (parent_event)
9189                 event->clock = parent_event->clock;
9190
9191         if (!overflow_handler && parent_event) {
9192                 overflow_handler = parent_event->overflow_handler;
9193                 context = parent_event->overflow_handler_context;
9194 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9195                 if (overflow_handler == bpf_overflow_handler) {
9196                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9197
9198                         if (IS_ERR(prog)) {
9199                                 err = PTR_ERR(prog);
9200                                 goto err_ns;
9201                         }
9202                         event->prog = prog;
9203                         event->orig_overflow_handler =
9204                                 parent_event->orig_overflow_handler;
9205                 }
9206 #endif
9207         }
9208
9209         if (overflow_handler) {
9210                 event->overflow_handler = overflow_handler;
9211                 event->overflow_handler_context = context;
9212         } else if (is_write_backward(event)){
9213                 event->overflow_handler = perf_event_output_backward;
9214                 event->overflow_handler_context = NULL;
9215         } else {
9216                 event->overflow_handler = perf_event_output_forward;
9217                 event->overflow_handler_context = NULL;
9218         }
9219
9220         perf_event__state_init(event);
9221
9222         pmu = NULL;
9223
9224         hwc = &event->hw;
9225         hwc->sample_period = attr->sample_period;
9226         if (attr->freq && attr->sample_freq)
9227                 hwc->sample_period = 1;
9228         hwc->last_period = hwc->sample_period;
9229
9230         local64_set(&hwc->period_left, hwc->sample_period);
9231
9232         /*
9233          * we currently do not support PERF_FORMAT_GROUP on inherited events
9234          */
9235         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9236                 goto err_ns;
9237
9238         if (!has_branch_stack(event))
9239                 event->attr.branch_sample_type = 0;
9240
9241         if (cgroup_fd != -1) {
9242                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9243                 if (err)
9244                         goto err_ns;
9245         }
9246
9247         pmu = perf_init_event(event);
9248         if (!pmu)
9249                 goto err_ns;
9250         else if (IS_ERR(pmu)) {
9251                 err = PTR_ERR(pmu);
9252                 goto err_ns;
9253         }
9254
9255         err = exclusive_event_init(event);
9256         if (err)
9257                 goto err_pmu;
9258
9259         if (has_addr_filter(event)) {
9260                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9261                                                    sizeof(unsigned long),
9262                                                    GFP_KERNEL);
9263                 if (!event->addr_filters_offs)
9264                         goto err_per_task;
9265
9266                 /* force hw sync on the address filters */
9267                 event->addr_filters_gen = 1;
9268         }
9269
9270         if (!event->parent) {
9271                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9272                         err = get_callchain_buffers(attr->sample_max_stack);
9273                         if (err)
9274                                 goto err_addr_filters;
9275                 }
9276         }
9277
9278         /* symmetric to unaccount_event() in _free_event() */
9279         account_event(event);
9280
9281         return event;
9282
9283 err_addr_filters:
9284         kfree(event->addr_filters_offs);
9285
9286 err_per_task:
9287         exclusive_event_destroy(event);
9288
9289 err_pmu:
9290         if (event->destroy)
9291                 event->destroy(event);
9292         module_put(pmu->module);
9293 err_ns:
9294         if (is_cgroup_event(event))
9295                 perf_detach_cgroup(event);
9296         if (event->ns)
9297                 put_pid_ns(event->ns);
9298         kfree(event);
9299
9300         return ERR_PTR(err);
9301 }
9302
9303 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9304                           struct perf_event_attr *attr)
9305 {
9306         u32 size;
9307         int ret;
9308
9309         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9310                 return -EFAULT;
9311
9312         /*
9313          * zero the full structure, so that a short copy will be nice.
9314          */
9315         memset(attr, 0, sizeof(*attr));
9316
9317         ret = get_user(size, &uattr->size);
9318         if (ret)
9319                 return ret;
9320
9321         if (size > PAGE_SIZE)   /* silly large */
9322                 goto err_size;
9323
9324         if (!size)              /* abi compat */
9325                 size = PERF_ATTR_SIZE_VER0;
9326
9327         if (size < PERF_ATTR_SIZE_VER0)
9328                 goto err_size;
9329
9330         /*
9331          * If we're handed a bigger struct than we know of,
9332          * ensure all the unknown bits are 0 - i.e. new
9333          * user-space does not rely on any kernel feature
9334          * extensions we dont know about yet.
9335          */
9336         if (size > sizeof(*attr)) {
9337                 unsigned char __user *addr;
9338                 unsigned char __user *end;
9339                 unsigned char val;
9340
9341                 addr = (void __user *)uattr + sizeof(*attr);
9342                 end  = (void __user *)uattr + size;
9343
9344                 for (; addr < end; addr++) {
9345                         ret = get_user(val, addr);
9346                         if (ret)
9347                                 return ret;
9348                         if (val)
9349                                 goto err_size;
9350                 }
9351                 size = sizeof(*attr);
9352         }
9353
9354         ret = copy_from_user(attr, uattr, size);
9355         if (ret)
9356                 return -EFAULT;
9357
9358         if (attr->__reserved_1)
9359                 return -EINVAL;
9360
9361         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9362                 return -EINVAL;
9363
9364         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9365                 return -EINVAL;
9366
9367         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9368                 u64 mask = attr->branch_sample_type;
9369
9370                 /* only using defined bits */
9371                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9372                         return -EINVAL;
9373
9374                 /* at least one branch bit must be set */
9375                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9376                         return -EINVAL;
9377
9378                 /* propagate priv level, when not set for branch */
9379                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9380
9381                         /* exclude_kernel checked on syscall entry */
9382                         if (!attr->exclude_kernel)
9383                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9384
9385                         if (!attr->exclude_user)
9386                                 mask |= PERF_SAMPLE_BRANCH_USER;
9387
9388                         if (!attr->exclude_hv)
9389                                 mask |= PERF_SAMPLE_BRANCH_HV;
9390                         /*
9391                          * adjust user setting (for HW filter setup)
9392                          */
9393                         attr->branch_sample_type = mask;
9394                 }
9395                 /* privileged levels capture (kernel, hv): check permissions */
9396                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9397                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9398                         return -EACCES;
9399         }
9400
9401         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9402                 ret = perf_reg_validate(attr->sample_regs_user);
9403                 if (ret)
9404                         return ret;
9405         }
9406
9407         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9408                 if (!arch_perf_have_user_stack_dump())
9409                         return -ENOSYS;
9410
9411                 /*
9412                  * We have __u32 type for the size, but so far
9413                  * we can only use __u16 as maximum due to the
9414                  * __u16 sample size limit.
9415                  */
9416                 if (attr->sample_stack_user >= USHRT_MAX)
9417                         ret = -EINVAL;
9418                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9419                         ret = -EINVAL;
9420         }
9421
9422         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9423                 ret = perf_reg_validate(attr->sample_regs_intr);
9424 out:
9425         return ret;
9426
9427 err_size:
9428         put_user(sizeof(*attr), &uattr->size);
9429         ret = -E2BIG;
9430         goto out;
9431 }
9432
9433 static int
9434 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9435 {
9436         struct ring_buffer *rb = NULL;
9437         int ret = -EINVAL;
9438
9439         if (!output_event)
9440                 goto set;
9441
9442         /* don't allow circular references */
9443         if (event == output_event)
9444                 goto out;
9445
9446         /*
9447          * Don't allow cross-cpu buffers
9448          */
9449         if (output_event->cpu != event->cpu)
9450                 goto out;
9451
9452         /*
9453          * If its not a per-cpu rb, it must be the same task.
9454          */
9455         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9456                 goto out;
9457
9458         /*
9459          * Mixing clocks in the same buffer is trouble you don't need.
9460          */
9461         if (output_event->clock != event->clock)
9462                 goto out;
9463
9464         /*
9465          * Either writing ring buffer from beginning or from end.
9466          * Mixing is not allowed.
9467          */
9468         if (is_write_backward(output_event) != is_write_backward(event))
9469                 goto out;
9470
9471         /*
9472          * If both events generate aux data, they must be on the same PMU
9473          */
9474         if (has_aux(event) && has_aux(output_event) &&
9475             event->pmu != output_event->pmu)
9476                 goto out;
9477
9478 set:
9479         mutex_lock(&event->mmap_mutex);
9480         /* Can't redirect output if we've got an active mmap() */
9481         if (atomic_read(&event->mmap_count))
9482                 goto unlock;
9483
9484         if (output_event) {
9485                 /* get the rb we want to redirect to */
9486                 rb = ring_buffer_get(output_event);
9487                 if (!rb)
9488                         goto unlock;
9489         }
9490
9491         ring_buffer_attach(event, rb);
9492
9493         ret = 0;
9494 unlock:
9495         mutex_unlock(&event->mmap_mutex);
9496
9497 out:
9498         return ret;
9499 }
9500
9501 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9502 {
9503         if (b < a)
9504                 swap(a, b);
9505
9506         mutex_lock(a);
9507         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9508 }
9509
9510 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9511 {
9512         bool nmi_safe = false;
9513
9514         switch (clk_id) {
9515         case CLOCK_MONOTONIC:
9516                 event->clock = &ktime_get_mono_fast_ns;
9517                 nmi_safe = true;
9518                 break;
9519
9520         case CLOCK_MONOTONIC_RAW:
9521                 event->clock = &ktime_get_raw_fast_ns;
9522                 nmi_safe = true;
9523                 break;
9524
9525         case CLOCK_REALTIME:
9526                 event->clock = &ktime_get_real_ns;
9527                 break;
9528
9529         case CLOCK_BOOTTIME:
9530                 event->clock = &ktime_get_boot_ns;
9531                 break;
9532
9533         case CLOCK_TAI:
9534                 event->clock = &ktime_get_tai_ns;
9535                 break;
9536
9537         default:
9538                 return -EINVAL;
9539         }
9540
9541         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9542                 return -EINVAL;
9543
9544         return 0;
9545 }
9546
9547 /*
9548  * Variation on perf_event_ctx_lock_nested(), except we take two context
9549  * mutexes.
9550  */
9551 static struct perf_event_context *
9552 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9553                              struct perf_event_context *ctx)
9554 {
9555         struct perf_event_context *gctx;
9556
9557 again:
9558         rcu_read_lock();
9559         gctx = READ_ONCE(group_leader->ctx);
9560         if (!atomic_inc_not_zero(&gctx->refcount)) {
9561                 rcu_read_unlock();
9562                 goto again;
9563         }
9564         rcu_read_unlock();
9565
9566         mutex_lock_double(&gctx->mutex, &ctx->mutex);
9567
9568         if (group_leader->ctx != gctx) {
9569                 mutex_unlock(&ctx->mutex);
9570                 mutex_unlock(&gctx->mutex);
9571                 put_ctx(gctx);
9572                 goto again;
9573         }
9574
9575         return gctx;
9576 }
9577
9578 /**
9579  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9580  *
9581  * @attr_uptr:  event_id type attributes for monitoring/sampling
9582  * @pid:                target pid
9583  * @cpu:                target cpu
9584  * @group_fd:           group leader event fd
9585  */
9586 SYSCALL_DEFINE5(perf_event_open,
9587                 struct perf_event_attr __user *, attr_uptr,
9588                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9589 {
9590         struct perf_event *group_leader = NULL, *output_event = NULL;
9591         struct perf_event *event, *sibling;
9592         struct perf_event_attr attr;
9593         struct perf_event_context *ctx, *uninitialized_var(gctx);
9594         struct file *event_file = NULL;
9595         struct fd group = {NULL, 0};
9596         struct task_struct *task = NULL;
9597         struct pmu *pmu;
9598         int event_fd;
9599         int move_group = 0;
9600         int err;
9601         int f_flags = O_RDWR;
9602         int cgroup_fd = -1;
9603
9604         /* for future expandability... */
9605         if (flags & ~PERF_FLAG_ALL)
9606                 return -EINVAL;
9607
9608         err = perf_copy_attr(attr_uptr, &attr);
9609         if (err)
9610                 return err;
9611
9612         if (!attr.exclude_kernel) {
9613                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9614                         return -EACCES;
9615         }
9616
9617         if (attr.freq) {
9618                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9619                         return -EINVAL;
9620         } else {
9621                 if (attr.sample_period & (1ULL << 63))
9622                         return -EINVAL;
9623         }
9624
9625         if (!attr.sample_max_stack)
9626                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9627
9628         /*
9629          * In cgroup mode, the pid argument is used to pass the fd
9630          * opened to the cgroup directory in cgroupfs. The cpu argument
9631          * designates the cpu on which to monitor threads from that
9632          * cgroup.
9633          */
9634         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9635                 return -EINVAL;
9636
9637         if (flags & PERF_FLAG_FD_CLOEXEC)
9638                 f_flags |= O_CLOEXEC;
9639
9640         event_fd = get_unused_fd_flags(f_flags);
9641         if (event_fd < 0)
9642                 return event_fd;
9643
9644         if (group_fd != -1) {
9645                 err = perf_fget_light(group_fd, &group);
9646                 if (err)
9647                         goto err_fd;
9648                 group_leader = group.file->private_data;
9649                 if (flags & PERF_FLAG_FD_OUTPUT)
9650                         output_event = group_leader;
9651                 if (flags & PERF_FLAG_FD_NO_GROUP)
9652                         group_leader = NULL;
9653         }
9654
9655         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9656                 task = find_lively_task_by_vpid(pid);
9657                 if (IS_ERR(task)) {
9658                         err = PTR_ERR(task);
9659                         goto err_group_fd;
9660                 }
9661         }
9662
9663         if (task && group_leader &&
9664             group_leader->attr.inherit != attr.inherit) {
9665                 err = -EINVAL;
9666                 goto err_task;
9667         }
9668
9669         get_online_cpus();
9670
9671         if (task) {
9672                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9673                 if (err)
9674                         goto err_cpus;
9675
9676                 /*
9677                  * Reuse ptrace permission checks for now.
9678                  *
9679                  * We must hold cred_guard_mutex across this and any potential
9680                  * perf_install_in_context() call for this new event to
9681                  * serialize against exec() altering our credentials (and the
9682                  * perf_event_exit_task() that could imply).
9683                  */
9684                 err = -EACCES;
9685                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9686                         goto err_cred;
9687         }
9688
9689         if (flags & PERF_FLAG_PID_CGROUP)
9690                 cgroup_fd = pid;
9691
9692         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9693                                  NULL, NULL, cgroup_fd);
9694         if (IS_ERR(event)) {
9695                 err = PTR_ERR(event);
9696                 goto err_cred;
9697         }
9698
9699         if (is_sampling_event(event)) {
9700                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9701                         err = -EOPNOTSUPP;
9702                         goto err_alloc;
9703                 }
9704         }
9705
9706         /*
9707          * Special case software events and allow them to be part of
9708          * any hardware group.
9709          */
9710         pmu = event->pmu;
9711
9712         if (attr.use_clockid) {
9713                 err = perf_event_set_clock(event, attr.clockid);
9714                 if (err)
9715                         goto err_alloc;
9716         }
9717
9718         if (pmu->task_ctx_nr == perf_sw_context)
9719                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9720
9721         if (group_leader &&
9722             (is_software_event(event) != is_software_event(group_leader))) {
9723                 if (is_software_event(event)) {
9724                         /*
9725                          * If event and group_leader are not both a software
9726                          * event, and event is, then group leader is not.
9727                          *
9728                          * Allow the addition of software events to !software
9729                          * groups, this is safe because software events never
9730                          * fail to schedule.
9731                          */
9732                         pmu = group_leader->pmu;
9733                 } else if (is_software_event(group_leader) &&
9734                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9735                         /*
9736                          * In case the group is a pure software group, and we
9737                          * try to add a hardware event, move the whole group to
9738                          * the hardware context.
9739                          */
9740                         move_group = 1;
9741                 }
9742         }
9743
9744         /*
9745          * Get the target context (task or percpu):
9746          */
9747         ctx = find_get_context(pmu, task, event);
9748         if (IS_ERR(ctx)) {
9749                 err = PTR_ERR(ctx);
9750                 goto err_alloc;
9751         }
9752
9753         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9754                 err = -EBUSY;
9755                 goto err_context;
9756         }
9757
9758         /*
9759          * Look up the group leader (we will attach this event to it):
9760          */
9761         if (group_leader) {
9762                 err = -EINVAL;
9763
9764                 /*
9765                  * Do not allow a recursive hierarchy (this new sibling
9766                  * becoming part of another group-sibling):
9767                  */
9768                 if (group_leader->group_leader != group_leader)
9769                         goto err_context;
9770
9771                 /* All events in a group should have the same clock */
9772                 if (group_leader->clock != event->clock)
9773                         goto err_context;
9774
9775                 /*
9776                  * Do not allow to attach to a group in a different
9777                  * task or CPU context:
9778                  */
9779                 if (move_group) {
9780                         /*
9781                          * Make sure we're both on the same task, or both
9782                          * per-cpu events.
9783                          */
9784                         if (group_leader->ctx->task != ctx->task)
9785                                 goto err_context;
9786
9787                         /*
9788                          * Make sure we're both events for the same CPU;
9789                          * grouping events for different CPUs is broken; since
9790                          * you can never concurrently schedule them anyhow.
9791                          */
9792                         if (group_leader->cpu != event->cpu)
9793                                 goto err_context;
9794                 } else {
9795                         if (group_leader->ctx != ctx)
9796                                 goto err_context;
9797                 }
9798
9799                 /*
9800                  * Only a group leader can be exclusive or pinned
9801                  */
9802                 if (attr.exclusive || attr.pinned)
9803                         goto err_context;
9804         }
9805
9806         if (output_event) {
9807                 err = perf_event_set_output(event, output_event);
9808                 if (err)
9809                         goto err_context;
9810         }
9811
9812         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9813                                         f_flags);
9814         if (IS_ERR(event_file)) {
9815                 err = PTR_ERR(event_file);
9816                 event_file = NULL;
9817                 goto err_context;
9818         }
9819
9820         if (move_group) {
9821                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
9822
9823                 if (gctx->task == TASK_TOMBSTONE) {
9824                         err = -ESRCH;
9825                         goto err_locked;
9826                 }
9827
9828                 /*
9829                  * Check if we raced against another sys_perf_event_open() call
9830                  * moving the software group underneath us.
9831                  */
9832                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9833                         /*
9834                          * If someone moved the group out from under us, check
9835                          * if this new event wound up on the same ctx, if so
9836                          * its the regular !move_group case, otherwise fail.
9837                          */
9838                         if (gctx != ctx) {
9839                                 err = -EINVAL;
9840                                 goto err_locked;
9841                         } else {
9842                                 perf_event_ctx_unlock(group_leader, gctx);
9843                                 move_group = 0;
9844                         }
9845                 }
9846         } else {
9847                 mutex_lock(&ctx->mutex);
9848         }
9849
9850         if (ctx->task == TASK_TOMBSTONE) {
9851                 err = -ESRCH;
9852                 goto err_locked;
9853         }
9854
9855         if (!perf_event_validate_size(event)) {
9856                 err = -E2BIG;
9857                 goto err_locked;
9858         }
9859
9860         /*
9861          * Must be under the same ctx::mutex as perf_install_in_context(),
9862          * because we need to serialize with concurrent event creation.
9863          */
9864         if (!exclusive_event_installable(event, ctx)) {
9865                 /* exclusive and group stuff are assumed mutually exclusive */
9866                 WARN_ON_ONCE(move_group);
9867
9868                 err = -EBUSY;
9869                 goto err_locked;
9870         }
9871
9872         WARN_ON_ONCE(ctx->parent_ctx);
9873
9874         /*
9875          * This is the point on no return; we cannot fail hereafter. This is
9876          * where we start modifying current state.
9877          */
9878
9879         if (move_group) {
9880                 /*
9881                  * See perf_event_ctx_lock() for comments on the details
9882                  * of swizzling perf_event::ctx.
9883                  */
9884                 perf_remove_from_context(group_leader, 0);
9885
9886                 list_for_each_entry(sibling, &group_leader->sibling_list,
9887                                     group_entry) {
9888                         perf_remove_from_context(sibling, 0);
9889                         put_ctx(gctx);
9890                 }
9891
9892                 /*
9893                  * Wait for everybody to stop referencing the events through
9894                  * the old lists, before installing it on new lists.
9895                  */
9896                 synchronize_rcu();
9897
9898                 /*
9899                  * Install the group siblings before the group leader.
9900                  *
9901                  * Because a group leader will try and install the entire group
9902                  * (through the sibling list, which is still in-tact), we can
9903                  * end up with siblings installed in the wrong context.
9904                  *
9905                  * By installing siblings first we NO-OP because they're not
9906                  * reachable through the group lists.
9907                  */
9908                 list_for_each_entry(sibling, &group_leader->sibling_list,
9909                                     group_entry) {
9910                         perf_event__state_init(sibling);
9911                         perf_install_in_context(ctx, sibling, sibling->cpu);
9912                         get_ctx(ctx);
9913                 }
9914
9915                 /*
9916                  * Removing from the context ends up with disabled
9917                  * event. What we want here is event in the initial
9918                  * startup state, ready to be add into new context.
9919                  */
9920                 perf_event__state_init(group_leader);
9921                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9922                 get_ctx(ctx);
9923
9924                 /*
9925                  * Now that all events are installed in @ctx, nothing
9926                  * references @gctx anymore, so drop the last reference we have
9927                  * on it.
9928                  */
9929                 put_ctx(gctx);
9930         }
9931
9932         /*
9933          * Precalculate sample_data sizes; do while holding ctx::mutex such
9934          * that we're serialized against further additions and before
9935          * perf_install_in_context() which is the point the event is active and
9936          * can use these values.
9937          */
9938         perf_event__header_size(event);
9939         perf_event__id_header_size(event);
9940
9941         event->owner = current;
9942
9943         perf_install_in_context(ctx, event, event->cpu);
9944         perf_unpin_context(ctx);
9945
9946         if (move_group)
9947                 perf_event_ctx_unlock(group_leader, gctx);
9948         mutex_unlock(&ctx->mutex);
9949
9950         if (task) {
9951                 mutex_unlock(&task->signal->cred_guard_mutex);
9952                 put_task_struct(task);
9953         }
9954
9955         put_online_cpus();
9956
9957         mutex_lock(&current->perf_event_mutex);
9958         list_add_tail(&event->owner_entry, &current->perf_event_list);
9959         mutex_unlock(&current->perf_event_mutex);
9960
9961         /*
9962          * Drop the reference on the group_event after placing the
9963          * new event on the sibling_list. This ensures destruction
9964          * of the group leader will find the pointer to itself in
9965          * perf_group_detach().
9966          */
9967         fdput(group);
9968         fd_install(event_fd, event_file);
9969         return event_fd;
9970
9971 err_locked:
9972         if (move_group)
9973                 perf_event_ctx_unlock(group_leader, gctx);
9974         mutex_unlock(&ctx->mutex);
9975 /* err_file: */
9976         fput(event_file);
9977 err_context:
9978         perf_unpin_context(ctx);
9979         put_ctx(ctx);
9980 err_alloc:
9981         /*
9982          * If event_file is set, the fput() above will have called ->release()
9983          * and that will take care of freeing the event.
9984          */
9985         if (!event_file)
9986                 free_event(event);
9987 err_cred:
9988         if (task)
9989                 mutex_unlock(&task->signal->cred_guard_mutex);
9990 err_cpus:
9991         put_online_cpus();
9992 err_task:
9993         if (task)
9994                 put_task_struct(task);
9995 err_group_fd:
9996         fdput(group);
9997 err_fd:
9998         put_unused_fd(event_fd);
9999         return err;
10000 }
10001
10002 /**
10003  * perf_event_create_kernel_counter
10004  *
10005  * @attr: attributes of the counter to create
10006  * @cpu: cpu in which the counter is bound
10007  * @task: task to profile (NULL for percpu)
10008  */
10009 struct perf_event *
10010 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10011                                  struct task_struct *task,
10012                                  perf_overflow_handler_t overflow_handler,
10013                                  void *context)
10014 {
10015         struct perf_event_context *ctx;
10016         struct perf_event *event;
10017         int err;
10018
10019         /*
10020          * Get the target context (task or percpu):
10021          */
10022
10023         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10024                                  overflow_handler, context, -1);
10025         if (IS_ERR(event)) {
10026                 err = PTR_ERR(event);
10027                 goto err;
10028         }
10029
10030         /* Mark owner so we could distinguish it from user events. */
10031         event->owner = TASK_TOMBSTONE;
10032
10033         ctx = find_get_context(event->pmu, task, event);
10034         if (IS_ERR(ctx)) {
10035                 err = PTR_ERR(ctx);
10036                 goto err_free;
10037         }
10038
10039         WARN_ON_ONCE(ctx->parent_ctx);
10040         mutex_lock(&ctx->mutex);
10041         if (ctx->task == TASK_TOMBSTONE) {
10042                 err = -ESRCH;
10043                 goto err_unlock;
10044         }
10045
10046         if (!exclusive_event_installable(event, ctx)) {
10047                 err = -EBUSY;
10048                 goto err_unlock;
10049         }
10050
10051         perf_install_in_context(ctx, event, cpu);
10052         perf_unpin_context(ctx);
10053         mutex_unlock(&ctx->mutex);
10054
10055         return event;
10056
10057 err_unlock:
10058         mutex_unlock(&ctx->mutex);
10059         perf_unpin_context(ctx);
10060         put_ctx(ctx);
10061 err_free:
10062         free_event(event);
10063 err:
10064         return ERR_PTR(err);
10065 }
10066 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10067
10068 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10069 {
10070         struct perf_event_context *src_ctx;
10071         struct perf_event_context *dst_ctx;
10072         struct perf_event *event, *tmp;
10073         LIST_HEAD(events);
10074
10075         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10076         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10077
10078         /*
10079          * See perf_event_ctx_lock() for comments on the details
10080          * of swizzling perf_event::ctx.
10081          */
10082         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10083         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10084                                  event_entry) {
10085                 perf_remove_from_context(event, 0);
10086                 unaccount_event_cpu(event, src_cpu);
10087                 put_ctx(src_ctx);
10088                 list_add(&event->migrate_entry, &events);
10089         }
10090
10091         /*
10092          * Wait for the events to quiesce before re-instating them.
10093          */
10094         synchronize_rcu();
10095
10096         /*
10097          * Re-instate events in 2 passes.
10098          *
10099          * Skip over group leaders and only install siblings on this first
10100          * pass, siblings will not get enabled without a leader, however a
10101          * leader will enable its siblings, even if those are still on the old
10102          * context.
10103          */
10104         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10105                 if (event->group_leader == event)
10106                         continue;
10107
10108                 list_del(&event->migrate_entry);
10109                 if (event->state >= PERF_EVENT_STATE_OFF)
10110                         event->state = PERF_EVENT_STATE_INACTIVE;
10111                 account_event_cpu(event, dst_cpu);
10112                 perf_install_in_context(dst_ctx, event, dst_cpu);
10113                 get_ctx(dst_ctx);
10114         }
10115
10116         /*
10117          * Once all the siblings are setup properly, install the group leaders
10118          * to make it go.
10119          */
10120         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10121                 list_del(&event->migrate_entry);
10122                 if (event->state >= PERF_EVENT_STATE_OFF)
10123                         event->state = PERF_EVENT_STATE_INACTIVE;
10124                 account_event_cpu(event, dst_cpu);
10125                 perf_install_in_context(dst_ctx, event, dst_cpu);
10126                 get_ctx(dst_ctx);
10127         }
10128         mutex_unlock(&dst_ctx->mutex);
10129         mutex_unlock(&src_ctx->mutex);
10130 }
10131 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10132
10133 static void sync_child_event(struct perf_event *child_event,
10134                                struct task_struct *child)
10135 {
10136         struct perf_event *parent_event = child_event->parent;
10137         u64 child_val;
10138
10139         if (child_event->attr.inherit_stat)
10140                 perf_event_read_event(child_event, child);
10141
10142         child_val = perf_event_count(child_event);
10143
10144         /*
10145          * Add back the child's count to the parent's count:
10146          */
10147         atomic64_add(child_val, &parent_event->child_count);
10148         atomic64_add(child_event->total_time_enabled,
10149                      &parent_event->child_total_time_enabled);
10150         atomic64_add(child_event->total_time_running,
10151                      &parent_event->child_total_time_running);
10152 }
10153
10154 static void
10155 perf_event_exit_event(struct perf_event *child_event,
10156                       struct perf_event_context *child_ctx,
10157                       struct task_struct *child)
10158 {
10159         struct perf_event *parent_event = child_event->parent;
10160
10161         /*
10162          * Do not destroy the 'original' grouping; because of the context
10163          * switch optimization the original events could've ended up in a
10164          * random child task.
10165          *
10166          * If we were to destroy the original group, all group related
10167          * operations would cease to function properly after this random
10168          * child dies.
10169          *
10170          * Do destroy all inherited groups, we don't care about those
10171          * and being thorough is better.
10172          */
10173         raw_spin_lock_irq(&child_ctx->lock);
10174         WARN_ON_ONCE(child_ctx->is_active);
10175
10176         if (parent_event)
10177                 perf_group_detach(child_event);
10178         list_del_event(child_event, child_ctx);
10179         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10180         raw_spin_unlock_irq(&child_ctx->lock);
10181
10182         /*
10183          * Parent events are governed by their filedesc, retain them.
10184          */
10185         if (!parent_event) {
10186                 perf_event_wakeup(child_event);
10187                 return;
10188         }
10189         /*
10190          * Child events can be cleaned up.
10191          */
10192
10193         sync_child_event(child_event, child);
10194
10195         /*
10196          * Remove this event from the parent's list
10197          */
10198         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10199         mutex_lock(&parent_event->child_mutex);
10200         list_del_init(&child_event->child_list);
10201         mutex_unlock(&parent_event->child_mutex);
10202
10203         /*
10204          * Kick perf_poll() for is_event_hup().
10205          */
10206         perf_event_wakeup(parent_event);
10207         free_event(child_event);
10208         put_event(parent_event);
10209 }
10210
10211 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10212 {
10213         struct perf_event_context *child_ctx, *clone_ctx = NULL;
10214         struct perf_event *child_event, *next;
10215
10216         WARN_ON_ONCE(child != current);
10217
10218         child_ctx = perf_pin_task_context(child, ctxn);
10219         if (!child_ctx)
10220                 return;
10221
10222         /*
10223          * In order to reduce the amount of tricky in ctx tear-down, we hold
10224          * ctx::mutex over the entire thing. This serializes against almost
10225          * everything that wants to access the ctx.
10226          *
10227          * The exception is sys_perf_event_open() /
10228          * perf_event_create_kernel_count() which does find_get_context()
10229          * without ctx::mutex (it cannot because of the move_group double mutex
10230          * lock thing). See the comments in perf_install_in_context().
10231          */
10232         mutex_lock(&child_ctx->mutex);
10233
10234         /*
10235          * In a single ctx::lock section, de-schedule the events and detach the
10236          * context from the task such that we cannot ever get it scheduled back
10237          * in.
10238          */
10239         raw_spin_lock_irq(&child_ctx->lock);
10240         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10241
10242         /*
10243          * Now that the context is inactive, destroy the task <-> ctx relation
10244          * and mark the context dead.
10245          */
10246         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10247         put_ctx(child_ctx); /* cannot be last */
10248         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10249         put_task_struct(current); /* cannot be last */
10250
10251         clone_ctx = unclone_ctx(child_ctx);
10252         raw_spin_unlock_irq(&child_ctx->lock);
10253
10254         if (clone_ctx)
10255                 put_ctx(clone_ctx);
10256
10257         /*
10258          * Report the task dead after unscheduling the events so that we
10259          * won't get any samples after PERF_RECORD_EXIT. We can however still
10260          * get a few PERF_RECORD_READ events.
10261          */
10262         perf_event_task(child, child_ctx, 0);
10263
10264         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10265                 perf_event_exit_event(child_event, child_ctx, child);
10266
10267         mutex_unlock(&child_ctx->mutex);
10268
10269         put_ctx(child_ctx);
10270 }
10271
10272 /*
10273  * When a child task exits, feed back event values to parent events.
10274  *
10275  * Can be called with cred_guard_mutex held when called from
10276  * install_exec_creds().
10277  */
10278 void perf_event_exit_task(struct task_struct *child)
10279 {
10280         struct perf_event *event, *tmp;
10281         int ctxn;
10282
10283         mutex_lock(&child->perf_event_mutex);
10284         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10285                                  owner_entry) {
10286                 list_del_init(&event->owner_entry);
10287
10288                 /*
10289                  * Ensure the list deletion is visible before we clear
10290                  * the owner, closes a race against perf_release() where
10291                  * we need to serialize on the owner->perf_event_mutex.
10292                  */
10293                 smp_store_release(&event->owner, NULL);
10294         }
10295         mutex_unlock(&child->perf_event_mutex);
10296
10297         for_each_task_context_nr(ctxn)
10298                 perf_event_exit_task_context(child, ctxn);
10299
10300         /*
10301          * The perf_event_exit_task_context calls perf_event_task
10302          * with child's task_ctx, which generates EXIT events for
10303          * child contexts and sets child->perf_event_ctxp[] to NULL.
10304          * At this point we need to send EXIT events to cpu contexts.
10305          */
10306         perf_event_task(child, NULL, 0);
10307 }
10308
10309 static void perf_free_event(struct perf_event *event,
10310                             struct perf_event_context *ctx)
10311 {
10312         struct perf_event *parent = event->parent;
10313
10314         if (WARN_ON_ONCE(!parent))
10315                 return;
10316
10317         mutex_lock(&parent->child_mutex);
10318         list_del_init(&event->child_list);
10319         mutex_unlock(&parent->child_mutex);
10320
10321         put_event(parent);
10322
10323         raw_spin_lock_irq(&ctx->lock);
10324         perf_group_detach(event);
10325         list_del_event(event, ctx);
10326         raw_spin_unlock_irq(&ctx->lock);
10327         free_event(event);
10328 }
10329
10330 /*
10331  * Free an unexposed, unused context as created by inheritance by
10332  * perf_event_init_task below, used by fork() in case of fail.
10333  *
10334  * Not all locks are strictly required, but take them anyway to be nice and
10335  * help out with the lockdep assertions.
10336  */
10337 void perf_event_free_task(struct task_struct *task)
10338 {
10339         struct perf_event_context *ctx;
10340         struct perf_event *event, *tmp;
10341         int ctxn;
10342
10343         for_each_task_context_nr(ctxn) {
10344                 ctx = task->perf_event_ctxp[ctxn];
10345                 if (!ctx)
10346                         continue;
10347
10348                 mutex_lock(&ctx->mutex);
10349 again:
10350                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10351                                 group_entry)
10352                         perf_free_event(event, ctx);
10353
10354                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10355                                 group_entry)
10356                         perf_free_event(event, ctx);
10357
10358                 if (!list_empty(&ctx->pinned_groups) ||
10359                                 !list_empty(&ctx->flexible_groups))
10360                         goto again;
10361
10362                 mutex_unlock(&ctx->mutex);
10363
10364                 put_ctx(ctx);
10365         }
10366 }
10367
10368 void perf_event_delayed_put(struct task_struct *task)
10369 {
10370         int ctxn;
10371
10372         for_each_task_context_nr(ctxn)
10373                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10374 }
10375
10376 struct file *perf_event_get(unsigned int fd)
10377 {
10378         struct file *file;
10379
10380         file = fget_raw(fd);
10381         if (!file)
10382                 return ERR_PTR(-EBADF);
10383
10384         if (file->f_op != &perf_fops) {
10385                 fput(file);
10386                 return ERR_PTR(-EBADF);
10387         }
10388
10389         return file;
10390 }
10391
10392 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10393 {
10394         if (!event)
10395                 return ERR_PTR(-EINVAL);
10396
10397         return &event->attr;
10398 }
10399
10400 /*
10401  * inherit a event from parent task to child task:
10402  */
10403 static struct perf_event *
10404 inherit_event(struct perf_event *parent_event,
10405               struct task_struct *parent,
10406               struct perf_event_context *parent_ctx,
10407               struct task_struct *child,
10408               struct perf_event *group_leader,
10409               struct perf_event_context *child_ctx)
10410 {
10411         enum perf_event_active_state parent_state = parent_event->state;
10412         struct perf_event *child_event;
10413         unsigned long flags;
10414
10415         /*
10416          * Instead of creating recursive hierarchies of events,
10417          * we link inherited events back to the original parent,
10418          * which has a filp for sure, which we use as the reference
10419          * count:
10420          */
10421         if (parent_event->parent)
10422                 parent_event = parent_event->parent;
10423
10424         child_event = perf_event_alloc(&parent_event->attr,
10425                                            parent_event->cpu,
10426                                            child,
10427                                            group_leader, parent_event,
10428                                            NULL, NULL, -1);
10429         if (IS_ERR(child_event))
10430                 return child_event;
10431
10432         /*
10433          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10434          * must be under the same lock in order to serialize against
10435          * perf_event_release_kernel(), such that either we must observe
10436          * is_orphaned_event() or they will observe us on the child_list.
10437          */
10438         mutex_lock(&parent_event->child_mutex);
10439         if (is_orphaned_event(parent_event) ||
10440             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10441                 mutex_unlock(&parent_event->child_mutex);
10442                 free_event(child_event);
10443                 return NULL;
10444         }
10445
10446         get_ctx(child_ctx);
10447
10448         /*
10449          * Make the child state follow the state of the parent event,
10450          * not its attr.disabled bit.  We hold the parent's mutex,
10451          * so we won't race with perf_event_{en, dis}able_family.
10452          */
10453         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10454                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10455         else
10456                 child_event->state = PERF_EVENT_STATE_OFF;
10457
10458         if (parent_event->attr.freq) {
10459                 u64 sample_period = parent_event->hw.sample_period;
10460                 struct hw_perf_event *hwc = &child_event->hw;
10461
10462                 hwc->sample_period = sample_period;
10463                 hwc->last_period   = sample_period;
10464
10465                 local64_set(&hwc->period_left, sample_period);
10466         }
10467
10468         child_event->ctx = child_ctx;
10469         child_event->overflow_handler = parent_event->overflow_handler;
10470         child_event->overflow_handler_context
10471                 = parent_event->overflow_handler_context;
10472
10473         /*
10474          * Precalculate sample_data sizes
10475          */
10476         perf_event__header_size(child_event);
10477         perf_event__id_header_size(child_event);
10478
10479         /*
10480          * Link it up in the child's context:
10481          */
10482         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10483         add_event_to_ctx(child_event, child_ctx);
10484         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10485
10486         /*
10487          * Link this into the parent event's child list
10488          */
10489         list_add_tail(&child_event->child_list, &parent_event->child_list);
10490         mutex_unlock(&parent_event->child_mutex);
10491
10492         return child_event;
10493 }
10494
10495 static int inherit_group(struct perf_event *parent_event,
10496               struct task_struct *parent,
10497               struct perf_event_context *parent_ctx,
10498               struct task_struct *child,
10499               struct perf_event_context *child_ctx)
10500 {
10501         struct perf_event *leader;
10502         struct perf_event *sub;
10503         struct perf_event *child_ctr;
10504
10505         leader = inherit_event(parent_event, parent, parent_ctx,
10506                                  child, NULL, child_ctx);
10507         if (IS_ERR(leader))
10508                 return PTR_ERR(leader);
10509         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10510                 child_ctr = inherit_event(sub, parent, parent_ctx,
10511                                             child, leader, child_ctx);
10512                 if (IS_ERR(child_ctr))
10513                         return PTR_ERR(child_ctr);
10514         }
10515         return 0;
10516 }
10517
10518 static int
10519 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10520                    struct perf_event_context *parent_ctx,
10521                    struct task_struct *child, int ctxn,
10522                    int *inherited_all)
10523 {
10524         int ret;
10525         struct perf_event_context *child_ctx;
10526
10527         if (!event->attr.inherit) {
10528                 *inherited_all = 0;
10529                 return 0;
10530         }
10531
10532         child_ctx = child->perf_event_ctxp[ctxn];
10533         if (!child_ctx) {
10534                 /*
10535                  * This is executed from the parent task context, so
10536                  * inherit events that have been marked for cloning.
10537                  * First allocate and initialize a context for the
10538                  * child.
10539                  */
10540
10541                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10542                 if (!child_ctx)
10543                         return -ENOMEM;
10544
10545                 child->perf_event_ctxp[ctxn] = child_ctx;
10546         }
10547
10548         ret = inherit_group(event, parent, parent_ctx,
10549                             child, child_ctx);
10550
10551         if (ret)
10552                 *inherited_all = 0;
10553
10554         return ret;
10555 }
10556
10557 /*
10558  * Initialize the perf_event context in task_struct
10559  */
10560 static int perf_event_init_context(struct task_struct *child, int ctxn)
10561 {
10562         struct perf_event_context *child_ctx, *parent_ctx;
10563         struct perf_event_context *cloned_ctx;
10564         struct perf_event *event;
10565         struct task_struct *parent = current;
10566         int inherited_all = 1;
10567         unsigned long flags;
10568         int ret = 0;
10569
10570         if (likely(!parent->perf_event_ctxp[ctxn]))
10571                 return 0;
10572
10573         /*
10574          * If the parent's context is a clone, pin it so it won't get
10575          * swapped under us.
10576          */
10577         parent_ctx = perf_pin_task_context(parent, ctxn);
10578         if (!parent_ctx)
10579                 return 0;
10580
10581         /*
10582          * No need to check if parent_ctx != NULL here; since we saw
10583          * it non-NULL earlier, the only reason for it to become NULL
10584          * is if we exit, and since we're currently in the middle of
10585          * a fork we can't be exiting at the same time.
10586          */
10587
10588         /*
10589          * Lock the parent list. No need to lock the child - not PID
10590          * hashed yet and not running, so nobody can access it.
10591          */
10592         mutex_lock(&parent_ctx->mutex);
10593
10594         /*
10595          * We dont have to disable NMIs - we are only looking at
10596          * the list, not manipulating it:
10597          */
10598         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10599                 ret = inherit_task_group(event, parent, parent_ctx,
10600                                          child, ctxn, &inherited_all);
10601                 if (ret)
10602                         break;
10603         }
10604
10605         /*
10606          * We can't hold ctx->lock when iterating the ->flexible_group list due
10607          * to allocations, but we need to prevent rotation because
10608          * rotate_ctx() will change the list from interrupt context.
10609          */
10610         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10611         parent_ctx->rotate_disable = 1;
10612         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10613
10614         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10615                 ret = inherit_task_group(event, parent, parent_ctx,
10616                                          child, ctxn, &inherited_all);
10617                 if (ret)
10618                         break;
10619         }
10620
10621         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10622         parent_ctx->rotate_disable = 0;
10623
10624         child_ctx = child->perf_event_ctxp[ctxn];
10625
10626         if (child_ctx && inherited_all) {
10627                 /*
10628                  * Mark the child context as a clone of the parent
10629                  * context, or of whatever the parent is a clone of.
10630                  *
10631                  * Note that if the parent is a clone, the holding of
10632                  * parent_ctx->lock avoids it from being uncloned.
10633                  */
10634                 cloned_ctx = parent_ctx->parent_ctx;
10635                 if (cloned_ctx) {
10636                         child_ctx->parent_ctx = cloned_ctx;
10637                         child_ctx->parent_gen = parent_ctx->parent_gen;
10638                 } else {
10639                         child_ctx->parent_ctx = parent_ctx;
10640                         child_ctx->parent_gen = parent_ctx->generation;
10641                 }
10642                 get_ctx(child_ctx->parent_ctx);
10643         }
10644
10645         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10646         mutex_unlock(&parent_ctx->mutex);
10647
10648         perf_unpin_context(parent_ctx);
10649         put_ctx(parent_ctx);
10650
10651         return ret;
10652 }
10653
10654 /*
10655  * Initialize the perf_event context in task_struct
10656  */
10657 int perf_event_init_task(struct task_struct *child)
10658 {
10659         int ctxn, ret;
10660
10661         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10662         mutex_init(&child->perf_event_mutex);
10663         INIT_LIST_HEAD(&child->perf_event_list);
10664
10665         for_each_task_context_nr(ctxn) {
10666                 ret = perf_event_init_context(child, ctxn);
10667                 if (ret) {
10668                         perf_event_free_task(child);
10669                         return ret;
10670                 }
10671         }
10672
10673         return 0;
10674 }
10675
10676 static void __init perf_event_init_all_cpus(void)
10677 {
10678         struct swevent_htable *swhash;
10679         int cpu;
10680
10681         for_each_possible_cpu(cpu) {
10682                 swhash = &per_cpu(swevent_htable, cpu);
10683                 mutex_init(&swhash->hlist_mutex);
10684                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10685
10686                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10687                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10688
10689                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10690         }
10691 }
10692
10693 int perf_event_init_cpu(unsigned int cpu)
10694 {
10695         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10696
10697         mutex_lock(&swhash->hlist_mutex);
10698         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10699                 struct swevent_hlist *hlist;
10700
10701                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10702                 WARN_ON(!hlist);
10703                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10704         }
10705         mutex_unlock(&swhash->hlist_mutex);
10706         return 0;
10707 }
10708
10709 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10710 static void __perf_event_exit_context(void *__info)
10711 {
10712         struct perf_event_context *ctx = __info;
10713         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10714         struct perf_event *event;
10715
10716         raw_spin_lock(&ctx->lock);
10717         list_for_each_entry(event, &ctx->event_list, event_entry)
10718                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10719         raw_spin_unlock(&ctx->lock);
10720 }
10721
10722 static void perf_event_exit_cpu_context(int cpu)
10723 {
10724         struct perf_event_context *ctx;
10725         struct pmu *pmu;
10726         int idx;
10727
10728         idx = srcu_read_lock(&pmus_srcu);
10729         list_for_each_entry_rcu(pmu, &pmus, entry) {
10730                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10731
10732                 mutex_lock(&ctx->mutex);
10733                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10734                 mutex_unlock(&ctx->mutex);
10735         }
10736         srcu_read_unlock(&pmus_srcu, idx);
10737 }
10738 #else
10739
10740 static void perf_event_exit_cpu_context(int cpu) { }
10741
10742 #endif
10743
10744 int perf_event_exit_cpu(unsigned int cpu)
10745 {
10746         perf_event_exit_cpu_context(cpu);
10747         return 0;
10748 }
10749
10750 static int
10751 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10752 {
10753         int cpu;
10754
10755         for_each_online_cpu(cpu)
10756                 perf_event_exit_cpu(cpu);
10757
10758         return NOTIFY_OK;
10759 }
10760
10761 /*
10762  * Run the perf reboot notifier at the very last possible moment so that
10763  * the generic watchdog code runs as long as possible.
10764  */
10765 static struct notifier_block perf_reboot_notifier = {
10766         .notifier_call = perf_reboot,
10767         .priority = INT_MIN,
10768 };
10769
10770 void __init perf_event_init(void)
10771 {
10772         int ret;
10773
10774         idr_init(&pmu_idr);
10775
10776         perf_event_init_all_cpus();
10777         init_srcu_struct(&pmus_srcu);
10778         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10779         perf_pmu_register(&perf_cpu_clock, NULL, -1);
10780         perf_pmu_register(&perf_task_clock, NULL, -1);
10781         perf_tp_register();
10782         perf_event_init_cpu(smp_processor_id());
10783         register_reboot_notifier(&perf_reboot_notifier);
10784
10785         ret = init_hw_breakpoint();
10786         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10787
10788         /*
10789          * Build time assertion that we keep the data_head at the intended
10790          * location.  IOW, validation we got the __reserved[] size right.
10791          */
10792         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10793                      != 1024);
10794 }
10795
10796 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10797                               char *page)
10798 {
10799         struct perf_pmu_events_attr *pmu_attr =
10800                 container_of(attr, struct perf_pmu_events_attr, attr);
10801
10802         if (pmu_attr->event_str)
10803                 return sprintf(page, "%s\n", pmu_attr->event_str);
10804
10805         return 0;
10806 }
10807 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10808
10809 static int __init perf_event_sysfs_init(void)
10810 {
10811         struct pmu *pmu;
10812         int ret;
10813
10814         mutex_lock(&pmus_lock);
10815
10816         ret = bus_register(&pmu_bus);
10817         if (ret)
10818                 goto unlock;
10819
10820         list_for_each_entry(pmu, &pmus, entry) {
10821                 if (!pmu->name || pmu->type < 0)
10822                         continue;
10823
10824                 ret = pmu_dev_alloc(pmu);
10825                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10826         }
10827         pmu_bus_running = 1;
10828         ret = 0;
10829
10830 unlock:
10831         mutex_unlock(&pmus_lock);
10832
10833         return ret;
10834 }
10835 device_initcall(perf_event_sysfs_init);
10836
10837 #ifdef CONFIG_CGROUP_PERF
10838 static struct cgroup_subsys_state *
10839 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10840 {
10841         struct perf_cgroup *jc;
10842
10843         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10844         if (!jc)
10845                 return ERR_PTR(-ENOMEM);
10846
10847         jc->info = alloc_percpu(struct perf_cgroup_info);
10848         if (!jc->info) {
10849                 kfree(jc);
10850                 return ERR_PTR(-ENOMEM);
10851         }
10852
10853         return &jc->css;
10854 }
10855
10856 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10857 {
10858         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10859
10860         free_percpu(jc->info);
10861         kfree(jc);
10862 }
10863
10864 static int __perf_cgroup_move(void *info)
10865 {
10866         struct task_struct *task = info;
10867         rcu_read_lock();
10868         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10869         rcu_read_unlock();
10870         return 0;
10871 }
10872
10873 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10874 {
10875         struct task_struct *task;
10876         struct cgroup_subsys_state *css;
10877
10878         cgroup_taskset_for_each(task, css, tset)
10879                 task_function_call(task, __perf_cgroup_move, task);
10880 }
10881
10882 struct cgroup_subsys perf_event_cgrp_subsys = {
10883         .css_alloc      = perf_cgroup_css_alloc,
10884         .css_free       = perf_cgroup_css_free,
10885         .attach         = perf_cgroup_attach,
10886 };
10887 #endif /* CONFIG_CGROUP_PERF */