]> asedeno.scripts.mit.edu Git - linux.git/blob - kernel/events/core.c
perf/cgroups: Don't rotate events for cgroups unnecessarily
[linux.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
52
53 #include "internal.h"
54
55 #include <asm/irq_regs.h>
56
57 typedef int (*remote_function_f)(void *);
58
59 struct remote_function_call {
60         struct task_struct      *p;
61         remote_function_f       func;
62         void                    *info;
63         int                     ret;
64 };
65
66 static void remote_function(void *data)
67 {
68         struct remote_function_call *tfc = data;
69         struct task_struct *p = tfc->p;
70
71         if (p) {
72                 /* -EAGAIN */
73                 if (task_cpu(p) != smp_processor_id())
74                         return;
75
76                 /*
77                  * Now that we're on right CPU with IRQs disabled, we can test
78                  * if we hit the right task without races.
79                  */
80
81                 tfc->ret = -ESRCH; /* No such (running) process */
82                 if (p != current)
83                         return;
84         }
85
86         tfc->ret = tfc->func(tfc->info);
87 }
88
89 /**
90  * task_function_call - call a function on the cpu on which a task runs
91  * @p:          the task to evaluate
92  * @func:       the function to be called
93  * @info:       the function call argument
94  *
95  * Calls the function @func when the task is currently running. This might
96  * be on the current CPU, which just calls the function directly
97  *
98  * returns: @func return value, or
99  *          -ESRCH  - when the process isn't running
100  *          -EAGAIN - when the process moved away
101  */
102 static int
103 task_function_call(struct task_struct *p, remote_function_f func, void *info)
104 {
105         struct remote_function_call data = {
106                 .p      = p,
107                 .func   = func,
108                 .info   = info,
109                 .ret    = -EAGAIN,
110         };
111         int ret;
112
113         do {
114                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115                 if (!ret)
116                         ret = data.ret;
117         } while (ret == -EAGAIN);
118
119         return ret;
120 }
121
122 /**
123  * cpu_function_call - call a function on the cpu
124  * @func:       the function to be called
125  * @info:       the function call argument
126  *
127  * Calls the function @func on the remote cpu.
128  *
129  * returns: @func return value or -ENXIO when the cpu is offline
130  */
131 static int cpu_function_call(int cpu, remote_function_f func, void *info)
132 {
133         struct remote_function_call data = {
134                 .p      = NULL,
135                 .func   = func,
136                 .info   = info,
137                 .ret    = -ENXIO, /* No such CPU */
138         };
139
140         smp_call_function_single(cpu, remote_function, &data, 1);
141
142         return data.ret;
143 }
144
145 static inline struct perf_cpu_context *
146 __get_cpu_context(struct perf_event_context *ctx)
147 {
148         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149 }
150
151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152                           struct perf_event_context *ctx)
153 {
154         raw_spin_lock(&cpuctx->ctx.lock);
155         if (ctx)
156                 raw_spin_lock(&ctx->lock);
157 }
158
159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160                             struct perf_event_context *ctx)
161 {
162         if (ctx)
163                 raw_spin_unlock(&ctx->lock);
164         raw_spin_unlock(&cpuctx->ctx.lock);
165 }
166
167 #define TASK_TOMBSTONE ((void *)-1L)
168
169 static bool is_kernel_event(struct perf_event *event)
170 {
171         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172 }
173
174 /*
175  * On task ctx scheduling...
176  *
177  * When !ctx->nr_events a task context will not be scheduled. This means
178  * we can disable the scheduler hooks (for performance) without leaving
179  * pending task ctx state.
180  *
181  * This however results in two special cases:
182  *
183  *  - removing the last event from a task ctx; this is relatively straight
184  *    forward and is done in __perf_remove_from_context.
185  *
186  *  - adding the first event to a task ctx; this is tricky because we cannot
187  *    rely on ctx->is_active and therefore cannot use event_function_call().
188  *    See perf_install_in_context().
189  *
190  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191  */
192
193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194                         struct perf_event_context *, void *);
195
196 struct event_function_struct {
197         struct perf_event *event;
198         event_f func;
199         void *data;
200 };
201
202 static int event_function(void *info)
203 {
204         struct event_function_struct *efs = info;
205         struct perf_event *event = efs->event;
206         struct perf_event_context *ctx = event->ctx;
207         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208         struct perf_event_context *task_ctx = cpuctx->task_ctx;
209         int ret = 0;
210
211         lockdep_assert_irqs_disabled();
212
213         perf_ctx_lock(cpuctx, task_ctx);
214         /*
215          * Since we do the IPI call without holding ctx->lock things can have
216          * changed, double check we hit the task we set out to hit.
217          */
218         if (ctx->task) {
219                 if (ctx->task != current) {
220                         ret = -ESRCH;
221                         goto unlock;
222                 }
223
224                 /*
225                  * We only use event_function_call() on established contexts,
226                  * and event_function() is only ever called when active (or
227                  * rather, we'll have bailed in task_function_call() or the
228                  * above ctx->task != current test), therefore we must have
229                  * ctx->is_active here.
230                  */
231                 WARN_ON_ONCE(!ctx->is_active);
232                 /*
233                  * And since we have ctx->is_active, cpuctx->task_ctx must
234                  * match.
235                  */
236                 WARN_ON_ONCE(task_ctx != ctx);
237         } else {
238                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
239         }
240
241         efs->func(event, cpuctx, ctx, efs->data);
242 unlock:
243         perf_ctx_unlock(cpuctx, task_ctx);
244
245         return ret;
246 }
247
248 static void event_function_call(struct perf_event *event, event_f func, void *data)
249 {
250         struct perf_event_context *ctx = event->ctx;
251         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
252         struct event_function_struct efs = {
253                 .event = event,
254                 .func = func,
255                 .data = data,
256         };
257
258         if (!event->parent) {
259                 /*
260                  * If this is a !child event, we must hold ctx::mutex to
261                  * stabilize the the event->ctx relation. See
262                  * perf_event_ctx_lock().
263                  */
264                 lockdep_assert_held(&ctx->mutex);
265         }
266
267         if (!task) {
268                 cpu_function_call(event->cpu, event_function, &efs);
269                 return;
270         }
271
272         if (task == TASK_TOMBSTONE)
273                 return;
274
275 again:
276         if (!task_function_call(task, event_function, &efs))
277                 return;
278
279         raw_spin_lock_irq(&ctx->lock);
280         /*
281          * Reload the task pointer, it might have been changed by
282          * a concurrent perf_event_context_sched_out().
283          */
284         task = ctx->task;
285         if (task == TASK_TOMBSTONE) {
286                 raw_spin_unlock_irq(&ctx->lock);
287                 return;
288         }
289         if (ctx->is_active) {
290                 raw_spin_unlock_irq(&ctx->lock);
291                 goto again;
292         }
293         func(event, NULL, ctx, data);
294         raw_spin_unlock_irq(&ctx->lock);
295 }
296
297 /*
298  * Similar to event_function_call() + event_function(), but hard assumes IRQs
299  * are already disabled and we're on the right CPU.
300  */
301 static void event_function_local(struct perf_event *event, event_f func, void *data)
302 {
303         struct perf_event_context *ctx = event->ctx;
304         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305         struct task_struct *task = READ_ONCE(ctx->task);
306         struct perf_event_context *task_ctx = NULL;
307
308         lockdep_assert_irqs_disabled();
309
310         if (task) {
311                 if (task == TASK_TOMBSTONE)
312                         return;
313
314                 task_ctx = ctx;
315         }
316
317         perf_ctx_lock(cpuctx, task_ctx);
318
319         task = ctx->task;
320         if (task == TASK_TOMBSTONE)
321                 goto unlock;
322
323         if (task) {
324                 /*
325                  * We must be either inactive or active and the right task,
326                  * otherwise we're screwed, since we cannot IPI to somewhere
327                  * else.
328                  */
329                 if (ctx->is_active) {
330                         if (WARN_ON_ONCE(task != current))
331                                 goto unlock;
332
333                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334                                 goto unlock;
335                 }
336         } else {
337                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
338         }
339
340         func(event, cpuctx, ctx, data);
341 unlock:
342         perf_ctx_unlock(cpuctx, task_ctx);
343 }
344
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346                        PERF_FLAG_FD_OUTPUT  |\
347                        PERF_FLAG_PID_CGROUP |\
348                        PERF_FLAG_FD_CLOEXEC)
349
350 /*
351  * branch priv levels that need permission checks
352  */
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354         (PERF_SAMPLE_BRANCH_KERNEL |\
355          PERF_SAMPLE_BRANCH_HV)
356
357 enum event_type_t {
358         EVENT_FLEXIBLE = 0x1,
359         EVENT_PINNED = 0x2,
360         EVENT_TIME = 0x4,
361         /* see ctx_resched() for details */
362         EVENT_CPU = 0x8,
363         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364 };
365
366 /*
367  * perf_sched_events : >0 events exist
368  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369  */
370
371 static void perf_sched_delayed(struct work_struct *work);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374 static DEFINE_MUTEX(perf_sched_mutex);
375 static atomic_t perf_sched_count;
376
377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
380
381 static atomic_t nr_mmap_events __read_mostly;
382 static atomic_t nr_comm_events __read_mostly;
383 static atomic_t nr_namespaces_events __read_mostly;
384 static atomic_t nr_task_events __read_mostly;
385 static atomic_t nr_freq_events __read_mostly;
386 static atomic_t nr_switch_events __read_mostly;
387 static atomic_t nr_ksymbol_events __read_mostly;
388 static atomic_t nr_bpf_events __read_mostly;
389
390 static LIST_HEAD(pmus);
391 static DEFINE_MUTEX(pmus_lock);
392 static struct srcu_struct pmus_srcu;
393 static cpumask_var_t perf_online_mask;
394
395 /*
396  * perf event paranoia level:
397  *  -1 - not paranoid at all
398  *   0 - disallow raw tracepoint access for unpriv
399  *   1 - disallow cpu events for unpriv
400  *   2 - disallow kernel profiling for unpriv
401  */
402 int sysctl_perf_event_paranoid __read_mostly = 2;
403
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
406
407 /*
408  * max perf event sample rate
409  */
410 #define DEFAULT_MAX_SAMPLE_RATE         100000
411 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
413
414 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
415
416 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
418
419 static int perf_sample_allowed_ns __read_mostly =
420         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421
422 static void update_perf_cpu_limits(void)
423 {
424         u64 tmp = perf_sample_period_ns;
425
426         tmp *= sysctl_perf_cpu_time_max_percent;
427         tmp = div_u64(tmp, 100);
428         if (!tmp)
429                 tmp = 1;
430
431         WRITE_ONCE(perf_sample_allowed_ns, tmp);
432 }
433
434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
435
436 int perf_proc_update_handler(struct ctl_table *table, int write,
437                 void __user *buffer, size_t *lenp,
438                 loff_t *ppos)
439 {
440         int ret;
441         int perf_cpu = sysctl_perf_cpu_time_max_percent;
442         /*
443          * If throttling is disabled don't allow the write:
444          */
445         if (write && (perf_cpu == 100 || perf_cpu == 0))
446                 return -EINVAL;
447
448         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449         if (ret || !write)
450                 return ret;
451
452         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
453         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454         update_perf_cpu_limits();
455
456         return 0;
457 }
458
459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460
461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462                                 void __user *buffer, size_t *lenp,
463                                 loff_t *ppos)
464 {
465         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466
467         if (ret || !write)
468                 return ret;
469
470         if (sysctl_perf_cpu_time_max_percent == 100 ||
471             sysctl_perf_cpu_time_max_percent == 0) {
472                 printk(KERN_WARNING
473                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474                 WRITE_ONCE(perf_sample_allowed_ns, 0);
475         } else {
476                 update_perf_cpu_limits();
477         }
478
479         return 0;
480 }
481
482 /*
483  * perf samples are done in some very critical code paths (NMIs).
484  * If they take too much CPU time, the system can lock up and not
485  * get any real work done.  This will drop the sample rate when
486  * we detect that events are taking too long.
487  */
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64, running_sample_length);
490
491 static u64 __report_avg;
492 static u64 __report_allowed;
493
494 static void perf_duration_warn(struct irq_work *w)
495 {
496         printk_ratelimited(KERN_INFO
497                 "perf: interrupt took too long (%lld > %lld), lowering "
498                 "kernel.perf_event_max_sample_rate to %d\n",
499                 __report_avg, __report_allowed,
500                 sysctl_perf_event_sample_rate);
501 }
502
503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504
505 void perf_sample_event_took(u64 sample_len_ns)
506 {
507         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508         u64 running_len;
509         u64 avg_len;
510         u32 max;
511
512         if (max_len == 0)
513                 return;
514
515         /* Decay the counter by 1 average sample. */
516         running_len = __this_cpu_read(running_sample_length);
517         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518         running_len += sample_len_ns;
519         __this_cpu_write(running_sample_length, running_len);
520
521         /*
522          * Note: this will be biased artifically low until we have
523          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524          * from having to maintain a count.
525          */
526         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527         if (avg_len <= max_len)
528                 return;
529
530         __report_avg = avg_len;
531         __report_allowed = max_len;
532
533         /*
534          * Compute a throttle threshold 25% below the current duration.
535          */
536         avg_len += avg_len / 4;
537         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538         if (avg_len < max)
539                 max /= (u32)avg_len;
540         else
541                 max = 1;
542
543         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544         WRITE_ONCE(max_samples_per_tick, max);
545
546         sysctl_perf_event_sample_rate = max * HZ;
547         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548
549         if (!irq_work_queue(&perf_duration_work)) {
550                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551                              "kernel.perf_event_max_sample_rate to %d\n",
552                              __report_avg, __report_allowed,
553                              sysctl_perf_event_sample_rate);
554         }
555 }
556
557 static atomic64_t perf_event_id;
558
559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560                               enum event_type_t event_type);
561
562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
563                              enum event_type_t event_type,
564                              struct task_struct *task);
565
566 static void update_context_time(struct perf_event_context *ctx);
567 static u64 perf_event_time(struct perf_event *event);
568
569 void __weak perf_event_print_debug(void)        { }
570
571 extern __weak const char *perf_pmu_name(void)
572 {
573         return "pmu";
574 }
575
576 static inline u64 perf_clock(void)
577 {
578         return local_clock();
579 }
580
581 static inline u64 perf_event_clock(struct perf_event *event)
582 {
583         return event->clock();
584 }
585
586 /*
587  * State based event timekeeping...
588  *
589  * The basic idea is to use event->state to determine which (if any) time
590  * fields to increment with the current delta. This means we only need to
591  * update timestamps when we change state or when they are explicitly requested
592  * (read).
593  *
594  * Event groups make things a little more complicated, but not terribly so. The
595  * rules for a group are that if the group leader is OFF the entire group is
596  * OFF, irrespecive of what the group member states are. This results in
597  * __perf_effective_state().
598  *
599  * A futher ramification is that when a group leader flips between OFF and
600  * !OFF, we need to update all group member times.
601  *
602  *
603  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604  * need to make sure the relevant context time is updated before we try and
605  * update our timestamps.
606  */
607
608 static __always_inline enum perf_event_state
609 __perf_effective_state(struct perf_event *event)
610 {
611         struct perf_event *leader = event->group_leader;
612
613         if (leader->state <= PERF_EVENT_STATE_OFF)
614                 return leader->state;
615
616         return event->state;
617 }
618
619 static __always_inline void
620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621 {
622         enum perf_event_state state = __perf_effective_state(event);
623         u64 delta = now - event->tstamp;
624
625         *enabled = event->total_time_enabled;
626         if (state >= PERF_EVENT_STATE_INACTIVE)
627                 *enabled += delta;
628
629         *running = event->total_time_running;
630         if (state >= PERF_EVENT_STATE_ACTIVE)
631                 *running += delta;
632 }
633
634 static void perf_event_update_time(struct perf_event *event)
635 {
636         u64 now = perf_event_time(event);
637
638         __perf_update_times(event, now, &event->total_time_enabled,
639                                         &event->total_time_running);
640         event->tstamp = now;
641 }
642
643 static void perf_event_update_sibling_time(struct perf_event *leader)
644 {
645         struct perf_event *sibling;
646
647         for_each_sibling_event(sibling, leader)
648                 perf_event_update_time(sibling);
649 }
650
651 static void
652 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653 {
654         if (event->state == state)
655                 return;
656
657         perf_event_update_time(event);
658         /*
659          * If a group leader gets enabled/disabled all its siblings
660          * are affected too.
661          */
662         if ((event->state < 0) ^ (state < 0))
663                 perf_event_update_sibling_time(event);
664
665         WRITE_ONCE(event->state, state);
666 }
667
668 #ifdef CONFIG_CGROUP_PERF
669
670 static inline bool
671 perf_cgroup_match(struct perf_event *event)
672 {
673         struct perf_event_context *ctx = event->ctx;
674         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675
676         /* @event doesn't care about cgroup */
677         if (!event->cgrp)
678                 return true;
679
680         /* wants specific cgroup scope but @cpuctx isn't associated with any */
681         if (!cpuctx->cgrp)
682                 return false;
683
684         /*
685          * Cgroup scoping is recursive.  An event enabled for a cgroup is
686          * also enabled for all its descendant cgroups.  If @cpuctx's
687          * cgroup is a descendant of @event's (the test covers identity
688          * case), it's a match.
689          */
690         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691                                     event->cgrp->css.cgroup);
692 }
693
694 static inline void perf_detach_cgroup(struct perf_event *event)
695 {
696         css_put(&event->cgrp->css);
697         event->cgrp = NULL;
698 }
699
700 static inline int is_cgroup_event(struct perf_event *event)
701 {
702         return event->cgrp != NULL;
703 }
704
705 static inline u64 perf_cgroup_event_time(struct perf_event *event)
706 {
707         struct perf_cgroup_info *t;
708
709         t = per_cpu_ptr(event->cgrp->info, event->cpu);
710         return t->time;
711 }
712
713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714 {
715         struct perf_cgroup_info *info;
716         u64 now;
717
718         now = perf_clock();
719
720         info = this_cpu_ptr(cgrp->info);
721
722         info->time += now - info->timestamp;
723         info->timestamp = now;
724 }
725
726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727 {
728         struct perf_cgroup *cgrp = cpuctx->cgrp;
729         struct cgroup_subsys_state *css;
730
731         if (cgrp) {
732                 for (css = &cgrp->css; css; css = css->parent) {
733                         cgrp = container_of(css, struct perf_cgroup, css);
734                         __update_cgrp_time(cgrp);
735                 }
736         }
737 }
738
739 static inline void update_cgrp_time_from_event(struct perf_event *event)
740 {
741         struct perf_cgroup *cgrp;
742
743         /*
744          * ensure we access cgroup data only when needed and
745          * when we know the cgroup is pinned (css_get)
746          */
747         if (!is_cgroup_event(event))
748                 return;
749
750         cgrp = perf_cgroup_from_task(current, event->ctx);
751         /*
752          * Do not update time when cgroup is not active
753          */
754         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
755                 __update_cgrp_time(event->cgrp);
756 }
757
758 static inline void
759 perf_cgroup_set_timestamp(struct task_struct *task,
760                           struct perf_event_context *ctx)
761 {
762         struct perf_cgroup *cgrp;
763         struct perf_cgroup_info *info;
764         struct cgroup_subsys_state *css;
765
766         /*
767          * ctx->lock held by caller
768          * ensure we do not access cgroup data
769          * unless we have the cgroup pinned (css_get)
770          */
771         if (!task || !ctx->nr_cgroups)
772                 return;
773
774         cgrp = perf_cgroup_from_task(task, ctx);
775
776         for (css = &cgrp->css; css; css = css->parent) {
777                 cgrp = container_of(css, struct perf_cgroup, css);
778                 info = this_cpu_ptr(cgrp->info);
779                 info->timestamp = ctx->timestamp;
780         }
781 }
782
783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784
785 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
787
788 /*
789  * reschedule events based on the cgroup constraint of task.
790  *
791  * mode SWOUT : schedule out everything
792  * mode SWIN : schedule in based on cgroup for next
793  */
794 static void perf_cgroup_switch(struct task_struct *task, int mode)
795 {
796         struct perf_cpu_context *cpuctx;
797         struct list_head *list;
798         unsigned long flags;
799
800         /*
801          * Disable interrupts and preemption to avoid this CPU's
802          * cgrp_cpuctx_entry to change under us.
803          */
804         local_irq_save(flags);
805
806         list = this_cpu_ptr(&cgrp_cpuctx_list);
807         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
809
810                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811                 perf_pmu_disable(cpuctx->ctx.pmu);
812
813                 if (mode & PERF_CGROUP_SWOUT) {
814                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815                         /*
816                          * must not be done before ctxswout due
817                          * to event_filter_match() in event_sched_out()
818                          */
819                         cpuctx->cgrp = NULL;
820                 }
821
822                 if (mode & PERF_CGROUP_SWIN) {
823                         WARN_ON_ONCE(cpuctx->cgrp);
824                         /*
825                          * set cgrp before ctxsw in to allow
826                          * event_filter_match() to not have to pass
827                          * task around
828                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
829                          * because cgorup events are only per-cpu
830                          */
831                         cpuctx->cgrp = perf_cgroup_from_task(task,
832                                                              &cpuctx->ctx);
833                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
834                 }
835                 perf_pmu_enable(cpuctx->ctx.pmu);
836                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
837         }
838
839         local_irq_restore(flags);
840 }
841
842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843                                          struct task_struct *next)
844 {
845         struct perf_cgroup *cgrp1;
846         struct perf_cgroup *cgrp2 = NULL;
847
848         rcu_read_lock();
849         /*
850          * we come here when we know perf_cgroup_events > 0
851          * we do not need to pass the ctx here because we know
852          * we are holding the rcu lock
853          */
854         cgrp1 = perf_cgroup_from_task(task, NULL);
855         cgrp2 = perf_cgroup_from_task(next, NULL);
856
857         /*
858          * only schedule out current cgroup events if we know
859          * that we are switching to a different cgroup. Otherwise,
860          * do no touch the cgroup events.
861          */
862         if (cgrp1 != cgrp2)
863                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
864
865         rcu_read_unlock();
866 }
867
868 static inline void perf_cgroup_sched_in(struct task_struct *prev,
869                                         struct task_struct *task)
870 {
871         struct perf_cgroup *cgrp1;
872         struct perf_cgroup *cgrp2 = NULL;
873
874         rcu_read_lock();
875         /*
876          * we come here when we know perf_cgroup_events > 0
877          * we do not need to pass the ctx here because we know
878          * we are holding the rcu lock
879          */
880         cgrp1 = perf_cgroup_from_task(task, NULL);
881         cgrp2 = perf_cgroup_from_task(prev, NULL);
882
883         /*
884          * only need to schedule in cgroup events if we are changing
885          * cgroup during ctxsw. Cgroup events were not scheduled
886          * out of ctxsw out if that was not the case.
887          */
888         if (cgrp1 != cgrp2)
889                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
890
891         rcu_read_unlock();
892 }
893
894 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895                                       struct perf_event_attr *attr,
896                                       struct perf_event *group_leader)
897 {
898         struct perf_cgroup *cgrp;
899         struct cgroup_subsys_state *css;
900         struct fd f = fdget(fd);
901         int ret = 0;
902
903         if (!f.file)
904                 return -EBADF;
905
906         css = css_tryget_online_from_dir(f.file->f_path.dentry,
907                                          &perf_event_cgrp_subsys);
908         if (IS_ERR(css)) {
909                 ret = PTR_ERR(css);
910                 goto out;
911         }
912
913         cgrp = container_of(css, struct perf_cgroup, css);
914         event->cgrp = cgrp;
915
916         /*
917          * all events in a group must monitor
918          * the same cgroup because a task belongs
919          * to only one perf cgroup at a time
920          */
921         if (group_leader && group_leader->cgrp != cgrp) {
922                 perf_detach_cgroup(event);
923                 ret = -EINVAL;
924         }
925 out:
926         fdput(f);
927         return ret;
928 }
929
930 static inline void
931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932 {
933         struct perf_cgroup_info *t;
934         t = per_cpu_ptr(event->cgrp->info, event->cpu);
935         event->shadow_ctx_time = now - t->timestamp;
936 }
937
938 /*
939  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940  * cleared when last cgroup event is removed.
941  */
942 static inline void
943 list_update_cgroup_event(struct perf_event *event,
944                          struct perf_event_context *ctx, bool add)
945 {
946         struct perf_cpu_context *cpuctx;
947         struct list_head *cpuctx_entry;
948
949         if (!is_cgroup_event(event))
950                 return;
951
952         /*
953          * Because cgroup events are always per-cpu events,
954          * this will always be called from the right CPU.
955          */
956         cpuctx = __get_cpu_context(ctx);
957
958         /*
959          * Since setting cpuctx->cgrp is conditional on the current @cgrp
960          * matching the event's cgroup, we must do this for every new event,
961          * because if the first would mismatch, the second would not try again
962          * and we would leave cpuctx->cgrp unset.
963          */
964         if (add && !cpuctx->cgrp) {
965                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966
967                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968                         cpuctx->cgrp = cgrp;
969         }
970
971         if (add && ctx->nr_cgroups++)
972                 return;
973         else if (!add && --ctx->nr_cgroups)
974                 return;
975
976         /* no cgroup running */
977         if (!add)
978                 cpuctx->cgrp = NULL;
979
980         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981         if (add)
982                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983         else
984                 list_del(cpuctx_entry);
985 }
986
987 #else /* !CONFIG_CGROUP_PERF */
988
989 static inline bool
990 perf_cgroup_match(struct perf_event *event)
991 {
992         return true;
993 }
994
995 static inline void perf_detach_cgroup(struct perf_event *event)
996 {}
997
998 static inline int is_cgroup_event(struct perf_event *event)
999 {
1000         return 0;
1001 }
1002
1003 static inline void update_cgrp_time_from_event(struct perf_event *event)
1004 {
1005 }
1006
1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008 {
1009 }
1010
1011 static inline void perf_cgroup_sched_out(struct task_struct *task,
1012                                          struct task_struct *next)
1013 {
1014 }
1015
1016 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017                                         struct task_struct *task)
1018 {
1019 }
1020
1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022                                       struct perf_event_attr *attr,
1023                                       struct perf_event *group_leader)
1024 {
1025         return -EINVAL;
1026 }
1027
1028 static inline void
1029 perf_cgroup_set_timestamp(struct task_struct *task,
1030                           struct perf_event_context *ctx)
1031 {
1032 }
1033
1034 void
1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036 {
1037 }
1038
1039 static inline void
1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041 {
1042 }
1043
1044 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045 {
1046         return 0;
1047 }
1048
1049 static inline void
1050 list_update_cgroup_event(struct perf_event *event,
1051                          struct perf_event_context *ctx, bool add)
1052 {
1053 }
1054
1055 #endif
1056
1057 /*
1058  * set default to be dependent on timer tick just
1059  * like original code
1060  */
1061 #define PERF_CPU_HRTIMER (1000 / HZ)
1062 /*
1063  * function must be called with interrupts disabled
1064  */
1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1066 {
1067         struct perf_cpu_context *cpuctx;
1068         bool rotations;
1069
1070         lockdep_assert_irqs_disabled();
1071
1072         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1073         rotations = perf_rotate_context(cpuctx);
1074
1075         raw_spin_lock(&cpuctx->hrtimer_lock);
1076         if (rotations)
1077                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1078         else
1079                 cpuctx->hrtimer_active = 0;
1080         raw_spin_unlock(&cpuctx->hrtimer_lock);
1081
1082         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1083 }
1084
1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1086 {
1087         struct hrtimer *timer = &cpuctx->hrtimer;
1088         struct pmu *pmu = cpuctx->ctx.pmu;
1089         u64 interval;
1090
1091         /* no multiplexing needed for SW PMU */
1092         if (pmu->task_ctx_nr == perf_sw_context)
1093                 return;
1094
1095         /*
1096          * check default is sane, if not set then force to
1097          * default interval (1/tick)
1098          */
1099         interval = pmu->hrtimer_interval_ms;
1100         if (interval < 1)
1101                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1102
1103         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1104
1105         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1107         timer->function = perf_mux_hrtimer_handler;
1108 }
1109
1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1111 {
1112         struct hrtimer *timer = &cpuctx->hrtimer;
1113         struct pmu *pmu = cpuctx->ctx.pmu;
1114         unsigned long flags;
1115
1116         /* not for SW PMU */
1117         if (pmu->task_ctx_nr == perf_sw_context)
1118                 return 0;
1119
1120         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121         if (!cpuctx->hrtimer_active) {
1122                 cpuctx->hrtimer_active = 1;
1123                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1125         }
1126         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1127
1128         return 0;
1129 }
1130
1131 void perf_pmu_disable(struct pmu *pmu)
1132 {
1133         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134         if (!(*count)++)
1135                 pmu->pmu_disable(pmu);
1136 }
1137
1138 void perf_pmu_enable(struct pmu *pmu)
1139 {
1140         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141         if (!--(*count))
1142                 pmu->pmu_enable(pmu);
1143 }
1144
1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1146
1147 /*
1148  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149  * perf_event_task_tick() are fully serialized because they're strictly cpu
1150  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151  * disabled, while perf_event_task_tick is called from IRQ context.
1152  */
1153 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1154 {
1155         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1156
1157         lockdep_assert_irqs_disabled();
1158
1159         WARN_ON(!list_empty(&ctx->active_ctx_list));
1160
1161         list_add(&ctx->active_ctx_list, head);
1162 }
1163
1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165 {
1166         lockdep_assert_irqs_disabled();
1167
1168         WARN_ON(list_empty(&ctx->active_ctx_list));
1169
1170         list_del_init(&ctx->active_ctx_list);
1171 }
1172
1173 static void get_ctx(struct perf_event_context *ctx)
1174 {
1175         refcount_inc(&ctx->refcount);
1176 }
1177
1178 static void free_ctx(struct rcu_head *head)
1179 {
1180         struct perf_event_context *ctx;
1181
1182         ctx = container_of(head, struct perf_event_context, rcu_head);
1183         kfree(ctx->task_ctx_data);
1184         kfree(ctx);
1185 }
1186
1187 static void put_ctx(struct perf_event_context *ctx)
1188 {
1189         if (refcount_dec_and_test(&ctx->refcount)) {
1190                 if (ctx->parent_ctx)
1191                         put_ctx(ctx->parent_ctx);
1192                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1193                         put_task_struct(ctx->task);
1194                 call_rcu(&ctx->rcu_head, free_ctx);
1195         }
1196 }
1197
1198 /*
1199  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200  * perf_pmu_migrate_context() we need some magic.
1201  *
1202  * Those places that change perf_event::ctx will hold both
1203  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204  *
1205  * Lock ordering is by mutex address. There are two other sites where
1206  * perf_event_context::mutex nests and those are:
1207  *
1208  *  - perf_event_exit_task_context()    [ child , 0 ]
1209  *      perf_event_exit_event()
1210  *        put_event()                   [ parent, 1 ]
1211  *
1212  *  - perf_event_init_context()         [ parent, 0 ]
1213  *      inherit_task_group()
1214  *        inherit_group()
1215  *          inherit_event()
1216  *            perf_event_alloc()
1217  *              perf_init_event()
1218  *                perf_try_init_event() [ child , 1 ]
1219  *
1220  * While it appears there is an obvious deadlock here -- the parent and child
1221  * nesting levels are inverted between the two. This is in fact safe because
1222  * life-time rules separate them. That is an exiting task cannot fork, and a
1223  * spawning task cannot (yet) exit.
1224  *
1225  * But remember that that these are parent<->child context relations, and
1226  * migration does not affect children, therefore these two orderings should not
1227  * interact.
1228  *
1229  * The change in perf_event::ctx does not affect children (as claimed above)
1230  * because the sys_perf_event_open() case will install a new event and break
1231  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232  * concerned with cpuctx and that doesn't have children.
1233  *
1234  * The places that change perf_event::ctx will issue:
1235  *
1236  *   perf_remove_from_context();
1237  *   synchronize_rcu();
1238  *   perf_install_in_context();
1239  *
1240  * to affect the change. The remove_from_context() + synchronize_rcu() should
1241  * quiesce the event, after which we can install it in the new location. This
1242  * means that only external vectors (perf_fops, prctl) can perturb the event
1243  * while in transit. Therefore all such accessors should also acquire
1244  * perf_event_context::mutex to serialize against this.
1245  *
1246  * However; because event->ctx can change while we're waiting to acquire
1247  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248  * function.
1249  *
1250  * Lock order:
1251  *    cred_guard_mutex
1252  *      task_struct::perf_event_mutex
1253  *        perf_event_context::mutex
1254  *          perf_event::child_mutex;
1255  *            perf_event_context::lock
1256  *          perf_event::mmap_mutex
1257  *          mmap_sem
1258  *            perf_addr_filters_head::lock
1259  *
1260  *    cpu_hotplug_lock
1261  *      pmus_lock
1262  *        cpuctx->mutex / perf_event_context::mutex
1263  */
1264 static struct perf_event_context *
1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1266 {
1267         struct perf_event_context *ctx;
1268
1269 again:
1270         rcu_read_lock();
1271         ctx = READ_ONCE(event->ctx);
1272         if (!refcount_inc_not_zero(&ctx->refcount)) {
1273                 rcu_read_unlock();
1274                 goto again;
1275         }
1276         rcu_read_unlock();
1277
1278         mutex_lock_nested(&ctx->mutex, nesting);
1279         if (event->ctx != ctx) {
1280                 mutex_unlock(&ctx->mutex);
1281                 put_ctx(ctx);
1282                 goto again;
1283         }
1284
1285         return ctx;
1286 }
1287
1288 static inline struct perf_event_context *
1289 perf_event_ctx_lock(struct perf_event *event)
1290 {
1291         return perf_event_ctx_lock_nested(event, 0);
1292 }
1293
1294 static void perf_event_ctx_unlock(struct perf_event *event,
1295                                   struct perf_event_context *ctx)
1296 {
1297         mutex_unlock(&ctx->mutex);
1298         put_ctx(ctx);
1299 }
1300
1301 /*
1302  * This must be done under the ctx->lock, such as to serialize against
1303  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304  * calling scheduler related locks and ctx->lock nests inside those.
1305  */
1306 static __must_check struct perf_event_context *
1307 unclone_ctx(struct perf_event_context *ctx)
1308 {
1309         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310
1311         lockdep_assert_held(&ctx->lock);
1312
1313         if (parent_ctx)
1314                 ctx->parent_ctx = NULL;
1315         ctx->generation++;
1316
1317         return parent_ctx;
1318 }
1319
1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321                                 enum pid_type type)
1322 {
1323         u32 nr;
1324         /*
1325          * only top level events have the pid namespace they were created in
1326          */
1327         if (event->parent)
1328                 event = event->parent;
1329
1330         nr = __task_pid_nr_ns(p, type, event->ns);
1331         /* avoid -1 if it is idle thread or runs in another ns */
1332         if (!nr && !pid_alive(p))
1333                 nr = -1;
1334         return nr;
1335 }
1336
1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1338 {
1339         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1340 }
1341
1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343 {
1344         return perf_event_pid_type(event, p, PIDTYPE_PID);
1345 }
1346
1347 /*
1348  * If we inherit events we want to return the parent event id
1349  * to userspace.
1350  */
1351 static u64 primary_event_id(struct perf_event *event)
1352 {
1353         u64 id = event->id;
1354
1355         if (event->parent)
1356                 id = event->parent->id;
1357
1358         return id;
1359 }
1360
1361 /*
1362  * Get the perf_event_context for a task and lock it.
1363  *
1364  * This has to cope with with the fact that until it is locked,
1365  * the context could get moved to another task.
1366  */
1367 static struct perf_event_context *
1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1369 {
1370         struct perf_event_context *ctx;
1371
1372 retry:
1373         /*
1374          * One of the few rules of preemptible RCU is that one cannot do
1375          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1376          * part of the read side critical section was irqs-enabled -- see
1377          * rcu_read_unlock_special().
1378          *
1379          * Since ctx->lock nests under rq->lock we must ensure the entire read
1380          * side critical section has interrupts disabled.
1381          */
1382         local_irq_save(*flags);
1383         rcu_read_lock();
1384         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1385         if (ctx) {
1386                 /*
1387                  * If this context is a clone of another, it might
1388                  * get swapped for another underneath us by
1389                  * perf_event_task_sched_out, though the
1390                  * rcu_read_lock() protects us from any context
1391                  * getting freed.  Lock the context and check if it
1392                  * got swapped before we could get the lock, and retry
1393                  * if so.  If we locked the right context, then it
1394                  * can't get swapped on us any more.
1395                  */
1396                 raw_spin_lock(&ctx->lock);
1397                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1398                         raw_spin_unlock(&ctx->lock);
1399                         rcu_read_unlock();
1400                         local_irq_restore(*flags);
1401                         goto retry;
1402                 }
1403
1404                 if (ctx->task == TASK_TOMBSTONE ||
1405                     !refcount_inc_not_zero(&ctx->refcount)) {
1406                         raw_spin_unlock(&ctx->lock);
1407                         ctx = NULL;
1408                 } else {
1409                         WARN_ON_ONCE(ctx->task != task);
1410                 }
1411         }
1412         rcu_read_unlock();
1413         if (!ctx)
1414                 local_irq_restore(*flags);
1415         return ctx;
1416 }
1417
1418 /*
1419  * Get the context for a task and increment its pin_count so it
1420  * can't get swapped to another task.  This also increments its
1421  * reference count so that the context can't get freed.
1422  */
1423 static struct perf_event_context *
1424 perf_pin_task_context(struct task_struct *task, int ctxn)
1425 {
1426         struct perf_event_context *ctx;
1427         unsigned long flags;
1428
1429         ctx = perf_lock_task_context(task, ctxn, &flags);
1430         if (ctx) {
1431                 ++ctx->pin_count;
1432                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1433         }
1434         return ctx;
1435 }
1436
1437 static void perf_unpin_context(struct perf_event_context *ctx)
1438 {
1439         unsigned long flags;
1440
1441         raw_spin_lock_irqsave(&ctx->lock, flags);
1442         --ctx->pin_count;
1443         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1444 }
1445
1446 /*
1447  * Update the record of the current time in a context.
1448  */
1449 static void update_context_time(struct perf_event_context *ctx)
1450 {
1451         u64 now = perf_clock();
1452
1453         ctx->time += now - ctx->timestamp;
1454         ctx->timestamp = now;
1455 }
1456
1457 static u64 perf_event_time(struct perf_event *event)
1458 {
1459         struct perf_event_context *ctx = event->ctx;
1460
1461         if (is_cgroup_event(event))
1462                 return perf_cgroup_event_time(event);
1463
1464         return ctx ? ctx->time : 0;
1465 }
1466
1467 static enum event_type_t get_event_type(struct perf_event *event)
1468 {
1469         struct perf_event_context *ctx = event->ctx;
1470         enum event_type_t event_type;
1471
1472         lockdep_assert_held(&ctx->lock);
1473
1474         /*
1475          * It's 'group type', really, because if our group leader is
1476          * pinned, so are we.
1477          */
1478         if (event->group_leader != event)
1479                 event = event->group_leader;
1480
1481         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482         if (!ctx->task)
1483                 event_type |= EVENT_CPU;
1484
1485         return event_type;
1486 }
1487
1488 /*
1489  * Helper function to initialize event group nodes.
1490  */
1491 static void init_event_group(struct perf_event *event)
1492 {
1493         RB_CLEAR_NODE(&event->group_node);
1494         event->group_index = 0;
1495 }
1496
1497 /*
1498  * Extract pinned or flexible groups from the context
1499  * based on event attrs bits.
1500  */
1501 static struct perf_event_groups *
1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1503 {
1504         if (event->attr.pinned)
1505                 return &ctx->pinned_groups;
1506         else
1507                 return &ctx->flexible_groups;
1508 }
1509
1510 /*
1511  * Helper function to initializes perf_event_group trees.
1512  */
1513 static void perf_event_groups_init(struct perf_event_groups *groups)
1514 {
1515         groups->tree = RB_ROOT;
1516         groups->index = 0;
1517 }
1518
1519 /*
1520  * Compare function for event groups;
1521  *
1522  * Implements complex key that first sorts by CPU and then by virtual index
1523  * which provides ordering when rotating groups for the same CPU.
1524  */
1525 static bool
1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1527 {
1528         if (left->cpu < right->cpu)
1529                 return true;
1530         if (left->cpu > right->cpu)
1531                 return false;
1532
1533         if (left->group_index < right->group_index)
1534                 return true;
1535         if (left->group_index > right->group_index)
1536                 return false;
1537
1538         return false;
1539 }
1540
1541 /*
1542  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543  * key (see perf_event_groups_less). This places it last inside the CPU
1544  * subtree.
1545  */
1546 static void
1547 perf_event_groups_insert(struct perf_event_groups *groups,
1548                          struct perf_event *event)
1549 {
1550         struct perf_event *node_event;
1551         struct rb_node *parent;
1552         struct rb_node **node;
1553
1554         event->group_index = ++groups->index;
1555
1556         node = &groups->tree.rb_node;
1557         parent = *node;
1558
1559         while (*node) {
1560                 parent = *node;
1561                 node_event = container_of(*node, struct perf_event, group_node);
1562
1563                 if (perf_event_groups_less(event, node_event))
1564                         node = &parent->rb_left;
1565                 else
1566                         node = &parent->rb_right;
1567         }
1568
1569         rb_link_node(&event->group_node, parent, node);
1570         rb_insert_color(&event->group_node, &groups->tree);
1571 }
1572
1573 /*
1574  * Helper function to insert event into the pinned or flexible groups.
1575  */
1576 static void
1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578 {
1579         struct perf_event_groups *groups;
1580
1581         groups = get_event_groups(event, ctx);
1582         perf_event_groups_insert(groups, event);
1583 }
1584
1585 /*
1586  * Delete a group from a tree.
1587  */
1588 static void
1589 perf_event_groups_delete(struct perf_event_groups *groups,
1590                          struct perf_event *event)
1591 {
1592         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593                      RB_EMPTY_ROOT(&groups->tree));
1594
1595         rb_erase(&event->group_node, &groups->tree);
1596         init_event_group(event);
1597 }
1598
1599 /*
1600  * Helper function to delete event from its groups.
1601  */
1602 static void
1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604 {
1605         struct perf_event_groups *groups;
1606
1607         groups = get_event_groups(event, ctx);
1608         perf_event_groups_delete(groups, event);
1609 }
1610
1611 /*
1612  * Get the leftmost event in the @cpu subtree.
1613  */
1614 static struct perf_event *
1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616 {
1617         struct perf_event *node_event = NULL, *match = NULL;
1618         struct rb_node *node = groups->tree.rb_node;
1619
1620         while (node) {
1621                 node_event = container_of(node, struct perf_event, group_node);
1622
1623                 if (cpu < node_event->cpu) {
1624                         node = node->rb_left;
1625                 } else if (cpu > node_event->cpu) {
1626                         node = node->rb_right;
1627                 } else {
1628                         match = node_event;
1629                         node = node->rb_left;
1630                 }
1631         }
1632
1633         return match;
1634 }
1635
1636 /*
1637  * Like rb_entry_next_safe() for the @cpu subtree.
1638  */
1639 static struct perf_event *
1640 perf_event_groups_next(struct perf_event *event)
1641 {
1642         struct perf_event *next;
1643
1644         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645         if (next && next->cpu == event->cpu)
1646                 return next;
1647
1648         return NULL;
1649 }
1650
1651 /*
1652  * Iterate through the whole groups tree.
1653  */
1654 #define perf_event_groups_for_each(event, groups)                       \
1655         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1656                                 typeof(*event), group_node); event;     \
1657                 event = rb_entry_safe(rb_next(&event->group_node),      \
1658                                 typeof(*event), group_node))
1659
1660 /*
1661  * Add an event from the lists for its context.
1662  * Must be called with ctx->mutex and ctx->lock held.
1663  */
1664 static void
1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1666 {
1667         lockdep_assert_held(&ctx->lock);
1668
1669         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670         event->attach_state |= PERF_ATTACH_CONTEXT;
1671
1672         event->tstamp = perf_event_time(event);
1673
1674         /*
1675          * If we're a stand alone event or group leader, we go to the context
1676          * list, group events are kept attached to the group so that
1677          * perf_group_detach can, at all times, locate all siblings.
1678          */
1679         if (event->group_leader == event) {
1680                 event->group_caps = event->event_caps;
1681                 add_event_to_groups(event, ctx);
1682         }
1683
1684         list_update_cgroup_event(event, ctx, true);
1685
1686         list_add_rcu(&event->event_entry, &ctx->event_list);
1687         ctx->nr_events++;
1688         if (event->attr.inherit_stat)
1689                 ctx->nr_stat++;
1690
1691         ctx->generation++;
1692 }
1693
1694 /*
1695  * Initialize event state based on the perf_event_attr::disabled.
1696  */
1697 static inline void perf_event__state_init(struct perf_event *event)
1698 {
1699         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700                                               PERF_EVENT_STATE_INACTIVE;
1701 }
1702
1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1704 {
1705         int entry = sizeof(u64); /* value */
1706         int size = 0;
1707         int nr = 1;
1708
1709         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710                 size += sizeof(u64);
1711
1712         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713                 size += sizeof(u64);
1714
1715         if (event->attr.read_format & PERF_FORMAT_ID)
1716                 entry += sizeof(u64);
1717
1718         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1719                 nr += nr_siblings;
1720                 size += sizeof(u64);
1721         }
1722
1723         size += entry * nr;
1724         event->read_size = size;
1725 }
1726
1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1728 {
1729         struct perf_sample_data *data;
1730         u16 size = 0;
1731
1732         if (sample_type & PERF_SAMPLE_IP)
1733                 size += sizeof(data->ip);
1734
1735         if (sample_type & PERF_SAMPLE_ADDR)
1736                 size += sizeof(data->addr);
1737
1738         if (sample_type & PERF_SAMPLE_PERIOD)
1739                 size += sizeof(data->period);
1740
1741         if (sample_type & PERF_SAMPLE_WEIGHT)
1742                 size += sizeof(data->weight);
1743
1744         if (sample_type & PERF_SAMPLE_READ)
1745                 size += event->read_size;
1746
1747         if (sample_type & PERF_SAMPLE_DATA_SRC)
1748                 size += sizeof(data->data_src.val);
1749
1750         if (sample_type & PERF_SAMPLE_TRANSACTION)
1751                 size += sizeof(data->txn);
1752
1753         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754                 size += sizeof(data->phys_addr);
1755
1756         event->header_size = size;
1757 }
1758
1759 /*
1760  * Called at perf_event creation and when events are attached/detached from a
1761  * group.
1762  */
1763 static void perf_event__header_size(struct perf_event *event)
1764 {
1765         __perf_event_read_size(event,
1766                                event->group_leader->nr_siblings);
1767         __perf_event_header_size(event, event->attr.sample_type);
1768 }
1769
1770 static void perf_event__id_header_size(struct perf_event *event)
1771 {
1772         struct perf_sample_data *data;
1773         u64 sample_type = event->attr.sample_type;
1774         u16 size = 0;
1775
1776         if (sample_type & PERF_SAMPLE_TID)
1777                 size += sizeof(data->tid_entry);
1778
1779         if (sample_type & PERF_SAMPLE_TIME)
1780                 size += sizeof(data->time);
1781
1782         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783                 size += sizeof(data->id);
1784
1785         if (sample_type & PERF_SAMPLE_ID)
1786                 size += sizeof(data->id);
1787
1788         if (sample_type & PERF_SAMPLE_STREAM_ID)
1789                 size += sizeof(data->stream_id);
1790
1791         if (sample_type & PERF_SAMPLE_CPU)
1792                 size += sizeof(data->cpu_entry);
1793
1794         event->id_header_size = size;
1795 }
1796
1797 static bool perf_event_validate_size(struct perf_event *event)
1798 {
1799         /*
1800          * The values computed here will be over-written when we actually
1801          * attach the event.
1802          */
1803         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805         perf_event__id_header_size(event);
1806
1807         /*
1808          * Sum the lot; should not exceed the 64k limit we have on records.
1809          * Conservative limit to allow for callchains and other variable fields.
1810          */
1811         if (event->read_size + event->header_size +
1812             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813                 return false;
1814
1815         return true;
1816 }
1817
1818 static void perf_group_attach(struct perf_event *event)
1819 {
1820         struct perf_event *group_leader = event->group_leader, *pos;
1821
1822         lockdep_assert_held(&event->ctx->lock);
1823
1824         /*
1825          * We can have double attach due to group movement in perf_event_open.
1826          */
1827         if (event->attach_state & PERF_ATTACH_GROUP)
1828                 return;
1829
1830         event->attach_state |= PERF_ATTACH_GROUP;
1831
1832         if (group_leader == event)
1833                 return;
1834
1835         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836
1837         group_leader->group_caps &= event->event_caps;
1838
1839         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1840         group_leader->nr_siblings++;
1841
1842         perf_event__header_size(group_leader);
1843
1844         for_each_sibling_event(pos, group_leader)
1845                 perf_event__header_size(pos);
1846 }
1847
1848 /*
1849  * Remove an event from the lists for its context.
1850  * Must be called with ctx->mutex and ctx->lock held.
1851  */
1852 static void
1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1854 {
1855         WARN_ON_ONCE(event->ctx != ctx);
1856         lockdep_assert_held(&ctx->lock);
1857
1858         /*
1859          * We can have double detach due to exit/hot-unplug + close.
1860          */
1861         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1862                 return;
1863
1864         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865
1866         list_update_cgroup_event(event, ctx, false);
1867
1868         ctx->nr_events--;
1869         if (event->attr.inherit_stat)
1870                 ctx->nr_stat--;
1871
1872         list_del_rcu(&event->event_entry);
1873
1874         if (event->group_leader == event)
1875                 del_event_from_groups(event, ctx);
1876
1877         /*
1878          * If event was in error state, then keep it
1879          * that way, otherwise bogus counts will be
1880          * returned on read(). The only way to get out
1881          * of error state is by explicit re-enabling
1882          * of the event
1883          */
1884         if (event->state > PERF_EVENT_STATE_OFF)
1885                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1886
1887         ctx->generation++;
1888 }
1889
1890 static void perf_group_detach(struct perf_event *event)
1891 {
1892         struct perf_event *sibling, *tmp;
1893         struct perf_event_context *ctx = event->ctx;
1894
1895         lockdep_assert_held(&ctx->lock);
1896
1897         /*
1898          * We can have double detach due to exit/hot-unplug + close.
1899          */
1900         if (!(event->attach_state & PERF_ATTACH_GROUP))
1901                 return;
1902
1903         event->attach_state &= ~PERF_ATTACH_GROUP;
1904
1905         /*
1906          * If this is a sibling, remove it from its group.
1907          */
1908         if (event->group_leader != event) {
1909                 list_del_init(&event->sibling_list);
1910                 event->group_leader->nr_siblings--;
1911                 goto out;
1912         }
1913
1914         /*
1915          * If this was a group event with sibling events then
1916          * upgrade the siblings to singleton events by adding them
1917          * to whatever list we are on.
1918          */
1919         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1920
1921                 sibling->group_leader = sibling;
1922                 list_del_init(&sibling->sibling_list);
1923
1924                 /* Inherit group flags from the previous leader */
1925                 sibling->group_caps = event->group_caps;
1926
1927                 if (!RB_EMPTY_NODE(&event->group_node)) {
1928                         add_event_to_groups(sibling, event->ctx);
1929
1930                         if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1931                                 struct list_head *list = sibling->attr.pinned ?
1932                                         &ctx->pinned_active : &ctx->flexible_active;
1933
1934                                 list_add_tail(&sibling->active_list, list);
1935                         }
1936                 }
1937
1938                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1939         }
1940
1941 out:
1942         perf_event__header_size(event->group_leader);
1943
1944         for_each_sibling_event(tmp, event->group_leader)
1945                 perf_event__header_size(tmp);
1946 }
1947
1948 static bool is_orphaned_event(struct perf_event *event)
1949 {
1950         return event->state == PERF_EVENT_STATE_DEAD;
1951 }
1952
1953 static inline int __pmu_filter_match(struct perf_event *event)
1954 {
1955         struct pmu *pmu = event->pmu;
1956         return pmu->filter_match ? pmu->filter_match(event) : 1;
1957 }
1958
1959 /*
1960  * Check whether we should attempt to schedule an event group based on
1961  * PMU-specific filtering. An event group can consist of HW and SW events,
1962  * potentially with a SW leader, so we must check all the filters, to
1963  * determine whether a group is schedulable:
1964  */
1965 static inline int pmu_filter_match(struct perf_event *event)
1966 {
1967         struct perf_event *sibling;
1968
1969         if (!__pmu_filter_match(event))
1970                 return 0;
1971
1972         for_each_sibling_event(sibling, event) {
1973                 if (!__pmu_filter_match(sibling))
1974                         return 0;
1975         }
1976
1977         return 1;
1978 }
1979
1980 static inline int
1981 event_filter_match(struct perf_event *event)
1982 {
1983         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1984                perf_cgroup_match(event) && pmu_filter_match(event);
1985 }
1986
1987 static void
1988 event_sched_out(struct perf_event *event,
1989                   struct perf_cpu_context *cpuctx,
1990                   struct perf_event_context *ctx)
1991 {
1992         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1993
1994         WARN_ON_ONCE(event->ctx != ctx);
1995         lockdep_assert_held(&ctx->lock);
1996
1997         if (event->state != PERF_EVENT_STATE_ACTIVE)
1998                 return;
1999
2000         /*
2001          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2002          * we can schedule events _OUT_ individually through things like
2003          * __perf_remove_from_context().
2004          */
2005         list_del_init(&event->active_list);
2006
2007         perf_pmu_disable(event->pmu);
2008
2009         event->pmu->del(event, 0);
2010         event->oncpu = -1;
2011
2012         if (READ_ONCE(event->pending_disable) >= 0) {
2013                 WRITE_ONCE(event->pending_disable, -1);
2014                 state = PERF_EVENT_STATE_OFF;
2015         }
2016         perf_event_set_state(event, state);
2017
2018         if (!is_software_event(event))
2019                 cpuctx->active_oncpu--;
2020         if (!--ctx->nr_active)
2021                 perf_event_ctx_deactivate(ctx);
2022         if (event->attr.freq && event->attr.sample_freq)
2023                 ctx->nr_freq--;
2024         if (event->attr.exclusive || !cpuctx->active_oncpu)
2025                 cpuctx->exclusive = 0;
2026
2027         perf_pmu_enable(event->pmu);
2028 }
2029
2030 static void
2031 group_sched_out(struct perf_event *group_event,
2032                 struct perf_cpu_context *cpuctx,
2033                 struct perf_event_context *ctx)
2034 {
2035         struct perf_event *event;
2036
2037         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2038                 return;
2039
2040         perf_pmu_disable(ctx->pmu);
2041
2042         event_sched_out(group_event, cpuctx, ctx);
2043
2044         /*
2045          * Schedule out siblings (if any):
2046          */
2047         for_each_sibling_event(event, group_event)
2048                 event_sched_out(event, cpuctx, ctx);
2049
2050         perf_pmu_enable(ctx->pmu);
2051
2052         if (group_event->attr.exclusive)
2053                 cpuctx->exclusive = 0;
2054 }
2055
2056 #define DETACH_GROUP    0x01UL
2057
2058 /*
2059  * Cross CPU call to remove a performance event
2060  *
2061  * We disable the event on the hardware level first. After that we
2062  * remove it from the context list.
2063  */
2064 static void
2065 __perf_remove_from_context(struct perf_event *event,
2066                            struct perf_cpu_context *cpuctx,
2067                            struct perf_event_context *ctx,
2068                            void *info)
2069 {
2070         unsigned long flags = (unsigned long)info;
2071
2072         if (ctx->is_active & EVENT_TIME) {
2073                 update_context_time(ctx);
2074                 update_cgrp_time_from_cpuctx(cpuctx);
2075         }
2076
2077         event_sched_out(event, cpuctx, ctx);
2078         if (flags & DETACH_GROUP)
2079                 perf_group_detach(event);
2080         list_del_event(event, ctx);
2081
2082         if (!ctx->nr_events && ctx->is_active) {
2083                 ctx->is_active = 0;
2084                 if (ctx->task) {
2085                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2086                         cpuctx->task_ctx = NULL;
2087                 }
2088         }
2089 }
2090
2091 /*
2092  * Remove the event from a task's (or a CPU's) list of events.
2093  *
2094  * If event->ctx is a cloned context, callers must make sure that
2095  * every task struct that event->ctx->task could possibly point to
2096  * remains valid.  This is OK when called from perf_release since
2097  * that only calls us on the top-level context, which can't be a clone.
2098  * When called from perf_event_exit_task, it's OK because the
2099  * context has been detached from its task.
2100  */
2101 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2102 {
2103         struct perf_event_context *ctx = event->ctx;
2104
2105         lockdep_assert_held(&ctx->mutex);
2106
2107         event_function_call(event, __perf_remove_from_context, (void *)flags);
2108
2109         /*
2110          * The above event_function_call() can NO-OP when it hits
2111          * TASK_TOMBSTONE. In that case we must already have been detached
2112          * from the context (by perf_event_exit_event()) but the grouping
2113          * might still be in-tact.
2114          */
2115         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2116         if ((flags & DETACH_GROUP) &&
2117             (event->attach_state & PERF_ATTACH_GROUP)) {
2118                 /*
2119                  * Since in that case we cannot possibly be scheduled, simply
2120                  * detach now.
2121                  */
2122                 raw_spin_lock_irq(&ctx->lock);
2123                 perf_group_detach(event);
2124                 raw_spin_unlock_irq(&ctx->lock);
2125         }
2126 }
2127
2128 /*
2129  * Cross CPU call to disable a performance event
2130  */
2131 static void __perf_event_disable(struct perf_event *event,
2132                                  struct perf_cpu_context *cpuctx,
2133                                  struct perf_event_context *ctx,
2134                                  void *info)
2135 {
2136         if (event->state < PERF_EVENT_STATE_INACTIVE)
2137                 return;
2138
2139         if (ctx->is_active & EVENT_TIME) {
2140                 update_context_time(ctx);
2141                 update_cgrp_time_from_event(event);
2142         }
2143
2144         if (event == event->group_leader)
2145                 group_sched_out(event, cpuctx, ctx);
2146         else
2147                 event_sched_out(event, cpuctx, ctx);
2148
2149         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2150 }
2151
2152 /*
2153  * Disable an event.
2154  *
2155  * If event->ctx is a cloned context, callers must make sure that
2156  * every task struct that event->ctx->task could possibly point to
2157  * remains valid.  This condition is satisifed when called through
2158  * perf_event_for_each_child or perf_event_for_each because they
2159  * hold the top-level event's child_mutex, so any descendant that
2160  * goes to exit will block in perf_event_exit_event().
2161  *
2162  * When called from perf_pending_event it's OK because event->ctx
2163  * is the current context on this CPU and preemption is disabled,
2164  * hence we can't get into perf_event_task_sched_out for this context.
2165  */
2166 static void _perf_event_disable(struct perf_event *event)
2167 {
2168         struct perf_event_context *ctx = event->ctx;
2169
2170         raw_spin_lock_irq(&ctx->lock);
2171         if (event->state <= PERF_EVENT_STATE_OFF) {
2172                 raw_spin_unlock_irq(&ctx->lock);
2173                 return;
2174         }
2175         raw_spin_unlock_irq(&ctx->lock);
2176
2177         event_function_call(event, __perf_event_disable, NULL);
2178 }
2179
2180 void perf_event_disable_local(struct perf_event *event)
2181 {
2182         event_function_local(event, __perf_event_disable, NULL);
2183 }
2184
2185 /*
2186  * Strictly speaking kernel users cannot create groups and therefore this
2187  * interface does not need the perf_event_ctx_lock() magic.
2188  */
2189 void perf_event_disable(struct perf_event *event)
2190 {
2191         struct perf_event_context *ctx;
2192
2193         ctx = perf_event_ctx_lock(event);
2194         _perf_event_disable(event);
2195         perf_event_ctx_unlock(event, ctx);
2196 }
2197 EXPORT_SYMBOL_GPL(perf_event_disable);
2198
2199 void perf_event_disable_inatomic(struct perf_event *event)
2200 {
2201         WRITE_ONCE(event->pending_disable, smp_processor_id());
2202         /* can fail, see perf_pending_event_disable() */
2203         irq_work_queue(&event->pending);
2204 }
2205
2206 static void perf_set_shadow_time(struct perf_event *event,
2207                                  struct perf_event_context *ctx)
2208 {
2209         /*
2210          * use the correct time source for the time snapshot
2211          *
2212          * We could get by without this by leveraging the
2213          * fact that to get to this function, the caller
2214          * has most likely already called update_context_time()
2215          * and update_cgrp_time_xx() and thus both timestamp
2216          * are identical (or very close). Given that tstamp is,
2217          * already adjusted for cgroup, we could say that:
2218          *    tstamp - ctx->timestamp
2219          * is equivalent to
2220          *    tstamp - cgrp->timestamp.
2221          *
2222          * Then, in perf_output_read(), the calculation would
2223          * work with no changes because:
2224          * - event is guaranteed scheduled in
2225          * - no scheduled out in between
2226          * - thus the timestamp would be the same
2227          *
2228          * But this is a bit hairy.
2229          *
2230          * So instead, we have an explicit cgroup call to remain
2231          * within the time time source all along. We believe it
2232          * is cleaner and simpler to understand.
2233          */
2234         if (is_cgroup_event(event))
2235                 perf_cgroup_set_shadow_time(event, event->tstamp);
2236         else
2237                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2238 }
2239
2240 #define MAX_INTERRUPTS (~0ULL)
2241
2242 static void perf_log_throttle(struct perf_event *event, int enable);
2243 static void perf_log_itrace_start(struct perf_event *event);
2244
2245 static int
2246 event_sched_in(struct perf_event *event,
2247                  struct perf_cpu_context *cpuctx,
2248                  struct perf_event_context *ctx)
2249 {
2250         int ret = 0;
2251
2252         lockdep_assert_held(&ctx->lock);
2253
2254         if (event->state <= PERF_EVENT_STATE_OFF)
2255                 return 0;
2256
2257         WRITE_ONCE(event->oncpu, smp_processor_id());
2258         /*
2259          * Order event::oncpu write to happen before the ACTIVE state is
2260          * visible. This allows perf_event_{stop,read}() to observe the correct
2261          * ->oncpu if it sees ACTIVE.
2262          */
2263         smp_wmb();
2264         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2265
2266         /*
2267          * Unthrottle events, since we scheduled we might have missed several
2268          * ticks already, also for a heavily scheduling task there is little
2269          * guarantee it'll get a tick in a timely manner.
2270          */
2271         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2272                 perf_log_throttle(event, 1);
2273                 event->hw.interrupts = 0;
2274         }
2275
2276         perf_pmu_disable(event->pmu);
2277
2278         perf_set_shadow_time(event, ctx);
2279
2280         perf_log_itrace_start(event);
2281
2282         if (event->pmu->add(event, PERF_EF_START)) {
2283                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2284                 event->oncpu = -1;
2285                 ret = -EAGAIN;
2286                 goto out;
2287         }
2288
2289         if (!is_software_event(event))
2290                 cpuctx->active_oncpu++;
2291         if (!ctx->nr_active++)
2292                 perf_event_ctx_activate(ctx);
2293         if (event->attr.freq && event->attr.sample_freq)
2294                 ctx->nr_freq++;
2295
2296         if (event->attr.exclusive)
2297                 cpuctx->exclusive = 1;
2298
2299 out:
2300         perf_pmu_enable(event->pmu);
2301
2302         return ret;
2303 }
2304
2305 static int
2306 group_sched_in(struct perf_event *group_event,
2307                struct perf_cpu_context *cpuctx,
2308                struct perf_event_context *ctx)
2309 {
2310         struct perf_event *event, *partial_group = NULL;
2311         struct pmu *pmu = ctx->pmu;
2312
2313         if (group_event->state == PERF_EVENT_STATE_OFF)
2314                 return 0;
2315
2316         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2317
2318         if (event_sched_in(group_event, cpuctx, ctx)) {
2319                 pmu->cancel_txn(pmu);
2320                 perf_mux_hrtimer_restart(cpuctx);
2321                 return -EAGAIN;
2322         }
2323
2324         /*
2325          * Schedule in siblings as one group (if any):
2326          */
2327         for_each_sibling_event(event, group_event) {
2328                 if (event_sched_in(event, cpuctx, ctx)) {
2329                         partial_group = event;
2330                         goto group_error;
2331                 }
2332         }
2333
2334         if (!pmu->commit_txn(pmu))
2335                 return 0;
2336
2337 group_error:
2338         /*
2339          * Groups can be scheduled in as one unit only, so undo any
2340          * partial group before returning:
2341          * The events up to the failed event are scheduled out normally.
2342          */
2343         for_each_sibling_event(event, group_event) {
2344                 if (event == partial_group)
2345                         break;
2346
2347                 event_sched_out(event, cpuctx, ctx);
2348         }
2349         event_sched_out(group_event, cpuctx, ctx);
2350
2351         pmu->cancel_txn(pmu);
2352
2353         perf_mux_hrtimer_restart(cpuctx);
2354
2355         return -EAGAIN;
2356 }
2357
2358 /*
2359  * Work out whether we can put this event group on the CPU now.
2360  */
2361 static int group_can_go_on(struct perf_event *event,
2362                            struct perf_cpu_context *cpuctx,
2363                            int can_add_hw)
2364 {
2365         /*
2366          * Groups consisting entirely of software events can always go on.
2367          */
2368         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2369                 return 1;
2370         /*
2371          * If an exclusive group is already on, no other hardware
2372          * events can go on.
2373          */
2374         if (cpuctx->exclusive)
2375                 return 0;
2376         /*
2377          * If this group is exclusive and there are already
2378          * events on the CPU, it can't go on.
2379          */
2380         if (event->attr.exclusive && cpuctx->active_oncpu)
2381                 return 0;
2382         /*
2383          * Otherwise, try to add it if all previous groups were able
2384          * to go on.
2385          */
2386         return can_add_hw;
2387 }
2388
2389 static void add_event_to_ctx(struct perf_event *event,
2390                                struct perf_event_context *ctx)
2391 {
2392         list_add_event(event, ctx);
2393         perf_group_attach(event);
2394 }
2395
2396 static void ctx_sched_out(struct perf_event_context *ctx,
2397                           struct perf_cpu_context *cpuctx,
2398                           enum event_type_t event_type);
2399 static void
2400 ctx_sched_in(struct perf_event_context *ctx,
2401              struct perf_cpu_context *cpuctx,
2402              enum event_type_t event_type,
2403              struct task_struct *task);
2404
2405 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2406                                struct perf_event_context *ctx,
2407                                enum event_type_t event_type)
2408 {
2409         if (!cpuctx->task_ctx)
2410                 return;
2411
2412         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2413                 return;
2414
2415         ctx_sched_out(ctx, cpuctx, event_type);
2416 }
2417
2418 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2419                                 struct perf_event_context *ctx,
2420                                 struct task_struct *task)
2421 {
2422         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2423         if (ctx)
2424                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2425         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2426         if (ctx)
2427                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2428 }
2429
2430 /*
2431  * We want to maintain the following priority of scheduling:
2432  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2433  *  - task pinned (EVENT_PINNED)
2434  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2435  *  - task flexible (EVENT_FLEXIBLE).
2436  *
2437  * In order to avoid unscheduling and scheduling back in everything every
2438  * time an event is added, only do it for the groups of equal priority and
2439  * below.
2440  *
2441  * This can be called after a batch operation on task events, in which case
2442  * event_type is a bit mask of the types of events involved. For CPU events,
2443  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2444  */
2445 static void ctx_resched(struct perf_cpu_context *cpuctx,
2446                         struct perf_event_context *task_ctx,
2447                         enum event_type_t event_type)
2448 {
2449         enum event_type_t ctx_event_type;
2450         bool cpu_event = !!(event_type & EVENT_CPU);
2451
2452         /*
2453          * If pinned groups are involved, flexible groups also need to be
2454          * scheduled out.
2455          */
2456         if (event_type & EVENT_PINNED)
2457                 event_type |= EVENT_FLEXIBLE;
2458
2459         ctx_event_type = event_type & EVENT_ALL;
2460
2461         perf_pmu_disable(cpuctx->ctx.pmu);
2462         if (task_ctx)
2463                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2464
2465         /*
2466          * Decide which cpu ctx groups to schedule out based on the types
2467          * of events that caused rescheduling:
2468          *  - EVENT_CPU: schedule out corresponding groups;
2469          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2470          *  - otherwise, do nothing more.
2471          */
2472         if (cpu_event)
2473                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2474         else if (ctx_event_type & EVENT_PINNED)
2475                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2476
2477         perf_event_sched_in(cpuctx, task_ctx, current);
2478         perf_pmu_enable(cpuctx->ctx.pmu);
2479 }
2480
2481 void perf_pmu_resched(struct pmu *pmu)
2482 {
2483         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2484         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2485
2486         perf_ctx_lock(cpuctx, task_ctx);
2487         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2488         perf_ctx_unlock(cpuctx, task_ctx);
2489 }
2490
2491 /*
2492  * Cross CPU call to install and enable a performance event
2493  *
2494  * Very similar to remote_function() + event_function() but cannot assume that
2495  * things like ctx->is_active and cpuctx->task_ctx are set.
2496  */
2497 static int  __perf_install_in_context(void *info)
2498 {
2499         struct perf_event *event = info;
2500         struct perf_event_context *ctx = event->ctx;
2501         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2502         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2503         bool reprogram = true;
2504         int ret = 0;
2505
2506         raw_spin_lock(&cpuctx->ctx.lock);
2507         if (ctx->task) {
2508                 raw_spin_lock(&ctx->lock);
2509                 task_ctx = ctx;
2510
2511                 reprogram = (ctx->task == current);
2512
2513                 /*
2514                  * If the task is running, it must be running on this CPU,
2515                  * otherwise we cannot reprogram things.
2516                  *
2517                  * If its not running, we don't care, ctx->lock will
2518                  * serialize against it becoming runnable.
2519                  */
2520                 if (task_curr(ctx->task) && !reprogram) {
2521                         ret = -ESRCH;
2522                         goto unlock;
2523                 }
2524
2525                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2526         } else if (task_ctx) {
2527                 raw_spin_lock(&task_ctx->lock);
2528         }
2529
2530 #ifdef CONFIG_CGROUP_PERF
2531         if (is_cgroup_event(event)) {
2532                 /*
2533                  * If the current cgroup doesn't match the event's
2534                  * cgroup, we should not try to schedule it.
2535                  */
2536                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2537                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2538                                         event->cgrp->css.cgroup);
2539         }
2540 #endif
2541
2542         if (reprogram) {
2543                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2544                 add_event_to_ctx(event, ctx);
2545                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2546         } else {
2547                 add_event_to_ctx(event, ctx);
2548         }
2549
2550 unlock:
2551         perf_ctx_unlock(cpuctx, task_ctx);
2552
2553         return ret;
2554 }
2555
2556 /*
2557  * Attach a performance event to a context.
2558  *
2559  * Very similar to event_function_call, see comment there.
2560  */
2561 static void
2562 perf_install_in_context(struct perf_event_context *ctx,
2563                         struct perf_event *event,
2564                         int cpu)
2565 {
2566         struct task_struct *task = READ_ONCE(ctx->task);
2567
2568         lockdep_assert_held(&ctx->mutex);
2569
2570         if (event->cpu != -1)
2571                 event->cpu = cpu;
2572
2573         /*
2574          * Ensures that if we can observe event->ctx, both the event and ctx
2575          * will be 'complete'. See perf_iterate_sb_cpu().
2576          */
2577         smp_store_release(&event->ctx, ctx);
2578
2579         if (!task) {
2580                 cpu_function_call(cpu, __perf_install_in_context, event);
2581                 return;
2582         }
2583
2584         /*
2585          * Should not happen, we validate the ctx is still alive before calling.
2586          */
2587         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2588                 return;
2589
2590         /*
2591          * Installing events is tricky because we cannot rely on ctx->is_active
2592          * to be set in case this is the nr_events 0 -> 1 transition.
2593          *
2594          * Instead we use task_curr(), which tells us if the task is running.
2595          * However, since we use task_curr() outside of rq::lock, we can race
2596          * against the actual state. This means the result can be wrong.
2597          *
2598          * If we get a false positive, we retry, this is harmless.
2599          *
2600          * If we get a false negative, things are complicated. If we are after
2601          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2602          * value must be correct. If we're before, it doesn't matter since
2603          * perf_event_context_sched_in() will program the counter.
2604          *
2605          * However, this hinges on the remote context switch having observed
2606          * our task->perf_event_ctxp[] store, such that it will in fact take
2607          * ctx::lock in perf_event_context_sched_in().
2608          *
2609          * We do this by task_function_call(), if the IPI fails to hit the task
2610          * we know any future context switch of task must see the
2611          * perf_event_ctpx[] store.
2612          */
2613
2614         /*
2615          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2616          * task_cpu() load, such that if the IPI then does not find the task
2617          * running, a future context switch of that task must observe the
2618          * store.
2619          */
2620         smp_mb();
2621 again:
2622         if (!task_function_call(task, __perf_install_in_context, event))
2623                 return;
2624
2625         raw_spin_lock_irq(&ctx->lock);
2626         task = ctx->task;
2627         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2628                 /*
2629                  * Cannot happen because we already checked above (which also
2630                  * cannot happen), and we hold ctx->mutex, which serializes us
2631                  * against perf_event_exit_task_context().
2632                  */
2633                 raw_spin_unlock_irq(&ctx->lock);
2634                 return;
2635         }
2636         /*
2637          * If the task is not running, ctx->lock will avoid it becoming so,
2638          * thus we can safely install the event.
2639          */
2640         if (task_curr(task)) {
2641                 raw_spin_unlock_irq(&ctx->lock);
2642                 goto again;
2643         }
2644         add_event_to_ctx(event, ctx);
2645         raw_spin_unlock_irq(&ctx->lock);
2646 }
2647
2648 /*
2649  * Cross CPU call to enable a performance event
2650  */
2651 static void __perf_event_enable(struct perf_event *event,
2652                                 struct perf_cpu_context *cpuctx,
2653                                 struct perf_event_context *ctx,
2654                                 void *info)
2655 {
2656         struct perf_event *leader = event->group_leader;
2657         struct perf_event_context *task_ctx;
2658
2659         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2660             event->state <= PERF_EVENT_STATE_ERROR)
2661                 return;
2662
2663         if (ctx->is_active)
2664                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2665
2666         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2667
2668         if (!ctx->is_active)
2669                 return;
2670
2671         if (!event_filter_match(event)) {
2672                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2673                 return;
2674         }
2675
2676         /*
2677          * If the event is in a group and isn't the group leader,
2678          * then don't put it on unless the group is on.
2679          */
2680         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2681                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2682                 return;
2683         }
2684
2685         task_ctx = cpuctx->task_ctx;
2686         if (ctx->task)
2687                 WARN_ON_ONCE(task_ctx != ctx);
2688
2689         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2690 }
2691
2692 /*
2693  * Enable an event.
2694  *
2695  * If event->ctx is a cloned context, callers must make sure that
2696  * every task struct that event->ctx->task could possibly point to
2697  * remains valid.  This condition is satisfied when called through
2698  * perf_event_for_each_child or perf_event_for_each as described
2699  * for perf_event_disable.
2700  */
2701 static void _perf_event_enable(struct perf_event *event)
2702 {
2703         struct perf_event_context *ctx = event->ctx;
2704
2705         raw_spin_lock_irq(&ctx->lock);
2706         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2707             event->state <  PERF_EVENT_STATE_ERROR) {
2708                 raw_spin_unlock_irq(&ctx->lock);
2709                 return;
2710         }
2711
2712         /*
2713          * If the event is in error state, clear that first.
2714          *
2715          * That way, if we see the event in error state below, we know that it
2716          * has gone back into error state, as distinct from the task having
2717          * been scheduled away before the cross-call arrived.
2718          */
2719         if (event->state == PERF_EVENT_STATE_ERROR)
2720                 event->state = PERF_EVENT_STATE_OFF;
2721         raw_spin_unlock_irq(&ctx->lock);
2722
2723         event_function_call(event, __perf_event_enable, NULL);
2724 }
2725
2726 /*
2727  * See perf_event_disable();
2728  */
2729 void perf_event_enable(struct perf_event *event)
2730 {
2731         struct perf_event_context *ctx;
2732
2733         ctx = perf_event_ctx_lock(event);
2734         _perf_event_enable(event);
2735         perf_event_ctx_unlock(event, ctx);
2736 }
2737 EXPORT_SYMBOL_GPL(perf_event_enable);
2738
2739 struct stop_event_data {
2740         struct perf_event       *event;
2741         unsigned int            restart;
2742 };
2743
2744 static int __perf_event_stop(void *info)
2745 {
2746         struct stop_event_data *sd = info;
2747         struct perf_event *event = sd->event;
2748
2749         /* if it's already INACTIVE, do nothing */
2750         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2751                 return 0;
2752
2753         /* matches smp_wmb() in event_sched_in() */
2754         smp_rmb();
2755
2756         /*
2757          * There is a window with interrupts enabled before we get here,
2758          * so we need to check again lest we try to stop another CPU's event.
2759          */
2760         if (READ_ONCE(event->oncpu) != smp_processor_id())
2761                 return -EAGAIN;
2762
2763         event->pmu->stop(event, PERF_EF_UPDATE);
2764
2765         /*
2766          * May race with the actual stop (through perf_pmu_output_stop()),
2767          * but it is only used for events with AUX ring buffer, and such
2768          * events will refuse to restart because of rb::aux_mmap_count==0,
2769          * see comments in perf_aux_output_begin().
2770          *
2771          * Since this is happening on an event-local CPU, no trace is lost
2772          * while restarting.
2773          */
2774         if (sd->restart)
2775                 event->pmu->start(event, 0);
2776
2777         return 0;
2778 }
2779
2780 static int perf_event_stop(struct perf_event *event, int restart)
2781 {
2782         struct stop_event_data sd = {
2783                 .event          = event,
2784                 .restart        = restart,
2785         };
2786         int ret = 0;
2787
2788         do {
2789                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2790                         return 0;
2791
2792                 /* matches smp_wmb() in event_sched_in() */
2793                 smp_rmb();
2794
2795                 /*
2796                  * We only want to restart ACTIVE events, so if the event goes
2797                  * inactive here (event->oncpu==-1), there's nothing more to do;
2798                  * fall through with ret==-ENXIO.
2799                  */
2800                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2801                                         __perf_event_stop, &sd);
2802         } while (ret == -EAGAIN);
2803
2804         return ret;
2805 }
2806
2807 /*
2808  * In order to contain the amount of racy and tricky in the address filter
2809  * configuration management, it is a two part process:
2810  *
2811  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2812  *      we update the addresses of corresponding vmas in
2813  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
2814  * (p2) when an event is scheduled in (pmu::add), it calls
2815  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2816  *      if the generation has changed since the previous call.
2817  *
2818  * If (p1) happens while the event is active, we restart it to force (p2).
2819  *
2820  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2821  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2822  *     ioctl;
2823  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2824  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2825  *     for reading;
2826  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2827  *     of exec.
2828  */
2829 void perf_event_addr_filters_sync(struct perf_event *event)
2830 {
2831         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2832
2833         if (!has_addr_filter(event))
2834                 return;
2835
2836         raw_spin_lock(&ifh->lock);
2837         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2838                 event->pmu->addr_filters_sync(event);
2839                 event->hw.addr_filters_gen = event->addr_filters_gen;
2840         }
2841         raw_spin_unlock(&ifh->lock);
2842 }
2843 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2844
2845 static int _perf_event_refresh(struct perf_event *event, int refresh)
2846 {
2847         /*
2848          * not supported on inherited events
2849          */
2850         if (event->attr.inherit || !is_sampling_event(event))
2851                 return -EINVAL;
2852
2853         atomic_add(refresh, &event->event_limit);
2854         _perf_event_enable(event);
2855
2856         return 0;
2857 }
2858
2859 /*
2860  * See perf_event_disable()
2861  */
2862 int perf_event_refresh(struct perf_event *event, int refresh)
2863 {
2864         struct perf_event_context *ctx;
2865         int ret;
2866
2867         ctx = perf_event_ctx_lock(event);
2868         ret = _perf_event_refresh(event, refresh);
2869         perf_event_ctx_unlock(event, ctx);
2870
2871         return ret;
2872 }
2873 EXPORT_SYMBOL_GPL(perf_event_refresh);
2874
2875 static int perf_event_modify_breakpoint(struct perf_event *bp,
2876                                          struct perf_event_attr *attr)
2877 {
2878         int err;
2879
2880         _perf_event_disable(bp);
2881
2882         err = modify_user_hw_breakpoint_check(bp, attr, true);
2883
2884         if (!bp->attr.disabled)
2885                 _perf_event_enable(bp);
2886
2887         return err;
2888 }
2889
2890 static int perf_event_modify_attr(struct perf_event *event,
2891                                   struct perf_event_attr *attr)
2892 {
2893         if (event->attr.type != attr->type)
2894                 return -EINVAL;
2895
2896         switch (event->attr.type) {
2897         case PERF_TYPE_BREAKPOINT:
2898                 return perf_event_modify_breakpoint(event, attr);
2899         default:
2900                 /* Place holder for future additions. */
2901                 return -EOPNOTSUPP;
2902         }
2903 }
2904
2905 static void ctx_sched_out(struct perf_event_context *ctx,
2906                           struct perf_cpu_context *cpuctx,
2907                           enum event_type_t event_type)
2908 {
2909         struct perf_event *event, *tmp;
2910         int is_active = ctx->is_active;
2911
2912         lockdep_assert_held(&ctx->lock);
2913
2914         if (likely(!ctx->nr_events)) {
2915                 /*
2916                  * See __perf_remove_from_context().
2917                  */
2918                 WARN_ON_ONCE(ctx->is_active);
2919                 if (ctx->task)
2920                         WARN_ON_ONCE(cpuctx->task_ctx);
2921                 return;
2922         }
2923
2924         ctx->is_active &= ~event_type;
2925         if (!(ctx->is_active & EVENT_ALL))
2926                 ctx->is_active = 0;
2927
2928         if (ctx->task) {
2929                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2930                 if (!ctx->is_active)
2931                         cpuctx->task_ctx = NULL;
2932         }
2933
2934         /*
2935          * Always update time if it was set; not only when it changes.
2936          * Otherwise we can 'forget' to update time for any but the last
2937          * context we sched out. For example:
2938          *
2939          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2940          *   ctx_sched_out(.event_type = EVENT_PINNED)
2941          *
2942          * would only update time for the pinned events.
2943          */
2944         if (is_active & EVENT_TIME) {
2945                 /* update (and stop) ctx time */
2946                 update_context_time(ctx);
2947                 update_cgrp_time_from_cpuctx(cpuctx);
2948         }
2949
2950         is_active ^= ctx->is_active; /* changed bits */
2951
2952         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2953                 return;
2954
2955         /*
2956          * If we had been multiplexing, no rotations are necessary, now no events
2957          * are active.
2958          */
2959         ctx->rotate_necessary = 0;
2960
2961         perf_pmu_disable(ctx->pmu);
2962         if (is_active & EVENT_PINNED) {
2963                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2964                         group_sched_out(event, cpuctx, ctx);
2965         }
2966
2967         if (is_active & EVENT_FLEXIBLE) {
2968                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2969                         group_sched_out(event, cpuctx, ctx);
2970         }
2971         perf_pmu_enable(ctx->pmu);
2972 }
2973
2974 /*
2975  * Test whether two contexts are equivalent, i.e. whether they have both been
2976  * cloned from the same version of the same context.
2977  *
2978  * Equivalence is measured using a generation number in the context that is
2979  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2980  * and list_del_event().
2981  */
2982 static int context_equiv(struct perf_event_context *ctx1,
2983                          struct perf_event_context *ctx2)
2984 {
2985         lockdep_assert_held(&ctx1->lock);
2986         lockdep_assert_held(&ctx2->lock);
2987
2988         /* Pinning disables the swap optimization */
2989         if (ctx1->pin_count || ctx2->pin_count)
2990                 return 0;
2991
2992         /* If ctx1 is the parent of ctx2 */
2993         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2994                 return 1;
2995
2996         /* If ctx2 is the parent of ctx1 */
2997         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2998                 return 1;
2999
3000         /*
3001          * If ctx1 and ctx2 have the same parent; we flatten the parent
3002          * hierarchy, see perf_event_init_context().
3003          */
3004         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3005                         ctx1->parent_gen == ctx2->parent_gen)
3006                 return 1;
3007
3008         /* Unmatched */
3009         return 0;
3010 }
3011
3012 static void __perf_event_sync_stat(struct perf_event *event,
3013                                      struct perf_event *next_event)
3014 {
3015         u64 value;
3016
3017         if (!event->attr.inherit_stat)
3018                 return;
3019
3020         /*
3021          * Update the event value, we cannot use perf_event_read()
3022          * because we're in the middle of a context switch and have IRQs
3023          * disabled, which upsets smp_call_function_single(), however
3024          * we know the event must be on the current CPU, therefore we
3025          * don't need to use it.
3026          */
3027         if (event->state == PERF_EVENT_STATE_ACTIVE)
3028                 event->pmu->read(event);
3029
3030         perf_event_update_time(event);
3031
3032         /*
3033          * In order to keep per-task stats reliable we need to flip the event
3034          * values when we flip the contexts.
3035          */
3036         value = local64_read(&next_event->count);
3037         value = local64_xchg(&event->count, value);
3038         local64_set(&next_event->count, value);
3039
3040         swap(event->total_time_enabled, next_event->total_time_enabled);
3041         swap(event->total_time_running, next_event->total_time_running);
3042
3043         /*
3044          * Since we swizzled the values, update the user visible data too.
3045          */
3046         perf_event_update_userpage(event);
3047         perf_event_update_userpage(next_event);
3048 }
3049
3050 static void perf_event_sync_stat(struct perf_event_context *ctx,
3051                                    struct perf_event_context *next_ctx)
3052 {
3053         struct perf_event *event, *next_event;
3054
3055         if (!ctx->nr_stat)
3056                 return;
3057
3058         update_context_time(ctx);
3059
3060         event = list_first_entry(&ctx->event_list,
3061                                    struct perf_event, event_entry);
3062
3063         next_event = list_first_entry(&next_ctx->event_list,
3064                                         struct perf_event, event_entry);
3065
3066         while (&event->event_entry != &ctx->event_list &&
3067                &next_event->event_entry != &next_ctx->event_list) {
3068
3069                 __perf_event_sync_stat(event, next_event);
3070
3071                 event = list_next_entry(event, event_entry);
3072                 next_event = list_next_entry(next_event, event_entry);
3073         }
3074 }
3075
3076 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3077                                          struct task_struct *next)
3078 {
3079         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3080         struct perf_event_context *next_ctx;
3081         struct perf_event_context *parent, *next_parent;
3082         struct perf_cpu_context *cpuctx;
3083         int do_switch = 1;
3084
3085         if (likely(!ctx))
3086                 return;
3087
3088         cpuctx = __get_cpu_context(ctx);
3089         if (!cpuctx->task_ctx)
3090                 return;
3091
3092         rcu_read_lock();
3093         next_ctx = next->perf_event_ctxp[ctxn];
3094         if (!next_ctx)
3095                 goto unlock;
3096
3097         parent = rcu_dereference(ctx->parent_ctx);
3098         next_parent = rcu_dereference(next_ctx->parent_ctx);
3099
3100         /* If neither context have a parent context; they cannot be clones. */
3101         if (!parent && !next_parent)
3102                 goto unlock;
3103
3104         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3105                 /*
3106                  * Looks like the two contexts are clones, so we might be
3107                  * able to optimize the context switch.  We lock both
3108                  * contexts and check that they are clones under the
3109                  * lock (including re-checking that neither has been
3110                  * uncloned in the meantime).  It doesn't matter which
3111                  * order we take the locks because no other cpu could
3112                  * be trying to lock both of these tasks.
3113                  */
3114                 raw_spin_lock(&ctx->lock);
3115                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3116                 if (context_equiv(ctx, next_ctx)) {
3117                         WRITE_ONCE(ctx->task, next);
3118                         WRITE_ONCE(next_ctx->task, task);
3119
3120                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3121
3122                         /*
3123                          * RCU_INIT_POINTER here is safe because we've not
3124                          * modified the ctx and the above modification of
3125                          * ctx->task and ctx->task_ctx_data are immaterial
3126                          * since those values are always verified under
3127                          * ctx->lock which we're now holding.
3128                          */
3129                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3130                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3131
3132                         do_switch = 0;
3133
3134                         perf_event_sync_stat(ctx, next_ctx);
3135                 }
3136                 raw_spin_unlock(&next_ctx->lock);
3137                 raw_spin_unlock(&ctx->lock);
3138         }
3139 unlock:
3140         rcu_read_unlock();
3141
3142         if (do_switch) {
3143                 raw_spin_lock(&ctx->lock);
3144                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3145                 raw_spin_unlock(&ctx->lock);
3146         }
3147 }
3148
3149 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3150
3151 void perf_sched_cb_dec(struct pmu *pmu)
3152 {
3153         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3154
3155         this_cpu_dec(perf_sched_cb_usages);
3156
3157         if (!--cpuctx->sched_cb_usage)
3158                 list_del(&cpuctx->sched_cb_entry);
3159 }
3160
3161
3162 void perf_sched_cb_inc(struct pmu *pmu)
3163 {
3164         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3165
3166         if (!cpuctx->sched_cb_usage++)
3167                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3168
3169         this_cpu_inc(perf_sched_cb_usages);
3170 }
3171
3172 /*
3173  * This function provides the context switch callback to the lower code
3174  * layer. It is invoked ONLY when the context switch callback is enabled.
3175  *
3176  * This callback is relevant even to per-cpu events; for example multi event
3177  * PEBS requires this to provide PID/TID information. This requires we flush
3178  * all queued PEBS records before we context switch to a new task.
3179  */
3180 static void perf_pmu_sched_task(struct task_struct *prev,
3181                                 struct task_struct *next,
3182                                 bool sched_in)
3183 {
3184         struct perf_cpu_context *cpuctx;
3185         struct pmu *pmu;
3186
3187         if (prev == next)
3188                 return;
3189
3190         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3191                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3192
3193                 if (WARN_ON_ONCE(!pmu->sched_task))
3194                         continue;
3195
3196                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3197                 perf_pmu_disable(pmu);
3198
3199                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3200
3201                 perf_pmu_enable(pmu);
3202                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3203         }
3204 }
3205
3206 static void perf_event_switch(struct task_struct *task,
3207                               struct task_struct *next_prev, bool sched_in);
3208
3209 #define for_each_task_context_nr(ctxn)                                  \
3210         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3211
3212 /*
3213  * Called from scheduler to remove the events of the current task,
3214  * with interrupts disabled.
3215  *
3216  * We stop each event and update the event value in event->count.
3217  *
3218  * This does not protect us against NMI, but disable()
3219  * sets the disabled bit in the control field of event _before_
3220  * accessing the event control register. If a NMI hits, then it will
3221  * not restart the event.
3222  */
3223 void __perf_event_task_sched_out(struct task_struct *task,
3224                                  struct task_struct *next)
3225 {
3226         int ctxn;
3227
3228         if (__this_cpu_read(perf_sched_cb_usages))
3229                 perf_pmu_sched_task(task, next, false);
3230
3231         if (atomic_read(&nr_switch_events))
3232                 perf_event_switch(task, next, false);
3233
3234         for_each_task_context_nr(ctxn)
3235                 perf_event_context_sched_out(task, ctxn, next);
3236
3237         /*
3238          * if cgroup events exist on this CPU, then we need
3239          * to check if we have to switch out PMU state.
3240          * cgroup event are system-wide mode only
3241          */
3242         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3243                 perf_cgroup_sched_out(task, next);
3244 }
3245
3246 /*
3247  * Called with IRQs disabled
3248  */
3249 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3250                               enum event_type_t event_type)
3251 {
3252         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3253 }
3254
3255 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3256                               int (*func)(struct perf_event *, void *), void *data)
3257 {
3258         struct perf_event **evt, *evt1, *evt2;
3259         int ret;
3260
3261         evt1 = perf_event_groups_first(groups, -1);
3262         evt2 = perf_event_groups_first(groups, cpu);
3263
3264         while (evt1 || evt2) {
3265                 if (evt1 && evt2) {
3266                         if (evt1->group_index < evt2->group_index)
3267                                 evt = &evt1;
3268                         else
3269                                 evt = &evt2;
3270                 } else if (evt1) {
3271                         evt = &evt1;
3272                 } else {
3273                         evt = &evt2;
3274                 }
3275
3276                 ret = func(*evt, data);
3277                 if (ret)
3278                         return ret;
3279
3280                 *evt = perf_event_groups_next(*evt);
3281         }
3282
3283         return 0;
3284 }
3285
3286 struct sched_in_data {
3287         struct perf_event_context *ctx;
3288         struct perf_cpu_context *cpuctx;
3289         int can_add_hw;
3290 };
3291
3292 static int pinned_sched_in(struct perf_event *event, void *data)
3293 {
3294         struct sched_in_data *sid = data;
3295
3296         if (event->state <= PERF_EVENT_STATE_OFF)
3297                 return 0;
3298
3299         if (!event_filter_match(event))
3300                 return 0;
3301
3302         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3303                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3304                         list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3305         }
3306
3307         /*
3308          * If this pinned group hasn't been scheduled,
3309          * put it in error state.
3310          */
3311         if (event->state == PERF_EVENT_STATE_INACTIVE)
3312                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3313
3314         return 0;
3315 }
3316
3317 static int flexible_sched_in(struct perf_event *event, void *data)
3318 {
3319         struct sched_in_data *sid = data;
3320
3321         if (event->state <= PERF_EVENT_STATE_OFF)
3322                 return 0;
3323
3324         if (!event_filter_match(event))
3325                 return 0;
3326
3327         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3328                 int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3329                 if (ret) {
3330                         sid->can_add_hw = 0;
3331                         sid->ctx->rotate_necessary = 1;
3332                         return 0;
3333                 }
3334                 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3335         }
3336
3337         return 0;
3338 }
3339
3340 static void
3341 ctx_pinned_sched_in(struct perf_event_context *ctx,
3342                     struct perf_cpu_context *cpuctx)
3343 {
3344         struct sched_in_data sid = {
3345                 .ctx = ctx,
3346                 .cpuctx = cpuctx,
3347                 .can_add_hw = 1,
3348         };
3349
3350         visit_groups_merge(&ctx->pinned_groups,
3351                            smp_processor_id(),
3352                            pinned_sched_in, &sid);
3353 }
3354
3355 static void
3356 ctx_flexible_sched_in(struct perf_event_context *ctx,
3357                       struct perf_cpu_context *cpuctx)
3358 {
3359         struct sched_in_data sid = {
3360                 .ctx = ctx,
3361                 .cpuctx = cpuctx,
3362                 .can_add_hw = 1,
3363         };
3364
3365         visit_groups_merge(&ctx->flexible_groups,
3366                            smp_processor_id(),
3367                            flexible_sched_in, &sid);
3368 }
3369
3370 static void
3371 ctx_sched_in(struct perf_event_context *ctx,
3372              struct perf_cpu_context *cpuctx,
3373              enum event_type_t event_type,
3374              struct task_struct *task)
3375 {
3376         int is_active = ctx->is_active;
3377         u64 now;
3378
3379         lockdep_assert_held(&ctx->lock);
3380
3381         if (likely(!ctx->nr_events))
3382                 return;
3383
3384         ctx->is_active |= (event_type | EVENT_TIME);
3385         if (ctx->task) {
3386                 if (!is_active)
3387                         cpuctx->task_ctx = ctx;
3388                 else
3389                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3390         }
3391
3392         is_active ^= ctx->is_active; /* changed bits */
3393
3394         if (is_active & EVENT_TIME) {
3395                 /* start ctx time */
3396                 now = perf_clock();
3397                 ctx->timestamp = now;
3398                 perf_cgroup_set_timestamp(task, ctx);
3399         }
3400
3401         /*
3402          * First go through the list and put on any pinned groups
3403          * in order to give them the best chance of going on.
3404          */
3405         if (is_active & EVENT_PINNED)
3406                 ctx_pinned_sched_in(ctx, cpuctx);
3407
3408         /* Then walk through the lower prio flexible groups */
3409         if (is_active & EVENT_FLEXIBLE)
3410                 ctx_flexible_sched_in(ctx, cpuctx);
3411 }
3412
3413 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3414                              enum event_type_t event_type,
3415                              struct task_struct *task)
3416 {
3417         struct perf_event_context *ctx = &cpuctx->ctx;
3418
3419         ctx_sched_in(ctx, cpuctx, event_type, task);
3420 }
3421
3422 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3423                                         struct task_struct *task)
3424 {
3425         struct perf_cpu_context *cpuctx;
3426
3427         cpuctx = __get_cpu_context(ctx);
3428         if (cpuctx->task_ctx == ctx)
3429                 return;
3430
3431         perf_ctx_lock(cpuctx, ctx);
3432         /*
3433          * We must check ctx->nr_events while holding ctx->lock, such
3434          * that we serialize against perf_install_in_context().
3435          */
3436         if (!ctx->nr_events)
3437                 goto unlock;
3438
3439         perf_pmu_disable(ctx->pmu);
3440         /*
3441          * We want to keep the following priority order:
3442          * cpu pinned (that don't need to move), task pinned,
3443          * cpu flexible, task flexible.
3444          *
3445          * However, if task's ctx is not carrying any pinned
3446          * events, no need to flip the cpuctx's events around.
3447          */
3448         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3449                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3450         perf_event_sched_in(cpuctx, ctx, task);
3451         perf_pmu_enable(ctx->pmu);
3452
3453 unlock:
3454         perf_ctx_unlock(cpuctx, ctx);
3455 }
3456
3457 /*
3458  * Called from scheduler to add the events of the current task
3459  * with interrupts disabled.
3460  *
3461  * We restore the event value and then enable it.
3462  *
3463  * This does not protect us against NMI, but enable()
3464  * sets the enabled bit in the control field of event _before_
3465  * accessing the event control register. If a NMI hits, then it will
3466  * keep the event running.
3467  */
3468 void __perf_event_task_sched_in(struct task_struct *prev,
3469                                 struct task_struct *task)
3470 {
3471         struct perf_event_context *ctx;
3472         int ctxn;
3473
3474         /*
3475          * If cgroup events exist on this CPU, then we need to check if we have
3476          * to switch in PMU state; cgroup event are system-wide mode only.
3477          *
3478          * Since cgroup events are CPU events, we must schedule these in before
3479          * we schedule in the task events.
3480          */
3481         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3482                 perf_cgroup_sched_in(prev, task);
3483
3484         for_each_task_context_nr(ctxn) {
3485                 ctx = task->perf_event_ctxp[ctxn];
3486                 if (likely(!ctx))
3487                         continue;
3488
3489                 perf_event_context_sched_in(ctx, task);
3490         }
3491
3492         if (atomic_read(&nr_switch_events))
3493                 perf_event_switch(task, prev, true);
3494
3495         if (__this_cpu_read(perf_sched_cb_usages))
3496                 perf_pmu_sched_task(prev, task, true);
3497 }
3498
3499 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3500 {
3501         u64 frequency = event->attr.sample_freq;
3502         u64 sec = NSEC_PER_SEC;
3503         u64 divisor, dividend;
3504
3505         int count_fls, nsec_fls, frequency_fls, sec_fls;
3506
3507         count_fls = fls64(count);
3508         nsec_fls = fls64(nsec);
3509         frequency_fls = fls64(frequency);
3510         sec_fls = 30;
3511
3512         /*
3513          * We got @count in @nsec, with a target of sample_freq HZ
3514          * the target period becomes:
3515          *
3516          *             @count * 10^9
3517          * period = -------------------
3518          *          @nsec * sample_freq
3519          *
3520          */
3521
3522         /*
3523          * Reduce accuracy by one bit such that @a and @b converge
3524          * to a similar magnitude.
3525          */
3526 #define REDUCE_FLS(a, b)                \
3527 do {                                    \
3528         if (a##_fls > b##_fls) {        \
3529                 a >>= 1;                \
3530                 a##_fls--;              \
3531         } else {                        \
3532                 b >>= 1;                \
3533                 b##_fls--;              \
3534         }                               \
3535 } while (0)
3536
3537         /*
3538          * Reduce accuracy until either term fits in a u64, then proceed with
3539          * the other, so that finally we can do a u64/u64 division.
3540          */
3541         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3542                 REDUCE_FLS(nsec, frequency);
3543                 REDUCE_FLS(sec, count);
3544         }
3545
3546         if (count_fls + sec_fls > 64) {
3547                 divisor = nsec * frequency;
3548
3549                 while (count_fls + sec_fls > 64) {
3550                         REDUCE_FLS(count, sec);
3551                         divisor >>= 1;
3552                 }
3553
3554                 dividend = count * sec;
3555         } else {
3556                 dividend = count * sec;
3557
3558                 while (nsec_fls + frequency_fls > 64) {
3559                         REDUCE_FLS(nsec, frequency);
3560                         dividend >>= 1;
3561                 }
3562
3563                 divisor = nsec * frequency;
3564         }
3565
3566         if (!divisor)
3567                 return dividend;
3568
3569         return div64_u64(dividend, divisor);
3570 }
3571
3572 static DEFINE_PER_CPU(int, perf_throttled_count);
3573 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3574
3575 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3576 {
3577         struct hw_perf_event *hwc = &event->hw;
3578         s64 period, sample_period;
3579         s64 delta;
3580
3581         period = perf_calculate_period(event, nsec, count);
3582
3583         delta = (s64)(period - hwc->sample_period);
3584         delta = (delta + 7) / 8; /* low pass filter */
3585
3586         sample_period = hwc->sample_period + delta;
3587
3588         if (!sample_period)
3589                 sample_period = 1;
3590
3591         hwc->sample_period = sample_period;
3592
3593         if (local64_read(&hwc->period_left) > 8*sample_period) {
3594                 if (disable)
3595                         event->pmu->stop(event, PERF_EF_UPDATE);
3596
3597                 local64_set(&hwc->period_left, 0);
3598
3599                 if (disable)
3600                         event->pmu->start(event, PERF_EF_RELOAD);
3601         }
3602 }
3603
3604 /*
3605  * combine freq adjustment with unthrottling to avoid two passes over the
3606  * events. At the same time, make sure, having freq events does not change
3607  * the rate of unthrottling as that would introduce bias.
3608  */
3609 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3610                                            int needs_unthr)
3611 {
3612         struct perf_event *event;
3613         struct hw_perf_event *hwc;
3614         u64 now, period = TICK_NSEC;
3615         s64 delta;
3616
3617         /*
3618          * only need to iterate over all events iff:
3619          * - context have events in frequency mode (needs freq adjust)
3620          * - there are events to unthrottle on this cpu
3621          */
3622         if (!(ctx->nr_freq || needs_unthr))
3623                 return;
3624
3625         raw_spin_lock(&ctx->lock);
3626         perf_pmu_disable(ctx->pmu);
3627
3628         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3629                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3630                         continue;
3631
3632                 if (!event_filter_match(event))
3633                         continue;
3634
3635                 perf_pmu_disable(event->pmu);
3636
3637                 hwc = &event->hw;
3638
3639                 if (hwc->interrupts == MAX_INTERRUPTS) {
3640                         hwc->interrupts = 0;
3641                         perf_log_throttle(event, 1);
3642                         event->pmu->start(event, 0);
3643                 }
3644
3645                 if (!event->attr.freq || !event->attr.sample_freq)
3646                         goto next;
3647
3648                 /*
3649                  * stop the event and update event->count
3650                  */
3651                 event->pmu->stop(event, PERF_EF_UPDATE);
3652
3653                 now = local64_read(&event->count);
3654                 delta = now - hwc->freq_count_stamp;
3655                 hwc->freq_count_stamp = now;
3656
3657                 /*
3658                  * restart the event
3659                  * reload only if value has changed
3660                  * we have stopped the event so tell that
3661                  * to perf_adjust_period() to avoid stopping it
3662                  * twice.
3663                  */
3664                 if (delta > 0)
3665                         perf_adjust_period(event, period, delta, false);
3666
3667                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3668         next:
3669                 perf_pmu_enable(event->pmu);
3670         }
3671
3672         perf_pmu_enable(ctx->pmu);
3673         raw_spin_unlock(&ctx->lock);
3674 }
3675
3676 /*
3677  * Move @event to the tail of the @ctx's elegible events.
3678  */
3679 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3680 {
3681         /*
3682          * Rotate the first entry last of non-pinned groups. Rotation might be
3683          * disabled by the inheritance code.
3684          */
3685         if (ctx->rotate_disable)
3686                 return;
3687
3688         perf_event_groups_delete(&ctx->flexible_groups, event);
3689         perf_event_groups_insert(&ctx->flexible_groups, event);
3690 }
3691
3692 static inline struct perf_event *
3693 ctx_first_active(struct perf_event_context *ctx)
3694 {
3695         return list_first_entry_or_null(&ctx->flexible_active,
3696                                         struct perf_event, active_list);
3697 }
3698
3699 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3700 {
3701         struct perf_event *cpu_event = NULL, *task_event = NULL;
3702         struct perf_event_context *task_ctx = NULL;
3703         int cpu_rotate, task_rotate;
3704
3705         /*
3706          * Since we run this from IRQ context, nobody can install new
3707          * events, thus the event count values are stable.
3708          */
3709
3710         cpu_rotate = cpuctx->ctx.rotate_necessary;
3711         task_ctx = cpuctx->task_ctx;
3712         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
3713
3714         if (!(cpu_rotate || task_rotate))
3715                 return false;
3716
3717         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3718         perf_pmu_disable(cpuctx->ctx.pmu);
3719
3720         if (task_rotate)
3721                 task_event = ctx_first_active(task_ctx);
3722         if (cpu_rotate)
3723                 cpu_event = ctx_first_active(&cpuctx->ctx);
3724
3725         /*
3726          * As per the order given at ctx_resched() first 'pop' task flexible
3727          * and then, if needed CPU flexible.
3728          */
3729         if (task_event || (task_ctx && cpu_event))
3730                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
3731         if (cpu_event)
3732                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3733
3734         if (task_event)
3735                 rotate_ctx(task_ctx, task_event);
3736         if (cpu_event)
3737                 rotate_ctx(&cpuctx->ctx, cpu_event);
3738
3739         perf_event_sched_in(cpuctx, task_ctx, current);
3740
3741         perf_pmu_enable(cpuctx->ctx.pmu);
3742         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3743
3744         return true;
3745 }
3746
3747 void perf_event_task_tick(void)
3748 {
3749         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3750         struct perf_event_context *ctx, *tmp;
3751         int throttled;
3752
3753         lockdep_assert_irqs_disabled();
3754
3755         __this_cpu_inc(perf_throttled_seq);
3756         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3757         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3758
3759         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3760                 perf_adjust_freq_unthr_context(ctx, throttled);
3761 }
3762
3763 static int event_enable_on_exec(struct perf_event *event,
3764                                 struct perf_event_context *ctx)
3765 {
3766         if (!event->attr.enable_on_exec)
3767                 return 0;
3768
3769         event->attr.enable_on_exec = 0;
3770         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3771                 return 0;
3772
3773         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3774
3775         return 1;
3776 }
3777
3778 /*
3779  * Enable all of a task's events that have been marked enable-on-exec.
3780  * This expects task == current.
3781  */
3782 static void perf_event_enable_on_exec(int ctxn)
3783 {
3784         struct perf_event_context *ctx, *clone_ctx = NULL;
3785         enum event_type_t event_type = 0;
3786         struct perf_cpu_context *cpuctx;
3787         struct perf_event *event;
3788         unsigned long flags;
3789         int enabled = 0;
3790
3791         local_irq_save(flags);
3792         ctx = current->perf_event_ctxp[ctxn];
3793         if (!ctx || !ctx->nr_events)
3794                 goto out;
3795
3796         cpuctx = __get_cpu_context(ctx);
3797         perf_ctx_lock(cpuctx, ctx);
3798         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3799         list_for_each_entry(event, &ctx->event_list, event_entry) {
3800                 enabled |= event_enable_on_exec(event, ctx);
3801                 event_type |= get_event_type(event);
3802         }
3803
3804         /*
3805          * Unclone and reschedule this context if we enabled any event.
3806          */
3807         if (enabled) {
3808                 clone_ctx = unclone_ctx(ctx);
3809                 ctx_resched(cpuctx, ctx, event_type);
3810         } else {
3811                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3812         }
3813         perf_ctx_unlock(cpuctx, ctx);
3814
3815 out:
3816         local_irq_restore(flags);
3817
3818         if (clone_ctx)
3819                 put_ctx(clone_ctx);
3820 }
3821
3822 struct perf_read_data {
3823         struct perf_event *event;
3824         bool group;
3825         int ret;
3826 };
3827
3828 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3829 {
3830         u16 local_pkg, event_pkg;
3831
3832         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3833                 int local_cpu = smp_processor_id();
3834
3835                 event_pkg = topology_physical_package_id(event_cpu);
3836                 local_pkg = topology_physical_package_id(local_cpu);
3837
3838                 if (event_pkg == local_pkg)
3839                         return local_cpu;
3840         }
3841
3842         return event_cpu;
3843 }
3844
3845 /*
3846  * Cross CPU call to read the hardware event
3847  */
3848 static void __perf_event_read(void *info)
3849 {
3850         struct perf_read_data *data = info;
3851         struct perf_event *sub, *event = data->event;
3852         struct perf_event_context *ctx = event->ctx;
3853         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3854         struct pmu *pmu = event->pmu;
3855
3856         /*
3857          * If this is a task context, we need to check whether it is
3858          * the current task context of this cpu.  If not it has been
3859          * scheduled out before the smp call arrived.  In that case
3860          * event->count would have been updated to a recent sample
3861          * when the event was scheduled out.
3862          */
3863         if (ctx->task && cpuctx->task_ctx != ctx)
3864                 return;
3865
3866         raw_spin_lock(&ctx->lock);
3867         if (ctx->is_active & EVENT_TIME) {
3868                 update_context_time(ctx);
3869                 update_cgrp_time_from_event(event);
3870         }
3871
3872         perf_event_update_time(event);
3873         if (data->group)
3874                 perf_event_update_sibling_time(event);
3875
3876         if (event->state != PERF_EVENT_STATE_ACTIVE)
3877                 goto unlock;
3878
3879         if (!data->group) {
3880                 pmu->read(event);
3881                 data->ret = 0;
3882                 goto unlock;
3883         }
3884
3885         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3886
3887         pmu->read(event);
3888
3889         for_each_sibling_event(sub, event) {
3890                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3891                         /*
3892                          * Use sibling's PMU rather than @event's since
3893                          * sibling could be on different (eg: software) PMU.
3894                          */
3895                         sub->pmu->read(sub);
3896                 }
3897         }
3898
3899         data->ret = pmu->commit_txn(pmu);
3900
3901 unlock:
3902         raw_spin_unlock(&ctx->lock);
3903 }
3904
3905 static inline u64 perf_event_count(struct perf_event *event)
3906 {
3907         return local64_read(&event->count) + atomic64_read(&event->child_count);
3908 }
3909
3910 /*
3911  * NMI-safe method to read a local event, that is an event that
3912  * is:
3913  *   - either for the current task, or for this CPU
3914  *   - does not have inherit set, for inherited task events
3915  *     will not be local and we cannot read them atomically
3916  *   - must not have a pmu::count method
3917  */
3918 int perf_event_read_local(struct perf_event *event, u64 *value,
3919                           u64 *enabled, u64 *running)
3920 {
3921         unsigned long flags;
3922         int ret = 0;
3923
3924         /*
3925          * Disabling interrupts avoids all counter scheduling (context
3926          * switches, timer based rotation and IPIs).
3927          */
3928         local_irq_save(flags);
3929
3930         /*
3931          * It must not be an event with inherit set, we cannot read
3932          * all child counters from atomic context.
3933          */
3934         if (event->attr.inherit) {
3935                 ret = -EOPNOTSUPP;
3936                 goto out;
3937         }
3938
3939         /* If this is a per-task event, it must be for current */
3940         if ((event->attach_state & PERF_ATTACH_TASK) &&
3941             event->hw.target != current) {
3942                 ret = -EINVAL;
3943                 goto out;
3944         }
3945
3946         /* If this is a per-CPU event, it must be for this CPU */
3947         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3948             event->cpu != smp_processor_id()) {
3949                 ret = -EINVAL;
3950                 goto out;
3951         }
3952
3953         /* If this is a pinned event it must be running on this CPU */
3954         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3955                 ret = -EBUSY;
3956                 goto out;
3957         }
3958
3959         /*
3960          * If the event is currently on this CPU, its either a per-task event,
3961          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3962          * oncpu == -1).
3963          */
3964         if (event->oncpu == smp_processor_id())
3965                 event->pmu->read(event);
3966
3967         *value = local64_read(&event->count);
3968         if (enabled || running) {
3969                 u64 now = event->shadow_ctx_time + perf_clock();
3970                 u64 __enabled, __running;
3971
3972                 __perf_update_times(event, now, &__enabled, &__running);
3973                 if (enabled)
3974                         *enabled = __enabled;
3975                 if (running)
3976                         *running = __running;
3977         }
3978 out:
3979         local_irq_restore(flags);
3980
3981         return ret;
3982 }
3983
3984 static int perf_event_read(struct perf_event *event, bool group)
3985 {
3986         enum perf_event_state state = READ_ONCE(event->state);
3987         int event_cpu, ret = 0;
3988
3989         /*
3990          * If event is enabled and currently active on a CPU, update the
3991          * value in the event structure:
3992          */
3993 again:
3994         if (state == PERF_EVENT_STATE_ACTIVE) {
3995                 struct perf_read_data data;
3996
3997                 /*
3998                  * Orders the ->state and ->oncpu loads such that if we see
3999                  * ACTIVE we must also see the right ->oncpu.
4000                  *
4001                  * Matches the smp_wmb() from event_sched_in().
4002                  */
4003                 smp_rmb();
4004
4005                 event_cpu = READ_ONCE(event->oncpu);
4006                 if ((unsigned)event_cpu >= nr_cpu_ids)
4007                         return 0;
4008
4009                 data = (struct perf_read_data){
4010                         .event = event,
4011                         .group = group,
4012                         .ret = 0,
4013                 };
4014
4015                 preempt_disable();
4016                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4017
4018                 /*
4019                  * Purposely ignore the smp_call_function_single() return
4020                  * value.
4021                  *
4022                  * If event_cpu isn't a valid CPU it means the event got
4023                  * scheduled out and that will have updated the event count.
4024                  *
4025                  * Therefore, either way, we'll have an up-to-date event count
4026                  * after this.
4027                  */
4028                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4029                 preempt_enable();
4030                 ret = data.ret;
4031
4032         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4033                 struct perf_event_context *ctx = event->ctx;
4034                 unsigned long flags;
4035
4036                 raw_spin_lock_irqsave(&ctx->lock, flags);
4037                 state = event->state;
4038                 if (state != PERF_EVENT_STATE_INACTIVE) {
4039                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4040                         goto again;
4041                 }
4042
4043                 /*
4044                  * May read while context is not active (e.g., thread is
4045                  * blocked), in that case we cannot update context time
4046                  */
4047                 if (ctx->is_active & EVENT_TIME) {
4048                         update_context_time(ctx);
4049                         update_cgrp_time_from_event(event);
4050                 }
4051
4052                 perf_event_update_time(event);
4053                 if (group)
4054                         perf_event_update_sibling_time(event);
4055                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4056         }
4057
4058         return ret;
4059 }
4060
4061 /*
4062  * Initialize the perf_event context in a task_struct:
4063  */
4064 static void __perf_event_init_context(struct perf_event_context *ctx)
4065 {
4066         raw_spin_lock_init(&ctx->lock);
4067         mutex_init(&ctx->mutex);
4068         INIT_LIST_HEAD(&ctx->active_ctx_list);
4069         perf_event_groups_init(&ctx->pinned_groups);
4070         perf_event_groups_init(&ctx->flexible_groups);
4071         INIT_LIST_HEAD(&ctx->event_list);
4072         INIT_LIST_HEAD(&ctx->pinned_active);
4073         INIT_LIST_HEAD(&ctx->flexible_active);
4074         refcount_set(&ctx->refcount, 1);
4075 }
4076
4077 static struct perf_event_context *
4078 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4079 {
4080         struct perf_event_context *ctx;
4081
4082         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4083         if (!ctx)
4084                 return NULL;
4085
4086         __perf_event_init_context(ctx);
4087         if (task) {
4088                 ctx->task = task;
4089                 get_task_struct(task);
4090         }
4091         ctx->pmu = pmu;
4092
4093         return ctx;
4094 }
4095
4096 static struct task_struct *
4097 find_lively_task_by_vpid(pid_t vpid)
4098 {
4099         struct task_struct *task;
4100
4101         rcu_read_lock();
4102         if (!vpid)
4103                 task = current;
4104         else
4105                 task = find_task_by_vpid(vpid);
4106         if (task)
4107                 get_task_struct(task);
4108         rcu_read_unlock();
4109
4110         if (!task)
4111                 return ERR_PTR(-ESRCH);
4112
4113         return task;
4114 }
4115
4116 /*
4117  * Returns a matching context with refcount and pincount.
4118  */
4119 static struct perf_event_context *
4120 find_get_context(struct pmu *pmu, struct task_struct *task,
4121                 struct perf_event *event)
4122 {
4123         struct perf_event_context *ctx, *clone_ctx = NULL;
4124         struct perf_cpu_context *cpuctx;
4125         void *task_ctx_data = NULL;
4126         unsigned long flags;
4127         int ctxn, err;
4128         int cpu = event->cpu;
4129
4130         if (!task) {
4131                 /* Must be root to operate on a CPU event: */
4132                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4133                         return ERR_PTR(-EACCES);
4134
4135                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4136                 ctx = &cpuctx->ctx;
4137                 get_ctx(ctx);
4138                 ++ctx->pin_count;
4139
4140                 return ctx;
4141         }
4142
4143         err = -EINVAL;
4144         ctxn = pmu->task_ctx_nr;
4145         if (ctxn < 0)
4146                 goto errout;
4147
4148         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4149                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4150                 if (!task_ctx_data) {
4151                         err = -ENOMEM;
4152                         goto errout;
4153                 }
4154         }
4155
4156 retry:
4157         ctx = perf_lock_task_context(task, ctxn, &flags);
4158         if (ctx) {
4159                 clone_ctx = unclone_ctx(ctx);
4160                 ++ctx->pin_count;
4161
4162                 if (task_ctx_data && !ctx->task_ctx_data) {
4163                         ctx->task_ctx_data = task_ctx_data;
4164                         task_ctx_data = NULL;
4165                 }
4166                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4167
4168                 if (clone_ctx)
4169                         put_ctx(clone_ctx);
4170         } else {
4171                 ctx = alloc_perf_context(pmu, task);
4172                 err = -ENOMEM;
4173                 if (!ctx)
4174                         goto errout;
4175
4176                 if (task_ctx_data) {
4177                         ctx->task_ctx_data = task_ctx_data;
4178                         task_ctx_data = NULL;
4179                 }
4180
4181                 err = 0;
4182                 mutex_lock(&task->perf_event_mutex);
4183                 /*
4184                  * If it has already passed perf_event_exit_task().
4185                  * we must see PF_EXITING, it takes this mutex too.
4186                  */
4187                 if (task->flags & PF_EXITING)
4188                         err = -ESRCH;
4189                 else if (task->perf_event_ctxp[ctxn])
4190                         err = -EAGAIN;
4191                 else {
4192                         get_ctx(ctx);
4193                         ++ctx->pin_count;
4194                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4195                 }
4196                 mutex_unlock(&task->perf_event_mutex);
4197
4198                 if (unlikely(err)) {
4199                         put_ctx(ctx);
4200
4201                         if (err == -EAGAIN)
4202                                 goto retry;
4203                         goto errout;
4204                 }
4205         }
4206
4207         kfree(task_ctx_data);
4208         return ctx;
4209
4210 errout:
4211         kfree(task_ctx_data);
4212         return ERR_PTR(err);
4213 }
4214
4215 static void perf_event_free_filter(struct perf_event *event);
4216 static void perf_event_free_bpf_prog(struct perf_event *event);
4217
4218 static void free_event_rcu(struct rcu_head *head)
4219 {
4220         struct perf_event *event;
4221
4222         event = container_of(head, struct perf_event, rcu_head);
4223         if (event->ns)
4224                 put_pid_ns(event->ns);
4225         perf_event_free_filter(event);
4226         kfree(event);
4227 }
4228
4229 static void ring_buffer_attach(struct perf_event *event,
4230                                struct ring_buffer *rb);
4231
4232 static void detach_sb_event(struct perf_event *event)
4233 {
4234         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4235
4236         raw_spin_lock(&pel->lock);
4237         list_del_rcu(&event->sb_list);
4238         raw_spin_unlock(&pel->lock);
4239 }
4240
4241 static bool is_sb_event(struct perf_event *event)
4242 {
4243         struct perf_event_attr *attr = &event->attr;
4244
4245         if (event->parent)
4246                 return false;
4247
4248         if (event->attach_state & PERF_ATTACH_TASK)
4249                 return false;
4250
4251         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4252             attr->comm || attr->comm_exec ||
4253             attr->task || attr->ksymbol ||
4254             attr->context_switch ||
4255             attr->bpf_event)
4256                 return true;
4257         return false;
4258 }
4259
4260 static void unaccount_pmu_sb_event(struct perf_event *event)
4261 {
4262         if (is_sb_event(event))
4263                 detach_sb_event(event);
4264 }
4265
4266 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4267 {
4268         if (event->parent)
4269                 return;
4270
4271         if (is_cgroup_event(event))
4272                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4273 }
4274
4275 #ifdef CONFIG_NO_HZ_FULL
4276 static DEFINE_SPINLOCK(nr_freq_lock);
4277 #endif
4278
4279 static void unaccount_freq_event_nohz(void)
4280 {
4281 #ifdef CONFIG_NO_HZ_FULL
4282         spin_lock(&nr_freq_lock);
4283         if (atomic_dec_and_test(&nr_freq_events))
4284                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4285         spin_unlock(&nr_freq_lock);
4286 #endif
4287 }
4288
4289 static void unaccount_freq_event(void)
4290 {
4291         if (tick_nohz_full_enabled())
4292                 unaccount_freq_event_nohz();
4293         else
4294                 atomic_dec(&nr_freq_events);
4295 }
4296
4297 static void unaccount_event(struct perf_event *event)
4298 {
4299         bool dec = false;
4300
4301         if (event->parent)
4302                 return;
4303
4304         if (event->attach_state & PERF_ATTACH_TASK)
4305                 dec = true;
4306         if (event->attr.mmap || event->attr.mmap_data)
4307                 atomic_dec(&nr_mmap_events);
4308         if (event->attr.comm)
4309                 atomic_dec(&nr_comm_events);
4310         if (event->attr.namespaces)
4311                 atomic_dec(&nr_namespaces_events);
4312         if (event->attr.task)
4313                 atomic_dec(&nr_task_events);
4314         if (event->attr.freq)
4315                 unaccount_freq_event();
4316         if (event->attr.context_switch) {
4317                 dec = true;
4318                 atomic_dec(&nr_switch_events);
4319         }
4320         if (is_cgroup_event(event))
4321                 dec = true;
4322         if (has_branch_stack(event))
4323                 dec = true;
4324         if (event->attr.ksymbol)
4325                 atomic_dec(&nr_ksymbol_events);
4326         if (event->attr.bpf_event)
4327                 atomic_dec(&nr_bpf_events);
4328
4329         if (dec) {
4330                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4331                         schedule_delayed_work(&perf_sched_work, HZ);
4332         }
4333
4334         unaccount_event_cpu(event, event->cpu);
4335
4336         unaccount_pmu_sb_event(event);
4337 }
4338
4339 static void perf_sched_delayed(struct work_struct *work)
4340 {
4341         mutex_lock(&perf_sched_mutex);
4342         if (atomic_dec_and_test(&perf_sched_count))
4343                 static_branch_disable(&perf_sched_events);
4344         mutex_unlock(&perf_sched_mutex);
4345 }
4346
4347 /*
4348  * The following implement mutual exclusion of events on "exclusive" pmus
4349  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4350  * at a time, so we disallow creating events that might conflict, namely:
4351  *
4352  *  1) cpu-wide events in the presence of per-task events,
4353  *  2) per-task events in the presence of cpu-wide events,
4354  *  3) two matching events on the same context.
4355  *
4356  * The former two cases are handled in the allocation path (perf_event_alloc(),
4357  * _free_event()), the latter -- before the first perf_install_in_context().
4358  */
4359 static int exclusive_event_init(struct perf_event *event)
4360 {
4361         struct pmu *pmu = event->pmu;
4362
4363         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4364                 return 0;
4365
4366         /*
4367          * Prevent co-existence of per-task and cpu-wide events on the
4368          * same exclusive pmu.
4369          *
4370          * Negative pmu::exclusive_cnt means there are cpu-wide
4371          * events on this "exclusive" pmu, positive means there are
4372          * per-task events.
4373          *
4374          * Since this is called in perf_event_alloc() path, event::ctx
4375          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4376          * to mean "per-task event", because unlike other attach states it
4377          * never gets cleared.
4378          */
4379         if (event->attach_state & PERF_ATTACH_TASK) {
4380                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4381                         return -EBUSY;
4382         } else {
4383                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4384                         return -EBUSY;
4385         }
4386
4387         return 0;
4388 }
4389
4390 static void exclusive_event_destroy(struct perf_event *event)
4391 {
4392         struct pmu *pmu = event->pmu;
4393
4394         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4395                 return;
4396
4397         /* see comment in exclusive_event_init() */
4398         if (event->attach_state & PERF_ATTACH_TASK)
4399                 atomic_dec(&pmu->exclusive_cnt);
4400         else
4401                 atomic_inc(&pmu->exclusive_cnt);
4402 }
4403
4404 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4405 {
4406         if ((e1->pmu == e2->pmu) &&
4407             (e1->cpu == e2->cpu ||
4408              e1->cpu == -1 ||
4409              e2->cpu == -1))
4410                 return true;
4411         return false;
4412 }
4413
4414 /* Called under the same ctx::mutex as perf_install_in_context() */
4415 static bool exclusive_event_installable(struct perf_event *event,
4416                                         struct perf_event_context *ctx)
4417 {
4418         struct perf_event *iter_event;
4419         struct pmu *pmu = event->pmu;
4420
4421         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4422                 return true;
4423
4424         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4425                 if (exclusive_event_match(iter_event, event))
4426                         return false;
4427         }
4428
4429         return true;
4430 }
4431
4432 static void perf_addr_filters_splice(struct perf_event *event,
4433                                        struct list_head *head);
4434
4435 static void _free_event(struct perf_event *event)
4436 {
4437         irq_work_sync(&event->pending);
4438
4439         unaccount_event(event);
4440
4441         if (event->rb) {
4442                 /*
4443                  * Can happen when we close an event with re-directed output.
4444                  *
4445                  * Since we have a 0 refcount, perf_mmap_close() will skip
4446                  * over us; possibly making our ring_buffer_put() the last.
4447                  */
4448                 mutex_lock(&event->mmap_mutex);
4449                 ring_buffer_attach(event, NULL);
4450                 mutex_unlock(&event->mmap_mutex);
4451         }
4452
4453         if (is_cgroup_event(event))
4454                 perf_detach_cgroup(event);
4455
4456         if (!event->parent) {
4457                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4458                         put_callchain_buffers();
4459         }
4460
4461         perf_event_free_bpf_prog(event);
4462         perf_addr_filters_splice(event, NULL);
4463         kfree(event->addr_filter_ranges);
4464
4465         if (event->destroy)
4466                 event->destroy(event);
4467
4468         if (event->ctx)
4469                 put_ctx(event->ctx);
4470
4471         if (event->hw.target)
4472                 put_task_struct(event->hw.target);
4473
4474         exclusive_event_destroy(event);
4475         module_put(event->pmu->module);
4476
4477         call_rcu(&event->rcu_head, free_event_rcu);
4478 }
4479
4480 /*
4481  * Used to free events which have a known refcount of 1, such as in error paths
4482  * where the event isn't exposed yet and inherited events.
4483  */
4484 static void free_event(struct perf_event *event)
4485 {
4486         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4487                                 "unexpected event refcount: %ld; ptr=%p\n",
4488                                 atomic_long_read(&event->refcount), event)) {
4489                 /* leak to avoid use-after-free */
4490                 return;
4491         }
4492
4493         _free_event(event);
4494 }
4495
4496 /*
4497  * Remove user event from the owner task.
4498  */
4499 static void perf_remove_from_owner(struct perf_event *event)
4500 {
4501         struct task_struct *owner;
4502
4503         rcu_read_lock();
4504         /*
4505          * Matches the smp_store_release() in perf_event_exit_task(). If we
4506          * observe !owner it means the list deletion is complete and we can
4507          * indeed free this event, otherwise we need to serialize on
4508          * owner->perf_event_mutex.
4509          */
4510         owner = READ_ONCE(event->owner);
4511         if (owner) {
4512                 /*
4513                  * Since delayed_put_task_struct() also drops the last
4514                  * task reference we can safely take a new reference
4515                  * while holding the rcu_read_lock().
4516                  */
4517                 get_task_struct(owner);
4518         }
4519         rcu_read_unlock();
4520
4521         if (owner) {
4522                 /*
4523                  * If we're here through perf_event_exit_task() we're already
4524                  * holding ctx->mutex which would be an inversion wrt. the
4525                  * normal lock order.
4526                  *
4527                  * However we can safely take this lock because its the child
4528                  * ctx->mutex.
4529                  */
4530                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4531
4532                 /*
4533                  * We have to re-check the event->owner field, if it is cleared
4534                  * we raced with perf_event_exit_task(), acquiring the mutex
4535                  * ensured they're done, and we can proceed with freeing the
4536                  * event.
4537                  */
4538                 if (event->owner) {
4539                         list_del_init(&event->owner_entry);
4540                         smp_store_release(&event->owner, NULL);
4541                 }
4542                 mutex_unlock(&owner->perf_event_mutex);
4543                 put_task_struct(owner);
4544         }
4545 }
4546
4547 static void put_event(struct perf_event *event)
4548 {
4549         if (!atomic_long_dec_and_test(&event->refcount))
4550                 return;
4551
4552         _free_event(event);
4553 }
4554
4555 /*
4556  * Kill an event dead; while event:refcount will preserve the event
4557  * object, it will not preserve its functionality. Once the last 'user'
4558  * gives up the object, we'll destroy the thing.
4559  */
4560 int perf_event_release_kernel(struct perf_event *event)
4561 {
4562         struct perf_event_context *ctx = event->ctx;
4563         struct perf_event *child, *tmp;
4564         LIST_HEAD(free_list);
4565
4566         /*
4567          * If we got here through err_file: fput(event_file); we will not have
4568          * attached to a context yet.
4569          */
4570         if (!ctx) {
4571                 WARN_ON_ONCE(event->attach_state &
4572                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4573                 goto no_ctx;
4574         }
4575
4576         if (!is_kernel_event(event))
4577                 perf_remove_from_owner(event);
4578
4579         ctx = perf_event_ctx_lock(event);
4580         WARN_ON_ONCE(ctx->parent_ctx);
4581         perf_remove_from_context(event, DETACH_GROUP);
4582
4583         raw_spin_lock_irq(&ctx->lock);
4584         /*
4585          * Mark this event as STATE_DEAD, there is no external reference to it
4586          * anymore.
4587          *
4588          * Anybody acquiring event->child_mutex after the below loop _must_
4589          * also see this, most importantly inherit_event() which will avoid
4590          * placing more children on the list.
4591          *
4592          * Thus this guarantees that we will in fact observe and kill _ALL_
4593          * child events.
4594          */
4595         event->state = PERF_EVENT_STATE_DEAD;
4596         raw_spin_unlock_irq(&ctx->lock);
4597
4598         perf_event_ctx_unlock(event, ctx);
4599
4600 again:
4601         mutex_lock(&event->child_mutex);
4602         list_for_each_entry(child, &event->child_list, child_list) {
4603
4604                 /*
4605                  * Cannot change, child events are not migrated, see the
4606                  * comment with perf_event_ctx_lock_nested().
4607                  */
4608                 ctx = READ_ONCE(child->ctx);
4609                 /*
4610                  * Since child_mutex nests inside ctx::mutex, we must jump
4611                  * through hoops. We start by grabbing a reference on the ctx.
4612                  *
4613                  * Since the event cannot get freed while we hold the
4614                  * child_mutex, the context must also exist and have a !0
4615                  * reference count.
4616                  */
4617                 get_ctx(ctx);
4618
4619                 /*
4620                  * Now that we have a ctx ref, we can drop child_mutex, and
4621                  * acquire ctx::mutex without fear of it going away. Then we
4622                  * can re-acquire child_mutex.
4623                  */
4624                 mutex_unlock(&event->child_mutex);
4625                 mutex_lock(&ctx->mutex);
4626                 mutex_lock(&event->child_mutex);
4627
4628                 /*
4629                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4630                  * state, if child is still the first entry, it didn't get freed
4631                  * and we can continue doing so.
4632                  */
4633                 tmp = list_first_entry_or_null(&event->child_list,
4634                                                struct perf_event, child_list);
4635                 if (tmp == child) {
4636                         perf_remove_from_context(child, DETACH_GROUP);
4637                         list_move(&child->child_list, &free_list);
4638                         /*
4639                          * This matches the refcount bump in inherit_event();
4640                          * this can't be the last reference.
4641                          */
4642                         put_event(event);
4643                 }
4644
4645                 mutex_unlock(&event->child_mutex);
4646                 mutex_unlock(&ctx->mutex);
4647                 put_ctx(ctx);
4648                 goto again;
4649         }
4650         mutex_unlock(&event->child_mutex);
4651
4652         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4653                 list_del(&child->child_list);
4654                 free_event(child);
4655         }
4656
4657 no_ctx:
4658         put_event(event); /* Must be the 'last' reference */
4659         return 0;
4660 }
4661 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4662
4663 /*
4664  * Called when the last reference to the file is gone.
4665  */
4666 static int perf_release(struct inode *inode, struct file *file)
4667 {
4668         perf_event_release_kernel(file->private_data);
4669         return 0;
4670 }
4671
4672 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4673 {
4674         struct perf_event *child;
4675         u64 total = 0;
4676
4677         *enabled = 0;
4678         *running = 0;
4679
4680         mutex_lock(&event->child_mutex);
4681
4682         (void)perf_event_read(event, false);
4683         total += perf_event_count(event);
4684
4685         *enabled += event->total_time_enabled +
4686                         atomic64_read(&event->child_total_time_enabled);
4687         *running += event->total_time_running +
4688                         atomic64_read(&event->child_total_time_running);
4689
4690         list_for_each_entry(child, &event->child_list, child_list) {
4691                 (void)perf_event_read(child, false);
4692                 total += perf_event_count(child);
4693                 *enabled += child->total_time_enabled;
4694                 *running += child->total_time_running;
4695         }
4696         mutex_unlock(&event->child_mutex);
4697
4698         return total;
4699 }
4700
4701 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4702 {
4703         struct perf_event_context *ctx;
4704         u64 count;
4705
4706         ctx = perf_event_ctx_lock(event);
4707         count = __perf_event_read_value(event, enabled, running);
4708         perf_event_ctx_unlock(event, ctx);
4709
4710         return count;
4711 }
4712 EXPORT_SYMBOL_GPL(perf_event_read_value);
4713
4714 static int __perf_read_group_add(struct perf_event *leader,
4715                                         u64 read_format, u64 *values)
4716 {
4717         struct perf_event_context *ctx = leader->ctx;
4718         struct perf_event *sub;
4719         unsigned long flags;
4720         int n = 1; /* skip @nr */
4721         int ret;
4722
4723         ret = perf_event_read(leader, true);
4724         if (ret)
4725                 return ret;
4726
4727         raw_spin_lock_irqsave(&ctx->lock, flags);
4728
4729         /*
4730          * Since we co-schedule groups, {enabled,running} times of siblings
4731          * will be identical to those of the leader, so we only publish one
4732          * set.
4733          */
4734         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4735                 values[n++] += leader->total_time_enabled +
4736                         atomic64_read(&leader->child_total_time_enabled);
4737         }
4738
4739         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4740                 values[n++] += leader->total_time_running +
4741                         atomic64_read(&leader->child_total_time_running);
4742         }
4743
4744         /*
4745          * Write {count,id} tuples for every sibling.
4746          */
4747         values[n++] += perf_event_count(leader);
4748         if (read_format & PERF_FORMAT_ID)
4749                 values[n++] = primary_event_id(leader);
4750
4751         for_each_sibling_event(sub, leader) {
4752                 values[n++] += perf_event_count(sub);
4753                 if (read_format & PERF_FORMAT_ID)
4754                         values[n++] = primary_event_id(sub);
4755         }
4756
4757         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4758         return 0;
4759 }
4760
4761 static int perf_read_group(struct perf_event *event,
4762                                    u64 read_format, char __user *buf)
4763 {
4764         struct perf_event *leader = event->group_leader, *child;
4765         struct perf_event_context *ctx = leader->ctx;
4766         int ret;
4767         u64 *values;
4768
4769         lockdep_assert_held(&ctx->mutex);
4770
4771         values = kzalloc(event->read_size, GFP_KERNEL);
4772         if (!values)
4773                 return -ENOMEM;
4774
4775         values[0] = 1 + leader->nr_siblings;
4776
4777         /*
4778          * By locking the child_mutex of the leader we effectively
4779          * lock the child list of all siblings.. XXX explain how.
4780          */
4781         mutex_lock(&leader->child_mutex);
4782
4783         ret = __perf_read_group_add(leader, read_format, values);
4784         if (ret)
4785                 goto unlock;
4786
4787         list_for_each_entry(child, &leader->child_list, child_list) {
4788                 ret = __perf_read_group_add(child, read_format, values);
4789                 if (ret)
4790                         goto unlock;
4791         }
4792
4793         mutex_unlock(&leader->child_mutex);
4794
4795         ret = event->read_size;
4796         if (copy_to_user(buf, values, event->read_size))
4797                 ret = -EFAULT;
4798         goto out;
4799
4800 unlock:
4801         mutex_unlock(&leader->child_mutex);
4802 out:
4803         kfree(values);
4804         return ret;
4805 }
4806
4807 static int perf_read_one(struct perf_event *event,
4808                                  u64 read_format, char __user *buf)
4809 {
4810         u64 enabled, running;
4811         u64 values[4];
4812         int n = 0;
4813
4814         values[n++] = __perf_event_read_value(event, &enabled, &running);
4815         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4816                 values[n++] = enabled;
4817         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4818                 values[n++] = running;
4819         if (read_format & PERF_FORMAT_ID)
4820                 values[n++] = primary_event_id(event);
4821
4822         if (copy_to_user(buf, values, n * sizeof(u64)))
4823                 return -EFAULT;
4824
4825         return n * sizeof(u64);
4826 }
4827
4828 static bool is_event_hup(struct perf_event *event)
4829 {
4830         bool no_children;
4831
4832         if (event->state > PERF_EVENT_STATE_EXIT)
4833                 return false;
4834
4835         mutex_lock(&event->child_mutex);
4836         no_children = list_empty(&event->child_list);
4837         mutex_unlock(&event->child_mutex);
4838         return no_children;
4839 }
4840
4841 /*
4842  * Read the performance event - simple non blocking version for now
4843  */
4844 static ssize_t
4845 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4846 {
4847         u64 read_format = event->attr.read_format;
4848         int ret;
4849
4850         /*
4851          * Return end-of-file for a read on an event that is in
4852          * error state (i.e. because it was pinned but it couldn't be
4853          * scheduled on to the CPU at some point).
4854          */
4855         if (event->state == PERF_EVENT_STATE_ERROR)
4856                 return 0;
4857
4858         if (count < event->read_size)
4859                 return -ENOSPC;
4860
4861         WARN_ON_ONCE(event->ctx->parent_ctx);
4862         if (read_format & PERF_FORMAT_GROUP)
4863                 ret = perf_read_group(event, read_format, buf);
4864         else
4865                 ret = perf_read_one(event, read_format, buf);
4866
4867         return ret;
4868 }
4869
4870 static ssize_t
4871 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4872 {
4873         struct perf_event *event = file->private_data;
4874         struct perf_event_context *ctx;
4875         int ret;
4876
4877         ctx = perf_event_ctx_lock(event);
4878         ret = __perf_read(event, buf, count);
4879         perf_event_ctx_unlock(event, ctx);
4880
4881         return ret;
4882 }
4883
4884 static __poll_t perf_poll(struct file *file, poll_table *wait)
4885 {
4886         struct perf_event *event = file->private_data;
4887         struct ring_buffer *rb;
4888         __poll_t events = EPOLLHUP;
4889
4890         poll_wait(file, &event->waitq, wait);
4891
4892         if (is_event_hup(event))
4893                 return events;
4894
4895         /*
4896          * Pin the event->rb by taking event->mmap_mutex; otherwise
4897          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4898          */
4899         mutex_lock(&event->mmap_mutex);
4900         rb = event->rb;
4901         if (rb)
4902                 events = atomic_xchg(&rb->poll, 0);
4903         mutex_unlock(&event->mmap_mutex);
4904         return events;
4905 }
4906
4907 static void _perf_event_reset(struct perf_event *event)
4908 {
4909         (void)perf_event_read(event, false);
4910         local64_set(&event->count, 0);
4911         perf_event_update_userpage(event);
4912 }
4913
4914 /*
4915  * Holding the top-level event's child_mutex means that any
4916  * descendant process that has inherited this event will block
4917  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4918  * task existence requirements of perf_event_enable/disable.
4919  */
4920 static void perf_event_for_each_child(struct perf_event *event,
4921                                         void (*func)(struct perf_event *))
4922 {
4923         struct perf_event *child;
4924
4925         WARN_ON_ONCE(event->ctx->parent_ctx);
4926
4927         mutex_lock(&event->child_mutex);
4928         func(event);
4929         list_for_each_entry(child, &event->child_list, child_list)
4930                 func(child);
4931         mutex_unlock(&event->child_mutex);
4932 }
4933
4934 static void perf_event_for_each(struct perf_event *event,
4935                                   void (*func)(struct perf_event *))
4936 {
4937         struct perf_event_context *ctx = event->ctx;
4938         struct perf_event *sibling;
4939
4940         lockdep_assert_held(&ctx->mutex);
4941
4942         event = event->group_leader;
4943
4944         perf_event_for_each_child(event, func);
4945         for_each_sibling_event(sibling, event)
4946                 perf_event_for_each_child(sibling, func);
4947 }
4948
4949 static void __perf_event_period(struct perf_event *event,
4950                                 struct perf_cpu_context *cpuctx,
4951                                 struct perf_event_context *ctx,
4952                                 void *info)
4953 {
4954         u64 value = *((u64 *)info);
4955         bool active;
4956
4957         if (event->attr.freq) {
4958                 event->attr.sample_freq = value;
4959         } else {
4960                 event->attr.sample_period = value;
4961                 event->hw.sample_period = value;
4962         }
4963
4964         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4965         if (active) {
4966                 perf_pmu_disable(ctx->pmu);
4967                 /*
4968                  * We could be throttled; unthrottle now to avoid the tick
4969                  * trying to unthrottle while we already re-started the event.
4970                  */
4971                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4972                         event->hw.interrupts = 0;
4973                         perf_log_throttle(event, 1);
4974                 }
4975                 event->pmu->stop(event, PERF_EF_UPDATE);
4976         }
4977
4978         local64_set(&event->hw.period_left, 0);
4979
4980         if (active) {
4981                 event->pmu->start(event, PERF_EF_RELOAD);
4982                 perf_pmu_enable(ctx->pmu);
4983         }
4984 }
4985
4986 static int perf_event_check_period(struct perf_event *event, u64 value)
4987 {
4988         return event->pmu->check_period(event, value);
4989 }
4990
4991 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4992 {
4993         u64 value;
4994
4995         if (!is_sampling_event(event))
4996                 return -EINVAL;
4997
4998         if (copy_from_user(&value, arg, sizeof(value)))
4999                 return -EFAULT;
5000
5001         if (!value)
5002                 return -EINVAL;
5003
5004         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5005                 return -EINVAL;
5006
5007         if (perf_event_check_period(event, value))
5008                 return -EINVAL;
5009
5010         event_function_call(event, __perf_event_period, &value);
5011
5012         return 0;
5013 }
5014
5015 static const struct file_operations perf_fops;
5016
5017 static inline int perf_fget_light(int fd, struct fd *p)
5018 {
5019         struct fd f = fdget(fd);
5020         if (!f.file)
5021                 return -EBADF;
5022
5023         if (f.file->f_op != &perf_fops) {
5024                 fdput(f);
5025                 return -EBADF;
5026         }
5027         *p = f;
5028         return 0;
5029 }
5030
5031 static int perf_event_set_output(struct perf_event *event,
5032                                  struct perf_event *output_event);
5033 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5034 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5035 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5036                           struct perf_event_attr *attr);
5037
5038 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5039 {
5040         void (*func)(struct perf_event *);
5041         u32 flags = arg;
5042
5043         switch (cmd) {
5044         case PERF_EVENT_IOC_ENABLE:
5045                 func = _perf_event_enable;
5046                 break;
5047         case PERF_EVENT_IOC_DISABLE:
5048                 func = _perf_event_disable;
5049                 break;
5050         case PERF_EVENT_IOC_RESET:
5051                 func = _perf_event_reset;
5052                 break;
5053
5054         case PERF_EVENT_IOC_REFRESH:
5055                 return _perf_event_refresh(event, arg);
5056
5057         case PERF_EVENT_IOC_PERIOD:
5058                 return perf_event_period(event, (u64 __user *)arg);
5059
5060         case PERF_EVENT_IOC_ID:
5061         {
5062                 u64 id = primary_event_id(event);
5063
5064                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5065                         return -EFAULT;
5066                 return 0;
5067         }
5068
5069         case PERF_EVENT_IOC_SET_OUTPUT:
5070         {
5071                 int ret;
5072                 if (arg != -1) {
5073                         struct perf_event *output_event;
5074                         struct fd output;
5075                         ret = perf_fget_light(arg, &output);
5076                         if (ret)
5077                                 return ret;
5078                         output_event = output.file->private_data;
5079                         ret = perf_event_set_output(event, output_event);
5080                         fdput(output);
5081                 } else {
5082                         ret = perf_event_set_output(event, NULL);
5083                 }
5084                 return ret;
5085         }
5086
5087         case PERF_EVENT_IOC_SET_FILTER:
5088                 return perf_event_set_filter(event, (void __user *)arg);
5089
5090         case PERF_EVENT_IOC_SET_BPF:
5091                 return perf_event_set_bpf_prog(event, arg);
5092
5093         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5094                 struct ring_buffer *rb;
5095
5096                 rcu_read_lock();
5097                 rb = rcu_dereference(event->rb);
5098                 if (!rb || !rb->nr_pages) {
5099                         rcu_read_unlock();
5100                         return -EINVAL;
5101                 }
5102                 rb_toggle_paused(rb, !!arg);
5103                 rcu_read_unlock();
5104                 return 0;
5105         }
5106
5107         case PERF_EVENT_IOC_QUERY_BPF:
5108                 return perf_event_query_prog_array(event, (void __user *)arg);
5109
5110         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5111                 struct perf_event_attr new_attr;
5112                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5113                                          &new_attr);
5114
5115                 if (err)
5116                         return err;
5117
5118                 return perf_event_modify_attr(event,  &new_attr);
5119         }
5120         default:
5121                 return -ENOTTY;
5122         }
5123
5124         if (flags & PERF_IOC_FLAG_GROUP)
5125                 perf_event_for_each(event, func);
5126         else
5127                 perf_event_for_each_child(event, func);
5128
5129         return 0;
5130 }
5131
5132 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5133 {
5134         struct perf_event *event = file->private_data;
5135         struct perf_event_context *ctx;
5136         long ret;
5137
5138         ctx = perf_event_ctx_lock(event);
5139         ret = _perf_ioctl(event, cmd, arg);
5140         perf_event_ctx_unlock(event, ctx);
5141
5142         return ret;
5143 }
5144
5145 #ifdef CONFIG_COMPAT
5146 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5147                                 unsigned long arg)
5148 {
5149         switch (_IOC_NR(cmd)) {
5150         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5151         case _IOC_NR(PERF_EVENT_IOC_ID):
5152         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5153         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5154                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5155                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5156                         cmd &= ~IOCSIZE_MASK;
5157                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5158                 }
5159                 break;
5160         }
5161         return perf_ioctl(file, cmd, arg);
5162 }
5163 #else
5164 # define perf_compat_ioctl NULL
5165 #endif
5166
5167 int perf_event_task_enable(void)
5168 {
5169         struct perf_event_context *ctx;
5170         struct perf_event *event;
5171
5172         mutex_lock(&current->perf_event_mutex);
5173         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5174                 ctx = perf_event_ctx_lock(event);
5175                 perf_event_for_each_child(event, _perf_event_enable);
5176                 perf_event_ctx_unlock(event, ctx);
5177         }
5178         mutex_unlock(&current->perf_event_mutex);
5179
5180         return 0;
5181 }
5182
5183 int perf_event_task_disable(void)
5184 {
5185         struct perf_event_context *ctx;
5186         struct perf_event *event;
5187
5188         mutex_lock(&current->perf_event_mutex);
5189         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5190                 ctx = perf_event_ctx_lock(event);
5191                 perf_event_for_each_child(event, _perf_event_disable);
5192                 perf_event_ctx_unlock(event, ctx);
5193         }
5194         mutex_unlock(&current->perf_event_mutex);
5195
5196         return 0;
5197 }
5198
5199 static int perf_event_index(struct perf_event *event)
5200 {
5201         if (event->hw.state & PERF_HES_STOPPED)
5202                 return 0;
5203
5204         if (event->state != PERF_EVENT_STATE_ACTIVE)
5205                 return 0;
5206
5207         return event->pmu->event_idx(event);
5208 }
5209
5210 static void calc_timer_values(struct perf_event *event,
5211                                 u64 *now,
5212                                 u64 *enabled,
5213                                 u64 *running)
5214 {
5215         u64 ctx_time;
5216
5217         *now = perf_clock();
5218         ctx_time = event->shadow_ctx_time + *now;
5219         __perf_update_times(event, ctx_time, enabled, running);
5220 }
5221
5222 static void perf_event_init_userpage(struct perf_event *event)
5223 {
5224         struct perf_event_mmap_page *userpg;
5225         struct ring_buffer *rb;
5226
5227         rcu_read_lock();
5228         rb = rcu_dereference(event->rb);
5229         if (!rb)
5230                 goto unlock;
5231
5232         userpg = rb->user_page;
5233
5234         /* Allow new userspace to detect that bit 0 is deprecated */
5235         userpg->cap_bit0_is_deprecated = 1;
5236         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5237         userpg->data_offset = PAGE_SIZE;
5238         userpg->data_size = perf_data_size(rb);
5239
5240 unlock:
5241         rcu_read_unlock();
5242 }
5243
5244 void __weak arch_perf_update_userpage(
5245         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5246 {
5247 }
5248
5249 /*
5250  * Callers need to ensure there can be no nesting of this function, otherwise
5251  * the seqlock logic goes bad. We can not serialize this because the arch
5252  * code calls this from NMI context.
5253  */
5254 void perf_event_update_userpage(struct perf_event *event)
5255 {
5256         struct perf_event_mmap_page *userpg;
5257         struct ring_buffer *rb;
5258         u64 enabled, running, now;
5259
5260         rcu_read_lock();
5261         rb = rcu_dereference(event->rb);
5262         if (!rb)
5263                 goto unlock;
5264
5265         /*
5266          * compute total_time_enabled, total_time_running
5267          * based on snapshot values taken when the event
5268          * was last scheduled in.
5269          *
5270          * we cannot simply called update_context_time()
5271          * because of locking issue as we can be called in
5272          * NMI context
5273          */
5274         calc_timer_values(event, &now, &enabled, &running);
5275
5276         userpg = rb->user_page;
5277         /*
5278          * Disable preemption to guarantee consistent time stamps are stored to
5279          * the user page.
5280          */
5281         preempt_disable();
5282         ++userpg->lock;
5283         barrier();
5284         userpg->index = perf_event_index(event);
5285         userpg->offset = perf_event_count(event);
5286         if (userpg->index)
5287                 userpg->offset -= local64_read(&event->hw.prev_count);
5288
5289         userpg->time_enabled = enabled +
5290                         atomic64_read(&event->child_total_time_enabled);
5291
5292         userpg->time_running = running +
5293                         atomic64_read(&event->child_total_time_running);
5294
5295         arch_perf_update_userpage(event, userpg, now);
5296
5297         barrier();
5298         ++userpg->lock;
5299         preempt_enable();
5300 unlock:
5301         rcu_read_unlock();
5302 }
5303 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5304
5305 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5306 {
5307         struct perf_event *event = vmf->vma->vm_file->private_data;
5308         struct ring_buffer *rb;
5309         vm_fault_t ret = VM_FAULT_SIGBUS;
5310
5311         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5312                 if (vmf->pgoff == 0)
5313                         ret = 0;
5314                 return ret;
5315         }
5316
5317         rcu_read_lock();
5318         rb = rcu_dereference(event->rb);
5319         if (!rb)
5320                 goto unlock;
5321
5322         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5323                 goto unlock;
5324
5325         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5326         if (!vmf->page)
5327                 goto unlock;
5328
5329         get_page(vmf->page);
5330         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5331         vmf->page->index   = vmf->pgoff;
5332
5333         ret = 0;
5334 unlock:
5335         rcu_read_unlock();
5336
5337         return ret;
5338 }
5339
5340 static void ring_buffer_attach(struct perf_event *event,
5341                                struct ring_buffer *rb)
5342 {
5343         struct ring_buffer *old_rb = NULL;
5344         unsigned long flags;
5345
5346         if (event->rb) {
5347                 /*
5348                  * Should be impossible, we set this when removing
5349                  * event->rb_entry and wait/clear when adding event->rb_entry.
5350                  */
5351                 WARN_ON_ONCE(event->rcu_pending);
5352
5353                 old_rb = event->rb;
5354                 spin_lock_irqsave(&old_rb->event_lock, flags);
5355                 list_del_rcu(&event->rb_entry);
5356                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5357
5358                 event->rcu_batches = get_state_synchronize_rcu();
5359                 event->rcu_pending = 1;
5360         }
5361
5362         if (rb) {
5363                 if (event->rcu_pending) {
5364                         cond_synchronize_rcu(event->rcu_batches);
5365                         event->rcu_pending = 0;
5366                 }
5367
5368                 spin_lock_irqsave(&rb->event_lock, flags);
5369                 list_add_rcu(&event->rb_entry, &rb->event_list);
5370                 spin_unlock_irqrestore(&rb->event_lock, flags);
5371         }
5372
5373         /*
5374          * Avoid racing with perf_mmap_close(AUX): stop the event
5375          * before swizzling the event::rb pointer; if it's getting
5376          * unmapped, its aux_mmap_count will be 0 and it won't
5377          * restart. See the comment in __perf_pmu_output_stop().
5378          *
5379          * Data will inevitably be lost when set_output is done in
5380          * mid-air, but then again, whoever does it like this is
5381          * not in for the data anyway.
5382          */
5383         if (has_aux(event))
5384                 perf_event_stop(event, 0);
5385
5386         rcu_assign_pointer(event->rb, rb);
5387
5388         if (old_rb) {
5389                 ring_buffer_put(old_rb);
5390                 /*
5391                  * Since we detached before setting the new rb, so that we
5392                  * could attach the new rb, we could have missed a wakeup.
5393                  * Provide it now.
5394                  */
5395                 wake_up_all(&event->waitq);
5396         }
5397 }
5398
5399 static void ring_buffer_wakeup(struct perf_event *event)
5400 {
5401         struct ring_buffer *rb;
5402
5403         rcu_read_lock();
5404         rb = rcu_dereference(event->rb);
5405         if (rb) {
5406                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5407                         wake_up_all(&event->waitq);
5408         }
5409         rcu_read_unlock();
5410 }
5411
5412 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5413 {
5414         struct ring_buffer *rb;
5415
5416         rcu_read_lock();
5417         rb = rcu_dereference(event->rb);
5418         if (rb) {
5419                 if (!refcount_inc_not_zero(&rb->refcount))
5420                         rb = NULL;
5421         }
5422         rcu_read_unlock();
5423
5424         return rb;
5425 }
5426
5427 void ring_buffer_put(struct ring_buffer *rb)
5428 {
5429         if (!refcount_dec_and_test(&rb->refcount))
5430                 return;
5431
5432         WARN_ON_ONCE(!list_empty(&rb->event_list));
5433
5434         call_rcu(&rb->rcu_head, rb_free_rcu);
5435 }
5436
5437 static void perf_mmap_open(struct vm_area_struct *vma)
5438 {
5439         struct perf_event *event = vma->vm_file->private_data;
5440
5441         atomic_inc(&event->mmap_count);
5442         atomic_inc(&event->rb->mmap_count);
5443
5444         if (vma->vm_pgoff)
5445                 atomic_inc(&event->rb->aux_mmap_count);
5446
5447         if (event->pmu->event_mapped)
5448                 event->pmu->event_mapped(event, vma->vm_mm);
5449 }
5450
5451 static void perf_pmu_output_stop(struct perf_event *event);
5452
5453 /*
5454  * A buffer can be mmap()ed multiple times; either directly through the same
5455  * event, or through other events by use of perf_event_set_output().
5456  *
5457  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5458  * the buffer here, where we still have a VM context. This means we need
5459  * to detach all events redirecting to us.
5460  */
5461 static void perf_mmap_close(struct vm_area_struct *vma)
5462 {
5463         struct perf_event *event = vma->vm_file->private_data;
5464
5465         struct ring_buffer *rb = ring_buffer_get(event);
5466         struct user_struct *mmap_user = rb->mmap_user;
5467         int mmap_locked = rb->mmap_locked;
5468         unsigned long size = perf_data_size(rb);
5469
5470         if (event->pmu->event_unmapped)
5471                 event->pmu->event_unmapped(event, vma->vm_mm);
5472
5473         /*
5474          * rb->aux_mmap_count will always drop before rb->mmap_count and
5475          * event->mmap_count, so it is ok to use event->mmap_mutex to
5476          * serialize with perf_mmap here.
5477          */
5478         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5479             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5480                 /*
5481                  * Stop all AUX events that are writing to this buffer,
5482                  * so that we can free its AUX pages and corresponding PMU
5483                  * data. Note that after rb::aux_mmap_count dropped to zero,
5484                  * they won't start any more (see perf_aux_output_begin()).
5485                  */
5486                 perf_pmu_output_stop(event);
5487
5488                 /* now it's safe to free the pages */
5489                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5490                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5491
5492                 /* this has to be the last one */
5493                 rb_free_aux(rb);
5494                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5495
5496                 mutex_unlock(&event->mmap_mutex);
5497         }
5498
5499         atomic_dec(&rb->mmap_count);
5500
5501         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5502                 goto out_put;
5503
5504         ring_buffer_attach(event, NULL);
5505         mutex_unlock(&event->mmap_mutex);
5506
5507         /* If there's still other mmap()s of this buffer, we're done. */
5508         if (atomic_read(&rb->mmap_count))
5509                 goto out_put;
5510
5511         /*
5512          * No other mmap()s, detach from all other events that might redirect
5513          * into the now unreachable buffer. Somewhat complicated by the
5514          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5515          */
5516 again:
5517         rcu_read_lock();
5518         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5519                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5520                         /*
5521                          * This event is en-route to free_event() which will
5522                          * detach it and remove it from the list.
5523                          */
5524                         continue;
5525                 }
5526                 rcu_read_unlock();
5527
5528                 mutex_lock(&event->mmap_mutex);
5529                 /*
5530                  * Check we didn't race with perf_event_set_output() which can
5531                  * swizzle the rb from under us while we were waiting to
5532                  * acquire mmap_mutex.
5533                  *
5534                  * If we find a different rb; ignore this event, a next
5535                  * iteration will no longer find it on the list. We have to
5536                  * still restart the iteration to make sure we're not now
5537                  * iterating the wrong list.
5538                  */
5539                 if (event->rb == rb)
5540                         ring_buffer_attach(event, NULL);
5541
5542                 mutex_unlock(&event->mmap_mutex);
5543                 put_event(event);
5544
5545                 /*
5546                  * Restart the iteration; either we're on the wrong list or
5547                  * destroyed its integrity by doing a deletion.
5548                  */
5549                 goto again;
5550         }
5551         rcu_read_unlock();
5552
5553         /*
5554          * It could be there's still a few 0-ref events on the list; they'll
5555          * get cleaned up by free_event() -- they'll also still have their
5556          * ref on the rb and will free it whenever they are done with it.
5557          *
5558          * Aside from that, this buffer is 'fully' detached and unmapped,
5559          * undo the VM accounting.
5560          */
5561
5562         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5563         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5564         free_uid(mmap_user);
5565
5566 out_put:
5567         ring_buffer_put(rb); /* could be last */
5568 }
5569
5570 static const struct vm_operations_struct perf_mmap_vmops = {
5571         .open           = perf_mmap_open,
5572         .close          = perf_mmap_close, /* non mergeable */
5573         .fault          = perf_mmap_fault,
5574         .page_mkwrite   = perf_mmap_fault,
5575 };
5576
5577 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5578 {
5579         struct perf_event *event = file->private_data;
5580         unsigned long user_locked, user_lock_limit;
5581         struct user_struct *user = current_user();
5582         unsigned long locked, lock_limit;
5583         struct ring_buffer *rb = NULL;
5584         unsigned long vma_size;
5585         unsigned long nr_pages;
5586         long user_extra = 0, extra = 0;
5587         int ret = 0, flags = 0;
5588
5589         /*
5590          * Don't allow mmap() of inherited per-task counters. This would
5591          * create a performance issue due to all children writing to the
5592          * same rb.
5593          */
5594         if (event->cpu == -1 && event->attr.inherit)
5595                 return -EINVAL;
5596
5597         if (!(vma->vm_flags & VM_SHARED))
5598                 return -EINVAL;
5599
5600         vma_size = vma->vm_end - vma->vm_start;
5601
5602         if (vma->vm_pgoff == 0) {
5603                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5604         } else {
5605                 /*
5606                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5607                  * mapped, all subsequent mappings should have the same size
5608                  * and offset. Must be above the normal perf buffer.
5609                  */
5610                 u64 aux_offset, aux_size;
5611
5612                 if (!event->rb)
5613                         return -EINVAL;
5614
5615                 nr_pages = vma_size / PAGE_SIZE;
5616
5617                 mutex_lock(&event->mmap_mutex);
5618                 ret = -EINVAL;
5619
5620                 rb = event->rb;
5621                 if (!rb)
5622                         goto aux_unlock;
5623
5624                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5625                 aux_size = READ_ONCE(rb->user_page->aux_size);
5626
5627                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5628                         goto aux_unlock;
5629
5630                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5631                         goto aux_unlock;
5632
5633                 /* already mapped with a different offset */
5634                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5635                         goto aux_unlock;
5636
5637                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5638                         goto aux_unlock;
5639
5640                 /* already mapped with a different size */
5641                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5642                         goto aux_unlock;
5643
5644                 if (!is_power_of_2(nr_pages))
5645                         goto aux_unlock;
5646
5647                 if (!atomic_inc_not_zero(&rb->mmap_count))
5648                         goto aux_unlock;
5649
5650                 if (rb_has_aux(rb)) {
5651                         atomic_inc(&rb->aux_mmap_count);
5652                         ret = 0;
5653                         goto unlock;
5654                 }
5655
5656                 atomic_set(&rb->aux_mmap_count, 1);
5657                 user_extra = nr_pages;
5658
5659                 goto accounting;
5660         }
5661
5662         /*
5663          * If we have rb pages ensure they're a power-of-two number, so we
5664          * can do bitmasks instead of modulo.
5665          */
5666         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5667                 return -EINVAL;
5668
5669         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5670                 return -EINVAL;
5671
5672         WARN_ON_ONCE(event->ctx->parent_ctx);
5673 again:
5674         mutex_lock(&event->mmap_mutex);
5675         if (event->rb) {
5676                 if (event->rb->nr_pages != nr_pages) {
5677                         ret = -EINVAL;
5678                         goto unlock;
5679                 }
5680
5681                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5682                         /*
5683                          * Raced against perf_mmap_close() through
5684                          * perf_event_set_output(). Try again, hope for better
5685                          * luck.
5686                          */
5687                         mutex_unlock(&event->mmap_mutex);
5688                         goto again;
5689                 }
5690
5691                 goto unlock;
5692         }
5693
5694         user_extra = nr_pages + 1;
5695
5696 accounting:
5697         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5698
5699         /*
5700          * Increase the limit linearly with more CPUs:
5701          */
5702         user_lock_limit *= num_online_cpus();
5703
5704         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5705
5706         if (user_locked > user_lock_limit)
5707                 extra = user_locked - user_lock_limit;
5708
5709         lock_limit = rlimit(RLIMIT_MEMLOCK);
5710         lock_limit >>= PAGE_SHIFT;
5711         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
5712
5713         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5714                 !capable(CAP_IPC_LOCK)) {
5715                 ret = -EPERM;
5716                 goto unlock;
5717         }
5718
5719         WARN_ON(!rb && event->rb);
5720
5721         if (vma->vm_flags & VM_WRITE)
5722                 flags |= RING_BUFFER_WRITABLE;
5723
5724         if (!rb) {
5725                 rb = rb_alloc(nr_pages,
5726                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5727                               event->cpu, flags);
5728
5729                 if (!rb) {
5730                         ret = -ENOMEM;
5731                         goto unlock;
5732                 }
5733
5734                 atomic_set(&rb->mmap_count, 1);
5735                 rb->mmap_user = get_current_user();
5736                 rb->mmap_locked = extra;
5737
5738                 ring_buffer_attach(event, rb);
5739
5740                 perf_event_init_userpage(event);
5741                 perf_event_update_userpage(event);
5742         } else {
5743                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5744                                    event->attr.aux_watermark, flags);
5745                 if (!ret)
5746                         rb->aux_mmap_locked = extra;
5747         }
5748
5749 unlock:
5750         if (!ret) {
5751                 atomic_long_add(user_extra, &user->locked_vm);
5752                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
5753
5754                 atomic_inc(&event->mmap_count);
5755         } else if (rb) {
5756                 atomic_dec(&rb->mmap_count);
5757         }
5758 aux_unlock:
5759         mutex_unlock(&event->mmap_mutex);
5760
5761         /*
5762          * Since pinned accounting is per vm we cannot allow fork() to copy our
5763          * vma.
5764          */
5765         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5766         vma->vm_ops = &perf_mmap_vmops;
5767
5768         if (event->pmu->event_mapped)
5769                 event->pmu->event_mapped(event, vma->vm_mm);
5770
5771         return ret;
5772 }
5773
5774 static int perf_fasync(int fd, struct file *filp, int on)
5775 {
5776         struct inode *inode = file_inode(filp);
5777         struct perf_event *event = filp->private_data;
5778         int retval;
5779
5780         inode_lock(inode);
5781         retval = fasync_helper(fd, filp, on, &event->fasync);
5782         inode_unlock(inode);
5783
5784         if (retval < 0)
5785                 return retval;
5786
5787         return 0;
5788 }
5789
5790 static const struct file_operations perf_fops = {
5791         .llseek                 = no_llseek,
5792         .release                = perf_release,
5793         .read                   = perf_read,
5794         .poll                   = perf_poll,
5795         .unlocked_ioctl         = perf_ioctl,
5796         .compat_ioctl           = perf_compat_ioctl,
5797         .mmap                   = perf_mmap,
5798         .fasync                 = perf_fasync,
5799 };
5800
5801 /*
5802  * Perf event wakeup
5803  *
5804  * If there's data, ensure we set the poll() state and publish everything
5805  * to user-space before waking everybody up.
5806  */
5807
5808 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5809 {
5810         /* only the parent has fasync state */
5811         if (event->parent)
5812                 event = event->parent;
5813         return &event->fasync;
5814 }
5815
5816 void perf_event_wakeup(struct perf_event *event)
5817 {
5818         ring_buffer_wakeup(event);
5819
5820         if (event->pending_kill) {
5821                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5822                 event->pending_kill = 0;
5823         }
5824 }
5825
5826 static void perf_pending_event_disable(struct perf_event *event)
5827 {
5828         int cpu = READ_ONCE(event->pending_disable);
5829
5830         if (cpu < 0)
5831                 return;
5832
5833         if (cpu == smp_processor_id()) {
5834                 WRITE_ONCE(event->pending_disable, -1);
5835                 perf_event_disable_local(event);
5836                 return;
5837         }
5838
5839         /*
5840          *  CPU-A                       CPU-B
5841          *
5842          *  perf_event_disable_inatomic()
5843          *    @pending_disable = CPU-A;
5844          *    irq_work_queue();
5845          *
5846          *  sched-out
5847          *    @pending_disable = -1;
5848          *
5849          *                              sched-in
5850          *                              perf_event_disable_inatomic()
5851          *                                @pending_disable = CPU-B;
5852          *                                irq_work_queue(); // FAILS
5853          *
5854          *  irq_work_run()
5855          *    perf_pending_event()
5856          *
5857          * But the event runs on CPU-B and wants disabling there.
5858          */
5859         irq_work_queue_on(&event->pending, cpu);
5860 }
5861
5862 static void perf_pending_event(struct irq_work *entry)
5863 {
5864         struct perf_event *event = container_of(entry, struct perf_event, pending);
5865         int rctx;
5866
5867         rctx = perf_swevent_get_recursion_context();
5868         /*
5869          * If we 'fail' here, that's OK, it means recursion is already disabled
5870          * and we won't recurse 'further'.
5871          */
5872
5873         perf_pending_event_disable(event);
5874
5875         if (event->pending_wakeup) {
5876                 event->pending_wakeup = 0;
5877                 perf_event_wakeup(event);
5878         }
5879
5880         if (rctx >= 0)
5881                 perf_swevent_put_recursion_context(rctx);
5882 }
5883
5884 /*
5885  * We assume there is only KVM supporting the callbacks.
5886  * Later on, we might change it to a list if there is
5887  * another virtualization implementation supporting the callbacks.
5888  */
5889 struct perf_guest_info_callbacks *perf_guest_cbs;
5890
5891 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5892 {
5893         perf_guest_cbs = cbs;
5894         return 0;
5895 }
5896 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5897
5898 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5899 {
5900         perf_guest_cbs = NULL;
5901         return 0;
5902 }
5903 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5904
5905 static void
5906 perf_output_sample_regs(struct perf_output_handle *handle,
5907                         struct pt_regs *regs, u64 mask)
5908 {
5909         int bit;
5910         DECLARE_BITMAP(_mask, 64);
5911
5912         bitmap_from_u64(_mask, mask);
5913         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5914                 u64 val;
5915
5916                 val = perf_reg_value(regs, bit);
5917                 perf_output_put(handle, val);
5918         }
5919 }
5920
5921 static void perf_sample_regs_user(struct perf_regs *regs_user,
5922                                   struct pt_regs *regs,
5923                                   struct pt_regs *regs_user_copy)
5924 {
5925         if (user_mode(regs)) {
5926                 regs_user->abi = perf_reg_abi(current);
5927                 regs_user->regs = regs;
5928         } else if (current->mm) {
5929                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5930         } else {
5931                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5932                 regs_user->regs = NULL;
5933         }
5934 }
5935
5936 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5937                                   struct pt_regs *regs)
5938 {
5939         regs_intr->regs = regs;
5940         regs_intr->abi  = perf_reg_abi(current);
5941 }
5942
5943
5944 /*
5945  * Get remaining task size from user stack pointer.
5946  *
5947  * It'd be better to take stack vma map and limit this more
5948  * precisly, but there's no way to get it safely under interrupt,
5949  * so using TASK_SIZE as limit.
5950  */
5951 static u64 perf_ustack_task_size(struct pt_regs *regs)
5952 {
5953         unsigned long addr = perf_user_stack_pointer(regs);
5954
5955         if (!addr || addr >= TASK_SIZE)
5956                 return 0;
5957
5958         return TASK_SIZE - addr;
5959 }
5960
5961 static u16
5962 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5963                         struct pt_regs *regs)
5964 {
5965         u64 task_size;
5966
5967         /* No regs, no stack pointer, no dump. */
5968         if (!regs)
5969                 return 0;
5970
5971         /*
5972          * Check if we fit in with the requested stack size into the:
5973          * - TASK_SIZE
5974          *   If we don't, we limit the size to the TASK_SIZE.
5975          *
5976          * - remaining sample size
5977          *   If we don't, we customize the stack size to
5978          *   fit in to the remaining sample size.
5979          */
5980
5981         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5982         stack_size = min(stack_size, (u16) task_size);
5983
5984         /* Current header size plus static size and dynamic size. */
5985         header_size += 2 * sizeof(u64);
5986
5987         /* Do we fit in with the current stack dump size? */
5988         if ((u16) (header_size + stack_size) < header_size) {
5989                 /*
5990                  * If we overflow the maximum size for the sample,
5991                  * we customize the stack dump size to fit in.
5992                  */
5993                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5994                 stack_size = round_up(stack_size, sizeof(u64));
5995         }
5996
5997         return stack_size;
5998 }
5999
6000 static void
6001 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6002                           struct pt_regs *regs)
6003 {
6004         /* Case of a kernel thread, nothing to dump */
6005         if (!regs) {
6006                 u64 size = 0;
6007                 perf_output_put(handle, size);
6008         } else {
6009                 unsigned long sp;
6010                 unsigned int rem;
6011                 u64 dyn_size;
6012                 mm_segment_t fs;
6013
6014                 /*
6015                  * We dump:
6016                  * static size
6017                  *   - the size requested by user or the best one we can fit
6018                  *     in to the sample max size
6019                  * data
6020                  *   - user stack dump data
6021                  * dynamic size
6022                  *   - the actual dumped size
6023                  */
6024
6025                 /* Static size. */
6026                 perf_output_put(handle, dump_size);
6027
6028                 /* Data. */
6029                 sp = perf_user_stack_pointer(regs);
6030                 fs = get_fs();
6031                 set_fs(USER_DS);
6032                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6033                 set_fs(fs);
6034                 dyn_size = dump_size - rem;
6035
6036                 perf_output_skip(handle, rem);
6037
6038                 /* Dynamic size. */
6039                 perf_output_put(handle, dyn_size);
6040         }
6041 }
6042
6043 static void __perf_event_header__init_id(struct perf_event_header *header,
6044                                          struct perf_sample_data *data,
6045                                          struct perf_event *event)
6046 {
6047         u64 sample_type = event->attr.sample_type;
6048
6049         data->type = sample_type;
6050         header->size += event->id_header_size;
6051
6052         if (sample_type & PERF_SAMPLE_TID) {
6053                 /* namespace issues */
6054                 data->tid_entry.pid = perf_event_pid(event, current);
6055                 data->tid_entry.tid = perf_event_tid(event, current);
6056         }
6057
6058         if (sample_type & PERF_SAMPLE_TIME)
6059                 data->time = perf_event_clock(event);
6060
6061         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6062                 data->id = primary_event_id(event);
6063
6064         if (sample_type & PERF_SAMPLE_STREAM_ID)
6065                 data->stream_id = event->id;
6066
6067         if (sample_type & PERF_SAMPLE_CPU) {
6068                 data->cpu_entry.cpu      = raw_smp_processor_id();
6069                 data->cpu_entry.reserved = 0;
6070         }
6071 }
6072
6073 void perf_event_header__init_id(struct perf_event_header *header,
6074                                 struct perf_sample_data *data,
6075                                 struct perf_event *event)
6076 {
6077         if (event->attr.sample_id_all)
6078                 __perf_event_header__init_id(header, data, event);
6079 }
6080
6081 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6082                                            struct perf_sample_data *data)
6083 {
6084         u64 sample_type = data->type;
6085
6086         if (sample_type & PERF_SAMPLE_TID)
6087                 perf_output_put(handle, data->tid_entry);
6088
6089         if (sample_type & PERF_SAMPLE_TIME)
6090                 perf_output_put(handle, data->time);
6091
6092         if (sample_type & PERF_SAMPLE_ID)
6093                 perf_output_put(handle, data->id);
6094
6095         if (sample_type & PERF_SAMPLE_STREAM_ID)
6096                 perf_output_put(handle, data->stream_id);
6097
6098         if (sample_type & PERF_SAMPLE_CPU)
6099                 perf_output_put(handle, data->cpu_entry);
6100
6101         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6102                 perf_output_put(handle, data->id);
6103 }
6104
6105 void perf_event__output_id_sample(struct perf_event *event,
6106                                   struct perf_output_handle *handle,
6107                                   struct perf_sample_data *sample)
6108 {
6109         if (event->attr.sample_id_all)
6110                 __perf_event__output_id_sample(handle, sample);
6111 }
6112
6113 static void perf_output_read_one(struct perf_output_handle *handle,
6114                                  struct perf_event *event,
6115                                  u64 enabled, u64 running)
6116 {
6117         u64 read_format = event->attr.read_format;
6118         u64 values[4];
6119         int n = 0;
6120
6121         values[n++] = perf_event_count(event);
6122         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6123                 values[n++] = enabled +
6124                         atomic64_read(&event->child_total_time_enabled);
6125         }
6126         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6127                 values[n++] = running +
6128                         atomic64_read(&event->child_total_time_running);
6129         }
6130         if (read_format & PERF_FORMAT_ID)
6131                 values[n++] = primary_event_id(event);
6132
6133         __output_copy(handle, values, n * sizeof(u64));
6134 }
6135
6136 static void perf_output_read_group(struct perf_output_handle *handle,
6137                             struct perf_event *event,
6138                             u64 enabled, u64 running)
6139 {
6140         struct perf_event *leader = event->group_leader, *sub;
6141         u64 read_format = event->attr.read_format;
6142         u64 values[5];
6143         int n = 0;
6144
6145         values[n++] = 1 + leader->nr_siblings;
6146
6147         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6148                 values[n++] = enabled;
6149
6150         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6151                 values[n++] = running;
6152
6153         if ((leader != event) &&
6154             (leader->state == PERF_EVENT_STATE_ACTIVE))
6155                 leader->pmu->read(leader);
6156
6157         values[n++] = perf_event_count(leader);
6158         if (read_format & PERF_FORMAT_ID)
6159                 values[n++] = primary_event_id(leader);
6160
6161         __output_copy(handle, values, n * sizeof(u64));
6162
6163         for_each_sibling_event(sub, leader) {
6164                 n = 0;
6165
6166                 if ((sub != event) &&
6167                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6168                         sub->pmu->read(sub);
6169
6170                 values[n++] = perf_event_count(sub);
6171                 if (read_format & PERF_FORMAT_ID)
6172                         values[n++] = primary_event_id(sub);
6173
6174                 __output_copy(handle, values, n * sizeof(u64));
6175         }
6176 }
6177
6178 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6179                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6180
6181 /*
6182  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6183  *
6184  * The problem is that its both hard and excessively expensive to iterate the
6185  * child list, not to mention that its impossible to IPI the children running
6186  * on another CPU, from interrupt/NMI context.
6187  */
6188 static void perf_output_read(struct perf_output_handle *handle,
6189                              struct perf_event *event)
6190 {
6191         u64 enabled = 0, running = 0, now;
6192         u64 read_format = event->attr.read_format;
6193
6194         /*
6195          * compute total_time_enabled, total_time_running
6196          * based on snapshot values taken when the event
6197          * was last scheduled in.
6198          *
6199          * we cannot simply called update_context_time()
6200          * because of locking issue as we are called in
6201          * NMI context
6202          */
6203         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6204                 calc_timer_values(event, &now, &enabled, &running);
6205
6206         if (event->attr.read_format & PERF_FORMAT_GROUP)
6207                 perf_output_read_group(handle, event, enabled, running);
6208         else
6209                 perf_output_read_one(handle, event, enabled, running);
6210 }
6211
6212 void perf_output_sample(struct perf_output_handle *handle,
6213                         struct perf_event_header *header,
6214                         struct perf_sample_data *data,
6215                         struct perf_event *event)
6216 {
6217         u64 sample_type = data->type;
6218
6219         perf_output_put(handle, *header);
6220
6221         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6222                 perf_output_put(handle, data->id);
6223
6224         if (sample_type & PERF_SAMPLE_IP)
6225                 perf_output_put(handle, data->ip);
6226
6227         if (sample_type & PERF_SAMPLE_TID)
6228                 perf_output_put(handle, data->tid_entry);
6229
6230         if (sample_type & PERF_SAMPLE_TIME)
6231                 perf_output_put(handle, data->time);
6232
6233         if (sample_type & PERF_SAMPLE_ADDR)
6234                 perf_output_put(handle, data->addr);
6235
6236         if (sample_type & PERF_SAMPLE_ID)
6237                 perf_output_put(handle, data->id);
6238
6239         if (sample_type & PERF_SAMPLE_STREAM_ID)
6240                 perf_output_put(handle, data->stream_id);
6241
6242         if (sample_type & PERF_SAMPLE_CPU)
6243                 perf_output_put(handle, data->cpu_entry);
6244
6245         if (sample_type & PERF_SAMPLE_PERIOD)
6246                 perf_output_put(handle, data->period);
6247
6248         if (sample_type & PERF_SAMPLE_READ)
6249                 perf_output_read(handle, event);
6250
6251         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6252                 int size = 1;
6253
6254                 size += data->callchain->nr;
6255                 size *= sizeof(u64);
6256                 __output_copy(handle, data->callchain, size);
6257         }
6258
6259         if (sample_type & PERF_SAMPLE_RAW) {
6260                 struct perf_raw_record *raw = data->raw;
6261
6262                 if (raw) {
6263                         struct perf_raw_frag *frag = &raw->frag;
6264
6265                         perf_output_put(handle, raw->size);
6266                         do {
6267                                 if (frag->copy) {
6268                                         __output_custom(handle, frag->copy,
6269                                                         frag->data, frag->size);
6270                                 } else {
6271                                         __output_copy(handle, frag->data,
6272                                                       frag->size);
6273                                 }
6274                                 if (perf_raw_frag_last(frag))
6275                                         break;
6276                                 frag = frag->next;
6277                         } while (1);
6278                         if (frag->pad)
6279                                 __output_skip(handle, NULL, frag->pad);
6280                 } else {
6281                         struct {
6282                                 u32     size;
6283                                 u32     data;
6284                         } raw = {
6285                                 .size = sizeof(u32),
6286                                 .data = 0,
6287                         };
6288                         perf_output_put(handle, raw);
6289                 }
6290         }
6291
6292         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6293                 if (data->br_stack) {
6294                         size_t size;
6295
6296                         size = data->br_stack->nr
6297                              * sizeof(struct perf_branch_entry);
6298
6299                         perf_output_put(handle, data->br_stack->nr);
6300                         perf_output_copy(handle, data->br_stack->entries, size);
6301                 } else {
6302                         /*
6303                          * we always store at least the value of nr
6304                          */
6305                         u64 nr = 0;
6306                         perf_output_put(handle, nr);
6307                 }
6308         }
6309
6310         if (sample_type & PERF_SAMPLE_REGS_USER) {
6311                 u64 abi = data->regs_user.abi;
6312
6313                 /*
6314                  * If there are no regs to dump, notice it through
6315                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6316                  */
6317                 perf_output_put(handle, abi);
6318
6319                 if (abi) {
6320                         u64 mask = event->attr.sample_regs_user;
6321                         perf_output_sample_regs(handle,
6322                                                 data->regs_user.regs,
6323                                                 mask);
6324                 }
6325         }
6326
6327         if (sample_type & PERF_SAMPLE_STACK_USER) {
6328                 perf_output_sample_ustack(handle,
6329                                           data->stack_user_size,
6330                                           data->regs_user.regs);
6331         }
6332
6333         if (sample_type & PERF_SAMPLE_WEIGHT)
6334                 perf_output_put(handle, data->weight);
6335
6336         if (sample_type & PERF_SAMPLE_DATA_SRC)
6337                 perf_output_put(handle, data->data_src.val);
6338
6339         if (sample_type & PERF_SAMPLE_TRANSACTION)
6340                 perf_output_put(handle, data->txn);
6341
6342         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6343                 u64 abi = data->regs_intr.abi;
6344                 /*
6345                  * If there are no regs to dump, notice it through
6346                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6347                  */
6348                 perf_output_put(handle, abi);
6349
6350                 if (abi) {
6351                         u64 mask = event->attr.sample_regs_intr;
6352
6353                         perf_output_sample_regs(handle,
6354                                                 data->regs_intr.regs,
6355                                                 mask);
6356                 }
6357         }
6358
6359         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6360                 perf_output_put(handle, data->phys_addr);
6361
6362         if (!event->attr.watermark) {
6363                 int wakeup_events = event->attr.wakeup_events;
6364
6365                 if (wakeup_events) {
6366                         struct ring_buffer *rb = handle->rb;
6367                         int events = local_inc_return(&rb->events);
6368
6369                         if (events >= wakeup_events) {
6370                                 local_sub(wakeup_events, &rb->events);
6371                                 local_inc(&rb->wakeup);
6372                         }
6373                 }
6374         }
6375 }
6376
6377 static u64 perf_virt_to_phys(u64 virt)
6378 {
6379         u64 phys_addr = 0;
6380         struct page *p = NULL;
6381
6382         if (!virt)
6383                 return 0;
6384
6385         if (virt >= TASK_SIZE) {
6386                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6387                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6388                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6389                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6390         } else {
6391                 /*
6392                  * Walking the pages tables for user address.
6393                  * Interrupts are disabled, so it prevents any tear down
6394                  * of the page tables.
6395                  * Try IRQ-safe __get_user_pages_fast first.
6396                  * If failed, leave phys_addr as 0.
6397                  */
6398                 if ((current->mm != NULL) &&
6399                     (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6400                         phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6401
6402                 if (p)
6403                         put_page(p);
6404         }
6405
6406         return phys_addr;
6407 }
6408
6409 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6410
6411 struct perf_callchain_entry *
6412 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6413 {
6414         bool kernel = !event->attr.exclude_callchain_kernel;
6415         bool user   = !event->attr.exclude_callchain_user;
6416         /* Disallow cross-task user callchains. */
6417         bool crosstask = event->ctx->task && event->ctx->task != current;
6418         const u32 max_stack = event->attr.sample_max_stack;
6419         struct perf_callchain_entry *callchain;
6420
6421         if (!kernel && !user)
6422                 return &__empty_callchain;
6423
6424         callchain = get_perf_callchain(regs, 0, kernel, user,
6425                                        max_stack, crosstask, true);
6426         return callchain ?: &__empty_callchain;
6427 }
6428
6429 void perf_prepare_sample(struct perf_event_header *header,
6430                          struct perf_sample_data *data,
6431                          struct perf_event *event,
6432                          struct pt_regs *regs)
6433 {
6434         u64 sample_type = event->attr.sample_type;
6435
6436         header->type = PERF_RECORD_SAMPLE;
6437         header->size = sizeof(*header) + event->header_size;
6438
6439         header->misc = 0;
6440         header->misc |= perf_misc_flags(regs);
6441
6442         __perf_event_header__init_id(header, data, event);
6443
6444         if (sample_type & PERF_SAMPLE_IP)
6445                 data->ip = perf_instruction_pointer(regs);
6446
6447         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6448                 int size = 1;
6449
6450                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6451                         data->callchain = perf_callchain(event, regs);
6452
6453                 size += data->callchain->nr;
6454
6455                 header->size += size * sizeof(u64);
6456         }
6457
6458         if (sample_type & PERF_SAMPLE_RAW) {
6459                 struct perf_raw_record *raw = data->raw;
6460                 int size;
6461
6462                 if (raw) {
6463                         struct perf_raw_frag *frag = &raw->frag;
6464                         u32 sum = 0;
6465
6466                         do {
6467                                 sum += frag->size;
6468                                 if (perf_raw_frag_last(frag))
6469                                         break;
6470                                 frag = frag->next;
6471                         } while (1);
6472
6473                         size = round_up(sum + sizeof(u32), sizeof(u64));
6474                         raw->size = size - sizeof(u32);
6475                         frag->pad = raw->size - sum;
6476                 } else {
6477                         size = sizeof(u64);
6478                 }
6479
6480                 header->size += size;
6481         }
6482
6483         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6484                 int size = sizeof(u64); /* nr */
6485                 if (data->br_stack) {
6486                         size += data->br_stack->nr
6487                               * sizeof(struct perf_branch_entry);
6488                 }
6489                 header->size += size;
6490         }
6491
6492         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6493                 perf_sample_regs_user(&data->regs_user, regs,
6494                                       &data->regs_user_copy);
6495
6496         if (sample_type & PERF_SAMPLE_REGS_USER) {
6497                 /* regs dump ABI info */
6498                 int size = sizeof(u64);
6499
6500                 if (data->regs_user.regs) {
6501                         u64 mask = event->attr.sample_regs_user;
6502                         size += hweight64(mask) * sizeof(u64);
6503                 }
6504
6505                 header->size += size;
6506         }
6507
6508         if (sample_type & PERF_SAMPLE_STACK_USER) {
6509                 /*
6510                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6511                  * processed as the last one or have additional check added
6512                  * in case new sample type is added, because we could eat
6513                  * up the rest of the sample size.
6514                  */
6515                 u16 stack_size = event->attr.sample_stack_user;
6516                 u16 size = sizeof(u64);
6517
6518                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6519                                                      data->regs_user.regs);
6520
6521                 /*
6522                  * If there is something to dump, add space for the dump
6523                  * itself and for the field that tells the dynamic size,
6524                  * which is how many have been actually dumped.
6525                  */
6526                 if (stack_size)
6527                         size += sizeof(u64) + stack_size;
6528
6529                 data->stack_user_size = stack_size;
6530                 header->size += size;
6531         }
6532
6533         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6534                 /* regs dump ABI info */
6535                 int size = sizeof(u64);
6536
6537                 perf_sample_regs_intr(&data->regs_intr, regs);
6538
6539                 if (data->regs_intr.regs) {
6540                         u64 mask = event->attr.sample_regs_intr;
6541
6542                         size += hweight64(mask) * sizeof(u64);
6543                 }
6544
6545                 header->size += size;
6546         }
6547
6548         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6549                 data->phys_addr = perf_virt_to_phys(data->addr);
6550 }
6551
6552 static __always_inline int
6553 __perf_event_output(struct perf_event *event,
6554                     struct perf_sample_data *data,
6555                     struct pt_regs *regs,
6556                     int (*output_begin)(struct perf_output_handle *,
6557                                         struct perf_event *,
6558                                         unsigned int))
6559 {
6560         struct perf_output_handle handle;
6561         struct perf_event_header header;
6562         int err;
6563
6564         /* protect the callchain buffers */
6565         rcu_read_lock();
6566
6567         perf_prepare_sample(&header, data, event, regs);
6568
6569         err = output_begin(&handle, event, header.size);
6570         if (err)
6571                 goto exit;
6572
6573         perf_output_sample(&handle, &header, data, event);
6574
6575         perf_output_end(&handle);
6576
6577 exit:
6578         rcu_read_unlock();
6579         return err;
6580 }
6581
6582 void
6583 perf_event_output_forward(struct perf_event *event,
6584                          struct perf_sample_data *data,
6585                          struct pt_regs *regs)
6586 {
6587         __perf_event_output(event, data, regs, perf_output_begin_forward);
6588 }
6589
6590 void
6591 perf_event_output_backward(struct perf_event *event,
6592                            struct perf_sample_data *data,
6593                            struct pt_regs *regs)
6594 {
6595         __perf_event_output(event, data, regs, perf_output_begin_backward);
6596 }
6597
6598 int
6599 perf_event_output(struct perf_event *event,
6600                   struct perf_sample_data *data,
6601                   struct pt_regs *regs)
6602 {
6603         return __perf_event_output(event, data, regs, perf_output_begin);
6604 }
6605
6606 /*
6607  * read event_id
6608  */
6609
6610 struct perf_read_event {
6611         struct perf_event_header        header;
6612
6613         u32                             pid;
6614         u32                             tid;
6615 };
6616
6617 static void
6618 perf_event_read_event(struct perf_event *event,
6619                         struct task_struct *task)
6620 {
6621         struct perf_output_handle handle;
6622         struct perf_sample_data sample;
6623         struct perf_read_event read_event = {
6624                 .header = {
6625                         .type = PERF_RECORD_READ,
6626                         .misc = 0,
6627                         .size = sizeof(read_event) + event->read_size,
6628                 },
6629                 .pid = perf_event_pid(event, task),
6630                 .tid = perf_event_tid(event, task),
6631         };
6632         int ret;
6633
6634         perf_event_header__init_id(&read_event.header, &sample, event);
6635         ret = perf_output_begin(&handle, event, read_event.header.size);
6636         if (ret)
6637                 return;
6638
6639         perf_output_put(&handle, read_event);
6640         perf_output_read(&handle, event);
6641         perf_event__output_id_sample(event, &handle, &sample);
6642
6643         perf_output_end(&handle);
6644 }
6645
6646 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6647
6648 static void
6649 perf_iterate_ctx(struct perf_event_context *ctx,
6650                    perf_iterate_f output,
6651                    void *data, bool all)
6652 {
6653         struct perf_event *event;
6654
6655         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6656                 if (!all) {
6657                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6658                                 continue;
6659                         if (!event_filter_match(event))
6660                                 continue;
6661                 }
6662
6663                 output(event, data);
6664         }
6665 }
6666
6667 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6668 {
6669         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6670         struct perf_event *event;
6671
6672         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6673                 /*
6674                  * Skip events that are not fully formed yet; ensure that
6675                  * if we observe event->ctx, both event and ctx will be
6676                  * complete enough. See perf_install_in_context().
6677                  */
6678                 if (!smp_load_acquire(&event->ctx))
6679                         continue;
6680
6681                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6682                         continue;
6683                 if (!event_filter_match(event))
6684                         continue;
6685                 output(event, data);
6686         }
6687 }
6688
6689 /*
6690  * Iterate all events that need to receive side-band events.
6691  *
6692  * For new callers; ensure that account_pmu_sb_event() includes
6693  * your event, otherwise it might not get delivered.
6694  */
6695 static void
6696 perf_iterate_sb(perf_iterate_f output, void *data,
6697                struct perf_event_context *task_ctx)
6698 {
6699         struct perf_event_context *ctx;
6700         int ctxn;
6701
6702         rcu_read_lock();
6703         preempt_disable();
6704
6705         /*
6706          * If we have task_ctx != NULL we only notify the task context itself.
6707          * The task_ctx is set only for EXIT events before releasing task
6708          * context.
6709          */
6710         if (task_ctx) {
6711                 perf_iterate_ctx(task_ctx, output, data, false);
6712                 goto done;
6713         }
6714
6715         perf_iterate_sb_cpu(output, data);
6716
6717         for_each_task_context_nr(ctxn) {
6718                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6719                 if (ctx)
6720                         perf_iterate_ctx(ctx, output, data, false);
6721         }
6722 done:
6723         preempt_enable();
6724         rcu_read_unlock();
6725 }
6726
6727 /*
6728  * Clear all file-based filters at exec, they'll have to be
6729  * re-instated when/if these objects are mmapped again.
6730  */
6731 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6732 {
6733         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6734         struct perf_addr_filter *filter;
6735         unsigned int restart = 0, count = 0;
6736         unsigned long flags;
6737
6738         if (!has_addr_filter(event))
6739                 return;
6740
6741         raw_spin_lock_irqsave(&ifh->lock, flags);
6742         list_for_each_entry(filter, &ifh->list, entry) {
6743                 if (filter->path.dentry) {
6744                         event->addr_filter_ranges[count].start = 0;
6745                         event->addr_filter_ranges[count].size = 0;
6746                         restart++;
6747                 }
6748
6749                 count++;
6750         }
6751
6752         if (restart)
6753                 event->addr_filters_gen++;
6754         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6755
6756         if (restart)
6757                 perf_event_stop(event, 1);
6758 }
6759
6760 void perf_event_exec(void)
6761 {
6762         struct perf_event_context *ctx;
6763         int ctxn;
6764
6765         rcu_read_lock();
6766         for_each_task_context_nr(ctxn) {
6767                 ctx = current->perf_event_ctxp[ctxn];
6768                 if (!ctx)
6769                         continue;
6770
6771                 perf_event_enable_on_exec(ctxn);
6772
6773                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6774                                    true);
6775         }
6776         rcu_read_unlock();
6777 }
6778
6779 struct remote_output {
6780         struct ring_buffer      *rb;
6781         int                     err;
6782 };
6783
6784 static void __perf_event_output_stop(struct perf_event *event, void *data)
6785 {
6786         struct perf_event *parent = event->parent;
6787         struct remote_output *ro = data;
6788         struct ring_buffer *rb = ro->rb;
6789         struct stop_event_data sd = {
6790                 .event  = event,
6791         };
6792
6793         if (!has_aux(event))
6794                 return;
6795
6796         if (!parent)
6797                 parent = event;
6798
6799         /*
6800          * In case of inheritance, it will be the parent that links to the
6801          * ring-buffer, but it will be the child that's actually using it.
6802          *
6803          * We are using event::rb to determine if the event should be stopped,
6804          * however this may race with ring_buffer_attach() (through set_output),
6805          * which will make us skip the event that actually needs to be stopped.
6806          * So ring_buffer_attach() has to stop an aux event before re-assigning
6807          * its rb pointer.
6808          */
6809         if (rcu_dereference(parent->rb) == rb)
6810                 ro->err = __perf_event_stop(&sd);
6811 }
6812
6813 static int __perf_pmu_output_stop(void *info)
6814 {
6815         struct perf_event *event = info;
6816         struct pmu *pmu = event->pmu;
6817         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6818         struct remote_output ro = {
6819                 .rb     = event->rb,
6820         };
6821
6822         rcu_read_lock();
6823         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6824         if (cpuctx->task_ctx)
6825                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6826                                    &ro, false);
6827         rcu_read_unlock();
6828
6829         return ro.err;
6830 }
6831
6832 static void perf_pmu_output_stop(struct perf_event *event)
6833 {
6834         struct perf_event *iter;
6835         int err, cpu;
6836
6837 restart:
6838         rcu_read_lock();
6839         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6840                 /*
6841                  * For per-CPU events, we need to make sure that neither they
6842                  * nor their children are running; for cpu==-1 events it's
6843                  * sufficient to stop the event itself if it's active, since
6844                  * it can't have children.
6845                  */
6846                 cpu = iter->cpu;
6847                 if (cpu == -1)
6848                         cpu = READ_ONCE(iter->oncpu);
6849
6850                 if (cpu == -1)
6851                         continue;
6852
6853                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6854                 if (err == -EAGAIN) {
6855                         rcu_read_unlock();
6856                         goto restart;
6857                 }
6858         }
6859         rcu_read_unlock();
6860 }
6861
6862 /*
6863  * task tracking -- fork/exit
6864  *
6865  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6866  */
6867
6868 struct perf_task_event {
6869         struct task_struct              *task;
6870         struct perf_event_context       *task_ctx;
6871
6872         struct {
6873                 struct perf_event_header        header;
6874
6875                 u32                             pid;
6876                 u32                             ppid;
6877                 u32                             tid;
6878                 u32                             ptid;
6879                 u64                             time;
6880         } event_id;
6881 };
6882
6883 static int perf_event_task_match(struct perf_event *event)
6884 {
6885         return event->attr.comm  || event->attr.mmap ||
6886                event->attr.mmap2 || event->attr.mmap_data ||
6887                event->attr.task;
6888 }
6889
6890 static void perf_event_task_output(struct perf_event *event,
6891                                    void *data)
6892 {
6893         struct perf_task_event *task_event = data;
6894         struct perf_output_handle handle;
6895         struct perf_sample_data sample;
6896         struct task_struct *task = task_event->task;
6897         int ret, size = task_event->event_id.header.size;
6898
6899         if (!perf_event_task_match(event))
6900                 return;
6901
6902         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6903
6904         ret = perf_output_begin(&handle, event,
6905                                 task_event->event_id.header.size);
6906         if (ret)
6907                 goto out;
6908
6909         task_event->event_id.pid = perf_event_pid(event, task);
6910         task_event->event_id.ppid = perf_event_pid(event, current);
6911
6912         task_event->event_id.tid = perf_event_tid(event, task);
6913         task_event->event_id.ptid = perf_event_tid(event, current);
6914
6915         task_event->event_id.time = perf_event_clock(event);
6916
6917         perf_output_put(&handle, task_event->event_id);
6918
6919         perf_event__output_id_sample(event, &handle, &sample);
6920
6921         perf_output_end(&handle);
6922 out:
6923         task_event->event_id.header.size = size;
6924 }
6925
6926 static void perf_event_task(struct task_struct *task,
6927                               struct perf_event_context *task_ctx,
6928                               int new)
6929 {
6930         struct perf_task_event task_event;
6931
6932         if (!atomic_read(&nr_comm_events) &&
6933             !atomic_read(&nr_mmap_events) &&
6934             !atomic_read(&nr_task_events))
6935                 return;
6936
6937         task_event = (struct perf_task_event){
6938                 .task     = task,
6939                 .task_ctx = task_ctx,
6940                 .event_id    = {
6941                         .header = {
6942                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6943                                 .misc = 0,
6944                                 .size = sizeof(task_event.event_id),
6945                         },
6946                         /* .pid  */
6947                         /* .ppid */
6948                         /* .tid  */
6949                         /* .ptid */
6950                         /* .time */
6951                 },
6952         };
6953
6954         perf_iterate_sb(perf_event_task_output,
6955                        &task_event,
6956                        task_ctx);
6957 }
6958
6959 void perf_event_fork(struct task_struct *task)
6960 {
6961         perf_event_task(task, NULL, 1);
6962         perf_event_namespaces(task);
6963 }
6964
6965 /*
6966  * comm tracking
6967  */
6968
6969 struct perf_comm_event {
6970         struct task_struct      *task;
6971         char                    *comm;
6972         int                     comm_size;
6973
6974         struct {
6975                 struct perf_event_header        header;
6976
6977                 u32                             pid;
6978                 u32                             tid;
6979         } event_id;
6980 };
6981
6982 static int perf_event_comm_match(struct perf_event *event)
6983 {
6984         return event->attr.comm;
6985 }
6986
6987 static void perf_event_comm_output(struct perf_event *event,
6988                                    void *data)
6989 {
6990         struct perf_comm_event *comm_event = data;
6991         struct perf_output_handle handle;
6992         struct perf_sample_data sample;
6993         int size = comm_event->event_id.header.size;
6994         int ret;
6995
6996         if (!perf_event_comm_match(event))
6997                 return;
6998
6999         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7000         ret = perf_output_begin(&handle, event,
7001                                 comm_event->event_id.header.size);
7002
7003         if (ret)
7004                 goto out;
7005
7006         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7007         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7008
7009         perf_output_put(&handle, comm_event->event_id);
7010         __output_copy(&handle, comm_event->comm,
7011                                    comm_event->comm_size);
7012
7013         perf_event__output_id_sample(event, &handle, &sample);
7014
7015         perf_output_end(&handle);
7016 out:
7017         comm_event->event_id.header.size = size;
7018 }
7019
7020 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7021 {
7022         char comm[TASK_COMM_LEN];
7023         unsigned int size;
7024
7025         memset(comm, 0, sizeof(comm));
7026         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7027         size = ALIGN(strlen(comm)+1, sizeof(u64));
7028
7029         comm_event->comm = comm;
7030         comm_event->comm_size = size;
7031
7032         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7033
7034         perf_iterate_sb(perf_event_comm_output,
7035                        comm_event,
7036                        NULL);
7037 }
7038
7039 void perf_event_comm(struct task_struct *task, bool exec)
7040 {
7041         struct perf_comm_event comm_event;
7042
7043         if (!atomic_read(&nr_comm_events))
7044                 return;
7045
7046         comm_event = (struct perf_comm_event){
7047                 .task   = task,
7048                 /* .comm      */
7049                 /* .comm_size */
7050                 .event_id  = {
7051                         .header = {
7052                                 .type = PERF_RECORD_COMM,
7053                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7054                                 /* .size */
7055                         },
7056                         /* .pid */
7057                         /* .tid */
7058                 },
7059         };
7060
7061         perf_event_comm_event(&comm_event);
7062 }
7063
7064 /*
7065  * namespaces tracking
7066  */
7067
7068 struct perf_namespaces_event {
7069         struct task_struct              *task;
7070
7071         struct {
7072                 struct perf_event_header        header;
7073
7074                 u32                             pid;
7075                 u32                             tid;
7076                 u64                             nr_namespaces;
7077                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7078         } event_id;
7079 };
7080
7081 static int perf_event_namespaces_match(struct perf_event *event)
7082 {
7083         return event->attr.namespaces;
7084 }
7085
7086 static void perf_event_namespaces_output(struct perf_event *event,
7087                                          void *data)
7088 {
7089         struct perf_namespaces_event *namespaces_event = data;
7090         struct perf_output_handle handle;
7091         struct perf_sample_data sample;
7092         u16 header_size = namespaces_event->event_id.header.size;
7093         int ret;
7094
7095         if (!perf_event_namespaces_match(event))
7096                 return;
7097
7098         perf_event_header__init_id(&namespaces_event->event_id.header,
7099                                    &sample, event);
7100         ret = perf_output_begin(&handle, event,
7101                                 namespaces_event->event_id.header.size);
7102         if (ret)
7103                 goto out;
7104
7105         namespaces_event->event_id.pid = perf_event_pid(event,
7106                                                         namespaces_event->task);
7107         namespaces_event->event_id.tid = perf_event_tid(event,
7108                                                         namespaces_event->task);
7109
7110         perf_output_put(&handle, namespaces_event->event_id);
7111
7112         perf_event__output_id_sample(event, &handle, &sample);
7113
7114         perf_output_end(&handle);
7115 out:
7116         namespaces_event->event_id.header.size = header_size;
7117 }
7118
7119 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7120                                    struct task_struct *task,
7121                                    const struct proc_ns_operations *ns_ops)
7122 {
7123         struct path ns_path;
7124         struct inode *ns_inode;
7125         void *error;
7126
7127         error = ns_get_path(&ns_path, task, ns_ops);
7128         if (!error) {
7129                 ns_inode = ns_path.dentry->d_inode;
7130                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7131                 ns_link_info->ino = ns_inode->i_ino;
7132                 path_put(&ns_path);
7133         }
7134 }
7135
7136 void perf_event_namespaces(struct task_struct *task)
7137 {
7138         struct perf_namespaces_event namespaces_event;
7139         struct perf_ns_link_info *ns_link_info;
7140
7141         if (!atomic_read(&nr_namespaces_events))
7142                 return;
7143
7144         namespaces_event = (struct perf_namespaces_event){
7145                 .task   = task,
7146                 .event_id  = {
7147                         .header = {
7148                                 .type = PERF_RECORD_NAMESPACES,
7149                                 .misc = 0,
7150                                 .size = sizeof(namespaces_event.event_id),
7151                         },
7152                         /* .pid */
7153                         /* .tid */
7154                         .nr_namespaces = NR_NAMESPACES,
7155                         /* .link_info[NR_NAMESPACES] */
7156                 },
7157         };
7158
7159         ns_link_info = namespaces_event.event_id.link_info;
7160
7161         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7162                                task, &mntns_operations);
7163
7164 #ifdef CONFIG_USER_NS
7165         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7166                                task, &userns_operations);
7167 #endif
7168 #ifdef CONFIG_NET_NS
7169         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7170                                task, &netns_operations);
7171 #endif
7172 #ifdef CONFIG_UTS_NS
7173         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7174                                task, &utsns_operations);
7175 #endif
7176 #ifdef CONFIG_IPC_NS
7177         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7178                                task, &ipcns_operations);
7179 #endif
7180 #ifdef CONFIG_PID_NS
7181         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7182                                task, &pidns_operations);
7183 #endif
7184 #ifdef CONFIG_CGROUPS
7185         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7186                                task, &cgroupns_operations);
7187 #endif
7188
7189         perf_iterate_sb(perf_event_namespaces_output,
7190                         &namespaces_event,
7191                         NULL);
7192 }
7193
7194 /*
7195  * mmap tracking
7196  */
7197
7198 struct perf_mmap_event {
7199         struct vm_area_struct   *vma;
7200
7201         const char              *file_name;
7202         int                     file_size;
7203         int                     maj, min;
7204         u64                     ino;
7205         u64                     ino_generation;
7206         u32                     prot, flags;
7207
7208         struct {
7209                 struct perf_event_header        header;
7210
7211                 u32                             pid;
7212                 u32                             tid;
7213                 u64                             start;
7214                 u64                             len;
7215                 u64                             pgoff;
7216         } event_id;
7217 };
7218
7219 static int perf_event_mmap_match(struct perf_event *event,
7220                                  void *data)
7221 {
7222         struct perf_mmap_event *mmap_event = data;
7223         struct vm_area_struct *vma = mmap_event->vma;
7224         int executable = vma->vm_flags & VM_EXEC;
7225
7226         return (!executable && event->attr.mmap_data) ||
7227                (executable && (event->attr.mmap || event->attr.mmap2));
7228 }
7229
7230 static void perf_event_mmap_output(struct perf_event *event,
7231                                    void *data)
7232 {
7233         struct perf_mmap_event *mmap_event = data;
7234         struct perf_output_handle handle;
7235         struct perf_sample_data sample;
7236         int size = mmap_event->event_id.header.size;
7237         u32 type = mmap_event->event_id.header.type;
7238         int ret;
7239
7240         if (!perf_event_mmap_match(event, data))
7241                 return;
7242
7243         if (event->attr.mmap2) {
7244                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7245                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7246                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7247                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7248                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7249                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7250                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7251         }
7252
7253         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7254         ret = perf_output_begin(&handle, event,
7255                                 mmap_event->event_id.header.size);
7256         if (ret)
7257                 goto out;
7258
7259         mmap_event->event_id.pid = perf_event_pid(event, current);
7260         mmap_event->event_id.tid = perf_event_tid(event, current);
7261
7262         perf_output_put(&handle, mmap_event->event_id);
7263
7264         if (event->attr.mmap2) {
7265                 perf_output_put(&handle, mmap_event->maj);
7266                 perf_output_put(&handle, mmap_event->min);
7267                 perf_output_put(&handle, mmap_event->ino);
7268                 perf_output_put(&handle, mmap_event->ino_generation);
7269                 perf_output_put(&handle, mmap_event->prot);
7270                 perf_output_put(&handle, mmap_event->flags);
7271         }
7272
7273         __output_copy(&handle, mmap_event->file_name,
7274                                    mmap_event->file_size);
7275
7276         perf_event__output_id_sample(event, &handle, &sample);
7277
7278         perf_output_end(&handle);
7279 out:
7280         mmap_event->event_id.header.size = size;
7281         mmap_event->event_id.header.type = type;
7282 }
7283
7284 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7285 {
7286         struct vm_area_struct *vma = mmap_event->vma;
7287         struct file *file = vma->vm_file;
7288         int maj = 0, min = 0;
7289         u64 ino = 0, gen = 0;
7290         u32 prot = 0, flags = 0;
7291         unsigned int size;
7292         char tmp[16];
7293         char *buf = NULL;
7294         char *name;
7295
7296         if (vma->vm_flags & VM_READ)
7297                 prot |= PROT_READ;
7298         if (vma->vm_flags & VM_WRITE)
7299                 prot |= PROT_WRITE;
7300         if (vma->vm_flags & VM_EXEC)
7301                 prot |= PROT_EXEC;
7302
7303         if (vma->vm_flags & VM_MAYSHARE)
7304                 flags = MAP_SHARED;
7305         else
7306                 flags = MAP_PRIVATE;
7307
7308         if (vma->vm_flags & VM_DENYWRITE)
7309                 flags |= MAP_DENYWRITE;
7310         if (vma->vm_flags & VM_MAYEXEC)
7311                 flags |= MAP_EXECUTABLE;
7312         if (vma->vm_flags & VM_LOCKED)
7313                 flags |= MAP_LOCKED;
7314         if (vma->vm_flags & VM_HUGETLB)
7315                 flags |= MAP_HUGETLB;
7316
7317         if (file) {
7318                 struct inode *inode;
7319                 dev_t dev;
7320
7321                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7322                 if (!buf) {
7323                         name = "//enomem";
7324                         goto cpy_name;
7325                 }
7326                 /*
7327                  * d_path() works from the end of the rb backwards, so we
7328                  * need to add enough zero bytes after the string to handle
7329                  * the 64bit alignment we do later.
7330                  */
7331                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7332                 if (IS_ERR(name)) {
7333                         name = "//toolong";
7334                         goto cpy_name;
7335                 }
7336                 inode = file_inode(vma->vm_file);
7337                 dev = inode->i_sb->s_dev;
7338                 ino = inode->i_ino;
7339                 gen = inode->i_generation;
7340                 maj = MAJOR(dev);
7341                 min = MINOR(dev);
7342
7343                 goto got_name;
7344         } else {
7345                 if (vma->vm_ops && vma->vm_ops->name) {
7346                         name = (char *) vma->vm_ops->name(vma);
7347                         if (name)
7348                                 goto cpy_name;
7349                 }
7350
7351                 name = (char *)arch_vma_name(vma);
7352                 if (name)
7353                         goto cpy_name;
7354
7355                 if (vma->vm_start <= vma->vm_mm->start_brk &&
7356                                 vma->vm_end >= vma->vm_mm->brk) {
7357                         name = "[heap]";
7358                         goto cpy_name;
7359                 }
7360                 if (vma->vm_start <= vma->vm_mm->start_stack &&
7361                                 vma->vm_end >= vma->vm_mm->start_stack) {
7362                         name = "[stack]";
7363                         goto cpy_name;
7364                 }
7365
7366                 name = "//anon";
7367                 goto cpy_name;
7368         }
7369
7370 cpy_name:
7371         strlcpy(tmp, name, sizeof(tmp));
7372         name = tmp;
7373 got_name:
7374         /*
7375          * Since our buffer works in 8 byte units we need to align our string
7376          * size to a multiple of 8. However, we must guarantee the tail end is
7377          * zero'd out to avoid leaking random bits to userspace.
7378          */
7379         size = strlen(name)+1;
7380         while (!IS_ALIGNED(size, sizeof(u64)))
7381                 name[size++] = '\0';
7382
7383         mmap_event->file_name = name;
7384         mmap_event->file_size = size;
7385         mmap_event->maj = maj;
7386         mmap_event->min = min;
7387         mmap_event->ino = ino;
7388         mmap_event->ino_generation = gen;
7389         mmap_event->prot = prot;
7390         mmap_event->flags = flags;
7391
7392         if (!(vma->vm_flags & VM_EXEC))
7393                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7394
7395         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7396
7397         perf_iterate_sb(perf_event_mmap_output,
7398                        mmap_event,
7399                        NULL);
7400
7401         kfree(buf);
7402 }
7403
7404 /*
7405  * Check whether inode and address range match filter criteria.
7406  */
7407 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7408                                      struct file *file, unsigned long offset,
7409                                      unsigned long size)
7410 {
7411         /* d_inode(NULL) won't be equal to any mapped user-space file */
7412         if (!filter->path.dentry)
7413                 return false;
7414
7415         if (d_inode(filter->path.dentry) != file_inode(file))
7416                 return false;
7417
7418         if (filter->offset > offset + size)
7419                 return false;
7420
7421         if (filter->offset + filter->size < offset)
7422                 return false;
7423
7424         return true;
7425 }
7426
7427 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7428                                         struct vm_area_struct *vma,
7429                                         struct perf_addr_filter_range *fr)
7430 {
7431         unsigned long vma_size = vma->vm_end - vma->vm_start;
7432         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7433         struct file *file = vma->vm_file;
7434
7435         if (!perf_addr_filter_match(filter, file, off, vma_size))
7436                 return false;
7437
7438         if (filter->offset < off) {
7439                 fr->start = vma->vm_start;
7440                 fr->size = min(vma_size, filter->size - (off - filter->offset));
7441         } else {
7442                 fr->start = vma->vm_start + filter->offset - off;
7443                 fr->size = min(vma->vm_end - fr->start, filter->size);
7444         }
7445
7446         return true;
7447 }
7448
7449 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7450 {
7451         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7452         struct vm_area_struct *vma = data;
7453         struct perf_addr_filter *filter;
7454         unsigned int restart = 0, count = 0;
7455         unsigned long flags;
7456
7457         if (!has_addr_filter(event))
7458                 return;
7459
7460         if (!vma->vm_file)
7461                 return;
7462
7463         raw_spin_lock_irqsave(&ifh->lock, flags);
7464         list_for_each_entry(filter, &ifh->list, entry) {
7465                 if (perf_addr_filter_vma_adjust(filter, vma,
7466                                                 &event->addr_filter_ranges[count]))
7467                         restart++;
7468
7469                 count++;
7470         }
7471
7472         if (restart)
7473                 event->addr_filters_gen++;
7474         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7475
7476         if (restart)
7477                 perf_event_stop(event, 1);
7478 }
7479
7480 /*
7481  * Adjust all task's events' filters to the new vma
7482  */
7483 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7484 {
7485         struct perf_event_context *ctx;
7486         int ctxn;
7487
7488         /*
7489          * Data tracing isn't supported yet and as such there is no need
7490          * to keep track of anything that isn't related to executable code:
7491          */
7492         if (!(vma->vm_flags & VM_EXEC))
7493                 return;
7494
7495         rcu_read_lock();
7496         for_each_task_context_nr(ctxn) {
7497                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7498                 if (!ctx)
7499                         continue;
7500
7501                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7502         }
7503         rcu_read_unlock();
7504 }
7505
7506 void perf_event_mmap(struct vm_area_struct *vma)
7507 {
7508         struct perf_mmap_event mmap_event;
7509
7510         if (!atomic_read(&nr_mmap_events))
7511                 return;
7512
7513         mmap_event = (struct perf_mmap_event){
7514                 .vma    = vma,
7515                 /* .file_name */
7516                 /* .file_size */
7517                 .event_id  = {
7518                         .header = {
7519                                 .type = PERF_RECORD_MMAP,
7520                                 .misc = PERF_RECORD_MISC_USER,
7521                                 /* .size */
7522                         },
7523                         /* .pid */
7524                         /* .tid */
7525                         .start  = vma->vm_start,
7526                         .len    = vma->vm_end - vma->vm_start,
7527                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7528                 },
7529                 /* .maj (attr_mmap2 only) */
7530                 /* .min (attr_mmap2 only) */
7531                 /* .ino (attr_mmap2 only) */
7532                 /* .ino_generation (attr_mmap2 only) */
7533                 /* .prot (attr_mmap2 only) */
7534                 /* .flags (attr_mmap2 only) */
7535         };
7536
7537         perf_addr_filters_adjust(vma);
7538         perf_event_mmap_event(&mmap_event);
7539 }
7540
7541 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7542                           unsigned long size, u64 flags)
7543 {
7544         struct perf_output_handle handle;
7545         struct perf_sample_data sample;
7546         struct perf_aux_event {
7547                 struct perf_event_header        header;
7548                 u64                             offset;
7549                 u64                             size;
7550                 u64                             flags;
7551         } rec = {
7552                 .header = {
7553                         .type = PERF_RECORD_AUX,
7554                         .misc = 0,
7555                         .size = sizeof(rec),
7556                 },
7557                 .offset         = head,
7558                 .size           = size,
7559                 .flags          = flags,
7560         };
7561         int ret;
7562
7563         perf_event_header__init_id(&rec.header, &sample, event);
7564         ret = perf_output_begin(&handle, event, rec.header.size);
7565
7566         if (ret)
7567                 return;
7568
7569         perf_output_put(&handle, rec);
7570         perf_event__output_id_sample(event, &handle, &sample);
7571
7572         perf_output_end(&handle);
7573 }
7574
7575 /*
7576  * Lost/dropped samples logging
7577  */
7578 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7579 {
7580         struct perf_output_handle handle;
7581         struct perf_sample_data sample;
7582         int ret;
7583
7584         struct {
7585                 struct perf_event_header        header;
7586                 u64                             lost;
7587         } lost_samples_event = {
7588                 .header = {
7589                         .type = PERF_RECORD_LOST_SAMPLES,
7590                         .misc = 0,
7591                         .size = sizeof(lost_samples_event),
7592                 },
7593                 .lost           = lost,
7594         };
7595
7596         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7597
7598         ret = perf_output_begin(&handle, event,
7599                                 lost_samples_event.header.size);
7600         if (ret)
7601                 return;
7602
7603         perf_output_put(&handle, lost_samples_event);
7604         perf_event__output_id_sample(event, &handle, &sample);
7605         perf_output_end(&handle);
7606 }
7607
7608 /*
7609  * context_switch tracking
7610  */
7611
7612 struct perf_switch_event {
7613         struct task_struct      *task;
7614         struct task_struct      *next_prev;
7615
7616         struct {
7617                 struct perf_event_header        header;
7618                 u32                             next_prev_pid;
7619                 u32                             next_prev_tid;
7620         } event_id;
7621 };
7622
7623 static int perf_event_switch_match(struct perf_event *event)
7624 {
7625         return event->attr.context_switch;
7626 }
7627
7628 static void perf_event_switch_output(struct perf_event *event, void *data)
7629 {
7630         struct perf_switch_event *se = data;
7631         struct perf_output_handle handle;
7632         struct perf_sample_data sample;
7633         int ret;
7634
7635         if (!perf_event_switch_match(event))
7636                 return;
7637
7638         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7639         if (event->ctx->task) {
7640                 se->event_id.header.type = PERF_RECORD_SWITCH;
7641                 se->event_id.header.size = sizeof(se->event_id.header);
7642         } else {
7643                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7644                 se->event_id.header.size = sizeof(se->event_id);
7645                 se->event_id.next_prev_pid =
7646                                         perf_event_pid(event, se->next_prev);
7647                 se->event_id.next_prev_tid =
7648                                         perf_event_tid(event, se->next_prev);
7649         }
7650
7651         perf_event_header__init_id(&se->event_id.header, &sample, event);
7652
7653         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7654         if (ret)
7655                 return;
7656
7657         if (event->ctx->task)
7658                 perf_output_put(&handle, se->event_id.header);
7659         else
7660                 perf_output_put(&handle, se->event_id);
7661
7662         perf_event__output_id_sample(event, &handle, &sample);
7663
7664         perf_output_end(&handle);
7665 }
7666
7667 static void perf_event_switch(struct task_struct *task,
7668                               struct task_struct *next_prev, bool sched_in)
7669 {
7670         struct perf_switch_event switch_event;
7671
7672         /* N.B. caller checks nr_switch_events != 0 */
7673
7674         switch_event = (struct perf_switch_event){
7675                 .task           = task,
7676                 .next_prev      = next_prev,
7677                 .event_id       = {
7678                         .header = {
7679                                 /* .type */
7680                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7681                                 /* .size */
7682                         },
7683                         /* .next_prev_pid */
7684                         /* .next_prev_tid */
7685                 },
7686         };
7687
7688         if (!sched_in && task->state == TASK_RUNNING)
7689                 switch_event.event_id.header.misc |=
7690                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7691
7692         perf_iterate_sb(perf_event_switch_output,
7693                        &switch_event,
7694                        NULL);
7695 }
7696
7697 /*
7698  * IRQ throttle logging
7699  */
7700
7701 static void perf_log_throttle(struct perf_event *event, int enable)
7702 {
7703         struct perf_output_handle handle;
7704         struct perf_sample_data sample;
7705         int ret;
7706
7707         struct {
7708                 struct perf_event_header        header;
7709                 u64                             time;
7710                 u64                             id;
7711                 u64                             stream_id;
7712         } throttle_event = {
7713                 .header = {
7714                         .type = PERF_RECORD_THROTTLE,
7715                         .misc = 0,
7716                         .size = sizeof(throttle_event),
7717                 },
7718                 .time           = perf_event_clock(event),
7719                 .id             = primary_event_id(event),
7720                 .stream_id      = event->id,
7721         };
7722
7723         if (enable)
7724                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7725
7726         perf_event_header__init_id(&throttle_event.header, &sample, event);
7727
7728         ret = perf_output_begin(&handle, event,
7729                                 throttle_event.header.size);
7730         if (ret)
7731                 return;
7732
7733         perf_output_put(&handle, throttle_event);
7734         perf_event__output_id_sample(event, &handle, &sample);
7735         perf_output_end(&handle);
7736 }
7737
7738 /*
7739  * ksymbol register/unregister tracking
7740  */
7741
7742 struct perf_ksymbol_event {
7743         const char      *name;
7744         int             name_len;
7745         struct {
7746                 struct perf_event_header        header;
7747                 u64                             addr;
7748                 u32                             len;
7749                 u16                             ksym_type;
7750                 u16                             flags;
7751         } event_id;
7752 };
7753
7754 static int perf_event_ksymbol_match(struct perf_event *event)
7755 {
7756         return event->attr.ksymbol;
7757 }
7758
7759 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7760 {
7761         struct perf_ksymbol_event *ksymbol_event = data;
7762         struct perf_output_handle handle;
7763         struct perf_sample_data sample;
7764         int ret;
7765
7766         if (!perf_event_ksymbol_match(event))
7767                 return;
7768
7769         perf_event_header__init_id(&ksymbol_event->event_id.header,
7770                                    &sample, event);
7771         ret = perf_output_begin(&handle, event,
7772                                 ksymbol_event->event_id.header.size);
7773         if (ret)
7774                 return;
7775
7776         perf_output_put(&handle, ksymbol_event->event_id);
7777         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7778         perf_event__output_id_sample(event, &handle, &sample);
7779
7780         perf_output_end(&handle);
7781 }
7782
7783 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7784                         const char *sym)
7785 {
7786         struct perf_ksymbol_event ksymbol_event;
7787         char name[KSYM_NAME_LEN];
7788         u16 flags = 0;
7789         int name_len;
7790
7791         if (!atomic_read(&nr_ksymbol_events))
7792                 return;
7793
7794         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7795             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7796                 goto err;
7797
7798         strlcpy(name, sym, KSYM_NAME_LEN);
7799         name_len = strlen(name) + 1;
7800         while (!IS_ALIGNED(name_len, sizeof(u64)))
7801                 name[name_len++] = '\0';
7802         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7803
7804         if (unregister)
7805                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7806
7807         ksymbol_event = (struct perf_ksymbol_event){
7808                 .name = name,
7809                 .name_len = name_len,
7810                 .event_id = {
7811                         .header = {
7812                                 .type = PERF_RECORD_KSYMBOL,
7813                                 .size = sizeof(ksymbol_event.event_id) +
7814                                         name_len,
7815                         },
7816                         .addr = addr,
7817                         .len = len,
7818                         .ksym_type = ksym_type,
7819                         .flags = flags,
7820                 },
7821         };
7822
7823         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7824         return;
7825 err:
7826         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7827 }
7828
7829 /*
7830  * bpf program load/unload tracking
7831  */
7832
7833 struct perf_bpf_event {
7834         struct bpf_prog *prog;
7835         struct {
7836                 struct perf_event_header        header;
7837                 u16                             type;
7838                 u16                             flags;
7839                 u32                             id;
7840                 u8                              tag[BPF_TAG_SIZE];
7841         } event_id;
7842 };
7843
7844 static int perf_event_bpf_match(struct perf_event *event)
7845 {
7846         return event->attr.bpf_event;
7847 }
7848
7849 static void perf_event_bpf_output(struct perf_event *event, void *data)
7850 {
7851         struct perf_bpf_event *bpf_event = data;
7852         struct perf_output_handle handle;
7853         struct perf_sample_data sample;
7854         int ret;
7855
7856         if (!perf_event_bpf_match(event))
7857                 return;
7858
7859         perf_event_header__init_id(&bpf_event->event_id.header,
7860                                    &sample, event);
7861         ret = perf_output_begin(&handle, event,
7862                                 bpf_event->event_id.header.size);
7863         if (ret)
7864                 return;
7865
7866         perf_output_put(&handle, bpf_event->event_id);
7867         perf_event__output_id_sample(event, &handle, &sample);
7868
7869         perf_output_end(&handle);
7870 }
7871
7872 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
7873                                          enum perf_bpf_event_type type)
7874 {
7875         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
7876         char sym[KSYM_NAME_LEN];
7877         int i;
7878
7879         if (prog->aux->func_cnt == 0) {
7880                 bpf_get_prog_name(prog, sym);
7881                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
7882                                    (u64)(unsigned long)prog->bpf_func,
7883                                    prog->jited_len, unregister, sym);
7884         } else {
7885                 for (i = 0; i < prog->aux->func_cnt; i++) {
7886                         struct bpf_prog *subprog = prog->aux->func[i];
7887
7888                         bpf_get_prog_name(subprog, sym);
7889                         perf_event_ksymbol(
7890                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
7891                                 (u64)(unsigned long)subprog->bpf_func,
7892                                 subprog->jited_len, unregister, sym);
7893                 }
7894         }
7895 }
7896
7897 void perf_event_bpf_event(struct bpf_prog *prog,
7898                           enum perf_bpf_event_type type,
7899                           u16 flags)
7900 {
7901         struct perf_bpf_event bpf_event;
7902
7903         if (type <= PERF_BPF_EVENT_UNKNOWN ||
7904             type >= PERF_BPF_EVENT_MAX)
7905                 return;
7906
7907         switch (type) {
7908         case PERF_BPF_EVENT_PROG_LOAD:
7909         case PERF_BPF_EVENT_PROG_UNLOAD:
7910                 if (atomic_read(&nr_ksymbol_events))
7911                         perf_event_bpf_emit_ksymbols(prog, type);
7912                 break;
7913         default:
7914                 break;
7915         }
7916
7917         if (!atomic_read(&nr_bpf_events))
7918                 return;
7919
7920         bpf_event = (struct perf_bpf_event){
7921                 .prog = prog,
7922                 .event_id = {
7923                         .header = {
7924                                 .type = PERF_RECORD_BPF_EVENT,
7925                                 .size = sizeof(bpf_event.event_id),
7926                         },
7927                         .type = type,
7928                         .flags = flags,
7929                         .id = prog->aux->id,
7930                 },
7931         };
7932
7933         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
7934
7935         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
7936         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
7937 }
7938
7939 void perf_event_itrace_started(struct perf_event *event)
7940 {
7941         event->attach_state |= PERF_ATTACH_ITRACE;
7942 }
7943
7944 static void perf_log_itrace_start(struct perf_event *event)
7945 {
7946         struct perf_output_handle handle;
7947         struct perf_sample_data sample;
7948         struct perf_aux_event {
7949                 struct perf_event_header        header;
7950                 u32                             pid;
7951                 u32                             tid;
7952         } rec;
7953         int ret;
7954
7955         if (event->parent)
7956                 event = event->parent;
7957
7958         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7959             event->attach_state & PERF_ATTACH_ITRACE)
7960                 return;
7961
7962         rec.header.type = PERF_RECORD_ITRACE_START;
7963         rec.header.misc = 0;
7964         rec.header.size = sizeof(rec);
7965         rec.pid = perf_event_pid(event, current);
7966         rec.tid = perf_event_tid(event, current);
7967
7968         perf_event_header__init_id(&rec.header, &sample, event);
7969         ret = perf_output_begin(&handle, event, rec.header.size);
7970
7971         if (ret)
7972                 return;
7973
7974         perf_output_put(&handle, rec);
7975         perf_event__output_id_sample(event, &handle, &sample);
7976
7977         perf_output_end(&handle);
7978 }
7979
7980 static int
7981 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7982 {
7983         struct hw_perf_event *hwc = &event->hw;
7984         int ret = 0;
7985         u64 seq;
7986
7987         seq = __this_cpu_read(perf_throttled_seq);
7988         if (seq != hwc->interrupts_seq) {
7989                 hwc->interrupts_seq = seq;
7990                 hwc->interrupts = 1;
7991         } else {
7992                 hwc->interrupts++;
7993                 if (unlikely(throttle
7994                              && hwc->interrupts >= max_samples_per_tick)) {
7995                         __this_cpu_inc(perf_throttled_count);
7996                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7997                         hwc->interrupts = MAX_INTERRUPTS;
7998                         perf_log_throttle(event, 0);
7999                         ret = 1;
8000                 }
8001         }
8002
8003         if (event->attr.freq) {
8004                 u64 now = perf_clock();
8005                 s64 delta = now - hwc->freq_time_stamp;
8006
8007                 hwc->freq_time_stamp = now;
8008
8009                 if (delta > 0 && delta < 2*TICK_NSEC)
8010                         perf_adjust_period(event, delta, hwc->last_period, true);
8011         }
8012
8013         return ret;
8014 }
8015
8016 int perf_event_account_interrupt(struct perf_event *event)
8017 {
8018         return __perf_event_account_interrupt(event, 1);
8019 }
8020
8021 /*
8022  * Generic event overflow handling, sampling.
8023  */
8024
8025 static int __perf_event_overflow(struct perf_event *event,
8026                                    int throttle, struct perf_sample_data *data,
8027                                    struct pt_regs *regs)
8028 {
8029         int events = atomic_read(&event->event_limit);
8030         int ret = 0;
8031
8032         /*
8033          * Non-sampling counters might still use the PMI to fold short
8034          * hardware counters, ignore those.
8035          */
8036         if (unlikely(!is_sampling_event(event)))
8037                 return 0;
8038
8039         ret = __perf_event_account_interrupt(event, throttle);
8040
8041         /*
8042          * XXX event_limit might not quite work as expected on inherited
8043          * events
8044          */
8045
8046         event->pending_kill = POLL_IN;
8047         if (events && atomic_dec_and_test(&event->event_limit)) {
8048                 ret = 1;
8049                 event->pending_kill = POLL_HUP;
8050
8051                 perf_event_disable_inatomic(event);
8052         }
8053
8054         READ_ONCE(event->overflow_handler)(event, data, regs);
8055
8056         if (*perf_event_fasync(event) && event->pending_kill) {
8057                 event->pending_wakeup = 1;
8058                 irq_work_queue(&event->pending);
8059         }
8060
8061         return ret;
8062 }
8063
8064 int perf_event_overflow(struct perf_event *event,
8065                           struct perf_sample_data *data,
8066                           struct pt_regs *regs)
8067 {
8068         return __perf_event_overflow(event, 1, data, regs);
8069 }
8070
8071 /*
8072  * Generic software event infrastructure
8073  */
8074
8075 struct swevent_htable {
8076         struct swevent_hlist            *swevent_hlist;
8077         struct mutex                    hlist_mutex;
8078         int                             hlist_refcount;
8079
8080         /* Recursion avoidance in each contexts */
8081         int                             recursion[PERF_NR_CONTEXTS];
8082 };
8083
8084 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8085
8086 /*
8087  * We directly increment event->count and keep a second value in
8088  * event->hw.period_left to count intervals. This period event
8089  * is kept in the range [-sample_period, 0] so that we can use the
8090  * sign as trigger.
8091  */
8092
8093 u64 perf_swevent_set_period(struct perf_event *event)
8094 {
8095         struct hw_perf_event *hwc = &event->hw;
8096         u64 period = hwc->last_period;
8097         u64 nr, offset;
8098         s64 old, val;
8099
8100         hwc->last_period = hwc->sample_period;
8101
8102 again:
8103         old = val = local64_read(&hwc->period_left);
8104         if (val < 0)
8105                 return 0;
8106
8107         nr = div64_u64(period + val, period);
8108         offset = nr * period;
8109         val -= offset;
8110         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8111                 goto again;
8112
8113         return nr;
8114 }
8115
8116 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8117                                     struct perf_sample_data *data,
8118                                     struct pt_regs *regs)
8119 {
8120         struct hw_perf_event *hwc = &event->hw;
8121         int throttle = 0;
8122
8123         if (!overflow)
8124                 overflow = perf_swevent_set_period(event);
8125
8126         if (hwc->interrupts == MAX_INTERRUPTS)
8127                 return;
8128
8129         for (; overflow; overflow--) {
8130                 if (__perf_event_overflow(event, throttle,
8131                                             data, regs)) {
8132                         /*
8133                          * We inhibit the overflow from happening when
8134                          * hwc->interrupts == MAX_INTERRUPTS.
8135                          */
8136                         break;
8137                 }
8138                 throttle = 1;
8139         }
8140 }
8141
8142 static void perf_swevent_event(struct perf_event *event, u64 nr,
8143                                struct perf_sample_data *data,
8144                                struct pt_regs *regs)
8145 {
8146         struct hw_perf_event *hwc = &event->hw;
8147
8148         local64_add(nr, &event->count);
8149
8150         if (!regs)
8151                 return;
8152
8153         if (!is_sampling_event(event))
8154                 return;
8155
8156         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8157                 data->period = nr;
8158                 return perf_swevent_overflow(event, 1, data, regs);
8159         } else
8160                 data->period = event->hw.last_period;
8161
8162         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8163                 return perf_swevent_overflow(event, 1, data, regs);
8164
8165         if (local64_add_negative(nr, &hwc->period_left))
8166                 return;
8167
8168         perf_swevent_overflow(event, 0, data, regs);
8169 }
8170
8171 static int perf_exclude_event(struct perf_event *event,
8172                               struct pt_regs *regs)
8173 {
8174         if (event->hw.state & PERF_HES_STOPPED)
8175                 return 1;
8176
8177         if (regs) {
8178                 if (event->attr.exclude_user && user_mode(regs))
8179                         return 1;
8180
8181                 if (event->attr.exclude_kernel && !user_mode(regs))
8182                         return 1;
8183         }
8184
8185         return 0;
8186 }
8187
8188 static int perf_swevent_match(struct perf_event *event,
8189                                 enum perf_type_id type,
8190                                 u32 event_id,
8191                                 struct perf_sample_data *data,
8192                                 struct pt_regs *regs)
8193 {
8194         if (event->attr.type != type)
8195                 return 0;
8196
8197         if (event->attr.config != event_id)
8198                 return 0;
8199
8200         if (perf_exclude_event(event, regs))
8201                 return 0;
8202
8203         return 1;
8204 }
8205
8206 static inline u64 swevent_hash(u64 type, u32 event_id)
8207 {
8208         u64 val = event_id | (type << 32);
8209
8210         return hash_64(val, SWEVENT_HLIST_BITS);
8211 }
8212
8213 static inline struct hlist_head *
8214 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8215 {
8216         u64 hash = swevent_hash(type, event_id);
8217
8218         return &hlist->heads[hash];
8219 }
8220
8221 /* For the read side: events when they trigger */
8222 static inline struct hlist_head *
8223 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8224 {
8225         struct swevent_hlist *hlist;
8226
8227         hlist = rcu_dereference(swhash->swevent_hlist);
8228         if (!hlist)
8229                 return NULL;
8230
8231         return __find_swevent_head(hlist, type, event_id);
8232 }
8233
8234 /* For the event head insertion and removal in the hlist */
8235 static inline struct hlist_head *
8236 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8237 {
8238         struct swevent_hlist *hlist;
8239         u32 event_id = event->attr.config;
8240         u64 type = event->attr.type;
8241
8242         /*
8243          * Event scheduling is always serialized against hlist allocation
8244          * and release. Which makes the protected version suitable here.
8245          * The context lock guarantees that.
8246          */
8247         hlist = rcu_dereference_protected(swhash->swevent_hlist,
8248                                           lockdep_is_held(&event->ctx->lock));
8249         if (!hlist)
8250                 return NULL;
8251
8252         return __find_swevent_head(hlist, type, event_id);
8253 }
8254
8255 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8256                                     u64 nr,
8257                                     struct perf_sample_data *data,
8258                                     struct pt_regs *regs)
8259 {
8260         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8261         struct perf_event *event;
8262         struct hlist_head *head;
8263
8264         rcu_read_lock();
8265         head = find_swevent_head_rcu(swhash, type, event_id);
8266         if (!head)
8267                 goto end;
8268
8269         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8270                 if (perf_swevent_match(event, type, event_id, data, regs))
8271                         perf_swevent_event(event, nr, data, regs);
8272         }
8273 end:
8274         rcu_read_unlock();
8275 }
8276
8277 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8278
8279 int perf_swevent_get_recursion_context(void)
8280 {
8281         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8282
8283         return get_recursion_context(swhash->recursion);
8284 }
8285 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8286
8287 void perf_swevent_put_recursion_context(int rctx)
8288 {
8289         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8290
8291         put_recursion_context(swhash->recursion, rctx);
8292 }
8293
8294 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8295 {
8296         struct perf_sample_data data;
8297
8298         if (WARN_ON_ONCE(!regs))
8299                 return;
8300
8301         perf_sample_data_init(&data, addr, 0);
8302         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8303 }
8304
8305 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8306 {
8307         int rctx;
8308
8309         preempt_disable_notrace();
8310         rctx = perf_swevent_get_recursion_context();
8311         if (unlikely(rctx < 0))
8312                 goto fail;
8313
8314         ___perf_sw_event(event_id, nr, regs, addr);
8315
8316         perf_swevent_put_recursion_context(rctx);
8317 fail:
8318         preempt_enable_notrace();
8319 }
8320
8321 static void perf_swevent_read(struct perf_event *event)
8322 {
8323 }
8324
8325 static int perf_swevent_add(struct perf_event *event, int flags)
8326 {
8327         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8328         struct hw_perf_event *hwc = &event->hw;
8329         struct hlist_head *head;
8330
8331         if (is_sampling_event(event)) {
8332                 hwc->last_period = hwc->sample_period;
8333                 perf_swevent_set_period(event);
8334         }
8335
8336         hwc->state = !(flags & PERF_EF_START);
8337
8338         head = find_swevent_head(swhash, event);
8339         if (WARN_ON_ONCE(!head))
8340                 return -EINVAL;
8341
8342         hlist_add_head_rcu(&event->hlist_entry, head);
8343         perf_event_update_userpage(event);
8344
8345         return 0;
8346 }
8347
8348 static void perf_swevent_del(struct perf_event *event, int flags)
8349 {
8350         hlist_del_rcu(&event->hlist_entry);
8351 }
8352
8353 static void perf_swevent_start(struct perf_event *event, int flags)
8354 {
8355         event->hw.state = 0;
8356 }
8357
8358 static void perf_swevent_stop(struct perf_event *event, int flags)
8359 {
8360         event->hw.state = PERF_HES_STOPPED;
8361 }
8362
8363 /* Deref the hlist from the update side */
8364 static inline struct swevent_hlist *
8365 swevent_hlist_deref(struct swevent_htable *swhash)
8366 {
8367         return rcu_dereference_protected(swhash->swevent_hlist,
8368                                          lockdep_is_held(&swhash->hlist_mutex));
8369 }
8370
8371 static void swevent_hlist_release(struct swevent_htable *swhash)
8372 {
8373         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8374
8375         if (!hlist)
8376                 return;
8377
8378         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8379         kfree_rcu(hlist, rcu_head);
8380 }
8381
8382 static void swevent_hlist_put_cpu(int cpu)
8383 {
8384         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8385
8386         mutex_lock(&swhash->hlist_mutex);
8387
8388         if (!--swhash->hlist_refcount)
8389                 swevent_hlist_release(swhash);
8390
8391         mutex_unlock(&swhash->hlist_mutex);
8392 }
8393
8394 static void swevent_hlist_put(void)
8395 {
8396         int cpu;
8397
8398         for_each_possible_cpu(cpu)
8399                 swevent_hlist_put_cpu(cpu);
8400 }
8401
8402 static int swevent_hlist_get_cpu(int cpu)
8403 {
8404         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8405         int err = 0;
8406
8407         mutex_lock(&swhash->hlist_mutex);
8408         if (!swevent_hlist_deref(swhash) &&
8409             cpumask_test_cpu(cpu, perf_online_mask)) {
8410                 struct swevent_hlist *hlist;
8411
8412                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8413                 if (!hlist) {
8414                         err = -ENOMEM;
8415                         goto exit;
8416                 }
8417                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8418         }
8419         swhash->hlist_refcount++;
8420 exit:
8421         mutex_unlock(&swhash->hlist_mutex);
8422
8423         return err;
8424 }
8425
8426 static int swevent_hlist_get(void)
8427 {
8428         int err, cpu, failed_cpu;
8429
8430         mutex_lock(&pmus_lock);
8431         for_each_possible_cpu(cpu) {
8432                 err = swevent_hlist_get_cpu(cpu);
8433                 if (err) {
8434                         failed_cpu = cpu;
8435                         goto fail;
8436                 }
8437         }
8438         mutex_unlock(&pmus_lock);
8439         return 0;
8440 fail:
8441         for_each_possible_cpu(cpu) {
8442                 if (cpu == failed_cpu)
8443                         break;
8444                 swevent_hlist_put_cpu(cpu);
8445         }
8446         mutex_unlock(&pmus_lock);
8447         return err;
8448 }
8449
8450 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8451
8452 static void sw_perf_event_destroy(struct perf_event *event)
8453 {
8454         u64 event_id = event->attr.config;
8455
8456         WARN_ON(event->parent);
8457
8458         static_key_slow_dec(&perf_swevent_enabled[event_id]);
8459         swevent_hlist_put();
8460 }
8461
8462 static int perf_swevent_init(struct perf_event *event)
8463 {
8464         u64 event_id = event->attr.config;
8465
8466         if (event->attr.type != PERF_TYPE_SOFTWARE)
8467                 return -ENOENT;
8468
8469         /*
8470          * no branch sampling for software events
8471          */
8472         if (has_branch_stack(event))
8473                 return -EOPNOTSUPP;
8474
8475         switch (event_id) {
8476         case PERF_COUNT_SW_CPU_CLOCK:
8477         case PERF_COUNT_SW_TASK_CLOCK:
8478                 return -ENOENT;
8479
8480         default:
8481                 break;
8482         }
8483
8484         if (event_id >= PERF_COUNT_SW_MAX)
8485                 return -ENOENT;
8486
8487         if (!event->parent) {
8488                 int err;
8489
8490                 err = swevent_hlist_get();
8491                 if (err)
8492                         return err;
8493
8494                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8495                 event->destroy = sw_perf_event_destroy;
8496         }
8497
8498         return 0;
8499 }
8500
8501 static struct pmu perf_swevent = {
8502         .task_ctx_nr    = perf_sw_context,
8503
8504         .capabilities   = PERF_PMU_CAP_NO_NMI,
8505
8506         .event_init     = perf_swevent_init,
8507         .add            = perf_swevent_add,
8508         .del            = perf_swevent_del,
8509         .start          = perf_swevent_start,
8510         .stop           = perf_swevent_stop,
8511         .read           = perf_swevent_read,
8512 };
8513
8514 #ifdef CONFIG_EVENT_TRACING
8515
8516 static int perf_tp_filter_match(struct perf_event *event,
8517                                 struct perf_sample_data *data)
8518 {
8519         void *record = data->raw->frag.data;
8520
8521         /* only top level events have filters set */
8522         if (event->parent)
8523                 event = event->parent;
8524
8525         if (likely(!event->filter) || filter_match_preds(event->filter, record))
8526                 return 1;
8527         return 0;
8528 }
8529
8530 static int perf_tp_event_match(struct perf_event *event,
8531                                 struct perf_sample_data *data,
8532                                 struct pt_regs *regs)
8533 {
8534         if (event->hw.state & PERF_HES_STOPPED)
8535                 return 0;
8536         /*
8537          * If exclude_kernel, only trace user-space tracepoints (uprobes)
8538          */
8539         if (event->attr.exclude_kernel && !user_mode(regs))
8540                 return 0;
8541
8542         if (!perf_tp_filter_match(event, data))
8543                 return 0;
8544
8545         return 1;
8546 }
8547
8548 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8549                                struct trace_event_call *call, u64 count,
8550                                struct pt_regs *regs, struct hlist_head *head,
8551                                struct task_struct *task)
8552 {
8553         if (bpf_prog_array_valid(call)) {
8554                 *(struct pt_regs **)raw_data = regs;
8555                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8556                         perf_swevent_put_recursion_context(rctx);
8557                         return;
8558                 }
8559         }
8560         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8561                       rctx, task);
8562 }
8563 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8564
8565 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8566                    struct pt_regs *regs, struct hlist_head *head, int rctx,
8567                    struct task_struct *task)
8568 {
8569         struct perf_sample_data data;
8570         struct perf_event *event;
8571
8572         struct perf_raw_record raw = {
8573                 .frag = {
8574                         .size = entry_size,
8575                         .data = record,
8576                 },
8577         };
8578
8579         perf_sample_data_init(&data, 0, 0);
8580         data.raw = &raw;
8581
8582         perf_trace_buf_update(record, event_type);
8583
8584         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8585                 if (perf_tp_event_match(event, &data, regs))
8586                         perf_swevent_event(event, count, &data, regs);
8587         }
8588
8589         /*
8590          * If we got specified a target task, also iterate its context and
8591          * deliver this event there too.
8592          */
8593         if (task && task != current) {
8594                 struct perf_event_context *ctx;
8595                 struct trace_entry *entry = record;
8596
8597                 rcu_read_lock();
8598                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8599                 if (!ctx)
8600                         goto unlock;
8601
8602                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8603                         if (event->cpu != smp_processor_id())
8604                                 continue;
8605                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8606                                 continue;
8607                         if (event->attr.config != entry->type)
8608                                 continue;
8609                         if (perf_tp_event_match(event, &data, regs))
8610                                 perf_swevent_event(event, count, &data, regs);
8611                 }
8612 unlock:
8613                 rcu_read_unlock();
8614         }
8615
8616         perf_swevent_put_recursion_context(rctx);
8617 }
8618 EXPORT_SYMBOL_GPL(perf_tp_event);
8619
8620 static void tp_perf_event_destroy(struct perf_event *event)
8621 {
8622         perf_trace_destroy(event);
8623 }
8624
8625 static int perf_tp_event_init(struct perf_event *event)
8626 {
8627         int err;
8628
8629         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8630                 return -ENOENT;
8631
8632         /*
8633          * no branch sampling for tracepoint events
8634          */
8635         if (has_branch_stack(event))
8636                 return -EOPNOTSUPP;
8637
8638         err = perf_trace_init(event);
8639         if (err)
8640                 return err;
8641
8642         event->destroy = tp_perf_event_destroy;
8643
8644         return 0;
8645 }
8646
8647 static struct pmu perf_tracepoint = {
8648         .task_ctx_nr    = perf_sw_context,
8649
8650         .event_init     = perf_tp_event_init,
8651         .add            = perf_trace_add,
8652         .del            = perf_trace_del,
8653         .start          = perf_swevent_start,
8654         .stop           = perf_swevent_stop,
8655         .read           = perf_swevent_read,
8656 };
8657
8658 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8659 /*
8660  * Flags in config, used by dynamic PMU kprobe and uprobe
8661  * The flags should match following PMU_FORMAT_ATTR().
8662  *
8663  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8664  *                               if not set, create kprobe/uprobe
8665  *
8666  * The following values specify a reference counter (or semaphore in the
8667  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8668  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8669  *
8670  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
8671  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
8672  */
8673 enum perf_probe_config {
8674         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8675         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8676         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
8677 };
8678
8679 PMU_FORMAT_ATTR(retprobe, "config:0");
8680 #endif
8681
8682 #ifdef CONFIG_KPROBE_EVENTS
8683 static struct attribute *kprobe_attrs[] = {
8684         &format_attr_retprobe.attr,
8685         NULL,
8686 };
8687
8688 static struct attribute_group kprobe_format_group = {
8689         .name = "format",
8690         .attrs = kprobe_attrs,
8691 };
8692
8693 static const struct attribute_group *kprobe_attr_groups[] = {
8694         &kprobe_format_group,
8695         NULL,
8696 };
8697
8698 static int perf_kprobe_event_init(struct perf_event *event);
8699 static struct pmu perf_kprobe = {
8700         .task_ctx_nr    = perf_sw_context,
8701         .event_init     = perf_kprobe_event_init,
8702         .add            = perf_trace_add,
8703         .del            = perf_trace_del,
8704         .start          = perf_swevent_start,
8705         .stop           = perf_swevent_stop,
8706         .read           = perf_swevent_read,
8707         .attr_groups    = kprobe_attr_groups,
8708 };
8709
8710 static int perf_kprobe_event_init(struct perf_event *event)
8711 {
8712         int err;
8713         bool is_retprobe;
8714
8715         if (event->attr.type != perf_kprobe.type)
8716                 return -ENOENT;
8717
8718         if (!capable(CAP_SYS_ADMIN))
8719                 return -EACCES;
8720
8721         /*
8722          * no branch sampling for probe events
8723          */
8724         if (has_branch_stack(event))
8725                 return -EOPNOTSUPP;
8726
8727         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8728         err = perf_kprobe_init(event, is_retprobe);
8729         if (err)
8730                 return err;
8731
8732         event->destroy = perf_kprobe_destroy;
8733
8734         return 0;
8735 }
8736 #endif /* CONFIG_KPROBE_EVENTS */
8737
8738 #ifdef CONFIG_UPROBE_EVENTS
8739 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8740
8741 static struct attribute *uprobe_attrs[] = {
8742         &format_attr_retprobe.attr,
8743         &format_attr_ref_ctr_offset.attr,
8744         NULL,
8745 };
8746
8747 static struct attribute_group uprobe_format_group = {
8748         .name = "format",
8749         .attrs = uprobe_attrs,
8750 };
8751
8752 static const struct attribute_group *uprobe_attr_groups[] = {
8753         &uprobe_format_group,
8754         NULL,
8755 };
8756
8757 static int perf_uprobe_event_init(struct perf_event *event);
8758 static struct pmu perf_uprobe = {
8759         .task_ctx_nr    = perf_sw_context,
8760         .event_init     = perf_uprobe_event_init,
8761         .add            = perf_trace_add,
8762         .del            = perf_trace_del,
8763         .start          = perf_swevent_start,
8764         .stop           = perf_swevent_stop,
8765         .read           = perf_swevent_read,
8766         .attr_groups    = uprobe_attr_groups,
8767 };
8768
8769 static int perf_uprobe_event_init(struct perf_event *event)
8770 {
8771         int err;
8772         unsigned long ref_ctr_offset;
8773         bool is_retprobe;
8774
8775         if (event->attr.type != perf_uprobe.type)
8776                 return -ENOENT;
8777
8778         if (!capable(CAP_SYS_ADMIN))
8779                 return -EACCES;
8780
8781         /*
8782          * no branch sampling for probe events
8783          */
8784         if (has_branch_stack(event))
8785                 return -EOPNOTSUPP;
8786
8787         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8788         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8789         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
8790         if (err)
8791                 return err;
8792
8793         event->destroy = perf_uprobe_destroy;
8794
8795         return 0;
8796 }
8797 #endif /* CONFIG_UPROBE_EVENTS */
8798
8799 static inline void perf_tp_register(void)
8800 {
8801         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8802 #ifdef CONFIG_KPROBE_EVENTS
8803         perf_pmu_register(&perf_kprobe, "kprobe", -1);
8804 #endif
8805 #ifdef CONFIG_UPROBE_EVENTS
8806         perf_pmu_register(&perf_uprobe, "uprobe", -1);
8807 #endif
8808 }
8809
8810 static void perf_event_free_filter(struct perf_event *event)
8811 {
8812         ftrace_profile_free_filter(event);
8813 }
8814
8815 #ifdef CONFIG_BPF_SYSCALL
8816 static void bpf_overflow_handler(struct perf_event *event,
8817                                  struct perf_sample_data *data,
8818                                  struct pt_regs *regs)
8819 {
8820         struct bpf_perf_event_data_kern ctx = {
8821                 .data = data,
8822                 .event = event,
8823         };
8824         int ret = 0;
8825
8826         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8827         preempt_disable();
8828         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8829                 goto out;
8830         rcu_read_lock();
8831         ret = BPF_PROG_RUN(event->prog, &ctx);
8832         rcu_read_unlock();
8833 out:
8834         __this_cpu_dec(bpf_prog_active);
8835         preempt_enable();
8836         if (!ret)
8837                 return;
8838
8839         event->orig_overflow_handler(event, data, regs);
8840 }
8841
8842 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8843 {
8844         struct bpf_prog *prog;
8845
8846         if (event->overflow_handler_context)
8847                 /* hw breakpoint or kernel counter */
8848                 return -EINVAL;
8849
8850         if (event->prog)
8851                 return -EEXIST;
8852
8853         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8854         if (IS_ERR(prog))
8855                 return PTR_ERR(prog);
8856
8857         event->prog = prog;
8858         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8859         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8860         return 0;
8861 }
8862
8863 static void perf_event_free_bpf_handler(struct perf_event *event)
8864 {
8865         struct bpf_prog *prog = event->prog;
8866
8867         if (!prog)
8868                 return;
8869
8870         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8871         event->prog = NULL;
8872         bpf_prog_put(prog);
8873 }
8874 #else
8875 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8876 {
8877         return -EOPNOTSUPP;
8878 }
8879 static void perf_event_free_bpf_handler(struct perf_event *event)
8880 {
8881 }
8882 #endif
8883
8884 /*
8885  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8886  * with perf_event_open()
8887  */
8888 static inline bool perf_event_is_tracing(struct perf_event *event)
8889 {
8890         if (event->pmu == &perf_tracepoint)
8891                 return true;
8892 #ifdef CONFIG_KPROBE_EVENTS
8893         if (event->pmu == &perf_kprobe)
8894                 return true;
8895 #endif
8896 #ifdef CONFIG_UPROBE_EVENTS
8897         if (event->pmu == &perf_uprobe)
8898                 return true;
8899 #endif
8900         return false;
8901 }
8902
8903 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8904 {
8905         bool is_kprobe, is_tracepoint, is_syscall_tp;
8906         struct bpf_prog *prog;
8907         int ret;
8908
8909         if (!perf_event_is_tracing(event))
8910                 return perf_event_set_bpf_handler(event, prog_fd);
8911
8912         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8913         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8914         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8915         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8916                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8917                 return -EINVAL;
8918
8919         prog = bpf_prog_get(prog_fd);
8920         if (IS_ERR(prog))
8921                 return PTR_ERR(prog);
8922
8923         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8924             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8925             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8926                 /* valid fd, but invalid bpf program type */
8927                 bpf_prog_put(prog);
8928                 return -EINVAL;
8929         }
8930
8931         /* Kprobe override only works for kprobes, not uprobes. */
8932         if (prog->kprobe_override &&
8933             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8934                 bpf_prog_put(prog);
8935                 return -EINVAL;
8936         }
8937
8938         if (is_tracepoint || is_syscall_tp) {
8939                 int off = trace_event_get_offsets(event->tp_event);
8940
8941                 if (prog->aux->max_ctx_offset > off) {
8942                         bpf_prog_put(prog);
8943                         return -EACCES;
8944                 }
8945         }
8946
8947         ret = perf_event_attach_bpf_prog(event, prog);
8948         if (ret)
8949                 bpf_prog_put(prog);
8950         return ret;
8951 }
8952
8953 static void perf_event_free_bpf_prog(struct perf_event *event)
8954 {
8955         if (!perf_event_is_tracing(event)) {
8956                 perf_event_free_bpf_handler(event);
8957                 return;
8958         }
8959         perf_event_detach_bpf_prog(event);
8960 }
8961
8962 #else
8963
8964 static inline void perf_tp_register(void)
8965 {
8966 }
8967
8968 static void perf_event_free_filter(struct perf_event *event)
8969 {
8970 }
8971
8972 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8973 {
8974         return -ENOENT;
8975 }
8976
8977 static void perf_event_free_bpf_prog(struct perf_event *event)
8978 {
8979 }
8980 #endif /* CONFIG_EVENT_TRACING */
8981
8982 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8983 void perf_bp_event(struct perf_event *bp, void *data)
8984 {
8985         struct perf_sample_data sample;
8986         struct pt_regs *regs = data;
8987
8988         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8989
8990         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8991                 perf_swevent_event(bp, 1, &sample, regs);
8992 }
8993 #endif
8994
8995 /*
8996  * Allocate a new address filter
8997  */
8998 static struct perf_addr_filter *
8999 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9000 {
9001         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9002         struct perf_addr_filter *filter;
9003
9004         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9005         if (!filter)
9006                 return NULL;
9007
9008         INIT_LIST_HEAD(&filter->entry);
9009         list_add_tail(&filter->entry, filters);
9010
9011         return filter;
9012 }
9013
9014 static void free_filters_list(struct list_head *filters)
9015 {
9016         struct perf_addr_filter *filter, *iter;
9017
9018         list_for_each_entry_safe(filter, iter, filters, entry) {
9019                 path_put(&filter->path);
9020                 list_del(&filter->entry);
9021                 kfree(filter);
9022         }
9023 }
9024
9025 /*
9026  * Free existing address filters and optionally install new ones
9027  */
9028 static void perf_addr_filters_splice(struct perf_event *event,
9029                                      struct list_head *head)
9030 {
9031         unsigned long flags;
9032         LIST_HEAD(list);
9033
9034         if (!has_addr_filter(event))
9035                 return;
9036
9037         /* don't bother with children, they don't have their own filters */
9038         if (event->parent)
9039                 return;
9040
9041         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9042
9043         list_splice_init(&event->addr_filters.list, &list);
9044         if (head)
9045                 list_splice(head, &event->addr_filters.list);
9046
9047         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9048
9049         free_filters_list(&list);
9050 }
9051
9052 /*
9053  * Scan through mm's vmas and see if one of them matches the
9054  * @filter; if so, adjust filter's address range.
9055  * Called with mm::mmap_sem down for reading.
9056  */
9057 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9058                                    struct mm_struct *mm,
9059                                    struct perf_addr_filter_range *fr)
9060 {
9061         struct vm_area_struct *vma;
9062
9063         for (vma = mm->mmap; vma; vma = vma->vm_next) {
9064                 if (!vma->vm_file)
9065                         continue;
9066
9067                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9068                         return;
9069         }
9070 }
9071
9072 /*
9073  * Update event's address range filters based on the
9074  * task's existing mappings, if any.
9075  */
9076 static void perf_event_addr_filters_apply(struct perf_event *event)
9077 {
9078         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9079         struct task_struct *task = READ_ONCE(event->ctx->task);
9080         struct perf_addr_filter *filter;
9081         struct mm_struct *mm = NULL;
9082         unsigned int count = 0;
9083         unsigned long flags;
9084
9085         /*
9086          * We may observe TASK_TOMBSTONE, which means that the event tear-down
9087          * will stop on the parent's child_mutex that our caller is also holding
9088          */
9089         if (task == TASK_TOMBSTONE)
9090                 return;
9091
9092         if (ifh->nr_file_filters) {
9093                 mm = get_task_mm(event->ctx->task);
9094                 if (!mm)
9095                         goto restart;
9096
9097                 down_read(&mm->mmap_sem);
9098         }
9099
9100         raw_spin_lock_irqsave(&ifh->lock, flags);
9101         list_for_each_entry(filter, &ifh->list, entry) {
9102                 if (filter->path.dentry) {
9103                         /*
9104                          * Adjust base offset if the filter is associated to a
9105                          * binary that needs to be mapped:
9106                          */
9107                         event->addr_filter_ranges[count].start = 0;
9108                         event->addr_filter_ranges[count].size = 0;
9109
9110                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9111                 } else {
9112                         event->addr_filter_ranges[count].start = filter->offset;
9113                         event->addr_filter_ranges[count].size  = filter->size;
9114                 }
9115
9116                 count++;
9117         }
9118
9119         event->addr_filters_gen++;
9120         raw_spin_unlock_irqrestore(&ifh->lock, flags);
9121
9122         if (ifh->nr_file_filters) {
9123                 up_read(&mm->mmap_sem);
9124
9125                 mmput(mm);
9126         }
9127
9128 restart:
9129         perf_event_stop(event, 1);
9130 }
9131
9132 /*
9133  * Address range filtering: limiting the data to certain
9134  * instruction address ranges. Filters are ioctl()ed to us from
9135  * userspace as ascii strings.
9136  *
9137  * Filter string format:
9138  *
9139  * ACTION RANGE_SPEC
9140  * where ACTION is one of the
9141  *  * "filter": limit the trace to this region
9142  *  * "start": start tracing from this address
9143  *  * "stop": stop tracing at this address/region;
9144  * RANGE_SPEC is
9145  *  * for kernel addresses: <start address>[/<size>]
9146  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9147  *
9148  * if <size> is not specified or is zero, the range is treated as a single
9149  * address; not valid for ACTION=="filter".
9150  */
9151 enum {
9152         IF_ACT_NONE = -1,
9153         IF_ACT_FILTER,
9154         IF_ACT_START,
9155         IF_ACT_STOP,
9156         IF_SRC_FILE,
9157         IF_SRC_KERNEL,
9158         IF_SRC_FILEADDR,
9159         IF_SRC_KERNELADDR,
9160 };
9161
9162 enum {
9163         IF_STATE_ACTION = 0,
9164         IF_STATE_SOURCE,
9165         IF_STATE_END,
9166 };
9167
9168 static const match_table_t if_tokens = {
9169         { IF_ACT_FILTER,        "filter" },
9170         { IF_ACT_START,         "start" },
9171         { IF_ACT_STOP,          "stop" },
9172         { IF_SRC_FILE,          "%u/%u@%s" },
9173         { IF_SRC_KERNEL,        "%u/%u" },
9174         { IF_SRC_FILEADDR,      "%u@%s" },
9175         { IF_SRC_KERNELADDR,    "%u" },
9176         { IF_ACT_NONE,          NULL },
9177 };
9178
9179 /*
9180  * Address filter string parser
9181  */
9182 static int
9183 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9184                              struct list_head *filters)
9185 {
9186         struct perf_addr_filter *filter = NULL;
9187         char *start, *orig, *filename = NULL;
9188         substring_t args[MAX_OPT_ARGS];
9189         int state = IF_STATE_ACTION, token;
9190         unsigned int kernel = 0;
9191         int ret = -EINVAL;
9192
9193         orig = fstr = kstrdup(fstr, GFP_KERNEL);
9194         if (!fstr)
9195                 return -ENOMEM;
9196
9197         while ((start = strsep(&fstr, " ,\n")) != NULL) {
9198                 static const enum perf_addr_filter_action_t actions[] = {
9199                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9200                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
9201                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
9202                 };
9203                 ret = -EINVAL;
9204
9205                 if (!*start)
9206                         continue;
9207
9208                 /* filter definition begins */
9209                 if (state == IF_STATE_ACTION) {
9210                         filter = perf_addr_filter_new(event, filters);
9211                         if (!filter)
9212                                 goto fail;
9213                 }
9214
9215                 token = match_token(start, if_tokens, args);
9216                 switch (token) {
9217                 case IF_ACT_FILTER:
9218                 case IF_ACT_START:
9219                 case IF_ACT_STOP:
9220                         if (state != IF_STATE_ACTION)
9221                                 goto fail;
9222
9223                         filter->action = actions[token];
9224                         state = IF_STATE_SOURCE;
9225                         break;
9226
9227                 case IF_SRC_KERNELADDR:
9228                 case IF_SRC_KERNEL:
9229                         kernel = 1;
9230                         /* fall through */
9231
9232                 case IF_SRC_FILEADDR:
9233                 case IF_SRC_FILE:
9234                         if (state != IF_STATE_SOURCE)
9235                                 goto fail;
9236
9237                         *args[0].to = 0;
9238                         ret = kstrtoul(args[0].from, 0, &filter->offset);
9239                         if (ret)
9240                                 goto fail;
9241
9242                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9243                                 *args[1].to = 0;
9244                                 ret = kstrtoul(args[1].from, 0, &filter->size);
9245                                 if (ret)
9246                                         goto fail;
9247                         }
9248
9249                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9250                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
9251
9252                                 filename = match_strdup(&args[fpos]);
9253                                 if (!filename) {
9254                                         ret = -ENOMEM;
9255                                         goto fail;
9256                                 }
9257                         }
9258
9259                         state = IF_STATE_END;
9260                         break;
9261
9262                 default:
9263                         goto fail;
9264                 }
9265
9266                 /*
9267                  * Filter definition is fully parsed, validate and install it.
9268                  * Make sure that it doesn't contradict itself or the event's
9269                  * attribute.
9270                  */
9271                 if (state == IF_STATE_END) {
9272                         ret = -EINVAL;
9273                         if (kernel && event->attr.exclude_kernel)
9274                                 goto fail;
9275
9276                         /*
9277                          * ACTION "filter" must have a non-zero length region
9278                          * specified.
9279                          */
9280                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9281                             !filter->size)
9282                                 goto fail;
9283
9284                         if (!kernel) {
9285                                 if (!filename)
9286                                         goto fail;
9287
9288                                 /*
9289                                  * For now, we only support file-based filters
9290                                  * in per-task events; doing so for CPU-wide
9291                                  * events requires additional context switching
9292                                  * trickery, since same object code will be
9293                                  * mapped at different virtual addresses in
9294                                  * different processes.
9295                                  */
9296                                 ret = -EOPNOTSUPP;
9297                                 if (!event->ctx->task)
9298                                         goto fail_free_name;
9299
9300                                 /* look up the path and grab its inode */
9301                                 ret = kern_path(filename, LOOKUP_FOLLOW,
9302                                                 &filter->path);
9303                                 if (ret)
9304                                         goto fail_free_name;
9305
9306                                 kfree(filename);
9307                                 filename = NULL;
9308
9309                                 ret = -EINVAL;
9310                                 if (!filter->path.dentry ||
9311                                     !S_ISREG(d_inode(filter->path.dentry)
9312                                              ->i_mode))
9313                                         goto fail;
9314
9315                                 event->addr_filters.nr_file_filters++;
9316                         }
9317
9318                         /* ready to consume more filters */
9319                         state = IF_STATE_ACTION;
9320                         filter = NULL;
9321                 }
9322         }
9323
9324         if (state != IF_STATE_ACTION)
9325                 goto fail;
9326
9327         kfree(orig);
9328
9329         return 0;
9330
9331 fail_free_name:
9332         kfree(filename);
9333 fail:
9334         free_filters_list(filters);
9335         kfree(orig);
9336
9337         return ret;
9338 }
9339
9340 static int
9341 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9342 {
9343         LIST_HEAD(filters);
9344         int ret;
9345
9346         /*
9347          * Since this is called in perf_ioctl() path, we're already holding
9348          * ctx::mutex.
9349          */
9350         lockdep_assert_held(&event->ctx->mutex);
9351
9352         if (WARN_ON_ONCE(event->parent))
9353                 return -EINVAL;
9354
9355         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9356         if (ret)
9357                 goto fail_clear_files;
9358
9359         ret = event->pmu->addr_filters_validate(&filters);
9360         if (ret)
9361                 goto fail_free_filters;
9362
9363         /* remove existing filters, if any */
9364         perf_addr_filters_splice(event, &filters);
9365
9366         /* install new filters */
9367         perf_event_for_each_child(event, perf_event_addr_filters_apply);
9368
9369         return ret;
9370
9371 fail_free_filters:
9372         free_filters_list(&filters);
9373
9374 fail_clear_files:
9375         event->addr_filters.nr_file_filters = 0;
9376
9377         return ret;
9378 }
9379
9380 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9381 {
9382         int ret = -EINVAL;
9383         char *filter_str;
9384
9385         filter_str = strndup_user(arg, PAGE_SIZE);
9386         if (IS_ERR(filter_str))
9387                 return PTR_ERR(filter_str);
9388
9389 #ifdef CONFIG_EVENT_TRACING
9390         if (perf_event_is_tracing(event)) {
9391                 struct perf_event_context *ctx = event->ctx;
9392
9393                 /*
9394                  * Beware, here be dragons!!
9395                  *
9396                  * the tracepoint muck will deadlock against ctx->mutex, but
9397                  * the tracepoint stuff does not actually need it. So
9398                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9399                  * already have a reference on ctx.
9400                  *
9401                  * This can result in event getting moved to a different ctx,
9402                  * but that does not affect the tracepoint state.
9403                  */
9404                 mutex_unlock(&ctx->mutex);
9405                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9406                 mutex_lock(&ctx->mutex);
9407         } else
9408 #endif
9409         if (has_addr_filter(event))
9410                 ret = perf_event_set_addr_filter(event, filter_str);
9411
9412         kfree(filter_str);
9413         return ret;
9414 }
9415
9416 /*
9417  * hrtimer based swevent callback
9418  */
9419
9420 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9421 {
9422         enum hrtimer_restart ret = HRTIMER_RESTART;
9423         struct perf_sample_data data;
9424         struct pt_regs *regs;
9425         struct perf_event *event;
9426         u64 period;
9427
9428         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9429
9430         if (event->state != PERF_EVENT_STATE_ACTIVE)
9431                 return HRTIMER_NORESTART;
9432
9433         event->pmu->read(event);
9434
9435         perf_sample_data_init(&data, 0, event->hw.last_period);
9436         regs = get_irq_regs();
9437
9438         if (regs && !perf_exclude_event(event, regs)) {
9439                 if (!(event->attr.exclude_idle && is_idle_task(current)))
9440                         if (__perf_event_overflow(event, 1, &data, regs))
9441                                 ret = HRTIMER_NORESTART;
9442         }
9443
9444         period = max_t(u64, 10000, event->hw.sample_period);
9445         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9446
9447         return ret;
9448 }
9449
9450 static void perf_swevent_start_hrtimer(struct perf_event *event)
9451 {
9452         struct hw_perf_event *hwc = &event->hw;
9453         s64 period;
9454
9455         if (!is_sampling_event(event))
9456                 return;
9457
9458         period = local64_read(&hwc->period_left);
9459         if (period) {
9460                 if (period < 0)
9461                         period = 10000;
9462
9463                 local64_set(&hwc->period_left, 0);
9464         } else {
9465                 period = max_t(u64, 10000, hwc->sample_period);
9466         }
9467         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9468                       HRTIMER_MODE_REL_PINNED);
9469 }
9470
9471 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9472 {
9473         struct hw_perf_event *hwc = &event->hw;
9474
9475         if (is_sampling_event(event)) {
9476                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9477                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9478
9479                 hrtimer_cancel(&hwc->hrtimer);
9480         }
9481 }
9482
9483 static void perf_swevent_init_hrtimer(struct perf_event *event)
9484 {
9485         struct hw_perf_event *hwc = &event->hw;
9486
9487         if (!is_sampling_event(event))
9488                 return;
9489
9490         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9491         hwc->hrtimer.function = perf_swevent_hrtimer;
9492
9493         /*
9494          * Since hrtimers have a fixed rate, we can do a static freq->period
9495          * mapping and avoid the whole period adjust feedback stuff.
9496          */
9497         if (event->attr.freq) {
9498                 long freq = event->attr.sample_freq;
9499
9500                 event->attr.sample_period = NSEC_PER_SEC / freq;
9501                 hwc->sample_period = event->attr.sample_period;
9502                 local64_set(&hwc->period_left, hwc->sample_period);
9503                 hwc->last_period = hwc->sample_period;
9504                 event->attr.freq = 0;
9505         }
9506 }
9507
9508 /*
9509  * Software event: cpu wall time clock
9510  */
9511
9512 static void cpu_clock_event_update(struct perf_event *event)
9513 {
9514         s64 prev;
9515         u64 now;
9516
9517         now = local_clock();
9518         prev = local64_xchg(&event->hw.prev_count, now);
9519         local64_add(now - prev, &event->count);
9520 }
9521
9522 static void cpu_clock_event_start(struct perf_event *event, int flags)
9523 {
9524         local64_set(&event->hw.prev_count, local_clock());
9525         perf_swevent_start_hrtimer(event);
9526 }
9527
9528 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9529 {
9530         perf_swevent_cancel_hrtimer(event);
9531         cpu_clock_event_update(event);
9532 }
9533
9534 static int cpu_clock_event_add(struct perf_event *event, int flags)
9535 {
9536         if (flags & PERF_EF_START)
9537                 cpu_clock_event_start(event, flags);
9538         perf_event_update_userpage(event);
9539
9540         return 0;
9541 }
9542
9543 static void cpu_clock_event_del(struct perf_event *event, int flags)
9544 {
9545         cpu_clock_event_stop(event, flags);
9546 }
9547
9548 static void cpu_clock_event_read(struct perf_event *event)
9549 {
9550         cpu_clock_event_update(event);
9551 }
9552
9553 static int cpu_clock_event_init(struct perf_event *event)
9554 {
9555         if (event->attr.type != PERF_TYPE_SOFTWARE)
9556                 return -ENOENT;
9557
9558         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9559                 return -ENOENT;
9560
9561         /*
9562          * no branch sampling for software events
9563          */
9564         if (has_branch_stack(event))
9565                 return -EOPNOTSUPP;
9566
9567         perf_swevent_init_hrtimer(event);
9568
9569         return 0;
9570 }
9571
9572 static struct pmu perf_cpu_clock = {
9573         .task_ctx_nr    = perf_sw_context,
9574
9575         .capabilities   = PERF_PMU_CAP_NO_NMI,
9576
9577         .event_init     = cpu_clock_event_init,
9578         .add            = cpu_clock_event_add,
9579         .del            = cpu_clock_event_del,
9580         .start          = cpu_clock_event_start,
9581         .stop           = cpu_clock_event_stop,
9582         .read           = cpu_clock_event_read,
9583 };
9584
9585 /*
9586  * Software event: task time clock
9587  */
9588
9589 static void task_clock_event_update(struct perf_event *event, u64 now)
9590 {
9591         u64 prev;
9592         s64 delta;
9593
9594         prev = local64_xchg(&event->hw.prev_count, now);
9595         delta = now - prev;
9596         local64_add(delta, &event->count);
9597 }
9598
9599 static void task_clock_event_start(struct perf_event *event, int flags)
9600 {
9601         local64_set(&event->hw.prev_count, event->ctx->time);
9602         perf_swevent_start_hrtimer(event);
9603 }
9604
9605 static void task_clock_event_stop(struct perf_event *event, int flags)
9606 {
9607         perf_swevent_cancel_hrtimer(event);
9608         task_clock_event_update(event, event->ctx->time);
9609 }
9610
9611 static int task_clock_event_add(struct perf_event *event, int flags)
9612 {
9613         if (flags & PERF_EF_START)
9614                 task_clock_event_start(event, flags);
9615         perf_event_update_userpage(event);
9616
9617         return 0;
9618 }
9619
9620 static void task_clock_event_del(struct perf_event *event, int flags)
9621 {
9622         task_clock_event_stop(event, PERF_EF_UPDATE);
9623 }
9624
9625 static void task_clock_event_read(struct perf_event *event)
9626 {
9627         u64 now = perf_clock();
9628         u64 delta = now - event->ctx->timestamp;
9629         u64 time = event->ctx->time + delta;
9630
9631         task_clock_event_update(event, time);
9632 }
9633
9634 static int task_clock_event_init(struct perf_event *event)
9635 {
9636         if (event->attr.type != PERF_TYPE_SOFTWARE)
9637                 return -ENOENT;
9638
9639         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9640                 return -ENOENT;
9641
9642         /*
9643          * no branch sampling for software events
9644          */
9645         if (has_branch_stack(event))
9646                 return -EOPNOTSUPP;
9647
9648         perf_swevent_init_hrtimer(event);
9649
9650         return 0;
9651 }
9652
9653 static struct pmu perf_task_clock = {
9654         .task_ctx_nr    = perf_sw_context,
9655
9656         .capabilities   = PERF_PMU_CAP_NO_NMI,
9657
9658         .event_init     = task_clock_event_init,
9659         .add            = task_clock_event_add,
9660         .del            = task_clock_event_del,
9661         .start          = task_clock_event_start,
9662         .stop           = task_clock_event_stop,
9663         .read           = task_clock_event_read,
9664 };
9665
9666 static void perf_pmu_nop_void(struct pmu *pmu)
9667 {
9668 }
9669
9670 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9671 {
9672 }
9673
9674 static int perf_pmu_nop_int(struct pmu *pmu)
9675 {
9676         return 0;
9677 }
9678
9679 static int perf_event_nop_int(struct perf_event *event, u64 value)
9680 {
9681         return 0;
9682 }
9683
9684 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9685
9686 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9687 {
9688         __this_cpu_write(nop_txn_flags, flags);
9689
9690         if (flags & ~PERF_PMU_TXN_ADD)
9691                 return;
9692
9693         perf_pmu_disable(pmu);
9694 }
9695
9696 static int perf_pmu_commit_txn(struct pmu *pmu)
9697 {
9698         unsigned int flags = __this_cpu_read(nop_txn_flags);
9699
9700         __this_cpu_write(nop_txn_flags, 0);
9701
9702         if (flags & ~PERF_PMU_TXN_ADD)
9703                 return 0;
9704
9705         perf_pmu_enable(pmu);
9706         return 0;
9707 }
9708
9709 static void perf_pmu_cancel_txn(struct pmu *pmu)
9710 {
9711         unsigned int flags =  __this_cpu_read(nop_txn_flags);
9712
9713         __this_cpu_write(nop_txn_flags, 0);
9714
9715         if (flags & ~PERF_PMU_TXN_ADD)
9716                 return;
9717
9718         perf_pmu_enable(pmu);
9719 }
9720
9721 static int perf_event_idx_default(struct perf_event *event)
9722 {
9723         return 0;
9724 }
9725
9726 /*
9727  * Ensures all contexts with the same task_ctx_nr have the same
9728  * pmu_cpu_context too.
9729  */
9730 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9731 {
9732         struct pmu *pmu;
9733
9734         if (ctxn < 0)
9735                 return NULL;
9736
9737         list_for_each_entry(pmu, &pmus, entry) {
9738                 if (pmu->task_ctx_nr == ctxn)
9739                         return pmu->pmu_cpu_context;
9740         }
9741
9742         return NULL;
9743 }
9744
9745 static void free_pmu_context(struct pmu *pmu)
9746 {
9747         /*
9748          * Static contexts such as perf_sw_context have a global lifetime
9749          * and may be shared between different PMUs. Avoid freeing them
9750          * when a single PMU is going away.
9751          */
9752         if (pmu->task_ctx_nr > perf_invalid_context)
9753                 return;
9754
9755         free_percpu(pmu->pmu_cpu_context);
9756 }
9757
9758 /*
9759  * Let userspace know that this PMU supports address range filtering:
9760  */
9761 static ssize_t nr_addr_filters_show(struct device *dev,
9762                                     struct device_attribute *attr,
9763                                     char *page)
9764 {
9765         struct pmu *pmu = dev_get_drvdata(dev);
9766
9767         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9768 }
9769 DEVICE_ATTR_RO(nr_addr_filters);
9770
9771 static struct idr pmu_idr;
9772
9773 static ssize_t
9774 type_show(struct device *dev, struct device_attribute *attr, char *page)
9775 {
9776         struct pmu *pmu = dev_get_drvdata(dev);
9777
9778         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9779 }
9780 static DEVICE_ATTR_RO(type);
9781
9782 static ssize_t
9783 perf_event_mux_interval_ms_show(struct device *dev,
9784                                 struct device_attribute *attr,
9785                                 char *page)
9786 {
9787         struct pmu *pmu = dev_get_drvdata(dev);
9788
9789         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9790 }
9791
9792 static DEFINE_MUTEX(mux_interval_mutex);
9793
9794 static ssize_t
9795 perf_event_mux_interval_ms_store(struct device *dev,
9796                                  struct device_attribute *attr,
9797                                  const char *buf, size_t count)
9798 {
9799         struct pmu *pmu = dev_get_drvdata(dev);
9800         int timer, cpu, ret;
9801
9802         ret = kstrtoint(buf, 0, &timer);
9803         if (ret)
9804                 return ret;
9805
9806         if (timer < 1)
9807                 return -EINVAL;
9808
9809         /* same value, noting to do */
9810         if (timer == pmu->hrtimer_interval_ms)
9811                 return count;
9812
9813         mutex_lock(&mux_interval_mutex);
9814         pmu->hrtimer_interval_ms = timer;
9815
9816         /* update all cpuctx for this PMU */
9817         cpus_read_lock();
9818         for_each_online_cpu(cpu) {
9819                 struct perf_cpu_context *cpuctx;
9820                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9821                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9822
9823                 cpu_function_call(cpu,
9824                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9825         }
9826         cpus_read_unlock();
9827         mutex_unlock(&mux_interval_mutex);
9828
9829         return count;
9830 }
9831 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9832
9833 static struct attribute *pmu_dev_attrs[] = {
9834         &dev_attr_type.attr,
9835         &dev_attr_perf_event_mux_interval_ms.attr,
9836         NULL,
9837 };
9838 ATTRIBUTE_GROUPS(pmu_dev);
9839
9840 static int pmu_bus_running;
9841 static struct bus_type pmu_bus = {
9842         .name           = "event_source",
9843         .dev_groups     = pmu_dev_groups,
9844 };
9845
9846 static void pmu_dev_release(struct device *dev)
9847 {
9848         kfree(dev);
9849 }
9850
9851 static int pmu_dev_alloc(struct pmu *pmu)
9852 {
9853         int ret = -ENOMEM;
9854
9855         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9856         if (!pmu->dev)
9857                 goto out;
9858
9859         pmu->dev->groups = pmu->attr_groups;
9860         device_initialize(pmu->dev);
9861         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9862         if (ret)
9863                 goto free_dev;
9864
9865         dev_set_drvdata(pmu->dev, pmu);
9866         pmu->dev->bus = &pmu_bus;
9867         pmu->dev->release = pmu_dev_release;
9868         ret = device_add(pmu->dev);
9869         if (ret)
9870                 goto free_dev;
9871
9872         /* For PMUs with address filters, throw in an extra attribute: */
9873         if (pmu->nr_addr_filters)
9874                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9875
9876         if (ret)
9877                 goto del_dev;
9878
9879         if (pmu->attr_update)
9880                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
9881
9882         if (ret)
9883                 goto del_dev;
9884
9885 out:
9886         return ret;
9887
9888 del_dev:
9889         device_del(pmu->dev);
9890
9891 free_dev:
9892         put_device(pmu->dev);
9893         goto out;
9894 }
9895
9896 static struct lock_class_key cpuctx_mutex;
9897 static struct lock_class_key cpuctx_lock;
9898
9899 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9900 {
9901         int cpu, ret;
9902
9903         mutex_lock(&pmus_lock);
9904         ret = -ENOMEM;
9905         pmu->pmu_disable_count = alloc_percpu(int);
9906         if (!pmu->pmu_disable_count)
9907                 goto unlock;
9908
9909         pmu->type = -1;
9910         if (!name)
9911                 goto skip_type;
9912         pmu->name = name;
9913
9914         if (type < 0) {
9915                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9916                 if (type < 0) {
9917                         ret = type;
9918                         goto free_pdc;
9919                 }
9920         }
9921         pmu->type = type;
9922
9923         if (pmu_bus_running) {
9924                 ret = pmu_dev_alloc(pmu);
9925                 if (ret)
9926                         goto free_idr;
9927         }
9928
9929 skip_type:
9930         if (pmu->task_ctx_nr == perf_hw_context) {
9931                 static int hw_context_taken = 0;
9932
9933                 /*
9934                  * Other than systems with heterogeneous CPUs, it never makes
9935                  * sense for two PMUs to share perf_hw_context. PMUs which are
9936                  * uncore must use perf_invalid_context.
9937                  */
9938                 if (WARN_ON_ONCE(hw_context_taken &&
9939                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9940                         pmu->task_ctx_nr = perf_invalid_context;
9941
9942                 hw_context_taken = 1;
9943         }
9944
9945         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9946         if (pmu->pmu_cpu_context)
9947                 goto got_cpu_context;
9948
9949         ret = -ENOMEM;
9950         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9951         if (!pmu->pmu_cpu_context)
9952                 goto free_dev;
9953
9954         for_each_possible_cpu(cpu) {
9955                 struct perf_cpu_context *cpuctx;
9956
9957                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9958                 __perf_event_init_context(&cpuctx->ctx);
9959                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9960                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9961                 cpuctx->ctx.pmu = pmu;
9962                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9963
9964                 __perf_mux_hrtimer_init(cpuctx, cpu);
9965         }
9966
9967 got_cpu_context:
9968         if (!pmu->start_txn) {
9969                 if (pmu->pmu_enable) {
9970                         /*
9971                          * If we have pmu_enable/pmu_disable calls, install
9972                          * transaction stubs that use that to try and batch
9973                          * hardware accesses.
9974                          */
9975                         pmu->start_txn  = perf_pmu_start_txn;
9976                         pmu->commit_txn = perf_pmu_commit_txn;
9977                         pmu->cancel_txn = perf_pmu_cancel_txn;
9978                 } else {
9979                         pmu->start_txn  = perf_pmu_nop_txn;
9980                         pmu->commit_txn = perf_pmu_nop_int;
9981                         pmu->cancel_txn = perf_pmu_nop_void;
9982                 }
9983         }
9984
9985         if (!pmu->pmu_enable) {
9986                 pmu->pmu_enable  = perf_pmu_nop_void;
9987                 pmu->pmu_disable = perf_pmu_nop_void;
9988         }
9989
9990         if (!pmu->check_period)
9991                 pmu->check_period = perf_event_nop_int;
9992
9993         if (!pmu->event_idx)
9994                 pmu->event_idx = perf_event_idx_default;
9995
9996         list_add_rcu(&pmu->entry, &pmus);
9997         atomic_set(&pmu->exclusive_cnt, 0);
9998         ret = 0;
9999 unlock:
10000         mutex_unlock(&pmus_lock);
10001
10002         return ret;
10003
10004 free_dev:
10005         device_del(pmu->dev);
10006         put_device(pmu->dev);
10007
10008 free_idr:
10009         if (pmu->type >= PERF_TYPE_MAX)
10010                 idr_remove(&pmu_idr, pmu->type);
10011
10012 free_pdc:
10013         free_percpu(pmu->pmu_disable_count);
10014         goto unlock;
10015 }
10016 EXPORT_SYMBOL_GPL(perf_pmu_register);
10017
10018 void perf_pmu_unregister(struct pmu *pmu)
10019 {
10020         mutex_lock(&pmus_lock);
10021         list_del_rcu(&pmu->entry);
10022
10023         /*
10024          * We dereference the pmu list under both SRCU and regular RCU, so
10025          * synchronize against both of those.
10026          */
10027         synchronize_srcu(&pmus_srcu);
10028         synchronize_rcu();
10029
10030         free_percpu(pmu->pmu_disable_count);
10031         if (pmu->type >= PERF_TYPE_MAX)
10032                 idr_remove(&pmu_idr, pmu->type);
10033         if (pmu_bus_running) {
10034                 if (pmu->nr_addr_filters)
10035                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10036                 device_del(pmu->dev);
10037                 put_device(pmu->dev);
10038         }
10039         free_pmu_context(pmu);
10040         mutex_unlock(&pmus_lock);
10041 }
10042 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10043
10044 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10045 {
10046         struct perf_event_context *ctx = NULL;
10047         int ret;
10048
10049         if (!try_module_get(pmu->module))
10050                 return -ENODEV;
10051
10052         /*
10053          * A number of pmu->event_init() methods iterate the sibling_list to,
10054          * for example, validate if the group fits on the PMU. Therefore,
10055          * if this is a sibling event, acquire the ctx->mutex to protect
10056          * the sibling_list.
10057          */
10058         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10059                 /*
10060                  * This ctx->mutex can nest when we're called through
10061                  * inheritance. See the perf_event_ctx_lock_nested() comment.
10062                  */
10063                 ctx = perf_event_ctx_lock_nested(event->group_leader,
10064                                                  SINGLE_DEPTH_NESTING);
10065                 BUG_ON(!ctx);
10066         }
10067
10068         event->pmu = pmu;
10069         ret = pmu->event_init(event);
10070
10071         if (ctx)
10072                 perf_event_ctx_unlock(event->group_leader, ctx);
10073
10074         if (!ret) {
10075                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10076                                 event_has_any_exclude_flag(event)) {
10077                         if (event->destroy)
10078                                 event->destroy(event);
10079                         ret = -EINVAL;
10080                 }
10081         }
10082
10083         if (ret)
10084                 module_put(pmu->module);
10085
10086         return ret;
10087 }
10088
10089 static struct pmu *perf_init_event(struct perf_event *event)
10090 {
10091         struct pmu *pmu;
10092         int idx;
10093         int ret;
10094
10095         idx = srcu_read_lock(&pmus_srcu);
10096
10097         /* Try parent's PMU first: */
10098         if (event->parent && event->parent->pmu) {
10099                 pmu = event->parent->pmu;
10100                 ret = perf_try_init_event(pmu, event);
10101                 if (!ret)
10102                         goto unlock;
10103         }
10104
10105         rcu_read_lock();
10106         pmu = idr_find(&pmu_idr, event->attr.type);
10107         rcu_read_unlock();
10108         if (pmu) {
10109                 ret = perf_try_init_event(pmu, event);
10110                 if (ret)
10111                         pmu = ERR_PTR(ret);
10112                 goto unlock;
10113         }
10114
10115         list_for_each_entry_rcu(pmu, &pmus, entry) {
10116                 ret = perf_try_init_event(pmu, event);
10117                 if (!ret)
10118                         goto unlock;
10119
10120                 if (ret != -ENOENT) {
10121                         pmu = ERR_PTR(ret);
10122                         goto unlock;
10123                 }
10124         }
10125         pmu = ERR_PTR(-ENOENT);
10126 unlock:
10127         srcu_read_unlock(&pmus_srcu, idx);
10128
10129         return pmu;
10130 }
10131
10132 static void attach_sb_event(struct perf_event *event)
10133 {
10134         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10135
10136         raw_spin_lock(&pel->lock);
10137         list_add_rcu(&event->sb_list, &pel->list);
10138         raw_spin_unlock(&pel->lock);
10139 }
10140
10141 /*
10142  * We keep a list of all !task (and therefore per-cpu) events
10143  * that need to receive side-band records.
10144  *
10145  * This avoids having to scan all the various PMU per-cpu contexts
10146  * looking for them.
10147  */
10148 static void account_pmu_sb_event(struct perf_event *event)
10149 {
10150         if (is_sb_event(event))
10151                 attach_sb_event(event);
10152 }
10153
10154 static void account_event_cpu(struct perf_event *event, int cpu)
10155 {
10156         if (event->parent)
10157                 return;
10158
10159         if (is_cgroup_event(event))
10160                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10161 }
10162
10163 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10164 static void account_freq_event_nohz(void)
10165 {
10166 #ifdef CONFIG_NO_HZ_FULL
10167         /* Lock so we don't race with concurrent unaccount */
10168         spin_lock(&nr_freq_lock);
10169         if (atomic_inc_return(&nr_freq_events) == 1)
10170                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10171         spin_unlock(&nr_freq_lock);
10172 #endif
10173 }
10174
10175 static void account_freq_event(void)
10176 {
10177         if (tick_nohz_full_enabled())
10178                 account_freq_event_nohz();
10179         else
10180                 atomic_inc(&nr_freq_events);
10181 }
10182
10183
10184 static void account_event(struct perf_event *event)
10185 {
10186         bool inc = false;
10187
10188         if (event->parent)
10189                 return;
10190
10191         if (event->attach_state & PERF_ATTACH_TASK)
10192                 inc = true;
10193         if (event->attr.mmap || event->attr.mmap_data)
10194                 atomic_inc(&nr_mmap_events);
10195         if (event->attr.comm)
10196                 atomic_inc(&nr_comm_events);
10197         if (event->attr.namespaces)
10198                 atomic_inc(&nr_namespaces_events);
10199         if (event->attr.task)
10200                 atomic_inc(&nr_task_events);
10201         if (event->attr.freq)
10202                 account_freq_event();
10203         if (event->attr.context_switch) {
10204                 atomic_inc(&nr_switch_events);
10205                 inc = true;
10206         }
10207         if (has_branch_stack(event))
10208                 inc = true;
10209         if (is_cgroup_event(event))
10210                 inc = true;
10211         if (event->attr.ksymbol)
10212                 atomic_inc(&nr_ksymbol_events);
10213         if (event->attr.bpf_event)
10214                 atomic_inc(&nr_bpf_events);
10215
10216         if (inc) {
10217                 /*
10218                  * We need the mutex here because static_branch_enable()
10219                  * must complete *before* the perf_sched_count increment
10220                  * becomes visible.
10221                  */
10222                 if (atomic_inc_not_zero(&perf_sched_count))
10223                         goto enabled;
10224
10225                 mutex_lock(&perf_sched_mutex);
10226                 if (!atomic_read(&perf_sched_count)) {
10227                         static_branch_enable(&perf_sched_events);
10228                         /*
10229                          * Guarantee that all CPUs observe they key change and
10230                          * call the perf scheduling hooks before proceeding to
10231                          * install events that need them.
10232                          */
10233                         synchronize_rcu();
10234                 }
10235                 /*
10236                  * Now that we have waited for the sync_sched(), allow further
10237                  * increments to by-pass the mutex.
10238                  */
10239                 atomic_inc(&perf_sched_count);
10240                 mutex_unlock(&perf_sched_mutex);
10241         }
10242 enabled:
10243
10244         account_event_cpu(event, event->cpu);
10245
10246         account_pmu_sb_event(event);
10247 }
10248
10249 /*
10250  * Allocate and initialize an event structure
10251  */
10252 static struct perf_event *
10253 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10254                  struct task_struct *task,
10255                  struct perf_event *group_leader,
10256                  struct perf_event *parent_event,
10257                  perf_overflow_handler_t overflow_handler,
10258                  void *context, int cgroup_fd)
10259 {
10260         struct pmu *pmu;
10261         struct perf_event *event;
10262         struct hw_perf_event *hwc;
10263         long err = -EINVAL;
10264
10265         if ((unsigned)cpu >= nr_cpu_ids) {
10266                 if (!task || cpu != -1)
10267                         return ERR_PTR(-EINVAL);
10268         }
10269
10270         event = kzalloc(sizeof(*event), GFP_KERNEL);
10271         if (!event)
10272                 return ERR_PTR(-ENOMEM);
10273
10274         /*
10275          * Single events are their own group leaders, with an
10276          * empty sibling list:
10277          */
10278         if (!group_leader)
10279                 group_leader = event;
10280
10281         mutex_init(&event->child_mutex);
10282         INIT_LIST_HEAD(&event->child_list);
10283
10284         INIT_LIST_HEAD(&event->event_entry);
10285         INIT_LIST_HEAD(&event->sibling_list);
10286         INIT_LIST_HEAD(&event->active_list);
10287         init_event_group(event);
10288         INIT_LIST_HEAD(&event->rb_entry);
10289         INIT_LIST_HEAD(&event->active_entry);
10290         INIT_LIST_HEAD(&event->addr_filters.list);
10291         INIT_HLIST_NODE(&event->hlist_entry);
10292
10293
10294         init_waitqueue_head(&event->waitq);
10295         event->pending_disable = -1;
10296         init_irq_work(&event->pending, perf_pending_event);
10297
10298         mutex_init(&event->mmap_mutex);
10299         raw_spin_lock_init(&event->addr_filters.lock);
10300
10301         atomic_long_set(&event->refcount, 1);
10302         event->cpu              = cpu;
10303         event->attr             = *attr;
10304         event->group_leader     = group_leader;
10305         event->pmu              = NULL;
10306         event->oncpu            = -1;
10307
10308         event->parent           = parent_event;
10309
10310         event->ns               = get_pid_ns(task_active_pid_ns(current));
10311         event->id               = atomic64_inc_return(&perf_event_id);
10312
10313         event->state            = PERF_EVENT_STATE_INACTIVE;
10314
10315         if (task) {
10316                 event->attach_state = PERF_ATTACH_TASK;
10317                 /*
10318                  * XXX pmu::event_init needs to know what task to account to
10319                  * and we cannot use the ctx information because we need the
10320                  * pmu before we get a ctx.
10321                  */
10322                 get_task_struct(task);
10323                 event->hw.target = task;
10324         }
10325
10326         event->clock = &local_clock;
10327         if (parent_event)
10328                 event->clock = parent_event->clock;
10329
10330         if (!overflow_handler && parent_event) {
10331                 overflow_handler = parent_event->overflow_handler;
10332                 context = parent_event->overflow_handler_context;
10333 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10334                 if (overflow_handler == bpf_overflow_handler) {
10335                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10336
10337                         if (IS_ERR(prog)) {
10338                                 err = PTR_ERR(prog);
10339                                 goto err_ns;
10340                         }
10341                         event->prog = prog;
10342                         event->orig_overflow_handler =
10343                                 parent_event->orig_overflow_handler;
10344                 }
10345 #endif
10346         }
10347
10348         if (overflow_handler) {
10349                 event->overflow_handler = overflow_handler;
10350                 event->overflow_handler_context = context;
10351         } else if (is_write_backward(event)){
10352                 event->overflow_handler = perf_event_output_backward;
10353                 event->overflow_handler_context = NULL;
10354         } else {
10355                 event->overflow_handler = perf_event_output_forward;
10356                 event->overflow_handler_context = NULL;
10357         }
10358
10359         perf_event__state_init(event);
10360
10361         pmu = NULL;
10362
10363         hwc = &event->hw;
10364         hwc->sample_period = attr->sample_period;
10365         if (attr->freq && attr->sample_freq)
10366                 hwc->sample_period = 1;
10367         hwc->last_period = hwc->sample_period;
10368
10369         local64_set(&hwc->period_left, hwc->sample_period);
10370
10371         /*
10372          * We currently do not support PERF_SAMPLE_READ on inherited events.
10373          * See perf_output_read().
10374          */
10375         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10376                 goto err_ns;
10377
10378         if (!has_branch_stack(event))
10379                 event->attr.branch_sample_type = 0;
10380
10381         if (cgroup_fd != -1) {
10382                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10383                 if (err)
10384                         goto err_ns;
10385         }
10386
10387         pmu = perf_init_event(event);
10388         if (IS_ERR(pmu)) {
10389                 err = PTR_ERR(pmu);
10390                 goto err_ns;
10391         }
10392
10393         err = exclusive_event_init(event);
10394         if (err)
10395                 goto err_pmu;
10396
10397         if (has_addr_filter(event)) {
10398                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10399                                                     sizeof(struct perf_addr_filter_range),
10400                                                     GFP_KERNEL);
10401                 if (!event->addr_filter_ranges) {
10402                         err = -ENOMEM;
10403                         goto err_per_task;
10404                 }
10405
10406                 /*
10407                  * Clone the parent's vma offsets: they are valid until exec()
10408                  * even if the mm is not shared with the parent.
10409                  */
10410                 if (event->parent) {
10411                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10412
10413                         raw_spin_lock_irq(&ifh->lock);
10414                         memcpy(event->addr_filter_ranges,
10415                                event->parent->addr_filter_ranges,
10416                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10417                         raw_spin_unlock_irq(&ifh->lock);
10418                 }
10419
10420                 /* force hw sync on the address filters */
10421                 event->addr_filters_gen = 1;
10422         }
10423
10424         if (!event->parent) {
10425                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10426                         err = get_callchain_buffers(attr->sample_max_stack);
10427                         if (err)
10428                                 goto err_addr_filters;
10429                 }
10430         }
10431
10432         /* symmetric to unaccount_event() in _free_event() */
10433         account_event(event);
10434
10435         return event;
10436
10437 err_addr_filters:
10438         kfree(event->addr_filter_ranges);
10439
10440 err_per_task:
10441         exclusive_event_destroy(event);
10442
10443 err_pmu:
10444         if (event->destroy)
10445                 event->destroy(event);
10446         module_put(pmu->module);
10447 err_ns:
10448         if (is_cgroup_event(event))
10449                 perf_detach_cgroup(event);
10450         if (event->ns)
10451                 put_pid_ns(event->ns);
10452         if (event->hw.target)
10453                 put_task_struct(event->hw.target);
10454         kfree(event);
10455
10456         return ERR_PTR(err);
10457 }
10458
10459 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10460                           struct perf_event_attr *attr)
10461 {
10462         u32 size;
10463         int ret;
10464
10465         if (!access_ok(uattr, PERF_ATTR_SIZE_VER0))
10466                 return -EFAULT;
10467
10468         /*
10469          * zero the full structure, so that a short copy will be nice.
10470          */
10471         memset(attr, 0, sizeof(*attr));
10472
10473         ret = get_user(size, &uattr->size);
10474         if (ret)
10475                 return ret;
10476
10477         if (size > PAGE_SIZE)   /* silly large */
10478                 goto err_size;
10479
10480         if (!size)              /* abi compat */
10481                 size = PERF_ATTR_SIZE_VER0;
10482
10483         if (size < PERF_ATTR_SIZE_VER0)
10484                 goto err_size;
10485
10486         /*
10487          * If we're handed a bigger struct than we know of,
10488          * ensure all the unknown bits are 0 - i.e. new
10489          * user-space does not rely on any kernel feature
10490          * extensions we dont know about yet.
10491          */
10492         if (size > sizeof(*attr)) {
10493                 unsigned char __user *addr;
10494                 unsigned char __user *end;
10495                 unsigned char val;
10496
10497                 addr = (void __user *)uattr + sizeof(*attr);
10498                 end  = (void __user *)uattr + size;
10499
10500                 for (; addr < end; addr++) {
10501                         ret = get_user(val, addr);
10502                         if (ret)
10503                                 return ret;
10504                         if (val)
10505                                 goto err_size;
10506                 }
10507                 size = sizeof(*attr);
10508         }
10509
10510         ret = copy_from_user(attr, uattr, size);
10511         if (ret)
10512                 return -EFAULT;
10513
10514         attr->size = size;
10515
10516         if (attr->__reserved_1)
10517                 return -EINVAL;
10518
10519         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10520                 return -EINVAL;
10521
10522         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10523                 return -EINVAL;
10524
10525         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10526                 u64 mask = attr->branch_sample_type;
10527
10528                 /* only using defined bits */
10529                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10530                         return -EINVAL;
10531
10532                 /* at least one branch bit must be set */
10533                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10534                         return -EINVAL;
10535
10536                 /* propagate priv level, when not set for branch */
10537                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10538
10539                         /* exclude_kernel checked on syscall entry */
10540                         if (!attr->exclude_kernel)
10541                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10542
10543                         if (!attr->exclude_user)
10544                                 mask |= PERF_SAMPLE_BRANCH_USER;
10545
10546                         if (!attr->exclude_hv)
10547                                 mask |= PERF_SAMPLE_BRANCH_HV;
10548                         /*
10549                          * adjust user setting (for HW filter setup)
10550                          */
10551                         attr->branch_sample_type = mask;
10552                 }
10553                 /* privileged levels capture (kernel, hv): check permissions */
10554                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10555                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10556                         return -EACCES;
10557         }
10558
10559         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10560                 ret = perf_reg_validate(attr->sample_regs_user);
10561                 if (ret)
10562                         return ret;
10563         }
10564
10565         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10566                 if (!arch_perf_have_user_stack_dump())
10567                         return -ENOSYS;
10568
10569                 /*
10570                  * We have __u32 type for the size, but so far
10571                  * we can only use __u16 as maximum due to the
10572                  * __u16 sample size limit.
10573                  */
10574                 if (attr->sample_stack_user >= USHRT_MAX)
10575                         return -EINVAL;
10576                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10577                         return -EINVAL;
10578         }
10579
10580         if (!attr->sample_max_stack)
10581                 attr->sample_max_stack = sysctl_perf_event_max_stack;
10582
10583         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10584                 ret = perf_reg_validate(attr->sample_regs_intr);
10585 out:
10586         return ret;
10587
10588 err_size:
10589         put_user(sizeof(*attr), &uattr->size);
10590         ret = -E2BIG;
10591         goto out;
10592 }
10593
10594 static int
10595 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10596 {
10597         struct ring_buffer *rb = NULL;
10598         int ret = -EINVAL;
10599
10600         if (!output_event)
10601                 goto set;
10602
10603         /* don't allow circular references */
10604         if (event == output_event)
10605                 goto out;
10606
10607         /*
10608          * Don't allow cross-cpu buffers
10609          */
10610         if (output_event->cpu != event->cpu)
10611                 goto out;
10612
10613         /*
10614          * If its not a per-cpu rb, it must be the same task.
10615          */
10616         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10617                 goto out;
10618
10619         /*
10620          * Mixing clocks in the same buffer is trouble you don't need.
10621          */
10622         if (output_event->clock != event->clock)
10623                 goto out;
10624
10625         /*
10626          * Either writing ring buffer from beginning or from end.
10627          * Mixing is not allowed.
10628          */
10629         if (is_write_backward(output_event) != is_write_backward(event))
10630                 goto out;
10631
10632         /*
10633          * If both events generate aux data, they must be on the same PMU
10634          */
10635         if (has_aux(event) && has_aux(output_event) &&
10636             event->pmu != output_event->pmu)
10637                 goto out;
10638
10639 set:
10640         mutex_lock(&event->mmap_mutex);
10641         /* Can't redirect output if we've got an active mmap() */
10642         if (atomic_read(&event->mmap_count))
10643                 goto unlock;
10644
10645         if (output_event) {
10646                 /* get the rb we want to redirect to */
10647                 rb = ring_buffer_get(output_event);
10648                 if (!rb)
10649                         goto unlock;
10650         }
10651
10652         ring_buffer_attach(event, rb);
10653
10654         ret = 0;
10655 unlock:
10656         mutex_unlock(&event->mmap_mutex);
10657
10658 out:
10659         return ret;
10660 }
10661
10662 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10663 {
10664         if (b < a)
10665                 swap(a, b);
10666
10667         mutex_lock(a);
10668         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10669 }
10670
10671 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10672 {
10673         bool nmi_safe = false;
10674
10675         switch (clk_id) {
10676         case CLOCK_MONOTONIC:
10677                 event->clock = &ktime_get_mono_fast_ns;
10678                 nmi_safe = true;
10679                 break;
10680
10681         case CLOCK_MONOTONIC_RAW:
10682                 event->clock = &ktime_get_raw_fast_ns;
10683                 nmi_safe = true;
10684                 break;
10685
10686         case CLOCK_REALTIME:
10687                 event->clock = &ktime_get_real_ns;
10688                 break;
10689
10690         case CLOCK_BOOTTIME:
10691                 event->clock = &ktime_get_boot_ns;
10692                 break;
10693
10694         case CLOCK_TAI:
10695                 event->clock = &ktime_get_tai_ns;
10696                 break;
10697
10698         default:
10699                 return -EINVAL;
10700         }
10701
10702         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10703                 return -EINVAL;
10704
10705         return 0;
10706 }
10707
10708 /*
10709  * Variation on perf_event_ctx_lock_nested(), except we take two context
10710  * mutexes.
10711  */
10712 static struct perf_event_context *
10713 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10714                              struct perf_event_context *ctx)
10715 {
10716         struct perf_event_context *gctx;
10717
10718 again:
10719         rcu_read_lock();
10720         gctx = READ_ONCE(group_leader->ctx);
10721         if (!refcount_inc_not_zero(&gctx->refcount)) {
10722                 rcu_read_unlock();
10723                 goto again;
10724         }
10725         rcu_read_unlock();
10726
10727         mutex_lock_double(&gctx->mutex, &ctx->mutex);
10728
10729         if (group_leader->ctx != gctx) {
10730                 mutex_unlock(&ctx->mutex);
10731                 mutex_unlock(&gctx->mutex);
10732                 put_ctx(gctx);
10733                 goto again;
10734         }
10735
10736         return gctx;
10737 }
10738
10739 /**
10740  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10741  *
10742  * @attr_uptr:  event_id type attributes for monitoring/sampling
10743  * @pid:                target pid
10744  * @cpu:                target cpu
10745  * @group_fd:           group leader event fd
10746  */
10747 SYSCALL_DEFINE5(perf_event_open,
10748                 struct perf_event_attr __user *, attr_uptr,
10749                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10750 {
10751         struct perf_event *group_leader = NULL, *output_event = NULL;
10752         struct perf_event *event, *sibling;
10753         struct perf_event_attr attr;
10754         struct perf_event_context *ctx, *uninitialized_var(gctx);
10755         struct file *event_file = NULL;
10756         struct fd group = {NULL, 0};
10757         struct task_struct *task = NULL;
10758         struct pmu *pmu;
10759         int event_fd;
10760         int move_group = 0;
10761         int err;
10762         int f_flags = O_RDWR;
10763         int cgroup_fd = -1;
10764
10765         /* for future expandability... */
10766         if (flags & ~PERF_FLAG_ALL)
10767                 return -EINVAL;
10768
10769         err = perf_copy_attr(attr_uptr, &attr);
10770         if (err)
10771                 return err;
10772
10773         if (!attr.exclude_kernel) {
10774                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10775                         return -EACCES;
10776         }
10777
10778         if (attr.namespaces) {
10779                 if (!capable(CAP_SYS_ADMIN))
10780                         return -EACCES;
10781         }
10782
10783         if (attr.freq) {
10784                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10785                         return -EINVAL;
10786         } else {
10787                 if (attr.sample_period & (1ULL << 63))
10788                         return -EINVAL;
10789         }
10790
10791         /* Only privileged users can get physical addresses */
10792         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10793             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10794                 return -EACCES;
10795
10796         /*
10797          * In cgroup mode, the pid argument is used to pass the fd
10798          * opened to the cgroup directory in cgroupfs. The cpu argument
10799          * designates the cpu on which to monitor threads from that
10800          * cgroup.
10801          */
10802         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10803                 return -EINVAL;
10804
10805         if (flags & PERF_FLAG_FD_CLOEXEC)
10806                 f_flags |= O_CLOEXEC;
10807
10808         event_fd = get_unused_fd_flags(f_flags);
10809         if (event_fd < 0)
10810                 return event_fd;
10811
10812         if (group_fd != -1) {
10813                 err = perf_fget_light(group_fd, &group);
10814                 if (err)
10815                         goto err_fd;
10816                 group_leader = group.file->private_data;
10817                 if (flags & PERF_FLAG_FD_OUTPUT)
10818                         output_event = group_leader;
10819                 if (flags & PERF_FLAG_FD_NO_GROUP)
10820                         group_leader = NULL;
10821         }
10822
10823         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10824                 task = find_lively_task_by_vpid(pid);
10825                 if (IS_ERR(task)) {
10826                         err = PTR_ERR(task);
10827                         goto err_group_fd;
10828                 }
10829         }
10830
10831         if (task && group_leader &&
10832             group_leader->attr.inherit != attr.inherit) {
10833                 err = -EINVAL;
10834                 goto err_task;
10835         }
10836
10837         if (task) {
10838                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10839                 if (err)
10840                         goto err_task;
10841
10842                 /*
10843                  * Reuse ptrace permission checks for now.
10844                  *
10845                  * We must hold cred_guard_mutex across this and any potential
10846                  * perf_install_in_context() call for this new event to
10847                  * serialize against exec() altering our credentials (and the
10848                  * perf_event_exit_task() that could imply).
10849                  */
10850                 err = -EACCES;
10851                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10852                         goto err_cred;
10853         }
10854
10855         if (flags & PERF_FLAG_PID_CGROUP)
10856                 cgroup_fd = pid;
10857
10858         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10859                                  NULL, NULL, cgroup_fd);
10860         if (IS_ERR(event)) {
10861                 err = PTR_ERR(event);
10862                 goto err_cred;
10863         }
10864
10865         if (is_sampling_event(event)) {
10866                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10867                         err = -EOPNOTSUPP;
10868                         goto err_alloc;
10869                 }
10870         }
10871
10872         /*
10873          * Special case software events and allow them to be part of
10874          * any hardware group.
10875          */
10876         pmu = event->pmu;
10877
10878         if (attr.use_clockid) {
10879                 err = perf_event_set_clock(event, attr.clockid);
10880                 if (err)
10881                         goto err_alloc;
10882         }
10883
10884         if (pmu->task_ctx_nr == perf_sw_context)
10885                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10886
10887         if (group_leader) {
10888                 if (is_software_event(event) &&
10889                     !in_software_context(group_leader)) {
10890                         /*
10891                          * If the event is a sw event, but the group_leader
10892                          * is on hw context.
10893                          *
10894                          * Allow the addition of software events to hw
10895                          * groups, this is safe because software events
10896                          * never fail to schedule.
10897                          */
10898                         pmu = group_leader->ctx->pmu;
10899                 } else if (!is_software_event(event) &&
10900                            is_software_event(group_leader) &&
10901                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10902                         /*
10903                          * In case the group is a pure software group, and we
10904                          * try to add a hardware event, move the whole group to
10905                          * the hardware context.
10906                          */
10907                         move_group = 1;
10908                 }
10909         }
10910
10911         /*
10912          * Get the target context (task or percpu):
10913          */
10914         ctx = find_get_context(pmu, task, event);
10915         if (IS_ERR(ctx)) {
10916                 err = PTR_ERR(ctx);
10917                 goto err_alloc;
10918         }
10919
10920         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10921                 err = -EBUSY;
10922                 goto err_context;
10923         }
10924
10925         /*
10926          * Look up the group leader (we will attach this event to it):
10927          */
10928         if (group_leader) {
10929                 err = -EINVAL;
10930
10931                 /*
10932                  * Do not allow a recursive hierarchy (this new sibling
10933                  * becoming part of another group-sibling):
10934                  */
10935                 if (group_leader->group_leader != group_leader)
10936                         goto err_context;
10937
10938                 /* All events in a group should have the same clock */
10939                 if (group_leader->clock != event->clock)
10940                         goto err_context;
10941
10942                 /*
10943                  * Make sure we're both events for the same CPU;
10944                  * grouping events for different CPUs is broken; since
10945                  * you can never concurrently schedule them anyhow.
10946                  */
10947                 if (group_leader->cpu != event->cpu)
10948                         goto err_context;
10949
10950                 /*
10951                  * Make sure we're both on the same task, or both
10952                  * per-CPU events.
10953                  */
10954                 if (group_leader->ctx->task != ctx->task)
10955                         goto err_context;
10956
10957                 /*
10958                  * Do not allow to attach to a group in a different task
10959                  * or CPU context. If we're moving SW events, we'll fix
10960                  * this up later, so allow that.
10961                  */
10962                 if (!move_group && group_leader->ctx != ctx)
10963                         goto err_context;
10964
10965                 /*
10966                  * Only a group leader can be exclusive or pinned
10967                  */
10968                 if (attr.exclusive || attr.pinned)
10969                         goto err_context;
10970         }
10971
10972         if (output_event) {
10973                 err = perf_event_set_output(event, output_event);
10974                 if (err)
10975                         goto err_context;
10976         }
10977
10978         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10979                                         f_flags);
10980         if (IS_ERR(event_file)) {
10981                 err = PTR_ERR(event_file);
10982                 event_file = NULL;
10983                 goto err_context;
10984         }
10985
10986         if (move_group) {
10987                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10988
10989                 if (gctx->task == TASK_TOMBSTONE) {
10990                         err = -ESRCH;
10991                         goto err_locked;
10992                 }
10993
10994                 /*
10995                  * Check if we raced against another sys_perf_event_open() call
10996                  * moving the software group underneath us.
10997                  */
10998                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10999                         /*
11000                          * If someone moved the group out from under us, check
11001                          * if this new event wound up on the same ctx, if so
11002                          * its the regular !move_group case, otherwise fail.
11003                          */
11004                         if (gctx != ctx) {
11005                                 err = -EINVAL;
11006                                 goto err_locked;
11007                         } else {
11008                                 perf_event_ctx_unlock(group_leader, gctx);
11009                                 move_group = 0;
11010                         }
11011                 }
11012         } else {
11013                 mutex_lock(&ctx->mutex);
11014         }
11015
11016         if (ctx->task == TASK_TOMBSTONE) {
11017                 err = -ESRCH;
11018                 goto err_locked;
11019         }
11020
11021         if (!perf_event_validate_size(event)) {
11022                 err = -E2BIG;
11023                 goto err_locked;
11024         }
11025
11026         if (!task) {
11027                 /*
11028                  * Check if the @cpu we're creating an event for is online.
11029                  *
11030                  * We use the perf_cpu_context::ctx::mutex to serialize against
11031                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11032                  */
11033                 struct perf_cpu_context *cpuctx =
11034                         container_of(ctx, struct perf_cpu_context, ctx);
11035
11036                 if (!cpuctx->online) {
11037                         err = -ENODEV;
11038                         goto err_locked;
11039                 }
11040         }
11041
11042
11043         /*
11044          * Must be under the same ctx::mutex as perf_install_in_context(),
11045          * because we need to serialize with concurrent event creation.
11046          */
11047         if (!exclusive_event_installable(event, ctx)) {
11048                 /* exclusive and group stuff are assumed mutually exclusive */
11049                 WARN_ON_ONCE(move_group);
11050
11051                 err = -EBUSY;
11052                 goto err_locked;
11053         }
11054
11055         WARN_ON_ONCE(ctx->parent_ctx);
11056
11057         /*
11058          * This is the point on no return; we cannot fail hereafter. This is
11059          * where we start modifying current state.
11060          */
11061
11062         if (move_group) {
11063                 /*
11064                  * See perf_event_ctx_lock() for comments on the details
11065                  * of swizzling perf_event::ctx.
11066                  */
11067                 perf_remove_from_context(group_leader, 0);
11068                 put_ctx(gctx);
11069
11070                 for_each_sibling_event(sibling, group_leader) {
11071                         perf_remove_from_context(sibling, 0);
11072                         put_ctx(gctx);
11073                 }
11074
11075                 /*
11076                  * Wait for everybody to stop referencing the events through
11077                  * the old lists, before installing it on new lists.
11078                  */
11079                 synchronize_rcu();
11080
11081                 /*
11082                  * Install the group siblings before the group leader.
11083                  *
11084                  * Because a group leader will try and install the entire group
11085                  * (through the sibling list, which is still in-tact), we can
11086                  * end up with siblings installed in the wrong context.
11087                  *
11088                  * By installing siblings first we NO-OP because they're not
11089                  * reachable through the group lists.
11090                  */
11091                 for_each_sibling_event(sibling, group_leader) {
11092                         perf_event__state_init(sibling);
11093                         perf_install_in_context(ctx, sibling, sibling->cpu);
11094                         get_ctx(ctx);
11095                 }
11096
11097                 /*
11098                  * Removing from the context ends up with disabled
11099                  * event. What we want here is event in the initial
11100                  * startup state, ready to be add into new context.
11101                  */
11102                 perf_event__state_init(group_leader);
11103                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11104                 get_ctx(ctx);
11105         }
11106
11107         /*
11108          * Precalculate sample_data sizes; do while holding ctx::mutex such
11109          * that we're serialized against further additions and before
11110          * perf_install_in_context() which is the point the event is active and
11111          * can use these values.
11112          */
11113         perf_event__header_size(event);
11114         perf_event__id_header_size(event);
11115
11116         event->owner = current;
11117
11118         perf_install_in_context(ctx, event, event->cpu);
11119         perf_unpin_context(ctx);
11120
11121         if (move_group)
11122                 perf_event_ctx_unlock(group_leader, gctx);
11123         mutex_unlock(&ctx->mutex);
11124
11125         if (task) {
11126                 mutex_unlock(&task->signal->cred_guard_mutex);
11127                 put_task_struct(task);
11128         }
11129
11130         mutex_lock(&current->perf_event_mutex);
11131         list_add_tail(&event->owner_entry, &current->perf_event_list);
11132         mutex_unlock(&current->perf_event_mutex);
11133
11134         /*
11135          * Drop the reference on the group_event after placing the
11136          * new event on the sibling_list. This ensures destruction
11137          * of the group leader will find the pointer to itself in
11138          * perf_group_detach().
11139          */
11140         fdput(group);
11141         fd_install(event_fd, event_file);
11142         return event_fd;
11143
11144 err_locked:
11145         if (move_group)
11146                 perf_event_ctx_unlock(group_leader, gctx);
11147         mutex_unlock(&ctx->mutex);
11148 /* err_file: */
11149         fput(event_file);
11150 err_context:
11151         perf_unpin_context(ctx);
11152         put_ctx(ctx);
11153 err_alloc:
11154         /*
11155          * If event_file is set, the fput() above will have called ->release()
11156          * and that will take care of freeing the event.
11157          */
11158         if (!event_file)
11159                 free_event(event);
11160 err_cred:
11161         if (task)
11162                 mutex_unlock(&task->signal->cred_guard_mutex);
11163 err_task:
11164         if (task)
11165                 put_task_struct(task);
11166 err_group_fd:
11167         fdput(group);
11168 err_fd:
11169         put_unused_fd(event_fd);
11170         return err;
11171 }
11172
11173 /**
11174  * perf_event_create_kernel_counter
11175  *
11176  * @attr: attributes of the counter to create
11177  * @cpu: cpu in which the counter is bound
11178  * @task: task to profile (NULL for percpu)
11179  */
11180 struct perf_event *
11181 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11182                                  struct task_struct *task,
11183                                  perf_overflow_handler_t overflow_handler,
11184                                  void *context)
11185 {
11186         struct perf_event_context *ctx;
11187         struct perf_event *event;
11188         int err;
11189
11190         /*
11191          * Get the target context (task or percpu):
11192          */
11193
11194         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11195                                  overflow_handler, context, -1);
11196         if (IS_ERR(event)) {
11197                 err = PTR_ERR(event);
11198                 goto err;
11199         }
11200
11201         /* Mark owner so we could distinguish it from user events. */
11202         event->owner = TASK_TOMBSTONE;
11203
11204         ctx = find_get_context(event->pmu, task, event);
11205         if (IS_ERR(ctx)) {
11206                 err = PTR_ERR(ctx);
11207                 goto err_free;
11208         }
11209
11210         WARN_ON_ONCE(ctx->parent_ctx);
11211         mutex_lock(&ctx->mutex);
11212         if (ctx->task == TASK_TOMBSTONE) {
11213                 err = -ESRCH;
11214                 goto err_unlock;
11215         }
11216
11217         if (!task) {
11218                 /*
11219                  * Check if the @cpu we're creating an event for is online.
11220                  *
11221                  * We use the perf_cpu_context::ctx::mutex to serialize against
11222                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11223                  */
11224                 struct perf_cpu_context *cpuctx =
11225                         container_of(ctx, struct perf_cpu_context, ctx);
11226                 if (!cpuctx->online) {
11227                         err = -ENODEV;
11228                         goto err_unlock;
11229                 }
11230         }
11231
11232         if (!exclusive_event_installable(event, ctx)) {
11233                 err = -EBUSY;
11234                 goto err_unlock;
11235         }
11236
11237         perf_install_in_context(ctx, event, cpu);
11238         perf_unpin_context(ctx);
11239         mutex_unlock(&ctx->mutex);
11240
11241         return event;
11242
11243 err_unlock:
11244         mutex_unlock(&ctx->mutex);
11245         perf_unpin_context(ctx);
11246         put_ctx(ctx);
11247 err_free:
11248         free_event(event);
11249 err:
11250         return ERR_PTR(err);
11251 }
11252 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11253
11254 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11255 {
11256         struct perf_event_context *src_ctx;
11257         struct perf_event_context *dst_ctx;
11258         struct perf_event *event, *tmp;
11259         LIST_HEAD(events);
11260
11261         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11262         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11263
11264         /*
11265          * See perf_event_ctx_lock() for comments on the details
11266          * of swizzling perf_event::ctx.
11267          */
11268         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11269         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11270                                  event_entry) {
11271                 perf_remove_from_context(event, 0);
11272                 unaccount_event_cpu(event, src_cpu);
11273                 put_ctx(src_ctx);
11274                 list_add(&event->migrate_entry, &events);
11275         }
11276
11277         /*
11278          * Wait for the events to quiesce before re-instating them.
11279          */
11280         synchronize_rcu();
11281
11282         /*
11283          * Re-instate events in 2 passes.
11284          *
11285          * Skip over group leaders and only install siblings on this first
11286          * pass, siblings will not get enabled without a leader, however a
11287          * leader will enable its siblings, even if those are still on the old
11288          * context.
11289          */
11290         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11291                 if (event->group_leader == event)
11292                         continue;
11293
11294                 list_del(&event->migrate_entry);
11295                 if (event->state >= PERF_EVENT_STATE_OFF)
11296                         event->state = PERF_EVENT_STATE_INACTIVE;
11297                 account_event_cpu(event, dst_cpu);
11298                 perf_install_in_context(dst_ctx, event, dst_cpu);
11299                 get_ctx(dst_ctx);
11300         }
11301
11302         /*
11303          * Once all the siblings are setup properly, install the group leaders
11304          * to make it go.
11305          */
11306         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11307                 list_del(&event->migrate_entry);
11308                 if (event->state >= PERF_EVENT_STATE_OFF)
11309                         event->state = PERF_EVENT_STATE_INACTIVE;
11310                 account_event_cpu(event, dst_cpu);
11311                 perf_install_in_context(dst_ctx, event, dst_cpu);
11312                 get_ctx(dst_ctx);
11313         }
11314         mutex_unlock(&dst_ctx->mutex);
11315         mutex_unlock(&src_ctx->mutex);
11316 }
11317 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11318
11319 static void sync_child_event(struct perf_event *child_event,
11320                                struct task_struct *child)
11321 {
11322         struct perf_event *parent_event = child_event->parent;
11323         u64 child_val;
11324
11325         if (child_event->attr.inherit_stat)
11326                 perf_event_read_event(child_event, child);
11327
11328         child_val = perf_event_count(child_event);
11329
11330         /*
11331          * Add back the child's count to the parent's count:
11332          */
11333         atomic64_add(child_val, &parent_event->child_count);
11334         atomic64_add(child_event->total_time_enabled,
11335                      &parent_event->child_total_time_enabled);
11336         atomic64_add(child_event->total_time_running,
11337                      &parent_event->child_total_time_running);
11338 }
11339
11340 static void
11341 perf_event_exit_event(struct perf_event *child_event,
11342                       struct perf_event_context *child_ctx,
11343                       struct task_struct *child)
11344 {
11345         struct perf_event *parent_event = child_event->parent;
11346
11347         /*
11348          * Do not destroy the 'original' grouping; because of the context
11349          * switch optimization the original events could've ended up in a
11350          * random child task.
11351          *
11352          * If we were to destroy the original group, all group related
11353          * operations would cease to function properly after this random
11354          * child dies.
11355          *
11356          * Do destroy all inherited groups, we don't care about those
11357          * and being thorough is better.
11358          */
11359         raw_spin_lock_irq(&child_ctx->lock);
11360         WARN_ON_ONCE(child_ctx->is_active);
11361
11362         if (parent_event)
11363                 perf_group_detach(child_event);
11364         list_del_event(child_event, child_ctx);
11365         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11366         raw_spin_unlock_irq(&child_ctx->lock);
11367
11368         /*
11369          * Parent events are governed by their filedesc, retain them.
11370          */
11371         if (!parent_event) {
11372                 perf_event_wakeup(child_event);
11373                 return;
11374         }
11375         /*
11376          * Child events can be cleaned up.
11377          */
11378
11379         sync_child_event(child_event, child);
11380
11381         /*
11382          * Remove this event from the parent's list
11383          */
11384         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11385         mutex_lock(&parent_event->child_mutex);
11386         list_del_init(&child_event->child_list);
11387         mutex_unlock(&parent_event->child_mutex);
11388
11389         /*
11390          * Kick perf_poll() for is_event_hup().
11391          */
11392         perf_event_wakeup(parent_event);
11393         free_event(child_event);
11394         put_event(parent_event);
11395 }
11396
11397 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11398 {
11399         struct perf_event_context *child_ctx, *clone_ctx = NULL;
11400         struct perf_event *child_event, *next;
11401
11402         WARN_ON_ONCE(child != current);
11403
11404         child_ctx = perf_pin_task_context(child, ctxn);
11405         if (!child_ctx)
11406                 return;
11407
11408         /*
11409          * In order to reduce the amount of tricky in ctx tear-down, we hold
11410          * ctx::mutex over the entire thing. This serializes against almost
11411          * everything that wants to access the ctx.
11412          *
11413          * The exception is sys_perf_event_open() /
11414          * perf_event_create_kernel_count() which does find_get_context()
11415          * without ctx::mutex (it cannot because of the move_group double mutex
11416          * lock thing). See the comments in perf_install_in_context().
11417          */
11418         mutex_lock(&child_ctx->mutex);
11419
11420         /*
11421          * In a single ctx::lock section, de-schedule the events and detach the
11422          * context from the task such that we cannot ever get it scheduled back
11423          * in.
11424          */
11425         raw_spin_lock_irq(&child_ctx->lock);
11426         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11427
11428         /*
11429          * Now that the context is inactive, destroy the task <-> ctx relation
11430          * and mark the context dead.
11431          */
11432         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11433         put_ctx(child_ctx); /* cannot be last */
11434         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11435         put_task_struct(current); /* cannot be last */
11436
11437         clone_ctx = unclone_ctx(child_ctx);
11438         raw_spin_unlock_irq(&child_ctx->lock);
11439
11440         if (clone_ctx)
11441                 put_ctx(clone_ctx);
11442
11443         /*
11444          * Report the task dead after unscheduling the events so that we
11445          * won't get any samples after PERF_RECORD_EXIT. We can however still
11446          * get a few PERF_RECORD_READ events.
11447          */
11448         perf_event_task(child, child_ctx, 0);
11449
11450         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11451                 perf_event_exit_event(child_event, child_ctx, child);
11452
11453         mutex_unlock(&child_ctx->mutex);
11454
11455         put_ctx(child_ctx);
11456 }
11457
11458 /*
11459  * When a child task exits, feed back event values to parent events.
11460  *
11461  * Can be called with cred_guard_mutex held when called from
11462  * install_exec_creds().
11463  */
11464 void perf_event_exit_task(struct task_struct *child)
11465 {
11466         struct perf_event *event, *tmp;
11467         int ctxn;
11468
11469         mutex_lock(&child->perf_event_mutex);
11470         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11471                                  owner_entry) {
11472                 list_del_init(&event->owner_entry);
11473
11474                 /*
11475                  * Ensure the list deletion is visible before we clear
11476                  * the owner, closes a race against perf_release() where
11477                  * we need to serialize on the owner->perf_event_mutex.
11478                  */
11479                 smp_store_release(&event->owner, NULL);
11480         }
11481         mutex_unlock(&child->perf_event_mutex);
11482
11483         for_each_task_context_nr(ctxn)
11484                 perf_event_exit_task_context(child, ctxn);
11485
11486         /*
11487          * The perf_event_exit_task_context calls perf_event_task
11488          * with child's task_ctx, which generates EXIT events for
11489          * child contexts and sets child->perf_event_ctxp[] to NULL.
11490          * At this point we need to send EXIT events to cpu contexts.
11491          */
11492         perf_event_task(child, NULL, 0);
11493 }
11494
11495 static void perf_free_event(struct perf_event *event,
11496                             struct perf_event_context *ctx)
11497 {
11498         struct perf_event *parent = event->parent;
11499
11500         if (WARN_ON_ONCE(!parent))
11501                 return;
11502
11503         mutex_lock(&parent->child_mutex);
11504         list_del_init(&event->child_list);
11505         mutex_unlock(&parent->child_mutex);
11506
11507         put_event(parent);
11508
11509         raw_spin_lock_irq(&ctx->lock);
11510         perf_group_detach(event);
11511         list_del_event(event, ctx);
11512         raw_spin_unlock_irq(&ctx->lock);
11513         free_event(event);
11514 }
11515
11516 /*
11517  * Free an unexposed, unused context as created by inheritance by
11518  * perf_event_init_task below, used by fork() in case of fail.
11519  *
11520  * Not all locks are strictly required, but take them anyway to be nice and
11521  * help out with the lockdep assertions.
11522  */
11523 void perf_event_free_task(struct task_struct *task)
11524 {
11525         struct perf_event_context *ctx;
11526         struct perf_event *event, *tmp;
11527         int ctxn;
11528
11529         for_each_task_context_nr(ctxn) {
11530                 ctx = task->perf_event_ctxp[ctxn];
11531                 if (!ctx)
11532                         continue;
11533
11534                 mutex_lock(&ctx->mutex);
11535                 raw_spin_lock_irq(&ctx->lock);
11536                 /*
11537                  * Destroy the task <-> ctx relation and mark the context dead.
11538                  *
11539                  * This is important because even though the task hasn't been
11540                  * exposed yet the context has been (through child_list).
11541                  */
11542                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11543                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11544                 put_task_struct(task); /* cannot be last */
11545                 raw_spin_unlock_irq(&ctx->lock);
11546
11547                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11548                         perf_free_event(event, ctx);
11549
11550                 mutex_unlock(&ctx->mutex);
11551                 put_ctx(ctx);
11552         }
11553 }
11554
11555 void perf_event_delayed_put(struct task_struct *task)
11556 {
11557         int ctxn;
11558
11559         for_each_task_context_nr(ctxn)
11560                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11561 }
11562
11563 struct file *perf_event_get(unsigned int fd)
11564 {
11565         struct file *file;
11566
11567         file = fget_raw(fd);
11568         if (!file)
11569                 return ERR_PTR(-EBADF);
11570
11571         if (file->f_op != &perf_fops) {
11572                 fput(file);
11573                 return ERR_PTR(-EBADF);
11574         }
11575
11576         return file;
11577 }
11578
11579 const struct perf_event *perf_get_event(struct file *file)
11580 {
11581         if (file->f_op != &perf_fops)
11582                 return ERR_PTR(-EINVAL);
11583
11584         return file->private_data;
11585 }
11586
11587 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11588 {
11589         if (!event)
11590                 return ERR_PTR(-EINVAL);
11591
11592         return &event->attr;
11593 }
11594
11595 /*
11596  * Inherit an event from parent task to child task.
11597  *
11598  * Returns:
11599  *  - valid pointer on success
11600  *  - NULL for orphaned events
11601  *  - IS_ERR() on error
11602  */
11603 static struct perf_event *
11604 inherit_event(struct perf_event *parent_event,
11605               struct task_struct *parent,
11606               struct perf_event_context *parent_ctx,
11607               struct task_struct *child,
11608               struct perf_event *group_leader,
11609               struct perf_event_context *child_ctx)
11610 {
11611         enum perf_event_state parent_state = parent_event->state;
11612         struct perf_event *child_event;
11613         unsigned long flags;
11614
11615         /*
11616          * Instead of creating recursive hierarchies of events,
11617          * we link inherited events back to the original parent,
11618          * which has a filp for sure, which we use as the reference
11619          * count:
11620          */
11621         if (parent_event->parent)
11622                 parent_event = parent_event->parent;
11623
11624         child_event = perf_event_alloc(&parent_event->attr,
11625                                            parent_event->cpu,
11626                                            child,
11627                                            group_leader, parent_event,
11628                                            NULL, NULL, -1);
11629         if (IS_ERR(child_event))
11630                 return child_event;
11631
11632
11633         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11634             !child_ctx->task_ctx_data) {
11635                 struct pmu *pmu = child_event->pmu;
11636
11637                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11638                                                    GFP_KERNEL);
11639                 if (!child_ctx->task_ctx_data) {
11640                         free_event(child_event);
11641                         return NULL;
11642                 }
11643         }
11644
11645         /*
11646          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11647          * must be under the same lock in order to serialize against
11648          * perf_event_release_kernel(), such that either we must observe
11649          * is_orphaned_event() or they will observe us on the child_list.
11650          */
11651         mutex_lock(&parent_event->child_mutex);
11652         if (is_orphaned_event(parent_event) ||
11653             !atomic_long_inc_not_zero(&parent_event->refcount)) {
11654                 mutex_unlock(&parent_event->child_mutex);
11655                 /* task_ctx_data is freed with child_ctx */
11656                 free_event(child_event);
11657                 return NULL;
11658         }
11659
11660         get_ctx(child_ctx);
11661
11662         /*
11663          * Make the child state follow the state of the parent event,
11664          * not its attr.disabled bit.  We hold the parent's mutex,
11665          * so we won't race with perf_event_{en, dis}able_family.
11666          */
11667         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11668                 child_event->state = PERF_EVENT_STATE_INACTIVE;
11669         else
11670                 child_event->state = PERF_EVENT_STATE_OFF;
11671
11672         if (parent_event->attr.freq) {
11673                 u64 sample_period = parent_event->hw.sample_period;
11674                 struct hw_perf_event *hwc = &child_event->hw;
11675
11676                 hwc->sample_period = sample_period;
11677                 hwc->last_period   = sample_period;
11678
11679                 local64_set(&hwc->period_left, sample_period);
11680         }
11681
11682         child_event->ctx = child_ctx;
11683         child_event->overflow_handler = parent_event->overflow_handler;
11684         child_event->overflow_handler_context
11685                 = parent_event->overflow_handler_context;
11686
11687         /*
11688          * Precalculate sample_data sizes
11689          */
11690         perf_event__header_size(child_event);
11691         perf_event__id_header_size(child_event);
11692
11693         /*
11694          * Link it up in the child's context:
11695          */
11696         raw_spin_lock_irqsave(&child_ctx->lock, flags);
11697         add_event_to_ctx(child_event, child_ctx);
11698         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11699
11700         /*
11701          * Link this into the parent event's child list
11702          */
11703         list_add_tail(&child_event->child_list, &parent_event->child_list);
11704         mutex_unlock(&parent_event->child_mutex);
11705
11706         return child_event;
11707 }
11708
11709 /*
11710  * Inherits an event group.
11711  *
11712  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11713  * This matches with perf_event_release_kernel() removing all child events.
11714  *
11715  * Returns:
11716  *  - 0 on success
11717  *  - <0 on error
11718  */
11719 static int inherit_group(struct perf_event *parent_event,
11720               struct task_struct *parent,
11721               struct perf_event_context *parent_ctx,
11722               struct task_struct *child,
11723               struct perf_event_context *child_ctx)
11724 {
11725         struct perf_event *leader;
11726         struct perf_event *sub;
11727         struct perf_event *child_ctr;
11728
11729         leader = inherit_event(parent_event, parent, parent_ctx,
11730                                  child, NULL, child_ctx);
11731         if (IS_ERR(leader))
11732                 return PTR_ERR(leader);
11733         /*
11734          * @leader can be NULL here because of is_orphaned_event(). In this
11735          * case inherit_event() will create individual events, similar to what
11736          * perf_group_detach() would do anyway.
11737          */
11738         for_each_sibling_event(sub, parent_event) {
11739                 child_ctr = inherit_event(sub, parent, parent_ctx,
11740                                             child, leader, child_ctx);
11741                 if (IS_ERR(child_ctr))
11742                         return PTR_ERR(child_ctr);
11743         }
11744         return 0;
11745 }
11746
11747 /*
11748  * Creates the child task context and tries to inherit the event-group.
11749  *
11750  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11751  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11752  * consistent with perf_event_release_kernel() removing all child events.
11753  *
11754  * Returns:
11755  *  - 0 on success
11756  *  - <0 on error
11757  */
11758 static int
11759 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11760                    struct perf_event_context *parent_ctx,
11761                    struct task_struct *child, int ctxn,
11762                    int *inherited_all)
11763 {
11764         int ret;
11765         struct perf_event_context *child_ctx;
11766
11767         if (!event->attr.inherit) {
11768                 *inherited_all = 0;
11769                 return 0;
11770         }
11771
11772         child_ctx = child->perf_event_ctxp[ctxn];
11773         if (!child_ctx) {
11774                 /*
11775                  * This is executed from the parent task context, so
11776                  * inherit events that have been marked for cloning.
11777                  * First allocate and initialize a context for the
11778                  * child.
11779                  */
11780                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11781                 if (!child_ctx)
11782                         return -ENOMEM;
11783
11784                 child->perf_event_ctxp[ctxn] = child_ctx;
11785         }
11786
11787         ret = inherit_group(event, parent, parent_ctx,
11788                             child, child_ctx);
11789
11790         if (ret)
11791                 *inherited_all = 0;
11792
11793         return ret;
11794 }
11795
11796 /*
11797  * Initialize the perf_event context in task_struct
11798  */
11799 static int perf_event_init_context(struct task_struct *child, int ctxn)
11800 {
11801         struct perf_event_context *child_ctx, *parent_ctx;
11802         struct perf_event_context *cloned_ctx;
11803         struct perf_event *event;
11804         struct task_struct *parent = current;
11805         int inherited_all = 1;
11806         unsigned long flags;
11807         int ret = 0;
11808
11809         if (likely(!parent->perf_event_ctxp[ctxn]))
11810                 return 0;
11811
11812         /*
11813          * If the parent's context is a clone, pin it so it won't get
11814          * swapped under us.
11815          */
11816         parent_ctx = perf_pin_task_context(parent, ctxn);
11817         if (!parent_ctx)
11818                 return 0;
11819
11820         /*
11821          * No need to check if parent_ctx != NULL here; since we saw
11822          * it non-NULL earlier, the only reason for it to become NULL
11823          * is if we exit, and since we're currently in the middle of
11824          * a fork we can't be exiting at the same time.
11825          */
11826
11827         /*
11828          * Lock the parent list. No need to lock the child - not PID
11829          * hashed yet and not running, so nobody can access it.
11830          */
11831         mutex_lock(&parent_ctx->mutex);
11832
11833         /*
11834          * We dont have to disable NMIs - we are only looking at
11835          * the list, not manipulating it:
11836          */
11837         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11838                 ret = inherit_task_group(event, parent, parent_ctx,
11839                                          child, ctxn, &inherited_all);
11840                 if (ret)
11841                         goto out_unlock;
11842         }
11843
11844         /*
11845          * We can't hold ctx->lock when iterating the ->flexible_group list due
11846          * to allocations, but we need to prevent rotation because
11847          * rotate_ctx() will change the list from interrupt context.
11848          */
11849         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11850         parent_ctx->rotate_disable = 1;
11851         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11852
11853         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11854                 ret = inherit_task_group(event, parent, parent_ctx,
11855                                          child, ctxn, &inherited_all);
11856                 if (ret)
11857                         goto out_unlock;
11858         }
11859
11860         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11861         parent_ctx->rotate_disable = 0;
11862
11863         child_ctx = child->perf_event_ctxp[ctxn];
11864
11865         if (child_ctx && inherited_all) {
11866                 /*
11867                  * Mark the child context as a clone of the parent
11868                  * context, or of whatever the parent is a clone of.
11869                  *
11870                  * Note that if the parent is a clone, the holding of
11871                  * parent_ctx->lock avoids it from being uncloned.
11872                  */
11873                 cloned_ctx = parent_ctx->parent_ctx;
11874                 if (cloned_ctx) {
11875                         child_ctx->parent_ctx = cloned_ctx;
11876                         child_ctx->parent_gen = parent_ctx->parent_gen;
11877                 } else {
11878                         child_ctx->parent_ctx = parent_ctx;
11879                         child_ctx->parent_gen = parent_ctx->generation;
11880                 }
11881                 get_ctx(child_ctx->parent_ctx);
11882         }
11883
11884         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11885 out_unlock:
11886         mutex_unlock(&parent_ctx->mutex);
11887
11888         perf_unpin_context(parent_ctx);
11889         put_ctx(parent_ctx);
11890
11891         return ret;
11892 }
11893
11894 /*
11895  * Initialize the perf_event context in task_struct
11896  */
11897 int perf_event_init_task(struct task_struct *child)
11898 {
11899         int ctxn, ret;
11900
11901         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11902         mutex_init(&child->perf_event_mutex);
11903         INIT_LIST_HEAD(&child->perf_event_list);
11904
11905         for_each_task_context_nr(ctxn) {
11906                 ret = perf_event_init_context(child, ctxn);
11907                 if (ret) {
11908                         perf_event_free_task(child);
11909                         return ret;
11910                 }
11911         }
11912
11913         return 0;
11914 }
11915
11916 static void __init perf_event_init_all_cpus(void)
11917 {
11918         struct swevent_htable *swhash;
11919         int cpu;
11920
11921         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11922
11923         for_each_possible_cpu(cpu) {
11924                 swhash = &per_cpu(swevent_htable, cpu);
11925                 mutex_init(&swhash->hlist_mutex);
11926                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11927
11928                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11929                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11930
11931 #ifdef CONFIG_CGROUP_PERF
11932                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11933 #endif
11934                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11935         }
11936 }
11937
11938 static void perf_swevent_init_cpu(unsigned int cpu)
11939 {
11940         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11941
11942         mutex_lock(&swhash->hlist_mutex);
11943         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11944                 struct swevent_hlist *hlist;
11945
11946                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11947                 WARN_ON(!hlist);
11948                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11949         }
11950         mutex_unlock(&swhash->hlist_mutex);
11951 }
11952
11953 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11954 static void __perf_event_exit_context(void *__info)
11955 {
11956         struct perf_event_context *ctx = __info;
11957         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11958         struct perf_event *event;
11959
11960         raw_spin_lock(&ctx->lock);
11961         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11962         list_for_each_entry(event, &ctx->event_list, event_entry)
11963                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11964         raw_spin_unlock(&ctx->lock);
11965 }
11966
11967 static void perf_event_exit_cpu_context(int cpu)
11968 {
11969         struct perf_cpu_context *cpuctx;
11970         struct perf_event_context *ctx;
11971         struct pmu *pmu;
11972
11973         mutex_lock(&pmus_lock);
11974         list_for_each_entry(pmu, &pmus, entry) {
11975                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11976                 ctx = &cpuctx->ctx;
11977
11978                 mutex_lock(&ctx->mutex);
11979                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11980                 cpuctx->online = 0;
11981                 mutex_unlock(&ctx->mutex);
11982         }
11983         cpumask_clear_cpu(cpu, perf_online_mask);
11984         mutex_unlock(&pmus_lock);
11985 }
11986 #else
11987
11988 static void perf_event_exit_cpu_context(int cpu) { }
11989
11990 #endif
11991
11992 int perf_event_init_cpu(unsigned int cpu)
11993 {
11994         struct perf_cpu_context *cpuctx;
11995         struct perf_event_context *ctx;
11996         struct pmu *pmu;
11997
11998         perf_swevent_init_cpu(cpu);
11999
12000         mutex_lock(&pmus_lock);
12001         cpumask_set_cpu(cpu, perf_online_mask);
12002         list_for_each_entry(pmu, &pmus, entry) {
12003                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12004                 ctx = &cpuctx->ctx;
12005
12006                 mutex_lock(&ctx->mutex);
12007                 cpuctx->online = 1;
12008                 mutex_unlock(&ctx->mutex);
12009         }
12010         mutex_unlock(&pmus_lock);
12011
12012         return 0;
12013 }
12014
12015 int perf_event_exit_cpu(unsigned int cpu)
12016 {
12017         perf_event_exit_cpu_context(cpu);
12018         return 0;
12019 }
12020
12021 static int
12022 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12023 {
12024         int cpu;
12025
12026         for_each_online_cpu(cpu)
12027                 perf_event_exit_cpu(cpu);
12028
12029         return NOTIFY_OK;
12030 }
12031
12032 /*
12033  * Run the perf reboot notifier at the very last possible moment so that
12034  * the generic watchdog code runs as long as possible.
12035  */
12036 static struct notifier_block perf_reboot_notifier = {
12037         .notifier_call = perf_reboot,
12038         .priority = INT_MIN,
12039 };
12040
12041 void __init perf_event_init(void)
12042 {
12043         int ret;
12044
12045         idr_init(&pmu_idr);
12046
12047         perf_event_init_all_cpus();
12048         init_srcu_struct(&pmus_srcu);
12049         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12050         perf_pmu_register(&perf_cpu_clock, NULL, -1);
12051         perf_pmu_register(&perf_task_clock, NULL, -1);
12052         perf_tp_register();
12053         perf_event_init_cpu(smp_processor_id());
12054         register_reboot_notifier(&perf_reboot_notifier);
12055
12056         ret = init_hw_breakpoint();
12057         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12058
12059         /*
12060          * Build time assertion that we keep the data_head at the intended
12061          * location.  IOW, validation we got the __reserved[] size right.
12062          */
12063         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12064                      != 1024);
12065 }
12066
12067 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12068                               char *page)
12069 {
12070         struct perf_pmu_events_attr *pmu_attr =
12071                 container_of(attr, struct perf_pmu_events_attr, attr);
12072
12073         if (pmu_attr->event_str)
12074                 return sprintf(page, "%s\n", pmu_attr->event_str);
12075
12076         return 0;
12077 }
12078 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12079
12080 static int __init perf_event_sysfs_init(void)
12081 {
12082         struct pmu *pmu;
12083         int ret;
12084
12085         mutex_lock(&pmus_lock);
12086
12087         ret = bus_register(&pmu_bus);
12088         if (ret)
12089                 goto unlock;
12090
12091         list_for_each_entry(pmu, &pmus, entry) {
12092                 if (!pmu->name || pmu->type < 0)
12093                         continue;
12094
12095                 ret = pmu_dev_alloc(pmu);
12096                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12097         }
12098         pmu_bus_running = 1;
12099         ret = 0;
12100
12101 unlock:
12102         mutex_unlock(&pmus_lock);
12103
12104         return ret;
12105 }
12106 device_initcall(perf_event_sysfs_init);
12107
12108 #ifdef CONFIG_CGROUP_PERF
12109 static struct cgroup_subsys_state *
12110 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12111 {
12112         struct perf_cgroup *jc;
12113
12114         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12115         if (!jc)
12116                 return ERR_PTR(-ENOMEM);
12117
12118         jc->info = alloc_percpu(struct perf_cgroup_info);
12119         if (!jc->info) {
12120                 kfree(jc);
12121                 return ERR_PTR(-ENOMEM);
12122         }
12123
12124         return &jc->css;
12125 }
12126
12127 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12128 {
12129         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12130
12131         free_percpu(jc->info);
12132         kfree(jc);
12133 }
12134
12135 static int __perf_cgroup_move(void *info)
12136 {
12137         struct task_struct *task = info;
12138         rcu_read_lock();
12139         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12140         rcu_read_unlock();
12141         return 0;
12142 }
12143
12144 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12145 {
12146         struct task_struct *task;
12147         struct cgroup_subsys_state *css;
12148
12149         cgroup_taskset_for_each(task, css, tset)
12150                 task_function_call(task, __perf_cgroup_move, task);
12151 }
12152
12153 struct cgroup_subsys perf_event_cgrp_subsys = {
12154         .css_alloc      = perf_cgroup_css_alloc,
12155         .css_free       = perf_cgroup_css_free,
12156         .attach         = perf_cgroup_attach,
12157         /*
12158          * Implicitly enable on dfl hierarchy so that perf events can
12159          * always be filtered by cgroup2 path as long as perf_event
12160          * controller is not mounted on a legacy hierarchy.
12161          */
12162         .implicit_on_dfl = true,
12163         .threaded       = true,
12164 };
12165 #endif /* CONFIG_CGROUP_PERF */