]> asedeno.scripts.mit.edu Git - linux.git/blob - kernel/events/core.c
Merge tag 'edac_for_4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp
[linux.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49
50 #include "internal.h"
51
52 #include <asm/irq_regs.h>
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57         struct task_struct      *p;
58         remote_function_f       func;
59         void                    *info;
60         int                     ret;
61 };
62
63 static void remote_function(void *data)
64 {
65         struct remote_function_call *tfc = data;
66         struct task_struct *p = tfc->p;
67
68         if (p) {
69                 /* -EAGAIN */
70                 if (task_cpu(p) != smp_processor_id())
71                         return;
72
73                 /*
74                  * Now that we're on right CPU with IRQs disabled, we can test
75                  * if we hit the right task without races.
76                  */
77
78                 tfc->ret = -ESRCH; /* No such (running) process */
79                 if (p != current)
80                         return;
81         }
82
83         tfc->ret = tfc->func(tfc->info);
84 }
85
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:          the task to evaluate
89  * @func:       the function to be called
90  * @info:       the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *          -ESRCH  - when the process isn't running
97  *          -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102         struct remote_function_call data = {
103                 .p      = p,
104                 .func   = func,
105                 .info   = info,
106                 .ret    = -EAGAIN,
107         };
108         int ret;
109
110         do {
111                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112                 if (!ret)
113                         ret = data.ret;
114         } while (ret == -EAGAIN);
115
116         return ret;
117 }
118
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:       the function to be called
122  * @info:       the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130         struct remote_function_call data = {
131                 .p      = NULL,
132                 .func   = func,
133                 .info   = info,
134                 .ret    = -ENXIO, /* No such CPU */
135         };
136
137         smp_call_function_single(cpu, remote_function, &data, 1);
138
139         return data.ret;
140 }
141
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149                           struct perf_event_context *ctx)
150 {
151         raw_spin_lock(&cpuctx->ctx.lock);
152         if (ctx)
153                 raw_spin_lock(&ctx->lock);
154 }
155
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157                             struct perf_event_context *ctx)
158 {
159         if (ctx)
160                 raw_spin_unlock(&ctx->lock);
161         raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163
164 #define TASK_TOMBSTONE ((void *)-1L)
165
166 static bool is_kernel_event(struct perf_event *event)
167 {
168         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191                         struct perf_event_context *, void *);
192
193 struct event_function_struct {
194         struct perf_event *event;
195         event_f func;
196         void *data;
197 };
198
199 static int event_function(void *info)
200 {
201         struct event_function_struct *efs = info;
202         struct perf_event *event = efs->event;
203         struct perf_event_context *ctx = event->ctx;
204         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205         struct perf_event_context *task_ctx = cpuctx->task_ctx;
206         int ret = 0;
207
208         WARN_ON_ONCE(!irqs_disabled());
209
210         perf_ctx_lock(cpuctx, task_ctx);
211         /*
212          * Since we do the IPI call without holding ctx->lock things can have
213          * changed, double check we hit the task we set out to hit.
214          */
215         if (ctx->task) {
216                 if (ctx->task != current) {
217                         ret = -ESRCH;
218                         goto unlock;
219                 }
220
221                 /*
222                  * We only use event_function_call() on established contexts,
223                  * and event_function() is only ever called when active (or
224                  * rather, we'll have bailed in task_function_call() or the
225                  * above ctx->task != current test), therefore we must have
226                  * ctx->is_active here.
227                  */
228                 WARN_ON_ONCE(!ctx->is_active);
229                 /*
230                  * And since we have ctx->is_active, cpuctx->task_ctx must
231                  * match.
232                  */
233                 WARN_ON_ONCE(task_ctx != ctx);
234         } else {
235                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236         }
237
238         efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240         perf_ctx_unlock(cpuctx, task_ctx);
241
242         return ret;
243 }
244
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
246 {
247         struct perf_event_context *ctx = event->ctx;
248         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249         struct event_function_struct efs = {
250                 .event = event,
251                 .func = func,
252                 .data = data,
253         };
254
255         if (!event->parent) {
256                 /*
257                  * If this is a !child event, we must hold ctx::mutex to
258                  * stabilize the the event->ctx relation. See
259                  * perf_event_ctx_lock().
260                  */
261                 lockdep_assert_held(&ctx->mutex);
262         }
263
264         if (!task) {
265                 cpu_function_call(event->cpu, event_function, &efs);
266                 return;
267         }
268
269         if (task == TASK_TOMBSTONE)
270                 return;
271
272 again:
273         if (!task_function_call(task, event_function, &efs))
274                 return;
275
276         raw_spin_lock_irq(&ctx->lock);
277         /*
278          * Reload the task pointer, it might have been changed by
279          * a concurrent perf_event_context_sched_out().
280          */
281         task = ctx->task;
282         if (task == TASK_TOMBSTONE) {
283                 raw_spin_unlock_irq(&ctx->lock);
284                 return;
285         }
286         if (ctx->is_active) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 goto again;
289         }
290         func(event, NULL, ctx, data);
291         raw_spin_unlock_irq(&ctx->lock);
292 }
293
294 /*
295  * Similar to event_function_call() + event_function(), but hard assumes IRQs
296  * are already disabled and we're on the right CPU.
297  */
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
299 {
300         struct perf_event_context *ctx = event->ctx;
301         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302         struct task_struct *task = READ_ONCE(ctx->task);
303         struct perf_event_context *task_ctx = NULL;
304
305         WARN_ON_ONCE(!irqs_disabled());
306
307         if (task) {
308                 if (task == TASK_TOMBSTONE)
309                         return;
310
311                 task_ctx = ctx;
312         }
313
314         perf_ctx_lock(cpuctx, task_ctx);
315
316         task = ctx->task;
317         if (task == TASK_TOMBSTONE)
318                 goto unlock;
319
320         if (task) {
321                 /*
322                  * We must be either inactive or active and the right task,
323                  * otherwise we're screwed, since we cannot IPI to somewhere
324                  * else.
325                  */
326                 if (ctx->is_active) {
327                         if (WARN_ON_ONCE(task != current))
328                                 goto unlock;
329
330                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331                                 goto unlock;
332                 }
333         } else {
334                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
335         }
336
337         func(event, cpuctx, ctx, data);
338 unlock:
339         perf_ctx_unlock(cpuctx, task_ctx);
340 }
341
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343                        PERF_FLAG_FD_OUTPUT  |\
344                        PERF_FLAG_PID_CGROUP |\
345                        PERF_FLAG_FD_CLOEXEC)
346
347 /*
348  * branch priv levels that need permission checks
349  */
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351         (PERF_SAMPLE_BRANCH_KERNEL |\
352          PERF_SAMPLE_BRANCH_HV)
353
354 enum event_type_t {
355         EVENT_FLEXIBLE = 0x1,
356         EVENT_PINNED = 0x2,
357         EVENT_TIME = 0x4,
358         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359 };
360
361 /*
362  * perf_sched_events : >0 events exist
363  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364  */
365
366 static void perf_sched_delayed(struct work_struct *work);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369 static DEFINE_MUTEX(perf_sched_mutex);
370 static atomic_t perf_sched_count;
371
372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
375
376 static atomic_t nr_mmap_events __read_mostly;
377 static atomic_t nr_comm_events __read_mostly;
378 static atomic_t nr_task_events __read_mostly;
379 static atomic_t nr_freq_events __read_mostly;
380 static atomic_t nr_switch_events __read_mostly;
381
382 static LIST_HEAD(pmus);
383 static DEFINE_MUTEX(pmus_lock);
384 static struct srcu_struct pmus_srcu;
385
386 /*
387  * perf event paranoia level:
388  *  -1 - not paranoid at all
389  *   0 - disallow raw tracepoint access for unpriv
390  *   1 - disallow cpu events for unpriv
391  *   2 - disallow kernel profiling for unpriv
392  */
393 int sysctl_perf_event_paranoid __read_mostly = 2;
394
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
397
398 /*
399  * max perf event sample rate
400  */
401 #define DEFAULT_MAX_SAMPLE_RATE         100000
402 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
404
405 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
406
407 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
409
410 static int perf_sample_allowed_ns __read_mostly =
411         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
412
413 static void update_perf_cpu_limits(void)
414 {
415         u64 tmp = perf_sample_period_ns;
416
417         tmp *= sysctl_perf_cpu_time_max_percent;
418         tmp = div_u64(tmp, 100);
419         if (!tmp)
420                 tmp = 1;
421
422         WRITE_ONCE(perf_sample_allowed_ns, tmp);
423 }
424
425 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
426
427 int perf_proc_update_handler(struct ctl_table *table, int write,
428                 void __user *buffer, size_t *lenp,
429                 loff_t *ppos)
430 {
431         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
432
433         if (ret || !write)
434                 return ret;
435
436         /*
437          * If throttling is disabled don't allow the write:
438          */
439         if (sysctl_perf_cpu_time_max_percent == 100 ||
440             sysctl_perf_cpu_time_max_percent == 0)
441                 return -EINVAL;
442
443         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445         update_perf_cpu_limits();
446
447         return 0;
448 }
449
450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
451
452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453                                 void __user *buffer, size_t *lenp,
454                                 loff_t *ppos)
455 {
456         int ret = proc_dointvec(table, write, buffer, lenp, ppos);
457
458         if (ret || !write)
459                 return ret;
460
461         if (sysctl_perf_cpu_time_max_percent == 100 ||
462             sysctl_perf_cpu_time_max_percent == 0) {
463                 printk(KERN_WARNING
464                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465                 WRITE_ONCE(perf_sample_allowed_ns, 0);
466         } else {
467                 update_perf_cpu_limits();
468         }
469
470         return 0;
471 }
472
473 /*
474  * perf samples are done in some very critical code paths (NMIs).
475  * If they take too much CPU time, the system can lock up and not
476  * get any real work done.  This will drop the sample rate when
477  * we detect that events are taking too long.
478  */
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64, running_sample_length);
481
482 static u64 __report_avg;
483 static u64 __report_allowed;
484
485 static void perf_duration_warn(struct irq_work *w)
486 {
487         printk_ratelimited(KERN_INFO
488                 "perf: interrupt took too long (%lld > %lld), lowering "
489                 "kernel.perf_event_max_sample_rate to %d\n",
490                 __report_avg, __report_allowed,
491                 sysctl_perf_event_sample_rate);
492 }
493
494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
495
496 void perf_sample_event_took(u64 sample_len_ns)
497 {
498         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499         u64 running_len;
500         u64 avg_len;
501         u32 max;
502
503         if (max_len == 0)
504                 return;
505
506         /* Decay the counter by 1 average sample. */
507         running_len = __this_cpu_read(running_sample_length);
508         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509         running_len += sample_len_ns;
510         __this_cpu_write(running_sample_length, running_len);
511
512         /*
513          * Note: this will be biased artifically low until we have
514          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515          * from having to maintain a count.
516          */
517         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518         if (avg_len <= max_len)
519                 return;
520
521         __report_avg = avg_len;
522         __report_allowed = max_len;
523
524         /*
525          * Compute a throttle threshold 25% below the current duration.
526          */
527         avg_len += avg_len / 4;
528         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529         if (avg_len < max)
530                 max /= (u32)avg_len;
531         else
532                 max = 1;
533
534         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535         WRITE_ONCE(max_samples_per_tick, max);
536
537         sysctl_perf_event_sample_rate = max * HZ;
538         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
539
540         if (!irq_work_queue(&perf_duration_work)) {
541                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542                              "kernel.perf_event_max_sample_rate to %d\n",
543                              __report_avg, __report_allowed,
544                              sysctl_perf_event_sample_rate);
545         }
546 }
547
548 static atomic64_t perf_event_id;
549
550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551                               enum event_type_t event_type);
552
553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
554                              enum event_type_t event_type,
555                              struct task_struct *task);
556
557 static void update_context_time(struct perf_event_context *ctx);
558 static u64 perf_event_time(struct perf_event *event);
559
560 void __weak perf_event_print_debug(void)        { }
561
562 extern __weak const char *perf_pmu_name(void)
563 {
564         return "pmu";
565 }
566
567 static inline u64 perf_clock(void)
568 {
569         return local_clock();
570 }
571
572 static inline u64 perf_event_clock(struct perf_event *event)
573 {
574         return event->clock();
575 }
576
577 #ifdef CONFIG_CGROUP_PERF
578
579 static inline bool
580 perf_cgroup_match(struct perf_event *event)
581 {
582         struct perf_event_context *ctx = event->ctx;
583         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
584
585         /* @event doesn't care about cgroup */
586         if (!event->cgrp)
587                 return true;
588
589         /* wants specific cgroup scope but @cpuctx isn't associated with any */
590         if (!cpuctx->cgrp)
591                 return false;
592
593         /*
594          * Cgroup scoping is recursive.  An event enabled for a cgroup is
595          * also enabled for all its descendant cgroups.  If @cpuctx's
596          * cgroup is a descendant of @event's (the test covers identity
597          * case), it's a match.
598          */
599         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600                                     event->cgrp->css.cgroup);
601 }
602
603 static inline void perf_detach_cgroup(struct perf_event *event)
604 {
605         css_put(&event->cgrp->css);
606         event->cgrp = NULL;
607 }
608
609 static inline int is_cgroup_event(struct perf_event *event)
610 {
611         return event->cgrp != NULL;
612 }
613
614 static inline u64 perf_cgroup_event_time(struct perf_event *event)
615 {
616         struct perf_cgroup_info *t;
617
618         t = per_cpu_ptr(event->cgrp->info, event->cpu);
619         return t->time;
620 }
621
622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
623 {
624         struct perf_cgroup_info *info;
625         u64 now;
626
627         now = perf_clock();
628
629         info = this_cpu_ptr(cgrp->info);
630
631         info->time += now - info->timestamp;
632         info->timestamp = now;
633 }
634
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
636 {
637         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638         if (cgrp_out)
639                 __update_cgrp_time(cgrp_out);
640 }
641
642 static inline void update_cgrp_time_from_event(struct perf_event *event)
643 {
644         struct perf_cgroup *cgrp;
645
646         /*
647          * ensure we access cgroup data only when needed and
648          * when we know the cgroup is pinned (css_get)
649          */
650         if (!is_cgroup_event(event))
651                 return;
652
653         cgrp = perf_cgroup_from_task(current, event->ctx);
654         /*
655          * Do not update time when cgroup is not active
656          */
657         if (cgrp == event->cgrp)
658                 __update_cgrp_time(event->cgrp);
659 }
660
661 static inline void
662 perf_cgroup_set_timestamp(struct task_struct *task,
663                           struct perf_event_context *ctx)
664 {
665         struct perf_cgroup *cgrp;
666         struct perf_cgroup_info *info;
667
668         /*
669          * ctx->lock held by caller
670          * ensure we do not access cgroup data
671          * unless we have the cgroup pinned (css_get)
672          */
673         if (!task || !ctx->nr_cgroups)
674                 return;
675
676         cgrp = perf_cgroup_from_task(task, ctx);
677         info = this_cpu_ptr(cgrp->info);
678         info->timestamp = ctx->timestamp;
679 }
680
681 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
682 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
683
684 /*
685  * reschedule events based on the cgroup constraint of task.
686  *
687  * mode SWOUT : schedule out everything
688  * mode SWIN : schedule in based on cgroup for next
689  */
690 static void perf_cgroup_switch(struct task_struct *task, int mode)
691 {
692         struct perf_cpu_context *cpuctx;
693         struct pmu *pmu;
694         unsigned long flags;
695
696         /*
697          * disable interrupts to avoid geting nr_cgroup
698          * changes via __perf_event_disable(). Also
699          * avoids preemption.
700          */
701         local_irq_save(flags);
702
703         /*
704          * we reschedule only in the presence of cgroup
705          * constrained events.
706          */
707
708         list_for_each_entry_rcu(pmu, &pmus, entry) {
709                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710                 if (cpuctx->unique_pmu != pmu)
711                         continue; /* ensure we process each cpuctx once */
712
713                 /*
714                  * perf_cgroup_events says at least one
715                  * context on this CPU has cgroup events.
716                  *
717                  * ctx->nr_cgroups reports the number of cgroup
718                  * events for a context.
719                  */
720                 if (cpuctx->ctx.nr_cgroups > 0) {
721                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722                         perf_pmu_disable(cpuctx->ctx.pmu);
723
724                         if (mode & PERF_CGROUP_SWOUT) {
725                                 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726                                 /*
727                                  * must not be done before ctxswout due
728                                  * to event_filter_match() in event_sched_out()
729                                  */
730                                 cpuctx->cgrp = NULL;
731                         }
732
733                         if (mode & PERF_CGROUP_SWIN) {
734                                 WARN_ON_ONCE(cpuctx->cgrp);
735                                 /*
736                                  * set cgrp before ctxsw in to allow
737                                  * event_filter_match() to not have to pass
738                                  * task around
739                                  * we pass the cpuctx->ctx to perf_cgroup_from_task()
740                                  * because cgorup events are only per-cpu
741                                  */
742                                 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
743                                 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
744                         }
745                         perf_pmu_enable(cpuctx->ctx.pmu);
746                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
747                 }
748         }
749
750         local_irq_restore(flags);
751 }
752
753 static inline void perf_cgroup_sched_out(struct task_struct *task,
754                                          struct task_struct *next)
755 {
756         struct perf_cgroup *cgrp1;
757         struct perf_cgroup *cgrp2 = NULL;
758
759         rcu_read_lock();
760         /*
761          * we come here when we know perf_cgroup_events > 0
762          * we do not need to pass the ctx here because we know
763          * we are holding the rcu lock
764          */
765         cgrp1 = perf_cgroup_from_task(task, NULL);
766         cgrp2 = perf_cgroup_from_task(next, NULL);
767
768         /*
769          * only schedule out current cgroup events if we know
770          * that we are switching to a different cgroup. Otherwise,
771          * do no touch the cgroup events.
772          */
773         if (cgrp1 != cgrp2)
774                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
775
776         rcu_read_unlock();
777 }
778
779 static inline void perf_cgroup_sched_in(struct task_struct *prev,
780                                         struct task_struct *task)
781 {
782         struct perf_cgroup *cgrp1;
783         struct perf_cgroup *cgrp2 = NULL;
784
785         rcu_read_lock();
786         /*
787          * we come here when we know perf_cgroup_events > 0
788          * we do not need to pass the ctx here because we know
789          * we are holding the rcu lock
790          */
791         cgrp1 = perf_cgroup_from_task(task, NULL);
792         cgrp2 = perf_cgroup_from_task(prev, NULL);
793
794         /*
795          * only need to schedule in cgroup events if we are changing
796          * cgroup during ctxsw. Cgroup events were not scheduled
797          * out of ctxsw out if that was not the case.
798          */
799         if (cgrp1 != cgrp2)
800                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
801
802         rcu_read_unlock();
803 }
804
805 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806                                       struct perf_event_attr *attr,
807                                       struct perf_event *group_leader)
808 {
809         struct perf_cgroup *cgrp;
810         struct cgroup_subsys_state *css;
811         struct fd f = fdget(fd);
812         int ret = 0;
813
814         if (!f.file)
815                 return -EBADF;
816
817         css = css_tryget_online_from_dir(f.file->f_path.dentry,
818                                          &perf_event_cgrp_subsys);
819         if (IS_ERR(css)) {
820                 ret = PTR_ERR(css);
821                 goto out;
822         }
823
824         cgrp = container_of(css, struct perf_cgroup, css);
825         event->cgrp = cgrp;
826
827         /*
828          * all events in a group must monitor
829          * the same cgroup because a task belongs
830          * to only one perf cgroup at a time
831          */
832         if (group_leader && group_leader->cgrp != cgrp) {
833                 perf_detach_cgroup(event);
834                 ret = -EINVAL;
835         }
836 out:
837         fdput(f);
838         return ret;
839 }
840
841 static inline void
842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843 {
844         struct perf_cgroup_info *t;
845         t = per_cpu_ptr(event->cgrp->info, event->cpu);
846         event->shadow_ctx_time = now - t->timestamp;
847 }
848
849 static inline void
850 perf_cgroup_defer_enabled(struct perf_event *event)
851 {
852         /*
853          * when the current task's perf cgroup does not match
854          * the event's, we need to remember to call the
855          * perf_mark_enable() function the first time a task with
856          * a matching perf cgroup is scheduled in.
857          */
858         if (is_cgroup_event(event) && !perf_cgroup_match(event))
859                 event->cgrp_defer_enabled = 1;
860 }
861
862 static inline void
863 perf_cgroup_mark_enabled(struct perf_event *event,
864                          struct perf_event_context *ctx)
865 {
866         struct perf_event *sub;
867         u64 tstamp = perf_event_time(event);
868
869         if (!event->cgrp_defer_enabled)
870                 return;
871
872         event->cgrp_defer_enabled = 0;
873
874         event->tstamp_enabled = tstamp - event->total_time_enabled;
875         list_for_each_entry(sub, &event->sibling_list, group_entry) {
876                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878                         sub->cgrp_defer_enabled = 0;
879                 }
880         }
881 }
882
883 /*
884  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885  * cleared when last cgroup event is removed.
886  */
887 static inline void
888 list_update_cgroup_event(struct perf_event *event,
889                          struct perf_event_context *ctx, bool add)
890 {
891         struct perf_cpu_context *cpuctx;
892
893         if (!is_cgroup_event(event))
894                 return;
895
896         if (add && ctx->nr_cgroups++)
897                 return;
898         else if (!add && --ctx->nr_cgroups)
899                 return;
900         /*
901          * Because cgroup events are always per-cpu events,
902          * this will always be called from the right CPU.
903          */
904         cpuctx = __get_cpu_context(ctx);
905
906         /*
907          * cpuctx->cgrp is NULL until a cgroup event is sched in or
908          * ctx->nr_cgroup == 0 .
909          */
910         if (add && perf_cgroup_from_task(current, ctx) == event->cgrp)
911                 cpuctx->cgrp = event->cgrp;
912         else if (!add)
913                 cpuctx->cgrp = NULL;
914 }
915
916 #else /* !CONFIG_CGROUP_PERF */
917
918 static inline bool
919 perf_cgroup_match(struct perf_event *event)
920 {
921         return true;
922 }
923
924 static inline void perf_detach_cgroup(struct perf_event *event)
925 {}
926
927 static inline int is_cgroup_event(struct perf_event *event)
928 {
929         return 0;
930 }
931
932 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
933 {
934         return 0;
935 }
936
937 static inline void update_cgrp_time_from_event(struct perf_event *event)
938 {
939 }
940
941 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
942 {
943 }
944
945 static inline void perf_cgroup_sched_out(struct task_struct *task,
946                                          struct task_struct *next)
947 {
948 }
949
950 static inline void perf_cgroup_sched_in(struct task_struct *prev,
951                                         struct task_struct *task)
952 {
953 }
954
955 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
956                                       struct perf_event_attr *attr,
957                                       struct perf_event *group_leader)
958 {
959         return -EINVAL;
960 }
961
962 static inline void
963 perf_cgroup_set_timestamp(struct task_struct *task,
964                           struct perf_event_context *ctx)
965 {
966 }
967
968 void
969 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
970 {
971 }
972
973 static inline void
974 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
975 {
976 }
977
978 static inline u64 perf_cgroup_event_time(struct perf_event *event)
979 {
980         return 0;
981 }
982
983 static inline void
984 perf_cgroup_defer_enabled(struct perf_event *event)
985 {
986 }
987
988 static inline void
989 perf_cgroup_mark_enabled(struct perf_event *event,
990                          struct perf_event_context *ctx)
991 {
992 }
993
994 static inline void
995 list_update_cgroup_event(struct perf_event *event,
996                          struct perf_event_context *ctx, bool add)
997 {
998 }
999
1000 #endif
1001
1002 /*
1003  * set default to be dependent on timer tick just
1004  * like original code
1005  */
1006 #define PERF_CPU_HRTIMER (1000 / HZ)
1007 /*
1008  * function must be called with interrupts disbled
1009  */
1010 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1011 {
1012         struct perf_cpu_context *cpuctx;
1013         int rotations = 0;
1014
1015         WARN_ON(!irqs_disabled());
1016
1017         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1018         rotations = perf_rotate_context(cpuctx);
1019
1020         raw_spin_lock(&cpuctx->hrtimer_lock);
1021         if (rotations)
1022                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1023         else
1024                 cpuctx->hrtimer_active = 0;
1025         raw_spin_unlock(&cpuctx->hrtimer_lock);
1026
1027         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1028 }
1029
1030 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1031 {
1032         struct hrtimer *timer = &cpuctx->hrtimer;
1033         struct pmu *pmu = cpuctx->ctx.pmu;
1034         u64 interval;
1035
1036         /* no multiplexing needed for SW PMU */
1037         if (pmu->task_ctx_nr == perf_sw_context)
1038                 return;
1039
1040         /*
1041          * check default is sane, if not set then force to
1042          * default interval (1/tick)
1043          */
1044         interval = pmu->hrtimer_interval_ms;
1045         if (interval < 1)
1046                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1047
1048         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1049
1050         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1051         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1052         timer->function = perf_mux_hrtimer_handler;
1053 }
1054
1055 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1056 {
1057         struct hrtimer *timer = &cpuctx->hrtimer;
1058         struct pmu *pmu = cpuctx->ctx.pmu;
1059         unsigned long flags;
1060
1061         /* not for SW PMU */
1062         if (pmu->task_ctx_nr == perf_sw_context)
1063                 return 0;
1064
1065         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1066         if (!cpuctx->hrtimer_active) {
1067                 cpuctx->hrtimer_active = 1;
1068                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1069                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1070         }
1071         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1072
1073         return 0;
1074 }
1075
1076 void perf_pmu_disable(struct pmu *pmu)
1077 {
1078         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1079         if (!(*count)++)
1080                 pmu->pmu_disable(pmu);
1081 }
1082
1083 void perf_pmu_enable(struct pmu *pmu)
1084 {
1085         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1086         if (!--(*count))
1087                 pmu->pmu_enable(pmu);
1088 }
1089
1090 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1091
1092 /*
1093  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1094  * perf_event_task_tick() are fully serialized because they're strictly cpu
1095  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1096  * disabled, while perf_event_task_tick is called from IRQ context.
1097  */
1098 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1099 {
1100         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1101
1102         WARN_ON(!irqs_disabled());
1103
1104         WARN_ON(!list_empty(&ctx->active_ctx_list));
1105
1106         list_add(&ctx->active_ctx_list, head);
1107 }
1108
1109 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1110 {
1111         WARN_ON(!irqs_disabled());
1112
1113         WARN_ON(list_empty(&ctx->active_ctx_list));
1114
1115         list_del_init(&ctx->active_ctx_list);
1116 }
1117
1118 static void get_ctx(struct perf_event_context *ctx)
1119 {
1120         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1121 }
1122
1123 static void free_ctx(struct rcu_head *head)
1124 {
1125         struct perf_event_context *ctx;
1126
1127         ctx = container_of(head, struct perf_event_context, rcu_head);
1128         kfree(ctx->task_ctx_data);
1129         kfree(ctx);
1130 }
1131
1132 static void put_ctx(struct perf_event_context *ctx)
1133 {
1134         if (atomic_dec_and_test(&ctx->refcount)) {
1135                 if (ctx->parent_ctx)
1136                         put_ctx(ctx->parent_ctx);
1137                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1138                         put_task_struct(ctx->task);
1139                 call_rcu(&ctx->rcu_head, free_ctx);
1140         }
1141 }
1142
1143 /*
1144  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1145  * perf_pmu_migrate_context() we need some magic.
1146  *
1147  * Those places that change perf_event::ctx will hold both
1148  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1149  *
1150  * Lock ordering is by mutex address. There are two other sites where
1151  * perf_event_context::mutex nests and those are:
1152  *
1153  *  - perf_event_exit_task_context()    [ child , 0 ]
1154  *      perf_event_exit_event()
1155  *        put_event()                   [ parent, 1 ]
1156  *
1157  *  - perf_event_init_context()         [ parent, 0 ]
1158  *      inherit_task_group()
1159  *        inherit_group()
1160  *          inherit_event()
1161  *            perf_event_alloc()
1162  *              perf_init_event()
1163  *                perf_try_init_event() [ child , 1 ]
1164  *
1165  * While it appears there is an obvious deadlock here -- the parent and child
1166  * nesting levels are inverted between the two. This is in fact safe because
1167  * life-time rules separate them. That is an exiting task cannot fork, and a
1168  * spawning task cannot (yet) exit.
1169  *
1170  * But remember that that these are parent<->child context relations, and
1171  * migration does not affect children, therefore these two orderings should not
1172  * interact.
1173  *
1174  * The change in perf_event::ctx does not affect children (as claimed above)
1175  * because the sys_perf_event_open() case will install a new event and break
1176  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1177  * concerned with cpuctx and that doesn't have children.
1178  *
1179  * The places that change perf_event::ctx will issue:
1180  *
1181  *   perf_remove_from_context();
1182  *   synchronize_rcu();
1183  *   perf_install_in_context();
1184  *
1185  * to affect the change. The remove_from_context() + synchronize_rcu() should
1186  * quiesce the event, after which we can install it in the new location. This
1187  * means that only external vectors (perf_fops, prctl) can perturb the event
1188  * while in transit. Therefore all such accessors should also acquire
1189  * perf_event_context::mutex to serialize against this.
1190  *
1191  * However; because event->ctx can change while we're waiting to acquire
1192  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1193  * function.
1194  *
1195  * Lock order:
1196  *    cred_guard_mutex
1197  *      task_struct::perf_event_mutex
1198  *        perf_event_context::mutex
1199  *          perf_event::child_mutex;
1200  *            perf_event_context::lock
1201  *          perf_event::mmap_mutex
1202  *          mmap_sem
1203  */
1204 static struct perf_event_context *
1205 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1206 {
1207         struct perf_event_context *ctx;
1208
1209 again:
1210         rcu_read_lock();
1211         ctx = ACCESS_ONCE(event->ctx);
1212         if (!atomic_inc_not_zero(&ctx->refcount)) {
1213                 rcu_read_unlock();
1214                 goto again;
1215         }
1216         rcu_read_unlock();
1217
1218         mutex_lock_nested(&ctx->mutex, nesting);
1219         if (event->ctx != ctx) {
1220                 mutex_unlock(&ctx->mutex);
1221                 put_ctx(ctx);
1222                 goto again;
1223         }
1224
1225         return ctx;
1226 }
1227
1228 static inline struct perf_event_context *
1229 perf_event_ctx_lock(struct perf_event *event)
1230 {
1231         return perf_event_ctx_lock_nested(event, 0);
1232 }
1233
1234 static void perf_event_ctx_unlock(struct perf_event *event,
1235                                   struct perf_event_context *ctx)
1236 {
1237         mutex_unlock(&ctx->mutex);
1238         put_ctx(ctx);
1239 }
1240
1241 /*
1242  * This must be done under the ctx->lock, such as to serialize against
1243  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1244  * calling scheduler related locks and ctx->lock nests inside those.
1245  */
1246 static __must_check struct perf_event_context *
1247 unclone_ctx(struct perf_event_context *ctx)
1248 {
1249         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1250
1251         lockdep_assert_held(&ctx->lock);
1252
1253         if (parent_ctx)
1254                 ctx->parent_ctx = NULL;
1255         ctx->generation++;
1256
1257         return parent_ctx;
1258 }
1259
1260 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1261 {
1262         /*
1263          * only top level events have the pid namespace they were created in
1264          */
1265         if (event->parent)
1266                 event = event->parent;
1267
1268         return task_tgid_nr_ns(p, event->ns);
1269 }
1270
1271 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1272 {
1273         /*
1274          * only top level events have the pid namespace they were created in
1275          */
1276         if (event->parent)
1277                 event = event->parent;
1278
1279         return task_pid_nr_ns(p, event->ns);
1280 }
1281
1282 /*
1283  * If we inherit events we want to return the parent event id
1284  * to userspace.
1285  */
1286 static u64 primary_event_id(struct perf_event *event)
1287 {
1288         u64 id = event->id;
1289
1290         if (event->parent)
1291                 id = event->parent->id;
1292
1293         return id;
1294 }
1295
1296 /*
1297  * Get the perf_event_context for a task and lock it.
1298  *
1299  * This has to cope with with the fact that until it is locked,
1300  * the context could get moved to another task.
1301  */
1302 static struct perf_event_context *
1303 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1304 {
1305         struct perf_event_context *ctx;
1306
1307 retry:
1308         /*
1309          * One of the few rules of preemptible RCU is that one cannot do
1310          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1311          * part of the read side critical section was irqs-enabled -- see
1312          * rcu_read_unlock_special().
1313          *
1314          * Since ctx->lock nests under rq->lock we must ensure the entire read
1315          * side critical section has interrupts disabled.
1316          */
1317         local_irq_save(*flags);
1318         rcu_read_lock();
1319         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1320         if (ctx) {
1321                 /*
1322                  * If this context is a clone of another, it might
1323                  * get swapped for another underneath us by
1324                  * perf_event_task_sched_out, though the
1325                  * rcu_read_lock() protects us from any context
1326                  * getting freed.  Lock the context and check if it
1327                  * got swapped before we could get the lock, and retry
1328                  * if so.  If we locked the right context, then it
1329                  * can't get swapped on us any more.
1330                  */
1331                 raw_spin_lock(&ctx->lock);
1332                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1333                         raw_spin_unlock(&ctx->lock);
1334                         rcu_read_unlock();
1335                         local_irq_restore(*flags);
1336                         goto retry;
1337                 }
1338
1339                 if (ctx->task == TASK_TOMBSTONE ||
1340                     !atomic_inc_not_zero(&ctx->refcount)) {
1341                         raw_spin_unlock(&ctx->lock);
1342                         ctx = NULL;
1343                 } else {
1344                         WARN_ON_ONCE(ctx->task != task);
1345                 }
1346         }
1347         rcu_read_unlock();
1348         if (!ctx)
1349                 local_irq_restore(*flags);
1350         return ctx;
1351 }
1352
1353 /*
1354  * Get the context for a task and increment its pin_count so it
1355  * can't get swapped to another task.  This also increments its
1356  * reference count so that the context can't get freed.
1357  */
1358 static struct perf_event_context *
1359 perf_pin_task_context(struct task_struct *task, int ctxn)
1360 {
1361         struct perf_event_context *ctx;
1362         unsigned long flags;
1363
1364         ctx = perf_lock_task_context(task, ctxn, &flags);
1365         if (ctx) {
1366                 ++ctx->pin_count;
1367                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1368         }
1369         return ctx;
1370 }
1371
1372 static void perf_unpin_context(struct perf_event_context *ctx)
1373 {
1374         unsigned long flags;
1375
1376         raw_spin_lock_irqsave(&ctx->lock, flags);
1377         --ctx->pin_count;
1378         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1379 }
1380
1381 /*
1382  * Update the record of the current time in a context.
1383  */
1384 static void update_context_time(struct perf_event_context *ctx)
1385 {
1386         u64 now = perf_clock();
1387
1388         ctx->time += now - ctx->timestamp;
1389         ctx->timestamp = now;
1390 }
1391
1392 static u64 perf_event_time(struct perf_event *event)
1393 {
1394         struct perf_event_context *ctx = event->ctx;
1395
1396         if (is_cgroup_event(event))
1397                 return perf_cgroup_event_time(event);
1398
1399         return ctx ? ctx->time : 0;
1400 }
1401
1402 /*
1403  * Update the total_time_enabled and total_time_running fields for a event.
1404  */
1405 static void update_event_times(struct perf_event *event)
1406 {
1407         struct perf_event_context *ctx = event->ctx;
1408         u64 run_end;
1409
1410         lockdep_assert_held(&ctx->lock);
1411
1412         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1413             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1414                 return;
1415
1416         /*
1417          * in cgroup mode, time_enabled represents
1418          * the time the event was enabled AND active
1419          * tasks were in the monitored cgroup. This is
1420          * independent of the activity of the context as
1421          * there may be a mix of cgroup and non-cgroup events.
1422          *
1423          * That is why we treat cgroup events differently
1424          * here.
1425          */
1426         if (is_cgroup_event(event))
1427                 run_end = perf_cgroup_event_time(event);
1428         else if (ctx->is_active)
1429                 run_end = ctx->time;
1430         else
1431                 run_end = event->tstamp_stopped;
1432
1433         event->total_time_enabled = run_end - event->tstamp_enabled;
1434
1435         if (event->state == PERF_EVENT_STATE_INACTIVE)
1436                 run_end = event->tstamp_stopped;
1437         else
1438                 run_end = perf_event_time(event);
1439
1440         event->total_time_running = run_end - event->tstamp_running;
1441
1442 }
1443
1444 /*
1445  * Update total_time_enabled and total_time_running for all events in a group.
1446  */
1447 static void update_group_times(struct perf_event *leader)
1448 {
1449         struct perf_event *event;
1450
1451         update_event_times(leader);
1452         list_for_each_entry(event, &leader->sibling_list, group_entry)
1453                 update_event_times(event);
1454 }
1455
1456 static struct list_head *
1457 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1458 {
1459         if (event->attr.pinned)
1460                 return &ctx->pinned_groups;
1461         else
1462                 return &ctx->flexible_groups;
1463 }
1464
1465 /*
1466  * Add a event from the lists for its context.
1467  * Must be called with ctx->mutex and ctx->lock held.
1468  */
1469 static void
1470 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1471 {
1472         lockdep_assert_held(&ctx->lock);
1473
1474         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1475         event->attach_state |= PERF_ATTACH_CONTEXT;
1476
1477         /*
1478          * If we're a stand alone event or group leader, we go to the context
1479          * list, group events are kept attached to the group so that
1480          * perf_group_detach can, at all times, locate all siblings.
1481          */
1482         if (event->group_leader == event) {
1483                 struct list_head *list;
1484
1485                 event->group_caps = event->event_caps;
1486
1487                 list = ctx_group_list(event, ctx);
1488                 list_add_tail(&event->group_entry, list);
1489         }
1490
1491         list_update_cgroup_event(event, ctx, true);
1492
1493         list_add_rcu(&event->event_entry, &ctx->event_list);
1494         ctx->nr_events++;
1495         if (event->attr.inherit_stat)
1496                 ctx->nr_stat++;
1497
1498         ctx->generation++;
1499 }
1500
1501 /*
1502  * Initialize event state based on the perf_event_attr::disabled.
1503  */
1504 static inline void perf_event__state_init(struct perf_event *event)
1505 {
1506         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1507                                               PERF_EVENT_STATE_INACTIVE;
1508 }
1509
1510 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1511 {
1512         int entry = sizeof(u64); /* value */
1513         int size = 0;
1514         int nr = 1;
1515
1516         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1517                 size += sizeof(u64);
1518
1519         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1520                 size += sizeof(u64);
1521
1522         if (event->attr.read_format & PERF_FORMAT_ID)
1523                 entry += sizeof(u64);
1524
1525         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1526                 nr += nr_siblings;
1527                 size += sizeof(u64);
1528         }
1529
1530         size += entry * nr;
1531         event->read_size = size;
1532 }
1533
1534 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1535 {
1536         struct perf_sample_data *data;
1537         u16 size = 0;
1538
1539         if (sample_type & PERF_SAMPLE_IP)
1540                 size += sizeof(data->ip);
1541
1542         if (sample_type & PERF_SAMPLE_ADDR)
1543                 size += sizeof(data->addr);
1544
1545         if (sample_type & PERF_SAMPLE_PERIOD)
1546                 size += sizeof(data->period);
1547
1548         if (sample_type & PERF_SAMPLE_WEIGHT)
1549                 size += sizeof(data->weight);
1550
1551         if (sample_type & PERF_SAMPLE_READ)
1552                 size += event->read_size;
1553
1554         if (sample_type & PERF_SAMPLE_DATA_SRC)
1555                 size += sizeof(data->data_src.val);
1556
1557         if (sample_type & PERF_SAMPLE_TRANSACTION)
1558                 size += sizeof(data->txn);
1559
1560         event->header_size = size;
1561 }
1562
1563 /*
1564  * Called at perf_event creation and when events are attached/detached from a
1565  * group.
1566  */
1567 static void perf_event__header_size(struct perf_event *event)
1568 {
1569         __perf_event_read_size(event,
1570                                event->group_leader->nr_siblings);
1571         __perf_event_header_size(event, event->attr.sample_type);
1572 }
1573
1574 static void perf_event__id_header_size(struct perf_event *event)
1575 {
1576         struct perf_sample_data *data;
1577         u64 sample_type = event->attr.sample_type;
1578         u16 size = 0;
1579
1580         if (sample_type & PERF_SAMPLE_TID)
1581                 size += sizeof(data->tid_entry);
1582
1583         if (sample_type & PERF_SAMPLE_TIME)
1584                 size += sizeof(data->time);
1585
1586         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1587                 size += sizeof(data->id);
1588
1589         if (sample_type & PERF_SAMPLE_ID)
1590                 size += sizeof(data->id);
1591
1592         if (sample_type & PERF_SAMPLE_STREAM_ID)
1593                 size += sizeof(data->stream_id);
1594
1595         if (sample_type & PERF_SAMPLE_CPU)
1596                 size += sizeof(data->cpu_entry);
1597
1598         event->id_header_size = size;
1599 }
1600
1601 static bool perf_event_validate_size(struct perf_event *event)
1602 {
1603         /*
1604          * The values computed here will be over-written when we actually
1605          * attach the event.
1606          */
1607         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1608         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1609         perf_event__id_header_size(event);
1610
1611         /*
1612          * Sum the lot; should not exceed the 64k limit we have on records.
1613          * Conservative limit to allow for callchains and other variable fields.
1614          */
1615         if (event->read_size + event->header_size +
1616             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1617                 return false;
1618
1619         return true;
1620 }
1621
1622 static void perf_group_attach(struct perf_event *event)
1623 {
1624         struct perf_event *group_leader = event->group_leader, *pos;
1625
1626         lockdep_assert_held(&event->ctx->lock);
1627
1628         /*
1629          * We can have double attach due to group movement in perf_event_open.
1630          */
1631         if (event->attach_state & PERF_ATTACH_GROUP)
1632                 return;
1633
1634         event->attach_state |= PERF_ATTACH_GROUP;
1635
1636         if (group_leader == event)
1637                 return;
1638
1639         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1640
1641         group_leader->group_caps &= event->event_caps;
1642
1643         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1644         group_leader->nr_siblings++;
1645
1646         perf_event__header_size(group_leader);
1647
1648         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1649                 perf_event__header_size(pos);
1650 }
1651
1652 /*
1653  * Remove a event from the lists for its context.
1654  * Must be called with ctx->mutex and ctx->lock held.
1655  */
1656 static void
1657 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1658 {
1659         WARN_ON_ONCE(event->ctx != ctx);
1660         lockdep_assert_held(&ctx->lock);
1661
1662         /*
1663          * We can have double detach due to exit/hot-unplug + close.
1664          */
1665         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1666                 return;
1667
1668         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1669
1670         list_update_cgroup_event(event, ctx, false);
1671
1672         ctx->nr_events--;
1673         if (event->attr.inherit_stat)
1674                 ctx->nr_stat--;
1675
1676         list_del_rcu(&event->event_entry);
1677
1678         if (event->group_leader == event)
1679                 list_del_init(&event->group_entry);
1680
1681         update_group_times(event);
1682
1683         /*
1684          * If event was in error state, then keep it
1685          * that way, otherwise bogus counts will be
1686          * returned on read(). The only way to get out
1687          * of error state is by explicit re-enabling
1688          * of the event
1689          */
1690         if (event->state > PERF_EVENT_STATE_OFF)
1691                 event->state = PERF_EVENT_STATE_OFF;
1692
1693         ctx->generation++;
1694 }
1695
1696 static void perf_group_detach(struct perf_event *event)
1697 {
1698         struct perf_event *sibling, *tmp;
1699         struct list_head *list = NULL;
1700
1701         lockdep_assert_held(&event->ctx->lock);
1702
1703         /*
1704          * We can have double detach due to exit/hot-unplug + close.
1705          */
1706         if (!(event->attach_state & PERF_ATTACH_GROUP))
1707                 return;
1708
1709         event->attach_state &= ~PERF_ATTACH_GROUP;
1710
1711         /*
1712          * If this is a sibling, remove it from its group.
1713          */
1714         if (event->group_leader != event) {
1715                 list_del_init(&event->group_entry);
1716                 event->group_leader->nr_siblings--;
1717                 goto out;
1718         }
1719
1720         if (!list_empty(&event->group_entry))
1721                 list = &event->group_entry;
1722
1723         /*
1724          * If this was a group event with sibling events then
1725          * upgrade the siblings to singleton events by adding them
1726          * to whatever list we are on.
1727          */
1728         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1729                 if (list)
1730                         list_move_tail(&sibling->group_entry, list);
1731                 sibling->group_leader = sibling;
1732
1733                 /* Inherit group flags from the previous leader */
1734                 sibling->group_caps = event->group_caps;
1735
1736                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1737         }
1738
1739 out:
1740         perf_event__header_size(event->group_leader);
1741
1742         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1743                 perf_event__header_size(tmp);
1744 }
1745
1746 static bool is_orphaned_event(struct perf_event *event)
1747 {
1748         return event->state == PERF_EVENT_STATE_DEAD;
1749 }
1750
1751 static inline int __pmu_filter_match(struct perf_event *event)
1752 {
1753         struct pmu *pmu = event->pmu;
1754         return pmu->filter_match ? pmu->filter_match(event) : 1;
1755 }
1756
1757 /*
1758  * Check whether we should attempt to schedule an event group based on
1759  * PMU-specific filtering. An event group can consist of HW and SW events,
1760  * potentially with a SW leader, so we must check all the filters, to
1761  * determine whether a group is schedulable:
1762  */
1763 static inline int pmu_filter_match(struct perf_event *event)
1764 {
1765         struct perf_event *child;
1766
1767         if (!__pmu_filter_match(event))
1768                 return 0;
1769
1770         list_for_each_entry(child, &event->sibling_list, group_entry) {
1771                 if (!__pmu_filter_match(child))
1772                         return 0;
1773         }
1774
1775         return 1;
1776 }
1777
1778 static inline int
1779 event_filter_match(struct perf_event *event)
1780 {
1781         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1782                perf_cgroup_match(event) && pmu_filter_match(event);
1783 }
1784
1785 static void
1786 event_sched_out(struct perf_event *event,
1787                   struct perf_cpu_context *cpuctx,
1788                   struct perf_event_context *ctx)
1789 {
1790         u64 tstamp = perf_event_time(event);
1791         u64 delta;
1792
1793         WARN_ON_ONCE(event->ctx != ctx);
1794         lockdep_assert_held(&ctx->lock);
1795
1796         /*
1797          * An event which could not be activated because of
1798          * filter mismatch still needs to have its timings
1799          * maintained, otherwise bogus information is return
1800          * via read() for time_enabled, time_running:
1801          */
1802         if (event->state == PERF_EVENT_STATE_INACTIVE &&
1803             !event_filter_match(event)) {
1804                 delta = tstamp - event->tstamp_stopped;
1805                 event->tstamp_running += delta;
1806                 event->tstamp_stopped = tstamp;
1807         }
1808
1809         if (event->state != PERF_EVENT_STATE_ACTIVE)
1810                 return;
1811
1812         perf_pmu_disable(event->pmu);
1813
1814         event->tstamp_stopped = tstamp;
1815         event->pmu->del(event, 0);
1816         event->oncpu = -1;
1817         event->state = PERF_EVENT_STATE_INACTIVE;
1818         if (event->pending_disable) {
1819                 event->pending_disable = 0;
1820                 event->state = PERF_EVENT_STATE_OFF;
1821         }
1822
1823         if (!is_software_event(event))
1824                 cpuctx->active_oncpu--;
1825         if (!--ctx->nr_active)
1826                 perf_event_ctx_deactivate(ctx);
1827         if (event->attr.freq && event->attr.sample_freq)
1828                 ctx->nr_freq--;
1829         if (event->attr.exclusive || !cpuctx->active_oncpu)
1830                 cpuctx->exclusive = 0;
1831
1832         perf_pmu_enable(event->pmu);
1833 }
1834
1835 static void
1836 group_sched_out(struct perf_event *group_event,
1837                 struct perf_cpu_context *cpuctx,
1838                 struct perf_event_context *ctx)
1839 {
1840         struct perf_event *event;
1841         int state = group_event->state;
1842
1843         perf_pmu_disable(ctx->pmu);
1844
1845         event_sched_out(group_event, cpuctx, ctx);
1846
1847         /*
1848          * Schedule out siblings (if any):
1849          */
1850         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1851                 event_sched_out(event, cpuctx, ctx);
1852
1853         perf_pmu_enable(ctx->pmu);
1854
1855         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1856                 cpuctx->exclusive = 0;
1857 }
1858
1859 #define DETACH_GROUP    0x01UL
1860
1861 /*
1862  * Cross CPU call to remove a performance event
1863  *
1864  * We disable the event on the hardware level first. After that we
1865  * remove it from the context list.
1866  */
1867 static void
1868 __perf_remove_from_context(struct perf_event *event,
1869                            struct perf_cpu_context *cpuctx,
1870                            struct perf_event_context *ctx,
1871                            void *info)
1872 {
1873         unsigned long flags = (unsigned long)info;
1874
1875         event_sched_out(event, cpuctx, ctx);
1876         if (flags & DETACH_GROUP)
1877                 perf_group_detach(event);
1878         list_del_event(event, ctx);
1879
1880         if (!ctx->nr_events && ctx->is_active) {
1881                 ctx->is_active = 0;
1882                 if (ctx->task) {
1883                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1884                         cpuctx->task_ctx = NULL;
1885                 }
1886         }
1887 }
1888
1889 /*
1890  * Remove the event from a task's (or a CPU's) list of events.
1891  *
1892  * If event->ctx is a cloned context, callers must make sure that
1893  * every task struct that event->ctx->task could possibly point to
1894  * remains valid.  This is OK when called from perf_release since
1895  * that only calls us on the top-level context, which can't be a clone.
1896  * When called from perf_event_exit_task, it's OK because the
1897  * context has been detached from its task.
1898  */
1899 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1900 {
1901         struct perf_event_context *ctx = event->ctx;
1902
1903         lockdep_assert_held(&ctx->mutex);
1904
1905         event_function_call(event, __perf_remove_from_context, (void *)flags);
1906
1907         /*
1908          * The above event_function_call() can NO-OP when it hits
1909          * TASK_TOMBSTONE. In that case we must already have been detached
1910          * from the context (by perf_event_exit_event()) but the grouping
1911          * might still be in-tact.
1912          */
1913         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1914         if ((flags & DETACH_GROUP) &&
1915             (event->attach_state & PERF_ATTACH_GROUP)) {
1916                 /*
1917                  * Since in that case we cannot possibly be scheduled, simply
1918                  * detach now.
1919                  */
1920                 raw_spin_lock_irq(&ctx->lock);
1921                 perf_group_detach(event);
1922                 raw_spin_unlock_irq(&ctx->lock);
1923         }
1924 }
1925
1926 /*
1927  * Cross CPU call to disable a performance event
1928  */
1929 static void __perf_event_disable(struct perf_event *event,
1930                                  struct perf_cpu_context *cpuctx,
1931                                  struct perf_event_context *ctx,
1932                                  void *info)
1933 {
1934         if (event->state < PERF_EVENT_STATE_INACTIVE)
1935                 return;
1936
1937         update_context_time(ctx);
1938         update_cgrp_time_from_event(event);
1939         update_group_times(event);
1940         if (event == event->group_leader)
1941                 group_sched_out(event, cpuctx, ctx);
1942         else
1943                 event_sched_out(event, cpuctx, ctx);
1944         event->state = PERF_EVENT_STATE_OFF;
1945 }
1946
1947 /*
1948  * Disable a event.
1949  *
1950  * If event->ctx is a cloned context, callers must make sure that
1951  * every task struct that event->ctx->task could possibly point to
1952  * remains valid.  This condition is satisifed when called through
1953  * perf_event_for_each_child or perf_event_for_each because they
1954  * hold the top-level event's child_mutex, so any descendant that
1955  * goes to exit will block in perf_event_exit_event().
1956  *
1957  * When called from perf_pending_event it's OK because event->ctx
1958  * is the current context on this CPU and preemption is disabled,
1959  * hence we can't get into perf_event_task_sched_out for this context.
1960  */
1961 static void _perf_event_disable(struct perf_event *event)
1962 {
1963         struct perf_event_context *ctx = event->ctx;
1964
1965         raw_spin_lock_irq(&ctx->lock);
1966         if (event->state <= PERF_EVENT_STATE_OFF) {
1967                 raw_spin_unlock_irq(&ctx->lock);
1968                 return;
1969         }
1970         raw_spin_unlock_irq(&ctx->lock);
1971
1972         event_function_call(event, __perf_event_disable, NULL);
1973 }
1974
1975 void perf_event_disable_local(struct perf_event *event)
1976 {
1977         event_function_local(event, __perf_event_disable, NULL);
1978 }
1979
1980 /*
1981  * Strictly speaking kernel users cannot create groups and therefore this
1982  * interface does not need the perf_event_ctx_lock() magic.
1983  */
1984 void perf_event_disable(struct perf_event *event)
1985 {
1986         struct perf_event_context *ctx;
1987
1988         ctx = perf_event_ctx_lock(event);
1989         _perf_event_disable(event);
1990         perf_event_ctx_unlock(event, ctx);
1991 }
1992 EXPORT_SYMBOL_GPL(perf_event_disable);
1993
1994 void perf_event_disable_inatomic(struct perf_event *event)
1995 {
1996         event->pending_disable = 1;
1997         irq_work_queue(&event->pending);
1998 }
1999
2000 static void perf_set_shadow_time(struct perf_event *event,
2001                                  struct perf_event_context *ctx,
2002                                  u64 tstamp)
2003 {
2004         /*
2005          * use the correct time source for the time snapshot
2006          *
2007          * We could get by without this by leveraging the
2008          * fact that to get to this function, the caller
2009          * has most likely already called update_context_time()
2010          * and update_cgrp_time_xx() and thus both timestamp
2011          * are identical (or very close). Given that tstamp is,
2012          * already adjusted for cgroup, we could say that:
2013          *    tstamp - ctx->timestamp
2014          * is equivalent to
2015          *    tstamp - cgrp->timestamp.
2016          *
2017          * Then, in perf_output_read(), the calculation would
2018          * work with no changes because:
2019          * - event is guaranteed scheduled in
2020          * - no scheduled out in between
2021          * - thus the timestamp would be the same
2022          *
2023          * But this is a bit hairy.
2024          *
2025          * So instead, we have an explicit cgroup call to remain
2026          * within the time time source all along. We believe it
2027          * is cleaner and simpler to understand.
2028          */
2029         if (is_cgroup_event(event))
2030                 perf_cgroup_set_shadow_time(event, tstamp);
2031         else
2032                 event->shadow_ctx_time = tstamp - ctx->timestamp;
2033 }
2034
2035 #define MAX_INTERRUPTS (~0ULL)
2036
2037 static void perf_log_throttle(struct perf_event *event, int enable);
2038 static void perf_log_itrace_start(struct perf_event *event);
2039
2040 static int
2041 event_sched_in(struct perf_event *event,
2042                  struct perf_cpu_context *cpuctx,
2043                  struct perf_event_context *ctx)
2044 {
2045         u64 tstamp = perf_event_time(event);
2046         int ret = 0;
2047
2048         lockdep_assert_held(&ctx->lock);
2049
2050         if (event->state <= PERF_EVENT_STATE_OFF)
2051                 return 0;
2052
2053         WRITE_ONCE(event->oncpu, smp_processor_id());
2054         /*
2055          * Order event::oncpu write to happen before the ACTIVE state
2056          * is visible.
2057          */
2058         smp_wmb();
2059         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2060
2061         /*
2062          * Unthrottle events, since we scheduled we might have missed several
2063          * ticks already, also for a heavily scheduling task there is little
2064          * guarantee it'll get a tick in a timely manner.
2065          */
2066         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2067                 perf_log_throttle(event, 1);
2068                 event->hw.interrupts = 0;
2069         }
2070
2071         /*
2072          * The new state must be visible before we turn it on in the hardware:
2073          */
2074         smp_wmb();
2075
2076         perf_pmu_disable(event->pmu);
2077
2078         perf_set_shadow_time(event, ctx, tstamp);
2079
2080         perf_log_itrace_start(event);
2081
2082         if (event->pmu->add(event, PERF_EF_START)) {
2083                 event->state = PERF_EVENT_STATE_INACTIVE;
2084                 event->oncpu = -1;
2085                 ret = -EAGAIN;
2086                 goto out;
2087         }
2088
2089         event->tstamp_running += tstamp - event->tstamp_stopped;
2090
2091         if (!is_software_event(event))
2092                 cpuctx->active_oncpu++;
2093         if (!ctx->nr_active++)
2094                 perf_event_ctx_activate(ctx);
2095         if (event->attr.freq && event->attr.sample_freq)
2096                 ctx->nr_freq++;
2097
2098         if (event->attr.exclusive)
2099                 cpuctx->exclusive = 1;
2100
2101 out:
2102         perf_pmu_enable(event->pmu);
2103
2104         return ret;
2105 }
2106
2107 static int
2108 group_sched_in(struct perf_event *group_event,
2109                struct perf_cpu_context *cpuctx,
2110                struct perf_event_context *ctx)
2111 {
2112         struct perf_event *event, *partial_group = NULL;
2113         struct pmu *pmu = ctx->pmu;
2114         u64 now = ctx->time;
2115         bool simulate = false;
2116
2117         if (group_event->state == PERF_EVENT_STATE_OFF)
2118                 return 0;
2119
2120         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2121
2122         if (event_sched_in(group_event, cpuctx, ctx)) {
2123                 pmu->cancel_txn(pmu);
2124                 perf_mux_hrtimer_restart(cpuctx);
2125                 return -EAGAIN;
2126         }
2127
2128         /*
2129          * Schedule in siblings as one group (if any):
2130          */
2131         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2132                 if (event_sched_in(event, cpuctx, ctx)) {
2133                         partial_group = event;
2134                         goto group_error;
2135                 }
2136         }
2137
2138         if (!pmu->commit_txn(pmu))
2139                 return 0;
2140
2141 group_error:
2142         /*
2143          * Groups can be scheduled in as one unit only, so undo any
2144          * partial group before returning:
2145          * The events up to the failed event are scheduled out normally,
2146          * tstamp_stopped will be updated.
2147          *
2148          * The failed events and the remaining siblings need to have
2149          * their timings updated as if they had gone thru event_sched_in()
2150          * and event_sched_out(). This is required to get consistent timings
2151          * across the group. This also takes care of the case where the group
2152          * could never be scheduled by ensuring tstamp_stopped is set to mark
2153          * the time the event was actually stopped, such that time delta
2154          * calculation in update_event_times() is correct.
2155          */
2156         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2157                 if (event == partial_group)
2158                         simulate = true;
2159
2160                 if (simulate) {
2161                         event->tstamp_running += now - event->tstamp_stopped;
2162                         event->tstamp_stopped = now;
2163                 } else {
2164                         event_sched_out(event, cpuctx, ctx);
2165                 }
2166         }
2167         event_sched_out(group_event, cpuctx, ctx);
2168
2169         pmu->cancel_txn(pmu);
2170
2171         perf_mux_hrtimer_restart(cpuctx);
2172
2173         return -EAGAIN;
2174 }
2175
2176 /*
2177  * Work out whether we can put this event group on the CPU now.
2178  */
2179 static int group_can_go_on(struct perf_event *event,
2180                            struct perf_cpu_context *cpuctx,
2181                            int can_add_hw)
2182 {
2183         /*
2184          * Groups consisting entirely of software events can always go on.
2185          */
2186         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2187                 return 1;
2188         /*
2189          * If an exclusive group is already on, no other hardware
2190          * events can go on.
2191          */
2192         if (cpuctx->exclusive)
2193                 return 0;
2194         /*
2195          * If this group is exclusive and there are already
2196          * events on the CPU, it can't go on.
2197          */
2198         if (event->attr.exclusive && cpuctx->active_oncpu)
2199                 return 0;
2200         /*
2201          * Otherwise, try to add it if all previous groups were able
2202          * to go on.
2203          */
2204         return can_add_hw;
2205 }
2206
2207 static void add_event_to_ctx(struct perf_event *event,
2208                                struct perf_event_context *ctx)
2209 {
2210         u64 tstamp = perf_event_time(event);
2211
2212         list_add_event(event, ctx);
2213         perf_group_attach(event);
2214         event->tstamp_enabled = tstamp;
2215         event->tstamp_running = tstamp;
2216         event->tstamp_stopped = tstamp;
2217 }
2218
2219 static void ctx_sched_out(struct perf_event_context *ctx,
2220                           struct perf_cpu_context *cpuctx,
2221                           enum event_type_t event_type);
2222 static void
2223 ctx_sched_in(struct perf_event_context *ctx,
2224              struct perf_cpu_context *cpuctx,
2225              enum event_type_t event_type,
2226              struct task_struct *task);
2227
2228 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2229                                struct perf_event_context *ctx)
2230 {
2231         if (!cpuctx->task_ctx)
2232                 return;
2233
2234         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2235                 return;
2236
2237         ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2238 }
2239
2240 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2241                                 struct perf_event_context *ctx,
2242                                 struct task_struct *task)
2243 {
2244         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2245         if (ctx)
2246                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2247         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2248         if (ctx)
2249                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2250 }
2251
2252 static void ctx_resched(struct perf_cpu_context *cpuctx,
2253                         struct perf_event_context *task_ctx)
2254 {
2255         perf_pmu_disable(cpuctx->ctx.pmu);
2256         if (task_ctx)
2257                 task_ctx_sched_out(cpuctx, task_ctx);
2258         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2259         perf_event_sched_in(cpuctx, task_ctx, current);
2260         perf_pmu_enable(cpuctx->ctx.pmu);
2261 }
2262
2263 /*
2264  * Cross CPU call to install and enable a performance event
2265  *
2266  * Very similar to remote_function() + event_function() but cannot assume that
2267  * things like ctx->is_active and cpuctx->task_ctx are set.
2268  */
2269 static int  __perf_install_in_context(void *info)
2270 {
2271         struct perf_event *event = info;
2272         struct perf_event_context *ctx = event->ctx;
2273         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2274         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2275         bool reprogram = true;
2276         int ret = 0;
2277
2278         raw_spin_lock(&cpuctx->ctx.lock);
2279         if (ctx->task) {
2280                 raw_spin_lock(&ctx->lock);
2281                 task_ctx = ctx;
2282
2283                 reprogram = (ctx->task == current);
2284
2285                 /*
2286                  * If the task is running, it must be running on this CPU,
2287                  * otherwise we cannot reprogram things.
2288                  *
2289                  * If its not running, we don't care, ctx->lock will
2290                  * serialize against it becoming runnable.
2291                  */
2292                 if (task_curr(ctx->task) && !reprogram) {
2293                         ret = -ESRCH;
2294                         goto unlock;
2295                 }
2296
2297                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2298         } else if (task_ctx) {
2299                 raw_spin_lock(&task_ctx->lock);
2300         }
2301
2302         if (reprogram) {
2303                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2304                 add_event_to_ctx(event, ctx);
2305                 ctx_resched(cpuctx, task_ctx);
2306         } else {
2307                 add_event_to_ctx(event, ctx);
2308         }
2309
2310 unlock:
2311         perf_ctx_unlock(cpuctx, task_ctx);
2312
2313         return ret;
2314 }
2315
2316 /*
2317  * Attach a performance event to a context.
2318  *
2319  * Very similar to event_function_call, see comment there.
2320  */
2321 static void
2322 perf_install_in_context(struct perf_event_context *ctx,
2323                         struct perf_event *event,
2324                         int cpu)
2325 {
2326         struct task_struct *task = READ_ONCE(ctx->task);
2327
2328         lockdep_assert_held(&ctx->mutex);
2329
2330         if (event->cpu != -1)
2331                 event->cpu = cpu;
2332
2333         /*
2334          * Ensures that if we can observe event->ctx, both the event and ctx
2335          * will be 'complete'. See perf_iterate_sb_cpu().
2336          */
2337         smp_store_release(&event->ctx, ctx);
2338
2339         if (!task) {
2340                 cpu_function_call(cpu, __perf_install_in_context, event);
2341                 return;
2342         }
2343
2344         /*
2345          * Should not happen, we validate the ctx is still alive before calling.
2346          */
2347         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2348                 return;
2349
2350         /*
2351          * Installing events is tricky because we cannot rely on ctx->is_active
2352          * to be set in case this is the nr_events 0 -> 1 transition.
2353          *
2354          * Instead we use task_curr(), which tells us if the task is running.
2355          * However, since we use task_curr() outside of rq::lock, we can race
2356          * against the actual state. This means the result can be wrong.
2357          *
2358          * If we get a false positive, we retry, this is harmless.
2359          *
2360          * If we get a false negative, things are complicated. If we are after
2361          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2362          * value must be correct. If we're before, it doesn't matter since
2363          * perf_event_context_sched_in() will program the counter.
2364          *
2365          * However, this hinges on the remote context switch having observed
2366          * our task->perf_event_ctxp[] store, such that it will in fact take
2367          * ctx::lock in perf_event_context_sched_in().
2368          *
2369          * We do this by task_function_call(), if the IPI fails to hit the task
2370          * we know any future context switch of task must see the
2371          * perf_event_ctpx[] store.
2372          */
2373
2374         /*
2375          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2376          * task_cpu() load, such that if the IPI then does not find the task
2377          * running, a future context switch of that task must observe the
2378          * store.
2379          */
2380         smp_mb();
2381 again:
2382         if (!task_function_call(task, __perf_install_in_context, event))
2383                 return;
2384
2385         raw_spin_lock_irq(&ctx->lock);
2386         task = ctx->task;
2387         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2388                 /*
2389                  * Cannot happen because we already checked above (which also
2390                  * cannot happen), and we hold ctx->mutex, which serializes us
2391                  * against perf_event_exit_task_context().
2392                  */
2393                 raw_spin_unlock_irq(&ctx->lock);
2394                 return;
2395         }
2396         /*
2397          * If the task is not running, ctx->lock will avoid it becoming so,
2398          * thus we can safely install the event.
2399          */
2400         if (task_curr(task)) {
2401                 raw_spin_unlock_irq(&ctx->lock);
2402                 goto again;
2403         }
2404         add_event_to_ctx(event, ctx);
2405         raw_spin_unlock_irq(&ctx->lock);
2406 }
2407
2408 /*
2409  * Put a event into inactive state and update time fields.
2410  * Enabling the leader of a group effectively enables all
2411  * the group members that aren't explicitly disabled, so we
2412  * have to update their ->tstamp_enabled also.
2413  * Note: this works for group members as well as group leaders
2414  * since the non-leader members' sibling_lists will be empty.
2415  */
2416 static void __perf_event_mark_enabled(struct perf_event *event)
2417 {
2418         struct perf_event *sub;
2419         u64 tstamp = perf_event_time(event);
2420
2421         event->state = PERF_EVENT_STATE_INACTIVE;
2422         event->tstamp_enabled = tstamp - event->total_time_enabled;
2423         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2424                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2425                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2426         }
2427 }
2428
2429 /*
2430  * Cross CPU call to enable a performance event
2431  */
2432 static void __perf_event_enable(struct perf_event *event,
2433                                 struct perf_cpu_context *cpuctx,
2434                                 struct perf_event_context *ctx,
2435                                 void *info)
2436 {
2437         struct perf_event *leader = event->group_leader;
2438         struct perf_event_context *task_ctx;
2439
2440         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2441             event->state <= PERF_EVENT_STATE_ERROR)
2442                 return;
2443
2444         if (ctx->is_active)
2445                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2446
2447         __perf_event_mark_enabled(event);
2448
2449         if (!ctx->is_active)
2450                 return;
2451
2452         if (!event_filter_match(event)) {
2453                 if (is_cgroup_event(event))
2454                         perf_cgroup_defer_enabled(event);
2455                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2456                 return;
2457         }
2458
2459         /*
2460          * If the event is in a group and isn't the group leader,
2461          * then don't put it on unless the group is on.
2462          */
2463         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2464                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2465                 return;
2466         }
2467
2468         task_ctx = cpuctx->task_ctx;
2469         if (ctx->task)
2470                 WARN_ON_ONCE(task_ctx != ctx);
2471
2472         ctx_resched(cpuctx, task_ctx);
2473 }
2474
2475 /*
2476  * Enable a event.
2477  *
2478  * If event->ctx is a cloned context, callers must make sure that
2479  * every task struct that event->ctx->task could possibly point to
2480  * remains valid.  This condition is satisfied when called through
2481  * perf_event_for_each_child or perf_event_for_each as described
2482  * for perf_event_disable.
2483  */
2484 static void _perf_event_enable(struct perf_event *event)
2485 {
2486         struct perf_event_context *ctx = event->ctx;
2487
2488         raw_spin_lock_irq(&ctx->lock);
2489         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2490             event->state <  PERF_EVENT_STATE_ERROR) {
2491                 raw_spin_unlock_irq(&ctx->lock);
2492                 return;
2493         }
2494
2495         /*
2496          * If the event is in error state, clear that first.
2497          *
2498          * That way, if we see the event in error state below, we know that it
2499          * has gone back into error state, as distinct from the task having
2500          * been scheduled away before the cross-call arrived.
2501          */
2502         if (event->state == PERF_EVENT_STATE_ERROR)
2503                 event->state = PERF_EVENT_STATE_OFF;
2504         raw_spin_unlock_irq(&ctx->lock);
2505
2506         event_function_call(event, __perf_event_enable, NULL);
2507 }
2508
2509 /*
2510  * See perf_event_disable();
2511  */
2512 void perf_event_enable(struct perf_event *event)
2513 {
2514         struct perf_event_context *ctx;
2515
2516         ctx = perf_event_ctx_lock(event);
2517         _perf_event_enable(event);
2518         perf_event_ctx_unlock(event, ctx);
2519 }
2520 EXPORT_SYMBOL_GPL(perf_event_enable);
2521
2522 struct stop_event_data {
2523         struct perf_event       *event;
2524         unsigned int            restart;
2525 };
2526
2527 static int __perf_event_stop(void *info)
2528 {
2529         struct stop_event_data *sd = info;
2530         struct perf_event *event = sd->event;
2531
2532         /* if it's already INACTIVE, do nothing */
2533         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2534                 return 0;
2535
2536         /* matches smp_wmb() in event_sched_in() */
2537         smp_rmb();
2538
2539         /*
2540          * There is a window with interrupts enabled before we get here,
2541          * so we need to check again lest we try to stop another CPU's event.
2542          */
2543         if (READ_ONCE(event->oncpu) != smp_processor_id())
2544                 return -EAGAIN;
2545
2546         event->pmu->stop(event, PERF_EF_UPDATE);
2547
2548         /*
2549          * May race with the actual stop (through perf_pmu_output_stop()),
2550          * but it is only used for events with AUX ring buffer, and such
2551          * events will refuse to restart because of rb::aux_mmap_count==0,
2552          * see comments in perf_aux_output_begin().
2553          *
2554          * Since this is happening on a event-local CPU, no trace is lost
2555          * while restarting.
2556          */
2557         if (sd->restart)
2558                 event->pmu->start(event, 0);
2559
2560         return 0;
2561 }
2562
2563 static int perf_event_stop(struct perf_event *event, int restart)
2564 {
2565         struct stop_event_data sd = {
2566                 .event          = event,
2567                 .restart        = restart,
2568         };
2569         int ret = 0;
2570
2571         do {
2572                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2573                         return 0;
2574
2575                 /* matches smp_wmb() in event_sched_in() */
2576                 smp_rmb();
2577
2578                 /*
2579                  * We only want to restart ACTIVE events, so if the event goes
2580                  * inactive here (event->oncpu==-1), there's nothing more to do;
2581                  * fall through with ret==-ENXIO.
2582                  */
2583                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2584                                         __perf_event_stop, &sd);
2585         } while (ret == -EAGAIN);
2586
2587         return ret;
2588 }
2589
2590 /*
2591  * In order to contain the amount of racy and tricky in the address filter
2592  * configuration management, it is a two part process:
2593  *
2594  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2595  *      we update the addresses of corresponding vmas in
2596  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2597  * (p2) when an event is scheduled in (pmu::add), it calls
2598  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2599  *      if the generation has changed since the previous call.
2600  *
2601  * If (p1) happens while the event is active, we restart it to force (p2).
2602  *
2603  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2604  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2605  *     ioctl;
2606  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2607  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2608  *     for reading;
2609  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2610  *     of exec.
2611  */
2612 void perf_event_addr_filters_sync(struct perf_event *event)
2613 {
2614         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2615
2616         if (!has_addr_filter(event))
2617                 return;
2618
2619         raw_spin_lock(&ifh->lock);
2620         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2621                 event->pmu->addr_filters_sync(event);
2622                 event->hw.addr_filters_gen = event->addr_filters_gen;
2623         }
2624         raw_spin_unlock(&ifh->lock);
2625 }
2626 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2627
2628 static int _perf_event_refresh(struct perf_event *event, int refresh)
2629 {
2630         /*
2631          * not supported on inherited events
2632          */
2633         if (event->attr.inherit || !is_sampling_event(event))
2634                 return -EINVAL;
2635
2636         atomic_add(refresh, &event->event_limit);
2637         _perf_event_enable(event);
2638
2639         return 0;
2640 }
2641
2642 /*
2643  * See perf_event_disable()
2644  */
2645 int perf_event_refresh(struct perf_event *event, int refresh)
2646 {
2647         struct perf_event_context *ctx;
2648         int ret;
2649
2650         ctx = perf_event_ctx_lock(event);
2651         ret = _perf_event_refresh(event, refresh);
2652         perf_event_ctx_unlock(event, ctx);
2653
2654         return ret;
2655 }
2656 EXPORT_SYMBOL_GPL(perf_event_refresh);
2657
2658 static void ctx_sched_out(struct perf_event_context *ctx,
2659                           struct perf_cpu_context *cpuctx,
2660                           enum event_type_t event_type)
2661 {
2662         int is_active = ctx->is_active;
2663         struct perf_event *event;
2664
2665         lockdep_assert_held(&ctx->lock);
2666
2667         if (likely(!ctx->nr_events)) {
2668                 /*
2669                  * See __perf_remove_from_context().
2670                  */
2671                 WARN_ON_ONCE(ctx->is_active);
2672                 if (ctx->task)
2673                         WARN_ON_ONCE(cpuctx->task_ctx);
2674                 return;
2675         }
2676
2677         ctx->is_active &= ~event_type;
2678         if (!(ctx->is_active & EVENT_ALL))
2679                 ctx->is_active = 0;
2680
2681         if (ctx->task) {
2682                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2683                 if (!ctx->is_active)
2684                         cpuctx->task_ctx = NULL;
2685         }
2686
2687         /*
2688          * Always update time if it was set; not only when it changes.
2689          * Otherwise we can 'forget' to update time for any but the last
2690          * context we sched out. For example:
2691          *
2692          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2693          *   ctx_sched_out(.event_type = EVENT_PINNED)
2694          *
2695          * would only update time for the pinned events.
2696          */
2697         if (is_active & EVENT_TIME) {
2698                 /* update (and stop) ctx time */
2699                 update_context_time(ctx);
2700                 update_cgrp_time_from_cpuctx(cpuctx);
2701         }
2702
2703         is_active ^= ctx->is_active; /* changed bits */
2704
2705         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2706                 return;
2707
2708         perf_pmu_disable(ctx->pmu);
2709         if (is_active & EVENT_PINNED) {
2710                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2711                         group_sched_out(event, cpuctx, ctx);
2712         }
2713
2714         if (is_active & EVENT_FLEXIBLE) {
2715                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2716                         group_sched_out(event, cpuctx, ctx);
2717         }
2718         perf_pmu_enable(ctx->pmu);
2719 }
2720
2721 /*
2722  * Test whether two contexts are equivalent, i.e. whether they have both been
2723  * cloned from the same version of the same context.
2724  *
2725  * Equivalence is measured using a generation number in the context that is
2726  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2727  * and list_del_event().
2728  */
2729 static int context_equiv(struct perf_event_context *ctx1,
2730                          struct perf_event_context *ctx2)
2731 {
2732         lockdep_assert_held(&ctx1->lock);
2733         lockdep_assert_held(&ctx2->lock);
2734
2735         /* Pinning disables the swap optimization */
2736         if (ctx1->pin_count || ctx2->pin_count)
2737                 return 0;
2738
2739         /* If ctx1 is the parent of ctx2 */
2740         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2741                 return 1;
2742
2743         /* If ctx2 is the parent of ctx1 */
2744         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2745                 return 1;
2746
2747         /*
2748          * If ctx1 and ctx2 have the same parent; we flatten the parent
2749          * hierarchy, see perf_event_init_context().
2750          */
2751         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2752                         ctx1->parent_gen == ctx2->parent_gen)
2753                 return 1;
2754
2755         /* Unmatched */
2756         return 0;
2757 }
2758
2759 static void __perf_event_sync_stat(struct perf_event *event,
2760                                      struct perf_event *next_event)
2761 {
2762         u64 value;
2763
2764         if (!event->attr.inherit_stat)
2765                 return;
2766
2767         /*
2768          * Update the event value, we cannot use perf_event_read()
2769          * because we're in the middle of a context switch and have IRQs
2770          * disabled, which upsets smp_call_function_single(), however
2771          * we know the event must be on the current CPU, therefore we
2772          * don't need to use it.
2773          */
2774         switch (event->state) {
2775         case PERF_EVENT_STATE_ACTIVE:
2776                 event->pmu->read(event);
2777                 /* fall-through */
2778
2779         case PERF_EVENT_STATE_INACTIVE:
2780                 update_event_times(event);
2781                 break;
2782
2783         default:
2784                 break;
2785         }
2786
2787         /*
2788          * In order to keep per-task stats reliable we need to flip the event
2789          * values when we flip the contexts.
2790          */
2791         value = local64_read(&next_event->count);
2792         value = local64_xchg(&event->count, value);
2793         local64_set(&next_event->count, value);
2794
2795         swap(event->total_time_enabled, next_event->total_time_enabled);
2796         swap(event->total_time_running, next_event->total_time_running);
2797
2798         /*
2799          * Since we swizzled the values, update the user visible data too.
2800          */
2801         perf_event_update_userpage(event);
2802         perf_event_update_userpage(next_event);
2803 }
2804
2805 static void perf_event_sync_stat(struct perf_event_context *ctx,
2806                                    struct perf_event_context *next_ctx)
2807 {
2808         struct perf_event *event, *next_event;
2809
2810         if (!ctx->nr_stat)
2811                 return;
2812
2813         update_context_time(ctx);
2814
2815         event = list_first_entry(&ctx->event_list,
2816                                    struct perf_event, event_entry);
2817
2818         next_event = list_first_entry(&next_ctx->event_list,
2819                                         struct perf_event, event_entry);
2820
2821         while (&event->event_entry != &ctx->event_list &&
2822                &next_event->event_entry != &next_ctx->event_list) {
2823
2824                 __perf_event_sync_stat(event, next_event);
2825
2826                 event = list_next_entry(event, event_entry);
2827                 next_event = list_next_entry(next_event, event_entry);
2828         }
2829 }
2830
2831 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2832                                          struct task_struct *next)
2833 {
2834         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2835         struct perf_event_context *next_ctx;
2836         struct perf_event_context *parent, *next_parent;
2837         struct perf_cpu_context *cpuctx;
2838         int do_switch = 1;
2839
2840         if (likely(!ctx))
2841                 return;
2842
2843         cpuctx = __get_cpu_context(ctx);
2844         if (!cpuctx->task_ctx)
2845                 return;
2846
2847         rcu_read_lock();
2848         next_ctx = next->perf_event_ctxp[ctxn];
2849         if (!next_ctx)
2850                 goto unlock;
2851
2852         parent = rcu_dereference(ctx->parent_ctx);
2853         next_parent = rcu_dereference(next_ctx->parent_ctx);
2854
2855         /* If neither context have a parent context; they cannot be clones. */
2856         if (!parent && !next_parent)
2857                 goto unlock;
2858
2859         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2860                 /*
2861                  * Looks like the two contexts are clones, so we might be
2862                  * able to optimize the context switch.  We lock both
2863                  * contexts and check that they are clones under the
2864                  * lock (including re-checking that neither has been
2865                  * uncloned in the meantime).  It doesn't matter which
2866                  * order we take the locks because no other cpu could
2867                  * be trying to lock both of these tasks.
2868                  */
2869                 raw_spin_lock(&ctx->lock);
2870                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2871                 if (context_equiv(ctx, next_ctx)) {
2872                         WRITE_ONCE(ctx->task, next);
2873                         WRITE_ONCE(next_ctx->task, task);
2874
2875                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2876
2877                         /*
2878                          * RCU_INIT_POINTER here is safe because we've not
2879                          * modified the ctx and the above modification of
2880                          * ctx->task and ctx->task_ctx_data are immaterial
2881                          * since those values are always verified under
2882                          * ctx->lock which we're now holding.
2883                          */
2884                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2885                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2886
2887                         do_switch = 0;
2888
2889                         perf_event_sync_stat(ctx, next_ctx);
2890                 }
2891                 raw_spin_unlock(&next_ctx->lock);
2892                 raw_spin_unlock(&ctx->lock);
2893         }
2894 unlock:
2895         rcu_read_unlock();
2896
2897         if (do_switch) {
2898                 raw_spin_lock(&ctx->lock);
2899                 task_ctx_sched_out(cpuctx, ctx);
2900                 raw_spin_unlock(&ctx->lock);
2901         }
2902 }
2903
2904 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2905
2906 void perf_sched_cb_dec(struct pmu *pmu)
2907 {
2908         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2909
2910         this_cpu_dec(perf_sched_cb_usages);
2911
2912         if (!--cpuctx->sched_cb_usage)
2913                 list_del(&cpuctx->sched_cb_entry);
2914 }
2915
2916
2917 void perf_sched_cb_inc(struct pmu *pmu)
2918 {
2919         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2920
2921         if (!cpuctx->sched_cb_usage++)
2922                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2923
2924         this_cpu_inc(perf_sched_cb_usages);
2925 }
2926
2927 /*
2928  * This function provides the context switch callback to the lower code
2929  * layer. It is invoked ONLY when the context switch callback is enabled.
2930  *
2931  * This callback is relevant even to per-cpu events; for example multi event
2932  * PEBS requires this to provide PID/TID information. This requires we flush
2933  * all queued PEBS records before we context switch to a new task.
2934  */
2935 static void perf_pmu_sched_task(struct task_struct *prev,
2936                                 struct task_struct *next,
2937                                 bool sched_in)
2938 {
2939         struct perf_cpu_context *cpuctx;
2940         struct pmu *pmu;
2941
2942         if (prev == next)
2943                 return;
2944
2945         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2946                 pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */
2947
2948                 if (WARN_ON_ONCE(!pmu->sched_task))
2949                         continue;
2950
2951                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2952                 perf_pmu_disable(pmu);
2953
2954                 pmu->sched_task(cpuctx->task_ctx, sched_in);
2955
2956                 perf_pmu_enable(pmu);
2957                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2958         }
2959 }
2960
2961 static void perf_event_switch(struct task_struct *task,
2962                               struct task_struct *next_prev, bool sched_in);
2963
2964 #define for_each_task_context_nr(ctxn)                                  \
2965         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2966
2967 /*
2968  * Called from scheduler to remove the events of the current task,
2969  * with interrupts disabled.
2970  *
2971  * We stop each event and update the event value in event->count.
2972  *
2973  * This does not protect us against NMI, but disable()
2974  * sets the disabled bit in the control field of event _before_
2975  * accessing the event control register. If a NMI hits, then it will
2976  * not restart the event.
2977  */
2978 void __perf_event_task_sched_out(struct task_struct *task,
2979                                  struct task_struct *next)
2980 {
2981         int ctxn;
2982
2983         if (__this_cpu_read(perf_sched_cb_usages))
2984                 perf_pmu_sched_task(task, next, false);
2985
2986         if (atomic_read(&nr_switch_events))
2987                 perf_event_switch(task, next, false);
2988
2989         for_each_task_context_nr(ctxn)
2990                 perf_event_context_sched_out(task, ctxn, next);
2991
2992         /*
2993          * if cgroup events exist on this CPU, then we need
2994          * to check if we have to switch out PMU state.
2995          * cgroup event are system-wide mode only
2996          */
2997         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2998                 perf_cgroup_sched_out(task, next);
2999 }
3000
3001 /*
3002  * Called with IRQs disabled
3003  */
3004 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3005                               enum event_type_t event_type)
3006 {
3007         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3008 }
3009
3010 static void
3011 ctx_pinned_sched_in(struct perf_event_context *ctx,
3012                     struct perf_cpu_context *cpuctx)
3013 {
3014         struct perf_event *event;
3015
3016         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3017                 if (event->state <= PERF_EVENT_STATE_OFF)
3018                         continue;
3019                 if (!event_filter_match(event))
3020                         continue;
3021
3022                 /* may need to reset tstamp_enabled */
3023                 if (is_cgroup_event(event))
3024                         perf_cgroup_mark_enabled(event, ctx);
3025
3026                 if (group_can_go_on(event, cpuctx, 1))
3027                         group_sched_in(event, cpuctx, ctx);
3028
3029                 /*
3030                  * If this pinned group hasn't been scheduled,
3031                  * put it in error state.
3032                  */
3033                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3034                         update_group_times(event);
3035                         event->state = PERF_EVENT_STATE_ERROR;
3036                 }
3037         }
3038 }
3039
3040 static void
3041 ctx_flexible_sched_in(struct perf_event_context *ctx,
3042                       struct perf_cpu_context *cpuctx)
3043 {
3044         struct perf_event *event;
3045         int can_add_hw = 1;
3046
3047         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3048                 /* Ignore events in OFF or ERROR state */
3049                 if (event->state <= PERF_EVENT_STATE_OFF)
3050                         continue;
3051                 /*
3052                  * Listen to the 'cpu' scheduling filter constraint
3053                  * of events:
3054                  */
3055                 if (!event_filter_match(event))
3056                         continue;
3057
3058                 /* may need to reset tstamp_enabled */
3059                 if (is_cgroup_event(event))
3060                         perf_cgroup_mark_enabled(event, ctx);
3061
3062                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3063                         if (group_sched_in(event, cpuctx, ctx))
3064                                 can_add_hw = 0;
3065                 }
3066         }
3067 }
3068
3069 static void
3070 ctx_sched_in(struct perf_event_context *ctx,
3071              struct perf_cpu_context *cpuctx,
3072              enum event_type_t event_type,
3073              struct task_struct *task)
3074 {
3075         int is_active = ctx->is_active;
3076         u64 now;
3077
3078         lockdep_assert_held(&ctx->lock);
3079
3080         if (likely(!ctx->nr_events))
3081                 return;
3082
3083         ctx->is_active |= (event_type | EVENT_TIME);
3084         if (ctx->task) {
3085                 if (!is_active)
3086                         cpuctx->task_ctx = ctx;
3087                 else
3088                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3089         }
3090
3091         is_active ^= ctx->is_active; /* changed bits */
3092
3093         if (is_active & EVENT_TIME) {
3094                 /* start ctx time */
3095                 now = perf_clock();
3096                 ctx->timestamp = now;
3097                 perf_cgroup_set_timestamp(task, ctx);
3098         }
3099
3100         /*
3101          * First go through the list and put on any pinned groups
3102          * in order to give them the best chance of going on.
3103          */
3104         if (is_active & EVENT_PINNED)
3105                 ctx_pinned_sched_in(ctx, cpuctx);
3106
3107         /* Then walk through the lower prio flexible groups */
3108         if (is_active & EVENT_FLEXIBLE)
3109                 ctx_flexible_sched_in(ctx, cpuctx);
3110 }
3111
3112 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3113                              enum event_type_t event_type,
3114                              struct task_struct *task)
3115 {
3116         struct perf_event_context *ctx = &cpuctx->ctx;
3117
3118         ctx_sched_in(ctx, cpuctx, event_type, task);
3119 }
3120
3121 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3122                                         struct task_struct *task)
3123 {
3124         struct perf_cpu_context *cpuctx;
3125
3126         cpuctx = __get_cpu_context(ctx);
3127         if (cpuctx->task_ctx == ctx)
3128                 return;
3129
3130         perf_ctx_lock(cpuctx, ctx);
3131         perf_pmu_disable(ctx->pmu);
3132         /*
3133          * We want to keep the following priority order:
3134          * cpu pinned (that don't need to move), task pinned,
3135          * cpu flexible, task flexible.
3136          */
3137         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3138         perf_event_sched_in(cpuctx, ctx, task);
3139         perf_pmu_enable(ctx->pmu);
3140         perf_ctx_unlock(cpuctx, ctx);
3141 }
3142
3143 /*
3144  * Called from scheduler to add the events of the current task
3145  * with interrupts disabled.
3146  *
3147  * We restore the event value and then enable it.
3148  *
3149  * This does not protect us against NMI, but enable()
3150  * sets the enabled bit in the control field of event _before_
3151  * accessing the event control register. If a NMI hits, then it will
3152  * keep the event running.
3153  */
3154 void __perf_event_task_sched_in(struct task_struct *prev,
3155                                 struct task_struct *task)
3156 {
3157         struct perf_event_context *ctx;
3158         int ctxn;
3159
3160         /*
3161          * If cgroup events exist on this CPU, then we need to check if we have
3162          * to switch in PMU state; cgroup event are system-wide mode only.
3163          *
3164          * Since cgroup events are CPU events, we must schedule these in before
3165          * we schedule in the task events.
3166          */
3167         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3168                 perf_cgroup_sched_in(prev, task);
3169
3170         for_each_task_context_nr(ctxn) {
3171                 ctx = task->perf_event_ctxp[ctxn];
3172                 if (likely(!ctx))
3173                         continue;
3174
3175                 perf_event_context_sched_in(ctx, task);
3176         }
3177
3178         if (atomic_read(&nr_switch_events))
3179                 perf_event_switch(task, prev, true);
3180
3181         if (__this_cpu_read(perf_sched_cb_usages))
3182                 perf_pmu_sched_task(prev, task, true);
3183 }
3184
3185 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3186 {
3187         u64 frequency = event->attr.sample_freq;
3188         u64 sec = NSEC_PER_SEC;
3189         u64 divisor, dividend;
3190
3191         int count_fls, nsec_fls, frequency_fls, sec_fls;
3192
3193         count_fls = fls64(count);
3194         nsec_fls = fls64(nsec);
3195         frequency_fls = fls64(frequency);
3196         sec_fls = 30;
3197
3198         /*
3199          * We got @count in @nsec, with a target of sample_freq HZ
3200          * the target period becomes:
3201          *
3202          *             @count * 10^9
3203          * period = -------------------
3204          *          @nsec * sample_freq
3205          *
3206          */
3207
3208         /*
3209          * Reduce accuracy by one bit such that @a and @b converge
3210          * to a similar magnitude.
3211          */
3212 #define REDUCE_FLS(a, b)                \
3213 do {                                    \
3214         if (a##_fls > b##_fls) {        \
3215                 a >>= 1;                \
3216                 a##_fls--;              \
3217         } else {                        \
3218                 b >>= 1;                \
3219                 b##_fls--;              \
3220         }                               \
3221 } while (0)
3222
3223         /*
3224          * Reduce accuracy until either term fits in a u64, then proceed with
3225          * the other, so that finally we can do a u64/u64 division.
3226          */
3227         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3228                 REDUCE_FLS(nsec, frequency);
3229                 REDUCE_FLS(sec, count);
3230         }
3231
3232         if (count_fls + sec_fls > 64) {
3233                 divisor = nsec * frequency;
3234
3235                 while (count_fls + sec_fls > 64) {
3236                         REDUCE_FLS(count, sec);
3237                         divisor >>= 1;
3238                 }
3239
3240                 dividend = count * sec;
3241         } else {
3242                 dividend = count * sec;
3243
3244                 while (nsec_fls + frequency_fls > 64) {
3245                         REDUCE_FLS(nsec, frequency);
3246                         dividend >>= 1;
3247                 }
3248
3249                 divisor = nsec * frequency;
3250         }
3251
3252         if (!divisor)
3253                 return dividend;
3254
3255         return div64_u64(dividend, divisor);
3256 }
3257
3258 static DEFINE_PER_CPU(int, perf_throttled_count);
3259 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3260
3261 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3262 {
3263         struct hw_perf_event *hwc = &event->hw;
3264         s64 period, sample_period;
3265         s64 delta;
3266
3267         period = perf_calculate_period(event, nsec, count);
3268
3269         delta = (s64)(period - hwc->sample_period);
3270         delta = (delta + 7) / 8; /* low pass filter */
3271
3272         sample_period = hwc->sample_period + delta;
3273
3274         if (!sample_period)
3275                 sample_period = 1;
3276
3277         hwc->sample_period = sample_period;
3278
3279         if (local64_read(&hwc->period_left) > 8*sample_period) {
3280                 if (disable)
3281                         event->pmu->stop(event, PERF_EF_UPDATE);
3282
3283                 local64_set(&hwc->period_left, 0);
3284
3285                 if (disable)
3286                         event->pmu->start(event, PERF_EF_RELOAD);
3287         }
3288 }
3289
3290 /*
3291  * combine freq adjustment with unthrottling to avoid two passes over the
3292  * events. At the same time, make sure, having freq events does not change
3293  * the rate of unthrottling as that would introduce bias.
3294  */
3295 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3296                                            int needs_unthr)
3297 {
3298         struct perf_event *event;
3299         struct hw_perf_event *hwc;
3300         u64 now, period = TICK_NSEC;
3301         s64 delta;
3302
3303         /*
3304          * only need to iterate over all events iff:
3305          * - context have events in frequency mode (needs freq adjust)
3306          * - there are events to unthrottle on this cpu
3307          */
3308         if (!(ctx->nr_freq || needs_unthr))
3309                 return;
3310
3311         raw_spin_lock(&ctx->lock);
3312         perf_pmu_disable(ctx->pmu);
3313
3314         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3315                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3316                         continue;
3317
3318                 if (!event_filter_match(event))
3319                         continue;
3320
3321                 perf_pmu_disable(event->pmu);
3322
3323                 hwc = &event->hw;
3324
3325                 if (hwc->interrupts == MAX_INTERRUPTS) {
3326                         hwc->interrupts = 0;
3327                         perf_log_throttle(event, 1);
3328                         event->pmu->start(event, 0);
3329                 }
3330
3331                 if (!event->attr.freq || !event->attr.sample_freq)
3332                         goto next;
3333
3334                 /*
3335                  * stop the event and update event->count
3336                  */
3337                 event->pmu->stop(event, PERF_EF_UPDATE);
3338
3339                 now = local64_read(&event->count);
3340                 delta = now - hwc->freq_count_stamp;
3341                 hwc->freq_count_stamp = now;
3342
3343                 /*
3344                  * restart the event
3345                  * reload only if value has changed
3346                  * we have stopped the event so tell that
3347                  * to perf_adjust_period() to avoid stopping it
3348                  * twice.
3349                  */
3350                 if (delta > 0)
3351                         perf_adjust_period(event, period, delta, false);
3352
3353                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3354         next:
3355                 perf_pmu_enable(event->pmu);
3356         }
3357
3358         perf_pmu_enable(ctx->pmu);
3359         raw_spin_unlock(&ctx->lock);
3360 }
3361
3362 /*
3363  * Round-robin a context's events:
3364  */
3365 static void rotate_ctx(struct perf_event_context *ctx)
3366 {
3367         /*
3368          * Rotate the first entry last of non-pinned groups. Rotation might be
3369          * disabled by the inheritance code.
3370          */
3371         if (!ctx->rotate_disable)
3372                 list_rotate_left(&ctx->flexible_groups);
3373 }
3374
3375 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3376 {
3377         struct perf_event_context *ctx = NULL;
3378         int rotate = 0;
3379
3380         if (cpuctx->ctx.nr_events) {
3381                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3382                         rotate = 1;
3383         }
3384
3385         ctx = cpuctx->task_ctx;
3386         if (ctx && ctx->nr_events) {
3387                 if (ctx->nr_events != ctx->nr_active)
3388                         rotate = 1;
3389         }
3390
3391         if (!rotate)
3392                 goto done;
3393
3394         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3395         perf_pmu_disable(cpuctx->ctx.pmu);
3396
3397         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3398         if (ctx)
3399                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3400
3401         rotate_ctx(&cpuctx->ctx);
3402         if (ctx)
3403                 rotate_ctx(ctx);
3404
3405         perf_event_sched_in(cpuctx, ctx, current);
3406
3407         perf_pmu_enable(cpuctx->ctx.pmu);
3408         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3409 done:
3410
3411         return rotate;
3412 }
3413
3414 void perf_event_task_tick(void)
3415 {
3416         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3417         struct perf_event_context *ctx, *tmp;
3418         int throttled;
3419
3420         WARN_ON(!irqs_disabled());
3421
3422         __this_cpu_inc(perf_throttled_seq);
3423         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3424         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3425
3426         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3427                 perf_adjust_freq_unthr_context(ctx, throttled);
3428 }
3429
3430 static int event_enable_on_exec(struct perf_event *event,
3431                                 struct perf_event_context *ctx)
3432 {
3433         if (!event->attr.enable_on_exec)
3434                 return 0;
3435
3436         event->attr.enable_on_exec = 0;
3437         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3438                 return 0;
3439
3440         __perf_event_mark_enabled(event);
3441
3442         return 1;
3443 }
3444
3445 /*
3446  * Enable all of a task's events that have been marked enable-on-exec.
3447  * This expects task == current.
3448  */
3449 static void perf_event_enable_on_exec(int ctxn)
3450 {
3451         struct perf_event_context *ctx, *clone_ctx = NULL;
3452         struct perf_cpu_context *cpuctx;
3453         struct perf_event *event;
3454         unsigned long flags;
3455         int enabled = 0;
3456
3457         local_irq_save(flags);
3458         ctx = current->perf_event_ctxp[ctxn];
3459         if (!ctx || !ctx->nr_events)
3460                 goto out;
3461
3462         cpuctx = __get_cpu_context(ctx);
3463         perf_ctx_lock(cpuctx, ctx);
3464         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3465         list_for_each_entry(event, &ctx->event_list, event_entry)
3466                 enabled |= event_enable_on_exec(event, ctx);
3467
3468         /*
3469          * Unclone and reschedule this context if we enabled any event.
3470          */
3471         if (enabled) {
3472                 clone_ctx = unclone_ctx(ctx);
3473                 ctx_resched(cpuctx, ctx);
3474         }
3475         perf_ctx_unlock(cpuctx, ctx);
3476
3477 out:
3478         local_irq_restore(flags);
3479
3480         if (clone_ctx)
3481                 put_ctx(clone_ctx);
3482 }
3483
3484 struct perf_read_data {
3485         struct perf_event *event;
3486         bool group;
3487         int ret;
3488 };
3489
3490 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3491 {
3492         u16 local_pkg, event_pkg;
3493
3494         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3495                 int local_cpu = smp_processor_id();
3496
3497                 event_pkg = topology_physical_package_id(event_cpu);
3498                 local_pkg = topology_physical_package_id(local_cpu);
3499
3500                 if (event_pkg == local_pkg)
3501                         return local_cpu;
3502         }
3503
3504         return event_cpu;
3505 }
3506
3507 /*
3508  * Cross CPU call to read the hardware event
3509  */
3510 static void __perf_event_read(void *info)
3511 {
3512         struct perf_read_data *data = info;
3513         struct perf_event *sub, *event = data->event;
3514         struct perf_event_context *ctx = event->ctx;
3515         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3516         struct pmu *pmu = event->pmu;
3517
3518         /*
3519          * If this is a task context, we need to check whether it is
3520          * the current task context of this cpu.  If not it has been
3521          * scheduled out before the smp call arrived.  In that case
3522          * event->count would have been updated to a recent sample
3523          * when the event was scheduled out.
3524          */
3525         if (ctx->task && cpuctx->task_ctx != ctx)
3526                 return;
3527
3528         raw_spin_lock(&ctx->lock);
3529         if (ctx->is_active) {
3530                 update_context_time(ctx);
3531                 update_cgrp_time_from_event(event);
3532         }
3533
3534         update_event_times(event);
3535         if (event->state != PERF_EVENT_STATE_ACTIVE)
3536                 goto unlock;
3537
3538         if (!data->group) {
3539                 pmu->read(event);
3540                 data->ret = 0;
3541                 goto unlock;
3542         }
3543
3544         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3545
3546         pmu->read(event);
3547
3548         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3549                 update_event_times(sub);
3550                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3551                         /*
3552                          * Use sibling's PMU rather than @event's since
3553                          * sibling could be on different (eg: software) PMU.
3554                          */
3555                         sub->pmu->read(sub);
3556                 }
3557         }
3558
3559         data->ret = pmu->commit_txn(pmu);
3560
3561 unlock:
3562         raw_spin_unlock(&ctx->lock);
3563 }
3564
3565 static inline u64 perf_event_count(struct perf_event *event)
3566 {
3567         if (event->pmu->count)
3568                 return event->pmu->count(event);
3569
3570         return __perf_event_count(event);
3571 }
3572
3573 /*
3574  * NMI-safe method to read a local event, that is an event that
3575  * is:
3576  *   - either for the current task, or for this CPU
3577  *   - does not have inherit set, for inherited task events
3578  *     will not be local and we cannot read them atomically
3579  *   - must not have a pmu::count method
3580  */
3581 u64 perf_event_read_local(struct perf_event *event)
3582 {
3583         unsigned long flags;
3584         u64 val;
3585
3586         /*
3587          * Disabling interrupts avoids all counter scheduling (context
3588          * switches, timer based rotation and IPIs).
3589          */
3590         local_irq_save(flags);
3591
3592         /* If this is a per-task event, it must be for current */
3593         WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3594                      event->hw.target != current);
3595
3596         /* If this is a per-CPU event, it must be for this CPU */
3597         WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3598                      event->cpu != smp_processor_id());
3599
3600         /*
3601          * It must not be an event with inherit set, we cannot read
3602          * all child counters from atomic context.
3603          */
3604         WARN_ON_ONCE(event->attr.inherit);
3605
3606         /*
3607          * It must not have a pmu::count method, those are not
3608          * NMI safe.
3609          */
3610         WARN_ON_ONCE(event->pmu->count);
3611
3612         /*
3613          * If the event is currently on this CPU, its either a per-task event,
3614          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3615          * oncpu == -1).
3616          */
3617         if (event->oncpu == smp_processor_id())
3618                 event->pmu->read(event);
3619
3620         val = local64_read(&event->count);
3621         local_irq_restore(flags);
3622
3623         return val;
3624 }
3625
3626 static int perf_event_read(struct perf_event *event, bool group)
3627 {
3628         int event_cpu, ret = 0;
3629
3630         /*
3631          * If event is enabled and currently active on a CPU, update the
3632          * value in the event structure:
3633          */
3634         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3635                 struct perf_read_data data = {
3636                         .event = event,
3637                         .group = group,
3638                         .ret = 0,
3639                 };
3640
3641                 event_cpu = READ_ONCE(event->oncpu);
3642                 if ((unsigned)event_cpu >= nr_cpu_ids)
3643                         return 0;
3644
3645                 preempt_disable();
3646                 event_cpu = __perf_event_read_cpu(event, event_cpu);
3647
3648                 /*
3649                  * Purposely ignore the smp_call_function_single() return
3650                  * value.
3651                  *
3652                  * If event_cpu isn't a valid CPU it means the event got
3653                  * scheduled out and that will have updated the event count.
3654                  *
3655                  * Therefore, either way, we'll have an up-to-date event count
3656                  * after this.
3657                  */
3658                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3659                 preempt_enable();
3660                 ret = data.ret;
3661         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3662                 struct perf_event_context *ctx = event->ctx;
3663                 unsigned long flags;
3664
3665                 raw_spin_lock_irqsave(&ctx->lock, flags);
3666                 /*
3667                  * may read while context is not active
3668                  * (e.g., thread is blocked), in that case
3669                  * we cannot update context time
3670                  */
3671                 if (ctx->is_active) {
3672                         update_context_time(ctx);
3673                         update_cgrp_time_from_event(event);
3674                 }
3675                 if (group)
3676                         update_group_times(event);
3677                 else
3678                         update_event_times(event);
3679                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3680         }
3681
3682         return ret;
3683 }
3684
3685 /*
3686  * Initialize the perf_event context in a task_struct:
3687  */
3688 static void __perf_event_init_context(struct perf_event_context *ctx)
3689 {
3690         raw_spin_lock_init(&ctx->lock);
3691         mutex_init(&ctx->mutex);
3692         INIT_LIST_HEAD(&ctx->active_ctx_list);
3693         INIT_LIST_HEAD(&ctx->pinned_groups);
3694         INIT_LIST_HEAD(&ctx->flexible_groups);
3695         INIT_LIST_HEAD(&ctx->event_list);
3696         atomic_set(&ctx->refcount, 1);
3697 }
3698
3699 static struct perf_event_context *
3700 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3701 {
3702         struct perf_event_context *ctx;
3703
3704         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3705         if (!ctx)
3706                 return NULL;
3707
3708         __perf_event_init_context(ctx);
3709         if (task) {
3710                 ctx->task = task;
3711                 get_task_struct(task);
3712         }
3713         ctx->pmu = pmu;
3714
3715         return ctx;
3716 }
3717
3718 static struct task_struct *
3719 find_lively_task_by_vpid(pid_t vpid)
3720 {
3721         struct task_struct *task;
3722
3723         rcu_read_lock();
3724         if (!vpid)
3725                 task = current;
3726         else
3727                 task = find_task_by_vpid(vpid);
3728         if (task)
3729                 get_task_struct(task);
3730         rcu_read_unlock();
3731
3732         if (!task)
3733                 return ERR_PTR(-ESRCH);
3734
3735         return task;
3736 }
3737
3738 /*
3739  * Returns a matching context with refcount and pincount.
3740  */
3741 static struct perf_event_context *
3742 find_get_context(struct pmu *pmu, struct task_struct *task,
3743                 struct perf_event *event)
3744 {
3745         struct perf_event_context *ctx, *clone_ctx = NULL;
3746         struct perf_cpu_context *cpuctx;
3747         void *task_ctx_data = NULL;
3748         unsigned long flags;
3749         int ctxn, err;
3750         int cpu = event->cpu;
3751
3752         if (!task) {
3753                 /* Must be root to operate on a CPU event: */
3754                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3755                         return ERR_PTR(-EACCES);
3756
3757                 /*
3758                  * We could be clever and allow to attach a event to an
3759                  * offline CPU and activate it when the CPU comes up, but
3760                  * that's for later.
3761                  */
3762                 if (!cpu_online(cpu))
3763                         return ERR_PTR(-ENODEV);
3764
3765                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3766                 ctx = &cpuctx->ctx;
3767                 get_ctx(ctx);
3768                 ++ctx->pin_count;
3769
3770                 return ctx;
3771         }
3772
3773         err = -EINVAL;
3774         ctxn = pmu->task_ctx_nr;
3775         if (ctxn < 0)
3776                 goto errout;
3777
3778         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3779                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3780                 if (!task_ctx_data) {
3781                         err = -ENOMEM;
3782                         goto errout;
3783                 }
3784         }
3785
3786 retry:
3787         ctx = perf_lock_task_context(task, ctxn, &flags);
3788         if (ctx) {
3789                 clone_ctx = unclone_ctx(ctx);
3790                 ++ctx->pin_count;
3791
3792                 if (task_ctx_data && !ctx->task_ctx_data) {
3793                         ctx->task_ctx_data = task_ctx_data;
3794                         task_ctx_data = NULL;
3795                 }
3796                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3797
3798                 if (clone_ctx)
3799                         put_ctx(clone_ctx);
3800         } else {
3801                 ctx = alloc_perf_context(pmu, task);
3802                 err = -ENOMEM;
3803                 if (!ctx)
3804                         goto errout;
3805
3806                 if (task_ctx_data) {
3807                         ctx->task_ctx_data = task_ctx_data;
3808                         task_ctx_data = NULL;
3809                 }
3810
3811                 err = 0;
3812                 mutex_lock(&task->perf_event_mutex);
3813                 /*
3814                  * If it has already passed perf_event_exit_task().
3815                  * we must see PF_EXITING, it takes this mutex too.
3816                  */
3817                 if (task->flags & PF_EXITING)
3818                         err = -ESRCH;
3819                 else if (task->perf_event_ctxp[ctxn])
3820                         err = -EAGAIN;
3821                 else {
3822                         get_ctx(ctx);
3823                         ++ctx->pin_count;
3824                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3825                 }
3826                 mutex_unlock(&task->perf_event_mutex);
3827
3828                 if (unlikely(err)) {
3829                         put_ctx(ctx);
3830
3831                         if (err == -EAGAIN)
3832                                 goto retry;
3833                         goto errout;
3834                 }
3835         }
3836
3837         kfree(task_ctx_data);
3838         return ctx;
3839
3840 errout:
3841         kfree(task_ctx_data);
3842         return ERR_PTR(err);
3843 }
3844
3845 static void perf_event_free_filter(struct perf_event *event);
3846 static void perf_event_free_bpf_prog(struct perf_event *event);
3847
3848 static void free_event_rcu(struct rcu_head *head)
3849 {
3850         struct perf_event *event;
3851
3852         event = container_of(head, struct perf_event, rcu_head);
3853         if (event->ns)
3854                 put_pid_ns(event->ns);
3855         perf_event_free_filter(event);
3856         kfree(event);
3857 }
3858
3859 static void ring_buffer_attach(struct perf_event *event,
3860                                struct ring_buffer *rb);
3861
3862 static void detach_sb_event(struct perf_event *event)
3863 {
3864         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3865
3866         raw_spin_lock(&pel->lock);
3867         list_del_rcu(&event->sb_list);
3868         raw_spin_unlock(&pel->lock);
3869 }
3870
3871 static bool is_sb_event(struct perf_event *event)
3872 {
3873         struct perf_event_attr *attr = &event->attr;
3874
3875         if (event->parent)
3876                 return false;
3877
3878         if (event->attach_state & PERF_ATTACH_TASK)
3879                 return false;
3880
3881         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3882             attr->comm || attr->comm_exec ||
3883             attr->task ||
3884             attr->context_switch)
3885                 return true;
3886         return false;
3887 }
3888
3889 static void unaccount_pmu_sb_event(struct perf_event *event)
3890 {
3891         if (is_sb_event(event))
3892                 detach_sb_event(event);
3893 }
3894
3895 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3896 {
3897         if (event->parent)
3898                 return;
3899
3900         if (is_cgroup_event(event))
3901                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3902 }
3903
3904 #ifdef CONFIG_NO_HZ_FULL
3905 static DEFINE_SPINLOCK(nr_freq_lock);
3906 #endif
3907
3908 static void unaccount_freq_event_nohz(void)
3909 {
3910 #ifdef CONFIG_NO_HZ_FULL
3911         spin_lock(&nr_freq_lock);
3912         if (atomic_dec_and_test(&nr_freq_events))
3913                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3914         spin_unlock(&nr_freq_lock);
3915 #endif
3916 }
3917
3918 static void unaccount_freq_event(void)
3919 {
3920         if (tick_nohz_full_enabled())
3921                 unaccount_freq_event_nohz();
3922         else
3923                 atomic_dec(&nr_freq_events);
3924 }
3925
3926 static void unaccount_event(struct perf_event *event)
3927 {
3928         bool dec = false;
3929
3930         if (event->parent)
3931                 return;
3932
3933         if (event->attach_state & PERF_ATTACH_TASK)
3934                 dec = true;
3935         if (event->attr.mmap || event->attr.mmap_data)
3936                 atomic_dec(&nr_mmap_events);
3937         if (event->attr.comm)
3938                 atomic_dec(&nr_comm_events);
3939         if (event->attr.task)
3940                 atomic_dec(&nr_task_events);
3941         if (event->attr.freq)
3942                 unaccount_freq_event();
3943         if (event->attr.context_switch) {
3944                 dec = true;
3945                 atomic_dec(&nr_switch_events);
3946         }
3947         if (is_cgroup_event(event))
3948                 dec = true;
3949         if (has_branch_stack(event))
3950                 dec = true;
3951
3952         if (dec) {
3953                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3954                         schedule_delayed_work(&perf_sched_work, HZ);
3955         }
3956
3957         unaccount_event_cpu(event, event->cpu);
3958
3959         unaccount_pmu_sb_event(event);
3960 }
3961
3962 static void perf_sched_delayed(struct work_struct *work)
3963 {
3964         mutex_lock(&perf_sched_mutex);
3965         if (atomic_dec_and_test(&perf_sched_count))
3966                 static_branch_disable(&perf_sched_events);
3967         mutex_unlock(&perf_sched_mutex);
3968 }
3969
3970 /*
3971  * The following implement mutual exclusion of events on "exclusive" pmus
3972  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3973  * at a time, so we disallow creating events that might conflict, namely:
3974  *
3975  *  1) cpu-wide events in the presence of per-task events,
3976  *  2) per-task events in the presence of cpu-wide events,
3977  *  3) two matching events on the same context.
3978  *
3979  * The former two cases are handled in the allocation path (perf_event_alloc(),
3980  * _free_event()), the latter -- before the first perf_install_in_context().
3981  */
3982 static int exclusive_event_init(struct perf_event *event)
3983 {
3984         struct pmu *pmu = event->pmu;
3985
3986         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3987                 return 0;
3988
3989         /*
3990          * Prevent co-existence of per-task and cpu-wide events on the
3991          * same exclusive pmu.
3992          *
3993          * Negative pmu::exclusive_cnt means there are cpu-wide
3994          * events on this "exclusive" pmu, positive means there are
3995          * per-task events.
3996          *
3997          * Since this is called in perf_event_alloc() path, event::ctx
3998          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3999          * to mean "per-task event", because unlike other attach states it
4000          * never gets cleared.
4001          */
4002         if (event->attach_state & PERF_ATTACH_TASK) {
4003                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4004                         return -EBUSY;
4005         } else {
4006                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4007                         return -EBUSY;
4008         }
4009
4010         return 0;
4011 }
4012
4013 static void exclusive_event_destroy(struct perf_event *event)
4014 {
4015         struct pmu *pmu = event->pmu;
4016
4017         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4018                 return;
4019
4020         /* see comment in exclusive_event_init() */
4021         if (event->attach_state & PERF_ATTACH_TASK)
4022                 atomic_dec(&pmu->exclusive_cnt);
4023         else
4024                 atomic_inc(&pmu->exclusive_cnt);
4025 }
4026
4027 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4028 {
4029         if ((e1->pmu == e2->pmu) &&
4030             (e1->cpu == e2->cpu ||
4031              e1->cpu == -1 ||
4032              e2->cpu == -1))
4033                 return true;
4034         return false;
4035 }
4036
4037 /* Called under the same ctx::mutex as perf_install_in_context() */
4038 static bool exclusive_event_installable(struct perf_event *event,
4039                                         struct perf_event_context *ctx)
4040 {
4041         struct perf_event *iter_event;
4042         struct pmu *pmu = event->pmu;
4043
4044         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4045                 return true;
4046
4047         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4048                 if (exclusive_event_match(iter_event, event))
4049                         return false;
4050         }
4051
4052         return true;
4053 }
4054
4055 static void perf_addr_filters_splice(struct perf_event *event,
4056                                        struct list_head *head);
4057
4058 static void _free_event(struct perf_event *event)
4059 {
4060         irq_work_sync(&event->pending);
4061
4062         unaccount_event(event);
4063
4064         if (event->rb) {
4065                 /*
4066                  * Can happen when we close an event with re-directed output.
4067                  *
4068                  * Since we have a 0 refcount, perf_mmap_close() will skip
4069                  * over us; possibly making our ring_buffer_put() the last.
4070                  */
4071                 mutex_lock(&event->mmap_mutex);
4072                 ring_buffer_attach(event, NULL);
4073                 mutex_unlock(&event->mmap_mutex);
4074         }
4075
4076         if (is_cgroup_event(event))
4077                 perf_detach_cgroup(event);
4078
4079         if (!event->parent) {
4080                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4081                         put_callchain_buffers();
4082         }
4083
4084         perf_event_free_bpf_prog(event);
4085         perf_addr_filters_splice(event, NULL);
4086         kfree(event->addr_filters_offs);
4087
4088         if (event->destroy)
4089                 event->destroy(event);
4090
4091         if (event->ctx)
4092                 put_ctx(event->ctx);
4093
4094         exclusive_event_destroy(event);
4095         module_put(event->pmu->module);
4096
4097         call_rcu(&event->rcu_head, free_event_rcu);
4098 }
4099
4100 /*
4101  * Used to free events which have a known refcount of 1, such as in error paths
4102  * where the event isn't exposed yet and inherited events.
4103  */
4104 static void free_event(struct perf_event *event)
4105 {
4106         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4107                                 "unexpected event refcount: %ld; ptr=%p\n",
4108                                 atomic_long_read(&event->refcount), event)) {
4109                 /* leak to avoid use-after-free */
4110                 return;
4111         }
4112
4113         _free_event(event);
4114 }
4115
4116 /*
4117  * Remove user event from the owner task.
4118  */
4119 static void perf_remove_from_owner(struct perf_event *event)
4120 {
4121         struct task_struct *owner;
4122
4123         rcu_read_lock();
4124         /*
4125          * Matches the smp_store_release() in perf_event_exit_task(). If we
4126          * observe !owner it means the list deletion is complete and we can
4127          * indeed free this event, otherwise we need to serialize on
4128          * owner->perf_event_mutex.
4129          */
4130         owner = lockless_dereference(event->owner);
4131         if (owner) {
4132                 /*
4133                  * Since delayed_put_task_struct() also drops the last
4134                  * task reference we can safely take a new reference
4135                  * while holding the rcu_read_lock().
4136                  */
4137                 get_task_struct(owner);
4138         }
4139         rcu_read_unlock();
4140
4141         if (owner) {
4142                 /*
4143                  * If we're here through perf_event_exit_task() we're already
4144                  * holding ctx->mutex which would be an inversion wrt. the
4145                  * normal lock order.
4146                  *
4147                  * However we can safely take this lock because its the child
4148                  * ctx->mutex.
4149                  */
4150                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4151
4152                 /*
4153                  * We have to re-check the event->owner field, if it is cleared
4154                  * we raced with perf_event_exit_task(), acquiring the mutex
4155                  * ensured they're done, and we can proceed with freeing the
4156                  * event.
4157                  */
4158                 if (event->owner) {
4159                         list_del_init(&event->owner_entry);
4160                         smp_store_release(&event->owner, NULL);
4161                 }
4162                 mutex_unlock(&owner->perf_event_mutex);
4163                 put_task_struct(owner);
4164         }
4165 }
4166
4167 static void put_event(struct perf_event *event)
4168 {
4169         if (!atomic_long_dec_and_test(&event->refcount))
4170                 return;
4171
4172         _free_event(event);
4173 }
4174
4175 /*
4176  * Kill an event dead; while event:refcount will preserve the event
4177  * object, it will not preserve its functionality. Once the last 'user'
4178  * gives up the object, we'll destroy the thing.
4179  */
4180 int perf_event_release_kernel(struct perf_event *event)
4181 {
4182         struct perf_event_context *ctx = event->ctx;
4183         struct perf_event *child, *tmp;
4184
4185         /*
4186          * If we got here through err_file: fput(event_file); we will not have
4187          * attached to a context yet.
4188          */
4189         if (!ctx) {
4190                 WARN_ON_ONCE(event->attach_state &
4191                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4192                 goto no_ctx;
4193         }
4194
4195         if (!is_kernel_event(event))
4196                 perf_remove_from_owner(event);
4197
4198         ctx = perf_event_ctx_lock(event);
4199         WARN_ON_ONCE(ctx->parent_ctx);
4200         perf_remove_from_context(event, DETACH_GROUP);
4201
4202         raw_spin_lock_irq(&ctx->lock);
4203         /*
4204          * Mark this even as STATE_DEAD, there is no external reference to it
4205          * anymore.
4206          *
4207          * Anybody acquiring event->child_mutex after the below loop _must_
4208          * also see this, most importantly inherit_event() which will avoid
4209          * placing more children on the list.
4210          *
4211          * Thus this guarantees that we will in fact observe and kill _ALL_
4212          * child events.
4213          */
4214         event->state = PERF_EVENT_STATE_DEAD;
4215         raw_spin_unlock_irq(&ctx->lock);
4216
4217         perf_event_ctx_unlock(event, ctx);
4218
4219 again:
4220         mutex_lock(&event->child_mutex);
4221         list_for_each_entry(child, &event->child_list, child_list) {
4222
4223                 /*
4224                  * Cannot change, child events are not migrated, see the
4225                  * comment with perf_event_ctx_lock_nested().
4226                  */
4227                 ctx = lockless_dereference(child->ctx);
4228                 /*
4229                  * Since child_mutex nests inside ctx::mutex, we must jump
4230                  * through hoops. We start by grabbing a reference on the ctx.
4231                  *
4232                  * Since the event cannot get freed while we hold the
4233                  * child_mutex, the context must also exist and have a !0
4234                  * reference count.
4235                  */
4236                 get_ctx(ctx);
4237
4238                 /*
4239                  * Now that we have a ctx ref, we can drop child_mutex, and
4240                  * acquire ctx::mutex without fear of it going away. Then we
4241                  * can re-acquire child_mutex.
4242                  */
4243                 mutex_unlock(&event->child_mutex);
4244                 mutex_lock(&ctx->mutex);
4245                 mutex_lock(&event->child_mutex);
4246
4247                 /*
4248                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4249                  * state, if child is still the first entry, it didn't get freed
4250                  * and we can continue doing so.
4251                  */
4252                 tmp = list_first_entry_or_null(&event->child_list,
4253                                                struct perf_event, child_list);
4254                 if (tmp == child) {
4255                         perf_remove_from_context(child, DETACH_GROUP);
4256                         list_del(&child->child_list);
4257                         free_event(child);
4258                         /*
4259                          * This matches the refcount bump in inherit_event();
4260                          * this can't be the last reference.
4261                          */
4262                         put_event(event);
4263                 }
4264
4265                 mutex_unlock(&event->child_mutex);
4266                 mutex_unlock(&ctx->mutex);
4267                 put_ctx(ctx);
4268                 goto again;
4269         }
4270         mutex_unlock(&event->child_mutex);
4271
4272 no_ctx:
4273         put_event(event); /* Must be the 'last' reference */
4274         return 0;
4275 }
4276 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4277
4278 /*
4279  * Called when the last reference to the file is gone.
4280  */
4281 static int perf_release(struct inode *inode, struct file *file)
4282 {
4283         perf_event_release_kernel(file->private_data);
4284         return 0;
4285 }
4286
4287 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4288 {
4289         struct perf_event *child;
4290         u64 total = 0;
4291
4292         *enabled = 0;
4293         *running = 0;
4294
4295         mutex_lock(&event->child_mutex);
4296
4297         (void)perf_event_read(event, false);
4298         total += perf_event_count(event);
4299
4300         *enabled += event->total_time_enabled +
4301                         atomic64_read(&event->child_total_time_enabled);
4302         *running += event->total_time_running +
4303                         atomic64_read(&event->child_total_time_running);
4304
4305         list_for_each_entry(child, &event->child_list, child_list) {
4306                 (void)perf_event_read(child, false);
4307                 total += perf_event_count(child);
4308                 *enabled += child->total_time_enabled;
4309                 *running += child->total_time_running;
4310         }
4311         mutex_unlock(&event->child_mutex);
4312
4313         return total;
4314 }
4315 EXPORT_SYMBOL_GPL(perf_event_read_value);
4316
4317 static int __perf_read_group_add(struct perf_event *leader,
4318                                         u64 read_format, u64 *values)
4319 {
4320         struct perf_event *sub;
4321         int n = 1; /* skip @nr */
4322         int ret;
4323
4324         ret = perf_event_read(leader, true);
4325         if (ret)
4326                 return ret;
4327
4328         /*
4329          * Since we co-schedule groups, {enabled,running} times of siblings
4330          * will be identical to those of the leader, so we only publish one
4331          * set.
4332          */
4333         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4334                 values[n++] += leader->total_time_enabled +
4335                         atomic64_read(&leader->child_total_time_enabled);
4336         }
4337
4338         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4339                 values[n++] += leader->total_time_running +
4340                         atomic64_read(&leader->child_total_time_running);
4341         }
4342
4343         /*
4344          * Write {count,id} tuples for every sibling.
4345          */
4346         values[n++] += perf_event_count(leader);
4347         if (read_format & PERF_FORMAT_ID)
4348                 values[n++] = primary_event_id(leader);
4349
4350         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4351                 values[n++] += perf_event_count(sub);
4352                 if (read_format & PERF_FORMAT_ID)
4353                         values[n++] = primary_event_id(sub);
4354         }
4355
4356         return 0;
4357 }
4358
4359 static int perf_read_group(struct perf_event *event,
4360                                    u64 read_format, char __user *buf)
4361 {
4362         struct perf_event *leader = event->group_leader, *child;
4363         struct perf_event_context *ctx = leader->ctx;
4364         int ret;
4365         u64 *values;
4366
4367         lockdep_assert_held(&ctx->mutex);
4368
4369         values = kzalloc(event->read_size, GFP_KERNEL);
4370         if (!values)
4371                 return -ENOMEM;
4372
4373         values[0] = 1 + leader->nr_siblings;
4374
4375         /*
4376          * By locking the child_mutex of the leader we effectively
4377          * lock the child list of all siblings.. XXX explain how.
4378          */
4379         mutex_lock(&leader->child_mutex);
4380
4381         ret = __perf_read_group_add(leader, read_format, values);
4382         if (ret)
4383                 goto unlock;
4384
4385         list_for_each_entry(child, &leader->child_list, child_list) {
4386                 ret = __perf_read_group_add(child, read_format, values);
4387                 if (ret)
4388                         goto unlock;
4389         }
4390
4391         mutex_unlock(&leader->child_mutex);
4392
4393         ret = event->read_size;
4394         if (copy_to_user(buf, values, event->read_size))
4395                 ret = -EFAULT;
4396         goto out;
4397
4398 unlock:
4399         mutex_unlock(&leader->child_mutex);
4400 out:
4401         kfree(values);
4402         return ret;
4403 }
4404
4405 static int perf_read_one(struct perf_event *event,
4406                                  u64 read_format, char __user *buf)
4407 {
4408         u64 enabled, running;
4409         u64 values[4];
4410         int n = 0;
4411
4412         values[n++] = perf_event_read_value(event, &enabled, &running);
4413         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4414                 values[n++] = enabled;
4415         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4416                 values[n++] = running;
4417         if (read_format & PERF_FORMAT_ID)
4418                 values[n++] = primary_event_id(event);
4419
4420         if (copy_to_user(buf, values, n * sizeof(u64)))
4421                 return -EFAULT;
4422
4423         return n * sizeof(u64);
4424 }
4425
4426 static bool is_event_hup(struct perf_event *event)
4427 {
4428         bool no_children;
4429
4430         if (event->state > PERF_EVENT_STATE_EXIT)
4431                 return false;
4432
4433         mutex_lock(&event->child_mutex);
4434         no_children = list_empty(&event->child_list);
4435         mutex_unlock(&event->child_mutex);
4436         return no_children;
4437 }
4438
4439 /*
4440  * Read the performance event - simple non blocking version for now
4441  */
4442 static ssize_t
4443 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4444 {
4445         u64 read_format = event->attr.read_format;
4446         int ret;
4447
4448         /*
4449          * Return end-of-file for a read on a event that is in
4450          * error state (i.e. because it was pinned but it couldn't be
4451          * scheduled on to the CPU at some point).
4452          */
4453         if (event->state == PERF_EVENT_STATE_ERROR)
4454                 return 0;
4455
4456         if (count < event->read_size)
4457                 return -ENOSPC;
4458
4459         WARN_ON_ONCE(event->ctx->parent_ctx);
4460         if (read_format & PERF_FORMAT_GROUP)
4461                 ret = perf_read_group(event, read_format, buf);
4462         else
4463                 ret = perf_read_one(event, read_format, buf);
4464
4465         return ret;
4466 }
4467
4468 static ssize_t
4469 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4470 {
4471         struct perf_event *event = file->private_data;
4472         struct perf_event_context *ctx;
4473         int ret;
4474
4475         ctx = perf_event_ctx_lock(event);
4476         ret = __perf_read(event, buf, count);
4477         perf_event_ctx_unlock(event, ctx);
4478
4479         return ret;
4480 }
4481
4482 static unsigned int perf_poll(struct file *file, poll_table *wait)
4483 {
4484         struct perf_event *event = file->private_data;
4485         struct ring_buffer *rb;
4486         unsigned int events = POLLHUP;
4487
4488         poll_wait(file, &event->waitq, wait);
4489
4490         if (is_event_hup(event))
4491                 return events;
4492
4493         /*
4494          * Pin the event->rb by taking event->mmap_mutex; otherwise
4495          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4496          */
4497         mutex_lock(&event->mmap_mutex);
4498         rb = event->rb;
4499         if (rb)
4500                 events = atomic_xchg(&rb->poll, 0);
4501         mutex_unlock(&event->mmap_mutex);
4502         return events;
4503 }
4504
4505 static void _perf_event_reset(struct perf_event *event)
4506 {
4507         (void)perf_event_read(event, false);
4508         local64_set(&event->count, 0);
4509         perf_event_update_userpage(event);
4510 }
4511
4512 /*
4513  * Holding the top-level event's child_mutex means that any
4514  * descendant process that has inherited this event will block
4515  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4516  * task existence requirements of perf_event_enable/disable.
4517  */
4518 static void perf_event_for_each_child(struct perf_event *event,
4519                                         void (*func)(struct perf_event *))
4520 {
4521         struct perf_event *child;
4522
4523         WARN_ON_ONCE(event->ctx->parent_ctx);
4524
4525         mutex_lock(&event->child_mutex);
4526         func(event);
4527         list_for_each_entry(child, &event->child_list, child_list)
4528                 func(child);
4529         mutex_unlock(&event->child_mutex);
4530 }
4531
4532 static void perf_event_for_each(struct perf_event *event,
4533                                   void (*func)(struct perf_event *))
4534 {
4535         struct perf_event_context *ctx = event->ctx;
4536         struct perf_event *sibling;
4537
4538         lockdep_assert_held(&ctx->mutex);
4539
4540         event = event->group_leader;
4541
4542         perf_event_for_each_child(event, func);
4543         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4544                 perf_event_for_each_child(sibling, func);
4545 }
4546
4547 static void __perf_event_period(struct perf_event *event,
4548                                 struct perf_cpu_context *cpuctx,
4549                                 struct perf_event_context *ctx,
4550                                 void *info)
4551 {
4552         u64 value = *((u64 *)info);
4553         bool active;
4554
4555         if (event->attr.freq) {
4556                 event->attr.sample_freq = value;
4557         } else {
4558                 event->attr.sample_period = value;
4559                 event->hw.sample_period = value;
4560         }
4561
4562         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4563         if (active) {
4564                 perf_pmu_disable(ctx->pmu);
4565                 /*
4566                  * We could be throttled; unthrottle now to avoid the tick
4567                  * trying to unthrottle while we already re-started the event.
4568                  */
4569                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4570                         event->hw.interrupts = 0;
4571                         perf_log_throttle(event, 1);
4572                 }
4573                 event->pmu->stop(event, PERF_EF_UPDATE);
4574         }
4575
4576         local64_set(&event->hw.period_left, 0);
4577
4578         if (active) {
4579                 event->pmu->start(event, PERF_EF_RELOAD);
4580                 perf_pmu_enable(ctx->pmu);
4581         }
4582 }
4583
4584 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4585 {
4586         u64 value;
4587
4588         if (!is_sampling_event(event))
4589                 return -EINVAL;
4590
4591         if (copy_from_user(&value, arg, sizeof(value)))
4592                 return -EFAULT;
4593
4594         if (!value)
4595                 return -EINVAL;
4596
4597         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4598                 return -EINVAL;
4599
4600         event_function_call(event, __perf_event_period, &value);
4601
4602         return 0;
4603 }
4604
4605 static const struct file_operations perf_fops;
4606
4607 static inline int perf_fget_light(int fd, struct fd *p)
4608 {
4609         struct fd f = fdget(fd);
4610         if (!f.file)
4611                 return -EBADF;
4612
4613         if (f.file->f_op != &perf_fops) {
4614                 fdput(f);
4615                 return -EBADF;
4616         }
4617         *p = f;
4618         return 0;
4619 }
4620
4621 static int perf_event_set_output(struct perf_event *event,
4622                                  struct perf_event *output_event);
4623 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4624 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4625
4626 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4627 {
4628         void (*func)(struct perf_event *);
4629         u32 flags = arg;
4630
4631         switch (cmd) {
4632         case PERF_EVENT_IOC_ENABLE:
4633                 func = _perf_event_enable;
4634                 break;
4635         case PERF_EVENT_IOC_DISABLE:
4636                 func = _perf_event_disable;
4637                 break;
4638         case PERF_EVENT_IOC_RESET:
4639                 func = _perf_event_reset;
4640                 break;
4641
4642         case PERF_EVENT_IOC_REFRESH:
4643                 return _perf_event_refresh(event, arg);
4644
4645         case PERF_EVENT_IOC_PERIOD:
4646                 return perf_event_period(event, (u64 __user *)arg);
4647
4648         case PERF_EVENT_IOC_ID:
4649         {
4650                 u64 id = primary_event_id(event);
4651
4652                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4653                         return -EFAULT;
4654                 return 0;
4655         }
4656
4657         case PERF_EVENT_IOC_SET_OUTPUT:
4658         {
4659                 int ret;
4660                 if (arg != -1) {
4661                         struct perf_event *output_event;
4662                         struct fd output;
4663                         ret = perf_fget_light(arg, &output);
4664                         if (ret)
4665                                 return ret;
4666                         output_event = output.file->private_data;
4667                         ret = perf_event_set_output(event, output_event);
4668                         fdput(output);
4669                 } else {
4670                         ret = perf_event_set_output(event, NULL);
4671                 }
4672                 return ret;
4673         }
4674
4675         case PERF_EVENT_IOC_SET_FILTER:
4676                 return perf_event_set_filter(event, (void __user *)arg);
4677
4678         case PERF_EVENT_IOC_SET_BPF:
4679                 return perf_event_set_bpf_prog(event, arg);
4680
4681         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4682                 struct ring_buffer *rb;
4683
4684                 rcu_read_lock();
4685                 rb = rcu_dereference(event->rb);
4686                 if (!rb || !rb->nr_pages) {
4687                         rcu_read_unlock();
4688                         return -EINVAL;
4689                 }
4690                 rb_toggle_paused(rb, !!arg);
4691                 rcu_read_unlock();
4692                 return 0;
4693         }
4694         default:
4695                 return -ENOTTY;
4696         }
4697
4698         if (flags & PERF_IOC_FLAG_GROUP)
4699                 perf_event_for_each(event, func);
4700         else
4701                 perf_event_for_each_child(event, func);
4702
4703         return 0;
4704 }
4705
4706 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4707 {
4708         struct perf_event *event = file->private_data;
4709         struct perf_event_context *ctx;
4710         long ret;
4711
4712         ctx = perf_event_ctx_lock(event);
4713         ret = _perf_ioctl(event, cmd, arg);
4714         perf_event_ctx_unlock(event, ctx);
4715
4716         return ret;
4717 }
4718
4719 #ifdef CONFIG_COMPAT
4720 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4721                                 unsigned long arg)
4722 {
4723         switch (_IOC_NR(cmd)) {
4724         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4725         case _IOC_NR(PERF_EVENT_IOC_ID):
4726                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4727                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4728                         cmd &= ~IOCSIZE_MASK;
4729                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4730                 }
4731                 break;
4732         }
4733         return perf_ioctl(file, cmd, arg);
4734 }
4735 #else
4736 # define perf_compat_ioctl NULL
4737 #endif
4738
4739 int perf_event_task_enable(void)
4740 {
4741         struct perf_event_context *ctx;
4742         struct perf_event *event;
4743
4744         mutex_lock(&current->perf_event_mutex);
4745         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4746                 ctx = perf_event_ctx_lock(event);
4747                 perf_event_for_each_child(event, _perf_event_enable);
4748                 perf_event_ctx_unlock(event, ctx);
4749         }
4750         mutex_unlock(&current->perf_event_mutex);
4751
4752         return 0;
4753 }
4754
4755 int perf_event_task_disable(void)
4756 {
4757         struct perf_event_context *ctx;
4758         struct perf_event *event;
4759
4760         mutex_lock(&current->perf_event_mutex);
4761         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4762                 ctx = perf_event_ctx_lock(event);
4763                 perf_event_for_each_child(event, _perf_event_disable);
4764                 perf_event_ctx_unlock(event, ctx);
4765         }
4766         mutex_unlock(&current->perf_event_mutex);
4767
4768         return 0;
4769 }
4770
4771 static int perf_event_index(struct perf_event *event)
4772 {
4773         if (event->hw.state & PERF_HES_STOPPED)
4774                 return 0;
4775
4776         if (event->state != PERF_EVENT_STATE_ACTIVE)
4777                 return 0;
4778
4779         return event->pmu->event_idx(event);
4780 }
4781
4782 static void calc_timer_values(struct perf_event *event,
4783                                 u64 *now,
4784                                 u64 *enabled,
4785                                 u64 *running)
4786 {
4787         u64 ctx_time;
4788
4789         *now = perf_clock();
4790         ctx_time = event->shadow_ctx_time + *now;
4791         *enabled = ctx_time - event->tstamp_enabled;
4792         *running = ctx_time - event->tstamp_running;
4793 }
4794
4795 static void perf_event_init_userpage(struct perf_event *event)
4796 {
4797         struct perf_event_mmap_page *userpg;
4798         struct ring_buffer *rb;
4799
4800         rcu_read_lock();
4801         rb = rcu_dereference(event->rb);
4802         if (!rb)
4803                 goto unlock;
4804
4805         userpg = rb->user_page;
4806
4807         /* Allow new userspace to detect that bit 0 is deprecated */
4808         userpg->cap_bit0_is_deprecated = 1;
4809         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4810         userpg->data_offset = PAGE_SIZE;
4811         userpg->data_size = perf_data_size(rb);
4812
4813 unlock:
4814         rcu_read_unlock();
4815 }
4816
4817 void __weak arch_perf_update_userpage(
4818         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4819 {
4820 }
4821
4822 /*
4823  * Callers need to ensure there can be no nesting of this function, otherwise
4824  * the seqlock logic goes bad. We can not serialize this because the arch
4825  * code calls this from NMI context.
4826  */
4827 void perf_event_update_userpage(struct perf_event *event)
4828 {
4829         struct perf_event_mmap_page *userpg;
4830         struct ring_buffer *rb;
4831         u64 enabled, running, now;
4832
4833         rcu_read_lock();
4834         rb = rcu_dereference(event->rb);
4835         if (!rb)
4836                 goto unlock;
4837
4838         /*
4839          * compute total_time_enabled, total_time_running
4840          * based on snapshot values taken when the event
4841          * was last scheduled in.
4842          *
4843          * we cannot simply called update_context_time()
4844          * because of locking issue as we can be called in
4845          * NMI context
4846          */
4847         calc_timer_values(event, &now, &enabled, &running);
4848
4849         userpg = rb->user_page;
4850         /*
4851          * Disable preemption so as to not let the corresponding user-space
4852          * spin too long if we get preempted.
4853          */
4854         preempt_disable();
4855         ++userpg->lock;
4856         barrier();
4857         userpg->index = perf_event_index(event);
4858         userpg->offset = perf_event_count(event);
4859         if (userpg->index)
4860                 userpg->offset -= local64_read(&event->hw.prev_count);
4861
4862         userpg->time_enabled = enabled +
4863                         atomic64_read(&event->child_total_time_enabled);
4864
4865         userpg->time_running = running +
4866                         atomic64_read(&event->child_total_time_running);
4867
4868         arch_perf_update_userpage(event, userpg, now);
4869
4870         barrier();
4871         ++userpg->lock;
4872         preempt_enable();
4873 unlock:
4874         rcu_read_unlock();
4875 }
4876
4877 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4878 {
4879         struct perf_event *event = vma->vm_file->private_data;
4880         struct ring_buffer *rb;
4881         int ret = VM_FAULT_SIGBUS;
4882
4883         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4884                 if (vmf->pgoff == 0)
4885                         ret = 0;
4886                 return ret;
4887         }
4888
4889         rcu_read_lock();
4890         rb = rcu_dereference(event->rb);
4891         if (!rb)
4892                 goto unlock;
4893
4894         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4895                 goto unlock;
4896
4897         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4898         if (!vmf->page)
4899                 goto unlock;
4900
4901         get_page(vmf->page);
4902         vmf->page->mapping = vma->vm_file->f_mapping;
4903         vmf->page->index   = vmf->pgoff;
4904
4905         ret = 0;
4906 unlock:
4907         rcu_read_unlock();
4908
4909         return ret;
4910 }
4911
4912 static void ring_buffer_attach(struct perf_event *event,
4913                                struct ring_buffer *rb)
4914 {
4915         struct ring_buffer *old_rb = NULL;
4916         unsigned long flags;
4917
4918         if (event->rb) {
4919                 /*
4920                  * Should be impossible, we set this when removing
4921                  * event->rb_entry and wait/clear when adding event->rb_entry.
4922                  */
4923                 WARN_ON_ONCE(event->rcu_pending);
4924
4925                 old_rb = event->rb;
4926                 spin_lock_irqsave(&old_rb->event_lock, flags);
4927                 list_del_rcu(&event->rb_entry);
4928                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4929
4930                 event->rcu_batches = get_state_synchronize_rcu();
4931                 event->rcu_pending = 1;
4932         }
4933
4934         if (rb) {
4935                 if (event->rcu_pending) {
4936                         cond_synchronize_rcu(event->rcu_batches);
4937                         event->rcu_pending = 0;
4938                 }
4939
4940                 spin_lock_irqsave(&rb->event_lock, flags);
4941                 list_add_rcu(&event->rb_entry, &rb->event_list);
4942                 spin_unlock_irqrestore(&rb->event_lock, flags);
4943         }
4944
4945         /*
4946          * Avoid racing with perf_mmap_close(AUX): stop the event
4947          * before swizzling the event::rb pointer; if it's getting
4948          * unmapped, its aux_mmap_count will be 0 and it won't
4949          * restart. See the comment in __perf_pmu_output_stop().
4950          *
4951          * Data will inevitably be lost when set_output is done in
4952          * mid-air, but then again, whoever does it like this is
4953          * not in for the data anyway.
4954          */
4955         if (has_aux(event))
4956                 perf_event_stop(event, 0);
4957
4958         rcu_assign_pointer(event->rb, rb);
4959
4960         if (old_rb) {
4961                 ring_buffer_put(old_rb);
4962                 /*
4963                  * Since we detached before setting the new rb, so that we
4964                  * could attach the new rb, we could have missed a wakeup.
4965                  * Provide it now.
4966                  */
4967                 wake_up_all(&event->waitq);
4968         }
4969 }
4970
4971 static void ring_buffer_wakeup(struct perf_event *event)
4972 {
4973         struct ring_buffer *rb;
4974
4975         rcu_read_lock();
4976         rb = rcu_dereference(event->rb);
4977         if (rb) {
4978                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4979                         wake_up_all(&event->waitq);
4980         }
4981         rcu_read_unlock();
4982 }
4983
4984 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4985 {
4986         struct ring_buffer *rb;
4987
4988         rcu_read_lock();
4989         rb = rcu_dereference(event->rb);
4990         if (rb) {
4991                 if (!atomic_inc_not_zero(&rb->refcount))
4992                         rb = NULL;
4993         }
4994         rcu_read_unlock();
4995
4996         return rb;
4997 }
4998
4999 void ring_buffer_put(struct ring_buffer *rb)
5000 {
5001         if (!atomic_dec_and_test(&rb->refcount))
5002                 return;
5003
5004         WARN_ON_ONCE(!list_empty(&rb->event_list));
5005
5006         call_rcu(&rb->rcu_head, rb_free_rcu);
5007 }
5008
5009 static void perf_mmap_open(struct vm_area_struct *vma)
5010 {
5011         struct perf_event *event = vma->vm_file->private_data;
5012
5013         atomic_inc(&event->mmap_count);
5014         atomic_inc(&event->rb->mmap_count);
5015
5016         if (vma->vm_pgoff)
5017                 atomic_inc(&event->rb->aux_mmap_count);
5018
5019         if (event->pmu->event_mapped)
5020                 event->pmu->event_mapped(event);
5021 }
5022
5023 static void perf_pmu_output_stop(struct perf_event *event);
5024
5025 /*
5026  * A buffer can be mmap()ed multiple times; either directly through the same
5027  * event, or through other events by use of perf_event_set_output().
5028  *
5029  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5030  * the buffer here, where we still have a VM context. This means we need
5031  * to detach all events redirecting to us.
5032  */
5033 static void perf_mmap_close(struct vm_area_struct *vma)
5034 {
5035         struct perf_event *event = vma->vm_file->private_data;
5036
5037         struct ring_buffer *rb = ring_buffer_get(event);
5038         struct user_struct *mmap_user = rb->mmap_user;
5039         int mmap_locked = rb->mmap_locked;
5040         unsigned long size = perf_data_size(rb);
5041
5042         if (event->pmu->event_unmapped)
5043                 event->pmu->event_unmapped(event);
5044
5045         /*
5046          * rb->aux_mmap_count will always drop before rb->mmap_count and
5047          * event->mmap_count, so it is ok to use event->mmap_mutex to
5048          * serialize with perf_mmap here.
5049          */
5050         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5051             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5052                 /*
5053                  * Stop all AUX events that are writing to this buffer,
5054                  * so that we can free its AUX pages and corresponding PMU
5055                  * data. Note that after rb::aux_mmap_count dropped to zero,
5056                  * they won't start any more (see perf_aux_output_begin()).
5057                  */
5058                 perf_pmu_output_stop(event);
5059
5060                 /* now it's safe to free the pages */
5061                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5062                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5063
5064                 /* this has to be the last one */
5065                 rb_free_aux(rb);
5066                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5067
5068                 mutex_unlock(&event->mmap_mutex);
5069         }
5070
5071         atomic_dec(&rb->mmap_count);
5072
5073         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5074                 goto out_put;
5075
5076         ring_buffer_attach(event, NULL);
5077         mutex_unlock(&event->mmap_mutex);
5078
5079         /* If there's still other mmap()s of this buffer, we're done. */
5080         if (atomic_read(&rb->mmap_count))
5081                 goto out_put;
5082
5083         /*
5084          * No other mmap()s, detach from all other events that might redirect
5085          * into the now unreachable buffer. Somewhat complicated by the
5086          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5087          */
5088 again:
5089         rcu_read_lock();
5090         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5091                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5092                         /*
5093                          * This event is en-route to free_event() which will
5094                          * detach it and remove it from the list.
5095                          */
5096                         continue;
5097                 }
5098                 rcu_read_unlock();
5099
5100                 mutex_lock(&event->mmap_mutex);
5101                 /*
5102                  * Check we didn't race with perf_event_set_output() which can
5103                  * swizzle the rb from under us while we were waiting to
5104                  * acquire mmap_mutex.
5105                  *
5106                  * If we find a different rb; ignore this event, a next
5107                  * iteration will no longer find it on the list. We have to
5108                  * still restart the iteration to make sure we're not now
5109                  * iterating the wrong list.
5110                  */
5111                 if (event->rb == rb)
5112                         ring_buffer_attach(event, NULL);
5113
5114                 mutex_unlock(&event->mmap_mutex);
5115                 put_event(event);
5116
5117                 /*
5118                  * Restart the iteration; either we're on the wrong list or
5119                  * destroyed its integrity by doing a deletion.
5120                  */
5121                 goto again;
5122         }
5123         rcu_read_unlock();
5124
5125         /*
5126          * It could be there's still a few 0-ref events on the list; they'll
5127          * get cleaned up by free_event() -- they'll also still have their
5128          * ref on the rb and will free it whenever they are done with it.
5129          *
5130          * Aside from that, this buffer is 'fully' detached and unmapped,
5131          * undo the VM accounting.
5132          */
5133
5134         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5135         vma->vm_mm->pinned_vm -= mmap_locked;
5136         free_uid(mmap_user);
5137
5138 out_put:
5139         ring_buffer_put(rb); /* could be last */
5140 }
5141
5142 static const struct vm_operations_struct perf_mmap_vmops = {
5143         .open           = perf_mmap_open,
5144         .close          = perf_mmap_close, /* non mergable */
5145         .fault          = perf_mmap_fault,
5146         .page_mkwrite   = perf_mmap_fault,
5147 };
5148
5149 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5150 {
5151         struct perf_event *event = file->private_data;
5152         unsigned long user_locked, user_lock_limit;
5153         struct user_struct *user = current_user();
5154         unsigned long locked, lock_limit;
5155         struct ring_buffer *rb = NULL;
5156         unsigned long vma_size;
5157         unsigned long nr_pages;
5158         long user_extra = 0, extra = 0;
5159         int ret = 0, flags = 0;
5160
5161         /*
5162          * Don't allow mmap() of inherited per-task counters. This would
5163          * create a performance issue due to all children writing to the
5164          * same rb.
5165          */
5166         if (event->cpu == -1 && event->attr.inherit)
5167                 return -EINVAL;
5168
5169         if (!(vma->vm_flags & VM_SHARED))
5170                 return -EINVAL;
5171
5172         vma_size = vma->vm_end - vma->vm_start;
5173
5174         if (vma->vm_pgoff == 0) {
5175                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5176         } else {
5177                 /*
5178                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5179                  * mapped, all subsequent mappings should have the same size
5180                  * and offset. Must be above the normal perf buffer.
5181                  */
5182                 u64 aux_offset, aux_size;
5183
5184                 if (!event->rb)
5185                         return -EINVAL;
5186
5187                 nr_pages = vma_size / PAGE_SIZE;
5188
5189                 mutex_lock(&event->mmap_mutex);
5190                 ret = -EINVAL;
5191
5192                 rb = event->rb;
5193                 if (!rb)
5194                         goto aux_unlock;
5195
5196                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5197                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5198
5199                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5200                         goto aux_unlock;
5201
5202                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5203                         goto aux_unlock;
5204
5205                 /* already mapped with a different offset */
5206                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5207                         goto aux_unlock;
5208
5209                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5210                         goto aux_unlock;
5211
5212                 /* already mapped with a different size */
5213                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5214                         goto aux_unlock;
5215
5216                 if (!is_power_of_2(nr_pages))
5217                         goto aux_unlock;
5218
5219                 if (!atomic_inc_not_zero(&rb->mmap_count))
5220                         goto aux_unlock;
5221
5222                 if (rb_has_aux(rb)) {
5223                         atomic_inc(&rb->aux_mmap_count);
5224                         ret = 0;
5225                         goto unlock;
5226                 }
5227
5228                 atomic_set(&rb->aux_mmap_count, 1);
5229                 user_extra = nr_pages;
5230
5231                 goto accounting;
5232         }
5233
5234         /*
5235          * If we have rb pages ensure they're a power-of-two number, so we
5236          * can do bitmasks instead of modulo.
5237          */
5238         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5239                 return -EINVAL;
5240
5241         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5242                 return -EINVAL;
5243
5244         WARN_ON_ONCE(event->ctx->parent_ctx);
5245 again:
5246         mutex_lock(&event->mmap_mutex);
5247         if (event->rb) {
5248                 if (event->rb->nr_pages != nr_pages) {
5249                         ret = -EINVAL;
5250                         goto unlock;
5251                 }
5252
5253                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5254                         /*
5255                          * Raced against perf_mmap_close() through
5256                          * perf_event_set_output(). Try again, hope for better
5257                          * luck.
5258                          */
5259                         mutex_unlock(&event->mmap_mutex);
5260                         goto again;
5261                 }
5262
5263                 goto unlock;
5264         }
5265
5266         user_extra = nr_pages + 1;
5267
5268 accounting:
5269         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5270
5271         /*
5272          * Increase the limit linearly with more CPUs:
5273          */
5274         user_lock_limit *= num_online_cpus();
5275
5276         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5277
5278         if (user_locked > user_lock_limit)
5279                 extra = user_locked - user_lock_limit;
5280
5281         lock_limit = rlimit(RLIMIT_MEMLOCK);
5282         lock_limit >>= PAGE_SHIFT;
5283         locked = vma->vm_mm->pinned_vm + extra;
5284
5285         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5286                 !capable(CAP_IPC_LOCK)) {
5287                 ret = -EPERM;
5288                 goto unlock;
5289         }
5290
5291         WARN_ON(!rb && event->rb);
5292
5293         if (vma->vm_flags & VM_WRITE)
5294                 flags |= RING_BUFFER_WRITABLE;
5295
5296         if (!rb) {
5297                 rb = rb_alloc(nr_pages,
5298                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5299                               event->cpu, flags);
5300
5301                 if (!rb) {
5302                         ret = -ENOMEM;
5303                         goto unlock;
5304                 }
5305
5306                 atomic_set(&rb->mmap_count, 1);
5307                 rb->mmap_user = get_current_user();
5308                 rb->mmap_locked = extra;
5309
5310                 ring_buffer_attach(event, rb);
5311
5312                 perf_event_init_userpage(event);
5313                 perf_event_update_userpage(event);
5314         } else {
5315                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5316                                    event->attr.aux_watermark, flags);
5317                 if (!ret)
5318                         rb->aux_mmap_locked = extra;
5319         }
5320
5321 unlock:
5322         if (!ret) {
5323                 atomic_long_add(user_extra, &user->locked_vm);
5324                 vma->vm_mm->pinned_vm += extra;
5325
5326                 atomic_inc(&event->mmap_count);
5327         } else if (rb) {
5328                 atomic_dec(&rb->mmap_count);
5329         }
5330 aux_unlock:
5331         mutex_unlock(&event->mmap_mutex);
5332
5333         /*
5334          * Since pinned accounting is per vm we cannot allow fork() to copy our
5335          * vma.
5336          */
5337         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5338         vma->vm_ops = &perf_mmap_vmops;
5339
5340         if (event->pmu->event_mapped)
5341                 event->pmu->event_mapped(event);
5342
5343         return ret;
5344 }
5345
5346 static int perf_fasync(int fd, struct file *filp, int on)
5347 {
5348         struct inode *inode = file_inode(filp);
5349         struct perf_event *event = filp->private_data;
5350         int retval;
5351
5352         inode_lock(inode);
5353         retval = fasync_helper(fd, filp, on, &event->fasync);
5354         inode_unlock(inode);
5355
5356         if (retval < 0)
5357                 return retval;
5358
5359         return 0;
5360 }
5361
5362 static const struct file_operations perf_fops = {
5363         .llseek                 = no_llseek,
5364         .release                = perf_release,
5365         .read                   = perf_read,
5366         .poll                   = perf_poll,
5367         .unlocked_ioctl         = perf_ioctl,
5368         .compat_ioctl           = perf_compat_ioctl,
5369         .mmap                   = perf_mmap,
5370         .fasync                 = perf_fasync,
5371 };
5372
5373 /*
5374  * Perf event wakeup
5375  *
5376  * If there's data, ensure we set the poll() state and publish everything
5377  * to user-space before waking everybody up.
5378  */
5379
5380 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5381 {
5382         /* only the parent has fasync state */
5383         if (event->parent)
5384                 event = event->parent;
5385         return &event->fasync;
5386 }
5387
5388 void perf_event_wakeup(struct perf_event *event)
5389 {
5390         ring_buffer_wakeup(event);
5391
5392         if (event->pending_kill) {
5393                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5394                 event->pending_kill = 0;
5395         }
5396 }
5397
5398 static void perf_pending_event(struct irq_work *entry)
5399 {
5400         struct perf_event *event = container_of(entry,
5401                         struct perf_event, pending);
5402         int rctx;
5403
5404         rctx = perf_swevent_get_recursion_context();
5405         /*
5406          * If we 'fail' here, that's OK, it means recursion is already disabled
5407          * and we won't recurse 'further'.
5408          */
5409
5410         if (event->pending_disable) {
5411                 event->pending_disable = 0;
5412                 perf_event_disable_local(event);
5413         }
5414
5415         if (event->pending_wakeup) {
5416                 event->pending_wakeup = 0;
5417                 perf_event_wakeup(event);
5418         }
5419
5420         if (rctx >= 0)
5421                 perf_swevent_put_recursion_context(rctx);
5422 }
5423
5424 /*
5425  * We assume there is only KVM supporting the callbacks.
5426  * Later on, we might change it to a list if there is
5427  * another virtualization implementation supporting the callbacks.
5428  */
5429 struct perf_guest_info_callbacks *perf_guest_cbs;
5430
5431 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5432 {
5433         perf_guest_cbs = cbs;
5434         return 0;
5435 }
5436 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5437
5438 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5439 {
5440         perf_guest_cbs = NULL;
5441         return 0;
5442 }
5443 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5444
5445 static void
5446 perf_output_sample_regs(struct perf_output_handle *handle,
5447                         struct pt_regs *regs, u64 mask)
5448 {
5449         int bit;
5450         DECLARE_BITMAP(_mask, 64);
5451
5452         bitmap_from_u64(_mask, mask);
5453         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5454                 u64 val;
5455
5456                 val = perf_reg_value(regs, bit);
5457                 perf_output_put(handle, val);
5458         }
5459 }
5460
5461 static void perf_sample_regs_user(struct perf_regs *regs_user,
5462                                   struct pt_regs *regs,
5463                                   struct pt_regs *regs_user_copy)
5464 {
5465         if (user_mode(regs)) {
5466                 regs_user->abi = perf_reg_abi(current);
5467                 regs_user->regs = regs;
5468         } else if (current->mm) {
5469                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5470         } else {
5471                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5472                 regs_user->regs = NULL;
5473         }
5474 }
5475
5476 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5477                                   struct pt_regs *regs)
5478 {
5479         regs_intr->regs = regs;
5480         regs_intr->abi  = perf_reg_abi(current);
5481 }
5482
5483
5484 /*
5485  * Get remaining task size from user stack pointer.
5486  *
5487  * It'd be better to take stack vma map and limit this more
5488  * precisly, but there's no way to get it safely under interrupt,
5489  * so using TASK_SIZE as limit.
5490  */
5491 static u64 perf_ustack_task_size(struct pt_regs *regs)
5492 {
5493         unsigned long addr = perf_user_stack_pointer(regs);
5494
5495         if (!addr || addr >= TASK_SIZE)
5496                 return 0;
5497
5498         return TASK_SIZE - addr;
5499 }
5500
5501 static u16
5502 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5503                         struct pt_regs *regs)
5504 {
5505         u64 task_size;
5506
5507         /* No regs, no stack pointer, no dump. */
5508         if (!regs)
5509                 return 0;
5510
5511         /*
5512          * Check if we fit in with the requested stack size into the:
5513          * - TASK_SIZE
5514          *   If we don't, we limit the size to the TASK_SIZE.
5515          *
5516          * - remaining sample size
5517          *   If we don't, we customize the stack size to
5518          *   fit in to the remaining sample size.
5519          */
5520
5521         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5522         stack_size = min(stack_size, (u16) task_size);
5523
5524         /* Current header size plus static size and dynamic size. */
5525         header_size += 2 * sizeof(u64);
5526
5527         /* Do we fit in with the current stack dump size? */
5528         if ((u16) (header_size + stack_size) < header_size) {
5529                 /*
5530                  * If we overflow the maximum size for the sample,
5531                  * we customize the stack dump size to fit in.
5532                  */
5533                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5534                 stack_size = round_up(stack_size, sizeof(u64));
5535         }
5536
5537         return stack_size;
5538 }
5539
5540 static void
5541 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5542                           struct pt_regs *regs)
5543 {
5544         /* Case of a kernel thread, nothing to dump */
5545         if (!regs) {
5546                 u64 size = 0;
5547                 perf_output_put(handle, size);
5548         } else {
5549                 unsigned long sp;
5550                 unsigned int rem;
5551                 u64 dyn_size;
5552
5553                 /*
5554                  * We dump:
5555                  * static size
5556                  *   - the size requested by user or the best one we can fit
5557                  *     in to the sample max size
5558                  * data
5559                  *   - user stack dump data
5560                  * dynamic size
5561                  *   - the actual dumped size
5562                  */
5563
5564                 /* Static size. */
5565                 perf_output_put(handle, dump_size);
5566
5567                 /* Data. */
5568                 sp = perf_user_stack_pointer(regs);
5569                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5570                 dyn_size = dump_size - rem;
5571
5572                 perf_output_skip(handle, rem);
5573
5574                 /* Dynamic size. */
5575                 perf_output_put(handle, dyn_size);
5576         }
5577 }
5578
5579 static void __perf_event_header__init_id(struct perf_event_header *header,
5580                                          struct perf_sample_data *data,
5581                                          struct perf_event *event)
5582 {
5583         u64 sample_type = event->attr.sample_type;
5584
5585         data->type = sample_type;
5586         header->size += event->id_header_size;
5587
5588         if (sample_type & PERF_SAMPLE_TID) {
5589                 /* namespace issues */
5590                 data->tid_entry.pid = perf_event_pid(event, current);
5591                 data->tid_entry.tid = perf_event_tid(event, current);
5592         }
5593
5594         if (sample_type & PERF_SAMPLE_TIME)
5595                 data->time = perf_event_clock(event);
5596
5597         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5598                 data->id = primary_event_id(event);
5599
5600         if (sample_type & PERF_SAMPLE_STREAM_ID)
5601                 data->stream_id = event->id;
5602
5603         if (sample_type & PERF_SAMPLE_CPU) {
5604                 data->cpu_entry.cpu      = raw_smp_processor_id();
5605                 data->cpu_entry.reserved = 0;
5606         }
5607 }
5608
5609 void perf_event_header__init_id(struct perf_event_header *header,
5610                                 struct perf_sample_data *data,
5611                                 struct perf_event *event)
5612 {
5613         if (event->attr.sample_id_all)
5614                 __perf_event_header__init_id(header, data, event);
5615 }
5616
5617 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5618                                            struct perf_sample_data *data)
5619 {
5620         u64 sample_type = data->type;
5621
5622         if (sample_type & PERF_SAMPLE_TID)
5623                 perf_output_put(handle, data->tid_entry);
5624
5625         if (sample_type & PERF_SAMPLE_TIME)
5626                 perf_output_put(handle, data->time);
5627
5628         if (sample_type & PERF_SAMPLE_ID)
5629                 perf_output_put(handle, data->id);
5630
5631         if (sample_type & PERF_SAMPLE_STREAM_ID)
5632                 perf_output_put(handle, data->stream_id);
5633
5634         if (sample_type & PERF_SAMPLE_CPU)
5635                 perf_output_put(handle, data->cpu_entry);
5636
5637         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5638                 perf_output_put(handle, data->id);
5639 }
5640
5641 void perf_event__output_id_sample(struct perf_event *event,
5642                                   struct perf_output_handle *handle,
5643                                   struct perf_sample_data *sample)
5644 {
5645         if (event->attr.sample_id_all)
5646                 __perf_event__output_id_sample(handle, sample);
5647 }
5648
5649 static void perf_output_read_one(struct perf_output_handle *handle,
5650                                  struct perf_event *event,
5651                                  u64 enabled, u64 running)
5652 {
5653         u64 read_format = event->attr.read_format;
5654         u64 values[4];
5655         int n = 0;
5656
5657         values[n++] = perf_event_count(event);
5658         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5659                 values[n++] = enabled +
5660                         atomic64_read(&event->child_total_time_enabled);
5661         }
5662         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5663                 values[n++] = running +
5664                         atomic64_read(&event->child_total_time_running);
5665         }
5666         if (read_format & PERF_FORMAT_ID)
5667                 values[n++] = primary_event_id(event);
5668
5669         __output_copy(handle, values, n * sizeof(u64));
5670 }
5671
5672 /*
5673  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5674  */
5675 static void perf_output_read_group(struct perf_output_handle *handle,
5676                             struct perf_event *event,
5677                             u64 enabled, u64 running)
5678 {
5679         struct perf_event *leader = event->group_leader, *sub;
5680         u64 read_format = event->attr.read_format;
5681         u64 values[5];
5682         int n = 0;
5683
5684         values[n++] = 1 + leader->nr_siblings;
5685
5686         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5687                 values[n++] = enabled;
5688
5689         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5690                 values[n++] = running;
5691
5692         if (leader != event)
5693                 leader->pmu->read(leader);
5694
5695         values[n++] = perf_event_count(leader);
5696         if (read_format & PERF_FORMAT_ID)
5697                 values[n++] = primary_event_id(leader);
5698
5699         __output_copy(handle, values, n * sizeof(u64));
5700
5701         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5702                 n = 0;
5703
5704                 if ((sub != event) &&
5705                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5706                         sub->pmu->read(sub);
5707
5708                 values[n++] = perf_event_count(sub);
5709                 if (read_format & PERF_FORMAT_ID)
5710                         values[n++] = primary_event_id(sub);
5711
5712                 __output_copy(handle, values, n * sizeof(u64));
5713         }
5714 }
5715
5716 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5717                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5718
5719 static void perf_output_read(struct perf_output_handle *handle,
5720                              struct perf_event *event)
5721 {
5722         u64 enabled = 0, running = 0, now;
5723         u64 read_format = event->attr.read_format;
5724
5725         /*
5726          * compute total_time_enabled, total_time_running
5727          * based on snapshot values taken when the event
5728          * was last scheduled in.
5729          *
5730          * we cannot simply called update_context_time()
5731          * because of locking issue as we are called in
5732          * NMI context
5733          */
5734         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5735                 calc_timer_values(event, &now, &enabled, &running);
5736
5737         if (event->attr.read_format & PERF_FORMAT_GROUP)
5738                 perf_output_read_group(handle, event, enabled, running);
5739         else
5740                 perf_output_read_one(handle, event, enabled, running);
5741 }
5742
5743 void perf_output_sample(struct perf_output_handle *handle,
5744                         struct perf_event_header *header,
5745                         struct perf_sample_data *data,
5746                         struct perf_event *event)
5747 {
5748         u64 sample_type = data->type;
5749
5750         perf_output_put(handle, *header);
5751
5752         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5753                 perf_output_put(handle, data->id);
5754
5755         if (sample_type & PERF_SAMPLE_IP)
5756                 perf_output_put(handle, data->ip);
5757
5758         if (sample_type & PERF_SAMPLE_TID)
5759                 perf_output_put(handle, data->tid_entry);
5760
5761         if (sample_type & PERF_SAMPLE_TIME)
5762                 perf_output_put(handle, data->time);
5763
5764         if (sample_type & PERF_SAMPLE_ADDR)
5765                 perf_output_put(handle, data->addr);
5766
5767         if (sample_type & PERF_SAMPLE_ID)
5768                 perf_output_put(handle, data->id);
5769
5770         if (sample_type & PERF_SAMPLE_STREAM_ID)
5771                 perf_output_put(handle, data->stream_id);
5772
5773         if (sample_type & PERF_SAMPLE_CPU)
5774                 perf_output_put(handle, data->cpu_entry);
5775
5776         if (sample_type & PERF_SAMPLE_PERIOD)
5777                 perf_output_put(handle, data->period);
5778
5779         if (sample_type & PERF_SAMPLE_READ)
5780                 perf_output_read(handle, event);
5781
5782         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5783                 if (data->callchain) {
5784                         int size = 1;
5785
5786                         if (data->callchain)
5787                                 size += data->callchain->nr;
5788
5789                         size *= sizeof(u64);
5790
5791                         __output_copy(handle, data->callchain, size);
5792                 } else {
5793                         u64 nr = 0;
5794                         perf_output_put(handle, nr);
5795                 }
5796         }
5797
5798         if (sample_type & PERF_SAMPLE_RAW) {
5799                 struct perf_raw_record *raw = data->raw;
5800
5801                 if (raw) {
5802                         struct perf_raw_frag *frag = &raw->frag;
5803
5804                         perf_output_put(handle, raw->size);
5805                         do {
5806                                 if (frag->copy) {
5807                                         __output_custom(handle, frag->copy,
5808                                                         frag->data, frag->size);
5809                                 } else {
5810                                         __output_copy(handle, frag->data,
5811                                                       frag->size);
5812                                 }
5813                                 if (perf_raw_frag_last(frag))
5814                                         break;
5815                                 frag = frag->next;
5816                         } while (1);
5817                         if (frag->pad)
5818                                 __output_skip(handle, NULL, frag->pad);
5819                 } else {
5820                         struct {
5821                                 u32     size;
5822                                 u32     data;
5823                         } raw = {
5824                                 .size = sizeof(u32),
5825                                 .data = 0,
5826                         };
5827                         perf_output_put(handle, raw);
5828                 }
5829         }
5830
5831         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5832                 if (data->br_stack) {
5833                         size_t size;
5834
5835                         size = data->br_stack->nr
5836                              * sizeof(struct perf_branch_entry);
5837
5838                         perf_output_put(handle, data->br_stack->nr);
5839                         perf_output_copy(handle, data->br_stack->entries, size);
5840                 } else {
5841                         /*
5842                          * we always store at least the value of nr
5843                          */
5844                         u64 nr = 0;
5845                         perf_output_put(handle, nr);
5846                 }
5847         }
5848
5849         if (sample_type & PERF_SAMPLE_REGS_USER) {
5850                 u64 abi = data->regs_user.abi;
5851
5852                 /*
5853                  * If there are no regs to dump, notice it through
5854                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5855                  */
5856                 perf_output_put(handle, abi);
5857
5858                 if (abi) {
5859                         u64 mask = event->attr.sample_regs_user;
5860                         perf_output_sample_regs(handle,
5861                                                 data->regs_user.regs,
5862                                                 mask);
5863                 }
5864         }
5865
5866         if (sample_type & PERF_SAMPLE_STACK_USER) {
5867                 perf_output_sample_ustack(handle,
5868                                           data->stack_user_size,
5869                                           data->regs_user.regs);
5870         }
5871
5872         if (sample_type & PERF_SAMPLE_WEIGHT)
5873                 perf_output_put(handle, data->weight);
5874
5875         if (sample_type & PERF_SAMPLE_DATA_SRC)
5876                 perf_output_put(handle, data->data_src.val);
5877
5878         if (sample_type & PERF_SAMPLE_TRANSACTION)
5879                 perf_output_put(handle, data->txn);
5880
5881         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5882                 u64 abi = data->regs_intr.abi;
5883                 /*
5884                  * If there are no regs to dump, notice it through
5885                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5886                  */
5887                 perf_output_put(handle, abi);
5888
5889                 if (abi) {
5890                         u64 mask = event->attr.sample_regs_intr;
5891
5892                         perf_output_sample_regs(handle,
5893                                                 data->regs_intr.regs,
5894                                                 mask);
5895                 }
5896         }
5897
5898         if (!event->attr.watermark) {
5899                 int wakeup_events = event->attr.wakeup_events;
5900
5901                 if (wakeup_events) {
5902                         struct ring_buffer *rb = handle->rb;
5903                         int events = local_inc_return(&rb->events);
5904
5905                         if (events >= wakeup_events) {
5906                                 local_sub(wakeup_events, &rb->events);
5907                                 local_inc(&rb->wakeup);
5908                         }
5909                 }
5910         }
5911 }
5912
5913 void perf_prepare_sample(struct perf_event_header *header,
5914                          struct perf_sample_data *data,
5915                          struct perf_event *event,
5916                          struct pt_regs *regs)
5917 {
5918         u64 sample_type = event->attr.sample_type;
5919
5920         header->type = PERF_RECORD_SAMPLE;
5921         header->size = sizeof(*header) + event->header_size;
5922
5923         header->misc = 0;
5924         header->misc |= perf_misc_flags(regs);
5925
5926         __perf_event_header__init_id(header, data, event);
5927
5928         if (sample_type & PERF_SAMPLE_IP)
5929                 data->ip = perf_instruction_pointer(regs);
5930
5931         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5932                 int size = 1;
5933
5934                 data->callchain = perf_callchain(event, regs);
5935
5936                 if (data->callchain)
5937                         size += data->callchain->nr;
5938
5939                 header->size += size * sizeof(u64);
5940         }
5941
5942         if (sample_type & PERF_SAMPLE_RAW) {
5943                 struct perf_raw_record *raw = data->raw;
5944                 int size;
5945
5946                 if (raw) {
5947                         struct perf_raw_frag *frag = &raw->frag;
5948                         u32 sum = 0;
5949
5950                         do {
5951                                 sum += frag->size;
5952                                 if (perf_raw_frag_last(frag))
5953                                         break;
5954                                 frag = frag->next;
5955                         } while (1);
5956
5957                         size = round_up(sum + sizeof(u32), sizeof(u64));
5958                         raw->size = size - sizeof(u32);
5959                         frag->pad = raw->size - sum;
5960                 } else {
5961                         size = sizeof(u64);
5962                 }
5963
5964                 header->size += size;
5965         }
5966
5967         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5968                 int size = sizeof(u64); /* nr */
5969                 if (data->br_stack) {
5970                         size += data->br_stack->nr
5971                               * sizeof(struct perf_branch_entry);
5972                 }
5973                 header->size += size;
5974         }
5975
5976         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5977                 perf_sample_regs_user(&data->regs_user, regs,
5978                                       &data->regs_user_copy);
5979
5980         if (sample_type & PERF_SAMPLE_REGS_USER) {
5981                 /* regs dump ABI info */
5982                 int size = sizeof(u64);
5983
5984                 if (data->regs_user.regs) {
5985                         u64 mask = event->attr.sample_regs_user;
5986                         size += hweight64(mask) * sizeof(u64);
5987                 }
5988
5989                 header->size += size;
5990         }
5991
5992         if (sample_type & PERF_SAMPLE_STACK_USER) {
5993                 /*
5994                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5995                  * processed as the last one or have additional check added
5996                  * in case new sample type is added, because we could eat
5997                  * up the rest of the sample size.
5998                  */
5999                 u16 stack_size = event->attr.sample_stack_user;
6000                 u16 size = sizeof(u64);
6001
6002                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6003                                                      data->regs_user.regs);
6004
6005                 /*
6006                  * If there is something to dump, add space for the dump
6007                  * itself and for the field that tells the dynamic size,
6008                  * which is how many have been actually dumped.
6009                  */
6010                 if (stack_size)
6011                         size += sizeof(u64) + stack_size;
6012
6013                 data->stack_user_size = stack_size;
6014                 header->size += size;
6015         }
6016
6017         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6018                 /* regs dump ABI info */
6019                 int size = sizeof(u64);
6020
6021                 perf_sample_regs_intr(&data->regs_intr, regs);
6022
6023                 if (data->regs_intr.regs) {
6024                         u64 mask = event->attr.sample_regs_intr;
6025
6026                         size += hweight64(mask) * sizeof(u64);
6027                 }
6028
6029                 header->size += size;
6030         }
6031 }
6032
6033 static void __always_inline
6034 __perf_event_output(struct perf_event *event,
6035                     struct perf_sample_data *data,
6036                     struct pt_regs *regs,
6037                     int (*output_begin)(struct perf_output_handle *,
6038                                         struct perf_event *,
6039                                         unsigned int))
6040 {
6041         struct perf_output_handle handle;
6042         struct perf_event_header header;
6043
6044         /* protect the callchain buffers */
6045         rcu_read_lock();
6046
6047         perf_prepare_sample(&header, data, event, regs);
6048
6049         if (output_begin(&handle, event, header.size))
6050                 goto exit;
6051
6052         perf_output_sample(&handle, &header, data, event);
6053
6054         perf_output_end(&handle);
6055
6056 exit:
6057         rcu_read_unlock();
6058 }
6059
6060 void
6061 perf_event_output_forward(struct perf_event *event,
6062                          struct perf_sample_data *data,
6063                          struct pt_regs *regs)
6064 {
6065         __perf_event_output(event, data, regs, perf_output_begin_forward);
6066 }
6067
6068 void
6069 perf_event_output_backward(struct perf_event *event,
6070                            struct perf_sample_data *data,
6071                            struct pt_regs *regs)
6072 {
6073         __perf_event_output(event, data, regs, perf_output_begin_backward);
6074 }
6075
6076 void
6077 perf_event_output(struct perf_event *event,
6078                   struct perf_sample_data *data,
6079                   struct pt_regs *regs)
6080 {
6081         __perf_event_output(event, data, regs, perf_output_begin);
6082 }
6083
6084 /*
6085  * read event_id
6086  */
6087
6088 struct perf_read_event {
6089         struct perf_event_header        header;
6090
6091         u32                             pid;
6092         u32                             tid;
6093 };
6094
6095 static void
6096 perf_event_read_event(struct perf_event *event,
6097                         struct task_struct *task)
6098 {
6099         struct perf_output_handle handle;
6100         struct perf_sample_data sample;
6101         struct perf_read_event read_event = {
6102                 .header = {
6103                         .type = PERF_RECORD_READ,
6104                         .misc = 0,
6105                         .size = sizeof(read_event) + event->read_size,
6106                 },
6107                 .pid = perf_event_pid(event, task),
6108                 .tid = perf_event_tid(event, task),
6109         };
6110         int ret;
6111
6112         perf_event_header__init_id(&read_event.header, &sample, event);
6113         ret = perf_output_begin(&handle, event, read_event.header.size);
6114         if (ret)
6115                 return;
6116
6117         perf_output_put(&handle, read_event);
6118         perf_output_read(&handle, event);
6119         perf_event__output_id_sample(event, &handle, &sample);
6120
6121         perf_output_end(&handle);
6122 }
6123
6124 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6125
6126 static void
6127 perf_iterate_ctx(struct perf_event_context *ctx,
6128                    perf_iterate_f output,
6129                    void *data, bool all)
6130 {
6131         struct perf_event *event;
6132
6133         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6134                 if (!all) {
6135                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6136                                 continue;
6137                         if (!event_filter_match(event))
6138                                 continue;
6139                 }
6140
6141                 output(event, data);
6142         }
6143 }
6144
6145 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6146 {
6147         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6148         struct perf_event *event;
6149
6150         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6151                 /*
6152                  * Skip events that are not fully formed yet; ensure that
6153                  * if we observe event->ctx, both event and ctx will be
6154                  * complete enough. See perf_install_in_context().
6155                  */
6156                 if (!smp_load_acquire(&event->ctx))
6157                         continue;
6158
6159                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6160                         continue;
6161                 if (!event_filter_match(event))
6162                         continue;
6163                 output(event, data);
6164         }
6165 }
6166
6167 /*
6168  * Iterate all events that need to receive side-band events.
6169  *
6170  * For new callers; ensure that account_pmu_sb_event() includes
6171  * your event, otherwise it might not get delivered.
6172  */
6173 static void
6174 perf_iterate_sb(perf_iterate_f output, void *data,
6175                struct perf_event_context *task_ctx)
6176 {
6177         struct perf_event_context *ctx;
6178         int ctxn;
6179
6180         rcu_read_lock();
6181         preempt_disable();
6182
6183         /*
6184          * If we have task_ctx != NULL we only notify the task context itself.
6185          * The task_ctx is set only for EXIT events before releasing task
6186          * context.
6187          */
6188         if (task_ctx) {
6189                 perf_iterate_ctx(task_ctx, output, data, false);
6190                 goto done;
6191         }
6192
6193         perf_iterate_sb_cpu(output, data);
6194
6195         for_each_task_context_nr(ctxn) {
6196                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6197                 if (ctx)
6198                         perf_iterate_ctx(ctx, output, data, false);
6199         }
6200 done:
6201         preempt_enable();
6202         rcu_read_unlock();
6203 }
6204
6205 /*
6206  * Clear all file-based filters at exec, they'll have to be
6207  * re-instated when/if these objects are mmapped again.
6208  */
6209 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6210 {
6211         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6212         struct perf_addr_filter *filter;
6213         unsigned int restart = 0, count = 0;
6214         unsigned long flags;
6215
6216         if (!has_addr_filter(event))
6217                 return;
6218
6219         raw_spin_lock_irqsave(&ifh->lock, flags);
6220         list_for_each_entry(filter, &ifh->list, entry) {
6221                 if (filter->inode) {
6222                         event->addr_filters_offs[count] = 0;
6223                         restart++;
6224                 }
6225
6226                 count++;
6227         }
6228
6229         if (restart)
6230                 event->addr_filters_gen++;
6231         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6232
6233         if (restart)
6234                 perf_event_stop(event, 1);
6235 }
6236
6237 void perf_event_exec(void)
6238 {
6239         struct perf_event_context *ctx;
6240         int ctxn;
6241
6242         rcu_read_lock();
6243         for_each_task_context_nr(ctxn) {
6244                 ctx = current->perf_event_ctxp[ctxn];
6245                 if (!ctx)
6246                         continue;
6247
6248                 perf_event_enable_on_exec(ctxn);
6249
6250                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6251                                    true);
6252         }
6253         rcu_read_unlock();
6254 }
6255
6256 struct remote_output {
6257         struct ring_buffer      *rb;
6258         int                     err;
6259 };
6260
6261 static void __perf_event_output_stop(struct perf_event *event, void *data)
6262 {
6263         struct perf_event *parent = event->parent;
6264         struct remote_output *ro = data;
6265         struct ring_buffer *rb = ro->rb;
6266         struct stop_event_data sd = {
6267                 .event  = event,
6268         };
6269
6270         if (!has_aux(event))
6271                 return;
6272
6273         if (!parent)
6274                 parent = event;
6275
6276         /*
6277          * In case of inheritance, it will be the parent that links to the
6278          * ring-buffer, but it will be the child that's actually using it.
6279          *
6280          * We are using event::rb to determine if the event should be stopped,
6281          * however this may race with ring_buffer_attach() (through set_output),
6282          * which will make us skip the event that actually needs to be stopped.
6283          * So ring_buffer_attach() has to stop an aux event before re-assigning
6284          * its rb pointer.
6285          */
6286         if (rcu_dereference(parent->rb) == rb)
6287                 ro->err = __perf_event_stop(&sd);
6288 }
6289
6290 static int __perf_pmu_output_stop(void *info)
6291 {
6292         struct perf_event *event = info;
6293         struct pmu *pmu = event->pmu;
6294         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6295         struct remote_output ro = {
6296                 .rb     = event->rb,
6297         };
6298
6299         rcu_read_lock();
6300         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6301         if (cpuctx->task_ctx)
6302                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6303                                    &ro, false);
6304         rcu_read_unlock();
6305
6306         return ro.err;
6307 }
6308
6309 static void perf_pmu_output_stop(struct perf_event *event)
6310 {
6311         struct perf_event *iter;
6312         int err, cpu;
6313
6314 restart:
6315         rcu_read_lock();
6316         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6317                 /*
6318                  * For per-CPU events, we need to make sure that neither they
6319                  * nor their children are running; for cpu==-1 events it's
6320                  * sufficient to stop the event itself if it's active, since
6321                  * it can't have children.
6322                  */
6323                 cpu = iter->cpu;
6324                 if (cpu == -1)
6325                         cpu = READ_ONCE(iter->oncpu);
6326
6327                 if (cpu == -1)
6328                         continue;
6329
6330                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6331                 if (err == -EAGAIN) {
6332                         rcu_read_unlock();
6333                         goto restart;
6334                 }
6335         }
6336         rcu_read_unlock();
6337 }
6338
6339 /*
6340  * task tracking -- fork/exit
6341  *
6342  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6343  */
6344
6345 struct perf_task_event {
6346         struct task_struct              *task;
6347         struct perf_event_context       *task_ctx;
6348
6349         struct {
6350                 struct perf_event_header        header;
6351
6352                 u32                             pid;
6353                 u32                             ppid;
6354                 u32                             tid;
6355                 u32                             ptid;
6356                 u64                             time;
6357         } event_id;
6358 };
6359
6360 static int perf_event_task_match(struct perf_event *event)
6361 {
6362         return event->attr.comm  || event->attr.mmap ||
6363                event->attr.mmap2 || event->attr.mmap_data ||
6364                event->attr.task;
6365 }
6366
6367 static void perf_event_task_output(struct perf_event *event,
6368                                    void *data)
6369 {
6370         struct perf_task_event *task_event = data;
6371         struct perf_output_handle handle;
6372         struct perf_sample_data sample;
6373         struct task_struct *task = task_event->task;
6374         int ret, size = task_event->event_id.header.size;
6375
6376         if (!perf_event_task_match(event))
6377                 return;
6378
6379         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6380
6381         ret = perf_output_begin(&handle, event,
6382                                 task_event->event_id.header.size);
6383         if (ret)
6384                 goto out;
6385
6386         task_event->event_id.pid = perf_event_pid(event, task);
6387         task_event->event_id.ppid = perf_event_pid(event, current);
6388
6389         task_event->event_id.tid = perf_event_tid(event, task);
6390         task_event->event_id.ptid = perf_event_tid(event, current);
6391
6392         task_event->event_id.time = perf_event_clock(event);
6393
6394         perf_output_put(&handle, task_event->event_id);
6395
6396         perf_event__output_id_sample(event, &handle, &sample);
6397
6398         perf_output_end(&handle);
6399 out:
6400         task_event->event_id.header.size = size;
6401 }
6402
6403 static void perf_event_task(struct task_struct *task,
6404                               struct perf_event_context *task_ctx,
6405                               int new)
6406 {
6407         struct perf_task_event task_event;
6408
6409         if (!atomic_read(&nr_comm_events) &&
6410             !atomic_read(&nr_mmap_events) &&
6411             !atomic_read(&nr_task_events))
6412                 return;
6413
6414         task_event = (struct perf_task_event){
6415                 .task     = task,
6416                 .task_ctx = task_ctx,
6417                 .event_id    = {
6418                         .header = {
6419                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6420                                 .misc = 0,
6421                                 .size = sizeof(task_event.event_id),
6422                         },
6423                         /* .pid  */
6424                         /* .ppid */
6425                         /* .tid  */
6426                         /* .ptid */
6427                         /* .time */
6428                 },
6429         };
6430
6431         perf_iterate_sb(perf_event_task_output,
6432                        &task_event,
6433                        task_ctx);
6434 }
6435
6436 void perf_event_fork(struct task_struct *task)
6437 {
6438         perf_event_task(task, NULL, 1);
6439 }
6440
6441 /*
6442  * comm tracking
6443  */
6444
6445 struct perf_comm_event {
6446         struct task_struct      *task;
6447         char                    *comm;
6448         int                     comm_size;
6449
6450         struct {
6451                 struct perf_event_header        header;
6452
6453                 u32                             pid;
6454                 u32                             tid;
6455         } event_id;
6456 };
6457
6458 static int perf_event_comm_match(struct perf_event *event)
6459 {
6460         return event->attr.comm;
6461 }
6462
6463 static void perf_event_comm_output(struct perf_event *event,
6464                                    void *data)
6465 {
6466         struct perf_comm_event *comm_event = data;
6467         struct perf_output_handle handle;
6468         struct perf_sample_data sample;
6469         int size = comm_event->event_id.header.size;
6470         int ret;
6471
6472         if (!perf_event_comm_match(event))
6473                 return;
6474
6475         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6476         ret = perf_output_begin(&handle, event,
6477                                 comm_event->event_id.header.size);
6478
6479         if (ret)
6480                 goto out;
6481
6482         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6483         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6484
6485         perf_output_put(&handle, comm_event->event_id);
6486         __output_copy(&handle, comm_event->comm,
6487                                    comm_event->comm_size);
6488
6489         perf_event__output_id_sample(event, &handle, &sample);
6490
6491         perf_output_end(&handle);
6492 out:
6493         comm_event->event_id.header.size = size;
6494 }
6495
6496 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6497 {
6498         char comm[TASK_COMM_LEN];
6499         unsigned int size;
6500
6501         memset(comm, 0, sizeof(comm));
6502         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6503         size = ALIGN(strlen(comm)+1, sizeof(u64));
6504
6505         comm_event->comm = comm;
6506         comm_event->comm_size = size;
6507
6508         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6509
6510         perf_iterate_sb(perf_event_comm_output,
6511                        comm_event,
6512                        NULL);
6513 }
6514
6515 void perf_event_comm(struct task_struct *task, bool exec)
6516 {
6517         struct perf_comm_event comm_event;
6518
6519         if (!atomic_read(&nr_comm_events))
6520                 return;
6521
6522         comm_event = (struct perf_comm_event){
6523                 .task   = task,
6524                 /* .comm      */
6525                 /* .comm_size */
6526                 .event_id  = {
6527                         .header = {
6528                                 .type = PERF_RECORD_COMM,
6529                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6530                                 /* .size */
6531                         },
6532                         /* .pid */
6533                         /* .tid */
6534                 },
6535         };
6536
6537         perf_event_comm_event(&comm_event);
6538 }
6539
6540 /*
6541  * mmap tracking
6542  */
6543
6544 struct perf_mmap_event {
6545         struct vm_area_struct   *vma;
6546
6547         const char              *file_name;
6548         int                     file_size;
6549         int                     maj, min;
6550         u64                     ino;
6551         u64                     ino_generation;
6552         u32                     prot, flags;
6553
6554         struct {
6555                 struct perf_event_header        header;
6556
6557                 u32                             pid;
6558                 u32                             tid;
6559                 u64                             start;
6560                 u64                             len;
6561                 u64                             pgoff;
6562         } event_id;
6563 };
6564
6565 static int perf_event_mmap_match(struct perf_event *event,
6566                                  void *data)
6567 {
6568         struct perf_mmap_event *mmap_event = data;
6569         struct vm_area_struct *vma = mmap_event->vma;
6570         int executable = vma->vm_flags & VM_EXEC;
6571
6572         return (!executable && event->attr.mmap_data) ||
6573                (executable && (event->attr.mmap || event->attr.mmap2));
6574 }
6575
6576 static void perf_event_mmap_output(struct perf_event *event,
6577                                    void *data)
6578 {
6579         struct perf_mmap_event *mmap_event = data;
6580         struct perf_output_handle handle;
6581         struct perf_sample_data sample;
6582         int size = mmap_event->event_id.header.size;
6583         int ret;
6584
6585         if (!perf_event_mmap_match(event, data))
6586                 return;
6587
6588         if (event->attr.mmap2) {
6589                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6590                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6591                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6592                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6593                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6594                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6595                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6596         }
6597
6598         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6599         ret = perf_output_begin(&handle, event,
6600                                 mmap_event->event_id.header.size);
6601         if (ret)
6602                 goto out;
6603
6604         mmap_event->event_id.pid = perf_event_pid(event, current);
6605         mmap_event->event_id.tid = perf_event_tid(event, current);
6606
6607         perf_output_put(&handle, mmap_event->event_id);
6608
6609         if (event->attr.mmap2) {
6610                 perf_output_put(&handle, mmap_event->maj);
6611                 perf_output_put(&handle, mmap_event->min);
6612                 perf_output_put(&handle, mmap_event->ino);
6613                 perf_output_put(&handle, mmap_event->ino_generation);
6614                 perf_output_put(&handle, mmap_event->prot);
6615                 perf_output_put(&handle, mmap_event->flags);
6616         }
6617
6618         __output_copy(&handle, mmap_event->file_name,
6619                                    mmap_event->file_size);
6620
6621         perf_event__output_id_sample(event, &handle, &sample);
6622
6623         perf_output_end(&handle);
6624 out:
6625         mmap_event->event_id.header.size = size;
6626 }
6627
6628 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6629 {
6630         struct vm_area_struct *vma = mmap_event->vma;
6631         struct file *file = vma->vm_file;
6632         int maj = 0, min = 0;
6633         u64 ino = 0, gen = 0;
6634         u32 prot = 0, flags = 0;
6635         unsigned int size;
6636         char tmp[16];
6637         char *buf = NULL;
6638         char *name;
6639
6640         if (vma->vm_flags & VM_READ)
6641                 prot |= PROT_READ;
6642         if (vma->vm_flags & VM_WRITE)
6643                 prot |= PROT_WRITE;
6644         if (vma->vm_flags & VM_EXEC)
6645                 prot |= PROT_EXEC;
6646
6647         if (vma->vm_flags & VM_MAYSHARE)
6648                 flags = MAP_SHARED;
6649         else
6650                 flags = MAP_PRIVATE;
6651
6652         if (vma->vm_flags & VM_DENYWRITE)
6653                 flags |= MAP_DENYWRITE;
6654         if (vma->vm_flags & VM_MAYEXEC)
6655                 flags |= MAP_EXECUTABLE;
6656         if (vma->vm_flags & VM_LOCKED)
6657                 flags |= MAP_LOCKED;
6658         if (vma->vm_flags & VM_HUGETLB)
6659                 flags |= MAP_HUGETLB;
6660
6661         if (file) {
6662                 struct inode *inode;
6663                 dev_t dev;
6664
6665                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6666                 if (!buf) {
6667                         name = "//enomem";
6668                         goto cpy_name;
6669                 }
6670                 /*
6671                  * d_path() works from the end of the rb backwards, so we
6672                  * need to add enough zero bytes after the string to handle
6673                  * the 64bit alignment we do later.
6674                  */
6675                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6676                 if (IS_ERR(name)) {
6677                         name = "//toolong";
6678                         goto cpy_name;
6679                 }
6680                 inode = file_inode(vma->vm_file);
6681                 dev = inode->i_sb->s_dev;
6682                 ino = inode->i_ino;
6683                 gen = inode->i_generation;
6684                 maj = MAJOR(dev);
6685                 min = MINOR(dev);
6686
6687                 goto got_name;
6688         } else {
6689                 if (vma->vm_ops && vma->vm_ops->name) {
6690                         name = (char *) vma->vm_ops->name(vma);
6691                         if (name)
6692                                 goto cpy_name;
6693                 }
6694
6695                 name = (char *)arch_vma_name(vma);
6696                 if (name)
6697                         goto cpy_name;
6698
6699                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6700                                 vma->vm_end >= vma->vm_mm->brk) {
6701                         name = "[heap]";
6702                         goto cpy_name;
6703                 }
6704                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6705                                 vma->vm_end >= vma->vm_mm->start_stack) {
6706                         name = "[stack]";
6707                         goto cpy_name;
6708                 }
6709
6710                 name = "//anon";
6711                 goto cpy_name;
6712         }
6713
6714 cpy_name:
6715         strlcpy(tmp, name, sizeof(tmp));
6716         name = tmp;
6717 got_name:
6718         /*
6719          * Since our buffer works in 8 byte units we need to align our string
6720          * size to a multiple of 8. However, we must guarantee the tail end is
6721          * zero'd out to avoid leaking random bits to userspace.
6722          */
6723         size = strlen(name)+1;
6724         while (!IS_ALIGNED(size, sizeof(u64)))
6725                 name[size++] = '\0';
6726
6727         mmap_event->file_name = name;
6728         mmap_event->file_size = size;
6729         mmap_event->maj = maj;
6730         mmap_event->min = min;
6731         mmap_event->ino = ino;
6732         mmap_event->ino_generation = gen;
6733         mmap_event->prot = prot;
6734         mmap_event->flags = flags;
6735
6736         if (!(vma->vm_flags & VM_EXEC))
6737                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6738
6739         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6740
6741         perf_iterate_sb(perf_event_mmap_output,
6742                        mmap_event,
6743                        NULL);
6744
6745         kfree(buf);
6746 }
6747
6748 /*
6749  * Check whether inode and address range match filter criteria.
6750  */
6751 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6752                                      struct file *file, unsigned long offset,
6753                                      unsigned long size)
6754 {
6755         if (filter->inode != file_inode(file))
6756                 return false;
6757
6758         if (filter->offset > offset + size)
6759                 return false;
6760
6761         if (filter->offset + filter->size < offset)
6762                 return false;
6763
6764         return true;
6765 }
6766
6767 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6768 {
6769         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6770         struct vm_area_struct *vma = data;
6771         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6772         struct file *file = vma->vm_file;
6773         struct perf_addr_filter *filter;
6774         unsigned int restart = 0, count = 0;
6775
6776         if (!has_addr_filter(event))
6777                 return;
6778
6779         if (!file)
6780                 return;
6781
6782         raw_spin_lock_irqsave(&ifh->lock, flags);
6783         list_for_each_entry(filter, &ifh->list, entry) {
6784                 if (perf_addr_filter_match(filter, file, off,
6785                                              vma->vm_end - vma->vm_start)) {
6786                         event->addr_filters_offs[count] = vma->vm_start;
6787                         restart++;
6788                 }
6789
6790                 count++;
6791         }
6792
6793         if (restart)
6794                 event->addr_filters_gen++;
6795         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6796
6797         if (restart)
6798                 perf_event_stop(event, 1);
6799 }
6800
6801 /*
6802  * Adjust all task's events' filters to the new vma
6803  */
6804 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6805 {
6806         struct perf_event_context *ctx;
6807         int ctxn;
6808
6809         /*
6810          * Data tracing isn't supported yet and as such there is no need
6811          * to keep track of anything that isn't related to executable code:
6812          */
6813         if (!(vma->vm_flags & VM_EXEC))
6814                 return;
6815
6816         rcu_read_lock();
6817         for_each_task_context_nr(ctxn) {
6818                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6819                 if (!ctx)
6820                         continue;
6821
6822                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6823         }
6824         rcu_read_unlock();
6825 }
6826
6827 void perf_event_mmap(struct vm_area_struct *vma)
6828 {
6829         struct perf_mmap_event mmap_event;
6830
6831         if (!atomic_read(&nr_mmap_events))
6832                 return;
6833
6834         mmap_event = (struct perf_mmap_event){
6835                 .vma    = vma,
6836                 /* .file_name */
6837                 /* .file_size */
6838                 .event_id  = {
6839                         .header = {
6840                                 .type = PERF_RECORD_MMAP,
6841                                 .misc = PERF_RECORD_MISC_USER,
6842                                 /* .size */
6843                         },
6844                         /* .pid */
6845                         /* .tid */
6846                         .start  = vma->vm_start,
6847                         .len    = vma->vm_end - vma->vm_start,
6848                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6849                 },
6850                 /* .maj (attr_mmap2 only) */
6851                 /* .min (attr_mmap2 only) */
6852                 /* .ino (attr_mmap2 only) */
6853                 /* .ino_generation (attr_mmap2 only) */
6854                 /* .prot (attr_mmap2 only) */
6855                 /* .flags (attr_mmap2 only) */
6856         };
6857
6858         perf_addr_filters_adjust(vma);
6859         perf_event_mmap_event(&mmap_event);
6860 }
6861
6862 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6863                           unsigned long size, u64 flags)
6864 {
6865         struct perf_output_handle handle;
6866         struct perf_sample_data sample;
6867         struct perf_aux_event {
6868                 struct perf_event_header        header;
6869                 u64                             offset;
6870                 u64                             size;
6871                 u64                             flags;
6872         } rec = {
6873                 .header = {
6874                         .type = PERF_RECORD_AUX,
6875                         .misc = 0,
6876                         .size = sizeof(rec),
6877                 },
6878                 .offset         = head,
6879                 .size           = size,
6880                 .flags          = flags,
6881         };
6882         int ret;
6883
6884         perf_event_header__init_id(&rec.header, &sample, event);
6885         ret = perf_output_begin(&handle, event, rec.header.size);
6886
6887         if (ret)
6888                 return;
6889
6890         perf_output_put(&handle, rec);
6891         perf_event__output_id_sample(event, &handle, &sample);
6892
6893         perf_output_end(&handle);
6894 }
6895
6896 /*
6897  * Lost/dropped samples logging
6898  */
6899 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6900 {
6901         struct perf_output_handle handle;
6902         struct perf_sample_data sample;
6903         int ret;
6904
6905         struct {
6906                 struct perf_event_header        header;
6907                 u64                             lost;
6908         } lost_samples_event = {
6909                 .header = {
6910                         .type = PERF_RECORD_LOST_SAMPLES,
6911                         .misc = 0,
6912                         .size = sizeof(lost_samples_event),
6913                 },
6914                 .lost           = lost,
6915         };
6916
6917         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6918
6919         ret = perf_output_begin(&handle, event,
6920                                 lost_samples_event.header.size);
6921         if (ret)
6922                 return;
6923
6924         perf_output_put(&handle, lost_samples_event);
6925         perf_event__output_id_sample(event, &handle, &sample);
6926         perf_output_end(&handle);
6927 }
6928
6929 /*
6930  * context_switch tracking
6931  */
6932
6933 struct perf_switch_event {
6934         struct task_struct      *task;
6935         struct task_struct      *next_prev;
6936
6937         struct {
6938                 struct perf_event_header        header;
6939                 u32                             next_prev_pid;
6940                 u32                             next_prev_tid;
6941         } event_id;
6942 };
6943
6944 static int perf_event_switch_match(struct perf_event *event)
6945 {
6946         return event->attr.context_switch;
6947 }
6948
6949 static void perf_event_switch_output(struct perf_event *event, void *data)
6950 {
6951         struct perf_switch_event *se = data;
6952         struct perf_output_handle handle;
6953         struct perf_sample_data sample;
6954         int ret;
6955
6956         if (!perf_event_switch_match(event))
6957                 return;
6958
6959         /* Only CPU-wide events are allowed to see next/prev pid/tid */
6960         if (event->ctx->task) {
6961                 se->event_id.header.type = PERF_RECORD_SWITCH;
6962                 se->event_id.header.size = sizeof(se->event_id.header);
6963         } else {
6964                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6965                 se->event_id.header.size = sizeof(se->event_id);
6966                 se->event_id.next_prev_pid =
6967                                         perf_event_pid(event, se->next_prev);
6968                 se->event_id.next_prev_tid =
6969                                         perf_event_tid(event, se->next_prev);
6970         }
6971
6972         perf_event_header__init_id(&se->event_id.header, &sample, event);
6973
6974         ret = perf_output_begin(&handle, event, se->event_id.header.size);
6975         if (ret)
6976                 return;
6977
6978         if (event->ctx->task)
6979                 perf_output_put(&handle, se->event_id.header);
6980         else
6981                 perf_output_put(&handle, se->event_id);
6982
6983         perf_event__output_id_sample(event, &handle, &sample);
6984
6985         perf_output_end(&handle);
6986 }
6987
6988 static void perf_event_switch(struct task_struct *task,
6989                               struct task_struct *next_prev, bool sched_in)
6990 {
6991         struct perf_switch_event switch_event;
6992
6993         /* N.B. caller checks nr_switch_events != 0 */
6994
6995         switch_event = (struct perf_switch_event){
6996                 .task           = task,
6997                 .next_prev      = next_prev,
6998                 .event_id       = {
6999                         .header = {
7000                                 /* .type */
7001                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7002                                 /* .size */
7003                         },
7004                         /* .next_prev_pid */
7005                         /* .next_prev_tid */
7006                 },
7007         };
7008
7009         perf_iterate_sb(perf_event_switch_output,
7010                        &switch_event,
7011                        NULL);
7012 }
7013
7014 /*
7015  * IRQ throttle logging
7016  */
7017
7018 static void perf_log_throttle(struct perf_event *event, int enable)
7019 {
7020         struct perf_output_handle handle;
7021         struct perf_sample_data sample;
7022         int ret;
7023
7024         struct {
7025                 struct perf_event_header        header;
7026                 u64                             time;
7027                 u64                             id;
7028                 u64                             stream_id;
7029         } throttle_event = {
7030                 .header = {
7031                         .type = PERF_RECORD_THROTTLE,
7032                         .misc = 0,
7033                         .size = sizeof(throttle_event),
7034                 },
7035                 .time           = perf_event_clock(event),
7036                 .id             = primary_event_id(event),
7037                 .stream_id      = event->id,
7038         };
7039
7040         if (enable)
7041                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7042
7043         perf_event_header__init_id(&throttle_event.header, &sample, event);
7044
7045         ret = perf_output_begin(&handle, event,
7046                                 throttle_event.header.size);
7047         if (ret)
7048                 return;
7049
7050         perf_output_put(&handle, throttle_event);
7051         perf_event__output_id_sample(event, &handle, &sample);
7052         perf_output_end(&handle);
7053 }
7054
7055 static void perf_log_itrace_start(struct perf_event *event)
7056 {
7057         struct perf_output_handle handle;
7058         struct perf_sample_data sample;
7059         struct perf_aux_event {
7060                 struct perf_event_header        header;
7061                 u32                             pid;
7062                 u32                             tid;
7063         } rec;
7064         int ret;
7065
7066         if (event->parent)
7067                 event = event->parent;
7068
7069         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7070             event->hw.itrace_started)
7071                 return;
7072
7073         rec.header.type = PERF_RECORD_ITRACE_START;
7074         rec.header.misc = 0;
7075         rec.header.size = sizeof(rec);
7076         rec.pid = perf_event_pid(event, current);
7077         rec.tid = perf_event_tid(event, current);
7078
7079         perf_event_header__init_id(&rec.header, &sample, event);
7080         ret = perf_output_begin(&handle, event, rec.header.size);
7081
7082         if (ret)
7083                 return;
7084
7085         perf_output_put(&handle, rec);
7086         perf_event__output_id_sample(event, &handle, &sample);
7087
7088         perf_output_end(&handle);
7089 }
7090
7091 static int
7092 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7093 {
7094         struct hw_perf_event *hwc = &event->hw;
7095         int ret = 0;
7096         u64 seq;
7097
7098         seq = __this_cpu_read(perf_throttled_seq);
7099         if (seq != hwc->interrupts_seq) {
7100                 hwc->interrupts_seq = seq;
7101                 hwc->interrupts = 1;
7102         } else {
7103                 hwc->interrupts++;
7104                 if (unlikely(throttle
7105                              && hwc->interrupts >= max_samples_per_tick)) {
7106                         __this_cpu_inc(perf_throttled_count);
7107                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7108                         hwc->interrupts = MAX_INTERRUPTS;
7109                         perf_log_throttle(event, 0);
7110                         ret = 1;
7111                 }
7112         }
7113
7114         if (event->attr.freq) {
7115                 u64 now = perf_clock();
7116                 s64 delta = now - hwc->freq_time_stamp;
7117
7118                 hwc->freq_time_stamp = now;
7119
7120                 if (delta > 0 && delta < 2*TICK_NSEC)
7121                         perf_adjust_period(event, delta, hwc->last_period, true);
7122         }
7123
7124         return ret;
7125 }
7126
7127 int perf_event_account_interrupt(struct perf_event *event)
7128 {
7129         return __perf_event_account_interrupt(event, 1);
7130 }
7131
7132 /*
7133  * Generic event overflow handling, sampling.
7134  */
7135
7136 static int __perf_event_overflow(struct perf_event *event,
7137                                    int throttle, struct perf_sample_data *data,
7138                                    struct pt_regs *regs)
7139 {
7140         int events = atomic_read(&event->event_limit);
7141         int ret = 0;
7142
7143         /*
7144          * Non-sampling counters might still use the PMI to fold short
7145          * hardware counters, ignore those.
7146          */
7147         if (unlikely(!is_sampling_event(event)))
7148                 return 0;
7149
7150         ret = __perf_event_account_interrupt(event, throttle);
7151
7152         /*
7153          * XXX event_limit might not quite work as expected on inherited
7154          * events
7155          */
7156
7157         event->pending_kill = POLL_IN;
7158         if (events && atomic_dec_and_test(&event->event_limit)) {
7159                 ret = 1;
7160                 event->pending_kill = POLL_HUP;
7161
7162                 perf_event_disable_inatomic(event);
7163         }
7164
7165         READ_ONCE(event->overflow_handler)(event, data, regs);
7166
7167         if (*perf_event_fasync(event) && event->pending_kill) {
7168                 event->pending_wakeup = 1;
7169                 irq_work_queue(&event->pending);
7170         }
7171
7172         return ret;
7173 }
7174
7175 int perf_event_overflow(struct perf_event *event,
7176                           struct perf_sample_data *data,
7177                           struct pt_regs *regs)
7178 {
7179         return __perf_event_overflow(event, 1, data, regs);
7180 }
7181
7182 /*
7183  * Generic software event infrastructure
7184  */
7185
7186 struct swevent_htable {
7187         struct swevent_hlist            *swevent_hlist;
7188         struct mutex                    hlist_mutex;
7189         int                             hlist_refcount;
7190
7191         /* Recursion avoidance in each contexts */
7192         int                             recursion[PERF_NR_CONTEXTS];
7193 };
7194
7195 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7196
7197 /*
7198  * We directly increment event->count and keep a second value in
7199  * event->hw.period_left to count intervals. This period event
7200  * is kept in the range [-sample_period, 0] so that we can use the
7201  * sign as trigger.
7202  */
7203
7204 u64 perf_swevent_set_period(struct perf_event *event)
7205 {
7206         struct hw_perf_event *hwc = &event->hw;
7207         u64 period = hwc->last_period;
7208         u64 nr, offset;
7209         s64 old, val;
7210
7211         hwc->last_period = hwc->sample_period;
7212
7213 again:
7214         old = val = local64_read(&hwc->period_left);
7215         if (val < 0)
7216                 return 0;
7217
7218         nr = div64_u64(period + val, period);
7219         offset = nr * period;
7220         val -= offset;
7221         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7222                 goto again;
7223
7224         return nr;
7225 }
7226
7227 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7228                                     struct perf_sample_data *data,
7229                                     struct pt_regs *regs)
7230 {
7231         struct hw_perf_event *hwc = &event->hw;
7232         int throttle = 0;
7233
7234         if (!overflow)
7235                 overflow = perf_swevent_set_period(event);
7236
7237         if (hwc->interrupts == MAX_INTERRUPTS)
7238                 return;
7239
7240         for (; overflow; overflow--) {
7241                 if (__perf_event_overflow(event, throttle,
7242                                             data, regs)) {
7243                         /*
7244                          * We inhibit the overflow from happening when
7245                          * hwc->interrupts == MAX_INTERRUPTS.
7246                          */
7247                         break;
7248                 }
7249                 throttle = 1;
7250         }
7251 }
7252
7253 static void perf_swevent_event(struct perf_event *event, u64 nr,
7254                                struct perf_sample_data *data,
7255                                struct pt_regs *regs)
7256 {
7257         struct hw_perf_event *hwc = &event->hw;
7258
7259         local64_add(nr, &event->count);
7260
7261         if (!regs)
7262                 return;
7263
7264         if (!is_sampling_event(event))
7265                 return;
7266
7267         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7268                 data->period = nr;
7269                 return perf_swevent_overflow(event, 1, data, regs);
7270         } else
7271                 data->period = event->hw.last_period;
7272
7273         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7274                 return perf_swevent_overflow(event, 1, data, regs);
7275
7276         if (local64_add_negative(nr, &hwc->period_left))
7277                 return;
7278
7279         perf_swevent_overflow(event, 0, data, regs);
7280 }
7281
7282 static int perf_exclude_event(struct perf_event *event,
7283                               struct pt_regs *regs)
7284 {
7285         if (event->hw.state & PERF_HES_STOPPED)
7286                 return 1;
7287
7288         if (regs) {
7289                 if (event->attr.exclude_user && user_mode(regs))
7290                         return 1;
7291
7292                 if (event->attr.exclude_kernel && !user_mode(regs))
7293                         return 1;
7294         }
7295
7296         return 0;
7297 }
7298
7299 static int perf_swevent_match(struct perf_event *event,
7300                                 enum perf_type_id type,
7301                                 u32 event_id,
7302                                 struct perf_sample_data *data,
7303                                 struct pt_regs *regs)
7304 {
7305         if (event->attr.type != type)
7306                 return 0;
7307
7308         if (event->attr.config != event_id)
7309                 return 0;
7310
7311         if (perf_exclude_event(event, regs))
7312                 return 0;
7313
7314         return 1;
7315 }
7316
7317 static inline u64 swevent_hash(u64 type, u32 event_id)
7318 {
7319         u64 val = event_id | (type << 32);
7320
7321         return hash_64(val, SWEVENT_HLIST_BITS);
7322 }
7323
7324 static inline struct hlist_head *
7325 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7326 {
7327         u64 hash = swevent_hash(type, event_id);
7328
7329         return &hlist->heads[hash];
7330 }
7331
7332 /* For the read side: events when they trigger */
7333 static inline struct hlist_head *
7334 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7335 {
7336         struct swevent_hlist *hlist;
7337
7338         hlist = rcu_dereference(swhash->swevent_hlist);
7339         if (!hlist)
7340                 return NULL;
7341
7342         return __find_swevent_head(hlist, type, event_id);
7343 }
7344
7345 /* For the event head insertion and removal in the hlist */
7346 static inline struct hlist_head *
7347 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7348 {
7349         struct swevent_hlist *hlist;
7350         u32 event_id = event->attr.config;
7351         u64 type = event->attr.type;
7352
7353         /*
7354          * Event scheduling is always serialized against hlist allocation
7355          * and release. Which makes the protected version suitable here.
7356          * The context lock guarantees that.
7357          */
7358         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7359                                           lockdep_is_held(&event->ctx->lock));
7360         if (!hlist)
7361                 return NULL;
7362
7363         return __find_swevent_head(hlist, type, event_id);
7364 }
7365
7366 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7367                                     u64 nr,
7368                                     struct perf_sample_data *data,
7369                                     struct pt_regs *regs)
7370 {
7371         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7372         struct perf_event *event;
7373         struct hlist_head *head;
7374
7375         rcu_read_lock();
7376         head = find_swevent_head_rcu(swhash, type, event_id);
7377         if (!head)
7378                 goto end;
7379
7380         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7381                 if (perf_swevent_match(event, type, event_id, data, regs))
7382                         perf_swevent_event(event, nr, data, regs);
7383         }
7384 end:
7385         rcu_read_unlock();
7386 }
7387
7388 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7389
7390 int perf_swevent_get_recursion_context(void)
7391 {
7392         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7393
7394         return get_recursion_context(swhash->recursion);
7395 }
7396 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7397
7398 void perf_swevent_put_recursion_context(int rctx)
7399 {
7400         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7401
7402         put_recursion_context(swhash->recursion, rctx);
7403 }
7404
7405 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7406 {
7407         struct perf_sample_data data;
7408
7409         if (WARN_ON_ONCE(!regs))
7410                 return;
7411
7412         perf_sample_data_init(&data, addr, 0);
7413         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7414 }
7415
7416 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7417 {
7418         int rctx;
7419
7420         preempt_disable_notrace();
7421         rctx = perf_swevent_get_recursion_context();
7422         if (unlikely(rctx < 0))
7423                 goto fail;
7424
7425         ___perf_sw_event(event_id, nr, regs, addr);
7426
7427         perf_swevent_put_recursion_context(rctx);
7428 fail:
7429         preempt_enable_notrace();
7430 }
7431
7432 static void perf_swevent_read(struct perf_event *event)
7433 {
7434 }
7435
7436 static int perf_swevent_add(struct perf_event *event, int flags)
7437 {
7438         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7439         struct hw_perf_event *hwc = &event->hw;
7440         struct hlist_head *head;
7441
7442         if (is_sampling_event(event)) {
7443                 hwc->last_period = hwc->sample_period;
7444                 perf_swevent_set_period(event);
7445         }
7446
7447         hwc->state = !(flags & PERF_EF_START);
7448
7449         head = find_swevent_head(swhash, event);
7450         if (WARN_ON_ONCE(!head))
7451                 return -EINVAL;
7452
7453         hlist_add_head_rcu(&event->hlist_entry, head);
7454         perf_event_update_userpage(event);
7455
7456         return 0;
7457 }
7458
7459 static void perf_swevent_del(struct perf_event *event, int flags)
7460 {
7461         hlist_del_rcu(&event->hlist_entry);
7462 }
7463
7464 static void perf_swevent_start(struct perf_event *event, int flags)
7465 {
7466         event->hw.state = 0;
7467 }
7468
7469 static void perf_swevent_stop(struct perf_event *event, int flags)
7470 {
7471         event->hw.state = PERF_HES_STOPPED;
7472 }
7473
7474 /* Deref the hlist from the update side */
7475 static inline struct swevent_hlist *
7476 swevent_hlist_deref(struct swevent_htable *swhash)
7477 {
7478         return rcu_dereference_protected(swhash->swevent_hlist,
7479                                          lockdep_is_held(&swhash->hlist_mutex));
7480 }
7481
7482 static void swevent_hlist_release(struct swevent_htable *swhash)
7483 {
7484         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7485
7486         if (!hlist)
7487                 return;
7488
7489         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7490         kfree_rcu(hlist, rcu_head);
7491 }
7492
7493 static void swevent_hlist_put_cpu(int cpu)
7494 {
7495         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7496
7497         mutex_lock(&swhash->hlist_mutex);
7498
7499         if (!--swhash->hlist_refcount)
7500                 swevent_hlist_release(swhash);
7501
7502         mutex_unlock(&swhash->hlist_mutex);
7503 }
7504
7505 static void swevent_hlist_put(void)
7506 {
7507         int cpu;
7508
7509         for_each_possible_cpu(cpu)
7510                 swevent_hlist_put_cpu(cpu);
7511 }
7512
7513 static int swevent_hlist_get_cpu(int cpu)
7514 {
7515         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7516         int err = 0;
7517
7518         mutex_lock(&swhash->hlist_mutex);
7519         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7520                 struct swevent_hlist *hlist;
7521
7522                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7523                 if (!hlist) {
7524                         err = -ENOMEM;
7525                         goto exit;
7526                 }
7527                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7528         }
7529         swhash->hlist_refcount++;
7530 exit:
7531         mutex_unlock(&swhash->hlist_mutex);
7532
7533         return err;
7534 }
7535
7536 static int swevent_hlist_get(void)
7537 {
7538         int err, cpu, failed_cpu;
7539
7540         get_online_cpus();
7541         for_each_possible_cpu(cpu) {
7542                 err = swevent_hlist_get_cpu(cpu);
7543                 if (err) {
7544                         failed_cpu = cpu;
7545                         goto fail;
7546                 }
7547         }
7548         put_online_cpus();
7549
7550         return 0;
7551 fail:
7552         for_each_possible_cpu(cpu) {
7553                 if (cpu == failed_cpu)
7554                         break;
7555                 swevent_hlist_put_cpu(cpu);
7556         }
7557
7558         put_online_cpus();
7559         return err;
7560 }
7561
7562 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7563
7564 static void sw_perf_event_destroy(struct perf_event *event)
7565 {
7566         u64 event_id = event->attr.config;
7567
7568         WARN_ON(event->parent);
7569
7570         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7571         swevent_hlist_put();
7572 }
7573
7574 static int perf_swevent_init(struct perf_event *event)
7575 {
7576         u64 event_id = event->attr.config;
7577
7578         if (event->attr.type != PERF_TYPE_SOFTWARE)
7579                 return -ENOENT;
7580
7581         /*
7582          * no branch sampling for software events
7583          */
7584         if (has_branch_stack(event))
7585                 return -EOPNOTSUPP;
7586
7587         switch (event_id) {
7588         case PERF_COUNT_SW_CPU_CLOCK:
7589         case PERF_COUNT_SW_TASK_CLOCK:
7590                 return -ENOENT;
7591
7592         default:
7593                 break;
7594         }
7595
7596         if (event_id >= PERF_COUNT_SW_MAX)
7597                 return -ENOENT;
7598
7599         if (!event->parent) {
7600                 int err;
7601
7602                 err = swevent_hlist_get();
7603                 if (err)
7604                         return err;
7605
7606                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7607                 event->destroy = sw_perf_event_destroy;
7608         }
7609
7610         return 0;
7611 }
7612
7613 static struct pmu perf_swevent = {
7614         .task_ctx_nr    = perf_sw_context,
7615
7616         .capabilities   = PERF_PMU_CAP_NO_NMI,
7617
7618         .event_init     = perf_swevent_init,
7619         .add            = perf_swevent_add,
7620         .del            = perf_swevent_del,
7621         .start          = perf_swevent_start,
7622         .stop           = perf_swevent_stop,
7623         .read           = perf_swevent_read,
7624 };
7625
7626 #ifdef CONFIG_EVENT_TRACING
7627
7628 static int perf_tp_filter_match(struct perf_event *event,
7629                                 struct perf_sample_data *data)
7630 {
7631         void *record = data->raw->frag.data;
7632
7633         /* only top level events have filters set */
7634         if (event->parent)
7635                 event = event->parent;
7636
7637         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7638                 return 1;
7639         return 0;
7640 }
7641
7642 static int perf_tp_event_match(struct perf_event *event,
7643                                 struct perf_sample_data *data,
7644                                 struct pt_regs *regs)
7645 {
7646         if (event->hw.state & PERF_HES_STOPPED)
7647                 return 0;
7648         /*
7649          * All tracepoints are from kernel-space.
7650          */
7651         if (event->attr.exclude_kernel)
7652                 return 0;
7653
7654         if (!perf_tp_filter_match(event, data))
7655                 return 0;
7656
7657         return 1;
7658 }
7659
7660 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7661                                struct trace_event_call *call, u64 count,
7662                                struct pt_regs *regs, struct hlist_head *head,
7663                                struct task_struct *task)
7664 {
7665         struct bpf_prog *prog = call->prog;
7666
7667         if (prog) {
7668                 *(struct pt_regs **)raw_data = regs;
7669                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7670                         perf_swevent_put_recursion_context(rctx);
7671                         return;
7672                 }
7673         }
7674         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7675                       rctx, task);
7676 }
7677 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7678
7679 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7680                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7681                    struct task_struct *task)
7682 {
7683         struct perf_sample_data data;
7684         struct perf_event *event;
7685
7686         struct perf_raw_record raw = {
7687                 .frag = {
7688                         .size = entry_size,
7689                         .data = record,
7690                 },
7691         };
7692
7693         perf_sample_data_init(&data, 0, 0);
7694         data.raw = &raw;
7695
7696         perf_trace_buf_update(record, event_type);
7697
7698         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7699                 if (perf_tp_event_match(event, &data, regs))
7700                         perf_swevent_event(event, count, &data, regs);
7701         }
7702
7703         /*
7704          * If we got specified a target task, also iterate its context and
7705          * deliver this event there too.
7706          */
7707         if (task && task != current) {
7708                 struct perf_event_context *ctx;
7709                 struct trace_entry *entry = record;
7710
7711                 rcu_read_lock();
7712                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7713                 if (!ctx)
7714                         goto unlock;
7715
7716                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7717                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7718                                 continue;
7719                         if (event->attr.config != entry->type)
7720                                 continue;
7721                         if (perf_tp_event_match(event, &data, regs))
7722                                 perf_swevent_event(event, count, &data, regs);
7723                 }
7724 unlock:
7725                 rcu_read_unlock();
7726         }
7727
7728         perf_swevent_put_recursion_context(rctx);
7729 }
7730 EXPORT_SYMBOL_GPL(perf_tp_event);
7731
7732 static void tp_perf_event_destroy(struct perf_event *event)
7733 {
7734         perf_trace_destroy(event);
7735 }
7736
7737 static int perf_tp_event_init(struct perf_event *event)
7738 {
7739         int err;
7740
7741         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7742                 return -ENOENT;
7743
7744         /*
7745          * no branch sampling for tracepoint events
7746          */
7747         if (has_branch_stack(event))
7748                 return -EOPNOTSUPP;
7749
7750         err = perf_trace_init(event);
7751         if (err)
7752                 return err;
7753
7754         event->destroy = tp_perf_event_destroy;
7755
7756         return 0;
7757 }
7758
7759 static struct pmu perf_tracepoint = {
7760         .task_ctx_nr    = perf_sw_context,
7761
7762         .event_init     = perf_tp_event_init,
7763         .add            = perf_trace_add,
7764         .del            = perf_trace_del,
7765         .start          = perf_swevent_start,
7766         .stop           = perf_swevent_stop,
7767         .read           = perf_swevent_read,
7768 };
7769
7770 static inline void perf_tp_register(void)
7771 {
7772         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7773 }
7774
7775 static void perf_event_free_filter(struct perf_event *event)
7776 {
7777         ftrace_profile_free_filter(event);
7778 }
7779
7780 #ifdef CONFIG_BPF_SYSCALL
7781 static void bpf_overflow_handler(struct perf_event *event,
7782                                  struct perf_sample_data *data,
7783                                  struct pt_regs *regs)
7784 {
7785         struct bpf_perf_event_data_kern ctx = {
7786                 .data = data,
7787                 .regs = regs,
7788         };
7789         int ret = 0;
7790
7791         preempt_disable();
7792         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7793                 goto out;
7794         rcu_read_lock();
7795         ret = BPF_PROG_RUN(event->prog, &ctx);
7796         rcu_read_unlock();
7797 out:
7798         __this_cpu_dec(bpf_prog_active);
7799         preempt_enable();
7800         if (!ret)
7801                 return;
7802
7803         event->orig_overflow_handler(event, data, regs);
7804 }
7805
7806 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7807 {
7808         struct bpf_prog *prog;
7809
7810         if (event->overflow_handler_context)
7811                 /* hw breakpoint or kernel counter */
7812                 return -EINVAL;
7813
7814         if (event->prog)
7815                 return -EEXIST;
7816
7817         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7818         if (IS_ERR(prog))
7819                 return PTR_ERR(prog);
7820
7821         event->prog = prog;
7822         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7823         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7824         return 0;
7825 }
7826
7827 static void perf_event_free_bpf_handler(struct perf_event *event)
7828 {
7829         struct bpf_prog *prog = event->prog;
7830
7831         if (!prog)
7832                 return;
7833
7834         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7835         event->prog = NULL;
7836         bpf_prog_put(prog);
7837 }
7838 #else
7839 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7840 {
7841         return -EOPNOTSUPP;
7842 }
7843 static void perf_event_free_bpf_handler(struct perf_event *event)
7844 {
7845 }
7846 #endif
7847
7848 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7849 {
7850         bool is_kprobe, is_tracepoint;
7851         struct bpf_prog *prog;
7852
7853         if (event->attr.type == PERF_TYPE_HARDWARE ||
7854             event->attr.type == PERF_TYPE_SOFTWARE)
7855                 return perf_event_set_bpf_handler(event, prog_fd);
7856
7857         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7858                 return -EINVAL;
7859
7860         if (event->tp_event->prog)
7861                 return -EEXIST;
7862
7863         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7864         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7865         if (!is_kprobe && !is_tracepoint)
7866                 /* bpf programs can only be attached to u/kprobe or tracepoint */
7867                 return -EINVAL;
7868
7869         prog = bpf_prog_get(prog_fd);
7870         if (IS_ERR(prog))
7871                 return PTR_ERR(prog);
7872
7873         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7874             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7875                 /* valid fd, but invalid bpf program type */
7876                 bpf_prog_put(prog);
7877                 return -EINVAL;
7878         }
7879
7880         if (is_tracepoint) {
7881                 int off = trace_event_get_offsets(event->tp_event);
7882
7883                 if (prog->aux->max_ctx_offset > off) {
7884                         bpf_prog_put(prog);
7885                         return -EACCES;
7886                 }
7887         }
7888         event->tp_event->prog = prog;
7889
7890         return 0;
7891 }
7892
7893 static void perf_event_free_bpf_prog(struct perf_event *event)
7894 {
7895         struct bpf_prog *prog;
7896
7897         perf_event_free_bpf_handler(event);
7898
7899         if (!event->tp_event)
7900                 return;
7901
7902         prog = event->tp_event->prog;
7903         if (prog) {
7904                 event->tp_event->prog = NULL;
7905                 bpf_prog_put(prog);
7906         }
7907 }
7908
7909 #else
7910
7911 static inline void perf_tp_register(void)
7912 {
7913 }
7914
7915 static void perf_event_free_filter(struct perf_event *event)
7916 {
7917 }
7918
7919 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7920 {
7921         return -ENOENT;
7922 }
7923
7924 static void perf_event_free_bpf_prog(struct perf_event *event)
7925 {
7926 }
7927 #endif /* CONFIG_EVENT_TRACING */
7928
7929 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7930 void perf_bp_event(struct perf_event *bp, void *data)
7931 {
7932         struct perf_sample_data sample;
7933         struct pt_regs *regs = data;
7934
7935         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7936
7937         if (!bp->hw.state && !perf_exclude_event(bp, regs))
7938                 perf_swevent_event(bp, 1, &sample, regs);
7939 }
7940 #endif
7941
7942 /*
7943  * Allocate a new address filter
7944  */
7945 static struct perf_addr_filter *
7946 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7947 {
7948         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7949         struct perf_addr_filter *filter;
7950
7951         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7952         if (!filter)
7953                 return NULL;
7954
7955         INIT_LIST_HEAD(&filter->entry);
7956         list_add_tail(&filter->entry, filters);
7957
7958         return filter;
7959 }
7960
7961 static void free_filters_list(struct list_head *filters)
7962 {
7963         struct perf_addr_filter *filter, *iter;
7964
7965         list_for_each_entry_safe(filter, iter, filters, entry) {
7966                 if (filter->inode)
7967                         iput(filter->inode);
7968                 list_del(&filter->entry);
7969                 kfree(filter);
7970         }
7971 }
7972
7973 /*
7974  * Free existing address filters and optionally install new ones
7975  */
7976 static void perf_addr_filters_splice(struct perf_event *event,
7977                                      struct list_head *head)
7978 {
7979         unsigned long flags;
7980         LIST_HEAD(list);
7981
7982         if (!has_addr_filter(event))
7983                 return;
7984
7985         /* don't bother with children, they don't have their own filters */
7986         if (event->parent)
7987                 return;
7988
7989         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7990
7991         list_splice_init(&event->addr_filters.list, &list);
7992         if (head)
7993                 list_splice(head, &event->addr_filters.list);
7994
7995         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7996
7997         free_filters_list(&list);
7998 }
7999
8000 /*
8001  * Scan through mm's vmas and see if one of them matches the
8002  * @filter; if so, adjust filter's address range.
8003  * Called with mm::mmap_sem down for reading.
8004  */
8005 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8006                                             struct mm_struct *mm)
8007 {
8008         struct vm_area_struct *vma;
8009
8010         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8011                 struct file *file = vma->vm_file;
8012                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8013                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8014
8015                 if (!file)
8016                         continue;
8017
8018                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8019                         continue;
8020
8021                 return vma->vm_start;
8022         }
8023
8024         return 0;
8025 }
8026
8027 /*
8028  * Update event's address range filters based on the
8029  * task's existing mappings, if any.
8030  */
8031 static void perf_event_addr_filters_apply(struct perf_event *event)
8032 {
8033         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8034         struct task_struct *task = READ_ONCE(event->ctx->task);
8035         struct perf_addr_filter *filter;
8036         struct mm_struct *mm = NULL;
8037         unsigned int count = 0;
8038         unsigned long flags;
8039
8040         /*
8041          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8042          * will stop on the parent's child_mutex that our caller is also holding
8043          */
8044         if (task == TASK_TOMBSTONE)
8045                 return;
8046
8047         mm = get_task_mm(event->ctx->task);
8048         if (!mm)
8049                 goto restart;
8050
8051         down_read(&mm->mmap_sem);
8052
8053         raw_spin_lock_irqsave(&ifh->lock, flags);
8054         list_for_each_entry(filter, &ifh->list, entry) {
8055                 event->addr_filters_offs[count] = 0;
8056
8057                 /*
8058                  * Adjust base offset if the filter is associated to a binary
8059                  * that needs to be mapped:
8060                  */
8061                 if (filter->inode)
8062                         event->addr_filters_offs[count] =
8063                                 perf_addr_filter_apply(filter, mm);
8064
8065                 count++;
8066         }
8067
8068         event->addr_filters_gen++;
8069         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8070
8071         up_read(&mm->mmap_sem);
8072
8073         mmput(mm);
8074
8075 restart:
8076         perf_event_stop(event, 1);
8077 }
8078
8079 /*
8080  * Address range filtering: limiting the data to certain
8081  * instruction address ranges. Filters are ioctl()ed to us from
8082  * userspace as ascii strings.
8083  *
8084  * Filter string format:
8085  *
8086  * ACTION RANGE_SPEC
8087  * where ACTION is one of the
8088  *  * "filter": limit the trace to this region
8089  *  * "start": start tracing from this address
8090  *  * "stop": stop tracing at this address/region;
8091  * RANGE_SPEC is
8092  *  * for kernel addresses: <start address>[/<size>]
8093  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8094  *
8095  * if <size> is not specified, the range is treated as a single address.
8096  */
8097 enum {
8098         IF_ACT_NONE = -1,
8099         IF_ACT_FILTER,
8100         IF_ACT_START,
8101         IF_ACT_STOP,
8102         IF_SRC_FILE,
8103         IF_SRC_KERNEL,
8104         IF_SRC_FILEADDR,
8105         IF_SRC_KERNELADDR,
8106 };
8107
8108 enum {
8109         IF_STATE_ACTION = 0,
8110         IF_STATE_SOURCE,
8111         IF_STATE_END,
8112 };
8113
8114 static const match_table_t if_tokens = {
8115         { IF_ACT_FILTER,        "filter" },
8116         { IF_ACT_START,         "start" },
8117         { IF_ACT_STOP,          "stop" },
8118         { IF_SRC_FILE,          "%u/%u@%s" },
8119         { IF_SRC_KERNEL,        "%u/%u" },
8120         { IF_SRC_FILEADDR,      "%u@%s" },
8121         { IF_SRC_KERNELADDR,    "%u" },
8122         { IF_ACT_NONE,          NULL },
8123 };
8124
8125 /*
8126  * Address filter string parser
8127  */
8128 static int
8129 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8130                              struct list_head *filters)
8131 {
8132         struct perf_addr_filter *filter = NULL;
8133         char *start, *orig, *filename = NULL;
8134         struct path path;
8135         substring_t args[MAX_OPT_ARGS];
8136         int state = IF_STATE_ACTION, token;
8137         unsigned int kernel = 0;
8138         int ret = -EINVAL;
8139
8140         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8141         if (!fstr)
8142                 return -ENOMEM;
8143
8144         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8145                 ret = -EINVAL;
8146
8147                 if (!*start)
8148                         continue;
8149
8150                 /* filter definition begins */
8151                 if (state == IF_STATE_ACTION) {
8152                         filter = perf_addr_filter_new(event, filters);
8153                         if (!filter)
8154                                 goto fail;
8155                 }
8156
8157                 token = match_token(start, if_tokens, args);
8158                 switch (token) {
8159                 case IF_ACT_FILTER:
8160                 case IF_ACT_START:
8161                         filter->filter = 1;
8162
8163                 case IF_ACT_STOP:
8164                         if (state != IF_STATE_ACTION)
8165                                 goto fail;
8166
8167                         state = IF_STATE_SOURCE;
8168                         break;
8169
8170                 case IF_SRC_KERNELADDR:
8171                 case IF_SRC_KERNEL:
8172                         kernel = 1;
8173
8174                 case IF_SRC_FILEADDR:
8175                 case IF_SRC_FILE:
8176                         if (state != IF_STATE_SOURCE)
8177                                 goto fail;
8178
8179                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8180                                 filter->range = 1;
8181
8182                         *args[0].to = 0;
8183                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8184                         if (ret)
8185                                 goto fail;
8186
8187                         if (filter->range) {
8188                                 *args[1].to = 0;
8189                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8190                                 if (ret)
8191                                         goto fail;
8192                         }
8193
8194                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8195                                 int fpos = filter->range ? 2 : 1;
8196
8197                                 filename = match_strdup(&args[fpos]);
8198                                 if (!filename) {
8199                                         ret = -ENOMEM;
8200                                         goto fail;
8201                                 }
8202                         }
8203
8204                         state = IF_STATE_END;
8205                         break;
8206
8207                 default:
8208                         goto fail;
8209                 }
8210
8211                 /*
8212                  * Filter definition is fully parsed, validate and install it.
8213                  * Make sure that it doesn't contradict itself or the event's
8214                  * attribute.
8215                  */
8216                 if (state == IF_STATE_END) {
8217                         if (kernel && event->attr.exclude_kernel)
8218                                 goto fail;
8219
8220                         if (!kernel) {
8221                                 if (!filename)
8222                                         goto fail;
8223
8224                                 /* look up the path and grab its inode */
8225                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8226                                 if (ret)
8227                                         goto fail_free_name;
8228
8229                                 filter->inode = igrab(d_inode(path.dentry));
8230                                 path_put(&path);
8231                                 kfree(filename);
8232                                 filename = NULL;
8233
8234                                 ret = -EINVAL;
8235                                 if (!filter->inode ||
8236                                     !S_ISREG(filter->inode->i_mode))
8237                                         /* free_filters_list() will iput() */
8238                                         goto fail;
8239                         }
8240
8241                         /* ready to consume more filters */
8242                         state = IF_STATE_ACTION;
8243                         filter = NULL;
8244                 }
8245         }
8246
8247         if (state != IF_STATE_ACTION)
8248                 goto fail;
8249
8250         kfree(orig);
8251
8252         return 0;
8253
8254 fail_free_name:
8255         kfree(filename);
8256 fail:
8257         free_filters_list(filters);
8258         kfree(orig);
8259
8260         return ret;
8261 }
8262
8263 static int
8264 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8265 {
8266         LIST_HEAD(filters);
8267         int ret;
8268
8269         /*
8270          * Since this is called in perf_ioctl() path, we're already holding
8271          * ctx::mutex.
8272          */
8273         lockdep_assert_held(&event->ctx->mutex);
8274
8275         if (WARN_ON_ONCE(event->parent))
8276                 return -EINVAL;
8277
8278         /*
8279          * For now, we only support filtering in per-task events; doing so
8280          * for CPU-wide events requires additional context switching trickery,
8281          * since same object code will be mapped at different virtual
8282          * addresses in different processes.
8283          */
8284         if (!event->ctx->task)
8285                 return -EOPNOTSUPP;
8286
8287         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8288         if (ret)
8289                 return ret;
8290
8291         ret = event->pmu->addr_filters_validate(&filters);
8292         if (ret) {
8293                 free_filters_list(&filters);
8294                 return ret;
8295         }
8296
8297         /* remove existing filters, if any */
8298         perf_addr_filters_splice(event, &filters);
8299
8300         /* install new filters */
8301         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8302
8303         return ret;
8304 }
8305
8306 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8307 {
8308         char *filter_str;
8309         int ret = -EINVAL;
8310
8311         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8312             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8313             !has_addr_filter(event))
8314                 return -EINVAL;
8315
8316         filter_str = strndup_user(arg, PAGE_SIZE);
8317         if (IS_ERR(filter_str))
8318                 return PTR_ERR(filter_str);
8319
8320         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8321             event->attr.type == PERF_TYPE_TRACEPOINT)
8322                 ret = ftrace_profile_set_filter(event, event->attr.config,
8323                                                 filter_str);
8324         else if (has_addr_filter(event))
8325                 ret = perf_event_set_addr_filter(event, filter_str);
8326
8327         kfree(filter_str);
8328         return ret;
8329 }
8330
8331 /*
8332  * hrtimer based swevent callback
8333  */
8334
8335 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8336 {
8337         enum hrtimer_restart ret = HRTIMER_RESTART;
8338         struct perf_sample_data data;
8339         struct pt_regs *regs;
8340         struct perf_event *event;
8341         u64 period;
8342
8343         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8344
8345         if (event->state != PERF_EVENT_STATE_ACTIVE)
8346                 return HRTIMER_NORESTART;
8347
8348         event->pmu->read(event);
8349
8350         perf_sample_data_init(&data, 0, event->hw.last_period);
8351         regs = get_irq_regs();
8352
8353         if (regs && !perf_exclude_event(event, regs)) {
8354                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8355                         if (__perf_event_overflow(event, 1, &data, regs))
8356                                 ret = HRTIMER_NORESTART;
8357         }
8358
8359         period = max_t(u64, 10000, event->hw.sample_period);
8360         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8361
8362         return ret;
8363 }
8364
8365 static void perf_swevent_start_hrtimer(struct perf_event *event)
8366 {
8367         struct hw_perf_event *hwc = &event->hw;
8368         s64 period;
8369
8370         if (!is_sampling_event(event))
8371                 return;
8372
8373         period = local64_read(&hwc->period_left);
8374         if (period) {
8375                 if (period < 0)
8376                         period = 10000;
8377
8378                 local64_set(&hwc->period_left, 0);
8379         } else {
8380                 period = max_t(u64, 10000, hwc->sample_period);
8381         }
8382         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8383                       HRTIMER_MODE_REL_PINNED);
8384 }
8385
8386 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8387 {
8388         struct hw_perf_event *hwc = &event->hw;
8389
8390         if (is_sampling_event(event)) {
8391                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8392                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8393
8394                 hrtimer_cancel(&hwc->hrtimer);
8395         }
8396 }
8397
8398 static void perf_swevent_init_hrtimer(struct perf_event *event)
8399 {
8400         struct hw_perf_event *hwc = &event->hw;
8401
8402         if (!is_sampling_event(event))
8403                 return;
8404
8405         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8406         hwc->hrtimer.function = perf_swevent_hrtimer;
8407
8408         /*
8409          * Since hrtimers have a fixed rate, we can do a static freq->period
8410          * mapping and avoid the whole period adjust feedback stuff.
8411          */
8412         if (event->attr.freq) {
8413                 long freq = event->attr.sample_freq;
8414
8415                 event->attr.sample_period = NSEC_PER_SEC / freq;
8416                 hwc->sample_period = event->attr.sample_period;
8417                 local64_set(&hwc->period_left, hwc->sample_period);
8418                 hwc->last_period = hwc->sample_period;
8419                 event->attr.freq = 0;
8420         }
8421 }
8422
8423 /*
8424  * Software event: cpu wall time clock
8425  */
8426
8427 static void cpu_clock_event_update(struct perf_event *event)
8428 {
8429         s64 prev;
8430         u64 now;
8431
8432         now = local_clock();
8433         prev = local64_xchg(&event->hw.prev_count, now);
8434         local64_add(now - prev, &event->count);
8435 }
8436
8437 static void cpu_clock_event_start(struct perf_event *event, int flags)
8438 {
8439         local64_set(&event->hw.prev_count, local_clock());
8440         perf_swevent_start_hrtimer(event);
8441 }
8442
8443 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8444 {
8445         perf_swevent_cancel_hrtimer(event);
8446         cpu_clock_event_update(event);
8447 }
8448
8449 static int cpu_clock_event_add(struct perf_event *event, int flags)
8450 {
8451         if (flags & PERF_EF_START)
8452                 cpu_clock_event_start(event, flags);
8453         perf_event_update_userpage(event);
8454
8455         return 0;
8456 }
8457
8458 static void cpu_clock_event_del(struct perf_event *event, int flags)
8459 {
8460         cpu_clock_event_stop(event, flags);
8461 }
8462
8463 static void cpu_clock_event_read(struct perf_event *event)
8464 {
8465         cpu_clock_event_update(event);
8466 }
8467
8468 static int cpu_clock_event_init(struct perf_event *event)
8469 {
8470         if (event->attr.type != PERF_TYPE_SOFTWARE)
8471                 return -ENOENT;
8472
8473         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8474                 return -ENOENT;
8475
8476         /*
8477          * no branch sampling for software events
8478          */
8479         if (has_branch_stack(event))
8480                 return -EOPNOTSUPP;
8481
8482         perf_swevent_init_hrtimer(event);
8483
8484         return 0;
8485 }
8486
8487 static struct pmu perf_cpu_clock = {
8488         .task_ctx_nr    = perf_sw_context,
8489
8490         .capabilities   = PERF_PMU_CAP_NO_NMI,
8491
8492         .event_init     = cpu_clock_event_init,
8493         .add            = cpu_clock_event_add,
8494         .del            = cpu_clock_event_del,
8495         .start          = cpu_clock_event_start,
8496         .stop           = cpu_clock_event_stop,
8497         .read           = cpu_clock_event_read,
8498 };
8499
8500 /*
8501  * Software event: task time clock
8502  */
8503
8504 static void task_clock_event_update(struct perf_event *event, u64 now)
8505 {
8506         u64 prev;
8507         s64 delta;
8508
8509         prev = local64_xchg(&event->hw.prev_count, now);
8510         delta = now - prev;
8511         local64_add(delta, &event->count);
8512 }
8513
8514 static void task_clock_event_start(struct perf_event *event, int flags)
8515 {
8516         local64_set(&event->hw.prev_count, event->ctx->time);
8517         perf_swevent_start_hrtimer(event);
8518 }
8519
8520 static void task_clock_event_stop(struct perf_event *event, int flags)
8521 {
8522         perf_swevent_cancel_hrtimer(event);
8523         task_clock_event_update(event, event->ctx->time);
8524 }
8525
8526 static int task_clock_event_add(struct perf_event *event, int flags)
8527 {
8528         if (flags & PERF_EF_START)
8529                 task_clock_event_start(event, flags);
8530         perf_event_update_userpage(event);
8531
8532         return 0;
8533 }
8534
8535 static void task_clock_event_del(struct perf_event *event, int flags)
8536 {
8537         task_clock_event_stop(event, PERF_EF_UPDATE);
8538 }
8539
8540 static void task_clock_event_read(struct perf_event *event)
8541 {
8542         u64 now = perf_clock();
8543         u64 delta = now - event->ctx->timestamp;
8544         u64 time = event->ctx->time + delta;
8545
8546         task_clock_event_update(event, time);
8547 }
8548
8549 static int task_clock_event_init(struct perf_event *event)
8550 {
8551         if (event->attr.type != PERF_TYPE_SOFTWARE)
8552                 return -ENOENT;
8553
8554         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8555                 return -ENOENT;
8556
8557         /*
8558          * no branch sampling for software events
8559          */
8560         if (has_branch_stack(event))
8561                 return -EOPNOTSUPP;
8562
8563         perf_swevent_init_hrtimer(event);
8564
8565         return 0;
8566 }
8567
8568 static struct pmu perf_task_clock = {
8569         .task_ctx_nr    = perf_sw_context,
8570
8571         .capabilities   = PERF_PMU_CAP_NO_NMI,
8572
8573         .event_init     = task_clock_event_init,
8574         .add            = task_clock_event_add,
8575         .del            = task_clock_event_del,
8576         .start          = task_clock_event_start,
8577         .stop           = task_clock_event_stop,
8578         .read           = task_clock_event_read,
8579 };
8580
8581 static void perf_pmu_nop_void(struct pmu *pmu)
8582 {
8583 }
8584
8585 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8586 {
8587 }
8588
8589 static int perf_pmu_nop_int(struct pmu *pmu)
8590 {
8591         return 0;
8592 }
8593
8594 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8595
8596 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8597 {
8598         __this_cpu_write(nop_txn_flags, flags);
8599
8600         if (flags & ~PERF_PMU_TXN_ADD)
8601                 return;
8602
8603         perf_pmu_disable(pmu);
8604 }
8605
8606 static int perf_pmu_commit_txn(struct pmu *pmu)
8607 {
8608         unsigned int flags = __this_cpu_read(nop_txn_flags);
8609
8610         __this_cpu_write(nop_txn_flags, 0);
8611
8612         if (flags & ~PERF_PMU_TXN_ADD)
8613                 return 0;
8614
8615         perf_pmu_enable(pmu);
8616         return 0;
8617 }
8618
8619 static void perf_pmu_cancel_txn(struct pmu *pmu)
8620 {
8621         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8622
8623         __this_cpu_write(nop_txn_flags, 0);
8624
8625         if (flags & ~PERF_PMU_TXN_ADD)
8626                 return;
8627
8628         perf_pmu_enable(pmu);
8629 }
8630
8631 static int perf_event_idx_default(struct perf_event *event)
8632 {
8633         return 0;
8634 }
8635
8636 /*
8637  * Ensures all contexts with the same task_ctx_nr have the same
8638  * pmu_cpu_context too.
8639  */
8640 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8641 {
8642         struct pmu *pmu;
8643
8644         if (ctxn < 0)
8645                 return NULL;
8646
8647         list_for_each_entry(pmu, &pmus, entry) {
8648                 if (pmu->task_ctx_nr == ctxn)
8649                         return pmu->pmu_cpu_context;
8650         }
8651
8652         return NULL;
8653 }
8654
8655 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8656 {
8657         int cpu;
8658
8659         for_each_possible_cpu(cpu) {
8660                 struct perf_cpu_context *cpuctx;
8661
8662                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8663
8664                 if (cpuctx->unique_pmu == old_pmu)
8665                         cpuctx->unique_pmu = pmu;
8666         }
8667 }
8668
8669 static void free_pmu_context(struct pmu *pmu)
8670 {
8671         struct pmu *i;
8672
8673         mutex_lock(&pmus_lock);
8674         /*
8675          * Like a real lame refcount.
8676          */
8677         list_for_each_entry(i, &pmus, entry) {
8678                 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8679                         update_pmu_context(i, pmu);
8680                         goto out;
8681                 }
8682         }
8683
8684         free_percpu(pmu->pmu_cpu_context);
8685 out:
8686         mutex_unlock(&pmus_lock);
8687 }
8688
8689 /*
8690  * Let userspace know that this PMU supports address range filtering:
8691  */
8692 static ssize_t nr_addr_filters_show(struct device *dev,
8693                                     struct device_attribute *attr,
8694                                     char *page)
8695 {
8696         struct pmu *pmu = dev_get_drvdata(dev);
8697
8698         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8699 }
8700 DEVICE_ATTR_RO(nr_addr_filters);
8701
8702 static struct idr pmu_idr;
8703
8704 static ssize_t
8705 type_show(struct device *dev, struct device_attribute *attr, char *page)
8706 {
8707         struct pmu *pmu = dev_get_drvdata(dev);
8708
8709         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8710 }
8711 static DEVICE_ATTR_RO(type);
8712
8713 static ssize_t
8714 perf_event_mux_interval_ms_show(struct device *dev,
8715                                 struct device_attribute *attr,
8716                                 char *page)
8717 {
8718         struct pmu *pmu = dev_get_drvdata(dev);
8719
8720         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8721 }
8722
8723 static DEFINE_MUTEX(mux_interval_mutex);
8724
8725 static ssize_t
8726 perf_event_mux_interval_ms_store(struct device *dev,
8727                                  struct device_attribute *attr,
8728                                  const char *buf, size_t count)
8729 {
8730         struct pmu *pmu = dev_get_drvdata(dev);
8731         int timer, cpu, ret;
8732
8733         ret = kstrtoint(buf, 0, &timer);
8734         if (ret)
8735                 return ret;
8736
8737         if (timer < 1)
8738                 return -EINVAL;
8739
8740         /* same value, noting to do */
8741         if (timer == pmu->hrtimer_interval_ms)
8742                 return count;
8743
8744         mutex_lock(&mux_interval_mutex);
8745         pmu->hrtimer_interval_ms = timer;
8746
8747         /* update all cpuctx for this PMU */
8748         get_online_cpus();
8749         for_each_online_cpu(cpu) {
8750                 struct perf_cpu_context *cpuctx;
8751                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8752                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8753
8754                 cpu_function_call(cpu,
8755                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8756         }
8757         put_online_cpus();
8758         mutex_unlock(&mux_interval_mutex);
8759
8760         return count;
8761 }
8762 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8763
8764 static struct attribute *pmu_dev_attrs[] = {
8765         &dev_attr_type.attr,
8766         &dev_attr_perf_event_mux_interval_ms.attr,
8767         NULL,
8768 };
8769 ATTRIBUTE_GROUPS(pmu_dev);
8770
8771 static int pmu_bus_running;
8772 static struct bus_type pmu_bus = {
8773         .name           = "event_source",
8774         .dev_groups     = pmu_dev_groups,
8775 };
8776
8777 static void pmu_dev_release(struct device *dev)
8778 {
8779         kfree(dev);
8780 }
8781
8782 static int pmu_dev_alloc(struct pmu *pmu)
8783 {
8784         int ret = -ENOMEM;
8785
8786         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8787         if (!pmu->dev)
8788                 goto out;
8789
8790         pmu->dev->groups = pmu->attr_groups;
8791         device_initialize(pmu->dev);
8792         ret = dev_set_name(pmu->dev, "%s", pmu->name);
8793         if (ret)
8794                 goto free_dev;
8795
8796         dev_set_drvdata(pmu->dev, pmu);
8797         pmu->dev->bus = &pmu_bus;
8798         pmu->dev->release = pmu_dev_release;
8799         ret = device_add(pmu->dev);
8800         if (ret)
8801                 goto free_dev;
8802
8803         /* For PMUs with address filters, throw in an extra attribute: */
8804         if (pmu->nr_addr_filters)
8805                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8806
8807         if (ret)
8808                 goto del_dev;
8809
8810 out:
8811         return ret;
8812
8813 del_dev:
8814         device_del(pmu->dev);
8815
8816 free_dev:
8817         put_device(pmu->dev);
8818         goto out;
8819 }
8820
8821 static struct lock_class_key cpuctx_mutex;
8822 static struct lock_class_key cpuctx_lock;
8823
8824 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8825 {
8826         int cpu, ret;
8827
8828         mutex_lock(&pmus_lock);
8829         ret = -ENOMEM;
8830         pmu->pmu_disable_count = alloc_percpu(int);
8831         if (!pmu->pmu_disable_count)
8832                 goto unlock;
8833
8834         pmu->type = -1;
8835         if (!name)
8836                 goto skip_type;
8837         pmu->name = name;
8838
8839         if (type < 0) {
8840                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8841                 if (type < 0) {
8842                         ret = type;
8843                         goto free_pdc;
8844                 }
8845         }
8846         pmu->type = type;
8847
8848         if (pmu_bus_running) {
8849                 ret = pmu_dev_alloc(pmu);
8850                 if (ret)
8851                         goto free_idr;
8852         }
8853
8854 skip_type:
8855         if (pmu->task_ctx_nr == perf_hw_context) {
8856                 static int hw_context_taken = 0;
8857
8858                 /*
8859                  * Other than systems with heterogeneous CPUs, it never makes
8860                  * sense for two PMUs to share perf_hw_context. PMUs which are
8861                  * uncore must use perf_invalid_context.
8862                  */
8863                 if (WARN_ON_ONCE(hw_context_taken &&
8864                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8865                         pmu->task_ctx_nr = perf_invalid_context;
8866
8867                 hw_context_taken = 1;
8868         }
8869
8870         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8871         if (pmu->pmu_cpu_context)
8872                 goto got_cpu_context;
8873
8874         ret = -ENOMEM;
8875         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8876         if (!pmu->pmu_cpu_context)
8877                 goto free_dev;
8878
8879         for_each_possible_cpu(cpu) {
8880                 struct perf_cpu_context *cpuctx;
8881
8882                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8883                 __perf_event_init_context(&cpuctx->ctx);
8884                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8885                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8886                 cpuctx->ctx.pmu = pmu;
8887
8888                 __perf_mux_hrtimer_init(cpuctx, cpu);
8889
8890                 cpuctx->unique_pmu = pmu;
8891         }
8892
8893 got_cpu_context:
8894         if (!pmu->start_txn) {
8895                 if (pmu->pmu_enable) {
8896                         /*
8897                          * If we have pmu_enable/pmu_disable calls, install
8898                          * transaction stubs that use that to try and batch
8899                          * hardware accesses.
8900                          */
8901                         pmu->start_txn  = perf_pmu_start_txn;
8902                         pmu->commit_txn = perf_pmu_commit_txn;
8903                         pmu->cancel_txn = perf_pmu_cancel_txn;
8904                 } else {
8905                         pmu->start_txn  = perf_pmu_nop_txn;
8906                         pmu->commit_txn = perf_pmu_nop_int;
8907                         pmu->cancel_txn = perf_pmu_nop_void;
8908                 }
8909         }
8910
8911         if (!pmu->pmu_enable) {
8912                 pmu->pmu_enable  = perf_pmu_nop_void;
8913                 pmu->pmu_disable = perf_pmu_nop_void;
8914         }
8915
8916         if (!pmu->event_idx)
8917                 pmu->event_idx = perf_event_idx_default;
8918
8919         list_add_rcu(&pmu->entry, &pmus);
8920         atomic_set(&pmu->exclusive_cnt, 0);
8921         ret = 0;
8922 unlock:
8923         mutex_unlock(&pmus_lock);
8924
8925         return ret;
8926
8927 free_dev:
8928         device_del(pmu->dev);
8929         put_device(pmu->dev);
8930
8931 free_idr:
8932         if (pmu->type >= PERF_TYPE_MAX)
8933                 idr_remove(&pmu_idr, pmu->type);
8934
8935 free_pdc:
8936         free_percpu(pmu->pmu_disable_count);
8937         goto unlock;
8938 }
8939 EXPORT_SYMBOL_GPL(perf_pmu_register);
8940
8941 void perf_pmu_unregister(struct pmu *pmu)
8942 {
8943         int remove_device;
8944
8945         mutex_lock(&pmus_lock);
8946         remove_device = pmu_bus_running;
8947         list_del_rcu(&pmu->entry);
8948         mutex_unlock(&pmus_lock);
8949
8950         /*
8951          * We dereference the pmu list under both SRCU and regular RCU, so
8952          * synchronize against both of those.
8953          */
8954         synchronize_srcu(&pmus_srcu);
8955         synchronize_rcu();
8956
8957         free_percpu(pmu->pmu_disable_count);
8958         if (pmu->type >= PERF_TYPE_MAX)
8959                 idr_remove(&pmu_idr, pmu->type);
8960         if (remove_device) {
8961                 if (pmu->nr_addr_filters)
8962                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8963                 device_del(pmu->dev);
8964                 put_device(pmu->dev);
8965         }
8966         free_pmu_context(pmu);
8967 }
8968 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8969
8970 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8971 {
8972         struct perf_event_context *ctx = NULL;
8973         int ret;
8974
8975         if (!try_module_get(pmu->module))
8976                 return -ENODEV;
8977
8978         if (event->group_leader != event) {
8979                 /*
8980                  * This ctx->mutex can nest when we're called through
8981                  * inheritance. See the perf_event_ctx_lock_nested() comment.
8982                  */
8983                 ctx = perf_event_ctx_lock_nested(event->group_leader,
8984                                                  SINGLE_DEPTH_NESTING);
8985                 BUG_ON(!ctx);
8986         }
8987
8988         event->pmu = pmu;
8989         ret = pmu->event_init(event);
8990
8991         if (ctx)
8992                 perf_event_ctx_unlock(event->group_leader, ctx);
8993
8994         if (ret)
8995                 module_put(pmu->module);
8996
8997         return ret;
8998 }
8999
9000 static struct pmu *perf_init_event(struct perf_event *event)
9001 {
9002         struct pmu *pmu = NULL;
9003         int idx;
9004         int ret;
9005
9006         idx = srcu_read_lock(&pmus_srcu);
9007
9008         rcu_read_lock();
9009         pmu = idr_find(&pmu_idr, event->attr.type);
9010         rcu_read_unlock();
9011         if (pmu) {
9012                 ret = perf_try_init_event(pmu, event);
9013                 if (ret)
9014                         pmu = ERR_PTR(ret);
9015                 goto unlock;
9016         }
9017
9018         list_for_each_entry_rcu(pmu, &pmus, entry) {
9019                 ret = perf_try_init_event(pmu, event);
9020                 if (!ret)
9021                         goto unlock;
9022
9023                 if (ret != -ENOENT) {
9024                         pmu = ERR_PTR(ret);
9025                         goto unlock;
9026                 }
9027         }
9028         pmu = ERR_PTR(-ENOENT);
9029 unlock:
9030         srcu_read_unlock(&pmus_srcu, idx);
9031
9032         return pmu;
9033 }
9034
9035 static void attach_sb_event(struct perf_event *event)
9036 {
9037         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9038
9039         raw_spin_lock(&pel->lock);
9040         list_add_rcu(&event->sb_list, &pel->list);
9041         raw_spin_unlock(&pel->lock);
9042 }
9043
9044 /*
9045  * We keep a list of all !task (and therefore per-cpu) events
9046  * that need to receive side-band records.
9047  *
9048  * This avoids having to scan all the various PMU per-cpu contexts
9049  * looking for them.
9050  */
9051 static void account_pmu_sb_event(struct perf_event *event)
9052 {
9053         if (is_sb_event(event))
9054                 attach_sb_event(event);
9055 }
9056
9057 static void account_event_cpu(struct perf_event *event, int cpu)
9058 {
9059         if (event->parent)
9060                 return;
9061
9062         if (is_cgroup_event(event))
9063                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9064 }
9065
9066 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9067 static void account_freq_event_nohz(void)
9068 {
9069 #ifdef CONFIG_NO_HZ_FULL
9070         /* Lock so we don't race with concurrent unaccount */
9071         spin_lock(&nr_freq_lock);
9072         if (atomic_inc_return(&nr_freq_events) == 1)
9073                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9074         spin_unlock(&nr_freq_lock);
9075 #endif
9076 }
9077
9078 static void account_freq_event(void)
9079 {
9080         if (tick_nohz_full_enabled())
9081                 account_freq_event_nohz();
9082         else
9083                 atomic_inc(&nr_freq_events);
9084 }
9085
9086
9087 static void account_event(struct perf_event *event)
9088 {
9089         bool inc = false;
9090
9091         if (event->parent)
9092                 return;
9093
9094         if (event->attach_state & PERF_ATTACH_TASK)
9095                 inc = true;
9096         if (event->attr.mmap || event->attr.mmap_data)
9097                 atomic_inc(&nr_mmap_events);
9098         if (event->attr.comm)
9099                 atomic_inc(&nr_comm_events);
9100         if (event->attr.task)
9101                 atomic_inc(&nr_task_events);
9102         if (event->attr.freq)
9103                 account_freq_event();
9104         if (event->attr.context_switch) {
9105                 atomic_inc(&nr_switch_events);
9106                 inc = true;
9107         }
9108         if (has_branch_stack(event))
9109                 inc = true;
9110         if (is_cgroup_event(event))
9111                 inc = true;
9112
9113         if (inc) {
9114                 if (atomic_inc_not_zero(&perf_sched_count))
9115                         goto enabled;
9116
9117                 mutex_lock(&perf_sched_mutex);
9118                 if (!atomic_read(&perf_sched_count)) {
9119                         static_branch_enable(&perf_sched_events);
9120                         /*
9121                          * Guarantee that all CPUs observe they key change and
9122                          * call the perf scheduling hooks before proceeding to
9123                          * install events that need them.
9124                          */
9125                         synchronize_sched();
9126                 }
9127                 /*
9128                  * Now that we have waited for the sync_sched(), allow further
9129                  * increments to by-pass the mutex.
9130                  */
9131                 atomic_inc(&perf_sched_count);
9132                 mutex_unlock(&perf_sched_mutex);
9133         }
9134 enabled:
9135
9136         account_event_cpu(event, event->cpu);
9137
9138         account_pmu_sb_event(event);
9139 }
9140
9141 /*
9142  * Allocate and initialize a event structure
9143  */
9144 static struct perf_event *
9145 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9146                  struct task_struct *task,
9147                  struct perf_event *group_leader,
9148                  struct perf_event *parent_event,
9149                  perf_overflow_handler_t overflow_handler,
9150                  void *context, int cgroup_fd)
9151 {
9152         struct pmu *pmu;
9153         struct perf_event *event;
9154         struct hw_perf_event *hwc;
9155         long err = -EINVAL;
9156
9157         if ((unsigned)cpu >= nr_cpu_ids) {
9158                 if (!task || cpu != -1)
9159                         return ERR_PTR(-EINVAL);
9160         }
9161
9162         event = kzalloc(sizeof(*event), GFP_KERNEL);
9163         if (!event)
9164                 return ERR_PTR(-ENOMEM);
9165
9166         /*
9167          * Single events are their own group leaders, with an
9168          * empty sibling list:
9169          */
9170         if (!group_leader)
9171                 group_leader = event;
9172
9173         mutex_init(&event->child_mutex);
9174         INIT_LIST_HEAD(&event->child_list);
9175
9176         INIT_LIST_HEAD(&event->group_entry);
9177         INIT_LIST_HEAD(&event->event_entry);
9178         INIT_LIST_HEAD(&event->sibling_list);
9179         INIT_LIST_HEAD(&event->rb_entry);
9180         INIT_LIST_HEAD(&event->active_entry);
9181         INIT_LIST_HEAD(&event->addr_filters.list);
9182         INIT_HLIST_NODE(&event->hlist_entry);
9183
9184
9185         init_waitqueue_head(&event->waitq);
9186         init_irq_work(&event->pending, perf_pending_event);
9187
9188         mutex_init(&event->mmap_mutex);
9189         raw_spin_lock_init(&event->addr_filters.lock);
9190
9191         atomic_long_set(&event->refcount, 1);
9192         event->cpu              = cpu;
9193         event->attr             = *attr;
9194         event->group_leader     = group_leader;
9195         event->pmu              = NULL;
9196         event->oncpu            = -1;
9197
9198         event->parent           = parent_event;
9199
9200         event->ns               = get_pid_ns(task_active_pid_ns(current));
9201         event->id               = atomic64_inc_return(&perf_event_id);
9202
9203         event->state            = PERF_EVENT_STATE_INACTIVE;
9204
9205         if (task) {
9206                 event->attach_state = PERF_ATTACH_TASK;
9207                 /*
9208                  * XXX pmu::event_init needs to know what task to account to
9209                  * and we cannot use the ctx information because we need the
9210                  * pmu before we get a ctx.
9211                  */
9212                 event->hw.target = task;
9213         }
9214
9215         event->clock = &local_clock;
9216         if (parent_event)
9217                 event->clock = parent_event->clock;
9218
9219         if (!overflow_handler && parent_event) {
9220                 overflow_handler = parent_event->overflow_handler;
9221                 context = parent_event->overflow_handler_context;
9222 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9223                 if (overflow_handler == bpf_overflow_handler) {
9224                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9225
9226                         if (IS_ERR(prog)) {
9227                                 err = PTR_ERR(prog);
9228                                 goto err_ns;
9229                         }
9230                         event->prog = prog;
9231                         event->orig_overflow_handler =
9232                                 parent_event->orig_overflow_handler;
9233                 }
9234 #endif
9235         }
9236
9237         if (overflow_handler) {
9238                 event->overflow_handler = overflow_handler;
9239                 event->overflow_handler_context = context;
9240         } else if (is_write_backward(event)){
9241                 event->overflow_handler = perf_event_output_backward;
9242                 event->overflow_handler_context = NULL;
9243         } else {
9244                 event->overflow_handler = perf_event_output_forward;
9245                 event->overflow_handler_context = NULL;
9246         }
9247
9248         perf_event__state_init(event);
9249
9250         pmu = NULL;
9251
9252         hwc = &event->hw;
9253         hwc->sample_period = attr->sample_period;
9254         if (attr->freq && attr->sample_freq)
9255                 hwc->sample_period = 1;
9256         hwc->last_period = hwc->sample_period;
9257
9258         local64_set(&hwc->period_left, hwc->sample_period);
9259
9260         /*
9261          * we currently do not support PERF_FORMAT_GROUP on inherited events
9262          */
9263         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9264                 goto err_ns;
9265
9266         if (!has_branch_stack(event))
9267                 event->attr.branch_sample_type = 0;
9268
9269         if (cgroup_fd != -1) {
9270                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9271                 if (err)
9272                         goto err_ns;
9273         }
9274
9275         pmu = perf_init_event(event);
9276         if (!pmu)
9277                 goto err_ns;
9278         else if (IS_ERR(pmu)) {
9279                 err = PTR_ERR(pmu);
9280                 goto err_ns;
9281         }
9282
9283         err = exclusive_event_init(event);
9284         if (err)
9285                 goto err_pmu;
9286
9287         if (has_addr_filter(event)) {
9288                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9289                                                    sizeof(unsigned long),
9290                                                    GFP_KERNEL);
9291                 if (!event->addr_filters_offs)
9292                         goto err_per_task;
9293
9294                 /* force hw sync on the address filters */
9295                 event->addr_filters_gen = 1;
9296         }
9297
9298         if (!event->parent) {
9299                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9300                         err = get_callchain_buffers(attr->sample_max_stack);
9301                         if (err)
9302                                 goto err_addr_filters;
9303                 }
9304         }
9305
9306         /* symmetric to unaccount_event() in _free_event() */
9307         account_event(event);
9308
9309         return event;
9310
9311 err_addr_filters:
9312         kfree(event->addr_filters_offs);
9313
9314 err_per_task:
9315         exclusive_event_destroy(event);
9316
9317 err_pmu:
9318         if (event->destroy)
9319                 event->destroy(event);
9320         module_put(pmu->module);
9321 err_ns:
9322         if (is_cgroup_event(event))
9323                 perf_detach_cgroup(event);
9324         if (event->ns)
9325                 put_pid_ns(event->ns);
9326         kfree(event);
9327
9328         return ERR_PTR(err);
9329 }
9330
9331 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9332                           struct perf_event_attr *attr)
9333 {
9334         u32 size;
9335         int ret;
9336
9337         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9338                 return -EFAULT;
9339
9340         /*
9341          * zero the full structure, so that a short copy will be nice.
9342          */
9343         memset(attr, 0, sizeof(*attr));
9344
9345         ret = get_user(size, &uattr->size);
9346         if (ret)
9347                 return ret;
9348
9349         if (size > PAGE_SIZE)   /* silly large */
9350                 goto err_size;
9351
9352         if (!size)              /* abi compat */
9353                 size = PERF_ATTR_SIZE_VER0;
9354
9355         if (size < PERF_ATTR_SIZE_VER0)
9356                 goto err_size;
9357
9358         /*
9359          * If we're handed a bigger struct than we know of,
9360          * ensure all the unknown bits are 0 - i.e. new
9361          * user-space does not rely on any kernel feature
9362          * extensions we dont know about yet.
9363          */
9364         if (size > sizeof(*attr)) {
9365                 unsigned char __user *addr;
9366                 unsigned char __user *end;
9367                 unsigned char val;
9368
9369                 addr = (void __user *)uattr + sizeof(*attr);
9370                 end  = (void __user *)uattr + size;
9371
9372                 for (; addr < end; addr++) {
9373                         ret = get_user(val, addr);
9374                         if (ret)
9375                                 return ret;
9376                         if (val)
9377                                 goto err_size;
9378                 }
9379                 size = sizeof(*attr);
9380         }
9381
9382         ret = copy_from_user(attr, uattr, size);
9383         if (ret)
9384                 return -EFAULT;
9385
9386         if (attr->__reserved_1)
9387                 return -EINVAL;
9388
9389         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9390                 return -EINVAL;
9391
9392         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9393                 return -EINVAL;
9394
9395         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9396                 u64 mask = attr->branch_sample_type;
9397
9398                 /* only using defined bits */
9399                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9400                         return -EINVAL;
9401
9402                 /* at least one branch bit must be set */
9403                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9404                         return -EINVAL;
9405
9406                 /* propagate priv level, when not set for branch */
9407                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9408
9409                         /* exclude_kernel checked on syscall entry */
9410                         if (!attr->exclude_kernel)
9411                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9412
9413                         if (!attr->exclude_user)
9414                                 mask |= PERF_SAMPLE_BRANCH_USER;
9415
9416                         if (!attr->exclude_hv)
9417                                 mask |= PERF_SAMPLE_BRANCH_HV;
9418                         /*
9419                          * adjust user setting (for HW filter setup)
9420                          */
9421                         attr->branch_sample_type = mask;
9422                 }
9423                 /* privileged levels capture (kernel, hv): check permissions */
9424                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9425                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9426                         return -EACCES;
9427         }
9428
9429         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9430                 ret = perf_reg_validate(attr->sample_regs_user);
9431                 if (ret)
9432                         return ret;
9433         }
9434
9435         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9436                 if (!arch_perf_have_user_stack_dump())
9437                         return -ENOSYS;
9438
9439                 /*
9440                  * We have __u32 type for the size, but so far
9441                  * we can only use __u16 as maximum due to the
9442                  * __u16 sample size limit.
9443                  */
9444                 if (attr->sample_stack_user >= USHRT_MAX)
9445                         ret = -EINVAL;
9446                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9447                         ret = -EINVAL;
9448         }
9449
9450         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9451                 ret = perf_reg_validate(attr->sample_regs_intr);
9452 out:
9453         return ret;
9454
9455 err_size:
9456         put_user(sizeof(*attr), &uattr->size);
9457         ret = -E2BIG;
9458         goto out;
9459 }
9460
9461 static int
9462 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9463 {
9464         struct ring_buffer *rb = NULL;
9465         int ret = -EINVAL;
9466
9467         if (!output_event)
9468                 goto set;
9469
9470         /* don't allow circular references */
9471         if (event == output_event)
9472                 goto out;
9473
9474         /*
9475          * Don't allow cross-cpu buffers
9476          */
9477         if (output_event->cpu != event->cpu)
9478                 goto out;
9479
9480         /*
9481          * If its not a per-cpu rb, it must be the same task.
9482          */
9483         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9484                 goto out;
9485
9486         /*
9487          * Mixing clocks in the same buffer is trouble you don't need.
9488          */
9489         if (output_event->clock != event->clock)
9490                 goto out;
9491
9492         /*
9493          * Either writing ring buffer from beginning or from end.
9494          * Mixing is not allowed.
9495          */
9496         if (is_write_backward(output_event) != is_write_backward(event))
9497                 goto out;
9498
9499         /*
9500          * If both events generate aux data, they must be on the same PMU
9501          */
9502         if (has_aux(event) && has_aux(output_event) &&
9503             event->pmu != output_event->pmu)
9504                 goto out;
9505
9506 set:
9507         mutex_lock(&event->mmap_mutex);
9508         /* Can't redirect output if we've got an active mmap() */
9509         if (atomic_read(&event->mmap_count))
9510                 goto unlock;
9511
9512         if (output_event) {
9513                 /* get the rb we want to redirect to */
9514                 rb = ring_buffer_get(output_event);
9515                 if (!rb)
9516                         goto unlock;
9517         }
9518
9519         ring_buffer_attach(event, rb);
9520
9521         ret = 0;
9522 unlock:
9523         mutex_unlock(&event->mmap_mutex);
9524
9525 out:
9526         return ret;
9527 }
9528
9529 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9530 {
9531         if (b < a)
9532                 swap(a, b);
9533
9534         mutex_lock(a);
9535         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9536 }
9537
9538 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9539 {
9540         bool nmi_safe = false;
9541
9542         switch (clk_id) {
9543         case CLOCK_MONOTONIC:
9544                 event->clock = &ktime_get_mono_fast_ns;
9545                 nmi_safe = true;
9546                 break;
9547
9548         case CLOCK_MONOTONIC_RAW:
9549                 event->clock = &ktime_get_raw_fast_ns;
9550                 nmi_safe = true;
9551                 break;
9552
9553         case CLOCK_REALTIME:
9554                 event->clock = &ktime_get_real_ns;
9555                 break;
9556
9557         case CLOCK_BOOTTIME:
9558                 event->clock = &ktime_get_boot_ns;
9559                 break;
9560
9561         case CLOCK_TAI:
9562                 event->clock = &ktime_get_tai_ns;
9563                 break;
9564
9565         default:
9566                 return -EINVAL;
9567         }
9568
9569         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9570                 return -EINVAL;
9571
9572         return 0;
9573 }
9574
9575 /*
9576  * Variation on perf_event_ctx_lock_nested(), except we take two context
9577  * mutexes.
9578  */
9579 static struct perf_event_context *
9580 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9581                              struct perf_event_context *ctx)
9582 {
9583         struct perf_event_context *gctx;
9584
9585 again:
9586         rcu_read_lock();
9587         gctx = READ_ONCE(group_leader->ctx);
9588         if (!atomic_inc_not_zero(&gctx->refcount)) {
9589                 rcu_read_unlock();
9590                 goto again;
9591         }
9592         rcu_read_unlock();
9593
9594         mutex_lock_double(&gctx->mutex, &ctx->mutex);
9595
9596         if (group_leader->ctx != gctx) {
9597                 mutex_unlock(&ctx->mutex);
9598                 mutex_unlock(&gctx->mutex);
9599                 put_ctx(gctx);
9600                 goto again;
9601         }
9602
9603         return gctx;
9604 }
9605
9606 /**
9607  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9608  *
9609  * @attr_uptr:  event_id type attributes for monitoring/sampling
9610  * @pid:                target pid
9611  * @cpu:                target cpu
9612  * @group_fd:           group leader event fd
9613  */
9614 SYSCALL_DEFINE5(perf_event_open,
9615                 struct perf_event_attr __user *, attr_uptr,
9616                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9617 {
9618         struct perf_event *group_leader = NULL, *output_event = NULL;
9619         struct perf_event *event, *sibling;
9620         struct perf_event_attr attr;
9621         struct perf_event_context *ctx, *uninitialized_var(gctx);
9622         struct file *event_file = NULL;
9623         struct fd group = {NULL, 0};
9624         struct task_struct *task = NULL;
9625         struct pmu *pmu;
9626         int event_fd;
9627         int move_group = 0;
9628         int err;
9629         int f_flags = O_RDWR;
9630         int cgroup_fd = -1;
9631
9632         /* for future expandability... */
9633         if (flags & ~PERF_FLAG_ALL)
9634                 return -EINVAL;
9635
9636         err = perf_copy_attr(attr_uptr, &attr);
9637         if (err)
9638                 return err;
9639
9640         if (!attr.exclude_kernel) {
9641                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9642                         return -EACCES;
9643         }
9644
9645         if (attr.freq) {
9646                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9647                         return -EINVAL;
9648         } else {
9649                 if (attr.sample_period & (1ULL << 63))
9650                         return -EINVAL;
9651         }
9652
9653         if (!attr.sample_max_stack)
9654                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9655
9656         /*
9657          * In cgroup mode, the pid argument is used to pass the fd
9658          * opened to the cgroup directory in cgroupfs. The cpu argument
9659          * designates the cpu on which to monitor threads from that
9660          * cgroup.
9661          */
9662         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9663                 return -EINVAL;
9664
9665         if (flags & PERF_FLAG_FD_CLOEXEC)
9666                 f_flags |= O_CLOEXEC;
9667
9668         event_fd = get_unused_fd_flags(f_flags);
9669         if (event_fd < 0)
9670                 return event_fd;
9671
9672         if (group_fd != -1) {
9673                 err = perf_fget_light(group_fd, &group);
9674                 if (err)
9675                         goto err_fd;
9676                 group_leader = group.file->private_data;
9677                 if (flags & PERF_FLAG_FD_OUTPUT)
9678                         output_event = group_leader;
9679                 if (flags & PERF_FLAG_FD_NO_GROUP)
9680                         group_leader = NULL;
9681         }
9682
9683         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9684                 task = find_lively_task_by_vpid(pid);
9685                 if (IS_ERR(task)) {
9686                         err = PTR_ERR(task);
9687                         goto err_group_fd;
9688                 }
9689         }
9690
9691         if (task && group_leader &&
9692             group_leader->attr.inherit != attr.inherit) {
9693                 err = -EINVAL;
9694                 goto err_task;
9695         }
9696
9697         get_online_cpus();
9698
9699         if (task) {
9700                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9701                 if (err)
9702                         goto err_cpus;
9703
9704                 /*
9705                  * Reuse ptrace permission checks for now.
9706                  *
9707                  * We must hold cred_guard_mutex across this and any potential
9708                  * perf_install_in_context() call for this new event to
9709                  * serialize against exec() altering our credentials (and the
9710                  * perf_event_exit_task() that could imply).
9711                  */
9712                 err = -EACCES;
9713                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9714                         goto err_cred;
9715         }
9716
9717         if (flags & PERF_FLAG_PID_CGROUP)
9718                 cgroup_fd = pid;
9719
9720         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9721                                  NULL, NULL, cgroup_fd);
9722         if (IS_ERR(event)) {
9723                 err = PTR_ERR(event);
9724                 goto err_cred;
9725         }
9726
9727         if (is_sampling_event(event)) {
9728                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9729                         err = -EOPNOTSUPP;
9730                         goto err_alloc;
9731                 }
9732         }
9733
9734         /*
9735          * Special case software events and allow them to be part of
9736          * any hardware group.
9737          */
9738         pmu = event->pmu;
9739
9740         if (attr.use_clockid) {
9741                 err = perf_event_set_clock(event, attr.clockid);
9742                 if (err)
9743                         goto err_alloc;
9744         }
9745
9746         if (pmu->task_ctx_nr == perf_sw_context)
9747                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9748
9749         if (group_leader &&
9750             (is_software_event(event) != is_software_event(group_leader))) {
9751                 if (is_software_event(event)) {
9752                         /*
9753                          * If event and group_leader are not both a software
9754                          * event, and event is, then group leader is not.
9755                          *
9756                          * Allow the addition of software events to !software
9757                          * groups, this is safe because software events never
9758                          * fail to schedule.
9759                          */
9760                         pmu = group_leader->pmu;
9761                 } else if (is_software_event(group_leader) &&
9762                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9763                         /*
9764                          * In case the group is a pure software group, and we
9765                          * try to add a hardware event, move the whole group to
9766                          * the hardware context.
9767                          */
9768                         move_group = 1;
9769                 }
9770         }
9771
9772         /*
9773          * Get the target context (task or percpu):
9774          */
9775         ctx = find_get_context(pmu, task, event);
9776         if (IS_ERR(ctx)) {
9777                 err = PTR_ERR(ctx);
9778                 goto err_alloc;
9779         }
9780
9781         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9782                 err = -EBUSY;
9783                 goto err_context;
9784         }
9785
9786         /*
9787          * Look up the group leader (we will attach this event to it):
9788          */
9789         if (group_leader) {
9790                 err = -EINVAL;
9791
9792                 /*
9793                  * Do not allow a recursive hierarchy (this new sibling
9794                  * becoming part of another group-sibling):
9795                  */
9796                 if (group_leader->group_leader != group_leader)
9797                         goto err_context;
9798
9799                 /* All events in a group should have the same clock */
9800                 if (group_leader->clock != event->clock)
9801                         goto err_context;
9802
9803                 /*
9804                  * Do not allow to attach to a group in a different
9805                  * task or CPU context:
9806                  */
9807                 if (move_group) {
9808                         /*
9809                          * Make sure we're both on the same task, or both
9810                          * per-cpu events.
9811                          */
9812                         if (group_leader->ctx->task != ctx->task)
9813                                 goto err_context;
9814
9815                         /*
9816                          * Make sure we're both events for the same CPU;
9817                          * grouping events for different CPUs is broken; since
9818                          * you can never concurrently schedule them anyhow.
9819                          */
9820                         if (group_leader->cpu != event->cpu)
9821                                 goto err_context;
9822                 } else {
9823                         if (group_leader->ctx != ctx)
9824                                 goto err_context;
9825                 }
9826
9827                 /*
9828                  * Only a group leader can be exclusive or pinned
9829                  */
9830                 if (attr.exclusive || attr.pinned)
9831                         goto err_context;
9832         }
9833
9834         if (output_event) {
9835                 err = perf_event_set_output(event, output_event);
9836                 if (err)
9837                         goto err_context;
9838         }
9839
9840         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9841                                         f_flags);
9842         if (IS_ERR(event_file)) {
9843                 err = PTR_ERR(event_file);
9844                 event_file = NULL;
9845                 goto err_context;
9846         }
9847
9848         if (move_group) {
9849                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
9850
9851                 if (gctx->task == TASK_TOMBSTONE) {
9852                         err = -ESRCH;
9853                         goto err_locked;
9854                 }
9855
9856                 /*
9857                  * Check if we raced against another sys_perf_event_open() call
9858                  * moving the software group underneath us.
9859                  */
9860                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9861                         /*
9862                          * If someone moved the group out from under us, check
9863                          * if this new event wound up on the same ctx, if so
9864                          * its the regular !move_group case, otherwise fail.
9865                          */
9866                         if (gctx != ctx) {
9867                                 err = -EINVAL;
9868                                 goto err_locked;
9869                         } else {
9870                                 perf_event_ctx_unlock(group_leader, gctx);
9871                                 move_group = 0;
9872                         }
9873                 }
9874         } else {
9875                 mutex_lock(&ctx->mutex);
9876         }
9877
9878         if (ctx->task == TASK_TOMBSTONE) {
9879                 err = -ESRCH;
9880                 goto err_locked;
9881         }
9882
9883         if (!perf_event_validate_size(event)) {
9884                 err = -E2BIG;
9885                 goto err_locked;
9886         }
9887
9888         /*
9889          * Must be under the same ctx::mutex as perf_install_in_context(),
9890          * because we need to serialize with concurrent event creation.
9891          */
9892         if (!exclusive_event_installable(event, ctx)) {
9893                 /* exclusive and group stuff are assumed mutually exclusive */
9894                 WARN_ON_ONCE(move_group);
9895
9896                 err = -EBUSY;
9897                 goto err_locked;
9898         }
9899
9900         WARN_ON_ONCE(ctx->parent_ctx);
9901
9902         /*
9903          * This is the point on no return; we cannot fail hereafter. This is
9904          * where we start modifying current state.
9905          */
9906
9907         if (move_group) {
9908                 /*
9909                  * See perf_event_ctx_lock() for comments on the details
9910                  * of swizzling perf_event::ctx.
9911                  */
9912                 perf_remove_from_context(group_leader, 0);
9913
9914                 list_for_each_entry(sibling, &group_leader->sibling_list,
9915                                     group_entry) {
9916                         perf_remove_from_context(sibling, 0);
9917                         put_ctx(gctx);
9918                 }
9919
9920                 /*
9921                  * Wait for everybody to stop referencing the events through
9922                  * the old lists, before installing it on new lists.
9923                  */
9924                 synchronize_rcu();
9925
9926                 /*
9927                  * Install the group siblings before the group leader.
9928                  *
9929                  * Because a group leader will try and install the entire group
9930                  * (through the sibling list, which is still in-tact), we can
9931                  * end up with siblings installed in the wrong context.
9932                  *
9933                  * By installing siblings first we NO-OP because they're not
9934                  * reachable through the group lists.
9935                  */
9936                 list_for_each_entry(sibling, &group_leader->sibling_list,
9937                                     group_entry) {
9938                         perf_event__state_init(sibling);
9939                         perf_install_in_context(ctx, sibling, sibling->cpu);
9940                         get_ctx(ctx);
9941                 }
9942
9943                 /*
9944                  * Removing from the context ends up with disabled
9945                  * event. What we want here is event in the initial
9946                  * startup state, ready to be add into new context.
9947                  */
9948                 perf_event__state_init(group_leader);
9949                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9950                 get_ctx(ctx);
9951
9952                 /*
9953                  * Now that all events are installed in @ctx, nothing
9954                  * references @gctx anymore, so drop the last reference we have
9955                  * on it.
9956                  */
9957                 put_ctx(gctx);
9958         }
9959
9960         /*
9961          * Precalculate sample_data sizes; do while holding ctx::mutex such
9962          * that we're serialized against further additions and before
9963          * perf_install_in_context() which is the point the event is active and
9964          * can use these values.
9965          */
9966         perf_event__header_size(event);
9967         perf_event__id_header_size(event);
9968
9969         event->owner = current;
9970
9971         perf_install_in_context(ctx, event, event->cpu);
9972         perf_unpin_context(ctx);
9973
9974         if (move_group)
9975                 perf_event_ctx_unlock(group_leader, gctx);
9976         mutex_unlock(&ctx->mutex);
9977
9978         if (task) {
9979                 mutex_unlock(&task->signal->cred_guard_mutex);
9980                 put_task_struct(task);
9981         }
9982
9983         put_online_cpus();
9984
9985         mutex_lock(&current->perf_event_mutex);
9986         list_add_tail(&event->owner_entry, &current->perf_event_list);
9987         mutex_unlock(&current->perf_event_mutex);
9988
9989         /*
9990          * Drop the reference on the group_event after placing the
9991          * new event on the sibling_list. This ensures destruction
9992          * of the group leader will find the pointer to itself in
9993          * perf_group_detach().
9994          */
9995         fdput(group);
9996         fd_install(event_fd, event_file);
9997         return event_fd;
9998
9999 err_locked:
10000         if (move_group)
10001                 perf_event_ctx_unlock(group_leader, gctx);
10002         mutex_unlock(&ctx->mutex);
10003 /* err_file: */
10004         fput(event_file);
10005 err_context:
10006         perf_unpin_context(ctx);
10007         put_ctx(ctx);
10008 err_alloc:
10009         /*
10010          * If event_file is set, the fput() above will have called ->release()
10011          * and that will take care of freeing the event.
10012          */
10013         if (!event_file)
10014                 free_event(event);
10015 err_cred:
10016         if (task)
10017                 mutex_unlock(&task->signal->cred_guard_mutex);
10018 err_cpus:
10019         put_online_cpus();
10020 err_task:
10021         if (task)
10022                 put_task_struct(task);
10023 err_group_fd:
10024         fdput(group);
10025 err_fd:
10026         put_unused_fd(event_fd);
10027         return err;
10028 }
10029
10030 /**
10031  * perf_event_create_kernel_counter
10032  *
10033  * @attr: attributes of the counter to create
10034  * @cpu: cpu in which the counter is bound
10035  * @task: task to profile (NULL for percpu)
10036  */
10037 struct perf_event *
10038 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10039                                  struct task_struct *task,
10040                                  perf_overflow_handler_t overflow_handler,
10041                                  void *context)
10042 {
10043         struct perf_event_context *ctx;
10044         struct perf_event *event;
10045         int err;
10046
10047         /*
10048          * Get the target context (task or percpu):
10049          */
10050
10051         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10052                                  overflow_handler, context, -1);
10053         if (IS_ERR(event)) {
10054                 err = PTR_ERR(event);
10055                 goto err;
10056         }
10057
10058         /* Mark owner so we could distinguish it from user events. */
10059         event->owner = TASK_TOMBSTONE;
10060
10061         ctx = find_get_context(event->pmu, task, event);
10062         if (IS_ERR(ctx)) {
10063                 err = PTR_ERR(ctx);
10064                 goto err_free;
10065         }
10066
10067         WARN_ON_ONCE(ctx->parent_ctx);
10068         mutex_lock(&ctx->mutex);
10069         if (ctx->task == TASK_TOMBSTONE) {
10070                 err = -ESRCH;
10071                 goto err_unlock;
10072         }
10073
10074         if (!exclusive_event_installable(event, ctx)) {
10075                 err = -EBUSY;
10076                 goto err_unlock;
10077         }
10078
10079         perf_install_in_context(ctx, event, cpu);
10080         perf_unpin_context(ctx);
10081         mutex_unlock(&ctx->mutex);
10082
10083         return event;
10084
10085 err_unlock:
10086         mutex_unlock(&ctx->mutex);
10087         perf_unpin_context(ctx);
10088         put_ctx(ctx);
10089 err_free:
10090         free_event(event);
10091 err:
10092         return ERR_PTR(err);
10093 }
10094 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10095
10096 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10097 {
10098         struct perf_event_context *src_ctx;
10099         struct perf_event_context *dst_ctx;
10100         struct perf_event *event, *tmp;
10101         LIST_HEAD(events);
10102
10103         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10104         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10105
10106         /*
10107          * See perf_event_ctx_lock() for comments on the details
10108          * of swizzling perf_event::ctx.
10109          */
10110         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10111         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10112                                  event_entry) {
10113                 perf_remove_from_context(event, 0);
10114                 unaccount_event_cpu(event, src_cpu);
10115                 put_ctx(src_ctx);
10116                 list_add(&event->migrate_entry, &events);
10117         }
10118
10119         /*
10120          * Wait for the events to quiesce before re-instating them.
10121          */
10122         synchronize_rcu();
10123
10124         /*
10125          * Re-instate events in 2 passes.
10126          *
10127          * Skip over group leaders and only install siblings on this first
10128          * pass, siblings will not get enabled without a leader, however a
10129          * leader will enable its siblings, even if those are still on the old
10130          * context.
10131          */
10132         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10133                 if (event->group_leader == event)
10134                         continue;
10135
10136                 list_del(&event->migrate_entry);
10137                 if (event->state >= PERF_EVENT_STATE_OFF)
10138                         event->state = PERF_EVENT_STATE_INACTIVE;
10139                 account_event_cpu(event, dst_cpu);
10140                 perf_install_in_context(dst_ctx, event, dst_cpu);
10141                 get_ctx(dst_ctx);
10142         }
10143
10144         /*
10145          * Once all the siblings are setup properly, install the group leaders
10146          * to make it go.
10147          */
10148         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10149                 list_del(&event->migrate_entry);
10150                 if (event->state >= PERF_EVENT_STATE_OFF)
10151                         event->state = PERF_EVENT_STATE_INACTIVE;
10152                 account_event_cpu(event, dst_cpu);
10153                 perf_install_in_context(dst_ctx, event, dst_cpu);
10154                 get_ctx(dst_ctx);
10155         }
10156         mutex_unlock(&dst_ctx->mutex);
10157         mutex_unlock(&src_ctx->mutex);
10158 }
10159 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10160
10161 static void sync_child_event(struct perf_event *child_event,
10162                                struct task_struct *child)
10163 {
10164         struct perf_event *parent_event = child_event->parent;
10165         u64 child_val;
10166
10167         if (child_event->attr.inherit_stat)
10168                 perf_event_read_event(child_event, child);
10169
10170         child_val = perf_event_count(child_event);
10171
10172         /*
10173          * Add back the child's count to the parent's count:
10174          */
10175         atomic64_add(child_val, &parent_event->child_count);
10176         atomic64_add(child_event->total_time_enabled,
10177                      &parent_event->child_total_time_enabled);
10178         atomic64_add(child_event->total_time_running,
10179                      &parent_event->child_total_time_running);
10180 }
10181
10182 static void
10183 perf_event_exit_event(struct perf_event *child_event,
10184                       struct perf_event_context *child_ctx,
10185                       struct task_struct *child)
10186 {
10187         struct perf_event *parent_event = child_event->parent;
10188
10189         /*
10190          * Do not destroy the 'original' grouping; because of the context
10191          * switch optimization the original events could've ended up in a
10192          * random child task.
10193          *
10194          * If we were to destroy the original group, all group related
10195          * operations would cease to function properly after this random
10196          * child dies.
10197          *
10198          * Do destroy all inherited groups, we don't care about those
10199          * and being thorough is better.
10200          */
10201         raw_spin_lock_irq(&child_ctx->lock);
10202         WARN_ON_ONCE(child_ctx->is_active);
10203
10204         if (parent_event)
10205                 perf_group_detach(child_event);
10206         list_del_event(child_event, child_ctx);
10207         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10208         raw_spin_unlock_irq(&child_ctx->lock);
10209
10210         /*
10211          * Parent events are governed by their filedesc, retain them.
10212          */
10213         if (!parent_event) {
10214                 perf_event_wakeup(child_event);
10215                 return;
10216         }
10217         /*
10218          * Child events can be cleaned up.
10219          */
10220
10221         sync_child_event(child_event, child);
10222
10223         /*
10224          * Remove this event from the parent's list
10225          */
10226         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10227         mutex_lock(&parent_event->child_mutex);
10228         list_del_init(&child_event->child_list);
10229         mutex_unlock(&parent_event->child_mutex);
10230
10231         /*
10232          * Kick perf_poll() for is_event_hup().
10233          */
10234         perf_event_wakeup(parent_event);
10235         free_event(child_event);
10236         put_event(parent_event);
10237 }
10238
10239 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10240 {
10241         struct perf_event_context *child_ctx, *clone_ctx = NULL;
10242         struct perf_event *child_event, *next;
10243
10244         WARN_ON_ONCE(child != current);
10245
10246         child_ctx = perf_pin_task_context(child, ctxn);
10247         if (!child_ctx)
10248                 return;
10249
10250         /*
10251          * In order to reduce the amount of tricky in ctx tear-down, we hold
10252          * ctx::mutex over the entire thing. This serializes against almost
10253          * everything that wants to access the ctx.
10254          *
10255          * The exception is sys_perf_event_open() /
10256          * perf_event_create_kernel_count() which does find_get_context()
10257          * without ctx::mutex (it cannot because of the move_group double mutex
10258          * lock thing). See the comments in perf_install_in_context().
10259          */
10260         mutex_lock(&child_ctx->mutex);
10261
10262         /*
10263          * In a single ctx::lock section, de-schedule the events and detach the
10264          * context from the task such that we cannot ever get it scheduled back
10265          * in.
10266          */
10267         raw_spin_lock_irq(&child_ctx->lock);
10268         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10269
10270         /*
10271          * Now that the context is inactive, destroy the task <-> ctx relation
10272          * and mark the context dead.
10273          */
10274         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10275         put_ctx(child_ctx); /* cannot be last */
10276         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10277         put_task_struct(current); /* cannot be last */
10278
10279         clone_ctx = unclone_ctx(child_ctx);
10280         raw_spin_unlock_irq(&child_ctx->lock);
10281
10282         if (clone_ctx)
10283                 put_ctx(clone_ctx);
10284
10285         /*
10286          * Report the task dead after unscheduling the events so that we
10287          * won't get any samples after PERF_RECORD_EXIT. We can however still
10288          * get a few PERF_RECORD_READ events.
10289          */
10290         perf_event_task(child, child_ctx, 0);
10291
10292         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10293                 perf_event_exit_event(child_event, child_ctx, child);
10294
10295         mutex_unlock(&child_ctx->mutex);
10296
10297         put_ctx(child_ctx);
10298 }
10299
10300 /*
10301  * When a child task exits, feed back event values to parent events.
10302  *
10303  * Can be called with cred_guard_mutex held when called from
10304  * install_exec_creds().
10305  */
10306 void perf_event_exit_task(struct task_struct *child)
10307 {
10308         struct perf_event *event, *tmp;
10309         int ctxn;
10310
10311         mutex_lock(&child->perf_event_mutex);
10312         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10313                                  owner_entry) {
10314                 list_del_init(&event->owner_entry);
10315
10316                 /*
10317                  * Ensure the list deletion is visible before we clear
10318                  * the owner, closes a race against perf_release() where
10319                  * we need to serialize on the owner->perf_event_mutex.
10320                  */
10321                 smp_store_release(&event->owner, NULL);
10322         }
10323         mutex_unlock(&child->perf_event_mutex);
10324
10325         for_each_task_context_nr(ctxn)
10326                 perf_event_exit_task_context(child, ctxn);
10327
10328         /*
10329          * The perf_event_exit_task_context calls perf_event_task
10330          * with child's task_ctx, which generates EXIT events for
10331          * child contexts and sets child->perf_event_ctxp[] to NULL.
10332          * At this point we need to send EXIT events to cpu contexts.
10333          */
10334         perf_event_task(child, NULL, 0);
10335 }
10336
10337 static void perf_free_event(struct perf_event *event,
10338                             struct perf_event_context *ctx)
10339 {
10340         struct perf_event *parent = event->parent;
10341
10342         if (WARN_ON_ONCE(!parent))
10343                 return;
10344
10345         mutex_lock(&parent->child_mutex);
10346         list_del_init(&event->child_list);
10347         mutex_unlock(&parent->child_mutex);
10348
10349         put_event(parent);
10350
10351         raw_spin_lock_irq(&ctx->lock);
10352         perf_group_detach(event);
10353         list_del_event(event, ctx);
10354         raw_spin_unlock_irq(&ctx->lock);
10355         free_event(event);
10356 }
10357
10358 /*
10359  * Free an unexposed, unused context as created by inheritance by
10360  * perf_event_init_task below, used by fork() in case of fail.
10361  *
10362  * Not all locks are strictly required, but take them anyway to be nice and
10363  * help out with the lockdep assertions.
10364  */
10365 void perf_event_free_task(struct task_struct *task)
10366 {
10367         struct perf_event_context *ctx;
10368         struct perf_event *event, *tmp;
10369         int ctxn;
10370
10371         for_each_task_context_nr(ctxn) {
10372                 ctx = task->perf_event_ctxp[ctxn];
10373                 if (!ctx)
10374                         continue;
10375
10376                 mutex_lock(&ctx->mutex);
10377 again:
10378                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10379                                 group_entry)
10380                         perf_free_event(event, ctx);
10381
10382                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10383                                 group_entry)
10384                         perf_free_event(event, ctx);
10385
10386                 if (!list_empty(&ctx->pinned_groups) ||
10387                                 !list_empty(&ctx->flexible_groups))
10388                         goto again;
10389
10390                 mutex_unlock(&ctx->mutex);
10391
10392                 put_ctx(ctx);
10393         }
10394 }
10395
10396 void perf_event_delayed_put(struct task_struct *task)
10397 {
10398         int ctxn;
10399
10400         for_each_task_context_nr(ctxn)
10401                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10402 }
10403
10404 struct file *perf_event_get(unsigned int fd)
10405 {
10406         struct file *file;
10407
10408         file = fget_raw(fd);
10409         if (!file)
10410                 return ERR_PTR(-EBADF);
10411
10412         if (file->f_op != &perf_fops) {
10413                 fput(file);
10414                 return ERR_PTR(-EBADF);
10415         }
10416
10417         return file;
10418 }
10419
10420 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10421 {
10422         if (!event)
10423                 return ERR_PTR(-EINVAL);
10424
10425         return &event->attr;
10426 }
10427
10428 /*
10429  * inherit a event from parent task to child task:
10430  */
10431 static struct perf_event *
10432 inherit_event(struct perf_event *parent_event,
10433               struct task_struct *parent,
10434               struct perf_event_context *parent_ctx,
10435               struct task_struct *child,
10436               struct perf_event *group_leader,
10437               struct perf_event_context *child_ctx)
10438 {
10439         enum perf_event_active_state parent_state = parent_event->state;
10440         struct perf_event *child_event;
10441         unsigned long flags;
10442
10443         /*
10444          * Instead of creating recursive hierarchies of events,
10445          * we link inherited events back to the original parent,
10446          * which has a filp for sure, which we use as the reference
10447          * count:
10448          */
10449         if (parent_event->parent)
10450                 parent_event = parent_event->parent;
10451
10452         child_event = perf_event_alloc(&parent_event->attr,
10453                                            parent_event->cpu,
10454                                            child,
10455                                            group_leader, parent_event,
10456                                            NULL, NULL, -1);
10457         if (IS_ERR(child_event))
10458                 return child_event;
10459
10460         /*
10461          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10462          * must be under the same lock in order to serialize against
10463          * perf_event_release_kernel(), such that either we must observe
10464          * is_orphaned_event() or they will observe us on the child_list.
10465          */
10466         mutex_lock(&parent_event->child_mutex);
10467         if (is_orphaned_event(parent_event) ||
10468             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10469                 mutex_unlock(&parent_event->child_mutex);
10470                 free_event(child_event);
10471                 return NULL;
10472         }
10473
10474         get_ctx(child_ctx);
10475
10476         /*
10477          * Make the child state follow the state of the parent event,
10478          * not its attr.disabled bit.  We hold the parent's mutex,
10479          * so we won't race with perf_event_{en, dis}able_family.
10480          */
10481         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10482                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10483         else
10484                 child_event->state = PERF_EVENT_STATE_OFF;
10485
10486         if (parent_event->attr.freq) {
10487                 u64 sample_period = parent_event->hw.sample_period;
10488                 struct hw_perf_event *hwc = &child_event->hw;
10489
10490                 hwc->sample_period = sample_period;
10491                 hwc->last_period   = sample_period;
10492
10493                 local64_set(&hwc->period_left, sample_period);
10494         }
10495
10496         child_event->ctx = child_ctx;
10497         child_event->overflow_handler = parent_event->overflow_handler;
10498         child_event->overflow_handler_context
10499                 = parent_event->overflow_handler_context;
10500
10501         /*
10502          * Precalculate sample_data sizes
10503          */
10504         perf_event__header_size(child_event);
10505         perf_event__id_header_size(child_event);
10506
10507         /*
10508          * Link it up in the child's context:
10509          */
10510         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10511         add_event_to_ctx(child_event, child_ctx);
10512         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10513
10514         /*
10515          * Link this into the parent event's child list
10516          */
10517         list_add_tail(&child_event->child_list, &parent_event->child_list);
10518         mutex_unlock(&parent_event->child_mutex);
10519
10520         return child_event;
10521 }
10522
10523 static int inherit_group(struct perf_event *parent_event,
10524               struct task_struct *parent,
10525               struct perf_event_context *parent_ctx,
10526               struct task_struct *child,
10527               struct perf_event_context *child_ctx)
10528 {
10529         struct perf_event *leader;
10530         struct perf_event *sub;
10531         struct perf_event *child_ctr;
10532
10533         leader = inherit_event(parent_event, parent, parent_ctx,
10534                                  child, NULL, child_ctx);
10535         if (IS_ERR(leader))
10536                 return PTR_ERR(leader);
10537         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10538                 child_ctr = inherit_event(sub, parent, parent_ctx,
10539                                             child, leader, child_ctx);
10540                 if (IS_ERR(child_ctr))
10541                         return PTR_ERR(child_ctr);
10542         }
10543         return 0;
10544 }
10545
10546 static int
10547 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10548                    struct perf_event_context *parent_ctx,
10549                    struct task_struct *child, int ctxn,
10550                    int *inherited_all)
10551 {
10552         int ret;
10553         struct perf_event_context *child_ctx;
10554
10555         if (!event->attr.inherit) {
10556                 *inherited_all = 0;
10557                 return 0;
10558         }
10559
10560         child_ctx = child->perf_event_ctxp[ctxn];
10561         if (!child_ctx) {
10562                 /*
10563                  * This is executed from the parent task context, so
10564                  * inherit events that have been marked for cloning.
10565                  * First allocate and initialize a context for the
10566                  * child.
10567                  */
10568
10569                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10570                 if (!child_ctx)
10571                         return -ENOMEM;
10572
10573                 child->perf_event_ctxp[ctxn] = child_ctx;
10574         }
10575
10576         ret = inherit_group(event, parent, parent_ctx,
10577                             child, child_ctx);
10578
10579         if (ret)
10580                 *inherited_all = 0;
10581
10582         return ret;
10583 }
10584
10585 /*
10586  * Initialize the perf_event context in task_struct
10587  */
10588 static int perf_event_init_context(struct task_struct *child, int ctxn)
10589 {
10590         struct perf_event_context *child_ctx, *parent_ctx;
10591         struct perf_event_context *cloned_ctx;
10592         struct perf_event *event;
10593         struct task_struct *parent = current;
10594         int inherited_all = 1;
10595         unsigned long flags;
10596         int ret = 0;
10597
10598         if (likely(!parent->perf_event_ctxp[ctxn]))
10599                 return 0;
10600
10601         /*
10602          * If the parent's context is a clone, pin it so it won't get
10603          * swapped under us.
10604          */
10605         parent_ctx = perf_pin_task_context(parent, ctxn);
10606         if (!parent_ctx)
10607                 return 0;
10608
10609         /*
10610          * No need to check if parent_ctx != NULL here; since we saw
10611          * it non-NULL earlier, the only reason for it to become NULL
10612          * is if we exit, and since we're currently in the middle of
10613          * a fork we can't be exiting at the same time.
10614          */
10615
10616         /*
10617          * Lock the parent list. No need to lock the child - not PID
10618          * hashed yet and not running, so nobody can access it.
10619          */
10620         mutex_lock(&parent_ctx->mutex);
10621
10622         /*
10623          * We dont have to disable NMIs - we are only looking at
10624          * the list, not manipulating it:
10625          */
10626         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10627                 ret = inherit_task_group(event, parent, parent_ctx,
10628                                          child, ctxn, &inherited_all);
10629                 if (ret)
10630                         break;
10631         }
10632
10633         /*
10634          * We can't hold ctx->lock when iterating the ->flexible_group list due
10635          * to allocations, but we need to prevent rotation because
10636          * rotate_ctx() will change the list from interrupt context.
10637          */
10638         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10639         parent_ctx->rotate_disable = 1;
10640         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10641
10642         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10643                 ret = inherit_task_group(event, parent, parent_ctx,
10644                                          child, ctxn, &inherited_all);
10645                 if (ret)
10646                         break;
10647         }
10648
10649         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10650         parent_ctx->rotate_disable = 0;
10651
10652         child_ctx = child->perf_event_ctxp[ctxn];
10653
10654         if (child_ctx && inherited_all) {
10655                 /*
10656                  * Mark the child context as a clone of the parent
10657                  * context, or of whatever the parent is a clone of.
10658                  *
10659                  * Note that if the parent is a clone, the holding of
10660                  * parent_ctx->lock avoids it from being uncloned.
10661                  */
10662                 cloned_ctx = parent_ctx->parent_ctx;
10663                 if (cloned_ctx) {
10664                         child_ctx->parent_ctx = cloned_ctx;
10665                         child_ctx->parent_gen = parent_ctx->parent_gen;
10666                 } else {
10667                         child_ctx->parent_ctx = parent_ctx;
10668                         child_ctx->parent_gen = parent_ctx->generation;
10669                 }
10670                 get_ctx(child_ctx->parent_ctx);
10671         }
10672
10673         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10674         mutex_unlock(&parent_ctx->mutex);
10675
10676         perf_unpin_context(parent_ctx);
10677         put_ctx(parent_ctx);
10678
10679         return ret;
10680 }
10681
10682 /*
10683  * Initialize the perf_event context in task_struct
10684  */
10685 int perf_event_init_task(struct task_struct *child)
10686 {
10687         int ctxn, ret;
10688
10689         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10690         mutex_init(&child->perf_event_mutex);
10691         INIT_LIST_HEAD(&child->perf_event_list);
10692
10693         for_each_task_context_nr(ctxn) {
10694                 ret = perf_event_init_context(child, ctxn);
10695                 if (ret) {
10696                         perf_event_free_task(child);
10697                         return ret;
10698                 }
10699         }
10700
10701         return 0;
10702 }
10703
10704 static void __init perf_event_init_all_cpus(void)
10705 {
10706         struct swevent_htable *swhash;
10707         int cpu;
10708
10709         for_each_possible_cpu(cpu) {
10710                 swhash = &per_cpu(swevent_htable, cpu);
10711                 mutex_init(&swhash->hlist_mutex);
10712                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10713
10714                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10715                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10716
10717                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10718         }
10719 }
10720
10721 int perf_event_init_cpu(unsigned int cpu)
10722 {
10723         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10724
10725         mutex_lock(&swhash->hlist_mutex);
10726         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10727                 struct swevent_hlist *hlist;
10728
10729                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10730                 WARN_ON(!hlist);
10731                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10732         }
10733         mutex_unlock(&swhash->hlist_mutex);
10734         return 0;
10735 }
10736
10737 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10738 static void __perf_event_exit_context(void *__info)
10739 {
10740         struct perf_event_context *ctx = __info;
10741         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10742         struct perf_event *event;
10743
10744         raw_spin_lock(&ctx->lock);
10745         list_for_each_entry(event, &ctx->event_list, event_entry)
10746                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10747         raw_spin_unlock(&ctx->lock);
10748 }
10749
10750 static void perf_event_exit_cpu_context(int cpu)
10751 {
10752         struct perf_event_context *ctx;
10753         struct pmu *pmu;
10754         int idx;
10755
10756         idx = srcu_read_lock(&pmus_srcu);
10757         list_for_each_entry_rcu(pmu, &pmus, entry) {
10758                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10759
10760                 mutex_lock(&ctx->mutex);
10761                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10762                 mutex_unlock(&ctx->mutex);
10763         }
10764         srcu_read_unlock(&pmus_srcu, idx);
10765 }
10766 #else
10767
10768 static void perf_event_exit_cpu_context(int cpu) { }
10769
10770 #endif
10771
10772 int perf_event_exit_cpu(unsigned int cpu)
10773 {
10774         perf_event_exit_cpu_context(cpu);
10775         return 0;
10776 }
10777
10778 static int
10779 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10780 {
10781         int cpu;
10782
10783         for_each_online_cpu(cpu)
10784                 perf_event_exit_cpu(cpu);
10785
10786         return NOTIFY_OK;
10787 }
10788
10789 /*
10790  * Run the perf reboot notifier at the very last possible moment so that
10791  * the generic watchdog code runs as long as possible.
10792  */
10793 static struct notifier_block perf_reboot_notifier = {
10794         .notifier_call = perf_reboot,
10795         .priority = INT_MIN,
10796 };
10797
10798 void __init perf_event_init(void)
10799 {
10800         int ret;
10801
10802         idr_init(&pmu_idr);
10803
10804         perf_event_init_all_cpus();
10805         init_srcu_struct(&pmus_srcu);
10806         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10807         perf_pmu_register(&perf_cpu_clock, NULL, -1);
10808         perf_pmu_register(&perf_task_clock, NULL, -1);
10809         perf_tp_register();
10810         perf_event_init_cpu(smp_processor_id());
10811         register_reboot_notifier(&perf_reboot_notifier);
10812
10813         ret = init_hw_breakpoint();
10814         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10815
10816         /*
10817          * Build time assertion that we keep the data_head at the intended
10818          * location.  IOW, validation we got the __reserved[] size right.
10819          */
10820         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10821                      != 1024);
10822 }
10823
10824 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10825                               char *page)
10826 {
10827         struct perf_pmu_events_attr *pmu_attr =
10828                 container_of(attr, struct perf_pmu_events_attr, attr);
10829
10830         if (pmu_attr->event_str)
10831                 return sprintf(page, "%s\n", pmu_attr->event_str);
10832
10833         return 0;
10834 }
10835 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10836
10837 static int __init perf_event_sysfs_init(void)
10838 {
10839         struct pmu *pmu;
10840         int ret;
10841
10842         mutex_lock(&pmus_lock);
10843
10844         ret = bus_register(&pmu_bus);
10845         if (ret)
10846                 goto unlock;
10847
10848         list_for_each_entry(pmu, &pmus, entry) {
10849                 if (!pmu->name || pmu->type < 0)
10850                         continue;
10851
10852                 ret = pmu_dev_alloc(pmu);
10853                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10854         }
10855         pmu_bus_running = 1;
10856         ret = 0;
10857
10858 unlock:
10859         mutex_unlock(&pmus_lock);
10860
10861         return ret;
10862 }
10863 device_initcall(perf_event_sysfs_init);
10864
10865 #ifdef CONFIG_CGROUP_PERF
10866 static struct cgroup_subsys_state *
10867 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10868 {
10869         struct perf_cgroup *jc;
10870
10871         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10872         if (!jc)
10873                 return ERR_PTR(-ENOMEM);
10874
10875         jc->info = alloc_percpu(struct perf_cgroup_info);
10876         if (!jc->info) {
10877                 kfree(jc);
10878                 return ERR_PTR(-ENOMEM);
10879         }
10880
10881         return &jc->css;
10882 }
10883
10884 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10885 {
10886         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10887
10888         free_percpu(jc->info);
10889         kfree(jc);
10890 }
10891
10892 static int __perf_cgroup_move(void *info)
10893 {
10894         struct task_struct *task = info;
10895         rcu_read_lock();
10896         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10897         rcu_read_unlock();
10898         return 0;
10899 }
10900
10901 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10902 {
10903         struct task_struct *task;
10904         struct cgroup_subsys_state *css;
10905
10906         cgroup_taskset_for_each(task, css, tset)
10907                 task_function_call(task, __perf_cgroup_move, task);
10908 }
10909
10910 struct cgroup_subsys perf_event_cgrp_subsys = {
10911         .css_alloc      = perf_cgroup_css_alloc,
10912         .css_free       = perf_cgroup_css_free,
10913         .attach         = perf_cgroup_attach,
10914 };
10915 #endif /* CONFIG_CGROUP_PERF */