]> asedeno.scripts.mit.edu Git - linux.git/blob - kernel/events/core.c
perf/core: Fix scheduling regression of pinned groups
[linux.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *          -ESRCH  - when the process isn't running
101  *          -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         do {
115                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116                 if (!ret)
117                         ret = data.ret;
118         } while (ret == -EAGAIN);
119
120         return ret;
121 }
122
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:       the function to be called
126  * @info:       the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134         struct remote_function_call data = {
135                 .p      = NULL,
136                 .func   = func,
137                 .info   = info,
138                 .ret    = -ENXIO, /* No such CPU */
139         };
140
141         smp_call_function_single(cpu, remote_function, &data, 1);
142
143         return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153                           struct perf_event_context *ctx)
154 {
155         raw_spin_lock(&cpuctx->ctx.lock);
156         if (ctx)
157                 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161                             struct perf_event_context *ctx)
162 {
163         if (ctx)
164                 raw_spin_unlock(&ctx->lock);
165         raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195                         struct perf_event_context *, void *);
196
197 struct event_function_struct {
198         struct perf_event *event;
199         event_f func;
200         void *data;
201 };
202
203 static int event_function(void *info)
204 {
205         struct event_function_struct *efs = info;
206         struct perf_event *event = efs->event;
207         struct perf_event_context *ctx = event->ctx;
208         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209         struct perf_event_context *task_ctx = cpuctx->task_ctx;
210         int ret = 0;
211
212         WARN_ON_ONCE(!irqs_disabled());
213
214         perf_ctx_lock(cpuctx, task_ctx);
215         /*
216          * Since we do the IPI call without holding ctx->lock things can have
217          * changed, double check we hit the task we set out to hit.
218          */
219         if (ctx->task) {
220                 if (ctx->task != current) {
221                         ret = -ESRCH;
222                         goto unlock;
223                 }
224
225                 /*
226                  * We only use event_function_call() on established contexts,
227                  * and event_function() is only ever called when active (or
228                  * rather, we'll have bailed in task_function_call() or the
229                  * above ctx->task != current test), therefore we must have
230                  * ctx->is_active here.
231                  */
232                 WARN_ON_ONCE(!ctx->is_active);
233                 /*
234                  * And since we have ctx->is_active, cpuctx->task_ctx must
235                  * match.
236                  */
237                 WARN_ON_ONCE(task_ctx != ctx);
238         } else {
239                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240         }
241
242         efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244         perf_ctx_unlock(cpuctx, task_ctx);
245
246         return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251         struct perf_event_context *ctx = event->ctx;
252         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253         struct event_function_struct efs = {
254                 .event = event,
255                 .func = func,
256                 .data = data,
257         };
258
259         if (!event->parent) {
260                 /*
261                  * If this is a !child event, we must hold ctx::mutex to
262                  * stabilize the the event->ctx relation. See
263                  * perf_event_ctx_lock().
264                  */
265                 lockdep_assert_held(&ctx->mutex);
266         }
267
268         if (!task) {
269                 cpu_function_call(event->cpu, event_function, &efs);
270                 return;
271         }
272
273         if (task == TASK_TOMBSTONE)
274                 return;
275
276 again:
277         if (!task_function_call(task, event_function, &efs))
278                 return;
279
280         raw_spin_lock_irq(&ctx->lock);
281         /*
282          * Reload the task pointer, it might have been changed by
283          * a concurrent perf_event_context_sched_out().
284          */
285         task = ctx->task;
286         if (task == TASK_TOMBSTONE) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 return;
289         }
290         if (ctx->is_active) {
291                 raw_spin_unlock_irq(&ctx->lock);
292                 goto again;
293         }
294         func(event, NULL, ctx, data);
295         raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304         struct perf_event_context *ctx = event->ctx;
305         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306         struct task_struct *task = READ_ONCE(ctx->task);
307         struct perf_event_context *task_ctx = NULL;
308
309         WARN_ON_ONCE(!irqs_disabled());
310
311         if (task) {
312                 if (task == TASK_TOMBSTONE)
313                         return;
314
315                 task_ctx = ctx;
316         }
317
318         perf_ctx_lock(cpuctx, task_ctx);
319
320         task = ctx->task;
321         if (task == TASK_TOMBSTONE)
322                 goto unlock;
323
324         if (task) {
325                 /*
326                  * We must be either inactive or active and the right task,
327                  * otherwise we're screwed, since we cannot IPI to somewhere
328                  * else.
329                  */
330                 if (ctx->is_active) {
331                         if (WARN_ON_ONCE(task != current))
332                                 goto unlock;
333
334                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335                                 goto unlock;
336                 }
337         } else {
338                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339         }
340
341         func(event, cpuctx, ctx, data);
342 unlock:
343         perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347                        PERF_FLAG_FD_OUTPUT  |\
348                        PERF_FLAG_PID_CGROUP |\
349                        PERF_FLAG_FD_CLOEXEC)
350
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355         (PERF_SAMPLE_BRANCH_KERNEL |\
356          PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359         EVENT_FLEXIBLE = 0x1,
360         EVENT_PINNED = 0x2,
361         EVENT_TIME = 0x4,
362         /* see ctx_resched() for details */
363         EVENT_CPU = 0x8,
364         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE         100000
410 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
412
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
417
418 static int perf_sample_allowed_ns __read_mostly =
419         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420
421 static void update_perf_cpu_limits(void)
422 {
423         u64 tmp = perf_sample_period_ns;
424
425         tmp *= sysctl_perf_cpu_time_max_percent;
426         tmp = div_u64(tmp, 100);
427         if (!tmp)
428                 tmp = 1;
429
430         WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436                 void __user *buffer, size_t *lenp,
437                 loff_t *ppos)
438 {
439         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440
441         if (ret || !write)
442                 return ret;
443
444         /*
445          * If throttling is disabled don't allow the write:
446          */
447         if (sysctl_perf_cpu_time_max_percent == 100 ||
448             sysctl_perf_cpu_time_max_percent == 0)
449                 return -EINVAL;
450
451         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453         update_perf_cpu_limits();
454
455         return 0;
456 }
457
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461                                 void __user *buffer, size_t *lenp,
462                                 loff_t *ppos)
463 {
464         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465
466         if (ret || !write)
467                 return ret;
468
469         if (sysctl_perf_cpu_time_max_percent == 100 ||
470             sysctl_perf_cpu_time_max_percent == 0) {
471                 printk(KERN_WARNING
472                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473                 WRITE_ONCE(perf_sample_allowed_ns, 0);
474         } else {
475                 update_perf_cpu_limits();
476         }
477
478         return 0;
479 }
480
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489
490 static u64 __report_avg;
491 static u64 __report_allowed;
492
493 static void perf_duration_warn(struct irq_work *w)
494 {
495         printk_ratelimited(KERN_INFO
496                 "perf: interrupt took too long (%lld > %lld), lowering "
497                 "kernel.perf_event_max_sample_rate to %d\n",
498                 __report_avg, __report_allowed,
499                 sysctl_perf_event_sample_rate);
500 }
501
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507         u64 running_len;
508         u64 avg_len;
509         u32 max;
510
511         if (max_len == 0)
512                 return;
513
514         /* Decay the counter by 1 average sample. */
515         running_len = __this_cpu_read(running_sample_length);
516         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517         running_len += sample_len_ns;
518         __this_cpu_write(running_sample_length, running_len);
519
520         /*
521          * Note: this will be biased artifically low until we have
522          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523          * from having to maintain a count.
524          */
525         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526         if (avg_len <= max_len)
527                 return;
528
529         __report_avg = avg_len;
530         __report_allowed = max_len;
531
532         /*
533          * Compute a throttle threshold 25% below the current duration.
534          */
535         avg_len += avg_len / 4;
536         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537         if (avg_len < max)
538                 max /= (u32)avg_len;
539         else
540                 max = 1;
541
542         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543         WRITE_ONCE(max_samples_per_tick, max);
544
545         sysctl_perf_event_sample_rate = max * HZ;
546         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547
548         if (!irq_work_queue(&perf_duration_work)) {
549                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550                              "kernel.perf_event_max_sample_rate to %d\n",
551                              __report_avg, __report_allowed,
552                              sysctl_perf_event_sample_rate);
553         }
554 }
555
556 static atomic64_t perf_event_id;
557
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559                               enum event_type_t event_type);
560
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562                              enum event_type_t event_type,
563                              struct task_struct *task);
564
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567
568 void __weak perf_event_print_debug(void)        { }
569
570 extern __weak const char *perf_pmu_name(void)
571 {
572         return "pmu";
573 }
574
575 static inline u64 perf_clock(void)
576 {
577         return local_clock();
578 }
579
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582         return event->clock();
583 }
584
585 #ifdef CONFIG_CGROUP_PERF
586
587 static inline bool
588 perf_cgroup_match(struct perf_event *event)
589 {
590         struct perf_event_context *ctx = event->ctx;
591         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
592
593         /* @event doesn't care about cgroup */
594         if (!event->cgrp)
595                 return true;
596
597         /* wants specific cgroup scope but @cpuctx isn't associated with any */
598         if (!cpuctx->cgrp)
599                 return false;
600
601         /*
602          * Cgroup scoping is recursive.  An event enabled for a cgroup is
603          * also enabled for all its descendant cgroups.  If @cpuctx's
604          * cgroup is a descendant of @event's (the test covers identity
605          * case), it's a match.
606          */
607         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
608                                     event->cgrp->css.cgroup);
609 }
610
611 static inline void perf_detach_cgroup(struct perf_event *event)
612 {
613         css_put(&event->cgrp->css);
614         event->cgrp = NULL;
615 }
616
617 static inline int is_cgroup_event(struct perf_event *event)
618 {
619         return event->cgrp != NULL;
620 }
621
622 static inline u64 perf_cgroup_event_time(struct perf_event *event)
623 {
624         struct perf_cgroup_info *t;
625
626         t = per_cpu_ptr(event->cgrp->info, event->cpu);
627         return t->time;
628 }
629
630 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
631 {
632         struct perf_cgroup_info *info;
633         u64 now;
634
635         now = perf_clock();
636
637         info = this_cpu_ptr(cgrp->info);
638
639         info->time += now - info->timestamp;
640         info->timestamp = now;
641 }
642
643 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
644 {
645         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
646         if (cgrp_out)
647                 __update_cgrp_time(cgrp_out);
648 }
649
650 static inline void update_cgrp_time_from_event(struct perf_event *event)
651 {
652         struct perf_cgroup *cgrp;
653
654         /*
655          * ensure we access cgroup data only when needed and
656          * when we know the cgroup is pinned (css_get)
657          */
658         if (!is_cgroup_event(event))
659                 return;
660
661         cgrp = perf_cgroup_from_task(current, event->ctx);
662         /*
663          * Do not update time when cgroup is not active
664          */
665         if (cgrp == event->cgrp)
666                 __update_cgrp_time(event->cgrp);
667 }
668
669 static inline void
670 perf_cgroup_set_timestamp(struct task_struct *task,
671                           struct perf_event_context *ctx)
672 {
673         struct perf_cgroup *cgrp;
674         struct perf_cgroup_info *info;
675
676         /*
677          * ctx->lock held by caller
678          * ensure we do not access cgroup data
679          * unless we have the cgroup pinned (css_get)
680          */
681         if (!task || !ctx->nr_cgroups)
682                 return;
683
684         cgrp = perf_cgroup_from_task(task, ctx);
685         info = this_cpu_ptr(cgrp->info);
686         info->timestamp = ctx->timestamp;
687 }
688
689 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
690
691 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
692 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
693
694 /*
695  * reschedule events based on the cgroup constraint of task.
696  *
697  * mode SWOUT : schedule out everything
698  * mode SWIN : schedule in based on cgroup for next
699  */
700 static void perf_cgroup_switch(struct task_struct *task, int mode)
701 {
702         struct perf_cpu_context *cpuctx;
703         struct list_head *list;
704         unsigned long flags;
705
706         /*
707          * Disable interrupts and preemption to avoid this CPU's
708          * cgrp_cpuctx_entry to change under us.
709          */
710         local_irq_save(flags);
711
712         list = this_cpu_ptr(&cgrp_cpuctx_list);
713         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
714                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
715
716                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
717                 perf_pmu_disable(cpuctx->ctx.pmu);
718
719                 if (mode & PERF_CGROUP_SWOUT) {
720                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
721                         /*
722                          * must not be done before ctxswout due
723                          * to event_filter_match() in event_sched_out()
724                          */
725                         cpuctx->cgrp = NULL;
726                 }
727
728                 if (mode & PERF_CGROUP_SWIN) {
729                         WARN_ON_ONCE(cpuctx->cgrp);
730                         /*
731                          * set cgrp before ctxsw in to allow
732                          * event_filter_match() to not have to pass
733                          * task around
734                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
735                          * because cgorup events are only per-cpu
736                          */
737                         cpuctx->cgrp = perf_cgroup_from_task(task,
738                                                              &cpuctx->ctx);
739                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
740                 }
741                 perf_pmu_enable(cpuctx->ctx.pmu);
742                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
743         }
744
745         local_irq_restore(flags);
746 }
747
748 static inline void perf_cgroup_sched_out(struct task_struct *task,
749                                          struct task_struct *next)
750 {
751         struct perf_cgroup *cgrp1;
752         struct perf_cgroup *cgrp2 = NULL;
753
754         rcu_read_lock();
755         /*
756          * we come here when we know perf_cgroup_events > 0
757          * we do not need to pass the ctx here because we know
758          * we are holding the rcu lock
759          */
760         cgrp1 = perf_cgroup_from_task(task, NULL);
761         cgrp2 = perf_cgroup_from_task(next, NULL);
762
763         /*
764          * only schedule out current cgroup events if we know
765          * that we are switching to a different cgroup. Otherwise,
766          * do no touch the cgroup events.
767          */
768         if (cgrp1 != cgrp2)
769                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
770
771         rcu_read_unlock();
772 }
773
774 static inline void perf_cgroup_sched_in(struct task_struct *prev,
775                                         struct task_struct *task)
776 {
777         struct perf_cgroup *cgrp1;
778         struct perf_cgroup *cgrp2 = NULL;
779
780         rcu_read_lock();
781         /*
782          * we come here when we know perf_cgroup_events > 0
783          * we do not need to pass the ctx here because we know
784          * we are holding the rcu lock
785          */
786         cgrp1 = perf_cgroup_from_task(task, NULL);
787         cgrp2 = perf_cgroup_from_task(prev, NULL);
788
789         /*
790          * only need to schedule in cgroup events if we are changing
791          * cgroup during ctxsw. Cgroup events were not scheduled
792          * out of ctxsw out if that was not the case.
793          */
794         if (cgrp1 != cgrp2)
795                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
796
797         rcu_read_unlock();
798 }
799
800 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
801                                       struct perf_event_attr *attr,
802                                       struct perf_event *group_leader)
803 {
804         struct perf_cgroup *cgrp;
805         struct cgroup_subsys_state *css;
806         struct fd f = fdget(fd);
807         int ret = 0;
808
809         if (!f.file)
810                 return -EBADF;
811
812         css = css_tryget_online_from_dir(f.file->f_path.dentry,
813                                          &perf_event_cgrp_subsys);
814         if (IS_ERR(css)) {
815                 ret = PTR_ERR(css);
816                 goto out;
817         }
818
819         cgrp = container_of(css, struct perf_cgroup, css);
820         event->cgrp = cgrp;
821
822         /*
823          * all events in a group must monitor
824          * the same cgroup because a task belongs
825          * to only one perf cgroup at a time
826          */
827         if (group_leader && group_leader->cgrp != cgrp) {
828                 perf_detach_cgroup(event);
829                 ret = -EINVAL;
830         }
831 out:
832         fdput(f);
833         return ret;
834 }
835
836 static inline void
837 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
838 {
839         struct perf_cgroup_info *t;
840         t = per_cpu_ptr(event->cgrp->info, event->cpu);
841         event->shadow_ctx_time = now - t->timestamp;
842 }
843
844 static inline void
845 perf_cgroup_defer_enabled(struct perf_event *event)
846 {
847         /*
848          * when the current task's perf cgroup does not match
849          * the event's, we need to remember to call the
850          * perf_mark_enable() function the first time a task with
851          * a matching perf cgroup is scheduled in.
852          */
853         if (is_cgroup_event(event) && !perf_cgroup_match(event))
854                 event->cgrp_defer_enabled = 1;
855 }
856
857 static inline void
858 perf_cgroup_mark_enabled(struct perf_event *event,
859                          struct perf_event_context *ctx)
860 {
861         struct perf_event *sub;
862         u64 tstamp = perf_event_time(event);
863
864         if (!event->cgrp_defer_enabled)
865                 return;
866
867         event->cgrp_defer_enabled = 0;
868
869         event->tstamp_enabled = tstamp - event->total_time_enabled;
870         list_for_each_entry(sub, &event->sibling_list, group_entry) {
871                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
872                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
873                         sub->cgrp_defer_enabled = 0;
874                 }
875         }
876 }
877
878 /*
879  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
880  * cleared when last cgroup event is removed.
881  */
882 static inline void
883 list_update_cgroup_event(struct perf_event *event,
884                          struct perf_event_context *ctx, bool add)
885 {
886         struct perf_cpu_context *cpuctx;
887         struct list_head *cpuctx_entry;
888
889         if (!is_cgroup_event(event))
890                 return;
891
892         if (add && ctx->nr_cgroups++)
893                 return;
894         else if (!add && --ctx->nr_cgroups)
895                 return;
896         /*
897          * Because cgroup events are always per-cpu events,
898          * this will always be called from the right CPU.
899          */
900         cpuctx = __get_cpu_context(ctx);
901         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
902         /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
903         if (add) {
904                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
905                 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
906                         cpuctx->cgrp = event->cgrp;
907         } else {
908                 list_del(cpuctx_entry);
909                 cpuctx->cgrp = NULL;
910         }
911 }
912
913 #else /* !CONFIG_CGROUP_PERF */
914
915 static inline bool
916 perf_cgroup_match(struct perf_event *event)
917 {
918         return true;
919 }
920
921 static inline void perf_detach_cgroup(struct perf_event *event)
922 {}
923
924 static inline int is_cgroup_event(struct perf_event *event)
925 {
926         return 0;
927 }
928
929 static inline void update_cgrp_time_from_event(struct perf_event *event)
930 {
931 }
932
933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934 {
935 }
936
937 static inline void perf_cgroup_sched_out(struct task_struct *task,
938                                          struct task_struct *next)
939 {
940 }
941
942 static inline void perf_cgroup_sched_in(struct task_struct *prev,
943                                         struct task_struct *task)
944 {
945 }
946
947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948                                       struct perf_event_attr *attr,
949                                       struct perf_event *group_leader)
950 {
951         return -EINVAL;
952 }
953
954 static inline void
955 perf_cgroup_set_timestamp(struct task_struct *task,
956                           struct perf_event_context *ctx)
957 {
958 }
959
960 void
961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962 {
963 }
964
965 static inline void
966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967 {
968 }
969
970 static inline u64 perf_cgroup_event_time(struct perf_event *event)
971 {
972         return 0;
973 }
974
975 static inline void
976 perf_cgroup_defer_enabled(struct perf_event *event)
977 {
978 }
979
980 static inline void
981 perf_cgroup_mark_enabled(struct perf_event *event,
982                          struct perf_event_context *ctx)
983 {
984 }
985
986 static inline void
987 list_update_cgroup_event(struct perf_event *event,
988                          struct perf_event_context *ctx, bool add)
989 {
990 }
991
992 #endif
993
994 /*
995  * set default to be dependent on timer tick just
996  * like original code
997  */
998 #define PERF_CPU_HRTIMER (1000 / HZ)
999 /*
1000  * function must be called with interrupts disabled
1001  */
1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003 {
1004         struct perf_cpu_context *cpuctx;
1005         int rotations = 0;
1006
1007         WARN_ON(!irqs_disabled());
1008
1009         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1010         rotations = perf_rotate_context(cpuctx);
1011
1012         raw_spin_lock(&cpuctx->hrtimer_lock);
1013         if (rotations)
1014                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1015         else
1016                 cpuctx->hrtimer_active = 0;
1017         raw_spin_unlock(&cpuctx->hrtimer_lock);
1018
1019         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020 }
1021
1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023 {
1024         struct hrtimer *timer = &cpuctx->hrtimer;
1025         struct pmu *pmu = cpuctx->ctx.pmu;
1026         u64 interval;
1027
1028         /* no multiplexing needed for SW PMU */
1029         if (pmu->task_ctx_nr == perf_sw_context)
1030                 return;
1031
1032         /*
1033          * check default is sane, if not set then force to
1034          * default interval (1/tick)
1035          */
1036         interval = pmu->hrtimer_interval_ms;
1037         if (interval < 1)
1038                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039
1040         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041
1042         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044         timer->function = perf_mux_hrtimer_handler;
1045 }
1046
1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048 {
1049         struct hrtimer *timer = &cpuctx->hrtimer;
1050         struct pmu *pmu = cpuctx->ctx.pmu;
1051         unsigned long flags;
1052
1053         /* not for SW PMU */
1054         if (pmu->task_ctx_nr == perf_sw_context)
1055                 return 0;
1056
1057         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058         if (!cpuctx->hrtimer_active) {
1059                 cpuctx->hrtimer_active = 1;
1060                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062         }
1063         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064
1065         return 0;
1066 }
1067
1068 void perf_pmu_disable(struct pmu *pmu)
1069 {
1070         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071         if (!(*count)++)
1072                 pmu->pmu_disable(pmu);
1073 }
1074
1075 void perf_pmu_enable(struct pmu *pmu)
1076 {
1077         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078         if (!--(*count))
1079                 pmu->pmu_enable(pmu);
1080 }
1081
1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083
1084 /*
1085  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086  * perf_event_task_tick() are fully serialized because they're strictly cpu
1087  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088  * disabled, while perf_event_task_tick is called from IRQ context.
1089  */
1090 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091 {
1092         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093
1094         WARN_ON(!irqs_disabled());
1095
1096         WARN_ON(!list_empty(&ctx->active_ctx_list));
1097
1098         list_add(&ctx->active_ctx_list, head);
1099 }
1100
1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102 {
1103         WARN_ON(!irqs_disabled());
1104
1105         WARN_ON(list_empty(&ctx->active_ctx_list));
1106
1107         list_del_init(&ctx->active_ctx_list);
1108 }
1109
1110 static void get_ctx(struct perf_event_context *ctx)
1111 {
1112         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113 }
1114
1115 static void free_ctx(struct rcu_head *head)
1116 {
1117         struct perf_event_context *ctx;
1118
1119         ctx = container_of(head, struct perf_event_context, rcu_head);
1120         kfree(ctx->task_ctx_data);
1121         kfree(ctx);
1122 }
1123
1124 static void put_ctx(struct perf_event_context *ctx)
1125 {
1126         if (atomic_dec_and_test(&ctx->refcount)) {
1127                 if (ctx->parent_ctx)
1128                         put_ctx(ctx->parent_ctx);
1129                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130                         put_task_struct(ctx->task);
1131                 call_rcu(&ctx->rcu_head, free_ctx);
1132         }
1133 }
1134
1135 /*
1136  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137  * perf_pmu_migrate_context() we need some magic.
1138  *
1139  * Those places that change perf_event::ctx will hold both
1140  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141  *
1142  * Lock ordering is by mutex address. There are two other sites where
1143  * perf_event_context::mutex nests and those are:
1144  *
1145  *  - perf_event_exit_task_context()    [ child , 0 ]
1146  *      perf_event_exit_event()
1147  *        put_event()                   [ parent, 1 ]
1148  *
1149  *  - perf_event_init_context()         [ parent, 0 ]
1150  *      inherit_task_group()
1151  *        inherit_group()
1152  *          inherit_event()
1153  *            perf_event_alloc()
1154  *              perf_init_event()
1155  *                perf_try_init_event() [ child , 1 ]
1156  *
1157  * While it appears there is an obvious deadlock here -- the parent and child
1158  * nesting levels are inverted between the two. This is in fact safe because
1159  * life-time rules separate them. That is an exiting task cannot fork, and a
1160  * spawning task cannot (yet) exit.
1161  *
1162  * But remember that that these are parent<->child context relations, and
1163  * migration does not affect children, therefore these two orderings should not
1164  * interact.
1165  *
1166  * The change in perf_event::ctx does not affect children (as claimed above)
1167  * because the sys_perf_event_open() case will install a new event and break
1168  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169  * concerned with cpuctx and that doesn't have children.
1170  *
1171  * The places that change perf_event::ctx will issue:
1172  *
1173  *   perf_remove_from_context();
1174  *   synchronize_rcu();
1175  *   perf_install_in_context();
1176  *
1177  * to affect the change. The remove_from_context() + synchronize_rcu() should
1178  * quiesce the event, after which we can install it in the new location. This
1179  * means that only external vectors (perf_fops, prctl) can perturb the event
1180  * while in transit. Therefore all such accessors should also acquire
1181  * perf_event_context::mutex to serialize against this.
1182  *
1183  * However; because event->ctx can change while we're waiting to acquire
1184  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185  * function.
1186  *
1187  * Lock order:
1188  *    cred_guard_mutex
1189  *      task_struct::perf_event_mutex
1190  *        perf_event_context::mutex
1191  *          perf_event::child_mutex;
1192  *            perf_event_context::lock
1193  *          perf_event::mmap_mutex
1194  *          mmap_sem
1195  */
1196 static struct perf_event_context *
1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1198 {
1199         struct perf_event_context *ctx;
1200
1201 again:
1202         rcu_read_lock();
1203         ctx = ACCESS_ONCE(event->ctx);
1204         if (!atomic_inc_not_zero(&ctx->refcount)) {
1205                 rcu_read_unlock();
1206                 goto again;
1207         }
1208         rcu_read_unlock();
1209
1210         mutex_lock_nested(&ctx->mutex, nesting);
1211         if (event->ctx != ctx) {
1212                 mutex_unlock(&ctx->mutex);
1213                 put_ctx(ctx);
1214                 goto again;
1215         }
1216
1217         return ctx;
1218 }
1219
1220 static inline struct perf_event_context *
1221 perf_event_ctx_lock(struct perf_event *event)
1222 {
1223         return perf_event_ctx_lock_nested(event, 0);
1224 }
1225
1226 static void perf_event_ctx_unlock(struct perf_event *event,
1227                                   struct perf_event_context *ctx)
1228 {
1229         mutex_unlock(&ctx->mutex);
1230         put_ctx(ctx);
1231 }
1232
1233 /*
1234  * This must be done under the ctx->lock, such as to serialize against
1235  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236  * calling scheduler related locks and ctx->lock nests inside those.
1237  */
1238 static __must_check struct perf_event_context *
1239 unclone_ctx(struct perf_event_context *ctx)
1240 {
1241         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242
1243         lockdep_assert_held(&ctx->lock);
1244
1245         if (parent_ctx)
1246                 ctx->parent_ctx = NULL;
1247         ctx->generation++;
1248
1249         return parent_ctx;
1250 }
1251
1252 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1253 {
1254         /*
1255          * only top level events have the pid namespace they were created in
1256          */
1257         if (event->parent)
1258                 event = event->parent;
1259
1260         return task_tgid_nr_ns(p, event->ns);
1261 }
1262
1263 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1264 {
1265         /*
1266          * only top level events have the pid namespace they were created in
1267          */
1268         if (event->parent)
1269                 event = event->parent;
1270
1271         return task_pid_nr_ns(p, event->ns);
1272 }
1273
1274 /*
1275  * If we inherit events we want to return the parent event id
1276  * to userspace.
1277  */
1278 static u64 primary_event_id(struct perf_event *event)
1279 {
1280         u64 id = event->id;
1281
1282         if (event->parent)
1283                 id = event->parent->id;
1284
1285         return id;
1286 }
1287
1288 /*
1289  * Get the perf_event_context for a task and lock it.
1290  *
1291  * This has to cope with with the fact that until it is locked,
1292  * the context could get moved to another task.
1293  */
1294 static struct perf_event_context *
1295 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1296 {
1297         struct perf_event_context *ctx;
1298
1299 retry:
1300         /*
1301          * One of the few rules of preemptible RCU is that one cannot do
1302          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1303          * part of the read side critical section was irqs-enabled -- see
1304          * rcu_read_unlock_special().
1305          *
1306          * Since ctx->lock nests under rq->lock we must ensure the entire read
1307          * side critical section has interrupts disabled.
1308          */
1309         local_irq_save(*flags);
1310         rcu_read_lock();
1311         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1312         if (ctx) {
1313                 /*
1314                  * If this context is a clone of another, it might
1315                  * get swapped for another underneath us by
1316                  * perf_event_task_sched_out, though the
1317                  * rcu_read_lock() protects us from any context
1318                  * getting freed.  Lock the context and check if it
1319                  * got swapped before we could get the lock, and retry
1320                  * if so.  If we locked the right context, then it
1321                  * can't get swapped on us any more.
1322                  */
1323                 raw_spin_lock(&ctx->lock);
1324                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1325                         raw_spin_unlock(&ctx->lock);
1326                         rcu_read_unlock();
1327                         local_irq_restore(*flags);
1328                         goto retry;
1329                 }
1330
1331                 if (ctx->task == TASK_TOMBSTONE ||
1332                     !atomic_inc_not_zero(&ctx->refcount)) {
1333                         raw_spin_unlock(&ctx->lock);
1334                         ctx = NULL;
1335                 } else {
1336                         WARN_ON_ONCE(ctx->task != task);
1337                 }
1338         }
1339         rcu_read_unlock();
1340         if (!ctx)
1341                 local_irq_restore(*flags);
1342         return ctx;
1343 }
1344
1345 /*
1346  * Get the context for a task and increment its pin_count so it
1347  * can't get swapped to another task.  This also increments its
1348  * reference count so that the context can't get freed.
1349  */
1350 static struct perf_event_context *
1351 perf_pin_task_context(struct task_struct *task, int ctxn)
1352 {
1353         struct perf_event_context *ctx;
1354         unsigned long flags;
1355
1356         ctx = perf_lock_task_context(task, ctxn, &flags);
1357         if (ctx) {
1358                 ++ctx->pin_count;
1359                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1360         }
1361         return ctx;
1362 }
1363
1364 static void perf_unpin_context(struct perf_event_context *ctx)
1365 {
1366         unsigned long flags;
1367
1368         raw_spin_lock_irqsave(&ctx->lock, flags);
1369         --ctx->pin_count;
1370         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1371 }
1372
1373 /*
1374  * Update the record of the current time in a context.
1375  */
1376 static void update_context_time(struct perf_event_context *ctx)
1377 {
1378         u64 now = perf_clock();
1379
1380         ctx->time += now - ctx->timestamp;
1381         ctx->timestamp = now;
1382 }
1383
1384 static u64 perf_event_time(struct perf_event *event)
1385 {
1386         struct perf_event_context *ctx = event->ctx;
1387
1388         if (is_cgroup_event(event))
1389                 return perf_cgroup_event_time(event);
1390
1391         return ctx ? ctx->time : 0;
1392 }
1393
1394 /*
1395  * Update the total_time_enabled and total_time_running fields for a event.
1396  */
1397 static void update_event_times(struct perf_event *event)
1398 {
1399         struct perf_event_context *ctx = event->ctx;
1400         u64 run_end;
1401
1402         lockdep_assert_held(&ctx->lock);
1403
1404         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1405             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1406                 return;
1407
1408         /*
1409          * in cgroup mode, time_enabled represents
1410          * the time the event was enabled AND active
1411          * tasks were in the monitored cgroup. This is
1412          * independent of the activity of the context as
1413          * there may be a mix of cgroup and non-cgroup events.
1414          *
1415          * That is why we treat cgroup events differently
1416          * here.
1417          */
1418         if (is_cgroup_event(event))
1419                 run_end = perf_cgroup_event_time(event);
1420         else if (ctx->is_active)
1421                 run_end = ctx->time;
1422         else
1423                 run_end = event->tstamp_stopped;
1424
1425         event->total_time_enabled = run_end - event->tstamp_enabled;
1426
1427         if (event->state == PERF_EVENT_STATE_INACTIVE)
1428                 run_end = event->tstamp_stopped;
1429         else
1430                 run_end = perf_event_time(event);
1431
1432         event->total_time_running = run_end - event->tstamp_running;
1433
1434 }
1435
1436 /*
1437  * Update total_time_enabled and total_time_running for all events in a group.
1438  */
1439 static void update_group_times(struct perf_event *leader)
1440 {
1441         struct perf_event *event;
1442
1443         update_event_times(leader);
1444         list_for_each_entry(event, &leader->sibling_list, group_entry)
1445                 update_event_times(event);
1446 }
1447
1448 static enum event_type_t get_event_type(struct perf_event *event)
1449 {
1450         struct perf_event_context *ctx = event->ctx;
1451         enum event_type_t event_type;
1452
1453         lockdep_assert_held(&ctx->lock);
1454
1455         /*
1456          * It's 'group type', really, because if our group leader is
1457          * pinned, so are we.
1458          */
1459         if (event->group_leader != event)
1460                 event = event->group_leader;
1461
1462         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1463         if (!ctx->task)
1464                 event_type |= EVENT_CPU;
1465
1466         return event_type;
1467 }
1468
1469 static struct list_head *
1470 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1471 {
1472         if (event->attr.pinned)
1473                 return &ctx->pinned_groups;
1474         else
1475                 return &ctx->flexible_groups;
1476 }
1477
1478 /*
1479  * Add a event from the lists for its context.
1480  * Must be called with ctx->mutex and ctx->lock held.
1481  */
1482 static void
1483 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1484 {
1485         lockdep_assert_held(&ctx->lock);
1486
1487         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1488         event->attach_state |= PERF_ATTACH_CONTEXT;
1489
1490         /*
1491          * If we're a stand alone event or group leader, we go to the context
1492          * list, group events are kept attached to the group so that
1493          * perf_group_detach can, at all times, locate all siblings.
1494          */
1495         if (event->group_leader == event) {
1496                 struct list_head *list;
1497
1498                 event->group_caps = event->event_caps;
1499
1500                 list = ctx_group_list(event, ctx);
1501                 list_add_tail(&event->group_entry, list);
1502         }
1503
1504         list_update_cgroup_event(event, ctx, true);
1505
1506         list_add_rcu(&event->event_entry, &ctx->event_list);
1507         ctx->nr_events++;
1508         if (event->attr.inherit_stat)
1509                 ctx->nr_stat++;
1510
1511         ctx->generation++;
1512 }
1513
1514 /*
1515  * Initialize event state based on the perf_event_attr::disabled.
1516  */
1517 static inline void perf_event__state_init(struct perf_event *event)
1518 {
1519         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1520                                               PERF_EVENT_STATE_INACTIVE;
1521 }
1522
1523 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1524 {
1525         int entry = sizeof(u64); /* value */
1526         int size = 0;
1527         int nr = 1;
1528
1529         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1530                 size += sizeof(u64);
1531
1532         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1533                 size += sizeof(u64);
1534
1535         if (event->attr.read_format & PERF_FORMAT_ID)
1536                 entry += sizeof(u64);
1537
1538         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1539                 nr += nr_siblings;
1540                 size += sizeof(u64);
1541         }
1542
1543         size += entry * nr;
1544         event->read_size = size;
1545 }
1546
1547 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1548 {
1549         struct perf_sample_data *data;
1550         u16 size = 0;
1551
1552         if (sample_type & PERF_SAMPLE_IP)
1553                 size += sizeof(data->ip);
1554
1555         if (sample_type & PERF_SAMPLE_ADDR)
1556                 size += sizeof(data->addr);
1557
1558         if (sample_type & PERF_SAMPLE_PERIOD)
1559                 size += sizeof(data->period);
1560
1561         if (sample_type & PERF_SAMPLE_WEIGHT)
1562                 size += sizeof(data->weight);
1563
1564         if (sample_type & PERF_SAMPLE_READ)
1565                 size += event->read_size;
1566
1567         if (sample_type & PERF_SAMPLE_DATA_SRC)
1568                 size += sizeof(data->data_src.val);
1569
1570         if (sample_type & PERF_SAMPLE_TRANSACTION)
1571                 size += sizeof(data->txn);
1572
1573         event->header_size = size;
1574 }
1575
1576 /*
1577  * Called at perf_event creation and when events are attached/detached from a
1578  * group.
1579  */
1580 static void perf_event__header_size(struct perf_event *event)
1581 {
1582         __perf_event_read_size(event,
1583                                event->group_leader->nr_siblings);
1584         __perf_event_header_size(event, event->attr.sample_type);
1585 }
1586
1587 static void perf_event__id_header_size(struct perf_event *event)
1588 {
1589         struct perf_sample_data *data;
1590         u64 sample_type = event->attr.sample_type;
1591         u16 size = 0;
1592
1593         if (sample_type & PERF_SAMPLE_TID)
1594                 size += sizeof(data->tid_entry);
1595
1596         if (sample_type & PERF_SAMPLE_TIME)
1597                 size += sizeof(data->time);
1598
1599         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1600                 size += sizeof(data->id);
1601
1602         if (sample_type & PERF_SAMPLE_ID)
1603                 size += sizeof(data->id);
1604
1605         if (sample_type & PERF_SAMPLE_STREAM_ID)
1606                 size += sizeof(data->stream_id);
1607
1608         if (sample_type & PERF_SAMPLE_CPU)
1609                 size += sizeof(data->cpu_entry);
1610
1611         event->id_header_size = size;
1612 }
1613
1614 static bool perf_event_validate_size(struct perf_event *event)
1615 {
1616         /*
1617          * The values computed here will be over-written when we actually
1618          * attach the event.
1619          */
1620         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1621         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1622         perf_event__id_header_size(event);
1623
1624         /*
1625          * Sum the lot; should not exceed the 64k limit we have on records.
1626          * Conservative limit to allow for callchains and other variable fields.
1627          */
1628         if (event->read_size + event->header_size +
1629             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1630                 return false;
1631
1632         return true;
1633 }
1634
1635 static void perf_group_attach(struct perf_event *event)
1636 {
1637         struct perf_event *group_leader = event->group_leader, *pos;
1638
1639         lockdep_assert_held(&event->ctx->lock);
1640
1641         /*
1642          * We can have double attach due to group movement in perf_event_open.
1643          */
1644         if (event->attach_state & PERF_ATTACH_GROUP)
1645                 return;
1646
1647         event->attach_state |= PERF_ATTACH_GROUP;
1648
1649         if (group_leader == event)
1650                 return;
1651
1652         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1653
1654         group_leader->group_caps &= event->event_caps;
1655
1656         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1657         group_leader->nr_siblings++;
1658
1659         perf_event__header_size(group_leader);
1660
1661         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1662                 perf_event__header_size(pos);
1663 }
1664
1665 /*
1666  * Remove a event from the lists for its context.
1667  * Must be called with ctx->mutex and ctx->lock held.
1668  */
1669 static void
1670 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1671 {
1672         WARN_ON_ONCE(event->ctx != ctx);
1673         lockdep_assert_held(&ctx->lock);
1674
1675         /*
1676          * We can have double detach due to exit/hot-unplug + close.
1677          */
1678         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1679                 return;
1680
1681         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1682
1683         list_update_cgroup_event(event, ctx, false);
1684
1685         ctx->nr_events--;
1686         if (event->attr.inherit_stat)
1687                 ctx->nr_stat--;
1688
1689         list_del_rcu(&event->event_entry);
1690
1691         if (event->group_leader == event)
1692                 list_del_init(&event->group_entry);
1693
1694         update_group_times(event);
1695
1696         /*
1697          * If event was in error state, then keep it
1698          * that way, otherwise bogus counts will be
1699          * returned on read(). The only way to get out
1700          * of error state is by explicit re-enabling
1701          * of the event
1702          */
1703         if (event->state > PERF_EVENT_STATE_OFF)
1704                 event->state = PERF_EVENT_STATE_OFF;
1705
1706         ctx->generation++;
1707 }
1708
1709 static void perf_group_detach(struct perf_event *event)
1710 {
1711         struct perf_event *sibling, *tmp;
1712         struct list_head *list = NULL;
1713
1714         lockdep_assert_held(&event->ctx->lock);
1715
1716         /*
1717          * We can have double detach due to exit/hot-unplug + close.
1718          */
1719         if (!(event->attach_state & PERF_ATTACH_GROUP))
1720                 return;
1721
1722         event->attach_state &= ~PERF_ATTACH_GROUP;
1723
1724         /*
1725          * If this is a sibling, remove it from its group.
1726          */
1727         if (event->group_leader != event) {
1728                 list_del_init(&event->group_entry);
1729                 event->group_leader->nr_siblings--;
1730                 goto out;
1731         }
1732
1733         if (!list_empty(&event->group_entry))
1734                 list = &event->group_entry;
1735
1736         /*
1737          * If this was a group event with sibling events then
1738          * upgrade the siblings to singleton events by adding them
1739          * to whatever list we are on.
1740          */
1741         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1742                 if (list)
1743                         list_move_tail(&sibling->group_entry, list);
1744                 sibling->group_leader = sibling;
1745
1746                 /* Inherit group flags from the previous leader */
1747                 sibling->group_caps = event->group_caps;
1748
1749                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1750         }
1751
1752 out:
1753         perf_event__header_size(event->group_leader);
1754
1755         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1756                 perf_event__header_size(tmp);
1757 }
1758
1759 static bool is_orphaned_event(struct perf_event *event)
1760 {
1761         return event->state == PERF_EVENT_STATE_DEAD;
1762 }
1763
1764 static inline int __pmu_filter_match(struct perf_event *event)
1765 {
1766         struct pmu *pmu = event->pmu;
1767         return pmu->filter_match ? pmu->filter_match(event) : 1;
1768 }
1769
1770 /*
1771  * Check whether we should attempt to schedule an event group based on
1772  * PMU-specific filtering. An event group can consist of HW and SW events,
1773  * potentially with a SW leader, so we must check all the filters, to
1774  * determine whether a group is schedulable:
1775  */
1776 static inline int pmu_filter_match(struct perf_event *event)
1777 {
1778         struct perf_event *child;
1779
1780         if (!__pmu_filter_match(event))
1781                 return 0;
1782
1783         list_for_each_entry(child, &event->sibling_list, group_entry) {
1784                 if (!__pmu_filter_match(child))
1785                         return 0;
1786         }
1787
1788         return 1;
1789 }
1790
1791 static inline int
1792 event_filter_match(struct perf_event *event)
1793 {
1794         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1795                perf_cgroup_match(event) && pmu_filter_match(event);
1796 }
1797
1798 static void
1799 event_sched_out(struct perf_event *event,
1800                   struct perf_cpu_context *cpuctx,
1801                   struct perf_event_context *ctx)
1802 {
1803         u64 tstamp = perf_event_time(event);
1804         u64 delta;
1805
1806         WARN_ON_ONCE(event->ctx != ctx);
1807         lockdep_assert_held(&ctx->lock);
1808
1809         /*
1810          * An event which could not be activated because of
1811          * filter mismatch still needs to have its timings
1812          * maintained, otherwise bogus information is return
1813          * via read() for time_enabled, time_running:
1814          */
1815         if (event->state == PERF_EVENT_STATE_INACTIVE &&
1816             !event_filter_match(event)) {
1817                 delta = tstamp - event->tstamp_stopped;
1818                 event->tstamp_running += delta;
1819                 event->tstamp_stopped = tstamp;
1820         }
1821
1822         if (event->state != PERF_EVENT_STATE_ACTIVE)
1823                 return;
1824
1825         perf_pmu_disable(event->pmu);
1826
1827         event->tstamp_stopped = tstamp;
1828         event->pmu->del(event, 0);
1829         event->oncpu = -1;
1830         event->state = PERF_EVENT_STATE_INACTIVE;
1831         if (event->pending_disable) {
1832                 event->pending_disable = 0;
1833                 event->state = PERF_EVENT_STATE_OFF;
1834         }
1835
1836         if (!is_software_event(event))
1837                 cpuctx->active_oncpu--;
1838         if (!--ctx->nr_active)
1839                 perf_event_ctx_deactivate(ctx);
1840         if (event->attr.freq && event->attr.sample_freq)
1841                 ctx->nr_freq--;
1842         if (event->attr.exclusive || !cpuctx->active_oncpu)
1843                 cpuctx->exclusive = 0;
1844
1845         perf_pmu_enable(event->pmu);
1846 }
1847
1848 static void
1849 group_sched_out(struct perf_event *group_event,
1850                 struct perf_cpu_context *cpuctx,
1851                 struct perf_event_context *ctx)
1852 {
1853         struct perf_event *event;
1854         int state = group_event->state;
1855
1856         perf_pmu_disable(ctx->pmu);
1857
1858         event_sched_out(group_event, cpuctx, ctx);
1859
1860         /*
1861          * Schedule out siblings (if any):
1862          */
1863         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1864                 event_sched_out(event, cpuctx, ctx);
1865
1866         perf_pmu_enable(ctx->pmu);
1867
1868         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1869                 cpuctx->exclusive = 0;
1870 }
1871
1872 #define DETACH_GROUP    0x01UL
1873
1874 /*
1875  * Cross CPU call to remove a performance event
1876  *
1877  * We disable the event on the hardware level first. After that we
1878  * remove it from the context list.
1879  */
1880 static void
1881 __perf_remove_from_context(struct perf_event *event,
1882                            struct perf_cpu_context *cpuctx,
1883                            struct perf_event_context *ctx,
1884                            void *info)
1885 {
1886         unsigned long flags = (unsigned long)info;
1887
1888         event_sched_out(event, cpuctx, ctx);
1889         if (flags & DETACH_GROUP)
1890                 perf_group_detach(event);
1891         list_del_event(event, ctx);
1892
1893         if (!ctx->nr_events && ctx->is_active) {
1894                 ctx->is_active = 0;
1895                 if (ctx->task) {
1896                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1897                         cpuctx->task_ctx = NULL;
1898                 }
1899         }
1900 }
1901
1902 /*
1903  * Remove the event from a task's (or a CPU's) list of events.
1904  *
1905  * If event->ctx is a cloned context, callers must make sure that
1906  * every task struct that event->ctx->task could possibly point to
1907  * remains valid.  This is OK when called from perf_release since
1908  * that only calls us on the top-level context, which can't be a clone.
1909  * When called from perf_event_exit_task, it's OK because the
1910  * context has been detached from its task.
1911  */
1912 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1913 {
1914         struct perf_event_context *ctx = event->ctx;
1915
1916         lockdep_assert_held(&ctx->mutex);
1917
1918         event_function_call(event, __perf_remove_from_context, (void *)flags);
1919
1920         /*
1921          * The above event_function_call() can NO-OP when it hits
1922          * TASK_TOMBSTONE. In that case we must already have been detached
1923          * from the context (by perf_event_exit_event()) but the grouping
1924          * might still be in-tact.
1925          */
1926         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1927         if ((flags & DETACH_GROUP) &&
1928             (event->attach_state & PERF_ATTACH_GROUP)) {
1929                 /*
1930                  * Since in that case we cannot possibly be scheduled, simply
1931                  * detach now.
1932                  */
1933                 raw_spin_lock_irq(&ctx->lock);
1934                 perf_group_detach(event);
1935                 raw_spin_unlock_irq(&ctx->lock);
1936         }
1937 }
1938
1939 /*
1940  * Cross CPU call to disable a performance event
1941  */
1942 static void __perf_event_disable(struct perf_event *event,
1943                                  struct perf_cpu_context *cpuctx,
1944                                  struct perf_event_context *ctx,
1945                                  void *info)
1946 {
1947         if (event->state < PERF_EVENT_STATE_INACTIVE)
1948                 return;
1949
1950         update_context_time(ctx);
1951         update_cgrp_time_from_event(event);
1952         update_group_times(event);
1953         if (event == event->group_leader)
1954                 group_sched_out(event, cpuctx, ctx);
1955         else
1956                 event_sched_out(event, cpuctx, ctx);
1957         event->state = PERF_EVENT_STATE_OFF;
1958 }
1959
1960 /*
1961  * Disable a event.
1962  *
1963  * If event->ctx is a cloned context, callers must make sure that
1964  * every task struct that event->ctx->task could possibly point to
1965  * remains valid.  This condition is satisifed when called through
1966  * perf_event_for_each_child or perf_event_for_each because they
1967  * hold the top-level event's child_mutex, so any descendant that
1968  * goes to exit will block in perf_event_exit_event().
1969  *
1970  * When called from perf_pending_event it's OK because event->ctx
1971  * is the current context on this CPU and preemption is disabled,
1972  * hence we can't get into perf_event_task_sched_out for this context.
1973  */
1974 static void _perf_event_disable(struct perf_event *event)
1975 {
1976         struct perf_event_context *ctx = event->ctx;
1977
1978         raw_spin_lock_irq(&ctx->lock);
1979         if (event->state <= PERF_EVENT_STATE_OFF) {
1980                 raw_spin_unlock_irq(&ctx->lock);
1981                 return;
1982         }
1983         raw_spin_unlock_irq(&ctx->lock);
1984
1985         event_function_call(event, __perf_event_disable, NULL);
1986 }
1987
1988 void perf_event_disable_local(struct perf_event *event)
1989 {
1990         event_function_local(event, __perf_event_disable, NULL);
1991 }
1992
1993 /*
1994  * Strictly speaking kernel users cannot create groups and therefore this
1995  * interface does not need the perf_event_ctx_lock() magic.
1996  */
1997 void perf_event_disable(struct perf_event *event)
1998 {
1999         struct perf_event_context *ctx;
2000
2001         ctx = perf_event_ctx_lock(event);
2002         _perf_event_disable(event);
2003         perf_event_ctx_unlock(event, ctx);
2004 }
2005 EXPORT_SYMBOL_GPL(perf_event_disable);
2006
2007 void perf_event_disable_inatomic(struct perf_event *event)
2008 {
2009         event->pending_disable = 1;
2010         irq_work_queue(&event->pending);
2011 }
2012
2013 static void perf_set_shadow_time(struct perf_event *event,
2014                                  struct perf_event_context *ctx,
2015                                  u64 tstamp)
2016 {
2017         /*
2018          * use the correct time source for the time snapshot
2019          *
2020          * We could get by without this by leveraging the
2021          * fact that to get to this function, the caller
2022          * has most likely already called update_context_time()
2023          * and update_cgrp_time_xx() and thus both timestamp
2024          * are identical (or very close). Given that tstamp is,
2025          * already adjusted for cgroup, we could say that:
2026          *    tstamp - ctx->timestamp
2027          * is equivalent to
2028          *    tstamp - cgrp->timestamp.
2029          *
2030          * Then, in perf_output_read(), the calculation would
2031          * work with no changes because:
2032          * - event is guaranteed scheduled in
2033          * - no scheduled out in between
2034          * - thus the timestamp would be the same
2035          *
2036          * But this is a bit hairy.
2037          *
2038          * So instead, we have an explicit cgroup call to remain
2039          * within the time time source all along. We believe it
2040          * is cleaner and simpler to understand.
2041          */
2042         if (is_cgroup_event(event))
2043                 perf_cgroup_set_shadow_time(event, tstamp);
2044         else
2045                 event->shadow_ctx_time = tstamp - ctx->timestamp;
2046 }
2047
2048 #define MAX_INTERRUPTS (~0ULL)
2049
2050 static void perf_log_throttle(struct perf_event *event, int enable);
2051 static void perf_log_itrace_start(struct perf_event *event);
2052
2053 static int
2054 event_sched_in(struct perf_event *event,
2055                  struct perf_cpu_context *cpuctx,
2056                  struct perf_event_context *ctx)
2057 {
2058         u64 tstamp = perf_event_time(event);
2059         int ret = 0;
2060
2061         lockdep_assert_held(&ctx->lock);
2062
2063         if (event->state <= PERF_EVENT_STATE_OFF)
2064                 return 0;
2065
2066         WRITE_ONCE(event->oncpu, smp_processor_id());
2067         /*
2068          * Order event::oncpu write to happen before the ACTIVE state
2069          * is visible.
2070          */
2071         smp_wmb();
2072         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2073
2074         /*
2075          * Unthrottle events, since we scheduled we might have missed several
2076          * ticks already, also for a heavily scheduling task there is little
2077          * guarantee it'll get a tick in a timely manner.
2078          */
2079         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2080                 perf_log_throttle(event, 1);
2081                 event->hw.interrupts = 0;
2082         }
2083
2084         /*
2085          * The new state must be visible before we turn it on in the hardware:
2086          */
2087         smp_wmb();
2088
2089         perf_pmu_disable(event->pmu);
2090
2091         perf_set_shadow_time(event, ctx, tstamp);
2092
2093         perf_log_itrace_start(event);
2094
2095         if (event->pmu->add(event, PERF_EF_START)) {
2096                 event->state = PERF_EVENT_STATE_INACTIVE;
2097                 event->oncpu = -1;
2098                 ret = -EAGAIN;
2099                 goto out;
2100         }
2101
2102         event->tstamp_running += tstamp - event->tstamp_stopped;
2103
2104         if (!is_software_event(event))
2105                 cpuctx->active_oncpu++;
2106         if (!ctx->nr_active++)
2107                 perf_event_ctx_activate(ctx);
2108         if (event->attr.freq && event->attr.sample_freq)
2109                 ctx->nr_freq++;
2110
2111         if (event->attr.exclusive)
2112                 cpuctx->exclusive = 1;
2113
2114 out:
2115         perf_pmu_enable(event->pmu);
2116
2117         return ret;
2118 }
2119
2120 static int
2121 group_sched_in(struct perf_event *group_event,
2122                struct perf_cpu_context *cpuctx,
2123                struct perf_event_context *ctx)
2124 {
2125         struct perf_event *event, *partial_group = NULL;
2126         struct pmu *pmu = ctx->pmu;
2127         u64 now = ctx->time;
2128         bool simulate = false;
2129
2130         if (group_event->state == PERF_EVENT_STATE_OFF)
2131                 return 0;
2132
2133         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2134
2135         if (event_sched_in(group_event, cpuctx, ctx)) {
2136                 pmu->cancel_txn(pmu);
2137                 perf_mux_hrtimer_restart(cpuctx);
2138                 return -EAGAIN;
2139         }
2140
2141         /*
2142          * Schedule in siblings as one group (if any):
2143          */
2144         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2145                 if (event_sched_in(event, cpuctx, ctx)) {
2146                         partial_group = event;
2147                         goto group_error;
2148                 }
2149         }
2150
2151         if (!pmu->commit_txn(pmu))
2152                 return 0;
2153
2154 group_error:
2155         /*
2156          * Groups can be scheduled in as one unit only, so undo any
2157          * partial group before returning:
2158          * The events up to the failed event are scheduled out normally,
2159          * tstamp_stopped will be updated.
2160          *
2161          * The failed events and the remaining siblings need to have
2162          * their timings updated as if they had gone thru event_sched_in()
2163          * and event_sched_out(). This is required to get consistent timings
2164          * across the group. This also takes care of the case where the group
2165          * could never be scheduled by ensuring tstamp_stopped is set to mark
2166          * the time the event was actually stopped, such that time delta
2167          * calculation in update_event_times() is correct.
2168          */
2169         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2170                 if (event == partial_group)
2171                         simulate = true;
2172
2173                 if (simulate) {
2174                         event->tstamp_running += now - event->tstamp_stopped;
2175                         event->tstamp_stopped = now;
2176                 } else {
2177                         event_sched_out(event, cpuctx, ctx);
2178                 }
2179         }
2180         event_sched_out(group_event, cpuctx, ctx);
2181
2182         pmu->cancel_txn(pmu);
2183
2184         perf_mux_hrtimer_restart(cpuctx);
2185
2186         return -EAGAIN;
2187 }
2188
2189 /*
2190  * Work out whether we can put this event group on the CPU now.
2191  */
2192 static int group_can_go_on(struct perf_event *event,
2193                            struct perf_cpu_context *cpuctx,
2194                            int can_add_hw)
2195 {
2196         /*
2197          * Groups consisting entirely of software events can always go on.
2198          */
2199         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2200                 return 1;
2201         /*
2202          * If an exclusive group is already on, no other hardware
2203          * events can go on.
2204          */
2205         if (cpuctx->exclusive)
2206                 return 0;
2207         /*
2208          * If this group is exclusive and there are already
2209          * events on the CPU, it can't go on.
2210          */
2211         if (event->attr.exclusive && cpuctx->active_oncpu)
2212                 return 0;
2213         /*
2214          * Otherwise, try to add it if all previous groups were able
2215          * to go on.
2216          */
2217         return can_add_hw;
2218 }
2219
2220 static void add_event_to_ctx(struct perf_event *event,
2221                                struct perf_event_context *ctx)
2222 {
2223         u64 tstamp = perf_event_time(event);
2224
2225         list_add_event(event, ctx);
2226         perf_group_attach(event);
2227         event->tstamp_enabled = tstamp;
2228         event->tstamp_running = tstamp;
2229         event->tstamp_stopped = tstamp;
2230 }
2231
2232 static void ctx_sched_out(struct perf_event_context *ctx,
2233                           struct perf_cpu_context *cpuctx,
2234                           enum event_type_t event_type);
2235 static void
2236 ctx_sched_in(struct perf_event_context *ctx,
2237              struct perf_cpu_context *cpuctx,
2238              enum event_type_t event_type,
2239              struct task_struct *task);
2240
2241 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2242                                struct perf_event_context *ctx,
2243                                enum event_type_t event_type)
2244 {
2245         if (!cpuctx->task_ctx)
2246                 return;
2247
2248         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2249                 return;
2250
2251         ctx_sched_out(ctx, cpuctx, event_type);
2252 }
2253
2254 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2255                                 struct perf_event_context *ctx,
2256                                 struct task_struct *task)
2257 {
2258         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2259         if (ctx)
2260                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2261         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2262         if (ctx)
2263                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2264 }
2265
2266 /*
2267  * We want to maintain the following priority of scheduling:
2268  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2269  *  - task pinned (EVENT_PINNED)
2270  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2271  *  - task flexible (EVENT_FLEXIBLE).
2272  *
2273  * In order to avoid unscheduling and scheduling back in everything every
2274  * time an event is added, only do it for the groups of equal priority and
2275  * below.
2276  *
2277  * This can be called after a batch operation on task events, in which case
2278  * event_type is a bit mask of the types of events involved. For CPU events,
2279  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2280  */
2281 static void ctx_resched(struct perf_cpu_context *cpuctx,
2282                         struct perf_event_context *task_ctx,
2283                         enum event_type_t event_type)
2284 {
2285         enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2286         bool cpu_event = !!(event_type & EVENT_CPU);
2287
2288         /*
2289          * If pinned groups are involved, flexible groups also need to be
2290          * scheduled out.
2291          */
2292         if (event_type & EVENT_PINNED)
2293                 event_type |= EVENT_FLEXIBLE;
2294
2295         perf_pmu_disable(cpuctx->ctx.pmu);
2296         if (task_ctx)
2297                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2298
2299         /*
2300          * Decide which cpu ctx groups to schedule out based on the types
2301          * of events that caused rescheduling:
2302          *  - EVENT_CPU: schedule out corresponding groups;
2303          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2304          *  - otherwise, do nothing more.
2305          */
2306         if (cpu_event)
2307                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2308         else if (ctx_event_type & EVENT_PINNED)
2309                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2310
2311         perf_event_sched_in(cpuctx, task_ctx, current);
2312         perf_pmu_enable(cpuctx->ctx.pmu);
2313 }
2314
2315 /*
2316  * Cross CPU call to install and enable a performance event
2317  *
2318  * Very similar to remote_function() + event_function() but cannot assume that
2319  * things like ctx->is_active and cpuctx->task_ctx are set.
2320  */
2321 static int  __perf_install_in_context(void *info)
2322 {
2323         struct perf_event *event = info;
2324         struct perf_event_context *ctx = event->ctx;
2325         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2326         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2327         bool reprogram = true;
2328         int ret = 0;
2329
2330         raw_spin_lock(&cpuctx->ctx.lock);
2331         if (ctx->task) {
2332                 raw_spin_lock(&ctx->lock);
2333                 task_ctx = ctx;
2334
2335                 reprogram = (ctx->task == current);
2336
2337                 /*
2338                  * If the task is running, it must be running on this CPU,
2339                  * otherwise we cannot reprogram things.
2340                  *
2341                  * If its not running, we don't care, ctx->lock will
2342                  * serialize against it becoming runnable.
2343                  */
2344                 if (task_curr(ctx->task) && !reprogram) {
2345                         ret = -ESRCH;
2346                         goto unlock;
2347                 }
2348
2349                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2350         } else if (task_ctx) {
2351                 raw_spin_lock(&task_ctx->lock);
2352         }
2353
2354         if (reprogram) {
2355                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2356                 add_event_to_ctx(event, ctx);
2357                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2358         } else {
2359                 add_event_to_ctx(event, ctx);
2360         }
2361
2362 unlock:
2363         perf_ctx_unlock(cpuctx, task_ctx);
2364
2365         return ret;
2366 }
2367
2368 /*
2369  * Attach a performance event to a context.
2370  *
2371  * Very similar to event_function_call, see comment there.
2372  */
2373 static void
2374 perf_install_in_context(struct perf_event_context *ctx,
2375                         struct perf_event *event,
2376                         int cpu)
2377 {
2378         struct task_struct *task = READ_ONCE(ctx->task);
2379
2380         lockdep_assert_held(&ctx->mutex);
2381
2382         if (event->cpu != -1)
2383                 event->cpu = cpu;
2384
2385         /*
2386          * Ensures that if we can observe event->ctx, both the event and ctx
2387          * will be 'complete'. See perf_iterate_sb_cpu().
2388          */
2389         smp_store_release(&event->ctx, ctx);
2390
2391         if (!task) {
2392                 cpu_function_call(cpu, __perf_install_in_context, event);
2393                 return;
2394         }
2395
2396         /*
2397          * Should not happen, we validate the ctx is still alive before calling.
2398          */
2399         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2400                 return;
2401
2402         /*
2403          * Installing events is tricky because we cannot rely on ctx->is_active
2404          * to be set in case this is the nr_events 0 -> 1 transition.
2405          *
2406          * Instead we use task_curr(), which tells us if the task is running.
2407          * However, since we use task_curr() outside of rq::lock, we can race
2408          * against the actual state. This means the result can be wrong.
2409          *
2410          * If we get a false positive, we retry, this is harmless.
2411          *
2412          * If we get a false negative, things are complicated. If we are after
2413          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2414          * value must be correct. If we're before, it doesn't matter since
2415          * perf_event_context_sched_in() will program the counter.
2416          *
2417          * However, this hinges on the remote context switch having observed
2418          * our task->perf_event_ctxp[] store, such that it will in fact take
2419          * ctx::lock in perf_event_context_sched_in().
2420          *
2421          * We do this by task_function_call(), if the IPI fails to hit the task
2422          * we know any future context switch of task must see the
2423          * perf_event_ctpx[] store.
2424          */
2425
2426         /*
2427          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2428          * task_cpu() load, such that if the IPI then does not find the task
2429          * running, a future context switch of that task must observe the
2430          * store.
2431          */
2432         smp_mb();
2433 again:
2434         if (!task_function_call(task, __perf_install_in_context, event))
2435                 return;
2436
2437         raw_spin_lock_irq(&ctx->lock);
2438         task = ctx->task;
2439         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2440                 /*
2441                  * Cannot happen because we already checked above (which also
2442                  * cannot happen), and we hold ctx->mutex, which serializes us
2443                  * against perf_event_exit_task_context().
2444                  */
2445                 raw_spin_unlock_irq(&ctx->lock);
2446                 return;
2447         }
2448         /*
2449          * If the task is not running, ctx->lock will avoid it becoming so,
2450          * thus we can safely install the event.
2451          */
2452         if (task_curr(task)) {
2453                 raw_spin_unlock_irq(&ctx->lock);
2454                 goto again;
2455         }
2456         add_event_to_ctx(event, ctx);
2457         raw_spin_unlock_irq(&ctx->lock);
2458 }
2459
2460 /*
2461  * Put a event into inactive state and update time fields.
2462  * Enabling the leader of a group effectively enables all
2463  * the group members that aren't explicitly disabled, so we
2464  * have to update their ->tstamp_enabled also.
2465  * Note: this works for group members as well as group leaders
2466  * since the non-leader members' sibling_lists will be empty.
2467  */
2468 static void __perf_event_mark_enabled(struct perf_event *event)
2469 {
2470         struct perf_event *sub;
2471         u64 tstamp = perf_event_time(event);
2472
2473         event->state = PERF_EVENT_STATE_INACTIVE;
2474         event->tstamp_enabled = tstamp - event->total_time_enabled;
2475         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2476                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2477                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2478         }
2479 }
2480
2481 /*
2482  * Cross CPU call to enable a performance event
2483  */
2484 static void __perf_event_enable(struct perf_event *event,
2485                                 struct perf_cpu_context *cpuctx,
2486                                 struct perf_event_context *ctx,
2487                                 void *info)
2488 {
2489         struct perf_event *leader = event->group_leader;
2490         struct perf_event_context *task_ctx;
2491
2492         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2493             event->state <= PERF_EVENT_STATE_ERROR)
2494                 return;
2495
2496         if (ctx->is_active)
2497                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2498
2499         __perf_event_mark_enabled(event);
2500
2501         if (!ctx->is_active)
2502                 return;
2503
2504         if (!event_filter_match(event)) {
2505                 if (is_cgroup_event(event))
2506                         perf_cgroup_defer_enabled(event);
2507                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2508                 return;
2509         }
2510
2511         /*
2512          * If the event is in a group and isn't the group leader,
2513          * then don't put it on unless the group is on.
2514          */
2515         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2516                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2517                 return;
2518         }
2519
2520         task_ctx = cpuctx->task_ctx;
2521         if (ctx->task)
2522                 WARN_ON_ONCE(task_ctx != ctx);
2523
2524         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2525 }
2526
2527 /*
2528  * Enable a event.
2529  *
2530  * If event->ctx is a cloned context, callers must make sure that
2531  * every task struct that event->ctx->task could possibly point to
2532  * remains valid.  This condition is satisfied when called through
2533  * perf_event_for_each_child or perf_event_for_each as described
2534  * for perf_event_disable.
2535  */
2536 static void _perf_event_enable(struct perf_event *event)
2537 {
2538         struct perf_event_context *ctx = event->ctx;
2539
2540         raw_spin_lock_irq(&ctx->lock);
2541         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2542             event->state <  PERF_EVENT_STATE_ERROR) {
2543                 raw_spin_unlock_irq(&ctx->lock);
2544                 return;
2545         }
2546
2547         /*
2548          * If the event is in error state, clear that first.
2549          *
2550          * That way, if we see the event in error state below, we know that it
2551          * has gone back into error state, as distinct from the task having
2552          * been scheduled away before the cross-call arrived.
2553          */
2554         if (event->state == PERF_EVENT_STATE_ERROR)
2555                 event->state = PERF_EVENT_STATE_OFF;
2556         raw_spin_unlock_irq(&ctx->lock);
2557
2558         event_function_call(event, __perf_event_enable, NULL);
2559 }
2560
2561 /*
2562  * See perf_event_disable();
2563  */
2564 void perf_event_enable(struct perf_event *event)
2565 {
2566         struct perf_event_context *ctx;
2567
2568         ctx = perf_event_ctx_lock(event);
2569         _perf_event_enable(event);
2570         perf_event_ctx_unlock(event, ctx);
2571 }
2572 EXPORT_SYMBOL_GPL(perf_event_enable);
2573
2574 struct stop_event_data {
2575         struct perf_event       *event;
2576         unsigned int            restart;
2577 };
2578
2579 static int __perf_event_stop(void *info)
2580 {
2581         struct stop_event_data *sd = info;
2582         struct perf_event *event = sd->event;
2583
2584         /* if it's already INACTIVE, do nothing */
2585         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2586                 return 0;
2587
2588         /* matches smp_wmb() in event_sched_in() */
2589         smp_rmb();
2590
2591         /*
2592          * There is a window with interrupts enabled before we get here,
2593          * so we need to check again lest we try to stop another CPU's event.
2594          */
2595         if (READ_ONCE(event->oncpu) != smp_processor_id())
2596                 return -EAGAIN;
2597
2598         event->pmu->stop(event, PERF_EF_UPDATE);
2599
2600         /*
2601          * May race with the actual stop (through perf_pmu_output_stop()),
2602          * but it is only used for events with AUX ring buffer, and such
2603          * events will refuse to restart because of rb::aux_mmap_count==0,
2604          * see comments in perf_aux_output_begin().
2605          *
2606          * Since this is happening on a event-local CPU, no trace is lost
2607          * while restarting.
2608          */
2609         if (sd->restart)
2610                 event->pmu->start(event, 0);
2611
2612         return 0;
2613 }
2614
2615 static int perf_event_stop(struct perf_event *event, int restart)
2616 {
2617         struct stop_event_data sd = {
2618                 .event          = event,
2619                 .restart        = restart,
2620         };
2621         int ret = 0;
2622
2623         do {
2624                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2625                         return 0;
2626
2627                 /* matches smp_wmb() in event_sched_in() */
2628                 smp_rmb();
2629
2630                 /*
2631                  * We only want to restart ACTIVE events, so if the event goes
2632                  * inactive here (event->oncpu==-1), there's nothing more to do;
2633                  * fall through with ret==-ENXIO.
2634                  */
2635                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2636                                         __perf_event_stop, &sd);
2637         } while (ret == -EAGAIN);
2638
2639         return ret;
2640 }
2641
2642 /*
2643  * In order to contain the amount of racy and tricky in the address filter
2644  * configuration management, it is a two part process:
2645  *
2646  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2647  *      we update the addresses of corresponding vmas in
2648  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2649  * (p2) when an event is scheduled in (pmu::add), it calls
2650  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2651  *      if the generation has changed since the previous call.
2652  *
2653  * If (p1) happens while the event is active, we restart it to force (p2).
2654  *
2655  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2656  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2657  *     ioctl;
2658  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2659  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2660  *     for reading;
2661  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2662  *     of exec.
2663  */
2664 void perf_event_addr_filters_sync(struct perf_event *event)
2665 {
2666         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2667
2668         if (!has_addr_filter(event))
2669                 return;
2670
2671         raw_spin_lock(&ifh->lock);
2672         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2673                 event->pmu->addr_filters_sync(event);
2674                 event->hw.addr_filters_gen = event->addr_filters_gen;
2675         }
2676         raw_spin_unlock(&ifh->lock);
2677 }
2678 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2679
2680 static int _perf_event_refresh(struct perf_event *event, int refresh)
2681 {
2682         /*
2683          * not supported on inherited events
2684          */
2685         if (event->attr.inherit || !is_sampling_event(event))
2686                 return -EINVAL;
2687
2688         atomic_add(refresh, &event->event_limit);
2689         _perf_event_enable(event);
2690
2691         return 0;
2692 }
2693
2694 /*
2695  * See perf_event_disable()
2696  */
2697 int perf_event_refresh(struct perf_event *event, int refresh)
2698 {
2699         struct perf_event_context *ctx;
2700         int ret;
2701
2702         ctx = perf_event_ctx_lock(event);
2703         ret = _perf_event_refresh(event, refresh);
2704         perf_event_ctx_unlock(event, ctx);
2705
2706         return ret;
2707 }
2708 EXPORT_SYMBOL_GPL(perf_event_refresh);
2709
2710 static void ctx_sched_out(struct perf_event_context *ctx,
2711                           struct perf_cpu_context *cpuctx,
2712                           enum event_type_t event_type)
2713 {
2714         int is_active = ctx->is_active;
2715         struct perf_event *event;
2716
2717         lockdep_assert_held(&ctx->lock);
2718
2719         if (likely(!ctx->nr_events)) {
2720                 /*
2721                  * See __perf_remove_from_context().
2722                  */
2723                 WARN_ON_ONCE(ctx->is_active);
2724                 if (ctx->task)
2725                         WARN_ON_ONCE(cpuctx->task_ctx);
2726                 return;
2727         }
2728
2729         ctx->is_active &= ~event_type;
2730         if (!(ctx->is_active & EVENT_ALL))
2731                 ctx->is_active = 0;
2732
2733         if (ctx->task) {
2734                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2735                 if (!ctx->is_active)
2736                         cpuctx->task_ctx = NULL;
2737         }
2738
2739         /*
2740          * Always update time if it was set; not only when it changes.
2741          * Otherwise we can 'forget' to update time for any but the last
2742          * context we sched out. For example:
2743          *
2744          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2745          *   ctx_sched_out(.event_type = EVENT_PINNED)
2746          *
2747          * would only update time for the pinned events.
2748          */
2749         if (is_active & EVENT_TIME) {
2750                 /* update (and stop) ctx time */
2751                 update_context_time(ctx);
2752                 update_cgrp_time_from_cpuctx(cpuctx);
2753         }
2754
2755         is_active ^= ctx->is_active; /* changed bits */
2756
2757         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2758                 return;
2759
2760         perf_pmu_disable(ctx->pmu);
2761         if (is_active & EVENT_PINNED) {
2762                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2763                         group_sched_out(event, cpuctx, ctx);
2764         }
2765
2766         if (is_active & EVENT_FLEXIBLE) {
2767                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2768                         group_sched_out(event, cpuctx, ctx);
2769         }
2770         perf_pmu_enable(ctx->pmu);
2771 }
2772
2773 /*
2774  * Test whether two contexts are equivalent, i.e. whether they have both been
2775  * cloned from the same version of the same context.
2776  *
2777  * Equivalence is measured using a generation number in the context that is
2778  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2779  * and list_del_event().
2780  */
2781 static int context_equiv(struct perf_event_context *ctx1,
2782                          struct perf_event_context *ctx2)
2783 {
2784         lockdep_assert_held(&ctx1->lock);
2785         lockdep_assert_held(&ctx2->lock);
2786
2787         /* Pinning disables the swap optimization */
2788         if (ctx1->pin_count || ctx2->pin_count)
2789                 return 0;
2790
2791         /* If ctx1 is the parent of ctx2 */
2792         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2793                 return 1;
2794
2795         /* If ctx2 is the parent of ctx1 */
2796         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2797                 return 1;
2798
2799         /*
2800          * If ctx1 and ctx2 have the same parent; we flatten the parent
2801          * hierarchy, see perf_event_init_context().
2802          */
2803         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2804                         ctx1->parent_gen == ctx2->parent_gen)
2805                 return 1;
2806
2807         /* Unmatched */
2808         return 0;
2809 }
2810
2811 static void __perf_event_sync_stat(struct perf_event *event,
2812                                      struct perf_event *next_event)
2813 {
2814         u64 value;
2815
2816         if (!event->attr.inherit_stat)
2817                 return;
2818
2819         /*
2820          * Update the event value, we cannot use perf_event_read()
2821          * because we're in the middle of a context switch and have IRQs
2822          * disabled, which upsets smp_call_function_single(), however
2823          * we know the event must be on the current CPU, therefore we
2824          * don't need to use it.
2825          */
2826         switch (event->state) {
2827         case PERF_EVENT_STATE_ACTIVE:
2828                 event->pmu->read(event);
2829                 /* fall-through */
2830
2831         case PERF_EVENT_STATE_INACTIVE:
2832                 update_event_times(event);
2833                 break;
2834
2835         default:
2836                 break;
2837         }
2838
2839         /*
2840          * In order to keep per-task stats reliable we need to flip the event
2841          * values when we flip the contexts.
2842          */
2843         value = local64_read(&next_event->count);
2844         value = local64_xchg(&event->count, value);
2845         local64_set(&next_event->count, value);
2846
2847         swap(event->total_time_enabled, next_event->total_time_enabled);
2848         swap(event->total_time_running, next_event->total_time_running);
2849
2850         /*
2851          * Since we swizzled the values, update the user visible data too.
2852          */
2853         perf_event_update_userpage(event);
2854         perf_event_update_userpage(next_event);
2855 }
2856
2857 static void perf_event_sync_stat(struct perf_event_context *ctx,
2858                                    struct perf_event_context *next_ctx)
2859 {
2860         struct perf_event *event, *next_event;
2861
2862         if (!ctx->nr_stat)
2863                 return;
2864
2865         update_context_time(ctx);
2866
2867         event = list_first_entry(&ctx->event_list,
2868                                    struct perf_event, event_entry);
2869
2870         next_event = list_first_entry(&next_ctx->event_list,
2871                                         struct perf_event, event_entry);
2872
2873         while (&event->event_entry != &ctx->event_list &&
2874                &next_event->event_entry != &next_ctx->event_list) {
2875
2876                 __perf_event_sync_stat(event, next_event);
2877
2878                 event = list_next_entry(event, event_entry);
2879                 next_event = list_next_entry(next_event, event_entry);
2880         }
2881 }
2882
2883 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2884                                          struct task_struct *next)
2885 {
2886         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2887         struct perf_event_context *next_ctx;
2888         struct perf_event_context *parent, *next_parent;
2889         struct perf_cpu_context *cpuctx;
2890         int do_switch = 1;
2891
2892         if (likely(!ctx))
2893                 return;
2894
2895         cpuctx = __get_cpu_context(ctx);
2896         if (!cpuctx->task_ctx)
2897                 return;
2898
2899         rcu_read_lock();
2900         next_ctx = next->perf_event_ctxp[ctxn];
2901         if (!next_ctx)
2902                 goto unlock;
2903
2904         parent = rcu_dereference(ctx->parent_ctx);
2905         next_parent = rcu_dereference(next_ctx->parent_ctx);
2906
2907         /* If neither context have a parent context; they cannot be clones. */
2908         if (!parent && !next_parent)
2909                 goto unlock;
2910
2911         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2912                 /*
2913                  * Looks like the two contexts are clones, so we might be
2914                  * able to optimize the context switch.  We lock both
2915                  * contexts and check that they are clones under the
2916                  * lock (including re-checking that neither has been
2917                  * uncloned in the meantime).  It doesn't matter which
2918                  * order we take the locks because no other cpu could
2919                  * be trying to lock both of these tasks.
2920                  */
2921                 raw_spin_lock(&ctx->lock);
2922                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2923                 if (context_equiv(ctx, next_ctx)) {
2924                         WRITE_ONCE(ctx->task, next);
2925                         WRITE_ONCE(next_ctx->task, task);
2926
2927                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2928
2929                         /*
2930                          * RCU_INIT_POINTER here is safe because we've not
2931                          * modified the ctx and the above modification of
2932                          * ctx->task and ctx->task_ctx_data are immaterial
2933                          * since those values are always verified under
2934                          * ctx->lock which we're now holding.
2935                          */
2936                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2937                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2938
2939                         do_switch = 0;
2940
2941                         perf_event_sync_stat(ctx, next_ctx);
2942                 }
2943                 raw_spin_unlock(&next_ctx->lock);
2944                 raw_spin_unlock(&ctx->lock);
2945         }
2946 unlock:
2947         rcu_read_unlock();
2948
2949         if (do_switch) {
2950                 raw_spin_lock(&ctx->lock);
2951                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2952                 raw_spin_unlock(&ctx->lock);
2953         }
2954 }
2955
2956 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2957
2958 void perf_sched_cb_dec(struct pmu *pmu)
2959 {
2960         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2961
2962         this_cpu_dec(perf_sched_cb_usages);
2963
2964         if (!--cpuctx->sched_cb_usage)
2965                 list_del(&cpuctx->sched_cb_entry);
2966 }
2967
2968
2969 void perf_sched_cb_inc(struct pmu *pmu)
2970 {
2971         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2972
2973         if (!cpuctx->sched_cb_usage++)
2974                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2975
2976         this_cpu_inc(perf_sched_cb_usages);
2977 }
2978
2979 /*
2980  * This function provides the context switch callback to the lower code
2981  * layer. It is invoked ONLY when the context switch callback is enabled.
2982  *
2983  * This callback is relevant even to per-cpu events; for example multi event
2984  * PEBS requires this to provide PID/TID information. This requires we flush
2985  * all queued PEBS records before we context switch to a new task.
2986  */
2987 static void perf_pmu_sched_task(struct task_struct *prev,
2988                                 struct task_struct *next,
2989                                 bool sched_in)
2990 {
2991         struct perf_cpu_context *cpuctx;
2992         struct pmu *pmu;
2993
2994         if (prev == next)
2995                 return;
2996
2997         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2998                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2999
3000                 if (WARN_ON_ONCE(!pmu->sched_task))
3001                         continue;
3002
3003                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3004                 perf_pmu_disable(pmu);
3005
3006                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3007
3008                 perf_pmu_enable(pmu);
3009                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3010         }
3011 }
3012
3013 static void perf_event_switch(struct task_struct *task,
3014                               struct task_struct *next_prev, bool sched_in);
3015
3016 #define for_each_task_context_nr(ctxn)                                  \
3017         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3018
3019 /*
3020  * Called from scheduler to remove the events of the current task,
3021  * with interrupts disabled.
3022  *
3023  * We stop each event and update the event value in event->count.
3024  *
3025  * This does not protect us against NMI, but disable()
3026  * sets the disabled bit in the control field of event _before_
3027  * accessing the event control register. If a NMI hits, then it will
3028  * not restart the event.
3029  */
3030 void __perf_event_task_sched_out(struct task_struct *task,
3031                                  struct task_struct *next)
3032 {
3033         int ctxn;
3034
3035         if (__this_cpu_read(perf_sched_cb_usages))
3036                 perf_pmu_sched_task(task, next, false);
3037
3038         if (atomic_read(&nr_switch_events))
3039                 perf_event_switch(task, next, false);
3040
3041         for_each_task_context_nr(ctxn)
3042                 perf_event_context_sched_out(task, ctxn, next);
3043
3044         /*
3045          * if cgroup events exist on this CPU, then we need
3046          * to check if we have to switch out PMU state.
3047          * cgroup event are system-wide mode only
3048          */
3049         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3050                 perf_cgroup_sched_out(task, next);
3051 }
3052
3053 /*
3054  * Called with IRQs disabled
3055  */
3056 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3057                               enum event_type_t event_type)
3058 {
3059         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3060 }
3061
3062 static void
3063 ctx_pinned_sched_in(struct perf_event_context *ctx,
3064                     struct perf_cpu_context *cpuctx)
3065 {
3066         struct perf_event *event;
3067
3068         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3069                 if (event->state <= PERF_EVENT_STATE_OFF)
3070                         continue;
3071                 if (!event_filter_match(event))
3072                         continue;
3073
3074                 /* may need to reset tstamp_enabled */
3075                 if (is_cgroup_event(event))
3076                         perf_cgroup_mark_enabled(event, ctx);
3077
3078                 if (group_can_go_on(event, cpuctx, 1))
3079                         group_sched_in(event, cpuctx, ctx);
3080
3081                 /*
3082                  * If this pinned group hasn't been scheduled,
3083                  * put it in error state.
3084                  */
3085                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3086                         update_group_times(event);
3087                         event->state = PERF_EVENT_STATE_ERROR;
3088                 }
3089         }
3090 }
3091
3092 static void
3093 ctx_flexible_sched_in(struct perf_event_context *ctx,
3094                       struct perf_cpu_context *cpuctx)
3095 {
3096         struct perf_event *event;
3097         int can_add_hw = 1;
3098
3099         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3100                 /* Ignore events in OFF or ERROR state */
3101                 if (event->state <= PERF_EVENT_STATE_OFF)
3102                         continue;
3103                 /*
3104                  * Listen to the 'cpu' scheduling filter constraint
3105                  * of events:
3106                  */
3107                 if (!event_filter_match(event))
3108                         continue;
3109
3110                 /* may need to reset tstamp_enabled */
3111                 if (is_cgroup_event(event))
3112                         perf_cgroup_mark_enabled(event, ctx);
3113
3114                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3115                         if (group_sched_in(event, cpuctx, ctx))
3116                                 can_add_hw = 0;
3117                 }
3118         }
3119 }
3120
3121 static void
3122 ctx_sched_in(struct perf_event_context *ctx,
3123              struct perf_cpu_context *cpuctx,
3124              enum event_type_t event_type,
3125              struct task_struct *task)
3126 {
3127         int is_active = ctx->is_active;
3128         u64 now;
3129
3130         lockdep_assert_held(&ctx->lock);
3131
3132         if (likely(!ctx->nr_events))
3133                 return;
3134
3135         ctx->is_active |= (event_type | EVENT_TIME);
3136         if (ctx->task) {
3137                 if (!is_active)
3138                         cpuctx->task_ctx = ctx;
3139                 else
3140                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3141         }
3142
3143         is_active ^= ctx->is_active; /* changed bits */
3144
3145         if (is_active & EVENT_TIME) {
3146                 /* start ctx time */
3147                 now = perf_clock();
3148                 ctx->timestamp = now;
3149                 perf_cgroup_set_timestamp(task, ctx);
3150         }
3151
3152         /*
3153          * First go through the list and put on any pinned groups
3154          * in order to give them the best chance of going on.
3155          */
3156         if (is_active & EVENT_PINNED)
3157                 ctx_pinned_sched_in(ctx, cpuctx);
3158
3159         /* Then walk through the lower prio flexible groups */
3160         if (is_active & EVENT_FLEXIBLE)
3161                 ctx_flexible_sched_in(ctx, cpuctx);
3162 }
3163
3164 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3165                              enum event_type_t event_type,
3166                              struct task_struct *task)
3167 {
3168         struct perf_event_context *ctx = &cpuctx->ctx;
3169
3170         ctx_sched_in(ctx, cpuctx, event_type, task);
3171 }
3172
3173 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3174                                         struct task_struct *task)
3175 {
3176         struct perf_cpu_context *cpuctx;
3177
3178         cpuctx = __get_cpu_context(ctx);
3179         if (cpuctx->task_ctx == ctx)
3180                 return;
3181
3182         perf_ctx_lock(cpuctx, ctx);
3183         perf_pmu_disable(ctx->pmu);
3184         /*
3185          * We want to keep the following priority order:
3186          * cpu pinned (that don't need to move), task pinned,
3187          * cpu flexible, task flexible.
3188          *
3189          * However, if task's ctx is not carrying any pinned
3190          * events, no need to flip the cpuctx's events around.
3191          */
3192         if (!list_empty(&ctx->pinned_groups))
3193                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3194         perf_event_sched_in(cpuctx, ctx, task);
3195         perf_pmu_enable(ctx->pmu);
3196         perf_ctx_unlock(cpuctx, ctx);
3197 }
3198
3199 /*
3200  * Called from scheduler to add the events of the current task
3201  * with interrupts disabled.
3202  *
3203  * We restore the event value and then enable it.
3204  *
3205  * This does not protect us against NMI, but enable()
3206  * sets the enabled bit in the control field of event _before_
3207  * accessing the event control register. If a NMI hits, then it will
3208  * keep the event running.
3209  */
3210 void __perf_event_task_sched_in(struct task_struct *prev,
3211                                 struct task_struct *task)
3212 {
3213         struct perf_event_context *ctx;
3214         int ctxn;
3215
3216         /*
3217          * If cgroup events exist on this CPU, then we need to check if we have
3218          * to switch in PMU state; cgroup event are system-wide mode only.
3219          *
3220          * Since cgroup events are CPU events, we must schedule these in before
3221          * we schedule in the task events.
3222          */
3223         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3224                 perf_cgroup_sched_in(prev, task);
3225
3226         for_each_task_context_nr(ctxn) {
3227                 ctx = task->perf_event_ctxp[ctxn];
3228                 if (likely(!ctx))
3229                         continue;
3230
3231                 perf_event_context_sched_in(ctx, task);
3232         }
3233
3234         if (atomic_read(&nr_switch_events))
3235                 perf_event_switch(task, prev, true);
3236
3237         if (__this_cpu_read(perf_sched_cb_usages))
3238                 perf_pmu_sched_task(prev, task, true);
3239 }
3240
3241 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3242 {
3243         u64 frequency = event->attr.sample_freq;
3244         u64 sec = NSEC_PER_SEC;
3245         u64 divisor, dividend;
3246
3247         int count_fls, nsec_fls, frequency_fls, sec_fls;
3248
3249         count_fls = fls64(count);
3250         nsec_fls = fls64(nsec);
3251         frequency_fls = fls64(frequency);
3252         sec_fls = 30;
3253
3254         /*
3255          * We got @count in @nsec, with a target of sample_freq HZ
3256          * the target period becomes:
3257          *
3258          *             @count * 10^9
3259          * period = -------------------
3260          *          @nsec * sample_freq
3261          *
3262          */
3263
3264         /*
3265          * Reduce accuracy by one bit such that @a and @b converge
3266          * to a similar magnitude.
3267          */
3268 #define REDUCE_FLS(a, b)                \
3269 do {                                    \
3270         if (a##_fls > b##_fls) {        \
3271                 a >>= 1;                \
3272                 a##_fls--;              \
3273         } else {                        \
3274                 b >>= 1;                \
3275                 b##_fls--;              \
3276         }                               \
3277 } while (0)
3278
3279         /*
3280          * Reduce accuracy until either term fits in a u64, then proceed with
3281          * the other, so that finally we can do a u64/u64 division.
3282          */
3283         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3284                 REDUCE_FLS(nsec, frequency);
3285                 REDUCE_FLS(sec, count);
3286         }
3287
3288         if (count_fls + sec_fls > 64) {
3289                 divisor = nsec * frequency;
3290
3291                 while (count_fls + sec_fls > 64) {
3292                         REDUCE_FLS(count, sec);
3293                         divisor >>= 1;
3294                 }
3295
3296                 dividend = count * sec;
3297         } else {
3298                 dividend = count * sec;
3299
3300                 while (nsec_fls + frequency_fls > 64) {
3301                         REDUCE_FLS(nsec, frequency);
3302                         dividend >>= 1;
3303                 }
3304
3305                 divisor = nsec * frequency;
3306         }
3307
3308         if (!divisor)
3309                 return dividend;
3310
3311         return div64_u64(dividend, divisor);
3312 }
3313
3314 static DEFINE_PER_CPU(int, perf_throttled_count);
3315 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3316
3317 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3318 {
3319         struct hw_perf_event *hwc = &event->hw;
3320         s64 period, sample_period;
3321         s64 delta;
3322
3323         period = perf_calculate_period(event, nsec, count);
3324
3325         delta = (s64)(period - hwc->sample_period);
3326         delta = (delta + 7) / 8; /* low pass filter */
3327
3328         sample_period = hwc->sample_period + delta;
3329
3330         if (!sample_period)
3331                 sample_period = 1;
3332
3333         hwc->sample_period = sample_period;
3334
3335         if (local64_read(&hwc->period_left) > 8*sample_period) {
3336                 if (disable)
3337                         event->pmu->stop(event, PERF_EF_UPDATE);
3338
3339                 local64_set(&hwc->period_left, 0);
3340
3341                 if (disable)
3342                         event->pmu->start(event, PERF_EF_RELOAD);
3343         }
3344 }
3345
3346 /*
3347  * combine freq adjustment with unthrottling to avoid two passes over the
3348  * events. At the same time, make sure, having freq events does not change
3349  * the rate of unthrottling as that would introduce bias.
3350  */
3351 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3352                                            int needs_unthr)
3353 {
3354         struct perf_event *event;
3355         struct hw_perf_event *hwc;
3356         u64 now, period = TICK_NSEC;
3357         s64 delta;
3358
3359         /*
3360          * only need to iterate over all events iff:
3361          * - context have events in frequency mode (needs freq adjust)
3362          * - there are events to unthrottle on this cpu
3363          */
3364         if (!(ctx->nr_freq || needs_unthr))
3365                 return;
3366
3367         raw_spin_lock(&ctx->lock);
3368         perf_pmu_disable(ctx->pmu);
3369
3370         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3371                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3372                         continue;
3373
3374                 if (!event_filter_match(event))
3375                         continue;
3376
3377                 perf_pmu_disable(event->pmu);
3378
3379                 hwc = &event->hw;
3380
3381                 if (hwc->interrupts == MAX_INTERRUPTS) {
3382                         hwc->interrupts = 0;
3383                         perf_log_throttle(event, 1);
3384                         event->pmu->start(event, 0);
3385                 }
3386
3387                 if (!event->attr.freq || !event->attr.sample_freq)
3388                         goto next;
3389
3390                 /*
3391                  * stop the event and update event->count
3392                  */
3393                 event->pmu->stop(event, PERF_EF_UPDATE);
3394
3395                 now = local64_read(&event->count);
3396                 delta = now - hwc->freq_count_stamp;
3397                 hwc->freq_count_stamp = now;
3398
3399                 /*
3400                  * restart the event
3401                  * reload only if value has changed
3402                  * we have stopped the event so tell that
3403                  * to perf_adjust_period() to avoid stopping it
3404                  * twice.
3405                  */
3406                 if (delta > 0)
3407                         perf_adjust_period(event, period, delta, false);
3408
3409                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3410         next:
3411                 perf_pmu_enable(event->pmu);
3412         }
3413
3414         perf_pmu_enable(ctx->pmu);
3415         raw_spin_unlock(&ctx->lock);
3416 }
3417
3418 /*
3419  * Round-robin a context's events:
3420  */
3421 static void rotate_ctx(struct perf_event_context *ctx)
3422 {
3423         /*
3424          * Rotate the first entry last of non-pinned groups. Rotation might be
3425          * disabled by the inheritance code.
3426          */
3427         if (!ctx->rotate_disable)
3428                 list_rotate_left(&ctx->flexible_groups);
3429 }
3430
3431 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3432 {
3433         struct perf_event_context *ctx = NULL;
3434         int rotate = 0;
3435
3436         if (cpuctx->ctx.nr_events) {
3437                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3438                         rotate = 1;
3439         }
3440
3441         ctx = cpuctx->task_ctx;
3442         if (ctx && ctx->nr_events) {
3443                 if (ctx->nr_events != ctx->nr_active)
3444                         rotate = 1;
3445         }
3446
3447         if (!rotate)
3448                 goto done;
3449
3450         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3451         perf_pmu_disable(cpuctx->ctx.pmu);
3452
3453         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3454         if (ctx)
3455                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3456
3457         rotate_ctx(&cpuctx->ctx);
3458         if (ctx)
3459                 rotate_ctx(ctx);
3460
3461         perf_event_sched_in(cpuctx, ctx, current);
3462
3463         perf_pmu_enable(cpuctx->ctx.pmu);
3464         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3465 done:
3466
3467         return rotate;
3468 }
3469
3470 void perf_event_task_tick(void)
3471 {
3472         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3473         struct perf_event_context *ctx, *tmp;
3474         int throttled;
3475
3476         WARN_ON(!irqs_disabled());
3477
3478         __this_cpu_inc(perf_throttled_seq);
3479         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3480         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3481
3482         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3483                 perf_adjust_freq_unthr_context(ctx, throttled);
3484 }
3485
3486 static int event_enable_on_exec(struct perf_event *event,
3487                                 struct perf_event_context *ctx)
3488 {
3489         if (!event->attr.enable_on_exec)
3490                 return 0;
3491
3492         event->attr.enable_on_exec = 0;
3493         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3494                 return 0;
3495
3496         __perf_event_mark_enabled(event);
3497
3498         return 1;
3499 }
3500
3501 /*
3502  * Enable all of a task's events that have been marked enable-on-exec.
3503  * This expects task == current.
3504  */
3505 static void perf_event_enable_on_exec(int ctxn)
3506 {
3507         struct perf_event_context *ctx, *clone_ctx = NULL;
3508         enum event_type_t event_type = 0;
3509         struct perf_cpu_context *cpuctx;
3510         struct perf_event *event;
3511         unsigned long flags;
3512         int enabled = 0;
3513
3514         local_irq_save(flags);
3515         ctx = current->perf_event_ctxp[ctxn];
3516         if (!ctx || !ctx->nr_events)
3517                 goto out;
3518
3519         cpuctx = __get_cpu_context(ctx);
3520         perf_ctx_lock(cpuctx, ctx);
3521         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3522         list_for_each_entry(event, &ctx->event_list, event_entry) {
3523                 enabled |= event_enable_on_exec(event, ctx);
3524                 event_type |= get_event_type(event);
3525         }
3526
3527         /*
3528          * Unclone and reschedule this context if we enabled any event.
3529          */
3530         if (enabled) {
3531                 clone_ctx = unclone_ctx(ctx);
3532                 ctx_resched(cpuctx, ctx, event_type);
3533         } else {
3534                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3535         }
3536         perf_ctx_unlock(cpuctx, ctx);
3537
3538 out:
3539         local_irq_restore(flags);
3540
3541         if (clone_ctx)
3542                 put_ctx(clone_ctx);
3543 }
3544
3545 struct perf_read_data {
3546         struct perf_event *event;
3547         bool group;
3548         int ret;
3549 };
3550
3551 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3552 {
3553         u16 local_pkg, event_pkg;
3554
3555         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3556                 int local_cpu = smp_processor_id();
3557
3558                 event_pkg = topology_physical_package_id(event_cpu);
3559                 local_pkg = topology_physical_package_id(local_cpu);
3560
3561                 if (event_pkg == local_pkg)
3562                         return local_cpu;
3563         }
3564
3565         return event_cpu;
3566 }
3567
3568 /*
3569  * Cross CPU call to read the hardware event
3570  */
3571 static void __perf_event_read(void *info)
3572 {
3573         struct perf_read_data *data = info;
3574         struct perf_event *sub, *event = data->event;
3575         struct perf_event_context *ctx = event->ctx;
3576         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3577         struct pmu *pmu = event->pmu;
3578
3579         /*
3580          * If this is a task context, we need to check whether it is
3581          * the current task context of this cpu.  If not it has been
3582          * scheduled out before the smp call arrived.  In that case
3583          * event->count would have been updated to a recent sample
3584          * when the event was scheduled out.
3585          */
3586         if (ctx->task && cpuctx->task_ctx != ctx)
3587                 return;
3588
3589         raw_spin_lock(&ctx->lock);
3590         if (ctx->is_active) {
3591                 update_context_time(ctx);
3592                 update_cgrp_time_from_event(event);
3593         }
3594
3595         update_event_times(event);
3596         if (event->state != PERF_EVENT_STATE_ACTIVE)
3597                 goto unlock;
3598
3599         if (!data->group) {
3600                 pmu->read(event);
3601                 data->ret = 0;
3602                 goto unlock;
3603         }
3604
3605         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3606
3607         pmu->read(event);
3608
3609         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3610                 update_event_times(sub);
3611                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3612                         /*
3613                          * Use sibling's PMU rather than @event's since
3614                          * sibling could be on different (eg: software) PMU.
3615                          */
3616                         sub->pmu->read(sub);
3617                 }
3618         }
3619
3620         data->ret = pmu->commit_txn(pmu);
3621
3622 unlock:
3623         raw_spin_unlock(&ctx->lock);
3624 }
3625
3626 static inline u64 perf_event_count(struct perf_event *event)
3627 {
3628         if (event->pmu->count)
3629                 return event->pmu->count(event);
3630
3631         return __perf_event_count(event);
3632 }
3633
3634 /*
3635  * NMI-safe method to read a local event, that is an event that
3636  * is:
3637  *   - either for the current task, or for this CPU
3638  *   - does not have inherit set, for inherited task events
3639  *     will not be local and we cannot read them atomically
3640  *   - must not have a pmu::count method
3641  */
3642 u64 perf_event_read_local(struct perf_event *event)
3643 {
3644         unsigned long flags;
3645         u64 val;
3646
3647         /*
3648          * Disabling interrupts avoids all counter scheduling (context
3649          * switches, timer based rotation and IPIs).
3650          */
3651         local_irq_save(flags);
3652
3653         /* If this is a per-task event, it must be for current */
3654         WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3655                      event->hw.target != current);
3656
3657         /* If this is a per-CPU event, it must be for this CPU */
3658         WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3659                      event->cpu != smp_processor_id());
3660
3661         /*
3662          * It must not be an event with inherit set, we cannot read
3663          * all child counters from atomic context.
3664          */
3665         WARN_ON_ONCE(event->attr.inherit);
3666
3667         /*
3668          * It must not have a pmu::count method, those are not
3669          * NMI safe.
3670          */
3671         WARN_ON_ONCE(event->pmu->count);
3672
3673         /*
3674          * If the event is currently on this CPU, its either a per-task event,
3675          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3676          * oncpu == -1).
3677          */
3678         if (event->oncpu == smp_processor_id())
3679                 event->pmu->read(event);
3680
3681         val = local64_read(&event->count);
3682         local_irq_restore(flags);
3683
3684         return val;
3685 }
3686
3687 static int perf_event_read(struct perf_event *event, bool group)
3688 {
3689         int event_cpu, ret = 0;
3690
3691         /*
3692          * If event is enabled and currently active on a CPU, update the
3693          * value in the event structure:
3694          */
3695         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3696                 struct perf_read_data data = {
3697                         .event = event,
3698                         .group = group,
3699                         .ret = 0,
3700                 };
3701
3702                 event_cpu = READ_ONCE(event->oncpu);
3703                 if ((unsigned)event_cpu >= nr_cpu_ids)
3704                         return 0;
3705
3706                 preempt_disable();
3707                 event_cpu = __perf_event_read_cpu(event, event_cpu);
3708
3709                 /*
3710                  * Purposely ignore the smp_call_function_single() return
3711                  * value.
3712                  *
3713                  * If event_cpu isn't a valid CPU it means the event got
3714                  * scheduled out and that will have updated the event count.
3715                  *
3716                  * Therefore, either way, we'll have an up-to-date event count
3717                  * after this.
3718                  */
3719                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3720                 preempt_enable();
3721                 ret = data.ret;
3722         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3723                 struct perf_event_context *ctx = event->ctx;
3724                 unsigned long flags;
3725
3726                 raw_spin_lock_irqsave(&ctx->lock, flags);
3727                 /*
3728                  * may read while context is not active
3729                  * (e.g., thread is blocked), in that case
3730                  * we cannot update context time
3731                  */
3732                 if (ctx->is_active) {
3733                         update_context_time(ctx);
3734                         update_cgrp_time_from_event(event);
3735                 }
3736                 if (group)
3737                         update_group_times(event);
3738                 else
3739                         update_event_times(event);
3740                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3741         }
3742
3743         return ret;
3744 }
3745
3746 /*
3747  * Initialize the perf_event context in a task_struct:
3748  */
3749 static void __perf_event_init_context(struct perf_event_context *ctx)
3750 {
3751         raw_spin_lock_init(&ctx->lock);
3752         mutex_init(&ctx->mutex);
3753         INIT_LIST_HEAD(&ctx->active_ctx_list);
3754         INIT_LIST_HEAD(&ctx->pinned_groups);
3755         INIT_LIST_HEAD(&ctx->flexible_groups);
3756         INIT_LIST_HEAD(&ctx->event_list);
3757         atomic_set(&ctx->refcount, 1);
3758 }
3759
3760 static struct perf_event_context *
3761 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3762 {
3763         struct perf_event_context *ctx;
3764
3765         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3766         if (!ctx)
3767                 return NULL;
3768
3769         __perf_event_init_context(ctx);
3770         if (task) {
3771                 ctx->task = task;
3772                 get_task_struct(task);
3773         }
3774         ctx->pmu = pmu;
3775
3776         return ctx;
3777 }
3778
3779 static struct task_struct *
3780 find_lively_task_by_vpid(pid_t vpid)
3781 {
3782         struct task_struct *task;
3783
3784         rcu_read_lock();
3785         if (!vpid)
3786                 task = current;
3787         else
3788                 task = find_task_by_vpid(vpid);
3789         if (task)
3790                 get_task_struct(task);
3791         rcu_read_unlock();
3792
3793         if (!task)
3794                 return ERR_PTR(-ESRCH);
3795
3796         return task;
3797 }
3798
3799 /*
3800  * Returns a matching context with refcount and pincount.
3801  */
3802 static struct perf_event_context *
3803 find_get_context(struct pmu *pmu, struct task_struct *task,
3804                 struct perf_event *event)
3805 {
3806         struct perf_event_context *ctx, *clone_ctx = NULL;
3807         struct perf_cpu_context *cpuctx;
3808         void *task_ctx_data = NULL;
3809         unsigned long flags;
3810         int ctxn, err;
3811         int cpu = event->cpu;
3812
3813         if (!task) {
3814                 /* Must be root to operate on a CPU event: */
3815                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3816                         return ERR_PTR(-EACCES);
3817
3818                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3819                 ctx = &cpuctx->ctx;
3820                 get_ctx(ctx);
3821                 ++ctx->pin_count;
3822
3823                 return ctx;
3824         }
3825
3826         err = -EINVAL;
3827         ctxn = pmu->task_ctx_nr;
3828         if (ctxn < 0)
3829                 goto errout;
3830
3831         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3832                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3833                 if (!task_ctx_data) {
3834                         err = -ENOMEM;
3835                         goto errout;
3836                 }
3837         }
3838
3839 retry:
3840         ctx = perf_lock_task_context(task, ctxn, &flags);
3841         if (ctx) {
3842                 clone_ctx = unclone_ctx(ctx);
3843                 ++ctx->pin_count;
3844
3845                 if (task_ctx_data && !ctx->task_ctx_data) {
3846                         ctx->task_ctx_data = task_ctx_data;
3847                         task_ctx_data = NULL;
3848                 }
3849                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3850
3851                 if (clone_ctx)
3852                         put_ctx(clone_ctx);
3853         } else {
3854                 ctx = alloc_perf_context(pmu, task);
3855                 err = -ENOMEM;
3856                 if (!ctx)
3857                         goto errout;
3858
3859                 if (task_ctx_data) {
3860                         ctx->task_ctx_data = task_ctx_data;
3861                         task_ctx_data = NULL;
3862                 }
3863
3864                 err = 0;
3865                 mutex_lock(&task->perf_event_mutex);
3866                 /*
3867                  * If it has already passed perf_event_exit_task().
3868                  * we must see PF_EXITING, it takes this mutex too.
3869                  */
3870                 if (task->flags & PF_EXITING)
3871                         err = -ESRCH;
3872                 else if (task->perf_event_ctxp[ctxn])
3873                         err = -EAGAIN;
3874                 else {
3875                         get_ctx(ctx);
3876                         ++ctx->pin_count;
3877                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3878                 }
3879                 mutex_unlock(&task->perf_event_mutex);
3880
3881                 if (unlikely(err)) {
3882                         put_ctx(ctx);
3883
3884                         if (err == -EAGAIN)
3885                                 goto retry;
3886                         goto errout;
3887                 }
3888         }
3889
3890         kfree(task_ctx_data);
3891         return ctx;
3892
3893 errout:
3894         kfree(task_ctx_data);
3895         return ERR_PTR(err);
3896 }
3897
3898 static void perf_event_free_filter(struct perf_event *event);
3899 static void perf_event_free_bpf_prog(struct perf_event *event);
3900
3901 static void free_event_rcu(struct rcu_head *head)
3902 {
3903         struct perf_event *event;
3904
3905         event = container_of(head, struct perf_event, rcu_head);
3906         if (event->ns)
3907                 put_pid_ns(event->ns);
3908         perf_event_free_filter(event);
3909         kfree(event);
3910 }
3911
3912 static void ring_buffer_attach(struct perf_event *event,
3913                                struct ring_buffer *rb);
3914
3915 static void detach_sb_event(struct perf_event *event)
3916 {
3917         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3918
3919         raw_spin_lock(&pel->lock);
3920         list_del_rcu(&event->sb_list);
3921         raw_spin_unlock(&pel->lock);
3922 }
3923
3924 static bool is_sb_event(struct perf_event *event)
3925 {
3926         struct perf_event_attr *attr = &event->attr;
3927
3928         if (event->parent)
3929                 return false;
3930
3931         if (event->attach_state & PERF_ATTACH_TASK)
3932                 return false;
3933
3934         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3935             attr->comm || attr->comm_exec ||
3936             attr->task ||
3937             attr->context_switch)
3938                 return true;
3939         return false;
3940 }
3941
3942 static void unaccount_pmu_sb_event(struct perf_event *event)
3943 {
3944         if (is_sb_event(event))
3945                 detach_sb_event(event);
3946 }
3947
3948 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3949 {
3950         if (event->parent)
3951                 return;
3952
3953         if (is_cgroup_event(event))
3954                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3955 }
3956
3957 #ifdef CONFIG_NO_HZ_FULL
3958 static DEFINE_SPINLOCK(nr_freq_lock);
3959 #endif
3960
3961 static void unaccount_freq_event_nohz(void)
3962 {
3963 #ifdef CONFIG_NO_HZ_FULL
3964         spin_lock(&nr_freq_lock);
3965         if (atomic_dec_and_test(&nr_freq_events))
3966                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3967         spin_unlock(&nr_freq_lock);
3968 #endif
3969 }
3970
3971 static void unaccount_freq_event(void)
3972 {
3973         if (tick_nohz_full_enabled())
3974                 unaccount_freq_event_nohz();
3975         else
3976                 atomic_dec(&nr_freq_events);
3977 }
3978
3979 static void unaccount_event(struct perf_event *event)
3980 {
3981         bool dec = false;
3982
3983         if (event->parent)
3984                 return;
3985
3986         if (event->attach_state & PERF_ATTACH_TASK)
3987                 dec = true;
3988         if (event->attr.mmap || event->attr.mmap_data)
3989                 atomic_dec(&nr_mmap_events);
3990         if (event->attr.comm)
3991                 atomic_dec(&nr_comm_events);
3992         if (event->attr.namespaces)
3993                 atomic_dec(&nr_namespaces_events);
3994         if (event->attr.task)
3995                 atomic_dec(&nr_task_events);
3996         if (event->attr.freq)
3997                 unaccount_freq_event();
3998         if (event->attr.context_switch) {
3999                 dec = true;
4000                 atomic_dec(&nr_switch_events);
4001         }
4002         if (is_cgroup_event(event))
4003                 dec = true;
4004         if (has_branch_stack(event))
4005                 dec = true;
4006
4007         if (dec) {
4008                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4009                         schedule_delayed_work(&perf_sched_work, HZ);
4010         }
4011
4012         unaccount_event_cpu(event, event->cpu);
4013
4014         unaccount_pmu_sb_event(event);
4015 }
4016
4017 static void perf_sched_delayed(struct work_struct *work)
4018 {
4019         mutex_lock(&perf_sched_mutex);
4020         if (atomic_dec_and_test(&perf_sched_count))
4021                 static_branch_disable(&perf_sched_events);
4022         mutex_unlock(&perf_sched_mutex);
4023 }
4024
4025 /*
4026  * The following implement mutual exclusion of events on "exclusive" pmus
4027  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4028  * at a time, so we disallow creating events that might conflict, namely:
4029  *
4030  *  1) cpu-wide events in the presence of per-task events,
4031  *  2) per-task events in the presence of cpu-wide events,
4032  *  3) two matching events on the same context.
4033  *
4034  * The former two cases are handled in the allocation path (perf_event_alloc(),
4035  * _free_event()), the latter -- before the first perf_install_in_context().
4036  */
4037 static int exclusive_event_init(struct perf_event *event)
4038 {
4039         struct pmu *pmu = event->pmu;
4040
4041         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4042                 return 0;
4043
4044         /*
4045          * Prevent co-existence of per-task and cpu-wide events on the
4046          * same exclusive pmu.
4047          *
4048          * Negative pmu::exclusive_cnt means there are cpu-wide
4049          * events on this "exclusive" pmu, positive means there are
4050          * per-task events.
4051          *
4052          * Since this is called in perf_event_alloc() path, event::ctx
4053          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4054          * to mean "per-task event", because unlike other attach states it
4055          * never gets cleared.
4056          */
4057         if (event->attach_state & PERF_ATTACH_TASK) {
4058                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4059                         return -EBUSY;
4060         } else {
4061                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4062                         return -EBUSY;
4063         }
4064
4065         return 0;
4066 }
4067
4068 static void exclusive_event_destroy(struct perf_event *event)
4069 {
4070         struct pmu *pmu = event->pmu;
4071
4072         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4073                 return;
4074
4075         /* see comment in exclusive_event_init() */
4076         if (event->attach_state & PERF_ATTACH_TASK)
4077                 atomic_dec(&pmu->exclusive_cnt);
4078         else
4079                 atomic_inc(&pmu->exclusive_cnt);
4080 }
4081
4082 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4083 {
4084         if ((e1->pmu == e2->pmu) &&
4085             (e1->cpu == e2->cpu ||
4086              e1->cpu == -1 ||
4087              e2->cpu == -1))
4088                 return true;
4089         return false;
4090 }
4091
4092 /* Called under the same ctx::mutex as perf_install_in_context() */
4093 static bool exclusive_event_installable(struct perf_event *event,
4094                                         struct perf_event_context *ctx)
4095 {
4096         struct perf_event *iter_event;
4097         struct pmu *pmu = event->pmu;
4098
4099         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4100                 return true;
4101
4102         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4103                 if (exclusive_event_match(iter_event, event))
4104                         return false;
4105         }
4106
4107         return true;
4108 }
4109
4110 static void perf_addr_filters_splice(struct perf_event *event,
4111                                        struct list_head *head);
4112
4113 static void _free_event(struct perf_event *event)
4114 {
4115         irq_work_sync(&event->pending);
4116
4117         unaccount_event(event);
4118
4119         if (event->rb) {
4120                 /*
4121                  * Can happen when we close an event with re-directed output.
4122                  *
4123                  * Since we have a 0 refcount, perf_mmap_close() will skip
4124                  * over us; possibly making our ring_buffer_put() the last.
4125                  */
4126                 mutex_lock(&event->mmap_mutex);
4127                 ring_buffer_attach(event, NULL);
4128                 mutex_unlock(&event->mmap_mutex);
4129         }
4130
4131         if (is_cgroup_event(event))
4132                 perf_detach_cgroup(event);
4133
4134         if (!event->parent) {
4135                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4136                         put_callchain_buffers();
4137         }
4138
4139         perf_event_free_bpf_prog(event);
4140         perf_addr_filters_splice(event, NULL);
4141         kfree(event->addr_filters_offs);
4142
4143         if (event->destroy)
4144                 event->destroy(event);
4145
4146         if (event->ctx)
4147                 put_ctx(event->ctx);
4148
4149         exclusive_event_destroy(event);
4150         module_put(event->pmu->module);
4151
4152         call_rcu(&event->rcu_head, free_event_rcu);
4153 }
4154
4155 /*
4156  * Used to free events which have a known refcount of 1, such as in error paths
4157  * where the event isn't exposed yet and inherited events.
4158  */
4159 static void free_event(struct perf_event *event)
4160 {
4161         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4162                                 "unexpected event refcount: %ld; ptr=%p\n",
4163                                 atomic_long_read(&event->refcount), event)) {
4164                 /* leak to avoid use-after-free */
4165                 return;
4166         }
4167
4168         _free_event(event);
4169 }
4170
4171 /*
4172  * Remove user event from the owner task.
4173  */
4174 static void perf_remove_from_owner(struct perf_event *event)
4175 {
4176         struct task_struct *owner;
4177
4178         rcu_read_lock();
4179         /*
4180          * Matches the smp_store_release() in perf_event_exit_task(). If we
4181          * observe !owner it means the list deletion is complete and we can
4182          * indeed free this event, otherwise we need to serialize on
4183          * owner->perf_event_mutex.
4184          */
4185         owner = lockless_dereference(event->owner);
4186         if (owner) {
4187                 /*
4188                  * Since delayed_put_task_struct() also drops the last
4189                  * task reference we can safely take a new reference
4190                  * while holding the rcu_read_lock().
4191                  */
4192                 get_task_struct(owner);
4193         }
4194         rcu_read_unlock();
4195
4196         if (owner) {
4197                 /*
4198                  * If we're here through perf_event_exit_task() we're already
4199                  * holding ctx->mutex which would be an inversion wrt. the
4200                  * normal lock order.
4201                  *
4202                  * However we can safely take this lock because its the child
4203                  * ctx->mutex.
4204                  */
4205                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4206
4207                 /*
4208                  * We have to re-check the event->owner field, if it is cleared
4209                  * we raced with perf_event_exit_task(), acquiring the mutex
4210                  * ensured they're done, and we can proceed with freeing the
4211                  * event.
4212                  */
4213                 if (event->owner) {
4214                         list_del_init(&event->owner_entry);
4215                         smp_store_release(&event->owner, NULL);
4216                 }
4217                 mutex_unlock(&owner->perf_event_mutex);
4218                 put_task_struct(owner);
4219         }
4220 }
4221
4222 static void put_event(struct perf_event *event)
4223 {
4224         if (!atomic_long_dec_and_test(&event->refcount))
4225                 return;
4226
4227         _free_event(event);
4228 }
4229
4230 /*
4231  * Kill an event dead; while event:refcount will preserve the event
4232  * object, it will not preserve its functionality. Once the last 'user'
4233  * gives up the object, we'll destroy the thing.
4234  */
4235 int perf_event_release_kernel(struct perf_event *event)
4236 {
4237         struct perf_event_context *ctx = event->ctx;
4238         struct perf_event *child, *tmp;
4239
4240         /*
4241          * If we got here through err_file: fput(event_file); we will not have
4242          * attached to a context yet.
4243          */
4244         if (!ctx) {
4245                 WARN_ON_ONCE(event->attach_state &
4246                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4247                 goto no_ctx;
4248         }
4249
4250         if (!is_kernel_event(event))
4251                 perf_remove_from_owner(event);
4252
4253         ctx = perf_event_ctx_lock(event);
4254         WARN_ON_ONCE(ctx->parent_ctx);
4255         perf_remove_from_context(event, DETACH_GROUP);
4256
4257         raw_spin_lock_irq(&ctx->lock);
4258         /*
4259          * Mark this event as STATE_DEAD, there is no external reference to it
4260          * anymore.
4261          *
4262          * Anybody acquiring event->child_mutex after the below loop _must_
4263          * also see this, most importantly inherit_event() which will avoid
4264          * placing more children on the list.
4265          *
4266          * Thus this guarantees that we will in fact observe and kill _ALL_
4267          * child events.
4268          */
4269         event->state = PERF_EVENT_STATE_DEAD;
4270         raw_spin_unlock_irq(&ctx->lock);
4271
4272         perf_event_ctx_unlock(event, ctx);
4273
4274 again:
4275         mutex_lock(&event->child_mutex);
4276         list_for_each_entry(child, &event->child_list, child_list) {
4277
4278                 /*
4279                  * Cannot change, child events are not migrated, see the
4280                  * comment with perf_event_ctx_lock_nested().
4281                  */
4282                 ctx = lockless_dereference(child->ctx);
4283                 /*
4284                  * Since child_mutex nests inside ctx::mutex, we must jump
4285                  * through hoops. We start by grabbing a reference on the ctx.
4286                  *
4287                  * Since the event cannot get freed while we hold the
4288                  * child_mutex, the context must also exist and have a !0
4289                  * reference count.
4290                  */
4291                 get_ctx(ctx);
4292
4293                 /*
4294                  * Now that we have a ctx ref, we can drop child_mutex, and
4295                  * acquire ctx::mutex without fear of it going away. Then we
4296                  * can re-acquire child_mutex.
4297                  */
4298                 mutex_unlock(&event->child_mutex);
4299                 mutex_lock(&ctx->mutex);
4300                 mutex_lock(&event->child_mutex);
4301
4302                 /*
4303                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4304                  * state, if child is still the first entry, it didn't get freed
4305                  * and we can continue doing so.
4306                  */
4307                 tmp = list_first_entry_or_null(&event->child_list,
4308                                                struct perf_event, child_list);
4309                 if (tmp == child) {
4310                         perf_remove_from_context(child, DETACH_GROUP);
4311                         list_del(&child->child_list);
4312                         free_event(child);
4313                         /*
4314                          * This matches the refcount bump in inherit_event();
4315                          * this can't be the last reference.
4316                          */
4317                         put_event(event);
4318                 }
4319
4320                 mutex_unlock(&event->child_mutex);
4321                 mutex_unlock(&ctx->mutex);
4322                 put_ctx(ctx);
4323                 goto again;
4324         }
4325         mutex_unlock(&event->child_mutex);
4326
4327 no_ctx:
4328         put_event(event); /* Must be the 'last' reference */
4329         return 0;
4330 }
4331 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4332
4333 /*
4334  * Called when the last reference to the file is gone.
4335  */
4336 static int perf_release(struct inode *inode, struct file *file)
4337 {
4338         perf_event_release_kernel(file->private_data);
4339         return 0;
4340 }
4341
4342 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4343 {
4344         struct perf_event *child;
4345         u64 total = 0;
4346
4347         *enabled = 0;
4348         *running = 0;
4349
4350         mutex_lock(&event->child_mutex);
4351
4352         (void)perf_event_read(event, false);
4353         total += perf_event_count(event);
4354
4355         *enabled += event->total_time_enabled +
4356                         atomic64_read(&event->child_total_time_enabled);
4357         *running += event->total_time_running +
4358                         atomic64_read(&event->child_total_time_running);
4359
4360         list_for_each_entry(child, &event->child_list, child_list) {
4361                 (void)perf_event_read(child, false);
4362                 total += perf_event_count(child);
4363                 *enabled += child->total_time_enabled;
4364                 *running += child->total_time_running;
4365         }
4366         mutex_unlock(&event->child_mutex);
4367
4368         return total;
4369 }
4370 EXPORT_SYMBOL_GPL(perf_event_read_value);
4371
4372 static int __perf_read_group_add(struct perf_event *leader,
4373                                         u64 read_format, u64 *values)
4374 {
4375         struct perf_event *sub;
4376         int n = 1; /* skip @nr */
4377         int ret;
4378
4379         ret = perf_event_read(leader, true);
4380         if (ret)
4381                 return ret;
4382
4383         /*
4384          * Since we co-schedule groups, {enabled,running} times of siblings
4385          * will be identical to those of the leader, so we only publish one
4386          * set.
4387          */
4388         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4389                 values[n++] += leader->total_time_enabled +
4390                         atomic64_read(&leader->child_total_time_enabled);
4391         }
4392
4393         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4394                 values[n++] += leader->total_time_running +
4395                         atomic64_read(&leader->child_total_time_running);
4396         }
4397
4398         /*
4399          * Write {count,id} tuples for every sibling.
4400          */
4401         values[n++] += perf_event_count(leader);
4402         if (read_format & PERF_FORMAT_ID)
4403                 values[n++] = primary_event_id(leader);
4404
4405         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4406                 values[n++] += perf_event_count(sub);
4407                 if (read_format & PERF_FORMAT_ID)
4408                         values[n++] = primary_event_id(sub);
4409         }
4410
4411         return 0;
4412 }
4413
4414 static int perf_read_group(struct perf_event *event,
4415                                    u64 read_format, char __user *buf)
4416 {
4417         struct perf_event *leader = event->group_leader, *child;
4418         struct perf_event_context *ctx = leader->ctx;
4419         int ret;
4420         u64 *values;
4421
4422         lockdep_assert_held(&ctx->mutex);
4423
4424         values = kzalloc(event->read_size, GFP_KERNEL);
4425         if (!values)
4426                 return -ENOMEM;
4427
4428         values[0] = 1 + leader->nr_siblings;
4429
4430         /*
4431          * By locking the child_mutex of the leader we effectively
4432          * lock the child list of all siblings.. XXX explain how.
4433          */
4434         mutex_lock(&leader->child_mutex);
4435
4436         ret = __perf_read_group_add(leader, read_format, values);
4437         if (ret)
4438                 goto unlock;
4439
4440         list_for_each_entry(child, &leader->child_list, child_list) {
4441                 ret = __perf_read_group_add(child, read_format, values);
4442                 if (ret)
4443                         goto unlock;
4444         }
4445
4446         mutex_unlock(&leader->child_mutex);
4447
4448         ret = event->read_size;
4449         if (copy_to_user(buf, values, event->read_size))
4450                 ret = -EFAULT;
4451         goto out;
4452
4453 unlock:
4454         mutex_unlock(&leader->child_mutex);
4455 out:
4456         kfree(values);
4457         return ret;
4458 }
4459
4460 static int perf_read_one(struct perf_event *event,
4461                                  u64 read_format, char __user *buf)
4462 {
4463         u64 enabled, running;
4464         u64 values[4];
4465         int n = 0;
4466
4467         values[n++] = perf_event_read_value(event, &enabled, &running);
4468         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4469                 values[n++] = enabled;
4470         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4471                 values[n++] = running;
4472         if (read_format & PERF_FORMAT_ID)
4473                 values[n++] = primary_event_id(event);
4474
4475         if (copy_to_user(buf, values, n * sizeof(u64)))
4476                 return -EFAULT;
4477
4478         return n * sizeof(u64);
4479 }
4480
4481 static bool is_event_hup(struct perf_event *event)
4482 {
4483         bool no_children;
4484
4485         if (event->state > PERF_EVENT_STATE_EXIT)
4486                 return false;
4487
4488         mutex_lock(&event->child_mutex);
4489         no_children = list_empty(&event->child_list);
4490         mutex_unlock(&event->child_mutex);
4491         return no_children;
4492 }
4493
4494 /*
4495  * Read the performance event - simple non blocking version for now
4496  */
4497 static ssize_t
4498 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4499 {
4500         u64 read_format = event->attr.read_format;
4501         int ret;
4502
4503         /*
4504          * Return end-of-file for a read on a event that is in
4505          * error state (i.e. because it was pinned but it couldn't be
4506          * scheduled on to the CPU at some point).
4507          */
4508         if (event->state == PERF_EVENT_STATE_ERROR)
4509                 return 0;
4510
4511         if (count < event->read_size)
4512                 return -ENOSPC;
4513
4514         WARN_ON_ONCE(event->ctx->parent_ctx);
4515         if (read_format & PERF_FORMAT_GROUP)
4516                 ret = perf_read_group(event, read_format, buf);
4517         else
4518                 ret = perf_read_one(event, read_format, buf);
4519
4520         return ret;
4521 }
4522
4523 static ssize_t
4524 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4525 {
4526         struct perf_event *event = file->private_data;
4527         struct perf_event_context *ctx;
4528         int ret;
4529
4530         ctx = perf_event_ctx_lock(event);
4531         ret = __perf_read(event, buf, count);
4532         perf_event_ctx_unlock(event, ctx);
4533
4534         return ret;
4535 }
4536
4537 static unsigned int perf_poll(struct file *file, poll_table *wait)
4538 {
4539         struct perf_event *event = file->private_data;
4540         struct ring_buffer *rb;
4541         unsigned int events = POLLHUP;
4542
4543         poll_wait(file, &event->waitq, wait);
4544
4545         if (is_event_hup(event))
4546                 return events;
4547
4548         /*
4549          * Pin the event->rb by taking event->mmap_mutex; otherwise
4550          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4551          */
4552         mutex_lock(&event->mmap_mutex);
4553         rb = event->rb;
4554         if (rb)
4555                 events = atomic_xchg(&rb->poll, 0);
4556         mutex_unlock(&event->mmap_mutex);
4557         return events;
4558 }
4559
4560 static void _perf_event_reset(struct perf_event *event)
4561 {
4562         (void)perf_event_read(event, false);
4563         local64_set(&event->count, 0);
4564         perf_event_update_userpage(event);
4565 }
4566
4567 /*
4568  * Holding the top-level event's child_mutex means that any
4569  * descendant process that has inherited this event will block
4570  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4571  * task existence requirements of perf_event_enable/disable.
4572  */
4573 static void perf_event_for_each_child(struct perf_event *event,
4574                                         void (*func)(struct perf_event *))
4575 {
4576         struct perf_event *child;
4577
4578         WARN_ON_ONCE(event->ctx->parent_ctx);
4579
4580         mutex_lock(&event->child_mutex);
4581         func(event);
4582         list_for_each_entry(child, &event->child_list, child_list)
4583                 func(child);
4584         mutex_unlock(&event->child_mutex);
4585 }
4586
4587 static void perf_event_for_each(struct perf_event *event,
4588                                   void (*func)(struct perf_event *))
4589 {
4590         struct perf_event_context *ctx = event->ctx;
4591         struct perf_event *sibling;
4592
4593         lockdep_assert_held(&ctx->mutex);
4594
4595         event = event->group_leader;
4596
4597         perf_event_for_each_child(event, func);
4598         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4599                 perf_event_for_each_child(sibling, func);
4600 }
4601
4602 static void __perf_event_period(struct perf_event *event,
4603                                 struct perf_cpu_context *cpuctx,
4604                                 struct perf_event_context *ctx,
4605                                 void *info)
4606 {
4607         u64 value = *((u64 *)info);
4608         bool active;
4609
4610         if (event->attr.freq) {
4611                 event->attr.sample_freq = value;
4612         } else {
4613                 event->attr.sample_period = value;
4614                 event->hw.sample_period = value;
4615         }
4616
4617         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4618         if (active) {
4619                 perf_pmu_disable(ctx->pmu);
4620                 /*
4621                  * We could be throttled; unthrottle now to avoid the tick
4622                  * trying to unthrottle while we already re-started the event.
4623                  */
4624                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4625                         event->hw.interrupts = 0;
4626                         perf_log_throttle(event, 1);
4627                 }
4628                 event->pmu->stop(event, PERF_EF_UPDATE);
4629         }
4630
4631         local64_set(&event->hw.period_left, 0);
4632
4633         if (active) {
4634                 event->pmu->start(event, PERF_EF_RELOAD);
4635                 perf_pmu_enable(ctx->pmu);
4636         }
4637 }
4638
4639 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4640 {
4641         u64 value;
4642
4643         if (!is_sampling_event(event))
4644                 return -EINVAL;
4645
4646         if (copy_from_user(&value, arg, sizeof(value)))
4647                 return -EFAULT;
4648
4649         if (!value)
4650                 return -EINVAL;
4651
4652         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4653                 return -EINVAL;
4654
4655         event_function_call(event, __perf_event_period, &value);
4656
4657         return 0;
4658 }
4659
4660 static const struct file_operations perf_fops;
4661
4662 static inline int perf_fget_light(int fd, struct fd *p)
4663 {
4664         struct fd f = fdget(fd);
4665         if (!f.file)
4666                 return -EBADF;
4667
4668         if (f.file->f_op != &perf_fops) {
4669                 fdput(f);
4670                 return -EBADF;
4671         }
4672         *p = f;
4673         return 0;
4674 }
4675
4676 static int perf_event_set_output(struct perf_event *event,
4677                                  struct perf_event *output_event);
4678 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4679 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4680
4681 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4682 {
4683         void (*func)(struct perf_event *);
4684         u32 flags = arg;
4685
4686         switch (cmd) {
4687         case PERF_EVENT_IOC_ENABLE:
4688                 func = _perf_event_enable;
4689                 break;
4690         case PERF_EVENT_IOC_DISABLE:
4691                 func = _perf_event_disable;
4692                 break;
4693         case PERF_EVENT_IOC_RESET:
4694                 func = _perf_event_reset;
4695                 break;
4696
4697         case PERF_EVENT_IOC_REFRESH:
4698                 return _perf_event_refresh(event, arg);
4699
4700         case PERF_EVENT_IOC_PERIOD:
4701                 return perf_event_period(event, (u64 __user *)arg);
4702
4703         case PERF_EVENT_IOC_ID:
4704         {
4705                 u64 id = primary_event_id(event);
4706
4707                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4708                         return -EFAULT;
4709                 return 0;
4710         }
4711
4712         case PERF_EVENT_IOC_SET_OUTPUT:
4713         {
4714                 int ret;
4715                 if (arg != -1) {
4716                         struct perf_event *output_event;
4717                         struct fd output;
4718                         ret = perf_fget_light(arg, &output);
4719                         if (ret)
4720                                 return ret;
4721                         output_event = output.file->private_data;
4722                         ret = perf_event_set_output(event, output_event);
4723                         fdput(output);
4724                 } else {
4725                         ret = perf_event_set_output(event, NULL);
4726                 }
4727                 return ret;
4728         }
4729
4730         case PERF_EVENT_IOC_SET_FILTER:
4731                 return perf_event_set_filter(event, (void __user *)arg);
4732
4733         case PERF_EVENT_IOC_SET_BPF:
4734                 return perf_event_set_bpf_prog(event, arg);
4735
4736         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4737                 struct ring_buffer *rb;
4738
4739                 rcu_read_lock();
4740                 rb = rcu_dereference(event->rb);
4741                 if (!rb || !rb->nr_pages) {
4742                         rcu_read_unlock();
4743                         return -EINVAL;
4744                 }
4745                 rb_toggle_paused(rb, !!arg);
4746                 rcu_read_unlock();
4747                 return 0;
4748         }
4749         default:
4750                 return -ENOTTY;
4751         }
4752
4753         if (flags & PERF_IOC_FLAG_GROUP)
4754                 perf_event_for_each(event, func);
4755         else
4756                 perf_event_for_each_child(event, func);
4757
4758         return 0;
4759 }
4760
4761 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4762 {
4763         struct perf_event *event = file->private_data;
4764         struct perf_event_context *ctx;
4765         long ret;
4766
4767         ctx = perf_event_ctx_lock(event);
4768         ret = _perf_ioctl(event, cmd, arg);
4769         perf_event_ctx_unlock(event, ctx);
4770
4771         return ret;
4772 }
4773
4774 #ifdef CONFIG_COMPAT
4775 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4776                                 unsigned long arg)
4777 {
4778         switch (_IOC_NR(cmd)) {
4779         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4780         case _IOC_NR(PERF_EVENT_IOC_ID):
4781                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4782                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4783                         cmd &= ~IOCSIZE_MASK;
4784                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4785                 }
4786                 break;
4787         }
4788         return perf_ioctl(file, cmd, arg);
4789 }
4790 #else
4791 # define perf_compat_ioctl NULL
4792 #endif
4793
4794 int perf_event_task_enable(void)
4795 {
4796         struct perf_event_context *ctx;
4797         struct perf_event *event;
4798
4799         mutex_lock(&current->perf_event_mutex);
4800         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4801                 ctx = perf_event_ctx_lock(event);
4802                 perf_event_for_each_child(event, _perf_event_enable);
4803                 perf_event_ctx_unlock(event, ctx);
4804         }
4805         mutex_unlock(&current->perf_event_mutex);
4806
4807         return 0;
4808 }
4809
4810 int perf_event_task_disable(void)
4811 {
4812         struct perf_event_context *ctx;
4813         struct perf_event *event;
4814
4815         mutex_lock(&current->perf_event_mutex);
4816         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4817                 ctx = perf_event_ctx_lock(event);
4818                 perf_event_for_each_child(event, _perf_event_disable);
4819                 perf_event_ctx_unlock(event, ctx);
4820         }
4821         mutex_unlock(&current->perf_event_mutex);
4822
4823         return 0;
4824 }
4825
4826 static int perf_event_index(struct perf_event *event)
4827 {
4828         if (event->hw.state & PERF_HES_STOPPED)
4829                 return 0;
4830
4831         if (event->state != PERF_EVENT_STATE_ACTIVE)
4832                 return 0;
4833
4834         return event->pmu->event_idx(event);
4835 }
4836
4837 static void calc_timer_values(struct perf_event *event,
4838                                 u64 *now,
4839                                 u64 *enabled,
4840                                 u64 *running)
4841 {
4842         u64 ctx_time;
4843
4844         *now = perf_clock();
4845         ctx_time = event->shadow_ctx_time + *now;
4846         *enabled = ctx_time - event->tstamp_enabled;
4847         *running = ctx_time - event->tstamp_running;
4848 }
4849
4850 static void perf_event_init_userpage(struct perf_event *event)
4851 {
4852         struct perf_event_mmap_page *userpg;
4853         struct ring_buffer *rb;
4854
4855         rcu_read_lock();
4856         rb = rcu_dereference(event->rb);
4857         if (!rb)
4858                 goto unlock;
4859
4860         userpg = rb->user_page;
4861
4862         /* Allow new userspace to detect that bit 0 is deprecated */
4863         userpg->cap_bit0_is_deprecated = 1;
4864         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4865         userpg->data_offset = PAGE_SIZE;
4866         userpg->data_size = perf_data_size(rb);
4867
4868 unlock:
4869         rcu_read_unlock();
4870 }
4871
4872 void __weak arch_perf_update_userpage(
4873         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4874 {
4875 }
4876
4877 /*
4878  * Callers need to ensure there can be no nesting of this function, otherwise
4879  * the seqlock logic goes bad. We can not serialize this because the arch
4880  * code calls this from NMI context.
4881  */
4882 void perf_event_update_userpage(struct perf_event *event)
4883 {
4884         struct perf_event_mmap_page *userpg;
4885         struct ring_buffer *rb;
4886         u64 enabled, running, now;
4887
4888         rcu_read_lock();
4889         rb = rcu_dereference(event->rb);
4890         if (!rb)
4891                 goto unlock;
4892
4893         /*
4894          * compute total_time_enabled, total_time_running
4895          * based on snapshot values taken when the event
4896          * was last scheduled in.
4897          *
4898          * we cannot simply called update_context_time()
4899          * because of locking issue as we can be called in
4900          * NMI context
4901          */
4902         calc_timer_values(event, &now, &enabled, &running);
4903
4904         userpg = rb->user_page;
4905         /*
4906          * Disable preemption so as to not let the corresponding user-space
4907          * spin too long if we get preempted.
4908          */
4909         preempt_disable();
4910         ++userpg->lock;
4911         barrier();
4912         userpg->index = perf_event_index(event);
4913         userpg->offset = perf_event_count(event);
4914         if (userpg->index)
4915                 userpg->offset -= local64_read(&event->hw.prev_count);
4916
4917         userpg->time_enabled = enabled +
4918                         atomic64_read(&event->child_total_time_enabled);
4919
4920         userpg->time_running = running +
4921                         atomic64_read(&event->child_total_time_running);
4922
4923         arch_perf_update_userpage(event, userpg, now);
4924
4925         barrier();
4926         ++userpg->lock;
4927         preempt_enable();
4928 unlock:
4929         rcu_read_unlock();
4930 }
4931
4932 static int perf_mmap_fault(struct vm_fault *vmf)
4933 {
4934         struct perf_event *event = vmf->vma->vm_file->private_data;
4935         struct ring_buffer *rb;
4936         int ret = VM_FAULT_SIGBUS;
4937
4938         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4939                 if (vmf->pgoff == 0)
4940                         ret = 0;
4941                 return ret;
4942         }
4943
4944         rcu_read_lock();
4945         rb = rcu_dereference(event->rb);
4946         if (!rb)
4947                 goto unlock;
4948
4949         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4950                 goto unlock;
4951
4952         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4953         if (!vmf->page)
4954                 goto unlock;
4955
4956         get_page(vmf->page);
4957         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4958         vmf->page->index   = vmf->pgoff;
4959
4960         ret = 0;
4961 unlock:
4962         rcu_read_unlock();
4963
4964         return ret;
4965 }
4966
4967 static void ring_buffer_attach(struct perf_event *event,
4968                                struct ring_buffer *rb)
4969 {
4970         struct ring_buffer *old_rb = NULL;
4971         unsigned long flags;
4972
4973         if (event->rb) {
4974                 /*
4975                  * Should be impossible, we set this when removing
4976                  * event->rb_entry and wait/clear when adding event->rb_entry.
4977                  */
4978                 WARN_ON_ONCE(event->rcu_pending);
4979
4980                 old_rb = event->rb;
4981                 spin_lock_irqsave(&old_rb->event_lock, flags);
4982                 list_del_rcu(&event->rb_entry);
4983                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4984
4985                 event->rcu_batches = get_state_synchronize_rcu();
4986                 event->rcu_pending = 1;
4987         }
4988
4989         if (rb) {
4990                 if (event->rcu_pending) {
4991                         cond_synchronize_rcu(event->rcu_batches);
4992                         event->rcu_pending = 0;
4993                 }
4994
4995                 spin_lock_irqsave(&rb->event_lock, flags);
4996                 list_add_rcu(&event->rb_entry, &rb->event_list);
4997                 spin_unlock_irqrestore(&rb->event_lock, flags);
4998         }
4999
5000         /*
5001          * Avoid racing with perf_mmap_close(AUX): stop the event
5002          * before swizzling the event::rb pointer; if it's getting
5003          * unmapped, its aux_mmap_count will be 0 and it won't
5004          * restart. See the comment in __perf_pmu_output_stop().
5005          *
5006          * Data will inevitably be lost when set_output is done in
5007          * mid-air, but then again, whoever does it like this is
5008          * not in for the data anyway.
5009          */
5010         if (has_aux(event))
5011                 perf_event_stop(event, 0);
5012
5013         rcu_assign_pointer(event->rb, rb);
5014
5015         if (old_rb) {
5016                 ring_buffer_put(old_rb);
5017                 /*
5018                  * Since we detached before setting the new rb, so that we
5019                  * could attach the new rb, we could have missed a wakeup.
5020                  * Provide it now.
5021                  */
5022                 wake_up_all(&event->waitq);
5023         }
5024 }
5025
5026 static void ring_buffer_wakeup(struct perf_event *event)
5027 {
5028         struct ring_buffer *rb;
5029
5030         rcu_read_lock();
5031         rb = rcu_dereference(event->rb);
5032         if (rb) {
5033                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5034                         wake_up_all(&event->waitq);
5035         }
5036         rcu_read_unlock();
5037 }
5038
5039 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5040 {
5041         struct ring_buffer *rb;
5042
5043         rcu_read_lock();
5044         rb = rcu_dereference(event->rb);
5045         if (rb) {
5046                 if (!atomic_inc_not_zero(&rb->refcount))
5047                         rb = NULL;
5048         }
5049         rcu_read_unlock();
5050
5051         return rb;
5052 }
5053
5054 void ring_buffer_put(struct ring_buffer *rb)
5055 {
5056         if (!atomic_dec_and_test(&rb->refcount))
5057                 return;
5058
5059         WARN_ON_ONCE(!list_empty(&rb->event_list));
5060
5061         call_rcu(&rb->rcu_head, rb_free_rcu);
5062 }
5063
5064 static void perf_mmap_open(struct vm_area_struct *vma)
5065 {
5066         struct perf_event *event = vma->vm_file->private_data;
5067
5068         atomic_inc(&event->mmap_count);
5069         atomic_inc(&event->rb->mmap_count);
5070
5071         if (vma->vm_pgoff)
5072                 atomic_inc(&event->rb->aux_mmap_count);
5073
5074         if (event->pmu->event_mapped)
5075                 event->pmu->event_mapped(event);
5076 }
5077
5078 static void perf_pmu_output_stop(struct perf_event *event);
5079
5080 /*
5081  * A buffer can be mmap()ed multiple times; either directly through the same
5082  * event, or through other events by use of perf_event_set_output().
5083  *
5084  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5085  * the buffer here, where we still have a VM context. This means we need
5086  * to detach all events redirecting to us.
5087  */
5088 static void perf_mmap_close(struct vm_area_struct *vma)
5089 {
5090         struct perf_event *event = vma->vm_file->private_data;
5091
5092         struct ring_buffer *rb = ring_buffer_get(event);
5093         struct user_struct *mmap_user = rb->mmap_user;
5094         int mmap_locked = rb->mmap_locked;
5095         unsigned long size = perf_data_size(rb);
5096
5097         if (event->pmu->event_unmapped)
5098                 event->pmu->event_unmapped(event);
5099
5100         /*
5101          * rb->aux_mmap_count will always drop before rb->mmap_count and
5102          * event->mmap_count, so it is ok to use event->mmap_mutex to
5103          * serialize with perf_mmap here.
5104          */
5105         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5106             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5107                 /*
5108                  * Stop all AUX events that are writing to this buffer,
5109                  * so that we can free its AUX pages and corresponding PMU
5110                  * data. Note that after rb::aux_mmap_count dropped to zero,
5111                  * they won't start any more (see perf_aux_output_begin()).
5112                  */
5113                 perf_pmu_output_stop(event);
5114
5115                 /* now it's safe to free the pages */
5116                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5117                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5118
5119                 /* this has to be the last one */
5120                 rb_free_aux(rb);
5121                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5122
5123                 mutex_unlock(&event->mmap_mutex);
5124         }
5125
5126         atomic_dec(&rb->mmap_count);
5127
5128         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5129                 goto out_put;
5130
5131         ring_buffer_attach(event, NULL);
5132         mutex_unlock(&event->mmap_mutex);
5133
5134         /* If there's still other mmap()s of this buffer, we're done. */
5135         if (atomic_read(&rb->mmap_count))
5136                 goto out_put;
5137
5138         /*
5139          * No other mmap()s, detach from all other events that might redirect
5140          * into the now unreachable buffer. Somewhat complicated by the
5141          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5142          */
5143 again:
5144         rcu_read_lock();
5145         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5146                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5147                         /*
5148                          * This event is en-route to free_event() which will
5149                          * detach it and remove it from the list.
5150                          */
5151                         continue;
5152                 }
5153                 rcu_read_unlock();
5154
5155                 mutex_lock(&event->mmap_mutex);
5156                 /*
5157                  * Check we didn't race with perf_event_set_output() which can
5158                  * swizzle the rb from under us while we were waiting to
5159                  * acquire mmap_mutex.
5160                  *
5161                  * If we find a different rb; ignore this event, a next
5162                  * iteration will no longer find it on the list. We have to
5163                  * still restart the iteration to make sure we're not now
5164                  * iterating the wrong list.
5165                  */
5166                 if (event->rb == rb)
5167                         ring_buffer_attach(event, NULL);
5168
5169                 mutex_unlock(&event->mmap_mutex);
5170                 put_event(event);
5171
5172                 /*
5173                  * Restart the iteration; either we're on the wrong list or
5174                  * destroyed its integrity by doing a deletion.
5175                  */
5176                 goto again;
5177         }
5178         rcu_read_unlock();
5179
5180         /*
5181          * It could be there's still a few 0-ref events on the list; they'll
5182          * get cleaned up by free_event() -- they'll also still have their
5183          * ref on the rb and will free it whenever they are done with it.
5184          *
5185          * Aside from that, this buffer is 'fully' detached and unmapped,
5186          * undo the VM accounting.
5187          */
5188
5189         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5190         vma->vm_mm->pinned_vm -= mmap_locked;
5191         free_uid(mmap_user);
5192
5193 out_put:
5194         ring_buffer_put(rb); /* could be last */
5195 }
5196
5197 static const struct vm_operations_struct perf_mmap_vmops = {
5198         .open           = perf_mmap_open,
5199         .close          = perf_mmap_close, /* non mergable */
5200         .fault          = perf_mmap_fault,
5201         .page_mkwrite   = perf_mmap_fault,
5202 };
5203
5204 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5205 {
5206         struct perf_event *event = file->private_data;
5207         unsigned long user_locked, user_lock_limit;
5208         struct user_struct *user = current_user();
5209         unsigned long locked, lock_limit;
5210         struct ring_buffer *rb = NULL;
5211         unsigned long vma_size;
5212         unsigned long nr_pages;
5213         long user_extra = 0, extra = 0;
5214         int ret = 0, flags = 0;
5215
5216         /*
5217          * Don't allow mmap() of inherited per-task counters. This would
5218          * create a performance issue due to all children writing to the
5219          * same rb.
5220          */
5221         if (event->cpu == -1 && event->attr.inherit)
5222                 return -EINVAL;
5223
5224         if (!(vma->vm_flags & VM_SHARED))
5225                 return -EINVAL;
5226
5227         vma_size = vma->vm_end - vma->vm_start;
5228
5229         if (vma->vm_pgoff == 0) {
5230                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5231         } else {
5232                 /*
5233                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5234                  * mapped, all subsequent mappings should have the same size
5235                  * and offset. Must be above the normal perf buffer.
5236                  */
5237                 u64 aux_offset, aux_size;
5238
5239                 if (!event->rb)
5240                         return -EINVAL;
5241
5242                 nr_pages = vma_size / PAGE_SIZE;
5243
5244                 mutex_lock(&event->mmap_mutex);
5245                 ret = -EINVAL;
5246
5247                 rb = event->rb;
5248                 if (!rb)
5249                         goto aux_unlock;
5250
5251                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5252                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5253
5254                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5255                         goto aux_unlock;
5256
5257                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5258                         goto aux_unlock;
5259
5260                 /* already mapped with a different offset */
5261                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5262                         goto aux_unlock;
5263
5264                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5265                         goto aux_unlock;
5266
5267                 /* already mapped with a different size */
5268                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5269                         goto aux_unlock;
5270
5271                 if (!is_power_of_2(nr_pages))
5272                         goto aux_unlock;
5273
5274                 if (!atomic_inc_not_zero(&rb->mmap_count))
5275                         goto aux_unlock;
5276
5277                 if (rb_has_aux(rb)) {
5278                         atomic_inc(&rb->aux_mmap_count);
5279                         ret = 0;
5280                         goto unlock;
5281                 }
5282
5283                 atomic_set(&rb->aux_mmap_count, 1);
5284                 user_extra = nr_pages;
5285
5286                 goto accounting;
5287         }
5288
5289         /*
5290          * If we have rb pages ensure they're a power-of-two number, so we
5291          * can do bitmasks instead of modulo.
5292          */
5293         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5294                 return -EINVAL;
5295
5296         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5297                 return -EINVAL;
5298
5299         WARN_ON_ONCE(event->ctx->parent_ctx);
5300 again:
5301         mutex_lock(&event->mmap_mutex);
5302         if (event->rb) {
5303                 if (event->rb->nr_pages != nr_pages) {
5304                         ret = -EINVAL;
5305                         goto unlock;
5306                 }
5307
5308                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5309                         /*
5310                          * Raced against perf_mmap_close() through
5311                          * perf_event_set_output(). Try again, hope for better
5312                          * luck.
5313                          */
5314                         mutex_unlock(&event->mmap_mutex);
5315                         goto again;
5316                 }
5317
5318                 goto unlock;
5319         }
5320
5321         user_extra = nr_pages + 1;
5322
5323 accounting:
5324         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5325
5326         /*
5327          * Increase the limit linearly with more CPUs:
5328          */
5329         user_lock_limit *= num_online_cpus();
5330
5331         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5332
5333         if (user_locked > user_lock_limit)
5334                 extra = user_locked - user_lock_limit;
5335
5336         lock_limit = rlimit(RLIMIT_MEMLOCK);
5337         lock_limit >>= PAGE_SHIFT;
5338         locked = vma->vm_mm->pinned_vm + extra;
5339
5340         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5341                 !capable(CAP_IPC_LOCK)) {
5342                 ret = -EPERM;
5343                 goto unlock;
5344         }
5345
5346         WARN_ON(!rb && event->rb);
5347
5348         if (vma->vm_flags & VM_WRITE)
5349                 flags |= RING_BUFFER_WRITABLE;
5350
5351         if (!rb) {
5352                 rb = rb_alloc(nr_pages,
5353                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5354                               event->cpu, flags);
5355
5356                 if (!rb) {
5357                         ret = -ENOMEM;
5358                         goto unlock;
5359                 }
5360
5361                 atomic_set(&rb->mmap_count, 1);
5362                 rb->mmap_user = get_current_user();
5363                 rb->mmap_locked = extra;
5364
5365                 ring_buffer_attach(event, rb);
5366
5367                 perf_event_init_userpage(event);
5368                 perf_event_update_userpage(event);
5369         } else {
5370                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5371                                    event->attr.aux_watermark, flags);
5372                 if (!ret)
5373                         rb->aux_mmap_locked = extra;
5374         }
5375
5376 unlock:
5377         if (!ret) {
5378                 atomic_long_add(user_extra, &user->locked_vm);
5379                 vma->vm_mm->pinned_vm += extra;
5380
5381                 atomic_inc(&event->mmap_count);
5382         } else if (rb) {
5383                 atomic_dec(&rb->mmap_count);
5384         }
5385 aux_unlock:
5386         mutex_unlock(&event->mmap_mutex);
5387
5388         /*
5389          * Since pinned accounting is per vm we cannot allow fork() to copy our
5390          * vma.
5391          */
5392         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5393         vma->vm_ops = &perf_mmap_vmops;
5394
5395         if (event->pmu->event_mapped)
5396                 event->pmu->event_mapped(event);
5397
5398         return ret;
5399 }
5400
5401 static int perf_fasync(int fd, struct file *filp, int on)
5402 {
5403         struct inode *inode = file_inode(filp);
5404         struct perf_event *event = filp->private_data;
5405         int retval;
5406
5407         inode_lock(inode);
5408         retval = fasync_helper(fd, filp, on, &event->fasync);
5409         inode_unlock(inode);
5410
5411         if (retval < 0)
5412                 return retval;
5413
5414         return 0;
5415 }
5416
5417 static const struct file_operations perf_fops = {
5418         .llseek                 = no_llseek,
5419         .release                = perf_release,
5420         .read                   = perf_read,
5421         .poll                   = perf_poll,
5422         .unlocked_ioctl         = perf_ioctl,
5423         .compat_ioctl           = perf_compat_ioctl,
5424         .mmap                   = perf_mmap,
5425         .fasync                 = perf_fasync,
5426 };
5427
5428 /*
5429  * Perf event wakeup
5430  *
5431  * If there's data, ensure we set the poll() state and publish everything
5432  * to user-space before waking everybody up.
5433  */
5434
5435 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5436 {
5437         /* only the parent has fasync state */
5438         if (event->parent)
5439                 event = event->parent;
5440         return &event->fasync;
5441 }
5442
5443 void perf_event_wakeup(struct perf_event *event)
5444 {
5445         ring_buffer_wakeup(event);
5446
5447         if (event->pending_kill) {
5448                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5449                 event->pending_kill = 0;
5450         }
5451 }
5452
5453 static void perf_pending_event(struct irq_work *entry)
5454 {
5455         struct perf_event *event = container_of(entry,
5456                         struct perf_event, pending);
5457         int rctx;
5458
5459         rctx = perf_swevent_get_recursion_context();
5460         /*
5461          * If we 'fail' here, that's OK, it means recursion is already disabled
5462          * and we won't recurse 'further'.
5463          */
5464
5465         if (event->pending_disable) {
5466                 event->pending_disable = 0;
5467                 perf_event_disable_local(event);
5468         }
5469
5470         if (event->pending_wakeup) {
5471                 event->pending_wakeup = 0;
5472                 perf_event_wakeup(event);
5473         }
5474
5475         if (rctx >= 0)
5476                 perf_swevent_put_recursion_context(rctx);
5477 }
5478
5479 /*
5480  * We assume there is only KVM supporting the callbacks.
5481  * Later on, we might change it to a list if there is
5482  * another virtualization implementation supporting the callbacks.
5483  */
5484 struct perf_guest_info_callbacks *perf_guest_cbs;
5485
5486 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5487 {
5488         perf_guest_cbs = cbs;
5489         return 0;
5490 }
5491 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5492
5493 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5494 {
5495         perf_guest_cbs = NULL;
5496         return 0;
5497 }
5498 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5499
5500 static void
5501 perf_output_sample_regs(struct perf_output_handle *handle,
5502                         struct pt_regs *regs, u64 mask)
5503 {
5504         int bit;
5505         DECLARE_BITMAP(_mask, 64);
5506
5507         bitmap_from_u64(_mask, mask);
5508         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5509                 u64 val;
5510
5511                 val = perf_reg_value(regs, bit);
5512                 perf_output_put(handle, val);
5513         }
5514 }
5515
5516 static void perf_sample_regs_user(struct perf_regs *regs_user,
5517                                   struct pt_regs *regs,
5518                                   struct pt_regs *regs_user_copy)
5519 {
5520         if (user_mode(regs)) {
5521                 regs_user->abi = perf_reg_abi(current);
5522                 regs_user->regs = regs;
5523         } else if (current->mm) {
5524                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5525         } else {
5526                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5527                 regs_user->regs = NULL;
5528         }
5529 }
5530
5531 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5532                                   struct pt_regs *regs)
5533 {
5534         regs_intr->regs = regs;
5535         regs_intr->abi  = perf_reg_abi(current);
5536 }
5537
5538
5539 /*
5540  * Get remaining task size from user stack pointer.
5541  *
5542  * It'd be better to take stack vma map and limit this more
5543  * precisly, but there's no way to get it safely under interrupt,
5544  * so using TASK_SIZE as limit.
5545  */
5546 static u64 perf_ustack_task_size(struct pt_regs *regs)
5547 {
5548         unsigned long addr = perf_user_stack_pointer(regs);
5549
5550         if (!addr || addr >= TASK_SIZE)
5551                 return 0;
5552
5553         return TASK_SIZE - addr;
5554 }
5555
5556 static u16
5557 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5558                         struct pt_regs *regs)
5559 {
5560         u64 task_size;
5561
5562         /* No regs, no stack pointer, no dump. */
5563         if (!regs)
5564                 return 0;
5565
5566         /*
5567          * Check if we fit in with the requested stack size into the:
5568          * - TASK_SIZE
5569          *   If we don't, we limit the size to the TASK_SIZE.
5570          *
5571          * - remaining sample size
5572          *   If we don't, we customize the stack size to
5573          *   fit in to the remaining sample size.
5574          */
5575
5576         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5577         stack_size = min(stack_size, (u16) task_size);
5578
5579         /* Current header size plus static size and dynamic size. */
5580         header_size += 2 * sizeof(u64);
5581
5582         /* Do we fit in with the current stack dump size? */
5583         if ((u16) (header_size + stack_size) < header_size) {
5584                 /*
5585                  * If we overflow the maximum size for the sample,
5586                  * we customize the stack dump size to fit in.
5587                  */
5588                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5589                 stack_size = round_up(stack_size, sizeof(u64));
5590         }
5591
5592         return stack_size;
5593 }
5594
5595 static void
5596 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5597                           struct pt_regs *regs)
5598 {
5599         /* Case of a kernel thread, nothing to dump */
5600         if (!regs) {
5601                 u64 size = 0;
5602                 perf_output_put(handle, size);
5603         } else {
5604                 unsigned long sp;
5605                 unsigned int rem;
5606                 u64 dyn_size;
5607
5608                 /*
5609                  * We dump:
5610                  * static size
5611                  *   - the size requested by user or the best one we can fit
5612                  *     in to the sample max size
5613                  * data
5614                  *   - user stack dump data
5615                  * dynamic size
5616                  *   - the actual dumped size
5617                  */
5618
5619                 /* Static size. */
5620                 perf_output_put(handle, dump_size);
5621
5622                 /* Data. */
5623                 sp = perf_user_stack_pointer(regs);
5624                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5625                 dyn_size = dump_size - rem;
5626
5627                 perf_output_skip(handle, rem);
5628
5629                 /* Dynamic size. */
5630                 perf_output_put(handle, dyn_size);
5631         }
5632 }
5633
5634 static void __perf_event_header__init_id(struct perf_event_header *header,
5635                                          struct perf_sample_data *data,
5636                                          struct perf_event *event)
5637 {
5638         u64 sample_type = event->attr.sample_type;
5639
5640         data->type = sample_type;
5641         header->size += event->id_header_size;
5642
5643         if (sample_type & PERF_SAMPLE_TID) {
5644                 /* namespace issues */
5645                 data->tid_entry.pid = perf_event_pid(event, current);
5646                 data->tid_entry.tid = perf_event_tid(event, current);
5647         }
5648
5649         if (sample_type & PERF_SAMPLE_TIME)
5650                 data->time = perf_event_clock(event);
5651
5652         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5653                 data->id = primary_event_id(event);
5654
5655         if (sample_type & PERF_SAMPLE_STREAM_ID)
5656                 data->stream_id = event->id;
5657
5658         if (sample_type & PERF_SAMPLE_CPU) {
5659                 data->cpu_entry.cpu      = raw_smp_processor_id();
5660                 data->cpu_entry.reserved = 0;
5661         }
5662 }
5663
5664 void perf_event_header__init_id(struct perf_event_header *header,
5665                                 struct perf_sample_data *data,
5666                                 struct perf_event *event)
5667 {
5668         if (event->attr.sample_id_all)
5669                 __perf_event_header__init_id(header, data, event);
5670 }
5671
5672 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5673                                            struct perf_sample_data *data)
5674 {
5675         u64 sample_type = data->type;
5676
5677         if (sample_type & PERF_SAMPLE_TID)
5678                 perf_output_put(handle, data->tid_entry);
5679
5680         if (sample_type & PERF_SAMPLE_TIME)
5681                 perf_output_put(handle, data->time);
5682
5683         if (sample_type & PERF_SAMPLE_ID)
5684                 perf_output_put(handle, data->id);
5685
5686         if (sample_type & PERF_SAMPLE_STREAM_ID)
5687                 perf_output_put(handle, data->stream_id);
5688
5689         if (sample_type & PERF_SAMPLE_CPU)
5690                 perf_output_put(handle, data->cpu_entry);
5691
5692         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5693                 perf_output_put(handle, data->id);
5694 }
5695
5696 void perf_event__output_id_sample(struct perf_event *event,
5697                                   struct perf_output_handle *handle,
5698                                   struct perf_sample_data *sample)
5699 {
5700         if (event->attr.sample_id_all)
5701                 __perf_event__output_id_sample(handle, sample);
5702 }
5703
5704 static void perf_output_read_one(struct perf_output_handle *handle,
5705                                  struct perf_event *event,
5706                                  u64 enabled, u64 running)
5707 {
5708         u64 read_format = event->attr.read_format;
5709         u64 values[4];
5710         int n = 0;
5711
5712         values[n++] = perf_event_count(event);
5713         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5714                 values[n++] = enabled +
5715                         atomic64_read(&event->child_total_time_enabled);
5716         }
5717         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5718                 values[n++] = running +
5719                         atomic64_read(&event->child_total_time_running);
5720         }
5721         if (read_format & PERF_FORMAT_ID)
5722                 values[n++] = primary_event_id(event);
5723
5724         __output_copy(handle, values, n * sizeof(u64));
5725 }
5726
5727 static void perf_output_read_group(struct perf_output_handle *handle,
5728                             struct perf_event *event,
5729                             u64 enabled, u64 running)
5730 {
5731         struct perf_event *leader = event->group_leader, *sub;
5732         u64 read_format = event->attr.read_format;
5733         u64 values[5];
5734         int n = 0;
5735
5736         values[n++] = 1 + leader->nr_siblings;
5737
5738         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5739                 values[n++] = enabled;
5740
5741         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5742                 values[n++] = running;
5743
5744         if (leader != event)
5745                 leader->pmu->read(leader);
5746
5747         values[n++] = perf_event_count(leader);
5748         if (read_format & PERF_FORMAT_ID)
5749                 values[n++] = primary_event_id(leader);
5750
5751         __output_copy(handle, values, n * sizeof(u64));
5752
5753         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5754                 n = 0;
5755
5756                 if ((sub != event) &&
5757                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5758                         sub->pmu->read(sub);
5759
5760                 values[n++] = perf_event_count(sub);
5761                 if (read_format & PERF_FORMAT_ID)
5762                         values[n++] = primary_event_id(sub);
5763
5764                 __output_copy(handle, values, n * sizeof(u64));
5765         }
5766 }
5767
5768 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5769                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5770
5771 /*
5772  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5773  *
5774  * The problem is that its both hard and excessively expensive to iterate the
5775  * child list, not to mention that its impossible to IPI the children running
5776  * on another CPU, from interrupt/NMI context.
5777  */
5778 static void perf_output_read(struct perf_output_handle *handle,
5779                              struct perf_event *event)
5780 {
5781         u64 enabled = 0, running = 0, now;
5782         u64 read_format = event->attr.read_format;
5783
5784         /*
5785          * compute total_time_enabled, total_time_running
5786          * based on snapshot values taken when the event
5787          * was last scheduled in.
5788          *
5789          * we cannot simply called update_context_time()
5790          * because of locking issue as we are called in
5791          * NMI context
5792          */
5793         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5794                 calc_timer_values(event, &now, &enabled, &running);
5795
5796         if (event->attr.read_format & PERF_FORMAT_GROUP)
5797                 perf_output_read_group(handle, event, enabled, running);
5798         else
5799                 perf_output_read_one(handle, event, enabled, running);
5800 }
5801
5802 void perf_output_sample(struct perf_output_handle *handle,
5803                         struct perf_event_header *header,
5804                         struct perf_sample_data *data,
5805                         struct perf_event *event)
5806 {
5807         u64 sample_type = data->type;
5808
5809         perf_output_put(handle, *header);
5810
5811         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5812                 perf_output_put(handle, data->id);
5813
5814         if (sample_type & PERF_SAMPLE_IP)
5815                 perf_output_put(handle, data->ip);
5816
5817         if (sample_type & PERF_SAMPLE_TID)
5818                 perf_output_put(handle, data->tid_entry);
5819
5820         if (sample_type & PERF_SAMPLE_TIME)
5821                 perf_output_put(handle, data->time);
5822
5823         if (sample_type & PERF_SAMPLE_ADDR)
5824                 perf_output_put(handle, data->addr);
5825
5826         if (sample_type & PERF_SAMPLE_ID)
5827                 perf_output_put(handle, data->id);
5828
5829         if (sample_type & PERF_SAMPLE_STREAM_ID)
5830                 perf_output_put(handle, data->stream_id);
5831
5832         if (sample_type & PERF_SAMPLE_CPU)
5833                 perf_output_put(handle, data->cpu_entry);
5834
5835         if (sample_type & PERF_SAMPLE_PERIOD)
5836                 perf_output_put(handle, data->period);
5837
5838         if (sample_type & PERF_SAMPLE_READ)
5839                 perf_output_read(handle, event);
5840
5841         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5842                 if (data->callchain) {
5843                         int size = 1;
5844
5845                         if (data->callchain)
5846                                 size += data->callchain->nr;
5847
5848                         size *= sizeof(u64);
5849
5850                         __output_copy(handle, data->callchain, size);
5851                 } else {
5852                         u64 nr = 0;
5853                         perf_output_put(handle, nr);
5854                 }
5855         }
5856
5857         if (sample_type & PERF_SAMPLE_RAW) {
5858                 struct perf_raw_record *raw = data->raw;
5859
5860                 if (raw) {
5861                         struct perf_raw_frag *frag = &raw->frag;
5862
5863                         perf_output_put(handle, raw->size);
5864                         do {
5865                                 if (frag->copy) {
5866                                         __output_custom(handle, frag->copy,
5867                                                         frag->data, frag->size);
5868                                 } else {
5869                                         __output_copy(handle, frag->data,
5870                                                       frag->size);
5871                                 }
5872                                 if (perf_raw_frag_last(frag))
5873                                         break;
5874                                 frag = frag->next;
5875                         } while (1);
5876                         if (frag->pad)
5877                                 __output_skip(handle, NULL, frag->pad);
5878                 } else {
5879                         struct {
5880                                 u32     size;
5881                                 u32     data;
5882                         } raw = {
5883                                 .size = sizeof(u32),
5884                                 .data = 0,
5885                         };
5886                         perf_output_put(handle, raw);
5887                 }
5888         }
5889
5890         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5891                 if (data->br_stack) {
5892                         size_t size;
5893
5894                         size = data->br_stack->nr
5895                              * sizeof(struct perf_branch_entry);
5896
5897                         perf_output_put(handle, data->br_stack->nr);
5898                         perf_output_copy(handle, data->br_stack->entries, size);
5899                 } else {
5900                         /*
5901                          * we always store at least the value of nr
5902                          */
5903                         u64 nr = 0;
5904                         perf_output_put(handle, nr);
5905                 }
5906         }
5907
5908         if (sample_type & PERF_SAMPLE_REGS_USER) {
5909                 u64 abi = data->regs_user.abi;
5910
5911                 /*
5912                  * If there are no regs to dump, notice it through
5913                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5914                  */
5915                 perf_output_put(handle, abi);
5916
5917                 if (abi) {
5918                         u64 mask = event->attr.sample_regs_user;
5919                         perf_output_sample_regs(handle,
5920                                                 data->regs_user.regs,
5921                                                 mask);
5922                 }
5923         }
5924
5925         if (sample_type & PERF_SAMPLE_STACK_USER) {
5926                 perf_output_sample_ustack(handle,
5927                                           data->stack_user_size,
5928                                           data->regs_user.regs);
5929         }
5930
5931         if (sample_type & PERF_SAMPLE_WEIGHT)
5932                 perf_output_put(handle, data->weight);
5933
5934         if (sample_type & PERF_SAMPLE_DATA_SRC)
5935                 perf_output_put(handle, data->data_src.val);
5936
5937         if (sample_type & PERF_SAMPLE_TRANSACTION)
5938                 perf_output_put(handle, data->txn);
5939
5940         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5941                 u64 abi = data->regs_intr.abi;
5942                 /*
5943                  * If there are no regs to dump, notice it through
5944                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5945                  */
5946                 perf_output_put(handle, abi);
5947
5948                 if (abi) {
5949                         u64 mask = event->attr.sample_regs_intr;
5950
5951                         perf_output_sample_regs(handle,
5952                                                 data->regs_intr.regs,
5953                                                 mask);
5954                 }
5955         }
5956
5957         if (!event->attr.watermark) {
5958                 int wakeup_events = event->attr.wakeup_events;
5959
5960                 if (wakeup_events) {
5961                         struct ring_buffer *rb = handle->rb;
5962                         int events = local_inc_return(&rb->events);
5963
5964                         if (events >= wakeup_events) {
5965                                 local_sub(wakeup_events, &rb->events);
5966                                 local_inc(&rb->wakeup);
5967                         }
5968                 }
5969         }
5970 }
5971
5972 void perf_prepare_sample(struct perf_event_header *header,
5973                          struct perf_sample_data *data,
5974                          struct perf_event *event,
5975                          struct pt_regs *regs)
5976 {
5977         u64 sample_type = event->attr.sample_type;
5978
5979         header->type = PERF_RECORD_SAMPLE;
5980         header->size = sizeof(*header) + event->header_size;
5981
5982         header->misc = 0;
5983         header->misc |= perf_misc_flags(regs);
5984
5985         __perf_event_header__init_id(header, data, event);
5986
5987         if (sample_type & PERF_SAMPLE_IP)
5988                 data->ip = perf_instruction_pointer(regs);
5989
5990         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5991                 int size = 1;
5992
5993                 data->callchain = perf_callchain(event, regs);
5994
5995                 if (data->callchain)
5996                         size += data->callchain->nr;
5997
5998                 header->size += size * sizeof(u64);
5999         }
6000
6001         if (sample_type & PERF_SAMPLE_RAW) {
6002                 struct perf_raw_record *raw = data->raw;
6003                 int size;
6004
6005                 if (raw) {
6006                         struct perf_raw_frag *frag = &raw->frag;
6007                         u32 sum = 0;
6008
6009                         do {
6010                                 sum += frag->size;
6011                                 if (perf_raw_frag_last(frag))
6012                                         break;
6013                                 frag = frag->next;
6014                         } while (1);
6015
6016                         size = round_up(sum + sizeof(u32), sizeof(u64));
6017                         raw->size = size - sizeof(u32);
6018                         frag->pad = raw->size - sum;
6019                 } else {
6020                         size = sizeof(u64);
6021                 }
6022
6023                 header->size += size;
6024         }
6025
6026         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6027                 int size = sizeof(u64); /* nr */
6028                 if (data->br_stack) {
6029                         size += data->br_stack->nr
6030                               * sizeof(struct perf_branch_entry);
6031                 }
6032                 header->size += size;
6033         }
6034
6035         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6036                 perf_sample_regs_user(&data->regs_user, regs,
6037                                       &data->regs_user_copy);
6038
6039         if (sample_type & PERF_SAMPLE_REGS_USER) {
6040                 /* regs dump ABI info */
6041                 int size = sizeof(u64);
6042
6043                 if (data->regs_user.regs) {
6044                         u64 mask = event->attr.sample_regs_user;
6045                         size += hweight64(mask) * sizeof(u64);
6046                 }
6047
6048                 header->size += size;
6049         }
6050
6051         if (sample_type & PERF_SAMPLE_STACK_USER) {
6052                 /*
6053                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6054                  * processed as the last one or have additional check added
6055                  * in case new sample type is added, because we could eat
6056                  * up the rest of the sample size.
6057                  */
6058                 u16 stack_size = event->attr.sample_stack_user;
6059                 u16 size = sizeof(u64);
6060
6061                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6062                                                      data->regs_user.regs);
6063
6064                 /*
6065                  * If there is something to dump, add space for the dump
6066                  * itself and for the field that tells the dynamic size,
6067                  * which is how many have been actually dumped.
6068                  */
6069                 if (stack_size)
6070                         size += sizeof(u64) + stack_size;
6071
6072                 data->stack_user_size = stack_size;
6073                 header->size += size;
6074         }
6075
6076         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6077                 /* regs dump ABI info */
6078                 int size = sizeof(u64);
6079
6080                 perf_sample_regs_intr(&data->regs_intr, regs);
6081
6082                 if (data->regs_intr.regs) {
6083                         u64 mask = event->attr.sample_regs_intr;
6084
6085                         size += hweight64(mask) * sizeof(u64);
6086                 }
6087
6088                 header->size += size;
6089         }
6090 }
6091
6092 static void __always_inline
6093 __perf_event_output(struct perf_event *event,
6094                     struct perf_sample_data *data,
6095                     struct pt_regs *regs,
6096                     int (*output_begin)(struct perf_output_handle *,
6097                                         struct perf_event *,
6098                                         unsigned int))
6099 {
6100         struct perf_output_handle handle;
6101         struct perf_event_header header;
6102
6103         /* protect the callchain buffers */
6104         rcu_read_lock();
6105
6106         perf_prepare_sample(&header, data, event, regs);
6107
6108         if (output_begin(&handle, event, header.size))
6109                 goto exit;
6110
6111         perf_output_sample(&handle, &header, data, event);
6112
6113         perf_output_end(&handle);
6114
6115 exit:
6116         rcu_read_unlock();
6117 }
6118
6119 void
6120 perf_event_output_forward(struct perf_event *event,
6121                          struct perf_sample_data *data,
6122                          struct pt_regs *regs)
6123 {
6124         __perf_event_output(event, data, regs, perf_output_begin_forward);
6125 }
6126
6127 void
6128 perf_event_output_backward(struct perf_event *event,
6129                            struct perf_sample_data *data,
6130                            struct pt_regs *regs)
6131 {
6132         __perf_event_output(event, data, regs, perf_output_begin_backward);
6133 }
6134
6135 void
6136 perf_event_output(struct perf_event *event,
6137                   struct perf_sample_data *data,
6138                   struct pt_regs *regs)
6139 {
6140         __perf_event_output(event, data, regs, perf_output_begin);
6141 }
6142
6143 /*
6144  * read event_id
6145  */
6146
6147 struct perf_read_event {
6148         struct perf_event_header        header;
6149
6150         u32                             pid;
6151         u32                             tid;
6152 };
6153
6154 static void
6155 perf_event_read_event(struct perf_event *event,
6156                         struct task_struct *task)
6157 {
6158         struct perf_output_handle handle;
6159         struct perf_sample_data sample;
6160         struct perf_read_event read_event = {
6161                 .header = {
6162                         .type = PERF_RECORD_READ,
6163                         .misc = 0,
6164                         .size = sizeof(read_event) + event->read_size,
6165                 },
6166                 .pid = perf_event_pid(event, task),
6167                 .tid = perf_event_tid(event, task),
6168         };
6169         int ret;
6170
6171         perf_event_header__init_id(&read_event.header, &sample, event);
6172         ret = perf_output_begin(&handle, event, read_event.header.size);
6173         if (ret)
6174                 return;
6175
6176         perf_output_put(&handle, read_event);
6177         perf_output_read(&handle, event);
6178         perf_event__output_id_sample(event, &handle, &sample);
6179
6180         perf_output_end(&handle);
6181 }
6182
6183 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6184
6185 static void
6186 perf_iterate_ctx(struct perf_event_context *ctx,
6187                    perf_iterate_f output,
6188                    void *data, bool all)
6189 {
6190         struct perf_event *event;
6191
6192         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6193                 if (!all) {
6194                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6195                                 continue;
6196                         if (!event_filter_match(event))
6197                                 continue;
6198                 }
6199
6200                 output(event, data);
6201         }
6202 }
6203
6204 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6205 {
6206         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6207         struct perf_event *event;
6208
6209         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6210                 /*
6211                  * Skip events that are not fully formed yet; ensure that
6212                  * if we observe event->ctx, both event and ctx will be
6213                  * complete enough. See perf_install_in_context().
6214                  */
6215                 if (!smp_load_acquire(&event->ctx))
6216                         continue;
6217
6218                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6219                         continue;
6220                 if (!event_filter_match(event))
6221                         continue;
6222                 output(event, data);
6223         }
6224 }
6225
6226 /*
6227  * Iterate all events that need to receive side-band events.
6228  *
6229  * For new callers; ensure that account_pmu_sb_event() includes
6230  * your event, otherwise it might not get delivered.
6231  */
6232 static void
6233 perf_iterate_sb(perf_iterate_f output, void *data,
6234                struct perf_event_context *task_ctx)
6235 {
6236         struct perf_event_context *ctx;
6237         int ctxn;
6238
6239         rcu_read_lock();
6240         preempt_disable();
6241
6242         /*
6243          * If we have task_ctx != NULL we only notify the task context itself.
6244          * The task_ctx is set only for EXIT events before releasing task
6245          * context.
6246          */
6247         if (task_ctx) {
6248                 perf_iterate_ctx(task_ctx, output, data, false);
6249                 goto done;
6250         }
6251
6252         perf_iterate_sb_cpu(output, data);
6253
6254         for_each_task_context_nr(ctxn) {
6255                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6256                 if (ctx)
6257                         perf_iterate_ctx(ctx, output, data, false);
6258         }
6259 done:
6260         preempt_enable();
6261         rcu_read_unlock();
6262 }
6263
6264 /*
6265  * Clear all file-based filters at exec, they'll have to be
6266  * re-instated when/if these objects are mmapped again.
6267  */
6268 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6269 {
6270         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6271         struct perf_addr_filter *filter;
6272         unsigned int restart = 0, count = 0;
6273         unsigned long flags;
6274
6275         if (!has_addr_filter(event))
6276                 return;
6277
6278         raw_spin_lock_irqsave(&ifh->lock, flags);
6279         list_for_each_entry(filter, &ifh->list, entry) {
6280                 if (filter->inode) {
6281                         event->addr_filters_offs[count] = 0;
6282                         restart++;
6283                 }
6284
6285                 count++;
6286         }
6287
6288         if (restart)
6289                 event->addr_filters_gen++;
6290         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6291
6292         if (restart)
6293                 perf_event_stop(event, 1);
6294 }
6295
6296 void perf_event_exec(void)
6297 {
6298         struct perf_event_context *ctx;
6299         int ctxn;
6300
6301         rcu_read_lock();
6302         for_each_task_context_nr(ctxn) {
6303                 ctx = current->perf_event_ctxp[ctxn];
6304                 if (!ctx)
6305                         continue;
6306
6307                 perf_event_enable_on_exec(ctxn);
6308
6309                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6310                                    true);
6311         }
6312         rcu_read_unlock();
6313 }
6314
6315 struct remote_output {
6316         struct ring_buffer      *rb;
6317         int                     err;
6318 };
6319
6320 static void __perf_event_output_stop(struct perf_event *event, void *data)
6321 {
6322         struct perf_event *parent = event->parent;
6323         struct remote_output *ro = data;
6324         struct ring_buffer *rb = ro->rb;
6325         struct stop_event_data sd = {
6326                 .event  = event,
6327         };
6328
6329         if (!has_aux(event))
6330                 return;
6331
6332         if (!parent)
6333                 parent = event;
6334
6335         /*
6336          * In case of inheritance, it will be the parent that links to the
6337          * ring-buffer, but it will be the child that's actually using it.
6338          *
6339          * We are using event::rb to determine if the event should be stopped,
6340          * however this may race with ring_buffer_attach() (through set_output),
6341          * which will make us skip the event that actually needs to be stopped.
6342          * So ring_buffer_attach() has to stop an aux event before re-assigning
6343          * its rb pointer.
6344          */
6345         if (rcu_dereference(parent->rb) == rb)
6346                 ro->err = __perf_event_stop(&sd);
6347 }
6348
6349 static int __perf_pmu_output_stop(void *info)
6350 {
6351         struct perf_event *event = info;
6352         struct pmu *pmu = event->pmu;
6353         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6354         struct remote_output ro = {
6355                 .rb     = event->rb,
6356         };
6357
6358         rcu_read_lock();
6359         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6360         if (cpuctx->task_ctx)
6361                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6362                                    &ro, false);
6363         rcu_read_unlock();
6364
6365         return ro.err;
6366 }
6367
6368 static void perf_pmu_output_stop(struct perf_event *event)
6369 {
6370         struct perf_event *iter;
6371         int err, cpu;
6372
6373 restart:
6374         rcu_read_lock();
6375         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6376                 /*
6377                  * For per-CPU events, we need to make sure that neither they
6378                  * nor their children are running; for cpu==-1 events it's
6379                  * sufficient to stop the event itself if it's active, since
6380                  * it can't have children.
6381                  */
6382                 cpu = iter->cpu;
6383                 if (cpu == -1)
6384                         cpu = READ_ONCE(iter->oncpu);
6385
6386                 if (cpu == -1)
6387                         continue;
6388
6389                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6390                 if (err == -EAGAIN) {
6391                         rcu_read_unlock();
6392                         goto restart;
6393                 }
6394         }
6395         rcu_read_unlock();
6396 }
6397
6398 /*
6399  * task tracking -- fork/exit
6400  *
6401  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6402  */
6403
6404 struct perf_task_event {
6405         struct task_struct              *task;
6406         struct perf_event_context       *task_ctx;
6407
6408         struct {
6409                 struct perf_event_header        header;
6410
6411                 u32                             pid;
6412                 u32                             ppid;
6413                 u32                             tid;
6414                 u32                             ptid;
6415                 u64                             time;
6416         } event_id;
6417 };
6418
6419 static int perf_event_task_match(struct perf_event *event)
6420 {
6421         return event->attr.comm  || event->attr.mmap ||
6422                event->attr.mmap2 || event->attr.mmap_data ||
6423                event->attr.task;
6424 }
6425
6426 static void perf_event_task_output(struct perf_event *event,
6427                                    void *data)
6428 {
6429         struct perf_task_event *task_event = data;
6430         struct perf_output_handle handle;
6431         struct perf_sample_data sample;
6432         struct task_struct *task = task_event->task;
6433         int ret, size = task_event->event_id.header.size;
6434
6435         if (!perf_event_task_match(event))
6436                 return;
6437
6438         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6439
6440         ret = perf_output_begin(&handle, event,
6441                                 task_event->event_id.header.size);
6442         if (ret)
6443                 goto out;
6444
6445         task_event->event_id.pid = perf_event_pid(event, task);
6446         task_event->event_id.ppid = perf_event_pid(event, current);
6447
6448         task_event->event_id.tid = perf_event_tid(event, task);
6449         task_event->event_id.ptid = perf_event_tid(event, current);
6450
6451         task_event->event_id.time = perf_event_clock(event);
6452
6453         perf_output_put(&handle, task_event->event_id);
6454
6455         perf_event__output_id_sample(event, &handle, &sample);
6456
6457         perf_output_end(&handle);
6458 out:
6459         task_event->event_id.header.size = size;
6460 }
6461
6462 static void perf_event_task(struct task_struct *task,
6463                               struct perf_event_context *task_ctx,
6464                               int new)
6465 {
6466         struct perf_task_event task_event;
6467
6468         if (!atomic_read(&nr_comm_events) &&
6469             !atomic_read(&nr_mmap_events) &&
6470             !atomic_read(&nr_task_events))
6471                 return;
6472
6473         task_event = (struct perf_task_event){
6474                 .task     = task,
6475                 .task_ctx = task_ctx,
6476                 .event_id    = {
6477                         .header = {
6478                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6479                                 .misc = 0,
6480                                 .size = sizeof(task_event.event_id),
6481                         },
6482                         /* .pid  */
6483                         /* .ppid */
6484                         /* .tid  */
6485                         /* .ptid */
6486                         /* .time */
6487                 },
6488         };
6489
6490         perf_iterate_sb(perf_event_task_output,
6491                        &task_event,
6492                        task_ctx);
6493 }
6494
6495 void perf_event_fork(struct task_struct *task)
6496 {
6497         perf_event_task(task, NULL, 1);
6498         perf_event_namespaces(task);
6499 }
6500
6501 /*
6502  * comm tracking
6503  */
6504
6505 struct perf_comm_event {
6506         struct task_struct      *task;
6507         char                    *comm;
6508         int                     comm_size;
6509
6510         struct {
6511                 struct perf_event_header        header;
6512
6513                 u32                             pid;
6514                 u32                             tid;
6515         } event_id;
6516 };
6517
6518 static int perf_event_comm_match(struct perf_event *event)
6519 {
6520         return event->attr.comm;
6521 }
6522
6523 static void perf_event_comm_output(struct perf_event *event,
6524                                    void *data)
6525 {
6526         struct perf_comm_event *comm_event = data;
6527         struct perf_output_handle handle;
6528         struct perf_sample_data sample;
6529         int size = comm_event->event_id.header.size;
6530         int ret;
6531
6532         if (!perf_event_comm_match(event))
6533                 return;
6534
6535         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6536         ret = perf_output_begin(&handle, event,
6537                                 comm_event->event_id.header.size);
6538
6539         if (ret)
6540                 goto out;
6541
6542         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6543         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6544
6545         perf_output_put(&handle, comm_event->event_id);
6546         __output_copy(&handle, comm_event->comm,
6547                                    comm_event->comm_size);
6548
6549         perf_event__output_id_sample(event, &handle, &sample);
6550
6551         perf_output_end(&handle);
6552 out:
6553         comm_event->event_id.header.size = size;
6554 }
6555
6556 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6557 {
6558         char comm[TASK_COMM_LEN];
6559         unsigned int size;
6560
6561         memset(comm, 0, sizeof(comm));
6562         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6563         size = ALIGN(strlen(comm)+1, sizeof(u64));
6564
6565         comm_event->comm = comm;
6566         comm_event->comm_size = size;
6567
6568         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6569
6570         perf_iterate_sb(perf_event_comm_output,
6571                        comm_event,
6572                        NULL);
6573 }
6574
6575 void perf_event_comm(struct task_struct *task, bool exec)
6576 {
6577         struct perf_comm_event comm_event;
6578
6579         if (!atomic_read(&nr_comm_events))
6580                 return;
6581
6582         comm_event = (struct perf_comm_event){
6583                 .task   = task,
6584                 /* .comm      */
6585                 /* .comm_size */
6586                 .event_id  = {
6587                         .header = {
6588                                 .type = PERF_RECORD_COMM,
6589                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6590                                 /* .size */
6591                         },
6592                         /* .pid */
6593                         /* .tid */
6594                 },
6595         };
6596
6597         perf_event_comm_event(&comm_event);
6598 }
6599
6600 /*
6601  * namespaces tracking
6602  */
6603
6604 struct perf_namespaces_event {
6605         struct task_struct              *task;
6606
6607         struct {
6608                 struct perf_event_header        header;
6609
6610                 u32                             pid;
6611                 u32                             tid;
6612                 u64                             nr_namespaces;
6613                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
6614         } event_id;
6615 };
6616
6617 static int perf_event_namespaces_match(struct perf_event *event)
6618 {
6619         return event->attr.namespaces;
6620 }
6621
6622 static void perf_event_namespaces_output(struct perf_event *event,
6623                                          void *data)
6624 {
6625         struct perf_namespaces_event *namespaces_event = data;
6626         struct perf_output_handle handle;
6627         struct perf_sample_data sample;
6628         int ret;
6629
6630         if (!perf_event_namespaces_match(event))
6631                 return;
6632
6633         perf_event_header__init_id(&namespaces_event->event_id.header,
6634                                    &sample, event);
6635         ret = perf_output_begin(&handle, event,
6636                                 namespaces_event->event_id.header.size);
6637         if (ret)
6638                 return;
6639
6640         namespaces_event->event_id.pid = perf_event_pid(event,
6641                                                         namespaces_event->task);
6642         namespaces_event->event_id.tid = perf_event_tid(event,
6643                                                         namespaces_event->task);
6644
6645         perf_output_put(&handle, namespaces_event->event_id);
6646
6647         perf_event__output_id_sample(event, &handle, &sample);
6648
6649         perf_output_end(&handle);
6650 }
6651
6652 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6653                                    struct task_struct *task,
6654                                    const struct proc_ns_operations *ns_ops)
6655 {
6656         struct path ns_path;
6657         struct inode *ns_inode;
6658         void *error;
6659
6660         error = ns_get_path(&ns_path, task, ns_ops);
6661         if (!error) {
6662                 ns_inode = ns_path.dentry->d_inode;
6663                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6664                 ns_link_info->ino = ns_inode->i_ino;
6665         }
6666 }
6667
6668 void perf_event_namespaces(struct task_struct *task)
6669 {
6670         struct perf_namespaces_event namespaces_event;
6671         struct perf_ns_link_info *ns_link_info;
6672
6673         if (!atomic_read(&nr_namespaces_events))
6674                 return;
6675
6676         namespaces_event = (struct perf_namespaces_event){
6677                 .task   = task,
6678                 .event_id  = {
6679                         .header = {
6680                                 .type = PERF_RECORD_NAMESPACES,
6681                                 .misc = 0,
6682                                 .size = sizeof(namespaces_event.event_id),
6683                         },
6684                         /* .pid */
6685                         /* .tid */
6686                         .nr_namespaces = NR_NAMESPACES,
6687                         /* .link_info[NR_NAMESPACES] */
6688                 },
6689         };
6690
6691         ns_link_info = namespaces_event.event_id.link_info;
6692
6693         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6694                                task, &mntns_operations);
6695
6696 #ifdef CONFIG_USER_NS
6697         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6698                                task, &userns_operations);
6699 #endif
6700 #ifdef CONFIG_NET_NS
6701         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6702                                task, &netns_operations);
6703 #endif
6704 #ifdef CONFIG_UTS_NS
6705         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6706                                task, &utsns_operations);
6707 #endif
6708 #ifdef CONFIG_IPC_NS
6709         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6710                                task, &ipcns_operations);
6711 #endif
6712 #ifdef CONFIG_PID_NS
6713         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6714                                task, &pidns_operations);
6715 #endif
6716 #ifdef CONFIG_CGROUPS
6717         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6718                                task, &cgroupns_operations);
6719 #endif
6720
6721         perf_iterate_sb(perf_event_namespaces_output,
6722                         &namespaces_event,
6723                         NULL);
6724 }
6725
6726 /*
6727  * mmap tracking
6728  */
6729
6730 struct perf_mmap_event {
6731         struct vm_area_struct   *vma;
6732
6733         const char              *file_name;
6734         int                     file_size;
6735         int                     maj, min;
6736         u64                     ino;
6737         u64                     ino_generation;
6738         u32                     prot, flags;
6739
6740         struct {
6741                 struct perf_event_header        header;
6742
6743                 u32                             pid;
6744                 u32                             tid;
6745                 u64                             start;
6746                 u64                             len;
6747                 u64                             pgoff;
6748         } event_id;
6749 };
6750
6751 static int perf_event_mmap_match(struct perf_event *event,
6752                                  void *data)
6753 {
6754         struct perf_mmap_event *mmap_event = data;
6755         struct vm_area_struct *vma = mmap_event->vma;
6756         int executable = vma->vm_flags & VM_EXEC;
6757
6758         return (!executable && event->attr.mmap_data) ||
6759                (executable && (event->attr.mmap || event->attr.mmap2));
6760 }
6761
6762 static void perf_event_mmap_output(struct perf_event *event,
6763                                    void *data)
6764 {
6765         struct perf_mmap_event *mmap_event = data;
6766         struct perf_output_handle handle;
6767         struct perf_sample_data sample;
6768         int size = mmap_event->event_id.header.size;
6769         int ret;
6770
6771         if (!perf_event_mmap_match(event, data))
6772                 return;
6773
6774         if (event->attr.mmap2) {
6775                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6776                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6777                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6778                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6779                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6780                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6781                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6782         }
6783
6784         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6785         ret = perf_output_begin(&handle, event,
6786                                 mmap_event->event_id.header.size);
6787         if (ret)
6788                 goto out;
6789
6790         mmap_event->event_id.pid = perf_event_pid(event, current);
6791         mmap_event->event_id.tid = perf_event_tid(event, current);
6792
6793         perf_output_put(&handle, mmap_event->event_id);
6794
6795         if (event->attr.mmap2) {
6796                 perf_output_put(&handle, mmap_event->maj);
6797                 perf_output_put(&handle, mmap_event->min);
6798                 perf_output_put(&handle, mmap_event->ino);
6799                 perf_output_put(&handle, mmap_event->ino_generation);
6800                 perf_output_put(&handle, mmap_event->prot);
6801                 perf_output_put(&handle, mmap_event->flags);
6802         }
6803
6804         __output_copy(&handle, mmap_event->file_name,
6805                                    mmap_event->file_size);
6806
6807         perf_event__output_id_sample(event, &handle, &sample);
6808
6809         perf_output_end(&handle);
6810 out:
6811         mmap_event->event_id.header.size = size;
6812 }
6813
6814 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6815 {
6816         struct vm_area_struct *vma = mmap_event->vma;
6817         struct file *file = vma->vm_file;
6818         int maj = 0, min = 0;
6819         u64 ino = 0, gen = 0;
6820         u32 prot = 0, flags = 0;
6821         unsigned int size;
6822         char tmp[16];
6823         char *buf = NULL;
6824         char *name;
6825
6826         if (vma->vm_flags & VM_READ)
6827                 prot |= PROT_READ;
6828         if (vma->vm_flags & VM_WRITE)
6829                 prot |= PROT_WRITE;
6830         if (vma->vm_flags & VM_EXEC)
6831                 prot |= PROT_EXEC;
6832
6833         if (vma->vm_flags & VM_MAYSHARE)
6834                 flags = MAP_SHARED;
6835         else
6836                 flags = MAP_PRIVATE;
6837
6838         if (vma->vm_flags & VM_DENYWRITE)
6839                 flags |= MAP_DENYWRITE;
6840         if (vma->vm_flags & VM_MAYEXEC)
6841                 flags |= MAP_EXECUTABLE;
6842         if (vma->vm_flags & VM_LOCKED)
6843                 flags |= MAP_LOCKED;
6844         if (vma->vm_flags & VM_HUGETLB)
6845                 flags |= MAP_HUGETLB;
6846
6847         if (file) {
6848                 struct inode *inode;
6849                 dev_t dev;
6850
6851                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6852                 if (!buf) {
6853                         name = "//enomem";
6854                         goto cpy_name;
6855                 }
6856                 /*
6857                  * d_path() works from the end of the rb backwards, so we
6858                  * need to add enough zero bytes after the string to handle
6859                  * the 64bit alignment we do later.
6860                  */
6861                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6862                 if (IS_ERR(name)) {
6863                         name = "//toolong";
6864                         goto cpy_name;
6865                 }
6866                 inode = file_inode(vma->vm_file);
6867                 dev = inode->i_sb->s_dev;
6868                 ino = inode->i_ino;
6869                 gen = inode->i_generation;
6870                 maj = MAJOR(dev);
6871                 min = MINOR(dev);
6872
6873                 goto got_name;
6874         } else {
6875                 if (vma->vm_ops && vma->vm_ops->name) {
6876                         name = (char *) vma->vm_ops->name(vma);
6877                         if (name)
6878                                 goto cpy_name;
6879                 }
6880
6881                 name = (char *)arch_vma_name(vma);
6882                 if (name)
6883                         goto cpy_name;
6884
6885                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6886                                 vma->vm_end >= vma->vm_mm->brk) {
6887                         name = "[heap]";
6888                         goto cpy_name;
6889                 }
6890                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6891                                 vma->vm_end >= vma->vm_mm->start_stack) {
6892                         name = "[stack]";
6893                         goto cpy_name;
6894                 }
6895
6896                 name = "//anon";
6897                 goto cpy_name;
6898         }
6899
6900 cpy_name:
6901         strlcpy(tmp, name, sizeof(tmp));
6902         name = tmp;
6903 got_name:
6904         /*
6905          * Since our buffer works in 8 byte units we need to align our string
6906          * size to a multiple of 8. However, we must guarantee the tail end is
6907          * zero'd out to avoid leaking random bits to userspace.
6908          */
6909         size = strlen(name)+1;
6910         while (!IS_ALIGNED(size, sizeof(u64)))
6911                 name[size++] = '\0';
6912
6913         mmap_event->file_name = name;
6914         mmap_event->file_size = size;
6915         mmap_event->maj = maj;
6916         mmap_event->min = min;
6917         mmap_event->ino = ino;
6918         mmap_event->ino_generation = gen;
6919         mmap_event->prot = prot;
6920         mmap_event->flags = flags;
6921
6922         if (!(vma->vm_flags & VM_EXEC))
6923                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6924
6925         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6926
6927         perf_iterate_sb(perf_event_mmap_output,
6928                        mmap_event,
6929                        NULL);
6930
6931         kfree(buf);
6932 }
6933
6934 /*
6935  * Check whether inode and address range match filter criteria.
6936  */
6937 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6938                                      struct file *file, unsigned long offset,
6939                                      unsigned long size)
6940 {
6941         if (filter->inode != file_inode(file))
6942                 return false;
6943
6944         if (filter->offset > offset + size)
6945                 return false;
6946
6947         if (filter->offset + filter->size < offset)
6948                 return false;
6949
6950         return true;
6951 }
6952
6953 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6954 {
6955         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6956         struct vm_area_struct *vma = data;
6957         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6958         struct file *file = vma->vm_file;
6959         struct perf_addr_filter *filter;
6960         unsigned int restart = 0, count = 0;
6961
6962         if (!has_addr_filter(event))
6963                 return;
6964
6965         if (!file)
6966                 return;
6967
6968         raw_spin_lock_irqsave(&ifh->lock, flags);
6969         list_for_each_entry(filter, &ifh->list, entry) {
6970                 if (perf_addr_filter_match(filter, file, off,
6971                                              vma->vm_end - vma->vm_start)) {
6972                         event->addr_filters_offs[count] = vma->vm_start;
6973                         restart++;
6974                 }
6975
6976                 count++;
6977         }
6978
6979         if (restart)
6980                 event->addr_filters_gen++;
6981         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6982
6983         if (restart)
6984                 perf_event_stop(event, 1);
6985 }
6986
6987 /*
6988  * Adjust all task's events' filters to the new vma
6989  */
6990 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6991 {
6992         struct perf_event_context *ctx;
6993         int ctxn;
6994
6995         /*
6996          * Data tracing isn't supported yet and as such there is no need
6997          * to keep track of anything that isn't related to executable code:
6998          */
6999         if (!(vma->vm_flags & VM_EXEC))
7000                 return;
7001
7002         rcu_read_lock();
7003         for_each_task_context_nr(ctxn) {
7004                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7005                 if (!ctx)
7006                         continue;
7007
7008                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7009         }
7010         rcu_read_unlock();
7011 }
7012
7013 void perf_event_mmap(struct vm_area_struct *vma)
7014 {
7015         struct perf_mmap_event mmap_event;
7016
7017         if (!atomic_read(&nr_mmap_events))
7018                 return;
7019
7020         mmap_event = (struct perf_mmap_event){
7021                 .vma    = vma,
7022                 /* .file_name */
7023                 /* .file_size */
7024                 .event_id  = {
7025                         .header = {
7026                                 .type = PERF_RECORD_MMAP,
7027                                 .misc = PERF_RECORD_MISC_USER,
7028                                 /* .size */
7029                         },
7030                         /* .pid */
7031                         /* .tid */
7032                         .start  = vma->vm_start,
7033                         .len    = vma->vm_end - vma->vm_start,
7034                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7035                 },
7036                 /* .maj (attr_mmap2 only) */
7037                 /* .min (attr_mmap2 only) */
7038                 /* .ino (attr_mmap2 only) */
7039                 /* .ino_generation (attr_mmap2 only) */
7040                 /* .prot (attr_mmap2 only) */
7041                 /* .flags (attr_mmap2 only) */
7042         };
7043
7044         perf_addr_filters_adjust(vma);
7045         perf_event_mmap_event(&mmap_event);
7046 }
7047
7048 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7049                           unsigned long size, u64 flags)
7050 {
7051         struct perf_output_handle handle;
7052         struct perf_sample_data sample;
7053         struct perf_aux_event {
7054                 struct perf_event_header        header;
7055                 u64                             offset;
7056                 u64                             size;
7057                 u64                             flags;
7058         } rec = {
7059                 .header = {
7060                         .type = PERF_RECORD_AUX,
7061                         .misc = 0,
7062                         .size = sizeof(rec),
7063                 },
7064                 .offset         = head,
7065                 .size           = size,
7066                 .flags          = flags,
7067         };
7068         int ret;
7069
7070         perf_event_header__init_id(&rec.header, &sample, event);
7071         ret = perf_output_begin(&handle, event, rec.header.size);
7072
7073         if (ret)
7074                 return;
7075
7076         perf_output_put(&handle, rec);
7077         perf_event__output_id_sample(event, &handle, &sample);
7078
7079         perf_output_end(&handle);
7080 }
7081
7082 /*
7083  * Lost/dropped samples logging
7084  */
7085 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7086 {
7087         struct perf_output_handle handle;
7088         struct perf_sample_data sample;
7089         int ret;
7090
7091         struct {
7092                 struct perf_event_header        header;
7093                 u64                             lost;
7094         } lost_samples_event = {
7095                 .header = {
7096                         .type = PERF_RECORD_LOST_SAMPLES,
7097                         .misc = 0,
7098                         .size = sizeof(lost_samples_event),
7099                 },
7100                 .lost           = lost,
7101         };
7102
7103         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7104
7105         ret = perf_output_begin(&handle, event,
7106                                 lost_samples_event.header.size);
7107         if (ret)
7108                 return;
7109
7110         perf_output_put(&handle, lost_samples_event);
7111         perf_event__output_id_sample(event, &handle, &sample);
7112         perf_output_end(&handle);
7113 }
7114
7115 /*
7116  * context_switch tracking
7117  */
7118
7119 struct perf_switch_event {
7120         struct task_struct      *task;
7121         struct task_struct      *next_prev;
7122
7123         struct {
7124                 struct perf_event_header        header;
7125                 u32                             next_prev_pid;
7126                 u32                             next_prev_tid;
7127         } event_id;
7128 };
7129
7130 static int perf_event_switch_match(struct perf_event *event)
7131 {
7132         return event->attr.context_switch;
7133 }
7134
7135 static void perf_event_switch_output(struct perf_event *event, void *data)
7136 {
7137         struct perf_switch_event *se = data;
7138         struct perf_output_handle handle;
7139         struct perf_sample_data sample;
7140         int ret;
7141
7142         if (!perf_event_switch_match(event))
7143                 return;
7144
7145         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7146         if (event->ctx->task) {
7147                 se->event_id.header.type = PERF_RECORD_SWITCH;
7148                 se->event_id.header.size = sizeof(se->event_id.header);
7149         } else {
7150                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7151                 se->event_id.header.size = sizeof(se->event_id);
7152                 se->event_id.next_prev_pid =
7153                                         perf_event_pid(event, se->next_prev);
7154                 se->event_id.next_prev_tid =
7155                                         perf_event_tid(event, se->next_prev);
7156         }
7157
7158         perf_event_header__init_id(&se->event_id.header, &sample, event);
7159
7160         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7161         if (ret)
7162                 return;
7163
7164         if (event->ctx->task)
7165                 perf_output_put(&handle, se->event_id.header);
7166         else
7167                 perf_output_put(&handle, se->event_id);
7168
7169         perf_event__output_id_sample(event, &handle, &sample);
7170
7171         perf_output_end(&handle);
7172 }
7173
7174 static void perf_event_switch(struct task_struct *task,
7175                               struct task_struct *next_prev, bool sched_in)
7176 {
7177         struct perf_switch_event switch_event;
7178
7179         /* N.B. caller checks nr_switch_events != 0 */
7180
7181         switch_event = (struct perf_switch_event){
7182                 .task           = task,
7183                 .next_prev      = next_prev,
7184                 .event_id       = {
7185                         .header = {
7186                                 /* .type */
7187                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7188                                 /* .size */
7189                         },
7190                         /* .next_prev_pid */
7191                         /* .next_prev_tid */
7192                 },
7193         };
7194
7195         perf_iterate_sb(perf_event_switch_output,
7196                        &switch_event,
7197                        NULL);
7198 }
7199
7200 /*
7201  * IRQ throttle logging
7202  */
7203
7204 static void perf_log_throttle(struct perf_event *event, int enable)
7205 {
7206         struct perf_output_handle handle;
7207         struct perf_sample_data sample;
7208         int ret;
7209
7210         struct {
7211                 struct perf_event_header        header;
7212                 u64                             time;
7213                 u64                             id;
7214                 u64                             stream_id;
7215         } throttle_event = {
7216                 .header = {
7217                         .type = PERF_RECORD_THROTTLE,
7218                         .misc = 0,
7219                         .size = sizeof(throttle_event),
7220                 },
7221                 .time           = perf_event_clock(event),
7222                 .id             = primary_event_id(event),
7223                 .stream_id      = event->id,
7224         };
7225
7226         if (enable)
7227                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7228
7229         perf_event_header__init_id(&throttle_event.header, &sample, event);
7230
7231         ret = perf_output_begin(&handle, event,
7232                                 throttle_event.header.size);
7233         if (ret)
7234                 return;
7235
7236         perf_output_put(&handle, throttle_event);
7237         perf_event__output_id_sample(event, &handle, &sample);
7238         perf_output_end(&handle);
7239 }
7240
7241 static void perf_log_itrace_start(struct perf_event *event)
7242 {
7243         struct perf_output_handle handle;
7244         struct perf_sample_data sample;
7245         struct perf_aux_event {
7246                 struct perf_event_header        header;
7247                 u32                             pid;
7248                 u32                             tid;
7249         } rec;
7250         int ret;
7251
7252         if (event->parent)
7253                 event = event->parent;
7254
7255         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7256             event->hw.itrace_started)
7257                 return;
7258
7259         rec.header.type = PERF_RECORD_ITRACE_START;
7260         rec.header.misc = 0;
7261         rec.header.size = sizeof(rec);
7262         rec.pid = perf_event_pid(event, current);
7263         rec.tid = perf_event_tid(event, current);
7264
7265         perf_event_header__init_id(&rec.header, &sample, event);
7266         ret = perf_output_begin(&handle, event, rec.header.size);
7267
7268         if (ret)
7269                 return;
7270
7271         perf_output_put(&handle, rec);
7272         perf_event__output_id_sample(event, &handle, &sample);
7273
7274         perf_output_end(&handle);
7275 }
7276
7277 static int
7278 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7279 {
7280         struct hw_perf_event *hwc = &event->hw;
7281         int ret = 0;
7282         u64 seq;
7283
7284         seq = __this_cpu_read(perf_throttled_seq);
7285         if (seq != hwc->interrupts_seq) {
7286                 hwc->interrupts_seq = seq;
7287                 hwc->interrupts = 1;
7288         } else {
7289                 hwc->interrupts++;
7290                 if (unlikely(throttle
7291                              && hwc->interrupts >= max_samples_per_tick)) {
7292                         __this_cpu_inc(perf_throttled_count);
7293                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7294                         hwc->interrupts = MAX_INTERRUPTS;
7295                         perf_log_throttle(event, 0);
7296                         ret = 1;
7297                 }
7298         }
7299
7300         if (event->attr.freq) {
7301                 u64 now = perf_clock();
7302                 s64 delta = now - hwc->freq_time_stamp;
7303
7304                 hwc->freq_time_stamp = now;
7305
7306                 if (delta > 0 && delta < 2*TICK_NSEC)
7307                         perf_adjust_period(event, delta, hwc->last_period, true);
7308         }
7309
7310         return ret;
7311 }
7312
7313 int perf_event_account_interrupt(struct perf_event *event)
7314 {
7315         return __perf_event_account_interrupt(event, 1);
7316 }
7317
7318 /*
7319  * Generic event overflow handling, sampling.
7320  */
7321
7322 static int __perf_event_overflow(struct perf_event *event,
7323                                    int throttle, struct perf_sample_data *data,
7324                                    struct pt_regs *regs)
7325 {
7326         int events = atomic_read(&event->event_limit);
7327         int ret = 0;
7328
7329         /*
7330          * Non-sampling counters might still use the PMI to fold short
7331          * hardware counters, ignore those.
7332          */
7333         if (unlikely(!is_sampling_event(event)))
7334                 return 0;
7335
7336         ret = __perf_event_account_interrupt(event, throttle);
7337
7338         /*
7339          * XXX event_limit might not quite work as expected on inherited
7340          * events
7341          */
7342
7343         event->pending_kill = POLL_IN;
7344         if (events && atomic_dec_and_test(&event->event_limit)) {
7345                 ret = 1;
7346                 event->pending_kill = POLL_HUP;
7347
7348                 perf_event_disable_inatomic(event);
7349         }
7350
7351         READ_ONCE(event->overflow_handler)(event, data, regs);
7352
7353         if (*perf_event_fasync(event) && event->pending_kill) {
7354                 event->pending_wakeup = 1;
7355                 irq_work_queue(&event->pending);
7356         }
7357
7358         return ret;
7359 }
7360
7361 int perf_event_overflow(struct perf_event *event,
7362                           struct perf_sample_data *data,
7363                           struct pt_regs *regs)
7364 {
7365         return __perf_event_overflow(event, 1, data, regs);
7366 }
7367
7368 /*
7369  * Generic software event infrastructure
7370  */
7371
7372 struct swevent_htable {
7373         struct swevent_hlist            *swevent_hlist;
7374         struct mutex                    hlist_mutex;
7375         int                             hlist_refcount;
7376
7377         /* Recursion avoidance in each contexts */
7378         int                             recursion[PERF_NR_CONTEXTS];
7379 };
7380
7381 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7382
7383 /*
7384  * We directly increment event->count and keep a second value in
7385  * event->hw.period_left to count intervals. This period event
7386  * is kept in the range [-sample_period, 0] so that we can use the
7387  * sign as trigger.
7388  */
7389
7390 u64 perf_swevent_set_period(struct perf_event *event)
7391 {
7392         struct hw_perf_event *hwc = &event->hw;
7393         u64 period = hwc->last_period;
7394         u64 nr, offset;
7395         s64 old, val;
7396
7397         hwc->last_period = hwc->sample_period;
7398
7399 again:
7400         old = val = local64_read(&hwc->period_left);
7401         if (val < 0)
7402                 return 0;
7403
7404         nr = div64_u64(period + val, period);
7405         offset = nr * period;
7406         val -= offset;
7407         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7408                 goto again;
7409
7410         return nr;
7411 }
7412
7413 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7414                                     struct perf_sample_data *data,
7415                                     struct pt_regs *regs)
7416 {
7417         struct hw_perf_event *hwc = &event->hw;
7418         int throttle = 0;
7419
7420         if (!overflow)
7421                 overflow = perf_swevent_set_period(event);
7422
7423         if (hwc->interrupts == MAX_INTERRUPTS)
7424                 return;
7425
7426         for (; overflow; overflow--) {
7427                 if (__perf_event_overflow(event, throttle,
7428                                             data, regs)) {
7429                         /*
7430                          * We inhibit the overflow from happening when
7431                          * hwc->interrupts == MAX_INTERRUPTS.
7432                          */
7433                         break;
7434                 }
7435                 throttle = 1;
7436         }
7437 }
7438
7439 static void perf_swevent_event(struct perf_event *event, u64 nr,
7440                                struct perf_sample_data *data,
7441                                struct pt_regs *regs)
7442 {
7443         struct hw_perf_event *hwc = &event->hw;
7444
7445         local64_add(nr, &event->count);
7446
7447         if (!regs)
7448                 return;
7449
7450         if (!is_sampling_event(event))
7451                 return;
7452
7453         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7454                 data->period = nr;
7455                 return perf_swevent_overflow(event, 1, data, regs);
7456         } else
7457                 data->period = event->hw.last_period;
7458
7459         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7460                 return perf_swevent_overflow(event, 1, data, regs);
7461
7462         if (local64_add_negative(nr, &hwc->period_left))
7463                 return;
7464
7465         perf_swevent_overflow(event, 0, data, regs);
7466 }
7467
7468 static int perf_exclude_event(struct perf_event *event,
7469                               struct pt_regs *regs)
7470 {
7471         if (event->hw.state & PERF_HES_STOPPED)
7472                 return 1;
7473
7474         if (regs) {
7475                 if (event->attr.exclude_user && user_mode(regs))
7476                         return 1;
7477
7478                 if (event->attr.exclude_kernel && !user_mode(regs))
7479                         return 1;
7480         }
7481
7482         return 0;
7483 }
7484
7485 static int perf_swevent_match(struct perf_event *event,
7486                                 enum perf_type_id type,
7487                                 u32 event_id,
7488                                 struct perf_sample_data *data,
7489                                 struct pt_regs *regs)
7490 {
7491         if (event->attr.type != type)
7492                 return 0;
7493
7494         if (event->attr.config != event_id)
7495                 return 0;
7496
7497         if (perf_exclude_event(event, regs))
7498                 return 0;
7499
7500         return 1;
7501 }
7502
7503 static inline u64 swevent_hash(u64 type, u32 event_id)
7504 {
7505         u64 val = event_id | (type << 32);
7506
7507         return hash_64(val, SWEVENT_HLIST_BITS);
7508 }
7509
7510 static inline struct hlist_head *
7511 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7512 {
7513         u64 hash = swevent_hash(type, event_id);
7514
7515         return &hlist->heads[hash];
7516 }
7517
7518 /* For the read side: events when they trigger */
7519 static inline struct hlist_head *
7520 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7521 {
7522         struct swevent_hlist *hlist;
7523
7524         hlist = rcu_dereference(swhash->swevent_hlist);
7525         if (!hlist)
7526                 return NULL;
7527
7528         return __find_swevent_head(hlist, type, event_id);
7529 }
7530
7531 /* For the event head insertion and removal in the hlist */
7532 static inline struct hlist_head *
7533 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7534 {
7535         struct swevent_hlist *hlist;
7536         u32 event_id = event->attr.config;
7537         u64 type = event->attr.type;
7538
7539         /*
7540          * Event scheduling is always serialized against hlist allocation
7541          * and release. Which makes the protected version suitable here.
7542          * The context lock guarantees that.
7543          */
7544         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7545                                           lockdep_is_held(&event->ctx->lock));
7546         if (!hlist)
7547                 return NULL;
7548
7549         return __find_swevent_head(hlist, type, event_id);
7550 }
7551
7552 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7553                                     u64 nr,
7554                                     struct perf_sample_data *data,
7555                                     struct pt_regs *regs)
7556 {
7557         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7558         struct perf_event *event;
7559         struct hlist_head *head;
7560
7561         rcu_read_lock();
7562         head = find_swevent_head_rcu(swhash, type, event_id);
7563         if (!head)
7564                 goto end;
7565
7566         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7567                 if (perf_swevent_match(event, type, event_id, data, regs))
7568                         perf_swevent_event(event, nr, data, regs);
7569         }
7570 end:
7571         rcu_read_unlock();
7572 }
7573
7574 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7575
7576 int perf_swevent_get_recursion_context(void)
7577 {
7578         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7579
7580         return get_recursion_context(swhash->recursion);
7581 }
7582 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7583
7584 void perf_swevent_put_recursion_context(int rctx)
7585 {
7586         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7587
7588         put_recursion_context(swhash->recursion, rctx);
7589 }
7590
7591 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7592 {
7593         struct perf_sample_data data;
7594
7595         if (WARN_ON_ONCE(!regs))
7596                 return;
7597
7598         perf_sample_data_init(&data, addr, 0);
7599         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7600 }
7601
7602 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7603 {
7604         int rctx;
7605
7606         preempt_disable_notrace();
7607         rctx = perf_swevent_get_recursion_context();
7608         if (unlikely(rctx < 0))
7609                 goto fail;
7610
7611         ___perf_sw_event(event_id, nr, regs, addr);
7612
7613         perf_swevent_put_recursion_context(rctx);
7614 fail:
7615         preempt_enable_notrace();
7616 }
7617
7618 static void perf_swevent_read(struct perf_event *event)
7619 {
7620 }
7621
7622 static int perf_swevent_add(struct perf_event *event, int flags)
7623 {
7624         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7625         struct hw_perf_event *hwc = &event->hw;
7626         struct hlist_head *head;
7627
7628         if (is_sampling_event(event)) {
7629                 hwc->last_period = hwc->sample_period;
7630                 perf_swevent_set_period(event);
7631         }
7632
7633         hwc->state = !(flags & PERF_EF_START);
7634
7635         head = find_swevent_head(swhash, event);
7636         if (WARN_ON_ONCE(!head))
7637                 return -EINVAL;
7638
7639         hlist_add_head_rcu(&event->hlist_entry, head);
7640         perf_event_update_userpage(event);
7641
7642         return 0;
7643 }
7644
7645 static void perf_swevent_del(struct perf_event *event, int flags)
7646 {
7647         hlist_del_rcu(&event->hlist_entry);
7648 }
7649
7650 static void perf_swevent_start(struct perf_event *event, int flags)
7651 {
7652         event->hw.state = 0;
7653 }
7654
7655 static void perf_swevent_stop(struct perf_event *event, int flags)
7656 {
7657         event->hw.state = PERF_HES_STOPPED;
7658 }
7659
7660 /* Deref the hlist from the update side */
7661 static inline struct swevent_hlist *
7662 swevent_hlist_deref(struct swevent_htable *swhash)
7663 {
7664         return rcu_dereference_protected(swhash->swevent_hlist,
7665                                          lockdep_is_held(&swhash->hlist_mutex));
7666 }
7667
7668 static void swevent_hlist_release(struct swevent_htable *swhash)
7669 {
7670         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7671
7672         if (!hlist)
7673                 return;
7674
7675         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7676         kfree_rcu(hlist, rcu_head);
7677 }
7678
7679 static void swevent_hlist_put_cpu(int cpu)
7680 {
7681         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7682
7683         mutex_lock(&swhash->hlist_mutex);
7684
7685         if (!--swhash->hlist_refcount)
7686                 swevent_hlist_release(swhash);
7687
7688         mutex_unlock(&swhash->hlist_mutex);
7689 }
7690
7691 static void swevent_hlist_put(void)
7692 {
7693         int cpu;
7694
7695         for_each_possible_cpu(cpu)
7696                 swevent_hlist_put_cpu(cpu);
7697 }
7698
7699 static int swevent_hlist_get_cpu(int cpu)
7700 {
7701         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7702         int err = 0;
7703
7704         mutex_lock(&swhash->hlist_mutex);
7705         if (!swevent_hlist_deref(swhash) &&
7706             cpumask_test_cpu(cpu, perf_online_mask)) {
7707                 struct swevent_hlist *hlist;
7708
7709                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7710                 if (!hlist) {
7711                         err = -ENOMEM;
7712                         goto exit;
7713                 }
7714                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7715         }
7716         swhash->hlist_refcount++;
7717 exit:
7718         mutex_unlock(&swhash->hlist_mutex);
7719
7720         return err;
7721 }
7722
7723 static int swevent_hlist_get(void)
7724 {
7725         int err, cpu, failed_cpu;
7726
7727         mutex_lock(&pmus_lock);
7728         for_each_possible_cpu(cpu) {
7729                 err = swevent_hlist_get_cpu(cpu);
7730                 if (err) {
7731                         failed_cpu = cpu;
7732                         goto fail;
7733                 }
7734         }
7735         mutex_unlock(&pmus_lock);
7736         return 0;
7737 fail:
7738         for_each_possible_cpu(cpu) {
7739                 if (cpu == failed_cpu)
7740                         break;
7741                 swevent_hlist_put_cpu(cpu);
7742         }
7743         mutex_unlock(&pmus_lock);
7744         return err;
7745 }
7746
7747 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7748
7749 static void sw_perf_event_destroy(struct perf_event *event)
7750 {
7751         u64 event_id = event->attr.config;
7752
7753         WARN_ON(event->parent);
7754
7755         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7756         swevent_hlist_put();
7757 }
7758
7759 static int perf_swevent_init(struct perf_event *event)
7760 {
7761         u64 event_id = event->attr.config;
7762
7763         if (event->attr.type != PERF_TYPE_SOFTWARE)
7764                 return -ENOENT;
7765
7766         /*
7767          * no branch sampling for software events
7768          */
7769         if (has_branch_stack(event))
7770                 return -EOPNOTSUPP;
7771
7772         switch (event_id) {
7773         case PERF_COUNT_SW_CPU_CLOCK:
7774         case PERF_COUNT_SW_TASK_CLOCK:
7775                 return -ENOENT;
7776
7777         default:
7778                 break;
7779         }
7780
7781         if (event_id >= PERF_COUNT_SW_MAX)
7782                 return -ENOENT;
7783
7784         if (!event->parent) {
7785                 int err;
7786
7787                 err = swevent_hlist_get();
7788                 if (err)
7789                         return err;
7790
7791                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7792                 event->destroy = sw_perf_event_destroy;
7793         }
7794
7795         return 0;
7796 }
7797
7798 static struct pmu perf_swevent = {
7799         .task_ctx_nr    = perf_sw_context,
7800
7801         .capabilities   = PERF_PMU_CAP_NO_NMI,
7802
7803         .event_init     = perf_swevent_init,
7804         .add            = perf_swevent_add,
7805         .del            = perf_swevent_del,
7806         .start          = perf_swevent_start,
7807         .stop           = perf_swevent_stop,
7808         .read           = perf_swevent_read,
7809 };
7810
7811 #ifdef CONFIG_EVENT_TRACING
7812
7813 static int perf_tp_filter_match(struct perf_event *event,
7814                                 struct perf_sample_data *data)
7815 {
7816         void *record = data->raw->frag.data;
7817
7818         /* only top level events have filters set */
7819         if (event->parent)
7820                 event = event->parent;
7821
7822         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7823                 return 1;
7824         return 0;
7825 }
7826
7827 static int perf_tp_event_match(struct perf_event *event,
7828                                 struct perf_sample_data *data,
7829                                 struct pt_regs *regs)
7830 {
7831         if (event->hw.state & PERF_HES_STOPPED)
7832                 return 0;
7833         /*
7834          * All tracepoints are from kernel-space.
7835          */
7836         if (event->attr.exclude_kernel)
7837                 return 0;
7838
7839         if (!perf_tp_filter_match(event, data))
7840                 return 0;
7841
7842         return 1;
7843 }
7844
7845 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7846                                struct trace_event_call *call, u64 count,
7847                                struct pt_regs *regs, struct hlist_head *head,
7848                                struct task_struct *task)
7849 {
7850         struct bpf_prog *prog = call->prog;
7851
7852         if (prog) {
7853                 *(struct pt_regs **)raw_data = regs;
7854                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7855                         perf_swevent_put_recursion_context(rctx);
7856                         return;
7857                 }
7858         }
7859         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7860                       rctx, task);
7861 }
7862 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7863
7864 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7865                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7866                    struct task_struct *task)
7867 {
7868         struct perf_sample_data data;
7869         struct perf_event *event;
7870
7871         struct perf_raw_record raw = {
7872                 .frag = {
7873                         .size = entry_size,
7874                         .data = record,
7875                 },
7876         };
7877
7878         perf_sample_data_init(&data, 0, 0);
7879         data.raw = &raw;
7880
7881         perf_trace_buf_update(record, event_type);
7882
7883         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7884                 if (perf_tp_event_match(event, &data, regs))
7885                         perf_swevent_event(event, count, &data, regs);
7886         }
7887
7888         /*
7889          * If we got specified a target task, also iterate its context and
7890          * deliver this event there too.
7891          */
7892         if (task && task != current) {
7893                 struct perf_event_context *ctx;
7894                 struct trace_entry *entry = record;
7895
7896                 rcu_read_lock();
7897                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7898                 if (!ctx)
7899                         goto unlock;
7900
7901                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7902                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7903                                 continue;
7904                         if (event->attr.config != entry->type)
7905                                 continue;
7906                         if (perf_tp_event_match(event, &data, regs))
7907                                 perf_swevent_event(event, count, &data, regs);
7908                 }
7909 unlock:
7910                 rcu_read_unlock();
7911         }
7912
7913         perf_swevent_put_recursion_context(rctx);
7914 }
7915 EXPORT_SYMBOL_GPL(perf_tp_event);
7916
7917 static void tp_perf_event_destroy(struct perf_event *event)
7918 {
7919         perf_trace_destroy(event);
7920 }
7921
7922 static int perf_tp_event_init(struct perf_event *event)
7923 {
7924         int err;
7925
7926         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7927                 return -ENOENT;
7928
7929         /*
7930          * no branch sampling for tracepoint events
7931          */
7932         if (has_branch_stack(event))
7933                 return -EOPNOTSUPP;
7934
7935         err = perf_trace_init(event);
7936         if (err)
7937                 return err;
7938
7939         event->destroy = tp_perf_event_destroy;
7940
7941         return 0;
7942 }
7943
7944 static struct pmu perf_tracepoint = {
7945         .task_ctx_nr    = perf_sw_context,
7946
7947         .event_init     = perf_tp_event_init,
7948         .add            = perf_trace_add,
7949         .del            = perf_trace_del,
7950         .start          = perf_swevent_start,
7951         .stop           = perf_swevent_stop,
7952         .read           = perf_swevent_read,
7953 };
7954
7955 static inline void perf_tp_register(void)
7956 {
7957         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7958 }
7959
7960 static void perf_event_free_filter(struct perf_event *event)
7961 {
7962         ftrace_profile_free_filter(event);
7963 }
7964
7965 #ifdef CONFIG_BPF_SYSCALL
7966 static void bpf_overflow_handler(struct perf_event *event,
7967                                  struct perf_sample_data *data,
7968                                  struct pt_regs *regs)
7969 {
7970         struct bpf_perf_event_data_kern ctx = {
7971                 .data = data,
7972                 .regs = regs,
7973         };
7974         int ret = 0;
7975
7976         preempt_disable();
7977         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7978                 goto out;
7979         rcu_read_lock();
7980         ret = BPF_PROG_RUN(event->prog, &ctx);
7981         rcu_read_unlock();
7982 out:
7983         __this_cpu_dec(bpf_prog_active);
7984         preempt_enable();
7985         if (!ret)
7986                 return;
7987
7988         event->orig_overflow_handler(event, data, regs);
7989 }
7990
7991 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7992 {
7993         struct bpf_prog *prog;
7994
7995         if (event->overflow_handler_context)
7996                 /* hw breakpoint or kernel counter */
7997                 return -EINVAL;
7998
7999         if (event->prog)
8000                 return -EEXIST;
8001
8002         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8003         if (IS_ERR(prog))
8004                 return PTR_ERR(prog);
8005
8006         event->prog = prog;
8007         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8008         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8009         return 0;
8010 }
8011
8012 static void perf_event_free_bpf_handler(struct perf_event *event)
8013 {
8014         struct bpf_prog *prog = event->prog;
8015
8016         if (!prog)
8017                 return;
8018
8019         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8020         event->prog = NULL;
8021         bpf_prog_put(prog);
8022 }
8023 #else
8024 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8025 {
8026         return -EOPNOTSUPP;
8027 }
8028 static void perf_event_free_bpf_handler(struct perf_event *event)
8029 {
8030 }
8031 #endif
8032
8033 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8034 {
8035         bool is_kprobe, is_tracepoint;
8036         struct bpf_prog *prog;
8037
8038         if (event->attr.type == PERF_TYPE_HARDWARE ||
8039             event->attr.type == PERF_TYPE_SOFTWARE)
8040                 return perf_event_set_bpf_handler(event, prog_fd);
8041
8042         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8043                 return -EINVAL;
8044
8045         if (event->tp_event->prog)
8046                 return -EEXIST;
8047
8048         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8049         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8050         if (!is_kprobe && !is_tracepoint)
8051                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8052                 return -EINVAL;
8053
8054         prog = bpf_prog_get(prog_fd);
8055         if (IS_ERR(prog))
8056                 return PTR_ERR(prog);
8057
8058         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8059             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8060                 /* valid fd, but invalid bpf program type */
8061                 bpf_prog_put(prog);
8062                 return -EINVAL;
8063         }
8064
8065         if (is_tracepoint) {
8066                 int off = trace_event_get_offsets(event->tp_event);
8067
8068                 if (prog->aux->max_ctx_offset > off) {
8069                         bpf_prog_put(prog);
8070                         return -EACCES;
8071                 }
8072         }
8073         event->tp_event->prog = prog;
8074
8075         return 0;
8076 }
8077
8078 static void perf_event_free_bpf_prog(struct perf_event *event)
8079 {
8080         struct bpf_prog *prog;
8081
8082         perf_event_free_bpf_handler(event);
8083
8084         if (!event->tp_event)
8085                 return;
8086
8087         prog = event->tp_event->prog;
8088         if (prog) {
8089                 event->tp_event->prog = NULL;
8090                 bpf_prog_put(prog);
8091         }
8092 }
8093
8094 #else
8095
8096 static inline void perf_tp_register(void)
8097 {
8098 }
8099
8100 static void perf_event_free_filter(struct perf_event *event)
8101 {
8102 }
8103
8104 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8105 {
8106         return -ENOENT;
8107 }
8108
8109 static void perf_event_free_bpf_prog(struct perf_event *event)
8110 {
8111 }
8112 #endif /* CONFIG_EVENT_TRACING */
8113
8114 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8115 void perf_bp_event(struct perf_event *bp, void *data)
8116 {
8117         struct perf_sample_data sample;
8118         struct pt_regs *regs = data;
8119
8120         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8121
8122         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8123                 perf_swevent_event(bp, 1, &sample, regs);
8124 }
8125 #endif
8126
8127 /*
8128  * Allocate a new address filter
8129  */
8130 static struct perf_addr_filter *
8131 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8132 {
8133         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8134         struct perf_addr_filter *filter;
8135
8136         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8137         if (!filter)
8138                 return NULL;
8139
8140         INIT_LIST_HEAD(&filter->entry);
8141         list_add_tail(&filter->entry, filters);
8142
8143         return filter;
8144 }
8145
8146 static void free_filters_list(struct list_head *filters)
8147 {
8148         struct perf_addr_filter *filter, *iter;
8149
8150         list_for_each_entry_safe(filter, iter, filters, entry) {
8151                 if (filter->inode)
8152                         iput(filter->inode);
8153                 list_del(&filter->entry);
8154                 kfree(filter);
8155         }
8156 }
8157
8158 /*
8159  * Free existing address filters and optionally install new ones
8160  */
8161 static void perf_addr_filters_splice(struct perf_event *event,
8162                                      struct list_head *head)
8163 {
8164         unsigned long flags;
8165         LIST_HEAD(list);
8166
8167         if (!has_addr_filter(event))
8168                 return;
8169
8170         /* don't bother with children, they don't have their own filters */
8171         if (event->parent)
8172                 return;
8173
8174         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8175
8176         list_splice_init(&event->addr_filters.list, &list);
8177         if (head)
8178                 list_splice(head, &event->addr_filters.list);
8179
8180         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8181
8182         free_filters_list(&list);
8183 }
8184
8185 /*
8186  * Scan through mm's vmas and see if one of them matches the
8187  * @filter; if so, adjust filter's address range.
8188  * Called with mm::mmap_sem down for reading.
8189  */
8190 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8191                                             struct mm_struct *mm)
8192 {
8193         struct vm_area_struct *vma;
8194
8195         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8196                 struct file *file = vma->vm_file;
8197                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8198                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8199
8200                 if (!file)
8201                         continue;
8202
8203                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8204                         continue;
8205
8206                 return vma->vm_start;
8207         }
8208
8209         return 0;
8210 }
8211
8212 /*
8213  * Update event's address range filters based on the
8214  * task's existing mappings, if any.
8215  */
8216 static void perf_event_addr_filters_apply(struct perf_event *event)
8217 {
8218         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8219         struct task_struct *task = READ_ONCE(event->ctx->task);
8220         struct perf_addr_filter *filter;
8221         struct mm_struct *mm = NULL;
8222         unsigned int count = 0;
8223         unsigned long flags;
8224
8225         /*
8226          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8227          * will stop on the parent's child_mutex that our caller is also holding
8228          */
8229         if (task == TASK_TOMBSTONE)
8230                 return;
8231
8232         if (!ifh->nr_file_filters)
8233                 return;
8234
8235         mm = get_task_mm(event->ctx->task);
8236         if (!mm)
8237                 goto restart;
8238
8239         down_read(&mm->mmap_sem);
8240
8241         raw_spin_lock_irqsave(&ifh->lock, flags);
8242         list_for_each_entry(filter, &ifh->list, entry) {
8243                 event->addr_filters_offs[count] = 0;
8244
8245                 /*
8246                  * Adjust base offset if the filter is associated to a binary
8247                  * that needs to be mapped:
8248                  */
8249                 if (filter->inode)
8250                         event->addr_filters_offs[count] =
8251                                 perf_addr_filter_apply(filter, mm);
8252
8253                 count++;
8254         }
8255
8256         event->addr_filters_gen++;
8257         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8258
8259         up_read(&mm->mmap_sem);
8260
8261         mmput(mm);
8262
8263 restart:
8264         perf_event_stop(event, 1);
8265 }
8266
8267 /*
8268  * Address range filtering: limiting the data to certain
8269  * instruction address ranges. Filters are ioctl()ed to us from
8270  * userspace as ascii strings.
8271  *
8272  * Filter string format:
8273  *
8274  * ACTION RANGE_SPEC
8275  * where ACTION is one of the
8276  *  * "filter": limit the trace to this region
8277  *  * "start": start tracing from this address
8278  *  * "stop": stop tracing at this address/region;
8279  * RANGE_SPEC is
8280  *  * for kernel addresses: <start address>[/<size>]
8281  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8282  *
8283  * if <size> is not specified, the range is treated as a single address.
8284  */
8285 enum {
8286         IF_ACT_NONE = -1,
8287         IF_ACT_FILTER,
8288         IF_ACT_START,
8289         IF_ACT_STOP,
8290         IF_SRC_FILE,
8291         IF_SRC_KERNEL,
8292         IF_SRC_FILEADDR,
8293         IF_SRC_KERNELADDR,
8294 };
8295
8296 enum {
8297         IF_STATE_ACTION = 0,
8298         IF_STATE_SOURCE,
8299         IF_STATE_END,
8300 };
8301
8302 static const match_table_t if_tokens = {
8303         { IF_ACT_FILTER,        "filter" },
8304         { IF_ACT_START,         "start" },
8305         { IF_ACT_STOP,          "stop" },
8306         { IF_SRC_FILE,          "%u/%u@%s" },
8307         { IF_SRC_KERNEL,        "%u/%u" },
8308         { IF_SRC_FILEADDR,      "%u@%s" },
8309         { IF_SRC_KERNELADDR,    "%u" },
8310         { IF_ACT_NONE,          NULL },
8311 };
8312
8313 /*
8314  * Address filter string parser
8315  */
8316 static int
8317 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8318                              struct list_head *filters)
8319 {
8320         struct perf_addr_filter *filter = NULL;
8321         char *start, *orig, *filename = NULL;
8322         struct path path;
8323         substring_t args[MAX_OPT_ARGS];
8324         int state = IF_STATE_ACTION, token;
8325         unsigned int kernel = 0;
8326         int ret = -EINVAL;
8327
8328         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8329         if (!fstr)
8330                 return -ENOMEM;
8331
8332         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8333                 ret = -EINVAL;
8334
8335                 if (!*start)
8336                         continue;
8337
8338                 /* filter definition begins */
8339                 if (state == IF_STATE_ACTION) {
8340                         filter = perf_addr_filter_new(event, filters);
8341                         if (!filter)
8342                                 goto fail;
8343                 }
8344
8345                 token = match_token(start, if_tokens, args);
8346                 switch (token) {
8347                 case IF_ACT_FILTER:
8348                 case IF_ACT_START:
8349                         filter->filter = 1;
8350
8351                 case IF_ACT_STOP:
8352                         if (state != IF_STATE_ACTION)
8353                                 goto fail;
8354
8355                         state = IF_STATE_SOURCE;
8356                         break;
8357
8358                 case IF_SRC_KERNELADDR:
8359                 case IF_SRC_KERNEL:
8360                         kernel = 1;
8361
8362                 case IF_SRC_FILEADDR:
8363                 case IF_SRC_FILE:
8364                         if (state != IF_STATE_SOURCE)
8365                                 goto fail;
8366
8367                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8368                                 filter->range = 1;
8369
8370                         *args[0].to = 0;
8371                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8372                         if (ret)
8373                                 goto fail;
8374
8375                         if (filter->range) {
8376                                 *args[1].to = 0;
8377                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8378                                 if (ret)
8379                                         goto fail;
8380                         }
8381
8382                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8383                                 int fpos = filter->range ? 2 : 1;
8384
8385                                 filename = match_strdup(&args[fpos]);
8386                                 if (!filename) {
8387                                         ret = -ENOMEM;
8388                                         goto fail;
8389                                 }
8390                         }
8391
8392                         state = IF_STATE_END;
8393                         break;
8394
8395                 default:
8396                         goto fail;
8397                 }
8398
8399                 /*
8400                  * Filter definition is fully parsed, validate and install it.
8401                  * Make sure that it doesn't contradict itself or the event's
8402                  * attribute.
8403                  */
8404                 if (state == IF_STATE_END) {
8405                         ret = -EINVAL;
8406                         if (kernel && event->attr.exclude_kernel)
8407                                 goto fail;
8408
8409                         if (!kernel) {
8410                                 if (!filename)
8411                                         goto fail;
8412
8413                                 /*
8414                                  * For now, we only support file-based filters
8415                                  * in per-task events; doing so for CPU-wide
8416                                  * events requires additional context switching
8417                                  * trickery, since same object code will be
8418                                  * mapped at different virtual addresses in
8419                                  * different processes.
8420                                  */
8421                                 ret = -EOPNOTSUPP;
8422                                 if (!event->ctx->task)
8423                                         goto fail_free_name;
8424
8425                                 /* look up the path and grab its inode */
8426                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8427                                 if (ret)
8428                                         goto fail_free_name;
8429
8430                                 filter->inode = igrab(d_inode(path.dentry));
8431                                 path_put(&path);
8432                                 kfree(filename);
8433                                 filename = NULL;
8434
8435                                 ret = -EINVAL;
8436                                 if (!filter->inode ||
8437                                     !S_ISREG(filter->inode->i_mode))
8438                                         /* free_filters_list() will iput() */
8439                                         goto fail;
8440
8441                                 event->addr_filters.nr_file_filters++;
8442                         }
8443
8444                         /* ready to consume more filters */
8445                         state = IF_STATE_ACTION;
8446                         filter = NULL;
8447                 }
8448         }
8449
8450         if (state != IF_STATE_ACTION)
8451                 goto fail;
8452
8453         kfree(orig);
8454
8455         return 0;
8456
8457 fail_free_name:
8458         kfree(filename);
8459 fail:
8460         free_filters_list(filters);
8461         kfree(orig);
8462
8463         return ret;
8464 }
8465
8466 static int
8467 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8468 {
8469         LIST_HEAD(filters);
8470         int ret;
8471
8472         /*
8473          * Since this is called in perf_ioctl() path, we're already holding
8474          * ctx::mutex.
8475          */
8476         lockdep_assert_held(&event->ctx->mutex);
8477
8478         if (WARN_ON_ONCE(event->parent))
8479                 return -EINVAL;
8480
8481         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8482         if (ret)
8483                 goto fail_clear_files;
8484
8485         ret = event->pmu->addr_filters_validate(&filters);
8486         if (ret)
8487                 goto fail_free_filters;
8488
8489         /* remove existing filters, if any */
8490         perf_addr_filters_splice(event, &filters);
8491
8492         /* install new filters */
8493         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8494
8495         return ret;
8496
8497 fail_free_filters:
8498         free_filters_list(&filters);
8499
8500 fail_clear_files:
8501         event->addr_filters.nr_file_filters = 0;
8502
8503         return ret;
8504 }
8505
8506 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8507 {
8508         char *filter_str;
8509         int ret = -EINVAL;
8510
8511         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8512             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8513             !has_addr_filter(event))
8514                 return -EINVAL;
8515
8516         filter_str = strndup_user(arg, PAGE_SIZE);
8517         if (IS_ERR(filter_str))
8518                 return PTR_ERR(filter_str);
8519
8520         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8521             event->attr.type == PERF_TYPE_TRACEPOINT)
8522                 ret = ftrace_profile_set_filter(event, event->attr.config,
8523                                                 filter_str);
8524         else if (has_addr_filter(event))
8525                 ret = perf_event_set_addr_filter(event, filter_str);
8526
8527         kfree(filter_str);
8528         return ret;
8529 }
8530
8531 /*
8532  * hrtimer based swevent callback
8533  */
8534
8535 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8536 {
8537         enum hrtimer_restart ret = HRTIMER_RESTART;
8538         struct perf_sample_data data;
8539         struct pt_regs *regs;
8540         struct perf_event *event;
8541         u64 period;
8542
8543         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8544
8545         if (event->state != PERF_EVENT_STATE_ACTIVE)
8546                 return HRTIMER_NORESTART;
8547
8548         event->pmu->read(event);
8549
8550         perf_sample_data_init(&data, 0, event->hw.last_period);
8551         regs = get_irq_regs();
8552
8553         if (regs && !perf_exclude_event(event, regs)) {
8554                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8555                         if (__perf_event_overflow(event, 1, &data, regs))
8556                                 ret = HRTIMER_NORESTART;
8557         }
8558
8559         period = max_t(u64, 10000, event->hw.sample_period);
8560         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8561
8562         return ret;
8563 }
8564
8565 static void perf_swevent_start_hrtimer(struct perf_event *event)
8566 {
8567         struct hw_perf_event *hwc = &event->hw;
8568         s64 period;
8569
8570         if (!is_sampling_event(event))
8571                 return;
8572
8573         period = local64_read(&hwc->period_left);
8574         if (period) {
8575                 if (period < 0)
8576                         period = 10000;
8577
8578                 local64_set(&hwc->period_left, 0);
8579         } else {
8580                 period = max_t(u64, 10000, hwc->sample_period);
8581         }
8582         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8583                       HRTIMER_MODE_REL_PINNED);
8584 }
8585
8586 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8587 {
8588         struct hw_perf_event *hwc = &event->hw;
8589
8590         if (is_sampling_event(event)) {
8591                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8592                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8593
8594                 hrtimer_cancel(&hwc->hrtimer);
8595         }
8596 }
8597
8598 static void perf_swevent_init_hrtimer(struct perf_event *event)
8599 {
8600         struct hw_perf_event *hwc = &event->hw;
8601
8602         if (!is_sampling_event(event))
8603                 return;
8604
8605         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8606         hwc->hrtimer.function = perf_swevent_hrtimer;
8607
8608         /*
8609          * Since hrtimers have a fixed rate, we can do a static freq->period
8610          * mapping and avoid the whole period adjust feedback stuff.
8611          */
8612         if (event->attr.freq) {
8613                 long freq = event->attr.sample_freq;
8614
8615                 event->attr.sample_period = NSEC_PER_SEC / freq;
8616                 hwc->sample_period = event->attr.sample_period;
8617                 local64_set(&hwc->period_left, hwc->sample_period);
8618                 hwc->last_period = hwc->sample_period;
8619                 event->attr.freq = 0;
8620         }
8621 }
8622
8623 /*
8624  * Software event: cpu wall time clock
8625  */
8626
8627 static void cpu_clock_event_update(struct perf_event *event)
8628 {
8629         s64 prev;
8630         u64 now;
8631
8632         now = local_clock();
8633         prev = local64_xchg(&event->hw.prev_count, now);
8634         local64_add(now - prev, &event->count);
8635 }
8636
8637 static void cpu_clock_event_start(struct perf_event *event, int flags)
8638 {
8639         local64_set(&event->hw.prev_count, local_clock());
8640         perf_swevent_start_hrtimer(event);
8641 }
8642
8643 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8644 {
8645         perf_swevent_cancel_hrtimer(event);
8646         cpu_clock_event_update(event);
8647 }
8648
8649 static int cpu_clock_event_add(struct perf_event *event, int flags)
8650 {
8651         if (flags & PERF_EF_START)
8652                 cpu_clock_event_start(event, flags);
8653         perf_event_update_userpage(event);
8654
8655         return 0;
8656 }
8657
8658 static void cpu_clock_event_del(struct perf_event *event, int flags)
8659 {
8660         cpu_clock_event_stop(event, flags);
8661 }
8662
8663 static void cpu_clock_event_read(struct perf_event *event)
8664 {
8665         cpu_clock_event_update(event);
8666 }
8667
8668 static int cpu_clock_event_init(struct perf_event *event)
8669 {
8670         if (event->attr.type != PERF_TYPE_SOFTWARE)
8671                 return -ENOENT;
8672
8673         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8674                 return -ENOENT;
8675
8676         /*
8677          * no branch sampling for software events
8678          */
8679         if (has_branch_stack(event))
8680                 return -EOPNOTSUPP;
8681
8682         perf_swevent_init_hrtimer(event);
8683
8684         return 0;
8685 }
8686
8687 static struct pmu perf_cpu_clock = {
8688         .task_ctx_nr    = perf_sw_context,
8689
8690         .capabilities   = PERF_PMU_CAP_NO_NMI,
8691
8692         .event_init     = cpu_clock_event_init,
8693         .add            = cpu_clock_event_add,
8694         .del            = cpu_clock_event_del,
8695         .start          = cpu_clock_event_start,
8696         .stop           = cpu_clock_event_stop,
8697         .read           = cpu_clock_event_read,
8698 };
8699
8700 /*
8701  * Software event: task time clock
8702  */
8703
8704 static void task_clock_event_update(struct perf_event *event, u64 now)
8705 {
8706         u64 prev;
8707         s64 delta;
8708
8709         prev = local64_xchg(&event->hw.prev_count, now);
8710         delta = now - prev;
8711         local64_add(delta, &event->count);
8712 }
8713
8714 static void task_clock_event_start(struct perf_event *event, int flags)
8715 {
8716         local64_set(&event->hw.prev_count, event->ctx->time);
8717         perf_swevent_start_hrtimer(event);
8718 }
8719
8720 static void task_clock_event_stop(struct perf_event *event, int flags)
8721 {
8722         perf_swevent_cancel_hrtimer(event);
8723         task_clock_event_update(event, event->ctx->time);
8724 }
8725
8726 static int task_clock_event_add(struct perf_event *event, int flags)
8727 {
8728         if (flags & PERF_EF_START)
8729                 task_clock_event_start(event, flags);
8730         perf_event_update_userpage(event);
8731
8732         return 0;
8733 }
8734
8735 static void task_clock_event_del(struct perf_event *event, int flags)
8736 {
8737         task_clock_event_stop(event, PERF_EF_UPDATE);
8738 }
8739
8740 static void task_clock_event_read(struct perf_event *event)
8741 {
8742         u64 now = perf_clock();
8743         u64 delta = now - event->ctx->timestamp;
8744         u64 time = event->ctx->time + delta;
8745
8746         task_clock_event_update(event, time);
8747 }
8748
8749 static int task_clock_event_init(struct perf_event *event)
8750 {
8751         if (event->attr.type != PERF_TYPE_SOFTWARE)
8752                 return -ENOENT;
8753
8754         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8755                 return -ENOENT;
8756
8757         /*
8758          * no branch sampling for software events
8759          */
8760         if (has_branch_stack(event))
8761                 return -EOPNOTSUPP;
8762
8763         perf_swevent_init_hrtimer(event);
8764
8765         return 0;
8766 }
8767
8768 static struct pmu perf_task_clock = {
8769         .task_ctx_nr    = perf_sw_context,
8770
8771         .capabilities   = PERF_PMU_CAP_NO_NMI,
8772
8773         .event_init     = task_clock_event_init,
8774         .add            = task_clock_event_add,
8775         .del            = task_clock_event_del,
8776         .start          = task_clock_event_start,
8777         .stop           = task_clock_event_stop,
8778         .read           = task_clock_event_read,
8779 };
8780
8781 static void perf_pmu_nop_void(struct pmu *pmu)
8782 {
8783 }
8784
8785 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8786 {
8787 }
8788
8789 static int perf_pmu_nop_int(struct pmu *pmu)
8790 {
8791         return 0;
8792 }
8793
8794 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8795
8796 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8797 {
8798         __this_cpu_write(nop_txn_flags, flags);
8799
8800         if (flags & ~PERF_PMU_TXN_ADD)
8801                 return;
8802
8803         perf_pmu_disable(pmu);
8804 }
8805
8806 static int perf_pmu_commit_txn(struct pmu *pmu)
8807 {
8808         unsigned int flags = __this_cpu_read(nop_txn_flags);
8809
8810         __this_cpu_write(nop_txn_flags, 0);
8811
8812         if (flags & ~PERF_PMU_TXN_ADD)
8813                 return 0;
8814
8815         perf_pmu_enable(pmu);
8816         return 0;
8817 }
8818
8819 static void perf_pmu_cancel_txn(struct pmu *pmu)
8820 {
8821         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8822
8823         __this_cpu_write(nop_txn_flags, 0);
8824
8825         if (flags & ~PERF_PMU_TXN_ADD)
8826                 return;
8827
8828         perf_pmu_enable(pmu);
8829 }
8830
8831 static int perf_event_idx_default(struct perf_event *event)
8832 {
8833         return 0;
8834 }
8835
8836 /*
8837  * Ensures all contexts with the same task_ctx_nr have the same
8838  * pmu_cpu_context too.
8839  */
8840 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8841 {
8842         struct pmu *pmu;
8843
8844         if (ctxn < 0)
8845                 return NULL;
8846
8847         list_for_each_entry(pmu, &pmus, entry) {
8848                 if (pmu->task_ctx_nr == ctxn)
8849                         return pmu->pmu_cpu_context;
8850         }
8851
8852         return NULL;
8853 }
8854
8855 static void free_pmu_context(struct pmu *pmu)
8856 {
8857         mutex_lock(&pmus_lock);
8858         free_percpu(pmu->pmu_cpu_context);
8859         mutex_unlock(&pmus_lock);
8860 }
8861
8862 /*
8863  * Let userspace know that this PMU supports address range filtering:
8864  */
8865 static ssize_t nr_addr_filters_show(struct device *dev,
8866                                     struct device_attribute *attr,
8867                                     char *page)
8868 {
8869         struct pmu *pmu = dev_get_drvdata(dev);
8870
8871         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8872 }
8873 DEVICE_ATTR_RO(nr_addr_filters);
8874
8875 static struct idr pmu_idr;
8876
8877 static ssize_t
8878 type_show(struct device *dev, struct device_attribute *attr, char *page)
8879 {
8880         struct pmu *pmu = dev_get_drvdata(dev);
8881
8882         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8883 }
8884 static DEVICE_ATTR_RO(type);
8885
8886 static ssize_t
8887 perf_event_mux_interval_ms_show(struct device *dev,
8888                                 struct device_attribute *attr,
8889                                 char *page)
8890 {
8891         struct pmu *pmu = dev_get_drvdata(dev);
8892
8893         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8894 }
8895
8896 static DEFINE_MUTEX(mux_interval_mutex);
8897
8898 static ssize_t
8899 perf_event_mux_interval_ms_store(struct device *dev,
8900                                  struct device_attribute *attr,
8901                                  const char *buf, size_t count)
8902 {
8903         struct pmu *pmu = dev_get_drvdata(dev);
8904         int timer, cpu, ret;
8905
8906         ret = kstrtoint(buf, 0, &timer);
8907         if (ret)
8908                 return ret;
8909
8910         if (timer < 1)
8911                 return -EINVAL;
8912
8913         /* same value, noting to do */
8914         if (timer == pmu->hrtimer_interval_ms)
8915                 return count;
8916
8917         mutex_lock(&mux_interval_mutex);
8918         pmu->hrtimer_interval_ms = timer;
8919
8920         /* update all cpuctx for this PMU */
8921         cpus_read_lock();
8922         for_each_online_cpu(cpu) {
8923                 struct perf_cpu_context *cpuctx;
8924                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8925                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8926
8927                 cpu_function_call(cpu,
8928                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8929         }
8930         cpus_read_unlock();
8931         mutex_unlock(&mux_interval_mutex);
8932
8933         return count;
8934 }
8935 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8936
8937 static struct attribute *pmu_dev_attrs[] = {
8938         &dev_attr_type.attr,
8939         &dev_attr_perf_event_mux_interval_ms.attr,
8940         NULL,
8941 };
8942 ATTRIBUTE_GROUPS(pmu_dev);
8943
8944 static int pmu_bus_running;
8945 static struct bus_type pmu_bus = {
8946         .name           = "event_source",
8947         .dev_groups     = pmu_dev_groups,
8948 };
8949
8950 static void pmu_dev_release(struct device *dev)
8951 {
8952         kfree(dev);
8953 }
8954
8955 static int pmu_dev_alloc(struct pmu *pmu)
8956 {
8957         int ret = -ENOMEM;
8958
8959         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8960         if (!pmu->dev)
8961                 goto out;
8962
8963         pmu->dev->groups = pmu->attr_groups;
8964         device_initialize(pmu->dev);
8965         ret = dev_set_name(pmu->dev, "%s", pmu->name);
8966         if (ret)
8967                 goto free_dev;
8968
8969         dev_set_drvdata(pmu->dev, pmu);
8970         pmu->dev->bus = &pmu_bus;
8971         pmu->dev->release = pmu_dev_release;
8972         ret = device_add(pmu->dev);
8973         if (ret)
8974                 goto free_dev;
8975
8976         /* For PMUs with address filters, throw in an extra attribute: */
8977         if (pmu->nr_addr_filters)
8978                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8979
8980         if (ret)
8981                 goto del_dev;
8982
8983 out:
8984         return ret;
8985
8986 del_dev:
8987         device_del(pmu->dev);
8988
8989 free_dev:
8990         put_device(pmu->dev);
8991         goto out;
8992 }
8993
8994 static struct lock_class_key cpuctx_mutex;
8995 static struct lock_class_key cpuctx_lock;
8996
8997 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8998 {
8999         int cpu, ret;
9000
9001         mutex_lock(&pmus_lock);
9002         ret = -ENOMEM;
9003         pmu->pmu_disable_count = alloc_percpu(int);
9004         if (!pmu->pmu_disable_count)
9005                 goto unlock;
9006
9007         pmu->type = -1;
9008         if (!name)
9009                 goto skip_type;
9010         pmu->name = name;
9011
9012         if (type < 0) {
9013                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9014                 if (type < 0) {
9015                         ret = type;
9016                         goto free_pdc;
9017                 }
9018         }
9019         pmu->type = type;
9020
9021         if (pmu_bus_running) {
9022                 ret = pmu_dev_alloc(pmu);
9023                 if (ret)
9024                         goto free_idr;
9025         }
9026
9027 skip_type:
9028         if (pmu->task_ctx_nr == perf_hw_context) {
9029                 static int hw_context_taken = 0;
9030
9031                 /*
9032                  * Other than systems with heterogeneous CPUs, it never makes
9033                  * sense for two PMUs to share perf_hw_context. PMUs which are
9034                  * uncore must use perf_invalid_context.
9035                  */
9036                 if (WARN_ON_ONCE(hw_context_taken &&
9037                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9038                         pmu->task_ctx_nr = perf_invalid_context;
9039
9040                 hw_context_taken = 1;
9041         }
9042
9043         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9044         if (pmu->pmu_cpu_context)
9045                 goto got_cpu_context;
9046
9047         ret = -ENOMEM;
9048         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9049         if (!pmu->pmu_cpu_context)
9050                 goto free_dev;
9051
9052         for_each_possible_cpu(cpu) {
9053                 struct perf_cpu_context *cpuctx;
9054
9055                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9056                 __perf_event_init_context(&cpuctx->ctx);
9057                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9058                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9059                 cpuctx->ctx.pmu = pmu;
9060                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9061
9062                 __perf_mux_hrtimer_init(cpuctx, cpu);
9063         }
9064
9065 got_cpu_context:
9066         if (!pmu->start_txn) {
9067                 if (pmu->pmu_enable) {
9068                         /*
9069                          * If we have pmu_enable/pmu_disable calls, install
9070                          * transaction stubs that use that to try and batch
9071                          * hardware accesses.
9072                          */
9073                         pmu->start_txn  = perf_pmu_start_txn;
9074                         pmu->commit_txn = perf_pmu_commit_txn;
9075                         pmu->cancel_txn = perf_pmu_cancel_txn;
9076                 } else {
9077                         pmu->start_txn  = perf_pmu_nop_txn;
9078                         pmu->commit_txn = perf_pmu_nop_int;
9079                         pmu->cancel_txn = perf_pmu_nop_void;
9080                 }
9081         }
9082
9083         if (!pmu->pmu_enable) {
9084                 pmu->pmu_enable  = perf_pmu_nop_void;
9085                 pmu->pmu_disable = perf_pmu_nop_void;
9086         }
9087
9088         if (!pmu->event_idx)
9089                 pmu->event_idx = perf_event_idx_default;
9090
9091         list_add_rcu(&pmu->entry, &pmus);
9092         atomic_set(&pmu->exclusive_cnt, 0);
9093         ret = 0;
9094 unlock:
9095         mutex_unlock(&pmus_lock);
9096
9097         return ret;
9098
9099 free_dev:
9100         device_del(pmu->dev);
9101         put_device(pmu->dev);
9102
9103 free_idr:
9104         if (pmu->type >= PERF_TYPE_MAX)
9105                 idr_remove(&pmu_idr, pmu->type);
9106
9107 free_pdc:
9108         free_percpu(pmu->pmu_disable_count);
9109         goto unlock;
9110 }
9111 EXPORT_SYMBOL_GPL(perf_pmu_register);
9112
9113 void perf_pmu_unregister(struct pmu *pmu)
9114 {
9115         int remove_device;
9116
9117         mutex_lock(&pmus_lock);
9118         remove_device = pmu_bus_running;
9119         list_del_rcu(&pmu->entry);
9120         mutex_unlock(&pmus_lock);
9121
9122         /*
9123          * We dereference the pmu list under both SRCU and regular RCU, so
9124          * synchronize against both of those.
9125          */
9126         synchronize_srcu(&pmus_srcu);
9127         synchronize_rcu();
9128
9129         free_percpu(pmu->pmu_disable_count);
9130         if (pmu->type >= PERF_TYPE_MAX)
9131                 idr_remove(&pmu_idr, pmu->type);
9132         if (remove_device) {
9133                 if (pmu->nr_addr_filters)
9134                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9135                 device_del(pmu->dev);
9136                 put_device(pmu->dev);
9137         }
9138         free_pmu_context(pmu);
9139 }
9140 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9141
9142 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9143 {
9144         struct perf_event_context *ctx = NULL;
9145         int ret;
9146
9147         if (!try_module_get(pmu->module))
9148                 return -ENODEV;
9149
9150         if (event->group_leader != event) {
9151                 /*
9152                  * This ctx->mutex can nest when we're called through
9153                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9154                  */
9155                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9156                                                  SINGLE_DEPTH_NESTING);
9157                 BUG_ON(!ctx);
9158         }
9159
9160         event->pmu = pmu;
9161         ret = pmu->event_init(event);
9162
9163         if (ctx)
9164                 perf_event_ctx_unlock(event->group_leader, ctx);
9165
9166         if (ret)
9167                 module_put(pmu->module);
9168
9169         return ret;
9170 }
9171
9172 static struct pmu *perf_init_event(struct perf_event *event)
9173 {
9174         struct pmu *pmu;
9175         int idx;
9176         int ret;
9177
9178         idx = srcu_read_lock(&pmus_srcu);
9179
9180         /* Try parent's PMU first: */
9181         if (event->parent && event->parent->pmu) {
9182                 pmu = event->parent->pmu;
9183                 ret = perf_try_init_event(pmu, event);
9184                 if (!ret)
9185                         goto unlock;
9186         }
9187
9188         rcu_read_lock();
9189         pmu = idr_find(&pmu_idr, event->attr.type);
9190         rcu_read_unlock();
9191         if (pmu) {
9192                 ret = perf_try_init_event(pmu, event);
9193                 if (ret)
9194                         pmu = ERR_PTR(ret);
9195                 goto unlock;
9196         }
9197
9198         list_for_each_entry_rcu(pmu, &pmus, entry) {
9199                 ret = perf_try_init_event(pmu, event);
9200                 if (!ret)
9201                         goto unlock;
9202
9203                 if (ret != -ENOENT) {
9204                         pmu = ERR_PTR(ret);
9205                         goto unlock;
9206                 }
9207         }
9208         pmu = ERR_PTR(-ENOENT);
9209 unlock:
9210         srcu_read_unlock(&pmus_srcu, idx);
9211
9212         return pmu;
9213 }
9214
9215 static void attach_sb_event(struct perf_event *event)
9216 {
9217         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9218
9219         raw_spin_lock(&pel->lock);
9220         list_add_rcu(&event->sb_list, &pel->list);
9221         raw_spin_unlock(&pel->lock);
9222 }
9223
9224 /*
9225  * We keep a list of all !task (and therefore per-cpu) events
9226  * that need to receive side-band records.
9227  *
9228  * This avoids having to scan all the various PMU per-cpu contexts
9229  * looking for them.
9230  */
9231 static void account_pmu_sb_event(struct perf_event *event)
9232 {
9233         if (is_sb_event(event))
9234                 attach_sb_event(event);
9235 }
9236
9237 static void account_event_cpu(struct perf_event *event, int cpu)
9238 {
9239         if (event->parent)
9240                 return;
9241
9242         if (is_cgroup_event(event))
9243                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9244 }
9245
9246 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9247 static void account_freq_event_nohz(void)
9248 {
9249 #ifdef CONFIG_NO_HZ_FULL
9250         /* Lock so we don't race with concurrent unaccount */
9251         spin_lock(&nr_freq_lock);
9252         if (atomic_inc_return(&nr_freq_events) == 1)
9253                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9254         spin_unlock(&nr_freq_lock);
9255 #endif
9256 }
9257
9258 static void account_freq_event(void)
9259 {
9260         if (tick_nohz_full_enabled())
9261                 account_freq_event_nohz();
9262         else
9263                 atomic_inc(&nr_freq_events);
9264 }
9265
9266
9267 static void account_event(struct perf_event *event)
9268 {
9269         bool inc = false;
9270
9271         if (event->parent)
9272                 return;
9273
9274         if (event->attach_state & PERF_ATTACH_TASK)
9275                 inc = true;
9276         if (event->attr.mmap || event->attr.mmap_data)
9277                 atomic_inc(&nr_mmap_events);
9278         if (event->attr.comm)
9279                 atomic_inc(&nr_comm_events);
9280         if (event->attr.namespaces)
9281                 atomic_inc(&nr_namespaces_events);
9282         if (event->attr.task)
9283                 atomic_inc(&nr_task_events);
9284         if (event->attr.freq)
9285                 account_freq_event();
9286         if (event->attr.context_switch) {
9287                 atomic_inc(&nr_switch_events);
9288                 inc = true;
9289         }
9290         if (has_branch_stack(event))
9291                 inc = true;
9292         if (is_cgroup_event(event))
9293                 inc = true;
9294
9295         if (inc) {
9296                 if (atomic_inc_not_zero(&perf_sched_count))
9297                         goto enabled;
9298
9299                 mutex_lock(&perf_sched_mutex);
9300                 if (!atomic_read(&perf_sched_count)) {
9301                         static_branch_enable(&perf_sched_events);
9302                         /*
9303                          * Guarantee that all CPUs observe they key change and
9304                          * call the perf scheduling hooks before proceeding to
9305                          * install events that need them.
9306                          */
9307                         synchronize_sched();
9308                 }
9309                 /*
9310                  * Now that we have waited for the sync_sched(), allow further
9311                  * increments to by-pass the mutex.
9312                  */
9313                 atomic_inc(&perf_sched_count);
9314                 mutex_unlock(&perf_sched_mutex);
9315         }
9316 enabled:
9317
9318         account_event_cpu(event, event->cpu);
9319
9320         account_pmu_sb_event(event);
9321 }
9322
9323 /*
9324  * Allocate and initialize a event structure
9325  */
9326 static struct perf_event *
9327 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9328                  struct task_struct *task,
9329                  struct perf_event *group_leader,
9330                  struct perf_event *parent_event,
9331                  perf_overflow_handler_t overflow_handler,
9332                  void *context, int cgroup_fd)
9333 {
9334         struct pmu *pmu;
9335         struct perf_event *event;
9336         struct hw_perf_event *hwc;
9337         long err = -EINVAL;
9338
9339         if ((unsigned)cpu >= nr_cpu_ids) {
9340                 if (!task || cpu != -1)
9341                         return ERR_PTR(-EINVAL);
9342         }
9343
9344         event = kzalloc(sizeof(*event), GFP_KERNEL);
9345         if (!event)
9346                 return ERR_PTR(-ENOMEM);
9347
9348         /*
9349          * Single events are their own group leaders, with an
9350          * empty sibling list:
9351          */
9352         if (!group_leader)
9353                 group_leader = event;
9354
9355         mutex_init(&event->child_mutex);
9356         INIT_LIST_HEAD(&event->child_list);
9357
9358         INIT_LIST_HEAD(&event->group_entry);
9359         INIT_LIST_HEAD(&event->event_entry);
9360         INIT_LIST_HEAD(&event->sibling_list);
9361         INIT_LIST_HEAD(&event->rb_entry);
9362         INIT_LIST_HEAD(&event->active_entry);
9363         INIT_LIST_HEAD(&event->addr_filters.list);
9364         INIT_HLIST_NODE(&event->hlist_entry);
9365
9366
9367         init_waitqueue_head(&event->waitq);
9368         init_irq_work(&event->pending, perf_pending_event);
9369
9370         mutex_init(&event->mmap_mutex);
9371         raw_spin_lock_init(&event->addr_filters.lock);
9372
9373         atomic_long_set(&event->refcount, 1);
9374         event->cpu              = cpu;
9375         event->attr             = *attr;
9376         event->group_leader     = group_leader;
9377         event->pmu              = NULL;
9378         event->oncpu            = -1;
9379
9380         event->parent           = parent_event;
9381
9382         event->ns               = get_pid_ns(task_active_pid_ns(current));
9383         event->id               = atomic64_inc_return(&perf_event_id);
9384
9385         event->state            = PERF_EVENT_STATE_INACTIVE;
9386
9387         if (task) {
9388                 event->attach_state = PERF_ATTACH_TASK;
9389                 /*
9390                  * XXX pmu::event_init needs to know what task to account to
9391                  * and we cannot use the ctx information because we need the
9392                  * pmu before we get a ctx.
9393                  */
9394                 event->hw.target = task;
9395         }
9396
9397         event->clock = &local_clock;
9398         if (parent_event)
9399                 event->clock = parent_event->clock;
9400
9401         if (!overflow_handler && parent_event) {
9402                 overflow_handler = parent_event->overflow_handler;
9403                 context = parent_event->overflow_handler_context;
9404 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9405                 if (overflow_handler == bpf_overflow_handler) {
9406                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9407
9408                         if (IS_ERR(prog)) {
9409                                 err = PTR_ERR(prog);
9410                                 goto err_ns;
9411                         }
9412                         event->prog = prog;
9413                         event->orig_overflow_handler =
9414                                 parent_event->orig_overflow_handler;
9415                 }
9416 #endif
9417         }
9418
9419         if (overflow_handler) {
9420                 event->overflow_handler = overflow_handler;
9421                 event->overflow_handler_context = context;
9422         } else if (is_write_backward(event)){
9423                 event->overflow_handler = perf_event_output_backward;
9424                 event->overflow_handler_context = NULL;
9425         } else {
9426                 event->overflow_handler = perf_event_output_forward;
9427                 event->overflow_handler_context = NULL;
9428         }
9429
9430         perf_event__state_init(event);
9431
9432         pmu = NULL;
9433
9434         hwc = &event->hw;
9435         hwc->sample_period = attr->sample_period;
9436         if (attr->freq && attr->sample_freq)
9437                 hwc->sample_period = 1;
9438         hwc->last_period = hwc->sample_period;
9439
9440         local64_set(&hwc->period_left, hwc->sample_period);
9441
9442         /*
9443          * We currently do not support PERF_SAMPLE_READ on inherited events.
9444          * See perf_output_read().
9445          */
9446         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9447                 goto err_ns;
9448
9449         if (!has_branch_stack(event))
9450                 event->attr.branch_sample_type = 0;
9451
9452         if (cgroup_fd != -1) {
9453                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9454                 if (err)
9455                         goto err_ns;
9456         }
9457
9458         pmu = perf_init_event(event);
9459         if (IS_ERR(pmu)) {
9460                 err = PTR_ERR(pmu);
9461                 goto err_ns;
9462         }
9463
9464         err = exclusive_event_init(event);
9465         if (err)
9466                 goto err_pmu;
9467
9468         if (has_addr_filter(event)) {
9469                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9470                                                    sizeof(unsigned long),
9471                                                    GFP_KERNEL);
9472                 if (!event->addr_filters_offs) {
9473                         err = -ENOMEM;
9474                         goto err_per_task;
9475                 }
9476
9477                 /* force hw sync on the address filters */
9478                 event->addr_filters_gen = 1;
9479         }
9480
9481         if (!event->parent) {
9482                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9483                         err = get_callchain_buffers(attr->sample_max_stack);
9484                         if (err)
9485                                 goto err_addr_filters;
9486                 }
9487         }
9488
9489         /* symmetric to unaccount_event() in _free_event() */
9490         account_event(event);
9491
9492         return event;
9493
9494 err_addr_filters:
9495         kfree(event->addr_filters_offs);
9496
9497 err_per_task:
9498         exclusive_event_destroy(event);
9499
9500 err_pmu:
9501         if (event->destroy)
9502                 event->destroy(event);
9503         module_put(pmu->module);
9504 err_ns:
9505         if (is_cgroup_event(event))
9506                 perf_detach_cgroup(event);
9507         if (event->ns)
9508                 put_pid_ns(event->ns);
9509         kfree(event);
9510
9511         return ERR_PTR(err);
9512 }
9513
9514 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9515                           struct perf_event_attr *attr)
9516 {
9517         u32 size;
9518         int ret;
9519
9520         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9521                 return -EFAULT;
9522
9523         /*
9524          * zero the full structure, so that a short copy will be nice.
9525          */
9526         memset(attr, 0, sizeof(*attr));
9527
9528         ret = get_user(size, &uattr->size);
9529         if (ret)
9530                 return ret;
9531
9532         if (size > PAGE_SIZE)   /* silly large */
9533                 goto err_size;
9534
9535         if (!size)              /* abi compat */
9536                 size = PERF_ATTR_SIZE_VER0;
9537
9538         if (size < PERF_ATTR_SIZE_VER0)
9539                 goto err_size;
9540
9541         /*
9542          * If we're handed a bigger struct than we know of,
9543          * ensure all the unknown bits are 0 - i.e. new
9544          * user-space does not rely on any kernel feature
9545          * extensions we dont know about yet.
9546          */
9547         if (size > sizeof(*attr)) {
9548                 unsigned char __user *addr;
9549                 unsigned char __user *end;
9550                 unsigned char val;
9551
9552                 addr = (void __user *)uattr + sizeof(*attr);
9553                 end  = (void __user *)uattr + size;
9554
9555                 for (; addr < end; addr++) {
9556                         ret = get_user(val, addr);
9557                         if (ret)
9558                                 return ret;
9559                         if (val)
9560                                 goto err_size;
9561                 }
9562                 size = sizeof(*attr);
9563         }
9564
9565         ret = copy_from_user(attr, uattr, size);
9566         if (ret)
9567                 return -EFAULT;
9568
9569         if (attr->__reserved_1)
9570                 return -EINVAL;
9571
9572         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9573                 return -EINVAL;
9574
9575         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9576                 return -EINVAL;
9577
9578         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9579                 u64 mask = attr->branch_sample_type;
9580
9581                 /* only using defined bits */
9582                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9583                         return -EINVAL;
9584
9585                 /* at least one branch bit must be set */
9586                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9587                         return -EINVAL;
9588
9589                 /* propagate priv level, when not set for branch */
9590                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9591
9592                         /* exclude_kernel checked on syscall entry */
9593                         if (!attr->exclude_kernel)
9594                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9595
9596                         if (!attr->exclude_user)
9597                                 mask |= PERF_SAMPLE_BRANCH_USER;
9598
9599                         if (!attr->exclude_hv)
9600                                 mask |= PERF_SAMPLE_BRANCH_HV;
9601                         /*
9602                          * adjust user setting (for HW filter setup)
9603                          */
9604                         attr->branch_sample_type = mask;
9605                 }
9606                 /* privileged levels capture (kernel, hv): check permissions */
9607                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9608                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9609                         return -EACCES;
9610         }
9611
9612         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9613                 ret = perf_reg_validate(attr->sample_regs_user);
9614                 if (ret)
9615                         return ret;
9616         }
9617
9618         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9619                 if (!arch_perf_have_user_stack_dump())
9620                         return -ENOSYS;
9621
9622                 /*
9623                  * We have __u32 type for the size, but so far
9624                  * we can only use __u16 as maximum due to the
9625                  * __u16 sample size limit.
9626                  */
9627                 if (attr->sample_stack_user >= USHRT_MAX)
9628                         ret = -EINVAL;
9629                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9630                         ret = -EINVAL;
9631         }
9632
9633         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9634                 ret = perf_reg_validate(attr->sample_regs_intr);
9635 out:
9636         return ret;
9637
9638 err_size:
9639         put_user(sizeof(*attr), &uattr->size);
9640         ret = -E2BIG;
9641         goto out;
9642 }
9643
9644 static int
9645 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9646 {
9647         struct ring_buffer *rb = NULL;
9648         int ret = -EINVAL;
9649
9650         if (!output_event)
9651                 goto set;
9652
9653         /* don't allow circular references */
9654         if (event == output_event)
9655                 goto out;
9656
9657         /*
9658          * Don't allow cross-cpu buffers
9659          */
9660         if (output_event->cpu != event->cpu)
9661                 goto out;
9662
9663         /*
9664          * If its not a per-cpu rb, it must be the same task.
9665          */
9666         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9667                 goto out;
9668
9669         /*
9670          * Mixing clocks in the same buffer is trouble you don't need.
9671          */
9672         if (output_event->clock != event->clock)
9673                 goto out;
9674
9675         /*
9676          * Either writing ring buffer from beginning or from end.
9677          * Mixing is not allowed.
9678          */
9679         if (is_write_backward(output_event) != is_write_backward(event))
9680                 goto out;
9681
9682         /*
9683          * If both events generate aux data, they must be on the same PMU
9684          */
9685         if (has_aux(event) && has_aux(output_event) &&
9686             event->pmu != output_event->pmu)
9687                 goto out;
9688
9689 set:
9690         mutex_lock(&event->mmap_mutex);
9691         /* Can't redirect output if we've got an active mmap() */
9692         if (atomic_read(&event->mmap_count))
9693                 goto unlock;
9694
9695         if (output_event) {
9696                 /* get the rb we want to redirect to */
9697                 rb = ring_buffer_get(output_event);
9698                 if (!rb)
9699                         goto unlock;
9700         }
9701
9702         ring_buffer_attach(event, rb);
9703
9704         ret = 0;
9705 unlock:
9706         mutex_unlock(&event->mmap_mutex);
9707
9708 out:
9709         return ret;
9710 }
9711
9712 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9713 {
9714         if (b < a)
9715                 swap(a, b);
9716
9717         mutex_lock(a);
9718         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9719 }
9720
9721 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9722 {
9723         bool nmi_safe = false;
9724
9725         switch (clk_id) {
9726         case CLOCK_MONOTONIC:
9727                 event->clock = &ktime_get_mono_fast_ns;
9728                 nmi_safe = true;
9729                 break;
9730
9731         case CLOCK_MONOTONIC_RAW:
9732                 event->clock = &ktime_get_raw_fast_ns;
9733                 nmi_safe = true;
9734                 break;
9735
9736         case CLOCK_REALTIME:
9737                 event->clock = &ktime_get_real_ns;
9738                 break;
9739
9740         case CLOCK_BOOTTIME:
9741                 event->clock = &ktime_get_boot_ns;
9742                 break;
9743
9744         case CLOCK_TAI:
9745                 event->clock = &ktime_get_tai_ns;
9746                 break;
9747
9748         default:
9749                 return -EINVAL;
9750         }
9751
9752         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9753                 return -EINVAL;
9754
9755         return 0;
9756 }
9757
9758 /*
9759  * Variation on perf_event_ctx_lock_nested(), except we take two context
9760  * mutexes.
9761  */
9762 static struct perf_event_context *
9763 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9764                              struct perf_event_context *ctx)
9765 {
9766         struct perf_event_context *gctx;
9767
9768 again:
9769         rcu_read_lock();
9770         gctx = READ_ONCE(group_leader->ctx);
9771         if (!atomic_inc_not_zero(&gctx->refcount)) {
9772                 rcu_read_unlock();
9773                 goto again;
9774         }
9775         rcu_read_unlock();
9776
9777         mutex_lock_double(&gctx->mutex, &ctx->mutex);
9778
9779         if (group_leader->ctx != gctx) {
9780                 mutex_unlock(&ctx->mutex);
9781                 mutex_unlock(&gctx->mutex);
9782                 put_ctx(gctx);
9783                 goto again;
9784         }
9785
9786         return gctx;
9787 }
9788
9789 /**
9790  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9791  *
9792  * @attr_uptr:  event_id type attributes for monitoring/sampling
9793  * @pid:                target pid
9794  * @cpu:                target cpu
9795  * @group_fd:           group leader event fd
9796  */
9797 SYSCALL_DEFINE5(perf_event_open,
9798                 struct perf_event_attr __user *, attr_uptr,
9799                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9800 {
9801         struct perf_event *group_leader = NULL, *output_event = NULL;
9802         struct perf_event *event, *sibling;
9803         struct perf_event_attr attr;
9804         struct perf_event_context *ctx, *uninitialized_var(gctx);
9805         struct file *event_file = NULL;
9806         struct fd group = {NULL, 0};
9807         struct task_struct *task = NULL;
9808         struct pmu *pmu;
9809         int event_fd;
9810         int move_group = 0;
9811         int err;
9812         int f_flags = O_RDWR;
9813         int cgroup_fd = -1;
9814
9815         /* for future expandability... */
9816         if (flags & ~PERF_FLAG_ALL)
9817                 return -EINVAL;
9818
9819         err = perf_copy_attr(attr_uptr, &attr);
9820         if (err)
9821                 return err;
9822
9823         if (!attr.exclude_kernel) {
9824                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9825                         return -EACCES;
9826         }
9827
9828         if (attr.namespaces) {
9829                 if (!capable(CAP_SYS_ADMIN))
9830                         return -EACCES;
9831         }
9832
9833         if (attr.freq) {
9834                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9835                         return -EINVAL;
9836         } else {
9837                 if (attr.sample_period & (1ULL << 63))
9838                         return -EINVAL;
9839         }
9840
9841         if (!attr.sample_max_stack)
9842                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9843
9844         /*
9845          * In cgroup mode, the pid argument is used to pass the fd
9846          * opened to the cgroup directory in cgroupfs. The cpu argument
9847          * designates the cpu on which to monitor threads from that
9848          * cgroup.
9849          */
9850         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9851                 return -EINVAL;
9852
9853         if (flags & PERF_FLAG_FD_CLOEXEC)
9854                 f_flags |= O_CLOEXEC;
9855
9856         event_fd = get_unused_fd_flags(f_flags);
9857         if (event_fd < 0)
9858                 return event_fd;
9859
9860         if (group_fd != -1) {
9861                 err = perf_fget_light(group_fd, &group);
9862                 if (err)
9863                         goto err_fd;
9864                 group_leader = group.file->private_data;
9865                 if (flags & PERF_FLAG_FD_OUTPUT)
9866                         output_event = group_leader;
9867                 if (flags & PERF_FLAG_FD_NO_GROUP)
9868                         group_leader = NULL;
9869         }
9870
9871         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9872                 task = find_lively_task_by_vpid(pid);
9873                 if (IS_ERR(task)) {
9874                         err = PTR_ERR(task);
9875                         goto err_group_fd;
9876                 }
9877         }
9878
9879         if (task && group_leader &&
9880             group_leader->attr.inherit != attr.inherit) {
9881                 err = -EINVAL;
9882                 goto err_task;
9883         }
9884
9885         if (task) {
9886                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9887                 if (err)
9888                         goto err_task;
9889
9890                 /*
9891                  * Reuse ptrace permission checks for now.
9892                  *
9893                  * We must hold cred_guard_mutex across this and any potential
9894                  * perf_install_in_context() call for this new event to
9895                  * serialize against exec() altering our credentials (and the
9896                  * perf_event_exit_task() that could imply).
9897                  */
9898                 err = -EACCES;
9899                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9900                         goto err_cred;
9901         }
9902
9903         if (flags & PERF_FLAG_PID_CGROUP)
9904                 cgroup_fd = pid;
9905
9906         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9907                                  NULL, NULL, cgroup_fd);
9908         if (IS_ERR(event)) {
9909                 err = PTR_ERR(event);
9910                 goto err_cred;
9911         }
9912
9913         if (is_sampling_event(event)) {
9914                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9915                         err = -EOPNOTSUPP;
9916                         goto err_alloc;
9917                 }
9918         }
9919
9920         /*
9921          * Special case software events and allow them to be part of
9922          * any hardware group.
9923          */
9924         pmu = event->pmu;
9925
9926         if (attr.use_clockid) {
9927                 err = perf_event_set_clock(event, attr.clockid);
9928                 if (err)
9929                         goto err_alloc;
9930         }
9931
9932         if (pmu->task_ctx_nr == perf_sw_context)
9933                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9934
9935         if (group_leader &&
9936             (is_software_event(event) != is_software_event(group_leader))) {
9937                 if (is_software_event(event)) {
9938                         /*
9939                          * If event and group_leader are not both a software
9940                          * event, and event is, then group leader is not.
9941                          *
9942                          * Allow the addition of software events to !software
9943                          * groups, this is safe because software events never
9944                          * fail to schedule.
9945                          */
9946                         pmu = group_leader->pmu;
9947                 } else if (is_software_event(group_leader) &&
9948                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9949                         /*
9950                          * In case the group is a pure software group, and we
9951                          * try to add a hardware event, move the whole group to
9952                          * the hardware context.
9953                          */
9954                         move_group = 1;
9955                 }
9956         }
9957
9958         /*
9959          * Get the target context (task or percpu):
9960          */
9961         ctx = find_get_context(pmu, task, event);
9962         if (IS_ERR(ctx)) {
9963                 err = PTR_ERR(ctx);
9964                 goto err_alloc;
9965         }
9966
9967         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9968                 err = -EBUSY;
9969                 goto err_context;
9970         }
9971
9972         /*
9973          * Look up the group leader (we will attach this event to it):
9974          */
9975         if (group_leader) {
9976                 err = -EINVAL;
9977
9978                 /*
9979                  * Do not allow a recursive hierarchy (this new sibling
9980                  * becoming part of another group-sibling):
9981                  */
9982                 if (group_leader->group_leader != group_leader)
9983                         goto err_context;
9984
9985                 /* All events in a group should have the same clock */
9986                 if (group_leader->clock != event->clock)
9987                         goto err_context;
9988
9989                 /*
9990                  * Do not allow to attach to a group in a different
9991                  * task or CPU context:
9992                  */
9993                 if (move_group) {
9994                         /*
9995                          * Make sure we're both on the same task, or both
9996                          * per-cpu events.
9997                          */
9998                         if (group_leader->ctx->task != ctx->task)
9999                                 goto err_context;
10000
10001                         /*
10002                          * Make sure we're both events for the same CPU;
10003                          * grouping events for different CPUs is broken; since
10004                          * you can never concurrently schedule them anyhow.
10005                          */
10006                         if (group_leader->cpu != event->cpu)
10007                                 goto err_context;
10008                 } else {
10009                         if (group_leader->ctx != ctx)
10010                                 goto err_context;
10011                 }
10012
10013                 /*
10014                  * Only a group leader can be exclusive or pinned
10015                  */
10016                 if (attr.exclusive || attr.pinned)
10017                         goto err_context;
10018         }
10019
10020         if (output_event) {
10021                 err = perf_event_set_output(event, output_event);
10022                 if (err)
10023                         goto err_context;
10024         }
10025
10026         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10027                                         f_flags);
10028         if (IS_ERR(event_file)) {
10029                 err = PTR_ERR(event_file);
10030                 event_file = NULL;
10031                 goto err_context;
10032         }
10033
10034         if (move_group) {
10035                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10036
10037                 if (gctx->task == TASK_TOMBSTONE) {
10038                         err = -ESRCH;
10039                         goto err_locked;
10040                 }
10041
10042                 /*
10043                  * Check if we raced against another sys_perf_event_open() call
10044                  * moving the software group underneath us.
10045                  */
10046                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10047                         /*
10048                          * If someone moved the group out from under us, check
10049                          * if this new event wound up on the same ctx, if so
10050                          * its the regular !move_group case, otherwise fail.
10051                          */
10052                         if (gctx != ctx) {
10053                                 err = -EINVAL;
10054                                 goto err_locked;
10055                         } else {
10056                                 perf_event_ctx_unlock(group_leader, gctx);
10057                                 move_group = 0;
10058                         }
10059                 }
10060         } else {
10061                 mutex_lock(&ctx->mutex);
10062         }
10063
10064         if (ctx->task == TASK_TOMBSTONE) {
10065                 err = -ESRCH;
10066                 goto err_locked;
10067         }
10068
10069         if (!perf_event_validate_size(event)) {
10070                 err = -E2BIG;
10071                 goto err_locked;
10072         }
10073
10074         if (!task) {
10075                 /*
10076                  * Check if the @cpu we're creating an event for is online.
10077                  *
10078                  * We use the perf_cpu_context::ctx::mutex to serialize against
10079                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10080                  */
10081                 struct perf_cpu_context *cpuctx =
10082                         container_of(ctx, struct perf_cpu_context, ctx);
10083
10084                 if (!cpuctx->online) {
10085                         err = -ENODEV;
10086                         goto err_locked;
10087                 }
10088         }
10089
10090
10091         /*
10092          * Must be under the same ctx::mutex as perf_install_in_context(),
10093          * because we need to serialize with concurrent event creation.
10094          */
10095         if (!exclusive_event_installable(event, ctx)) {
10096                 /* exclusive and group stuff are assumed mutually exclusive */
10097                 WARN_ON_ONCE(move_group);
10098
10099                 err = -EBUSY;
10100                 goto err_locked;
10101         }
10102
10103         WARN_ON_ONCE(ctx->parent_ctx);
10104
10105         /*
10106          * This is the point on no return; we cannot fail hereafter. This is
10107          * where we start modifying current state.
10108          */
10109
10110         if (move_group) {
10111                 /*
10112                  * See perf_event_ctx_lock() for comments on the details
10113                  * of swizzling perf_event::ctx.
10114                  */
10115                 perf_remove_from_context(group_leader, 0);
10116                 put_ctx(gctx);
10117
10118                 list_for_each_entry(sibling, &group_leader->sibling_list,
10119                                     group_entry) {
10120                         perf_remove_from_context(sibling, 0);
10121                         put_ctx(gctx);
10122                 }
10123
10124                 /*
10125                  * Wait for everybody to stop referencing the events through
10126                  * the old lists, before installing it on new lists.
10127                  */
10128                 synchronize_rcu();
10129
10130                 /*
10131                  * Install the group siblings before the group leader.
10132                  *
10133                  * Because a group leader will try and install the entire group
10134                  * (through the sibling list, which is still in-tact), we can
10135                  * end up with siblings installed in the wrong context.
10136                  *
10137                  * By installing siblings first we NO-OP because they're not
10138                  * reachable through the group lists.
10139                  */
10140                 list_for_each_entry(sibling, &group_leader->sibling_list,
10141                                     group_entry) {
10142                         perf_event__state_init(sibling);
10143                         perf_install_in_context(ctx, sibling, sibling->cpu);
10144                         get_ctx(ctx);
10145                 }
10146
10147                 /*
10148                  * Removing from the context ends up with disabled
10149                  * event. What we want here is event in the initial
10150                  * startup state, ready to be add into new context.
10151                  */
10152                 perf_event__state_init(group_leader);
10153                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10154                 get_ctx(ctx);
10155         }
10156
10157         /*
10158          * Precalculate sample_data sizes; do while holding ctx::mutex such
10159          * that we're serialized against further additions and before
10160          * perf_install_in_context() which is the point the event is active and
10161          * can use these values.
10162          */
10163         perf_event__header_size(event);
10164         perf_event__id_header_size(event);
10165
10166         event->owner = current;
10167
10168         perf_install_in_context(ctx, event, event->cpu);
10169         perf_unpin_context(ctx);
10170
10171         if (move_group)
10172                 perf_event_ctx_unlock(group_leader, gctx);
10173         mutex_unlock(&ctx->mutex);
10174
10175         if (task) {
10176                 mutex_unlock(&task->signal->cred_guard_mutex);
10177                 put_task_struct(task);
10178         }
10179
10180         mutex_lock(&current->perf_event_mutex);
10181         list_add_tail(&event->owner_entry, &current->perf_event_list);
10182         mutex_unlock(&current->perf_event_mutex);
10183
10184         /*
10185          * Drop the reference on the group_event after placing the
10186          * new event on the sibling_list. This ensures destruction
10187          * of the group leader will find the pointer to itself in
10188          * perf_group_detach().
10189          */
10190         fdput(group);
10191         fd_install(event_fd, event_file);
10192         return event_fd;
10193
10194 err_locked:
10195         if (move_group)
10196                 perf_event_ctx_unlock(group_leader, gctx);
10197         mutex_unlock(&ctx->mutex);
10198 /* err_file: */
10199         fput(event_file);
10200 err_context:
10201         perf_unpin_context(ctx);
10202         put_ctx(ctx);
10203 err_alloc:
10204         /*
10205          * If event_file is set, the fput() above will have called ->release()
10206          * and that will take care of freeing the event.
10207          */
10208         if (!event_file)
10209                 free_event(event);
10210 err_cred:
10211         if (task)
10212                 mutex_unlock(&task->signal->cred_guard_mutex);
10213 err_task:
10214         if (task)
10215                 put_task_struct(task);
10216 err_group_fd:
10217         fdput(group);
10218 err_fd:
10219         put_unused_fd(event_fd);
10220         return err;
10221 }
10222
10223 /**
10224  * perf_event_create_kernel_counter
10225  *
10226  * @attr: attributes of the counter to create
10227  * @cpu: cpu in which the counter is bound
10228  * @task: task to profile (NULL for percpu)
10229  */
10230 struct perf_event *
10231 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10232                                  struct task_struct *task,
10233                                  perf_overflow_handler_t overflow_handler,
10234                                  void *context)
10235 {
10236         struct perf_event_context *ctx;
10237         struct perf_event *event;
10238         int err;
10239
10240         /*
10241          * Get the target context (task or percpu):
10242          */
10243
10244         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10245                                  overflow_handler, context, -1);
10246         if (IS_ERR(event)) {
10247                 err = PTR_ERR(event);
10248                 goto err;
10249         }
10250
10251         /* Mark owner so we could distinguish it from user events. */
10252         event->owner = TASK_TOMBSTONE;
10253
10254         ctx = find_get_context(event->pmu, task, event);
10255         if (IS_ERR(ctx)) {
10256                 err = PTR_ERR(ctx);
10257                 goto err_free;
10258         }
10259
10260         WARN_ON_ONCE(ctx->parent_ctx);
10261         mutex_lock(&ctx->mutex);
10262         if (ctx->task == TASK_TOMBSTONE) {
10263                 err = -ESRCH;
10264                 goto err_unlock;
10265         }
10266
10267         if (!task) {
10268                 /*
10269                  * Check if the @cpu we're creating an event for is online.
10270                  *
10271                  * We use the perf_cpu_context::ctx::mutex to serialize against
10272                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10273                  */
10274                 struct perf_cpu_context *cpuctx =
10275                         container_of(ctx, struct perf_cpu_context, ctx);
10276                 if (!cpuctx->online) {
10277                         err = -ENODEV;
10278                         goto err_unlock;
10279                 }
10280         }
10281
10282         if (!exclusive_event_installable(event, ctx)) {
10283                 err = -EBUSY;
10284                 goto err_unlock;
10285         }
10286
10287         perf_install_in_context(ctx, event, cpu);
10288         perf_unpin_context(ctx);
10289         mutex_unlock(&ctx->mutex);
10290
10291         return event;
10292
10293 err_unlock:
10294         mutex_unlock(&ctx->mutex);
10295         perf_unpin_context(ctx);
10296         put_ctx(ctx);
10297 err_free:
10298         free_event(event);
10299 err:
10300         return ERR_PTR(err);
10301 }
10302 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10303
10304 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10305 {
10306         struct perf_event_context *src_ctx;
10307         struct perf_event_context *dst_ctx;
10308         struct perf_event *event, *tmp;
10309         LIST_HEAD(events);
10310
10311         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10312         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10313
10314         /*
10315          * See perf_event_ctx_lock() for comments on the details
10316          * of swizzling perf_event::ctx.
10317          */
10318         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10319         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10320                                  event_entry) {
10321                 perf_remove_from_context(event, 0);
10322                 unaccount_event_cpu(event, src_cpu);
10323                 put_ctx(src_ctx);
10324                 list_add(&event->migrate_entry, &events);
10325         }
10326
10327         /*
10328          * Wait for the events to quiesce before re-instating them.
10329          */
10330         synchronize_rcu();
10331
10332         /*
10333          * Re-instate events in 2 passes.
10334          *
10335          * Skip over group leaders and only install siblings on this first
10336          * pass, siblings will not get enabled without a leader, however a
10337          * leader will enable its siblings, even if those are still on the old
10338          * context.
10339          */
10340         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10341                 if (event->group_leader == event)
10342                         continue;
10343
10344                 list_del(&event->migrate_entry);
10345                 if (event->state >= PERF_EVENT_STATE_OFF)
10346                         event->state = PERF_EVENT_STATE_INACTIVE;
10347                 account_event_cpu(event, dst_cpu);
10348                 perf_install_in_context(dst_ctx, event, dst_cpu);
10349                 get_ctx(dst_ctx);
10350         }
10351
10352         /*
10353          * Once all the siblings are setup properly, install the group leaders
10354          * to make it go.
10355          */
10356         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10357                 list_del(&event->migrate_entry);
10358                 if (event->state >= PERF_EVENT_STATE_OFF)
10359                         event->state = PERF_EVENT_STATE_INACTIVE;
10360                 account_event_cpu(event, dst_cpu);
10361                 perf_install_in_context(dst_ctx, event, dst_cpu);
10362                 get_ctx(dst_ctx);
10363         }
10364         mutex_unlock(&dst_ctx->mutex);
10365         mutex_unlock(&src_ctx->mutex);
10366 }
10367 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10368
10369 static void sync_child_event(struct perf_event *child_event,
10370                                struct task_struct *child)
10371 {
10372         struct perf_event *parent_event = child_event->parent;
10373         u64 child_val;
10374
10375         if (child_event->attr.inherit_stat)
10376                 perf_event_read_event(child_event, child);
10377
10378         child_val = perf_event_count(child_event);
10379
10380         /*
10381          * Add back the child's count to the parent's count:
10382          */
10383         atomic64_add(child_val, &parent_event->child_count);
10384         atomic64_add(child_event->total_time_enabled,
10385                      &parent_event->child_total_time_enabled);
10386         atomic64_add(child_event->total_time_running,
10387                      &parent_event->child_total_time_running);
10388 }
10389
10390 static void
10391 perf_event_exit_event(struct perf_event *child_event,
10392                       struct perf_event_context *child_ctx,
10393                       struct task_struct *child)
10394 {
10395         struct perf_event *parent_event = child_event->parent;
10396
10397         /*
10398          * Do not destroy the 'original' grouping; because of the context
10399          * switch optimization the original events could've ended up in a
10400          * random child task.
10401          *
10402          * If we were to destroy the original group, all group related
10403          * operations would cease to function properly after this random
10404          * child dies.
10405          *
10406          * Do destroy all inherited groups, we don't care about those
10407          * and being thorough is better.
10408          */
10409         raw_spin_lock_irq(&child_ctx->lock);
10410         WARN_ON_ONCE(child_ctx->is_active);
10411
10412         if (parent_event)
10413                 perf_group_detach(child_event);
10414         list_del_event(child_event, child_ctx);
10415         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10416         raw_spin_unlock_irq(&child_ctx->lock);
10417
10418         /*
10419          * Parent events are governed by their filedesc, retain them.
10420          */
10421         if (!parent_event) {
10422                 perf_event_wakeup(child_event);
10423                 return;
10424         }
10425         /*
10426          * Child events can be cleaned up.
10427          */
10428
10429         sync_child_event(child_event, child);
10430
10431         /*
10432          * Remove this event from the parent's list
10433          */
10434         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10435         mutex_lock(&parent_event->child_mutex);
10436         list_del_init(&child_event->child_list);
10437         mutex_unlock(&parent_event->child_mutex);
10438
10439         /*
10440          * Kick perf_poll() for is_event_hup().
10441          */
10442         perf_event_wakeup(parent_event);
10443         free_event(child_event);
10444         put_event(parent_event);
10445 }
10446
10447 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10448 {
10449         struct perf_event_context *child_ctx, *clone_ctx = NULL;
10450         struct perf_event *child_event, *next;
10451
10452         WARN_ON_ONCE(child != current);
10453
10454         child_ctx = perf_pin_task_context(child, ctxn);
10455         if (!child_ctx)
10456                 return;
10457
10458         /*
10459          * In order to reduce the amount of tricky in ctx tear-down, we hold
10460          * ctx::mutex over the entire thing. This serializes against almost
10461          * everything that wants to access the ctx.
10462          *
10463          * The exception is sys_perf_event_open() /
10464          * perf_event_create_kernel_count() which does find_get_context()
10465          * without ctx::mutex (it cannot because of the move_group double mutex
10466          * lock thing). See the comments in perf_install_in_context().
10467          */
10468         mutex_lock(&child_ctx->mutex);
10469
10470         /*
10471          * In a single ctx::lock section, de-schedule the events and detach the
10472          * context from the task such that we cannot ever get it scheduled back
10473          * in.
10474          */
10475         raw_spin_lock_irq(&child_ctx->lock);
10476         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10477
10478         /*
10479          * Now that the context is inactive, destroy the task <-> ctx relation
10480          * and mark the context dead.
10481          */
10482         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10483         put_ctx(child_ctx); /* cannot be last */
10484         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10485         put_task_struct(current); /* cannot be last */
10486
10487         clone_ctx = unclone_ctx(child_ctx);
10488         raw_spin_unlock_irq(&child_ctx->lock);
10489
10490         if (clone_ctx)
10491                 put_ctx(clone_ctx);
10492
10493         /*
10494          * Report the task dead after unscheduling the events so that we
10495          * won't get any samples after PERF_RECORD_EXIT. We can however still
10496          * get a few PERF_RECORD_READ events.
10497          */
10498         perf_event_task(child, child_ctx, 0);
10499
10500         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10501                 perf_event_exit_event(child_event, child_ctx, child);
10502
10503         mutex_unlock(&child_ctx->mutex);
10504
10505         put_ctx(child_ctx);
10506 }
10507
10508 /*
10509  * When a child task exits, feed back event values to parent events.
10510  *
10511  * Can be called with cred_guard_mutex held when called from
10512  * install_exec_creds().
10513  */
10514 void perf_event_exit_task(struct task_struct *child)
10515 {
10516         struct perf_event *event, *tmp;
10517         int ctxn;
10518
10519         mutex_lock(&child->perf_event_mutex);
10520         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10521                                  owner_entry) {
10522                 list_del_init(&event->owner_entry);
10523
10524                 /*
10525                  * Ensure the list deletion is visible before we clear
10526                  * the owner, closes a race against perf_release() where
10527                  * we need to serialize on the owner->perf_event_mutex.
10528                  */
10529                 smp_store_release(&event->owner, NULL);
10530         }
10531         mutex_unlock(&child->perf_event_mutex);
10532
10533         for_each_task_context_nr(ctxn)
10534                 perf_event_exit_task_context(child, ctxn);
10535
10536         /*
10537          * The perf_event_exit_task_context calls perf_event_task
10538          * with child's task_ctx, which generates EXIT events for
10539          * child contexts and sets child->perf_event_ctxp[] to NULL.
10540          * At this point we need to send EXIT events to cpu contexts.
10541          */
10542         perf_event_task(child, NULL, 0);
10543 }
10544
10545 static void perf_free_event(struct perf_event *event,
10546                             struct perf_event_context *ctx)
10547 {
10548         struct perf_event *parent = event->parent;
10549
10550         if (WARN_ON_ONCE(!parent))
10551                 return;
10552
10553         mutex_lock(&parent->child_mutex);
10554         list_del_init(&event->child_list);
10555         mutex_unlock(&parent->child_mutex);
10556
10557         put_event(parent);
10558
10559         raw_spin_lock_irq(&ctx->lock);
10560         perf_group_detach(event);
10561         list_del_event(event, ctx);
10562         raw_spin_unlock_irq(&ctx->lock);
10563         free_event(event);
10564 }
10565
10566 /*
10567  * Free an unexposed, unused context as created by inheritance by
10568  * perf_event_init_task below, used by fork() in case of fail.
10569  *
10570  * Not all locks are strictly required, but take them anyway to be nice and
10571  * help out with the lockdep assertions.
10572  */
10573 void perf_event_free_task(struct task_struct *task)
10574 {
10575         struct perf_event_context *ctx;
10576         struct perf_event *event, *tmp;
10577         int ctxn;
10578
10579         for_each_task_context_nr(ctxn) {
10580                 ctx = task->perf_event_ctxp[ctxn];
10581                 if (!ctx)
10582                         continue;
10583
10584                 mutex_lock(&ctx->mutex);
10585                 raw_spin_lock_irq(&ctx->lock);
10586                 /*
10587                  * Destroy the task <-> ctx relation and mark the context dead.
10588                  *
10589                  * This is important because even though the task hasn't been
10590                  * exposed yet the context has been (through child_list).
10591                  */
10592                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10593                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10594                 put_task_struct(task); /* cannot be last */
10595                 raw_spin_unlock_irq(&ctx->lock);
10596
10597                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10598                         perf_free_event(event, ctx);
10599
10600                 mutex_unlock(&ctx->mutex);
10601                 put_ctx(ctx);
10602         }
10603 }
10604
10605 void perf_event_delayed_put(struct task_struct *task)
10606 {
10607         int ctxn;
10608
10609         for_each_task_context_nr(ctxn)
10610                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10611 }
10612
10613 struct file *perf_event_get(unsigned int fd)
10614 {
10615         struct file *file;
10616
10617         file = fget_raw(fd);
10618         if (!file)
10619                 return ERR_PTR(-EBADF);
10620
10621         if (file->f_op != &perf_fops) {
10622                 fput(file);
10623                 return ERR_PTR(-EBADF);
10624         }
10625
10626         return file;
10627 }
10628
10629 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10630 {
10631         if (!event)
10632                 return ERR_PTR(-EINVAL);
10633
10634         return &event->attr;
10635 }
10636
10637 /*
10638  * Inherit a event from parent task to child task.
10639  *
10640  * Returns:
10641  *  - valid pointer on success
10642  *  - NULL for orphaned events
10643  *  - IS_ERR() on error
10644  */
10645 static struct perf_event *
10646 inherit_event(struct perf_event *parent_event,
10647               struct task_struct *parent,
10648               struct perf_event_context *parent_ctx,
10649               struct task_struct *child,
10650               struct perf_event *group_leader,
10651               struct perf_event_context *child_ctx)
10652 {
10653         enum perf_event_active_state parent_state = parent_event->state;
10654         struct perf_event *child_event;
10655         unsigned long flags;
10656
10657         /*
10658          * Instead of creating recursive hierarchies of events,
10659          * we link inherited events back to the original parent,
10660          * which has a filp for sure, which we use as the reference
10661          * count:
10662          */
10663         if (parent_event->parent)
10664                 parent_event = parent_event->parent;
10665
10666         child_event = perf_event_alloc(&parent_event->attr,
10667                                            parent_event->cpu,
10668                                            child,
10669                                            group_leader, parent_event,
10670                                            NULL, NULL, -1);
10671         if (IS_ERR(child_event))
10672                 return child_event;
10673
10674         /*
10675          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10676          * must be under the same lock in order to serialize against
10677          * perf_event_release_kernel(), such that either we must observe
10678          * is_orphaned_event() or they will observe us on the child_list.
10679          */
10680         mutex_lock(&parent_event->child_mutex);
10681         if (is_orphaned_event(parent_event) ||
10682             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10683                 mutex_unlock(&parent_event->child_mutex);
10684                 free_event(child_event);
10685                 return NULL;
10686         }
10687
10688         get_ctx(child_ctx);
10689
10690         /*
10691          * Make the child state follow the state of the parent event,
10692          * not its attr.disabled bit.  We hold the parent's mutex,
10693          * so we won't race with perf_event_{en, dis}able_family.
10694          */
10695         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10696                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10697         else
10698                 child_event->state = PERF_EVENT_STATE_OFF;
10699
10700         if (parent_event->attr.freq) {
10701                 u64 sample_period = parent_event->hw.sample_period;
10702                 struct hw_perf_event *hwc = &child_event->hw;
10703
10704                 hwc->sample_period = sample_period;
10705                 hwc->last_period   = sample_period;
10706
10707                 local64_set(&hwc->period_left, sample_period);
10708         }
10709
10710         child_event->ctx = child_ctx;
10711         child_event->overflow_handler = parent_event->overflow_handler;
10712         child_event->overflow_handler_context
10713                 = parent_event->overflow_handler_context;
10714
10715         /*
10716          * Precalculate sample_data sizes
10717          */
10718         perf_event__header_size(child_event);
10719         perf_event__id_header_size(child_event);
10720
10721         /*
10722          * Link it up in the child's context:
10723          */
10724         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10725         add_event_to_ctx(child_event, child_ctx);
10726         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10727
10728         /*
10729          * Link this into the parent event's child list
10730          */
10731         list_add_tail(&child_event->child_list, &parent_event->child_list);
10732         mutex_unlock(&parent_event->child_mutex);
10733
10734         return child_event;
10735 }
10736
10737 /*
10738  * Inherits an event group.
10739  *
10740  * This will quietly suppress orphaned events; !inherit_event() is not an error.
10741  * This matches with perf_event_release_kernel() removing all child events.
10742  *
10743  * Returns:
10744  *  - 0 on success
10745  *  - <0 on error
10746  */
10747 static int inherit_group(struct perf_event *parent_event,
10748               struct task_struct *parent,
10749               struct perf_event_context *parent_ctx,
10750               struct task_struct *child,
10751               struct perf_event_context *child_ctx)
10752 {
10753         struct perf_event *leader;
10754         struct perf_event *sub;
10755         struct perf_event *child_ctr;
10756
10757         leader = inherit_event(parent_event, parent, parent_ctx,
10758                                  child, NULL, child_ctx);
10759         if (IS_ERR(leader))
10760                 return PTR_ERR(leader);
10761         /*
10762          * @leader can be NULL here because of is_orphaned_event(). In this
10763          * case inherit_event() will create individual events, similar to what
10764          * perf_group_detach() would do anyway.
10765          */
10766         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10767                 child_ctr = inherit_event(sub, parent, parent_ctx,
10768                                             child, leader, child_ctx);
10769                 if (IS_ERR(child_ctr))
10770                         return PTR_ERR(child_ctr);
10771         }
10772         return 0;
10773 }
10774
10775 /*
10776  * Creates the child task context and tries to inherit the event-group.
10777  *
10778  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10779  * inherited_all set when we 'fail' to inherit an orphaned event; this is
10780  * consistent with perf_event_release_kernel() removing all child events.
10781  *
10782  * Returns:
10783  *  - 0 on success
10784  *  - <0 on error
10785  */
10786 static int
10787 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10788                    struct perf_event_context *parent_ctx,
10789                    struct task_struct *child, int ctxn,
10790                    int *inherited_all)
10791 {
10792         int ret;
10793         struct perf_event_context *child_ctx;
10794
10795         if (!event->attr.inherit) {
10796                 *inherited_all = 0;
10797                 return 0;
10798         }
10799
10800         child_ctx = child->perf_event_ctxp[ctxn];
10801         if (!child_ctx) {
10802                 /*
10803                  * This is executed from the parent task context, so
10804                  * inherit events that have been marked for cloning.
10805                  * First allocate and initialize a context for the
10806                  * child.
10807                  */
10808                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10809                 if (!child_ctx)
10810                         return -ENOMEM;
10811
10812                 child->perf_event_ctxp[ctxn] = child_ctx;
10813         }
10814
10815         ret = inherit_group(event, parent, parent_ctx,
10816                             child, child_ctx);
10817
10818         if (ret)
10819                 *inherited_all = 0;
10820
10821         return ret;
10822 }
10823
10824 /*
10825  * Initialize the perf_event context in task_struct
10826  */
10827 static int perf_event_init_context(struct task_struct *child, int ctxn)
10828 {
10829         struct perf_event_context *child_ctx, *parent_ctx;
10830         struct perf_event_context *cloned_ctx;
10831         struct perf_event *event;
10832         struct task_struct *parent = current;
10833         int inherited_all = 1;
10834         unsigned long flags;
10835         int ret = 0;
10836
10837         if (likely(!parent->perf_event_ctxp[ctxn]))
10838                 return 0;
10839
10840         /*
10841          * If the parent's context is a clone, pin it so it won't get
10842          * swapped under us.
10843          */
10844         parent_ctx = perf_pin_task_context(parent, ctxn);
10845         if (!parent_ctx)
10846                 return 0;
10847
10848         /*
10849          * No need to check if parent_ctx != NULL here; since we saw
10850          * it non-NULL earlier, the only reason for it to become NULL
10851          * is if we exit, and since we're currently in the middle of
10852          * a fork we can't be exiting at the same time.
10853          */
10854
10855         /*
10856          * Lock the parent list. No need to lock the child - not PID
10857          * hashed yet and not running, so nobody can access it.
10858          */
10859         mutex_lock(&parent_ctx->mutex);
10860
10861         /*
10862          * We dont have to disable NMIs - we are only looking at
10863          * the list, not manipulating it:
10864          */
10865         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10866                 ret = inherit_task_group(event, parent, parent_ctx,
10867                                          child, ctxn, &inherited_all);
10868                 if (ret)
10869                         goto out_unlock;
10870         }
10871
10872         /*
10873          * We can't hold ctx->lock when iterating the ->flexible_group list due
10874          * to allocations, but we need to prevent rotation because
10875          * rotate_ctx() will change the list from interrupt context.
10876          */
10877         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10878         parent_ctx->rotate_disable = 1;
10879         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10880
10881         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10882                 ret = inherit_task_group(event, parent, parent_ctx,
10883                                          child, ctxn, &inherited_all);
10884                 if (ret)
10885                         goto out_unlock;
10886         }
10887
10888         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10889         parent_ctx->rotate_disable = 0;
10890
10891         child_ctx = child->perf_event_ctxp[ctxn];
10892
10893         if (child_ctx && inherited_all) {
10894                 /*
10895                  * Mark the child context as a clone of the parent
10896                  * context, or of whatever the parent is a clone of.
10897                  *
10898                  * Note that if the parent is a clone, the holding of
10899                  * parent_ctx->lock avoids it from being uncloned.
10900                  */
10901                 cloned_ctx = parent_ctx->parent_ctx;
10902                 if (cloned_ctx) {
10903                         child_ctx->parent_ctx = cloned_ctx;
10904                         child_ctx->parent_gen = parent_ctx->parent_gen;
10905                 } else {
10906                         child_ctx->parent_ctx = parent_ctx;
10907                         child_ctx->parent_gen = parent_ctx->generation;
10908                 }
10909                 get_ctx(child_ctx->parent_ctx);
10910         }
10911
10912         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10913 out_unlock:
10914         mutex_unlock(&parent_ctx->mutex);
10915
10916         perf_unpin_context(parent_ctx);
10917         put_ctx(parent_ctx);
10918
10919         return ret;
10920 }
10921
10922 /*
10923  * Initialize the perf_event context in task_struct
10924  */
10925 int perf_event_init_task(struct task_struct *child)
10926 {
10927         int ctxn, ret;
10928
10929         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10930         mutex_init(&child->perf_event_mutex);
10931         INIT_LIST_HEAD(&child->perf_event_list);
10932
10933         for_each_task_context_nr(ctxn) {
10934                 ret = perf_event_init_context(child, ctxn);
10935                 if (ret) {
10936                         perf_event_free_task(child);
10937                         return ret;
10938                 }
10939         }
10940
10941         return 0;
10942 }
10943
10944 static void __init perf_event_init_all_cpus(void)
10945 {
10946         struct swevent_htable *swhash;
10947         int cpu;
10948
10949         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
10950
10951         for_each_possible_cpu(cpu) {
10952                 swhash = &per_cpu(swevent_htable, cpu);
10953                 mutex_init(&swhash->hlist_mutex);
10954                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10955
10956                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10957                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10958
10959 #ifdef CONFIG_CGROUP_PERF
10960                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10961 #endif
10962                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10963         }
10964 }
10965
10966 void perf_swevent_init_cpu(unsigned int cpu)
10967 {
10968         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10969
10970         mutex_lock(&swhash->hlist_mutex);
10971         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10972                 struct swevent_hlist *hlist;
10973
10974                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10975                 WARN_ON(!hlist);
10976                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10977         }
10978         mutex_unlock(&swhash->hlist_mutex);
10979 }
10980
10981 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10982 static void __perf_event_exit_context(void *__info)
10983 {
10984         struct perf_event_context *ctx = __info;
10985         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10986         struct perf_event *event;
10987
10988         raw_spin_lock(&ctx->lock);
10989         list_for_each_entry(event, &ctx->event_list, event_entry)
10990                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10991         raw_spin_unlock(&ctx->lock);
10992 }
10993
10994 static void perf_event_exit_cpu_context(int cpu)
10995 {
10996         struct perf_cpu_context *cpuctx;
10997         struct perf_event_context *ctx;
10998         struct pmu *pmu;
10999
11000         mutex_lock(&pmus_lock);
11001         list_for_each_entry(pmu, &pmus, entry) {
11002                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11003                 ctx = &cpuctx->ctx;
11004
11005                 mutex_lock(&ctx->mutex);
11006                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11007                 cpuctx->online = 0;
11008                 mutex_unlock(&ctx->mutex);
11009         }
11010         cpumask_clear_cpu(cpu, perf_online_mask);
11011         mutex_unlock(&pmus_lock);
11012 }
11013 #else
11014
11015 static void perf_event_exit_cpu_context(int cpu) { }
11016
11017 #endif
11018
11019 int perf_event_init_cpu(unsigned int cpu)
11020 {
11021         struct perf_cpu_context *cpuctx;
11022         struct perf_event_context *ctx;
11023         struct pmu *pmu;
11024
11025         perf_swevent_init_cpu(cpu);
11026
11027         mutex_lock(&pmus_lock);
11028         cpumask_set_cpu(cpu, perf_online_mask);
11029         list_for_each_entry(pmu, &pmus, entry) {
11030                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11031                 ctx = &cpuctx->ctx;
11032
11033                 mutex_lock(&ctx->mutex);
11034                 cpuctx->online = 1;
11035                 mutex_unlock(&ctx->mutex);
11036         }
11037         mutex_unlock(&pmus_lock);
11038
11039         return 0;
11040 }
11041
11042 int perf_event_exit_cpu(unsigned int cpu)
11043 {
11044         perf_event_exit_cpu_context(cpu);
11045         return 0;
11046 }
11047
11048 static int
11049 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11050 {
11051         int cpu;
11052
11053         for_each_online_cpu(cpu)
11054                 perf_event_exit_cpu(cpu);
11055
11056         return NOTIFY_OK;
11057 }
11058
11059 /*
11060  * Run the perf reboot notifier at the very last possible moment so that
11061  * the generic watchdog code runs as long as possible.
11062  */
11063 static struct notifier_block perf_reboot_notifier = {
11064         .notifier_call = perf_reboot,
11065         .priority = INT_MIN,
11066 };
11067
11068 void __init perf_event_init(void)
11069 {
11070         int ret;
11071
11072         idr_init(&pmu_idr);
11073
11074         perf_event_init_all_cpus();
11075         init_srcu_struct(&pmus_srcu);
11076         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11077         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11078         perf_pmu_register(&perf_task_clock, NULL, -1);
11079         perf_tp_register();
11080         perf_event_init_cpu(smp_processor_id());
11081         register_reboot_notifier(&perf_reboot_notifier);
11082
11083         ret = init_hw_breakpoint();
11084         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11085
11086         /*
11087          * Build time assertion that we keep the data_head at the intended
11088          * location.  IOW, validation we got the __reserved[] size right.
11089          */
11090         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11091                      != 1024);
11092 }
11093
11094 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11095                               char *page)
11096 {
11097         struct perf_pmu_events_attr *pmu_attr =
11098                 container_of(attr, struct perf_pmu_events_attr, attr);
11099
11100         if (pmu_attr->event_str)
11101                 return sprintf(page, "%s\n", pmu_attr->event_str);
11102
11103         return 0;
11104 }
11105 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11106
11107 static int __init perf_event_sysfs_init(void)
11108 {
11109         struct pmu *pmu;
11110         int ret;
11111
11112         mutex_lock(&pmus_lock);
11113
11114         ret = bus_register(&pmu_bus);
11115         if (ret)
11116                 goto unlock;
11117
11118         list_for_each_entry(pmu, &pmus, entry) {
11119                 if (!pmu->name || pmu->type < 0)
11120                         continue;
11121
11122                 ret = pmu_dev_alloc(pmu);
11123                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11124         }
11125         pmu_bus_running = 1;
11126         ret = 0;
11127
11128 unlock:
11129         mutex_unlock(&pmus_lock);
11130
11131         return ret;
11132 }
11133 device_initcall(perf_event_sysfs_init);
11134
11135 #ifdef CONFIG_CGROUP_PERF
11136 static struct cgroup_subsys_state *
11137 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11138 {
11139         struct perf_cgroup *jc;
11140
11141         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11142         if (!jc)
11143                 return ERR_PTR(-ENOMEM);
11144
11145         jc->info = alloc_percpu(struct perf_cgroup_info);
11146         if (!jc->info) {
11147                 kfree(jc);
11148                 return ERR_PTR(-ENOMEM);
11149         }
11150
11151         return &jc->css;
11152 }
11153
11154 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11155 {
11156         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11157
11158         free_percpu(jc->info);
11159         kfree(jc);
11160 }
11161
11162 static int __perf_cgroup_move(void *info)
11163 {
11164         struct task_struct *task = info;
11165         rcu_read_lock();
11166         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11167         rcu_read_unlock();
11168         return 0;
11169 }
11170
11171 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11172 {
11173         struct task_struct *task;
11174         struct cgroup_subsys_state *css;
11175
11176         cgroup_taskset_for_each(task, css, tset)
11177                 task_function_call(task, __perf_cgroup_move, task);
11178 }
11179
11180 struct cgroup_subsys perf_event_cgrp_subsys = {
11181         .css_alloc      = perf_cgroup_css_alloc,
11182         .css_free       = perf_cgroup_css_free,
11183         .attach         = perf_cgroup_attach,
11184         /*
11185          * Implicitly enable on dfl hierarchy so that perf events can
11186          * always be filtered by cgroup2 path as long as perf_event
11187          * controller is not mounted on a legacy hierarchy.
11188          */
11189         .implicit_on_dfl = true,
11190 };
11191 #endif /* CONFIG_CGROUP_PERF */