]> asedeno.scripts.mit.edu Git - linux.git/blob - kernel/events/core.c
Merge tag 'fuse-update-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi...
[linux.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
52
53 #include "internal.h"
54
55 #include <asm/irq_regs.h>
56
57 typedef int (*remote_function_f)(void *);
58
59 struct remote_function_call {
60         struct task_struct      *p;
61         remote_function_f       func;
62         void                    *info;
63         int                     ret;
64 };
65
66 static void remote_function(void *data)
67 {
68         struct remote_function_call *tfc = data;
69         struct task_struct *p = tfc->p;
70
71         if (p) {
72                 /* -EAGAIN */
73                 if (task_cpu(p) != smp_processor_id())
74                         return;
75
76                 /*
77                  * Now that we're on right CPU with IRQs disabled, we can test
78                  * if we hit the right task without races.
79                  */
80
81                 tfc->ret = -ESRCH; /* No such (running) process */
82                 if (p != current)
83                         return;
84         }
85
86         tfc->ret = tfc->func(tfc->info);
87 }
88
89 /**
90  * task_function_call - call a function on the cpu on which a task runs
91  * @p:          the task to evaluate
92  * @func:       the function to be called
93  * @info:       the function call argument
94  *
95  * Calls the function @func when the task is currently running. This might
96  * be on the current CPU, which just calls the function directly
97  *
98  * returns: @func return value, or
99  *          -ESRCH  - when the process isn't running
100  *          -EAGAIN - when the process moved away
101  */
102 static int
103 task_function_call(struct task_struct *p, remote_function_f func, void *info)
104 {
105         struct remote_function_call data = {
106                 .p      = p,
107                 .func   = func,
108                 .info   = info,
109                 .ret    = -EAGAIN,
110         };
111         int ret;
112
113         do {
114                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115                 if (!ret)
116                         ret = data.ret;
117         } while (ret == -EAGAIN);
118
119         return ret;
120 }
121
122 /**
123  * cpu_function_call - call a function on the cpu
124  * @func:       the function to be called
125  * @info:       the function call argument
126  *
127  * Calls the function @func on the remote cpu.
128  *
129  * returns: @func return value or -ENXIO when the cpu is offline
130  */
131 static int cpu_function_call(int cpu, remote_function_f func, void *info)
132 {
133         struct remote_function_call data = {
134                 .p      = NULL,
135                 .func   = func,
136                 .info   = info,
137                 .ret    = -ENXIO, /* No such CPU */
138         };
139
140         smp_call_function_single(cpu, remote_function, &data, 1);
141
142         return data.ret;
143 }
144
145 static inline struct perf_cpu_context *
146 __get_cpu_context(struct perf_event_context *ctx)
147 {
148         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149 }
150
151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152                           struct perf_event_context *ctx)
153 {
154         raw_spin_lock(&cpuctx->ctx.lock);
155         if (ctx)
156                 raw_spin_lock(&ctx->lock);
157 }
158
159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160                             struct perf_event_context *ctx)
161 {
162         if (ctx)
163                 raw_spin_unlock(&ctx->lock);
164         raw_spin_unlock(&cpuctx->ctx.lock);
165 }
166
167 #define TASK_TOMBSTONE ((void *)-1L)
168
169 static bool is_kernel_event(struct perf_event *event)
170 {
171         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172 }
173
174 /*
175  * On task ctx scheduling...
176  *
177  * When !ctx->nr_events a task context will not be scheduled. This means
178  * we can disable the scheduler hooks (for performance) without leaving
179  * pending task ctx state.
180  *
181  * This however results in two special cases:
182  *
183  *  - removing the last event from a task ctx; this is relatively straight
184  *    forward and is done in __perf_remove_from_context.
185  *
186  *  - adding the first event to a task ctx; this is tricky because we cannot
187  *    rely on ctx->is_active and therefore cannot use event_function_call().
188  *    See perf_install_in_context().
189  *
190  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191  */
192
193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194                         struct perf_event_context *, void *);
195
196 struct event_function_struct {
197         struct perf_event *event;
198         event_f func;
199         void *data;
200 };
201
202 static int event_function(void *info)
203 {
204         struct event_function_struct *efs = info;
205         struct perf_event *event = efs->event;
206         struct perf_event_context *ctx = event->ctx;
207         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208         struct perf_event_context *task_ctx = cpuctx->task_ctx;
209         int ret = 0;
210
211         lockdep_assert_irqs_disabled();
212
213         perf_ctx_lock(cpuctx, task_ctx);
214         /*
215          * Since we do the IPI call without holding ctx->lock things can have
216          * changed, double check we hit the task we set out to hit.
217          */
218         if (ctx->task) {
219                 if (ctx->task != current) {
220                         ret = -ESRCH;
221                         goto unlock;
222                 }
223
224                 /*
225                  * We only use event_function_call() on established contexts,
226                  * and event_function() is only ever called when active (or
227                  * rather, we'll have bailed in task_function_call() or the
228                  * above ctx->task != current test), therefore we must have
229                  * ctx->is_active here.
230                  */
231                 WARN_ON_ONCE(!ctx->is_active);
232                 /*
233                  * And since we have ctx->is_active, cpuctx->task_ctx must
234                  * match.
235                  */
236                 WARN_ON_ONCE(task_ctx != ctx);
237         } else {
238                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
239         }
240
241         efs->func(event, cpuctx, ctx, efs->data);
242 unlock:
243         perf_ctx_unlock(cpuctx, task_ctx);
244
245         return ret;
246 }
247
248 static void event_function_call(struct perf_event *event, event_f func, void *data)
249 {
250         struct perf_event_context *ctx = event->ctx;
251         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
252         struct event_function_struct efs = {
253                 .event = event,
254                 .func = func,
255                 .data = data,
256         };
257
258         if (!event->parent) {
259                 /*
260                  * If this is a !child event, we must hold ctx::mutex to
261                  * stabilize the the event->ctx relation. See
262                  * perf_event_ctx_lock().
263                  */
264                 lockdep_assert_held(&ctx->mutex);
265         }
266
267         if (!task) {
268                 cpu_function_call(event->cpu, event_function, &efs);
269                 return;
270         }
271
272         if (task == TASK_TOMBSTONE)
273                 return;
274
275 again:
276         if (!task_function_call(task, event_function, &efs))
277                 return;
278
279         raw_spin_lock_irq(&ctx->lock);
280         /*
281          * Reload the task pointer, it might have been changed by
282          * a concurrent perf_event_context_sched_out().
283          */
284         task = ctx->task;
285         if (task == TASK_TOMBSTONE) {
286                 raw_spin_unlock_irq(&ctx->lock);
287                 return;
288         }
289         if (ctx->is_active) {
290                 raw_spin_unlock_irq(&ctx->lock);
291                 goto again;
292         }
293         func(event, NULL, ctx, data);
294         raw_spin_unlock_irq(&ctx->lock);
295 }
296
297 /*
298  * Similar to event_function_call() + event_function(), but hard assumes IRQs
299  * are already disabled and we're on the right CPU.
300  */
301 static void event_function_local(struct perf_event *event, event_f func, void *data)
302 {
303         struct perf_event_context *ctx = event->ctx;
304         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305         struct task_struct *task = READ_ONCE(ctx->task);
306         struct perf_event_context *task_ctx = NULL;
307
308         lockdep_assert_irqs_disabled();
309
310         if (task) {
311                 if (task == TASK_TOMBSTONE)
312                         return;
313
314                 task_ctx = ctx;
315         }
316
317         perf_ctx_lock(cpuctx, task_ctx);
318
319         task = ctx->task;
320         if (task == TASK_TOMBSTONE)
321                 goto unlock;
322
323         if (task) {
324                 /*
325                  * We must be either inactive or active and the right task,
326                  * otherwise we're screwed, since we cannot IPI to somewhere
327                  * else.
328                  */
329                 if (ctx->is_active) {
330                         if (WARN_ON_ONCE(task != current))
331                                 goto unlock;
332
333                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334                                 goto unlock;
335                 }
336         } else {
337                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
338         }
339
340         func(event, cpuctx, ctx, data);
341 unlock:
342         perf_ctx_unlock(cpuctx, task_ctx);
343 }
344
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346                        PERF_FLAG_FD_OUTPUT  |\
347                        PERF_FLAG_PID_CGROUP |\
348                        PERF_FLAG_FD_CLOEXEC)
349
350 /*
351  * branch priv levels that need permission checks
352  */
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354         (PERF_SAMPLE_BRANCH_KERNEL |\
355          PERF_SAMPLE_BRANCH_HV)
356
357 enum event_type_t {
358         EVENT_FLEXIBLE = 0x1,
359         EVENT_PINNED = 0x2,
360         EVENT_TIME = 0x4,
361         /* see ctx_resched() for details */
362         EVENT_CPU = 0x8,
363         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364 };
365
366 /*
367  * perf_sched_events : >0 events exist
368  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369  */
370
371 static void perf_sched_delayed(struct work_struct *work);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374 static DEFINE_MUTEX(perf_sched_mutex);
375 static atomic_t perf_sched_count;
376
377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
380
381 static atomic_t nr_mmap_events __read_mostly;
382 static atomic_t nr_comm_events __read_mostly;
383 static atomic_t nr_namespaces_events __read_mostly;
384 static atomic_t nr_task_events __read_mostly;
385 static atomic_t nr_freq_events __read_mostly;
386 static atomic_t nr_switch_events __read_mostly;
387 static atomic_t nr_ksymbol_events __read_mostly;
388 static atomic_t nr_bpf_events __read_mostly;
389
390 static LIST_HEAD(pmus);
391 static DEFINE_MUTEX(pmus_lock);
392 static struct srcu_struct pmus_srcu;
393 static cpumask_var_t perf_online_mask;
394
395 /*
396  * perf event paranoia level:
397  *  -1 - not paranoid at all
398  *   0 - disallow raw tracepoint access for unpriv
399  *   1 - disallow cpu events for unpriv
400  *   2 - disallow kernel profiling for unpriv
401  */
402 int sysctl_perf_event_paranoid __read_mostly = 2;
403
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
406
407 /*
408  * max perf event sample rate
409  */
410 #define DEFAULT_MAX_SAMPLE_RATE         100000
411 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
413
414 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
415
416 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
418
419 static int perf_sample_allowed_ns __read_mostly =
420         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421
422 static void update_perf_cpu_limits(void)
423 {
424         u64 tmp = perf_sample_period_ns;
425
426         tmp *= sysctl_perf_cpu_time_max_percent;
427         tmp = div_u64(tmp, 100);
428         if (!tmp)
429                 tmp = 1;
430
431         WRITE_ONCE(perf_sample_allowed_ns, tmp);
432 }
433
434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
435
436 int perf_proc_update_handler(struct ctl_table *table, int write,
437                 void __user *buffer, size_t *lenp,
438                 loff_t *ppos)
439 {
440         int ret;
441         int perf_cpu = sysctl_perf_cpu_time_max_percent;
442         /*
443          * If throttling is disabled don't allow the write:
444          */
445         if (write && (perf_cpu == 100 || perf_cpu == 0))
446                 return -EINVAL;
447
448         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449         if (ret || !write)
450                 return ret;
451
452         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
453         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454         update_perf_cpu_limits();
455
456         return 0;
457 }
458
459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460
461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462                                 void __user *buffer, size_t *lenp,
463                                 loff_t *ppos)
464 {
465         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466
467         if (ret || !write)
468                 return ret;
469
470         if (sysctl_perf_cpu_time_max_percent == 100 ||
471             sysctl_perf_cpu_time_max_percent == 0) {
472                 printk(KERN_WARNING
473                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474                 WRITE_ONCE(perf_sample_allowed_ns, 0);
475         } else {
476                 update_perf_cpu_limits();
477         }
478
479         return 0;
480 }
481
482 /*
483  * perf samples are done in some very critical code paths (NMIs).
484  * If they take too much CPU time, the system can lock up and not
485  * get any real work done.  This will drop the sample rate when
486  * we detect that events are taking too long.
487  */
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64, running_sample_length);
490
491 static u64 __report_avg;
492 static u64 __report_allowed;
493
494 static void perf_duration_warn(struct irq_work *w)
495 {
496         printk_ratelimited(KERN_INFO
497                 "perf: interrupt took too long (%lld > %lld), lowering "
498                 "kernel.perf_event_max_sample_rate to %d\n",
499                 __report_avg, __report_allowed,
500                 sysctl_perf_event_sample_rate);
501 }
502
503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504
505 void perf_sample_event_took(u64 sample_len_ns)
506 {
507         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508         u64 running_len;
509         u64 avg_len;
510         u32 max;
511
512         if (max_len == 0)
513                 return;
514
515         /* Decay the counter by 1 average sample. */
516         running_len = __this_cpu_read(running_sample_length);
517         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518         running_len += sample_len_ns;
519         __this_cpu_write(running_sample_length, running_len);
520
521         /*
522          * Note: this will be biased artifically low until we have
523          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524          * from having to maintain a count.
525          */
526         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527         if (avg_len <= max_len)
528                 return;
529
530         __report_avg = avg_len;
531         __report_allowed = max_len;
532
533         /*
534          * Compute a throttle threshold 25% below the current duration.
535          */
536         avg_len += avg_len / 4;
537         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538         if (avg_len < max)
539                 max /= (u32)avg_len;
540         else
541                 max = 1;
542
543         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544         WRITE_ONCE(max_samples_per_tick, max);
545
546         sysctl_perf_event_sample_rate = max * HZ;
547         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548
549         if (!irq_work_queue(&perf_duration_work)) {
550                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551                              "kernel.perf_event_max_sample_rate to %d\n",
552                              __report_avg, __report_allowed,
553                              sysctl_perf_event_sample_rate);
554         }
555 }
556
557 static atomic64_t perf_event_id;
558
559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560                               enum event_type_t event_type);
561
562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
563                              enum event_type_t event_type,
564                              struct task_struct *task);
565
566 static void update_context_time(struct perf_event_context *ctx);
567 static u64 perf_event_time(struct perf_event *event);
568
569 void __weak perf_event_print_debug(void)        { }
570
571 extern __weak const char *perf_pmu_name(void)
572 {
573         return "pmu";
574 }
575
576 static inline u64 perf_clock(void)
577 {
578         return local_clock();
579 }
580
581 static inline u64 perf_event_clock(struct perf_event *event)
582 {
583         return event->clock();
584 }
585
586 /*
587  * State based event timekeeping...
588  *
589  * The basic idea is to use event->state to determine which (if any) time
590  * fields to increment with the current delta. This means we only need to
591  * update timestamps when we change state or when they are explicitly requested
592  * (read).
593  *
594  * Event groups make things a little more complicated, but not terribly so. The
595  * rules for a group are that if the group leader is OFF the entire group is
596  * OFF, irrespecive of what the group member states are. This results in
597  * __perf_effective_state().
598  *
599  * A futher ramification is that when a group leader flips between OFF and
600  * !OFF, we need to update all group member times.
601  *
602  *
603  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604  * need to make sure the relevant context time is updated before we try and
605  * update our timestamps.
606  */
607
608 static __always_inline enum perf_event_state
609 __perf_effective_state(struct perf_event *event)
610 {
611         struct perf_event *leader = event->group_leader;
612
613         if (leader->state <= PERF_EVENT_STATE_OFF)
614                 return leader->state;
615
616         return event->state;
617 }
618
619 static __always_inline void
620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621 {
622         enum perf_event_state state = __perf_effective_state(event);
623         u64 delta = now - event->tstamp;
624
625         *enabled = event->total_time_enabled;
626         if (state >= PERF_EVENT_STATE_INACTIVE)
627                 *enabled += delta;
628
629         *running = event->total_time_running;
630         if (state >= PERF_EVENT_STATE_ACTIVE)
631                 *running += delta;
632 }
633
634 static void perf_event_update_time(struct perf_event *event)
635 {
636         u64 now = perf_event_time(event);
637
638         __perf_update_times(event, now, &event->total_time_enabled,
639                                         &event->total_time_running);
640         event->tstamp = now;
641 }
642
643 static void perf_event_update_sibling_time(struct perf_event *leader)
644 {
645         struct perf_event *sibling;
646
647         for_each_sibling_event(sibling, leader)
648                 perf_event_update_time(sibling);
649 }
650
651 static void
652 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653 {
654         if (event->state == state)
655                 return;
656
657         perf_event_update_time(event);
658         /*
659          * If a group leader gets enabled/disabled all its siblings
660          * are affected too.
661          */
662         if ((event->state < 0) ^ (state < 0))
663                 perf_event_update_sibling_time(event);
664
665         WRITE_ONCE(event->state, state);
666 }
667
668 #ifdef CONFIG_CGROUP_PERF
669
670 static inline bool
671 perf_cgroup_match(struct perf_event *event)
672 {
673         struct perf_event_context *ctx = event->ctx;
674         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675
676         /* @event doesn't care about cgroup */
677         if (!event->cgrp)
678                 return true;
679
680         /* wants specific cgroup scope but @cpuctx isn't associated with any */
681         if (!cpuctx->cgrp)
682                 return false;
683
684         /*
685          * Cgroup scoping is recursive.  An event enabled for a cgroup is
686          * also enabled for all its descendant cgroups.  If @cpuctx's
687          * cgroup is a descendant of @event's (the test covers identity
688          * case), it's a match.
689          */
690         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691                                     event->cgrp->css.cgroup);
692 }
693
694 static inline void perf_detach_cgroup(struct perf_event *event)
695 {
696         css_put(&event->cgrp->css);
697         event->cgrp = NULL;
698 }
699
700 static inline int is_cgroup_event(struct perf_event *event)
701 {
702         return event->cgrp != NULL;
703 }
704
705 static inline u64 perf_cgroup_event_time(struct perf_event *event)
706 {
707         struct perf_cgroup_info *t;
708
709         t = per_cpu_ptr(event->cgrp->info, event->cpu);
710         return t->time;
711 }
712
713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714 {
715         struct perf_cgroup_info *info;
716         u64 now;
717
718         now = perf_clock();
719
720         info = this_cpu_ptr(cgrp->info);
721
722         info->time += now - info->timestamp;
723         info->timestamp = now;
724 }
725
726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727 {
728         struct perf_cgroup *cgrp = cpuctx->cgrp;
729         struct cgroup_subsys_state *css;
730
731         if (cgrp) {
732                 for (css = &cgrp->css; css; css = css->parent) {
733                         cgrp = container_of(css, struct perf_cgroup, css);
734                         __update_cgrp_time(cgrp);
735                 }
736         }
737 }
738
739 static inline void update_cgrp_time_from_event(struct perf_event *event)
740 {
741         struct perf_cgroup *cgrp;
742
743         /*
744          * ensure we access cgroup data only when needed and
745          * when we know the cgroup is pinned (css_get)
746          */
747         if (!is_cgroup_event(event))
748                 return;
749
750         cgrp = perf_cgroup_from_task(current, event->ctx);
751         /*
752          * Do not update time when cgroup is not active
753          */
754         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
755                 __update_cgrp_time(event->cgrp);
756 }
757
758 static inline void
759 perf_cgroup_set_timestamp(struct task_struct *task,
760                           struct perf_event_context *ctx)
761 {
762         struct perf_cgroup *cgrp;
763         struct perf_cgroup_info *info;
764         struct cgroup_subsys_state *css;
765
766         /*
767          * ctx->lock held by caller
768          * ensure we do not access cgroup data
769          * unless we have the cgroup pinned (css_get)
770          */
771         if (!task || !ctx->nr_cgroups)
772                 return;
773
774         cgrp = perf_cgroup_from_task(task, ctx);
775
776         for (css = &cgrp->css; css; css = css->parent) {
777                 cgrp = container_of(css, struct perf_cgroup, css);
778                 info = this_cpu_ptr(cgrp->info);
779                 info->timestamp = ctx->timestamp;
780         }
781 }
782
783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784
785 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
787
788 /*
789  * reschedule events based on the cgroup constraint of task.
790  *
791  * mode SWOUT : schedule out everything
792  * mode SWIN : schedule in based on cgroup for next
793  */
794 static void perf_cgroup_switch(struct task_struct *task, int mode)
795 {
796         struct perf_cpu_context *cpuctx;
797         struct list_head *list;
798         unsigned long flags;
799
800         /*
801          * Disable interrupts and preemption to avoid this CPU's
802          * cgrp_cpuctx_entry to change under us.
803          */
804         local_irq_save(flags);
805
806         list = this_cpu_ptr(&cgrp_cpuctx_list);
807         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
809
810                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811                 perf_pmu_disable(cpuctx->ctx.pmu);
812
813                 if (mode & PERF_CGROUP_SWOUT) {
814                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815                         /*
816                          * must not be done before ctxswout due
817                          * to event_filter_match() in event_sched_out()
818                          */
819                         cpuctx->cgrp = NULL;
820                 }
821
822                 if (mode & PERF_CGROUP_SWIN) {
823                         WARN_ON_ONCE(cpuctx->cgrp);
824                         /*
825                          * set cgrp before ctxsw in to allow
826                          * event_filter_match() to not have to pass
827                          * task around
828                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
829                          * because cgorup events are only per-cpu
830                          */
831                         cpuctx->cgrp = perf_cgroup_from_task(task,
832                                                              &cpuctx->ctx);
833                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
834                 }
835                 perf_pmu_enable(cpuctx->ctx.pmu);
836                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
837         }
838
839         local_irq_restore(flags);
840 }
841
842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843                                          struct task_struct *next)
844 {
845         struct perf_cgroup *cgrp1;
846         struct perf_cgroup *cgrp2 = NULL;
847
848         rcu_read_lock();
849         /*
850          * we come here when we know perf_cgroup_events > 0
851          * we do not need to pass the ctx here because we know
852          * we are holding the rcu lock
853          */
854         cgrp1 = perf_cgroup_from_task(task, NULL);
855         cgrp2 = perf_cgroup_from_task(next, NULL);
856
857         /*
858          * only schedule out current cgroup events if we know
859          * that we are switching to a different cgroup. Otherwise,
860          * do no touch the cgroup events.
861          */
862         if (cgrp1 != cgrp2)
863                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
864
865         rcu_read_unlock();
866 }
867
868 static inline void perf_cgroup_sched_in(struct task_struct *prev,
869                                         struct task_struct *task)
870 {
871         struct perf_cgroup *cgrp1;
872         struct perf_cgroup *cgrp2 = NULL;
873
874         rcu_read_lock();
875         /*
876          * we come here when we know perf_cgroup_events > 0
877          * we do not need to pass the ctx here because we know
878          * we are holding the rcu lock
879          */
880         cgrp1 = perf_cgroup_from_task(task, NULL);
881         cgrp2 = perf_cgroup_from_task(prev, NULL);
882
883         /*
884          * only need to schedule in cgroup events if we are changing
885          * cgroup during ctxsw. Cgroup events were not scheduled
886          * out of ctxsw out if that was not the case.
887          */
888         if (cgrp1 != cgrp2)
889                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
890
891         rcu_read_unlock();
892 }
893
894 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895                                       struct perf_event_attr *attr,
896                                       struct perf_event *group_leader)
897 {
898         struct perf_cgroup *cgrp;
899         struct cgroup_subsys_state *css;
900         struct fd f = fdget(fd);
901         int ret = 0;
902
903         if (!f.file)
904                 return -EBADF;
905
906         css = css_tryget_online_from_dir(f.file->f_path.dentry,
907                                          &perf_event_cgrp_subsys);
908         if (IS_ERR(css)) {
909                 ret = PTR_ERR(css);
910                 goto out;
911         }
912
913         cgrp = container_of(css, struct perf_cgroup, css);
914         event->cgrp = cgrp;
915
916         /*
917          * all events in a group must monitor
918          * the same cgroup because a task belongs
919          * to only one perf cgroup at a time
920          */
921         if (group_leader && group_leader->cgrp != cgrp) {
922                 perf_detach_cgroup(event);
923                 ret = -EINVAL;
924         }
925 out:
926         fdput(f);
927         return ret;
928 }
929
930 static inline void
931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932 {
933         struct perf_cgroup_info *t;
934         t = per_cpu_ptr(event->cgrp->info, event->cpu);
935         event->shadow_ctx_time = now - t->timestamp;
936 }
937
938 /*
939  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940  * cleared when last cgroup event is removed.
941  */
942 static inline void
943 list_update_cgroup_event(struct perf_event *event,
944                          struct perf_event_context *ctx, bool add)
945 {
946         struct perf_cpu_context *cpuctx;
947         struct list_head *cpuctx_entry;
948
949         if (!is_cgroup_event(event))
950                 return;
951
952         /*
953          * Because cgroup events are always per-cpu events,
954          * this will always be called from the right CPU.
955          */
956         cpuctx = __get_cpu_context(ctx);
957
958         /*
959          * Since setting cpuctx->cgrp is conditional on the current @cgrp
960          * matching the event's cgroup, we must do this for every new event,
961          * because if the first would mismatch, the second would not try again
962          * and we would leave cpuctx->cgrp unset.
963          */
964         if (add && !cpuctx->cgrp) {
965                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966
967                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968                         cpuctx->cgrp = cgrp;
969         }
970
971         if (add && ctx->nr_cgroups++)
972                 return;
973         else if (!add && --ctx->nr_cgroups)
974                 return;
975
976         /* no cgroup running */
977         if (!add)
978                 cpuctx->cgrp = NULL;
979
980         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981         if (add)
982                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983         else
984                 list_del(cpuctx_entry);
985 }
986
987 #else /* !CONFIG_CGROUP_PERF */
988
989 static inline bool
990 perf_cgroup_match(struct perf_event *event)
991 {
992         return true;
993 }
994
995 static inline void perf_detach_cgroup(struct perf_event *event)
996 {}
997
998 static inline int is_cgroup_event(struct perf_event *event)
999 {
1000         return 0;
1001 }
1002
1003 static inline void update_cgrp_time_from_event(struct perf_event *event)
1004 {
1005 }
1006
1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008 {
1009 }
1010
1011 static inline void perf_cgroup_sched_out(struct task_struct *task,
1012                                          struct task_struct *next)
1013 {
1014 }
1015
1016 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017                                         struct task_struct *task)
1018 {
1019 }
1020
1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022                                       struct perf_event_attr *attr,
1023                                       struct perf_event *group_leader)
1024 {
1025         return -EINVAL;
1026 }
1027
1028 static inline void
1029 perf_cgroup_set_timestamp(struct task_struct *task,
1030                           struct perf_event_context *ctx)
1031 {
1032 }
1033
1034 void
1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036 {
1037 }
1038
1039 static inline void
1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041 {
1042 }
1043
1044 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045 {
1046         return 0;
1047 }
1048
1049 static inline void
1050 list_update_cgroup_event(struct perf_event *event,
1051                          struct perf_event_context *ctx, bool add)
1052 {
1053 }
1054
1055 #endif
1056
1057 /*
1058  * set default to be dependent on timer tick just
1059  * like original code
1060  */
1061 #define PERF_CPU_HRTIMER (1000 / HZ)
1062 /*
1063  * function must be called with interrupts disabled
1064  */
1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1066 {
1067         struct perf_cpu_context *cpuctx;
1068         bool rotations;
1069
1070         lockdep_assert_irqs_disabled();
1071
1072         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1073         rotations = perf_rotate_context(cpuctx);
1074
1075         raw_spin_lock(&cpuctx->hrtimer_lock);
1076         if (rotations)
1077                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1078         else
1079                 cpuctx->hrtimer_active = 0;
1080         raw_spin_unlock(&cpuctx->hrtimer_lock);
1081
1082         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1083 }
1084
1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1086 {
1087         struct hrtimer *timer = &cpuctx->hrtimer;
1088         struct pmu *pmu = cpuctx->ctx.pmu;
1089         u64 interval;
1090
1091         /* no multiplexing needed for SW PMU */
1092         if (pmu->task_ctx_nr == perf_sw_context)
1093                 return;
1094
1095         /*
1096          * check default is sane, if not set then force to
1097          * default interval (1/tick)
1098          */
1099         interval = pmu->hrtimer_interval_ms;
1100         if (interval < 1)
1101                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1102
1103         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1104
1105         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1107         timer->function = perf_mux_hrtimer_handler;
1108 }
1109
1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1111 {
1112         struct hrtimer *timer = &cpuctx->hrtimer;
1113         struct pmu *pmu = cpuctx->ctx.pmu;
1114         unsigned long flags;
1115
1116         /* not for SW PMU */
1117         if (pmu->task_ctx_nr == perf_sw_context)
1118                 return 0;
1119
1120         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121         if (!cpuctx->hrtimer_active) {
1122                 cpuctx->hrtimer_active = 1;
1123                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1125         }
1126         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1127
1128         return 0;
1129 }
1130
1131 void perf_pmu_disable(struct pmu *pmu)
1132 {
1133         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134         if (!(*count)++)
1135                 pmu->pmu_disable(pmu);
1136 }
1137
1138 void perf_pmu_enable(struct pmu *pmu)
1139 {
1140         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141         if (!--(*count))
1142                 pmu->pmu_enable(pmu);
1143 }
1144
1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1146
1147 /*
1148  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149  * perf_event_task_tick() are fully serialized because they're strictly cpu
1150  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151  * disabled, while perf_event_task_tick is called from IRQ context.
1152  */
1153 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1154 {
1155         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1156
1157         lockdep_assert_irqs_disabled();
1158
1159         WARN_ON(!list_empty(&ctx->active_ctx_list));
1160
1161         list_add(&ctx->active_ctx_list, head);
1162 }
1163
1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165 {
1166         lockdep_assert_irqs_disabled();
1167
1168         WARN_ON(list_empty(&ctx->active_ctx_list));
1169
1170         list_del_init(&ctx->active_ctx_list);
1171 }
1172
1173 static void get_ctx(struct perf_event_context *ctx)
1174 {
1175         refcount_inc(&ctx->refcount);
1176 }
1177
1178 static void free_ctx(struct rcu_head *head)
1179 {
1180         struct perf_event_context *ctx;
1181
1182         ctx = container_of(head, struct perf_event_context, rcu_head);
1183         kfree(ctx->task_ctx_data);
1184         kfree(ctx);
1185 }
1186
1187 static void put_ctx(struct perf_event_context *ctx)
1188 {
1189         if (refcount_dec_and_test(&ctx->refcount)) {
1190                 if (ctx->parent_ctx)
1191                         put_ctx(ctx->parent_ctx);
1192                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1193                         put_task_struct(ctx->task);
1194                 call_rcu(&ctx->rcu_head, free_ctx);
1195         }
1196 }
1197
1198 /*
1199  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200  * perf_pmu_migrate_context() we need some magic.
1201  *
1202  * Those places that change perf_event::ctx will hold both
1203  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204  *
1205  * Lock ordering is by mutex address. There are two other sites where
1206  * perf_event_context::mutex nests and those are:
1207  *
1208  *  - perf_event_exit_task_context()    [ child , 0 ]
1209  *      perf_event_exit_event()
1210  *        put_event()                   [ parent, 1 ]
1211  *
1212  *  - perf_event_init_context()         [ parent, 0 ]
1213  *      inherit_task_group()
1214  *        inherit_group()
1215  *          inherit_event()
1216  *            perf_event_alloc()
1217  *              perf_init_event()
1218  *                perf_try_init_event() [ child , 1 ]
1219  *
1220  * While it appears there is an obvious deadlock here -- the parent and child
1221  * nesting levels are inverted between the two. This is in fact safe because
1222  * life-time rules separate them. That is an exiting task cannot fork, and a
1223  * spawning task cannot (yet) exit.
1224  *
1225  * But remember that that these are parent<->child context relations, and
1226  * migration does not affect children, therefore these two orderings should not
1227  * interact.
1228  *
1229  * The change in perf_event::ctx does not affect children (as claimed above)
1230  * because the sys_perf_event_open() case will install a new event and break
1231  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232  * concerned with cpuctx and that doesn't have children.
1233  *
1234  * The places that change perf_event::ctx will issue:
1235  *
1236  *   perf_remove_from_context();
1237  *   synchronize_rcu();
1238  *   perf_install_in_context();
1239  *
1240  * to affect the change. The remove_from_context() + synchronize_rcu() should
1241  * quiesce the event, after which we can install it in the new location. This
1242  * means that only external vectors (perf_fops, prctl) can perturb the event
1243  * while in transit. Therefore all such accessors should also acquire
1244  * perf_event_context::mutex to serialize against this.
1245  *
1246  * However; because event->ctx can change while we're waiting to acquire
1247  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248  * function.
1249  *
1250  * Lock order:
1251  *    cred_guard_mutex
1252  *      task_struct::perf_event_mutex
1253  *        perf_event_context::mutex
1254  *          perf_event::child_mutex;
1255  *            perf_event_context::lock
1256  *          perf_event::mmap_mutex
1257  *          mmap_sem
1258  *            perf_addr_filters_head::lock
1259  *
1260  *    cpu_hotplug_lock
1261  *      pmus_lock
1262  *        cpuctx->mutex / perf_event_context::mutex
1263  */
1264 static struct perf_event_context *
1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1266 {
1267         struct perf_event_context *ctx;
1268
1269 again:
1270         rcu_read_lock();
1271         ctx = READ_ONCE(event->ctx);
1272         if (!refcount_inc_not_zero(&ctx->refcount)) {
1273                 rcu_read_unlock();
1274                 goto again;
1275         }
1276         rcu_read_unlock();
1277
1278         mutex_lock_nested(&ctx->mutex, nesting);
1279         if (event->ctx != ctx) {
1280                 mutex_unlock(&ctx->mutex);
1281                 put_ctx(ctx);
1282                 goto again;
1283         }
1284
1285         return ctx;
1286 }
1287
1288 static inline struct perf_event_context *
1289 perf_event_ctx_lock(struct perf_event *event)
1290 {
1291         return perf_event_ctx_lock_nested(event, 0);
1292 }
1293
1294 static void perf_event_ctx_unlock(struct perf_event *event,
1295                                   struct perf_event_context *ctx)
1296 {
1297         mutex_unlock(&ctx->mutex);
1298         put_ctx(ctx);
1299 }
1300
1301 /*
1302  * This must be done under the ctx->lock, such as to serialize against
1303  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304  * calling scheduler related locks and ctx->lock nests inside those.
1305  */
1306 static __must_check struct perf_event_context *
1307 unclone_ctx(struct perf_event_context *ctx)
1308 {
1309         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310
1311         lockdep_assert_held(&ctx->lock);
1312
1313         if (parent_ctx)
1314                 ctx->parent_ctx = NULL;
1315         ctx->generation++;
1316
1317         return parent_ctx;
1318 }
1319
1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321                                 enum pid_type type)
1322 {
1323         u32 nr;
1324         /*
1325          * only top level events have the pid namespace they were created in
1326          */
1327         if (event->parent)
1328                 event = event->parent;
1329
1330         nr = __task_pid_nr_ns(p, type, event->ns);
1331         /* avoid -1 if it is idle thread or runs in another ns */
1332         if (!nr && !pid_alive(p))
1333                 nr = -1;
1334         return nr;
1335 }
1336
1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1338 {
1339         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1340 }
1341
1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343 {
1344         return perf_event_pid_type(event, p, PIDTYPE_PID);
1345 }
1346
1347 /*
1348  * If we inherit events we want to return the parent event id
1349  * to userspace.
1350  */
1351 static u64 primary_event_id(struct perf_event *event)
1352 {
1353         u64 id = event->id;
1354
1355         if (event->parent)
1356                 id = event->parent->id;
1357
1358         return id;
1359 }
1360
1361 /*
1362  * Get the perf_event_context for a task and lock it.
1363  *
1364  * This has to cope with with the fact that until it is locked,
1365  * the context could get moved to another task.
1366  */
1367 static struct perf_event_context *
1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1369 {
1370         struct perf_event_context *ctx;
1371
1372 retry:
1373         /*
1374          * One of the few rules of preemptible RCU is that one cannot do
1375          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1376          * part of the read side critical section was irqs-enabled -- see
1377          * rcu_read_unlock_special().
1378          *
1379          * Since ctx->lock nests under rq->lock we must ensure the entire read
1380          * side critical section has interrupts disabled.
1381          */
1382         local_irq_save(*flags);
1383         rcu_read_lock();
1384         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1385         if (ctx) {
1386                 /*
1387                  * If this context is a clone of another, it might
1388                  * get swapped for another underneath us by
1389                  * perf_event_task_sched_out, though the
1390                  * rcu_read_lock() protects us from any context
1391                  * getting freed.  Lock the context and check if it
1392                  * got swapped before we could get the lock, and retry
1393                  * if so.  If we locked the right context, then it
1394                  * can't get swapped on us any more.
1395                  */
1396                 raw_spin_lock(&ctx->lock);
1397                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1398                         raw_spin_unlock(&ctx->lock);
1399                         rcu_read_unlock();
1400                         local_irq_restore(*flags);
1401                         goto retry;
1402                 }
1403
1404                 if (ctx->task == TASK_TOMBSTONE ||
1405                     !refcount_inc_not_zero(&ctx->refcount)) {
1406                         raw_spin_unlock(&ctx->lock);
1407                         ctx = NULL;
1408                 } else {
1409                         WARN_ON_ONCE(ctx->task != task);
1410                 }
1411         }
1412         rcu_read_unlock();
1413         if (!ctx)
1414                 local_irq_restore(*flags);
1415         return ctx;
1416 }
1417
1418 /*
1419  * Get the context for a task and increment its pin_count so it
1420  * can't get swapped to another task.  This also increments its
1421  * reference count so that the context can't get freed.
1422  */
1423 static struct perf_event_context *
1424 perf_pin_task_context(struct task_struct *task, int ctxn)
1425 {
1426         struct perf_event_context *ctx;
1427         unsigned long flags;
1428
1429         ctx = perf_lock_task_context(task, ctxn, &flags);
1430         if (ctx) {
1431                 ++ctx->pin_count;
1432                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1433         }
1434         return ctx;
1435 }
1436
1437 static void perf_unpin_context(struct perf_event_context *ctx)
1438 {
1439         unsigned long flags;
1440
1441         raw_spin_lock_irqsave(&ctx->lock, flags);
1442         --ctx->pin_count;
1443         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1444 }
1445
1446 /*
1447  * Update the record of the current time in a context.
1448  */
1449 static void update_context_time(struct perf_event_context *ctx)
1450 {
1451         u64 now = perf_clock();
1452
1453         ctx->time += now - ctx->timestamp;
1454         ctx->timestamp = now;
1455 }
1456
1457 static u64 perf_event_time(struct perf_event *event)
1458 {
1459         struct perf_event_context *ctx = event->ctx;
1460
1461         if (is_cgroup_event(event))
1462                 return perf_cgroup_event_time(event);
1463
1464         return ctx ? ctx->time : 0;
1465 }
1466
1467 static enum event_type_t get_event_type(struct perf_event *event)
1468 {
1469         struct perf_event_context *ctx = event->ctx;
1470         enum event_type_t event_type;
1471
1472         lockdep_assert_held(&ctx->lock);
1473
1474         /*
1475          * It's 'group type', really, because if our group leader is
1476          * pinned, so are we.
1477          */
1478         if (event->group_leader != event)
1479                 event = event->group_leader;
1480
1481         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482         if (!ctx->task)
1483                 event_type |= EVENT_CPU;
1484
1485         return event_type;
1486 }
1487
1488 /*
1489  * Helper function to initialize event group nodes.
1490  */
1491 static void init_event_group(struct perf_event *event)
1492 {
1493         RB_CLEAR_NODE(&event->group_node);
1494         event->group_index = 0;
1495 }
1496
1497 /*
1498  * Extract pinned or flexible groups from the context
1499  * based on event attrs bits.
1500  */
1501 static struct perf_event_groups *
1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1503 {
1504         if (event->attr.pinned)
1505                 return &ctx->pinned_groups;
1506         else
1507                 return &ctx->flexible_groups;
1508 }
1509
1510 /*
1511  * Helper function to initializes perf_event_group trees.
1512  */
1513 static void perf_event_groups_init(struct perf_event_groups *groups)
1514 {
1515         groups->tree = RB_ROOT;
1516         groups->index = 0;
1517 }
1518
1519 /*
1520  * Compare function for event groups;
1521  *
1522  * Implements complex key that first sorts by CPU and then by virtual index
1523  * which provides ordering when rotating groups for the same CPU.
1524  */
1525 static bool
1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1527 {
1528         if (left->cpu < right->cpu)
1529                 return true;
1530         if (left->cpu > right->cpu)
1531                 return false;
1532
1533         if (left->group_index < right->group_index)
1534                 return true;
1535         if (left->group_index > right->group_index)
1536                 return false;
1537
1538         return false;
1539 }
1540
1541 /*
1542  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543  * key (see perf_event_groups_less). This places it last inside the CPU
1544  * subtree.
1545  */
1546 static void
1547 perf_event_groups_insert(struct perf_event_groups *groups,
1548                          struct perf_event *event)
1549 {
1550         struct perf_event *node_event;
1551         struct rb_node *parent;
1552         struct rb_node **node;
1553
1554         event->group_index = ++groups->index;
1555
1556         node = &groups->tree.rb_node;
1557         parent = *node;
1558
1559         while (*node) {
1560                 parent = *node;
1561                 node_event = container_of(*node, struct perf_event, group_node);
1562
1563                 if (perf_event_groups_less(event, node_event))
1564                         node = &parent->rb_left;
1565                 else
1566                         node = &parent->rb_right;
1567         }
1568
1569         rb_link_node(&event->group_node, parent, node);
1570         rb_insert_color(&event->group_node, &groups->tree);
1571 }
1572
1573 /*
1574  * Helper function to insert event into the pinned or flexible groups.
1575  */
1576 static void
1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578 {
1579         struct perf_event_groups *groups;
1580
1581         groups = get_event_groups(event, ctx);
1582         perf_event_groups_insert(groups, event);
1583 }
1584
1585 /*
1586  * Delete a group from a tree.
1587  */
1588 static void
1589 perf_event_groups_delete(struct perf_event_groups *groups,
1590                          struct perf_event *event)
1591 {
1592         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593                      RB_EMPTY_ROOT(&groups->tree));
1594
1595         rb_erase(&event->group_node, &groups->tree);
1596         init_event_group(event);
1597 }
1598
1599 /*
1600  * Helper function to delete event from its groups.
1601  */
1602 static void
1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604 {
1605         struct perf_event_groups *groups;
1606
1607         groups = get_event_groups(event, ctx);
1608         perf_event_groups_delete(groups, event);
1609 }
1610
1611 /*
1612  * Get the leftmost event in the @cpu subtree.
1613  */
1614 static struct perf_event *
1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616 {
1617         struct perf_event *node_event = NULL, *match = NULL;
1618         struct rb_node *node = groups->tree.rb_node;
1619
1620         while (node) {
1621                 node_event = container_of(node, struct perf_event, group_node);
1622
1623                 if (cpu < node_event->cpu) {
1624                         node = node->rb_left;
1625                 } else if (cpu > node_event->cpu) {
1626                         node = node->rb_right;
1627                 } else {
1628                         match = node_event;
1629                         node = node->rb_left;
1630                 }
1631         }
1632
1633         return match;
1634 }
1635
1636 /*
1637  * Like rb_entry_next_safe() for the @cpu subtree.
1638  */
1639 static struct perf_event *
1640 perf_event_groups_next(struct perf_event *event)
1641 {
1642         struct perf_event *next;
1643
1644         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645         if (next && next->cpu == event->cpu)
1646                 return next;
1647
1648         return NULL;
1649 }
1650
1651 /*
1652  * Iterate through the whole groups tree.
1653  */
1654 #define perf_event_groups_for_each(event, groups)                       \
1655         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1656                                 typeof(*event), group_node); event;     \
1657                 event = rb_entry_safe(rb_next(&event->group_node),      \
1658                                 typeof(*event), group_node))
1659
1660 /*
1661  * Add an event from the lists for its context.
1662  * Must be called with ctx->mutex and ctx->lock held.
1663  */
1664 static void
1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1666 {
1667         lockdep_assert_held(&ctx->lock);
1668
1669         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670         event->attach_state |= PERF_ATTACH_CONTEXT;
1671
1672         event->tstamp = perf_event_time(event);
1673
1674         /*
1675          * If we're a stand alone event or group leader, we go to the context
1676          * list, group events are kept attached to the group so that
1677          * perf_group_detach can, at all times, locate all siblings.
1678          */
1679         if (event->group_leader == event) {
1680                 event->group_caps = event->event_caps;
1681                 add_event_to_groups(event, ctx);
1682         }
1683
1684         list_update_cgroup_event(event, ctx, true);
1685
1686         list_add_rcu(&event->event_entry, &ctx->event_list);
1687         ctx->nr_events++;
1688         if (event->attr.inherit_stat)
1689                 ctx->nr_stat++;
1690
1691         ctx->generation++;
1692 }
1693
1694 /*
1695  * Initialize event state based on the perf_event_attr::disabled.
1696  */
1697 static inline void perf_event__state_init(struct perf_event *event)
1698 {
1699         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700                                               PERF_EVENT_STATE_INACTIVE;
1701 }
1702
1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1704 {
1705         int entry = sizeof(u64); /* value */
1706         int size = 0;
1707         int nr = 1;
1708
1709         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710                 size += sizeof(u64);
1711
1712         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713                 size += sizeof(u64);
1714
1715         if (event->attr.read_format & PERF_FORMAT_ID)
1716                 entry += sizeof(u64);
1717
1718         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1719                 nr += nr_siblings;
1720                 size += sizeof(u64);
1721         }
1722
1723         size += entry * nr;
1724         event->read_size = size;
1725 }
1726
1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1728 {
1729         struct perf_sample_data *data;
1730         u16 size = 0;
1731
1732         if (sample_type & PERF_SAMPLE_IP)
1733                 size += sizeof(data->ip);
1734
1735         if (sample_type & PERF_SAMPLE_ADDR)
1736                 size += sizeof(data->addr);
1737
1738         if (sample_type & PERF_SAMPLE_PERIOD)
1739                 size += sizeof(data->period);
1740
1741         if (sample_type & PERF_SAMPLE_WEIGHT)
1742                 size += sizeof(data->weight);
1743
1744         if (sample_type & PERF_SAMPLE_READ)
1745                 size += event->read_size;
1746
1747         if (sample_type & PERF_SAMPLE_DATA_SRC)
1748                 size += sizeof(data->data_src.val);
1749
1750         if (sample_type & PERF_SAMPLE_TRANSACTION)
1751                 size += sizeof(data->txn);
1752
1753         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754                 size += sizeof(data->phys_addr);
1755
1756         event->header_size = size;
1757 }
1758
1759 /*
1760  * Called at perf_event creation and when events are attached/detached from a
1761  * group.
1762  */
1763 static void perf_event__header_size(struct perf_event *event)
1764 {
1765         __perf_event_read_size(event,
1766                                event->group_leader->nr_siblings);
1767         __perf_event_header_size(event, event->attr.sample_type);
1768 }
1769
1770 static void perf_event__id_header_size(struct perf_event *event)
1771 {
1772         struct perf_sample_data *data;
1773         u64 sample_type = event->attr.sample_type;
1774         u16 size = 0;
1775
1776         if (sample_type & PERF_SAMPLE_TID)
1777                 size += sizeof(data->tid_entry);
1778
1779         if (sample_type & PERF_SAMPLE_TIME)
1780                 size += sizeof(data->time);
1781
1782         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783                 size += sizeof(data->id);
1784
1785         if (sample_type & PERF_SAMPLE_ID)
1786                 size += sizeof(data->id);
1787
1788         if (sample_type & PERF_SAMPLE_STREAM_ID)
1789                 size += sizeof(data->stream_id);
1790
1791         if (sample_type & PERF_SAMPLE_CPU)
1792                 size += sizeof(data->cpu_entry);
1793
1794         event->id_header_size = size;
1795 }
1796
1797 static bool perf_event_validate_size(struct perf_event *event)
1798 {
1799         /*
1800          * The values computed here will be over-written when we actually
1801          * attach the event.
1802          */
1803         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805         perf_event__id_header_size(event);
1806
1807         /*
1808          * Sum the lot; should not exceed the 64k limit we have on records.
1809          * Conservative limit to allow for callchains and other variable fields.
1810          */
1811         if (event->read_size + event->header_size +
1812             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813                 return false;
1814
1815         return true;
1816 }
1817
1818 static void perf_group_attach(struct perf_event *event)
1819 {
1820         struct perf_event *group_leader = event->group_leader, *pos;
1821
1822         lockdep_assert_held(&event->ctx->lock);
1823
1824         /*
1825          * We can have double attach due to group movement in perf_event_open.
1826          */
1827         if (event->attach_state & PERF_ATTACH_GROUP)
1828                 return;
1829
1830         event->attach_state |= PERF_ATTACH_GROUP;
1831
1832         if (group_leader == event)
1833                 return;
1834
1835         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836
1837         group_leader->group_caps &= event->event_caps;
1838
1839         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1840         group_leader->nr_siblings++;
1841
1842         perf_event__header_size(group_leader);
1843
1844         for_each_sibling_event(pos, group_leader)
1845                 perf_event__header_size(pos);
1846 }
1847
1848 /*
1849  * Remove an event from the lists for its context.
1850  * Must be called with ctx->mutex and ctx->lock held.
1851  */
1852 static void
1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1854 {
1855         WARN_ON_ONCE(event->ctx != ctx);
1856         lockdep_assert_held(&ctx->lock);
1857
1858         /*
1859          * We can have double detach due to exit/hot-unplug + close.
1860          */
1861         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1862                 return;
1863
1864         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865
1866         list_update_cgroup_event(event, ctx, false);
1867
1868         ctx->nr_events--;
1869         if (event->attr.inherit_stat)
1870                 ctx->nr_stat--;
1871
1872         list_del_rcu(&event->event_entry);
1873
1874         if (event->group_leader == event)
1875                 del_event_from_groups(event, ctx);
1876
1877         /*
1878          * If event was in error state, then keep it
1879          * that way, otherwise bogus counts will be
1880          * returned on read(). The only way to get out
1881          * of error state is by explicit re-enabling
1882          * of the event
1883          */
1884         if (event->state > PERF_EVENT_STATE_OFF)
1885                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1886
1887         ctx->generation++;
1888 }
1889
1890 static void perf_group_detach(struct perf_event *event)
1891 {
1892         struct perf_event *sibling, *tmp;
1893         struct perf_event_context *ctx = event->ctx;
1894
1895         lockdep_assert_held(&ctx->lock);
1896
1897         /*
1898          * We can have double detach due to exit/hot-unplug + close.
1899          */
1900         if (!(event->attach_state & PERF_ATTACH_GROUP))
1901                 return;
1902
1903         event->attach_state &= ~PERF_ATTACH_GROUP;
1904
1905         /*
1906          * If this is a sibling, remove it from its group.
1907          */
1908         if (event->group_leader != event) {
1909                 list_del_init(&event->sibling_list);
1910                 event->group_leader->nr_siblings--;
1911                 goto out;
1912         }
1913
1914         /*
1915          * If this was a group event with sibling events then
1916          * upgrade the siblings to singleton events by adding them
1917          * to whatever list we are on.
1918          */
1919         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1920
1921                 sibling->group_leader = sibling;
1922                 list_del_init(&sibling->sibling_list);
1923
1924                 /* Inherit group flags from the previous leader */
1925                 sibling->group_caps = event->group_caps;
1926
1927                 if (!RB_EMPTY_NODE(&event->group_node)) {
1928                         add_event_to_groups(sibling, event->ctx);
1929
1930                         if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1931                                 struct list_head *list = sibling->attr.pinned ?
1932                                         &ctx->pinned_active : &ctx->flexible_active;
1933
1934                                 list_add_tail(&sibling->active_list, list);
1935                         }
1936                 }
1937
1938                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1939         }
1940
1941 out:
1942         perf_event__header_size(event->group_leader);
1943
1944         for_each_sibling_event(tmp, event->group_leader)
1945                 perf_event__header_size(tmp);
1946 }
1947
1948 static bool is_orphaned_event(struct perf_event *event)
1949 {
1950         return event->state == PERF_EVENT_STATE_DEAD;
1951 }
1952
1953 static inline int __pmu_filter_match(struct perf_event *event)
1954 {
1955         struct pmu *pmu = event->pmu;
1956         return pmu->filter_match ? pmu->filter_match(event) : 1;
1957 }
1958
1959 /*
1960  * Check whether we should attempt to schedule an event group based on
1961  * PMU-specific filtering. An event group can consist of HW and SW events,
1962  * potentially with a SW leader, so we must check all the filters, to
1963  * determine whether a group is schedulable:
1964  */
1965 static inline int pmu_filter_match(struct perf_event *event)
1966 {
1967         struct perf_event *sibling;
1968
1969         if (!__pmu_filter_match(event))
1970                 return 0;
1971
1972         for_each_sibling_event(sibling, event) {
1973                 if (!__pmu_filter_match(sibling))
1974                         return 0;
1975         }
1976
1977         return 1;
1978 }
1979
1980 static inline int
1981 event_filter_match(struct perf_event *event)
1982 {
1983         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1984                perf_cgroup_match(event) && pmu_filter_match(event);
1985 }
1986
1987 static void
1988 event_sched_out(struct perf_event *event,
1989                   struct perf_cpu_context *cpuctx,
1990                   struct perf_event_context *ctx)
1991 {
1992         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1993
1994         WARN_ON_ONCE(event->ctx != ctx);
1995         lockdep_assert_held(&ctx->lock);
1996
1997         if (event->state != PERF_EVENT_STATE_ACTIVE)
1998                 return;
1999
2000         /*
2001          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2002          * we can schedule events _OUT_ individually through things like
2003          * __perf_remove_from_context().
2004          */
2005         list_del_init(&event->active_list);
2006
2007         perf_pmu_disable(event->pmu);
2008
2009         event->pmu->del(event, 0);
2010         event->oncpu = -1;
2011
2012         if (READ_ONCE(event->pending_disable) >= 0) {
2013                 WRITE_ONCE(event->pending_disable, -1);
2014                 state = PERF_EVENT_STATE_OFF;
2015         }
2016         perf_event_set_state(event, state);
2017
2018         if (!is_software_event(event))
2019                 cpuctx->active_oncpu--;
2020         if (!--ctx->nr_active)
2021                 perf_event_ctx_deactivate(ctx);
2022         if (event->attr.freq && event->attr.sample_freq)
2023                 ctx->nr_freq--;
2024         if (event->attr.exclusive || !cpuctx->active_oncpu)
2025                 cpuctx->exclusive = 0;
2026
2027         perf_pmu_enable(event->pmu);
2028 }
2029
2030 static void
2031 group_sched_out(struct perf_event *group_event,
2032                 struct perf_cpu_context *cpuctx,
2033                 struct perf_event_context *ctx)
2034 {
2035         struct perf_event *event;
2036
2037         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2038                 return;
2039
2040         perf_pmu_disable(ctx->pmu);
2041
2042         event_sched_out(group_event, cpuctx, ctx);
2043
2044         /*
2045          * Schedule out siblings (if any):
2046          */
2047         for_each_sibling_event(event, group_event)
2048                 event_sched_out(event, cpuctx, ctx);
2049
2050         perf_pmu_enable(ctx->pmu);
2051
2052         if (group_event->attr.exclusive)
2053                 cpuctx->exclusive = 0;
2054 }
2055
2056 #define DETACH_GROUP    0x01UL
2057
2058 /*
2059  * Cross CPU call to remove a performance event
2060  *
2061  * We disable the event on the hardware level first. After that we
2062  * remove it from the context list.
2063  */
2064 static void
2065 __perf_remove_from_context(struct perf_event *event,
2066                            struct perf_cpu_context *cpuctx,
2067                            struct perf_event_context *ctx,
2068                            void *info)
2069 {
2070         unsigned long flags = (unsigned long)info;
2071
2072         if (ctx->is_active & EVENT_TIME) {
2073                 update_context_time(ctx);
2074                 update_cgrp_time_from_cpuctx(cpuctx);
2075         }
2076
2077         event_sched_out(event, cpuctx, ctx);
2078         if (flags & DETACH_GROUP)
2079                 perf_group_detach(event);
2080         list_del_event(event, ctx);
2081
2082         if (!ctx->nr_events && ctx->is_active) {
2083                 ctx->is_active = 0;
2084                 if (ctx->task) {
2085                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2086                         cpuctx->task_ctx = NULL;
2087                 }
2088         }
2089 }
2090
2091 /*
2092  * Remove the event from a task's (or a CPU's) list of events.
2093  *
2094  * If event->ctx is a cloned context, callers must make sure that
2095  * every task struct that event->ctx->task could possibly point to
2096  * remains valid.  This is OK when called from perf_release since
2097  * that only calls us on the top-level context, which can't be a clone.
2098  * When called from perf_event_exit_task, it's OK because the
2099  * context has been detached from its task.
2100  */
2101 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2102 {
2103         struct perf_event_context *ctx = event->ctx;
2104
2105         lockdep_assert_held(&ctx->mutex);
2106
2107         event_function_call(event, __perf_remove_from_context, (void *)flags);
2108
2109         /*
2110          * The above event_function_call() can NO-OP when it hits
2111          * TASK_TOMBSTONE. In that case we must already have been detached
2112          * from the context (by perf_event_exit_event()) but the grouping
2113          * might still be in-tact.
2114          */
2115         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2116         if ((flags & DETACH_GROUP) &&
2117             (event->attach_state & PERF_ATTACH_GROUP)) {
2118                 /*
2119                  * Since in that case we cannot possibly be scheduled, simply
2120                  * detach now.
2121                  */
2122                 raw_spin_lock_irq(&ctx->lock);
2123                 perf_group_detach(event);
2124                 raw_spin_unlock_irq(&ctx->lock);
2125         }
2126 }
2127
2128 /*
2129  * Cross CPU call to disable a performance event
2130  */
2131 static void __perf_event_disable(struct perf_event *event,
2132                                  struct perf_cpu_context *cpuctx,
2133                                  struct perf_event_context *ctx,
2134                                  void *info)
2135 {
2136         if (event->state < PERF_EVENT_STATE_INACTIVE)
2137                 return;
2138
2139         if (ctx->is_active & EVENT_TIME) {
2140                 update_context_time(ctx);
2141                 update_cgrp_time_from_event(event);
2142         }
2143
2144         if (event == event->group_leader)
2145                 group_sched_out(event, cpuctx, ctx);
2146         else
2147                 event_sched_out(event, cpuctx, ctx);
2148
2149         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2150 }
2151
2152 /*
2153  * Disable an event.
2154  *
2155  * If event->ctx is a cloned context, callers must make sure that
2156  * every task struct that event->ctx->task could possibly point to
2157  * remains valid.  This condition is satisifed when called through
2158  * perf_event_for_each_child or perf_event_for_each because they
2159  * hold the top-level event's child_mutex, so any descendant that
2160  * goes to exit will block in perf_event_exit_event().
2161  *
2162  * When called from perf_pending_event it's OK because event->ctx
2163  * is the current context on this CPU and preemption is disabled,
2164  * hence we can't get into perf_event_task_sched_out for this context.
2165  */
2166 static void _perf_event_disable(struct perf_event *event)
2167 {
2168         struct perf_event_context *ctx = event->ctx;
2169
2170         raw_spin_lock_irq(&ctx->lock);
2171         if (event->state <= PERF_EVENT_STATE_OFF) {
2172                 raw_spin_unlock_irq(&ctx->lock);
2173                 return;
2174         }
2175         raw_spin_unlock_irq(&ctx->lock);
2176
2177         event_function_call(event, __perf_event_disable, NULL);
2178 }
2179
2180 void perf_event_disable_local(struct perf_event *event)
2181 {
2182         event_function_local(event, __perf_event_disable, NULL);
2183 }
2184
2185 /*
2186  * Strictly speaking kernel users cannot create groups and therefore this
2187  * interface does not need the perf_event_ctx_lock() magic.
2188  */
2189 void perf_event_disable(struct perf_event *event)
2190 {
2191         struct perf_event_context *ctx;
2192
2193         ctx = perf_event_ctx_lock(event);
2194         _perf_event_disable(event);
2195         perf_event_ctx_unlock(event, ctx);
2196 }
2197 EXPORT_SYMBOL_GPL(perf_event_disable);
2198
2199 void perf_event_disable_inatomic(struct perf_event *event)
2200 {
2201         WRITE_ONCE(event->pending_disable, smp_processor_id());
2202         /* can fail, see perf_pending_event_disable() */
2203         irq_work_queue(&event->pending);
2204 }
2205
2206 static void perf_set_shadow_time(struct perf_event *event,
2207                                  struct perf_event_context *ctx)
2208 {
2209         /*
2210          * use the correct time source for the time snapshot
2211          *
2212          * We could get by without this by leveraging the
2213          * fact that to get to this function, the caller
2214          * has most likely already called update_context_time()
2215          * and update_cgrp_time_xx() and thus both timestamp
2216          * are identical (or very close). Given that tstamp is,
2217          * already adjusted for cgroup, we could say that:
2218          *    tstamp - ctx->timestamp
2219          * is equivalent to
2220          *    tstamp - cgrp->timestamp.
2221          *
2222          * Then, in perf_output_read(), the calculation would
2223          * work with no changes because:
2224          * - event is guaranteed scheduled in
2225          * - no scheduled out in between
2226          * - thus the timestamp would be the same
2227          *
2228          * But this is a bit hairy.
2229          *
2230          * So instead, we have an explicit cgroup call to remain
2231          * within the time time source all along. We believe it
2232          * is cleaner and simpler to understand.
2233          */
2234         if (is_cgroup_event(event))
2235                 perf_cgroup_set_shadow_time(event, event->tstamp);
2236         else
2237                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2238 }
2239
2240 #define MAX_INTERRUPTS (~0ULL)
2241
2242 static void perf_log_throttle(struct perf_event *event, int enable);
2243 static void perf_log_itrace_start(struct perf_event *event);
2244
2245 static int
2246 event_sched_in(struct perf_event *event,
2247                  struct perf_cpu_context *cpuctx,
2248                  struct perf_event_context *ctx)
2249 {
2250         int ret = 0;
2251
2252         lockdep_assert_held(&ctx->lock);
2253
2254         if (event->state <= PERF_EVENT_STATE_OFF)
2255                 return 0;
2256
2257         WRITE_ONCE(event->oncpu, smp_processor_id());
2258         /*
2259          * Order event::oncpu write to happen before the ACTIVE state is
2260          * visible. This allows perf_event_{stop,read}() to observe the correct
2261          * ->oncpu if it sees ACTIVE.
2262          */
2263         smp_wmb();
2264         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2265
2266         /*
2267          * Unthrottle events, since we scheduled we might have missed several
2268          * ticks already, also for a heavily scheduling task there is little
2269          * guarantee it'll get a tick in a timely manner.
2270          */
2271         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2272                 perf_log_throttle(event, 1);
2273                 event->hw.interrupts = 0;
2274         }
2275
2276         perf_pmu_disable(event->pmu);
2277
2278         perf_set_shadow_time(event, ctx);
2279
2280         perf_log_itrace_start(event);
2281
2282         if (event->pmu->add(event, PERF_EF_START)) {
2283                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2284                 event->oncpu = -1;
2285                 ret = -EAGAIN;
2286                 goto out;
2287         }
2288
2289         if (!is_software_event(event))
2290                 cpuctx->active_oncpu++;
2291         if (!ctx->nr_active++)
2292                 perf_event_ctx_activate(ctx);
2293         if (event->attr.freq && event->attr.sample_freq)
2294                 ctx->nr_freq++;
2295
2296         if (event->attr.exclusive)
2297                 cpuctx->exclusive = 1;
2298
2299 out:
2300         perf_pmu_enable(event->pmu);
2301
2302         return ret;
2303 }
2304
2305 static int
2306 group_sched_in(struct perf_event *group_event,
2307                struct perf_cpu_context *cpuctx,
2308                struct perf_event_context *ctx)
2309 {
2310         struct perf_event *event, *partial_group = NULL;
2311         struct pmu *pmu = ctx->pmu;
2312
2313         if (group_event->state == PERF_EVENT_STATE_OFF)
2314                 return 0;
2315
2316         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2317
2318         if (event_sched_in(group_event, cpuctx, ctx)) {
2319                 pmu->cancel_txn(pmu);
2320                 perf_mux_hrtimer_restart(cpuctx);
2321                 return -EAGAIN;
2322         }
2323
2324         /*
2325          * Schedule in siblings as one group (if any):
2326          */
2327         for_each_sibling_event(event, group_event) {
2328                 if (event_sched_in(event, cpuctx, ctx)) {
2329                         partial_group = event;
2330                         goto group_error;
2331                 }
2332         }
2333
2334         if (!pmu->commit_txn(pmu))
2335                 return 0;
2336
2337 group_error:
2338         /*
2339          * Groups can be scheduled in as one unit only, so undo any
2340          * partial group before returning:
2341          * The events up to the failed event are scheduled out normally.
2342          */
2343         for_each_sibling_event(event, group_event) {
2344                 if (event == partial_group)
2345                         break;
2346
2347                 event_sched_out(event, cpuctx, ctx);
2348         }
2349         event_sched_out(group_event, cpuctx, ctx);
2350
2351         pmu->cancel_txn(pmu);
2352
2353         perf_mux_hrtimer_restart(cpuctx);
2354
2355         return -EAGAIN;
2356 }
2357
2358 /*
2359  * Work out whether we can put this event group on the CPU now.
2360  */
2361 static int group_can_go_on(struct perf_event *event,
2362                            struct perf_cpu_context *cpuctx,
2363                            int can_add_hw)
2364 {
2365         /*
2366          * Groups consisting entirely of software events can always go on.
2367          */
2368         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2369                 return 1;
2370         /*
2371          * If an exclusive group is already on, no other hardware
2372          * events can go on.
2373          */
2374         if (cpuctx->exclusive)
2375                 return 0;
2376         /*
2377          * If this group is exclusive and there are already
2378          * events on the CPU, it can't go on.
2379          */
2380         if (event->attr.exclusive && cpuctx->active_oncpu)
2381                 return 0;
2382         /*
2383          * Otherwise, try to add it if all previous groups were able
2384          * to go on.
2385          */
2386         return can_add_hw;
2387 }
2388
2389 static void add_event_to_ctx(struct perf_event *event,
2390                                struct perf_event_context *ctx)
2391 {
2392         list_add_event(event, ctx);
2393         perf_group_attach(event);
2394 }
2395
2396 static void ctx_sched_out(struct perf_event_context *ctx,
2397                           struct perf_cpu_context *cpuctx,
2398                           enum event_type_t event_type);
2399 static void
2400 ctx_sched_in(struct perf_event_context *ctx,
2401              struct perf_cpu_context *cpuctx,
2402              enum event_type_t event_type,
2403              struct task_struct *task);
2404
2405 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2406                                struct perf_event_context *ctx,
2407                                enum event_type_t event_type)
2408 {
2409         if (!cpuctx->task_ctx)
2410                 return;
2411
2412         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2413                 return;
2414
2415         ctx_sched_out(ctx, cpuctx, event_type);
2416 }
2417
2418 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2419                                 struct perf_event_context *ctx,
2420                                 struct task_struct *task)
2421 {
2422         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2423         if (ctx)
2424                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2425         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2426         if (ctx)
2427                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2428 }
2429
2430 /*
2431  * We want to maintain the following priority of scheduling:
2432  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2433  *  - task pinned (EVENT_PINNED)
2434  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2435  *  - task flexible (EVENT_FLEXIBLE).
2436  *
2437  * In order to avoid unscheduling and scheduling back in everything every
2438  * time an event is added, only do it for the groups of equal priority and
2439  * below.
2440  *
2441  * This can be called after a batch operation on task events, in which case
2442  * event_type is a bit mask of the types of events involved. For CPU events,
2443  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2444  */
2445 static void ctx_resched(struct perf_cpu_context *cpuctx,
2446                         struct perf_event_context *task_ctx,
2447                         enum event_type_t event_type)
2448 {
2449         enum event_type_t ctx_event_type;
2450         bool cpu_event = !!(event_type & EVENT_CPU);
2451
2452         /*
2453          * If pinned groups are involved, flexible groups also need to be
2454          * scheduled out.
2455          */
2456         if (event_type & EVENT_PINNED)
2457                 event_type |= EVENT_FLEXIBLE;
2458
2459         ctx_event_type = event_type & EVENT_ALL;
2460
2461         perf_pmu_disable(cpuctx->ctx.pmu);
2462         if (task_ctx)
2463                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2464
2465         /*
2466          * Decide which cpu ctx groups to schedule out based on the types
2467          * of events that caused rescheduling:
2468          *  - EVENT_CPU: schedule out corresponding groups;
2469          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2470          *  - otherwise, do nothing more.
2471          */
2472         if (cpu_event)
2473                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2474         else if (ctx_event_type & EVENT_PINNED)
2475                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2476
2477         perf_event_sched_in(cpuctx, task_ctx, current);
2478         perf_pmu_enable(cpuctx->ctx.pmu);
2479 }
2480
2481 void perf_pmu_resched(struct pmu *pmu)
2482 {
2483         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2484         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2485
2486         perf_ctx_lock(cpuctx, task_ctx);
2487         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2488         perf_ctx_unlock(cpuctx, task_ctx);
2489 }
2490
2491 /*
2492  * Cross CPU call to install and enable a performance event
2493  *
2494  * Very similar to remote_function() + event_function() but cannot assume that
2495  * things like ctx->is_active and cpuctx->task_ctx are set.
2496  */
2497 static int  __perf_install_in_context(void *info)
2498 {
2499         struct perf_event *event = info;
2500         struct perf_event_context *ctx = event->ctx;
2501         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2502         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2503         bool reprogram = true;
2504         int ret = 0;
2505
2506         raw_spin_lock(&cpuctx->ctx.lock);
2507         if (ctx->task) {
2508                 raw_spin_lock(&ctx->lock);
2509                 task_ctx = ctx;
2510
2511                 reprogram = (ctx->task == current);
2512
2513                 /*
2514                  * If the task is running, it must be running on this CPU,
2515                  * otherwise we cannot reprogram things.
2516                  *
2517                  * If its not running, we don't care, ctx->lock will
2518                  * serialize against it becoming runnable.
2519                  */
2520                 if (task_curr(ctx->task) && !reprogram) {
2521                         ret = -ESRCH;
2522                         goto unlock;
2523                 }
2524
2525                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2526         } else if (task_ctx) {
2527                 raw_spin_lock(&task_ctx->lock);
2528         }
2529
2530 #ifdef CONFIG_CGROUP_PERF
2531         if (is_cgroup_event(event)) {
2532                 /*
2533                  * If the current cgroup doesn't match the event's
2534                  * cgroup, we should not try to schedule it.
2535                  */
2536                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2537                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2538                                         event->cgrp->css.cgroup);
2539         }
2540 #endif
2541
2542         if (reprogram) {
2543                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2544                 add_event_to_ctx(event, ctx);
2545                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2546         } else {
2547                 add_event_to_ctx(event, ctx);
2548         }
2549
2550 unlock:
2551         perf_ctx_unlock(cpuctx, task_ctx);
2552
2553         return ret;
2554 }
2555
2556 /*
2557  * Attach a performance event to a context.
2558  *
2559  * Very similar to event_function_call, see comment there.
2560  */
2561 static void
2562 perf_install_in_context(struct perf_event_context *ctx,
2563                         struct perf_event *event,
2564                         int cpu)
2565 {
2566         struct task_struct *task = READ_ONCE(ctx->task);
2567
2568         lockdep_assert_held(&ctx->mutex);
2569
2570         if (event->cpu != -1)
2571                 event->cpu = cpu;
2572
2573         /*
2574          * Ensures that if we can observe event->ctx, both the event and ctx
2575          * will be 'complete'. See perf_iterate_sb_cpu().
2576          */
2577         smp_store_release(&event->ctx, ctx);
2578
2579         if (!task) {
2580                 cpu_function_call(cpu, __perf_install_in_context, event);
2581                 return;
2582         }
2583
2584         /*
2585          * Should not happen, we validate the ctx is still alive before calling.
2586          */
2587         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2588                 return;
2589
2590         /*
2591          * Installing events is tricky because we cannot rely on ctx->is_active
2592          * to be set in case this is the nr_events 0 -> 1 transition.
2593          *
2594          * Instead we use task_curr(), which tells us if the task is running.
2595          * However, since we use task_curr() outside of rq::lock, we can race
2596          * against the actual state. This means the result can be wrong.
2597          *
2598          * If we get a false positive, we retry, this is harmless.
2599          *
2600          * If we get a false negative, things are complicated. If we are after
2601          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2602          * value must be correct. If we're before, it doesn't matter since
2603          * perf_event_context_sched_in() will program the counter.
2604          *
2605          * However, this hinges on the remote context switch having observed
2606          * our task->perf_event_ctxp[] store, such that it will in fact take
2607          * ctx::lock in perf_event_context_sched_in().
2608          *
2609          * We do this by task_function_call(), if the IPI fails to hit the task
2610          * we know any future context switch of task must see the
2611          * perf_event_ctpx[] store.
2612          */
2613
2614         /*
2615          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2616          * task_cpu() load, such that if the IPI then does not find the task
2617          * running, a future context switch of that task must observe the
2618          * store.
2619          */
2620         smp_mb();
2621 again:
2622         if (!task_function_call(task, __perf_install_in_context, event))
2623                 return;
2624
2625         raw_spin_lock_irq(&ctx->lock);
2626         task = ctx->task;
2627         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2628                 /*
2629                  * Cannot happen because we already checked above (which also
2630                  * cannot happen), and we hold ctx->mutex, which serializes us
2631                  * against perf_event_exit_task_context().
2632                  */
2633                 raw_spin_unlock_irq(&ctx->lock);
2634                 return;
2635         }
2636         /*
2637          * If the task is not running, ctx->lock will avoid it becoming so,
2638          * thus we can safely install the event.
2639          */
2640         if (task_curr(task)) {
2641                 raw_spin_unlock_irq(&ctx->lock);
2642                 goto again;
2643         }
2644         add_event_to_ctx(event, ctx);
2645         raw_spin_unlock_irq(&ctx->lock);
2646 }
2647
2648 /*
2649  * Cross CPU call to enable a performance event
2650  */
2651 static void __perf_event_enable(struct perf_event *event,
2652                                 struct perf_cpu_context *cpuctx,
2653                                 struct perf_event_context *ctx,
2654                                 void *info)
2655 {
2656         struct perf_event *leader = event->group_leader;
2657         struct perf_event_context *task_ctx;
2658
2659         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2660             event->state <= PERF_EVENT_STATE_ERROR)
2661                 return;
2662
2663         if (ctx->is_active)
2664                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2665
2666         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2667
2668         if (!ctx->is_active)
2669                 return;
2670
2671         if (!event_filter_match(event)) {
2672                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2673                 return;
2674         }
2675
2676         /*
2677          * If the event is in a group and isn't the group leader,
2678          * then don't put it on unless the group is on.
2679          */
2680         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2681                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2682                 return;
2683         }
2684
2685         task_ctx = cpuctx->task_ctx;
2686         if (ctx->task)
2687                 WARN_ON_ONCE(task_ctx != ctx);
2688
2689         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2690 }
2691
2692 /*
2693  * Enable an event.
2694  *
2695  * If event->ctx is a cloned context, callers must make sure that
2696  * every task struct that event->ctx->task could possibly point to
2697  * remains valid.  This condition is satisfied when called through
2698  * perf_event_for_each_child or perf_event_for_each as described
2699  * for perf_event_disable.
2700  */
2701 static void _perf_event_enable(struct perf_event *event)
2702 {
2703         struct perf_event_context *ctx = event->ctx;
2704
2705         raw_spin_lock_irq(&ctx->lock);
2706         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2707             event->state <  PERF_EVENT_STATE_ERROR) {
2708                 raw_spin_unlock_irq(&ctx->lock);
2709                 return;
2710         }
2711
2712         /*
2713          * If the event is in error state, clear that first.
2714          *
2715          * That way, if we see the event in error state below, we know that it
2716          * has gone back into error state, as distinct from the task having
2717          * been scheduled away before the cross-call arrived.
2718          */
2719         if (event->state == PERF_EVENT_STATE_ERROR)
2720                 event->state = PERF_EVENT_STATE_OFF;
2721         raw_spin_unlock_irq(&ctx->lock);
2722
2723         event_function_call(event, __perf_event_enable, NULL);
2724 }
2725
2726 /*
2727  * See perf_event_disable();
2728  */
2729 void perf_event_enable(struct perf_event *event)
2730 {
2731         struct perf_event_context *ctx;
2732
2733         ctx = perf_event_ctx_lock(event);
2734         _perf_event_enable(event);
2735         perf_event_ctx_unlock(event, ctx);
2736 }
2737 EXPORT_SYMBOL_GPL(perf_event_enable);
2738
2739 struct stop_event_data {
2740         struct perf_event       *event;
2741         unsigned int            restart;
2742 };
2743
2744 static int __perf_event_stop(void *info)
2745 {
2746         struct stop_event_data *sd = info;
2747         struct perf_event *event = sd->event;
2748
2749         /* if it's already INACTIVE, do nothing */
2750         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2751                 return 0;
2752
2753         /* matches smp_wmb() in event_sched_in() */
2754         smp_rmb();
2755
2756         /*
2757          * There is a window with interrupts enabled before we get here,
2758          * so we need to check again lest we try to stop another CPU's event.
2759          */
2760         if (READ_ONCE(event->oncpu) != smp_processor_id())
2761                 return -EAGAIN;
2762
2763         event->pmu->stop(event, PERF_EF_UPDATE);
2764
2765         /*
2766          * May race with the actual stop (through perf_pmu_output_stop()),
2767          * but it is only used for events with AUX ring buffer, and such
2768          * events will refuse to restart because of rb::aux_mmap_count==0,
2769          * see comments in perf_aux_output_begin().
2770          *
2771          * Since this is happening on an event-local CPU, no trace is lost
2772          * while restarting.
2773          */
2774         if (sd->restart)
2775                 event->pmu->start(event, 0);
2776
2777         return 0;
2778 }
2779
2780 static int perf_event_stop(struct perf_event *event, int restart)
2781 {
2782         struct stop_event_data sd = {
2783                 .event          = event,
2784                 .restart        = restart,
2785         };
2786         int ret = 0;
2787
2788         do {
2789                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2790                         return 0;
2791
2792                 /* matches smp_wmb() in event_sched_in() */
2793                 smp_rmb();
2794
2795                 /*
2796                  * We only want to restart ACTIVE events, so if the event goes
2797                  * inactive here (event->oncpu==-1), there's nothing more to do;
2798                  * fall through with ret==-ENXIO.
2799                  */
2800                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2801                                         __perf_event_stop, &sd);
2802         } while (ret == -EAGAIN);
2803
2804         return ret;
2805 }
2806
2807 /*
2808  * In order to contain the amount of racy and tricky in the address filter
2809  * configuration management, it is a two part process:
2810  *
2811  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2812  *      we update the addresses of corresponding vmas in
2813  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
2814  * (p2) when an event is scheduled in (pmu::add), it calls
2815  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2816  *      if the generation has changed since the previous call.
2817  *
2818  * If (p1) happens while the event is active, we restart it to force (p2).
2819  *
2820  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2821  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2822  *     ioctl;
2823  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2824  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2825  *     for reading;
2826  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2827  *     of exec.
2828  */
2829 void perf_event_addr_filters_sync(struct perf_event *event)
2830 {
2831         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2832
2833         if (!has_addr_filter(event))
2834                 return;
2835
2836         raw_spin_lock(&ifh->lock);
2837         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2838                 event->pmu->addr_filters_sync(event);
2839                 event->hw.addr_filters_gen = event->addr_filters_gen;
2840         }
2841         raw_spin_unlock(&ifh->lock);
2842 }
2843 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2844
2845 static int _perf_event_refresh(struct perf_event *event, int refresh)
2846 {
2847         /*
2848          * not supported on inherited events
2849          */
2850         if (event->attr.inherit || !is_sampling_event(event))
2851                 return -EINVAL;
2852
2853         atomic_add(refresh, &event->event_limit);
2854         _perf_event_enable(event);
2855
2856         return 0;
2857 }
2858
2859 /*
2860  * See perf_event_disable()
2861  */
2862 int perf_event_refresh(struct perf_event *event, int refresh)
2863 {
2864         struct perf_event_context *ctx;
2865         int ret;
2866
2867         ctx = perf_event_ctx_lock(event);
2868         ret = _perf_event_refresh(event, refresh);
2869         perf_event_ctx_unlock(event, ctx);
2870
2871         return ret;
2872 }
2873 EXPORT_SYMBOL_GPL(perf_event_refresh);
2874
2875 static int perf_event_modify_breakpoint(struct perf_event *bp,
2876                                          struct perf_event_attr *attr)
2877 {
2878         int err;
2879
2880         _perf_event_disable(bp);
2881
2882         err = modify_user_hw_breakpoint_check(bp, attr, true);
2883
2884         if (!bp->attr.disabled)
2885                 _perf_event_enable(bp);
2886
2887         return err;
2888 }
2889
2890 static int perf_event_modify_attr(struct perf_event *event,
2891                                   struct perf_event_attr *attr)
2892 {
2893         if (event->attr.type != attr->type)
2894                 return -EINVAL;
2895
2896         switch (event->attr.type) {
2897         case PERF_TYPE_BREAKPOINT:
2898                 return perf_event_modify_breakpoint(event, attr);
2899         default:
2900                 /* Place holder for future additions. */
2901                 return -EOPNOTSUPP;
2902         }
2903 }
2904
2905 static void ctx_sched_out(struct perf_event_context *ctx,
2906                           struct perf_cpu_context *cpuctx,
2907                           enum event_type_t event_type)
2908 {
2909         struct perf_event *event, *tmp;
2910         int is_active = ctx->is_active;
2911
2912         lockdep_assert_held(&ctx->lock);
2913
2914         if (likely(!ctx->nr_events)) {
2915                 /*
2916                  * See __perf_remove_from_context().
2917                  */
2918                 WARN_ON_ONCE(ctx->is_active);
2919                 if (ctx->task)
2920                         WARN_ON_ONCE(cpuctx->task_ctx);
2921                 return;
2922         }
2923
2924         ctx->is_active &= ~event_type;
2925         if (!(ctx->is_active & EVENT_ALL))
2926                 ctx->is_active = 0;
2927
2928         if (ctx->task) {
2929                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2930                 if (!ctx->is_active)
2931                         cpuctx->task_ctx = NULL;
2932         }
2933
2934         /*
2935          * Always update time if it was set; not only when it changes.
2936          * Otherwise we can 'forget' to update time for any but the last
2937          * context we sched out. For example:
2938          *
2939          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2940          *   ctx_sched_out(.event_type = EVENT_PINNED)
2941          *
2942          * would only update time for the pinned events.
2943          */
2944         if (is_active & EVENT_TIME) {
2945                 /* update (and stop) ctx time */
2946                 update_context_time(ctx);
2947                 update_cgrp_time_from_cpuctx(cpuctx);
2948         }
2949
2950         is_active ^= ctx->is_active; /* changed bits */
2951
2952         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2953                 return;
2954
2955         perf_pmu_disable(ctx->pmu);
2956         if (is_active & EVENT_PINNED) {
2957                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2958                         group_sched_out(event, cpuctx, ctx);
2959         }
2960
2961         if (is_active & EVENT_FLEXIBLE) {
2962                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2963                         group_sched_out(event, cpuctx, ctx);
2964         }
2965         perf_pmu_enable(ctx->pmu);
2966 }
2967
2968 /*
2969  * Test whether two contexts are equivalent, i.e. whether they have both been
2970  * cloned from the same version of the same context.
2971  *
2972  * Equivalence is measured using a generation number in the context that is
2973  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2974  * and list_del_event().
2975  */
2976 static int context_equiv(struct perf_event_context *ctx1,
2977                          struct perf_event_context *ctx2)
2978 {
2979         lockdep_assert_held(&ctx1->lock);
2980         lockdep_assert_held(&ctx2->lock);
2981
2982         /* Pinning disables the swap optimization */
2983         if (ctx1->pin_count || ctx2->pin_count)
2984                 return 0;
2985
2986         /* If ctx1 is the parent of ctx2 */
2987         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2988                 return 1;
2989
2990         /* If ctx2 is the parent of ctx1 */
2991         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2992                 return 1;
2993
2994         /*
2995          * If ctx1 and ctx2 have the same parent; we flatten the parent
2996          * hierarchy, see perf_event_init_context().
2997          */
2998         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2999                         ctx1->parent_gen == ctx2->parent_gen)
3000                 return 1;
3001
3002         /* Unmatched */
3003         return 0;
3004 }
3005
3006 static void __perf_event_sync_stat(struct perf_event *event,
3007                                      struct perf_event *next_event)
3008 {
3009         u64 value;
3010
3011         if (!event->attr.inherit_stat)
3012                 return;
3013
3014         /*
3015          * Update the event value, we cannot use perf_event_read()
3016          * because we're in the middle of a context switch and have IRQs
3017          * disabled, which upsets smp_call_function_single(), however
3018          * we know the event must be on the current CPU, therefore we
3019          * don't need to use it.
3020          */
3021         if (event->state == PERF_EVENT_STATE_ACTIVE)
3022                 event->pmu->read(event);
3023
3024         perf_event_update_time(event);
3025
3026         /*
3027          * In order to keep per-task stats reliable we need to flip the event
3028          * values when we flip the contexts.
3029          */
3030         value = local64_read(&next_event->count);
3031         value = local64_xchg(&event->count, value);
3032         local64_set(&next_event->count, value);
3033
3034         swap(event->total_time_enabled, next_event->total_time_enabled);
3035         swap(event->total_time_running, next_event->total_time_running);
3036
3037         /*
3038          * Since we swizzled the values, update the user visible data too.
3039          */
3040         perf_event_update_userpage(event);
3041         perf_event_update_userpage(next_event);
3042 }
3043
3044 static void perf_event_sync_stat(struct perf_event_context *ctx,
3045                                    struct perf_event_context *next_ctx)
3046 {
3047         struct perf_event *event, *next_event;
3048
3049         if (!ctx->nr_stat)
3050                 return;
3051
3052         update_context_time(ctx);
3053
3054         event = list_first_entry(&ctx->event_list,
3055                                    struct perf_event, event_entry);
3056
3057         next_event = list_first_entry(&next_ctx->event_list,
3058                                         struct perf_event, event_entry);
3059
3060         while (&event->event_entry != &ctx->event_list &&
3061                &next_event->event_entry != &next_ctx->event_list) {
3062
3063                 __perf_event_sync_stat(event, next_event);
3064
3065                 event = list_next_entry(event, event_entry);
3066                 next_event = list_next_entry(next_event, event_entry);
3067         }
3068 }
3069
3070 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3071                                          struct task_struct *next)
3072 {
3073         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3074         struct perf_event_context *next_ctx;
3075         struct perf_event_context *parent, *next_parent;
3076         struct perf_cpu_context *cpuctx;
3077         int do_switch = 1;
3078
3079         if (likely(!ctx))
3080                 return;
3081
3082         cpuctx = __get_cpu_context(ctx);
3083         if (!cpuctx->task_ctx)
3084                 return;
3085
3086         rcu_read_lock();
3087         next_ctx = next->perf_event_ctxp[ctxn];
3088         if (!next_ctx)
3089                 goto unlock;
3090
3091         parent = rcu_dereference(ctx->parent_ctx);
3092         next_parent = rcu_dereference(next_ctx->parent_ctx);
3093
3094         /* If neither context have a parent context; they cannot be clones. */
3095         if (!parent && !next_parent)
3096                 goto unlock;
3097
3098         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3099                 /*
3100                  * Looks like the two contexts are clones, so we might be
3101                  * able to optimize the context switch.  We lock both
3102                  * contexts and check that they are clones under the
3103                  * lock (including re-checking that neither has been
3104                  * uncloned in the meantime).  It doesn't matter which
3105                  * order we take the locks because no other cpu could
3106                  * be trying to lock both of these tasks.
3107                  */
3108                 raw_spin_lock(&ctx->lock);
3109                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3110                 if (context_equiv(ctx, next_ctx)) {
3111                         WRITE_ONCE(ctx->task, next);
3112                         WRITE_ONCE(next_ctx->task, task);
3113
3114                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3115
3116                         /*
3117                          * RCU_INIT_POINTER here is safe because we've not
3118                          * modified the ctx and the above modification of
3119                          * ctx->task and ctx->task_ctx_data are immaterial
3120                          * since those values are always verified under
3121                          * ctx->lock which we're now holding.
3122                          */
3123                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3124                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3125
3126                         do_switch = 0;
3127
3128                         perf_event_sync_stat(ctx, next_ctx);
3129                 }
3130                 raw_spin_unlock(&next_ctx->lock);
3131                 raw_spin_unlock(&ctx->lock);
3132         }
3133 unlock:
3134         rcu_read_unlock();
3135
3136         if (do_switch) {
3137                 raw_spin_lock(&ctx->lock);
3138                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3139                 raw_spin_unlock(&ctx->lock);
3140         }
3141 }
3142
3143 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3144
3145 void perf_sched_cb_dec(struct pmu *pmu)
3146 {
3147         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3148
3149         this_cpu_dec(perf_sched_cb_usages);
3150
3151         if (!--cpuctx->sched_cb_usage)
3152                 list_del(&cpuctx->sched_cb_entry);
3153 }
3154
3155
3156 void perf_sched_cb_inc(struct pmu *pmu)
3157 {
3158         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3159
3160         if (!cpuctx->sched_cb_usage++)
3161                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3162
3163         this_cpu_inc(perf_sched_cb_usages);
3164 }
3165
3166 /*
3167  * This function provides the context switch callback to the lower code
3168  * layer. It is invoked ONLY when the context switch callback is enabled.
3169  *
3170  * This callback is relevant even to per-cpu events; for example multi event
3171  * PEBS requires this to provide PID/TID information. This requires we flush
3172  * all queued PEBS records before we context switch to a new task.
3173  */
3174 static void perf_pmu_sched_task(struct task_struct *prev,
3175                                 struct task_struct *next,
3176                                 bool sched_in)
3177 {
3178         struct perf_cpu_context *cpuctx;
3179         struct pmu *pmu;
3180
3181         if (prev == next)
3182                 return;
3183
3184         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3185                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3186
3187                 if (WARN_ON_ONCE(!pmu->sched_task))
3188                         continue;
3189
3190                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3191                 perf_pmu_disable(pmu);
3192
3193                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3194
3195                 perf_pmu_enable(pmu);
3196                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3197         }
3198 }
3199
3200 static void perf_event_switch(struct task_struct *task,
3201                               struct task_struct *next_prev, bool sched_in);
3202
3203 #define for_each_task_context_nr(ctxn)                                  \
3204         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3205
3206 /*
3207  * Called from scheduler to remove the events of the current task,
3208  * with interrupts disabled.
3209  *
3210  * We stop each event and update the event value in event->count.
3211  *
3212  * This does not protect us against NMI, but disable()
3213  * sets the disabled bit in the control field of event _before_
3214  * accessing the event control register. If a NMI hits, then it will
3215  * not restart the event.
3216  */
3217 void __perf_event_task_sched_out(struct task_struct *task,
3218                                  struct task_struct *next)
3219 {
3220         int ctxn;
3221
3222         if (__this_cpu_read(perf_sched_cb_usages))
3223                 perf_pmu_sched_task(task, next, false);
3224
3225         if (atomic_read(&nr_switch_events))
3226                 perf_event_switch(task, next, false);
3227
3228         for_each_task_context_nr(ctxn)
3229                 perf_event_context_sched_out(task, ctxn, next);
3230
3231         /*
3232          * if cgroup events exist on this CPU, then we need
3233          * to check if we have to switch out PMU state.
3234          * cgroup event are system-wide mode only
3235          */
3236         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3237                 perf_cgroup_sched_out(task, next);
3238 }
3239
3240 /*
3241  * Called with IRQs disabled
3242  */
3243 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3244                               enum event_type_t event_type)
3245 {
3246         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3247 }
3248
3249 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3250                               int (*func)(struct perf_event *, void *), void *data)
3251 {
3252         struct perf_event **evt, *evt1, *evt2;
3253         int ret;
3254
3255         evt1 = perf_event_groups_first(groups, -1);
3256         evt2 = perf_event_groups_first(groups, cpu);
3257
3258         while (evt1 || evt2) {
3259                 if (evt1 && evt2) {
3260                         if (evt1->group_index < evt2->group_index)
3261                                 evt = &evt1;
3262                         else
3263                                 evt = &evt2;
3264                 } else if (evt1) {
3265                         evt = &evt1;
3266                 } else {
3267                         evt = &evt2;
3268                 }
3269
3270                 ret = func(*evt, data);
3271                 if (ret)
3272                         return ret;
3273
3274                 *evt = perf_event_groups_next(*evt);
3275         }
3276
3277         return 0;
3278 }
3279
3280 struct sched_in_data {
3281         struct perf_event_context *ctx;
3282         struct perf_cpu_context *cpuctx;
3283         int can_add_hw;
3284 };
3285
3286 static int pinned_sched_in(struct perf_event *event, void *data)
3287 {
3288         struct sched_in_data *sid = data;
3289
3290         if (event->state <= PERF_EVENT_STATE_OFF)
3291                 return 0;
3292
3293         if (!event_filter_match(event))
3294                 return 0;
3295
3296         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3297                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3298                         list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3299         }
3300
3301         /*
3302          * If this pinned group hasn't been scheduled,
3303          * put it in error state.
3304          */
3305         if (event->state == PERF_EVENT_STATE_INACTIVE)
3306                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3307
3308         return 0;
3309 }
3310
3311 static int flexible_sched_in(struct perf_event *event, void *data)
3312 {
3313         struct sched_in_data *sid = data;
3314
3315         if (event->state <= PERF_EVENT_STATE_OFF)
3316                 return 0;
3317
3318         if (!event_filter_match(event))
3319                 return 0;
3320
3321         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3322                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3323                         list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3324                 else
3325                         sid->can_add_hw = 0;
3326         }
3327
3328         return 0;
3329 }
3330
3331 static void
3332 ctx_pinned_sched_in(struct perf_event_context *ctx,
3333                     struct perf_cpu_context *cpuctx)
3334 {
3335         struct sched_in_data sid = {
3336                 .ctx = ctx,
3337                 .cpuctx = cpuctx,
3338                 .can_add_hw = 1,
3339         };
3340
3341         visit_groups_merge(&ctx->pinned_groups,
3342                            smp_processor_id(),
3343                            pinned_sched_in, &sid);
3344 }
3345
3346 static void
3347 ctx_flexible_sched_in(struct perf_event_context *ctx,
3348                       struct perf_cpu_context *cpuctx)
3349 {
3350         struct sched_in_data sid = {
3351                 .ctx = ctx,
3352                 .cpuctx = cpuctx,
3353                 .can_add_hw = 1,
3354         };
3355
3356         visit_groups_merge(&ctx->flexible_groups,
3357                            smp_processor_id(),
3358                            flexible_sched_in, &sid);
3359 }
3360
3361 static void
3362 ctx_sched_in(struct perf_event_context *ctx,
3363              struct perf_cpu_context *cpuctx,
3364              enum event_type_t event_type,
3365              struct task_struct *task)
3366 {
3367         int is_active = ctx->is_active;
3368         u64 now;
3369
3370         lockdep_assert_held(&ctx->lock);
3371
3372         if (likely(!ctx->nr_events))
3373                 return;
3374
3375         ctx->is_active |= (event_type | EVENT_TIME);
3376         if (ctx->task) {
3377                 if (!is_active)
3378                         cpuctx->task_ctx = ctx;
3379                 else
3380                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3381         }
3382
3383         is_active ^= ctx->is_active; /* changed bits */
3384
3385         if (is_active & EVENT_TIME) {
3386                 /* start ctx time */
3387                 now = perf_clock();
3388                 ctx->timestamp = now;
3389                 perf_cgroup_set_timestamp(task, ctx);
3390         }
3391
3392         /*
3393          * First go through the list and put on any pinned groups
3394          * in order to give them the best chance of going on.
3395          */
3396         if (is_active & EVENT_PINNED)
3397                 ctx_pinned_sched_in(ctx, cpuctx);
3398
3399         /* Then walk through the lower prio flexible groups */
3400         if (is_active & EVENT_FLEXIBLE)
3401                 ctx_flexible_sched_in(ctx, cpuctx);
3402 }
3403
3404 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3405                              enum event_type_t event_type,
3406                              struct task_struct *task)
3407 {
3408         struct perf_event_context *ctx = &cpuctx->ctx;
3409
3410         ctx_sched_in(ctx, cpuctx, event_type, task);
3411 }
3412
3413 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3414                                         struct task_struct *task)
3415 {
3416         struct perf_cpu_context *cpuctx;
3417
3418         cpuctx = __get_cpu_context(ctx);
3419         if (cpuctx->task_ctx == ctx)
3420                 return;
3421
3422         perf_ctx_lock(cpuctx, ctx);
3423         /*
3424          * We must check ctx->nr_events while holding ctx->lock, such
3425          * that we serialize against perf_install_in_context().
3426          */
3427         if (!ctx->nr_events)
3428                 goto unlock;
3429
3430         perf_pmu_disable(ctx->pmu);
3431         /*
3432          * We want to keep the following priority order:
3433          * cpu pinned (that don't need to move), task pinned,
3434          * cpu flexible, task flexible.
3435          *
3436          * However, if task's ctx is not carrying any pinned
3437          * events, no need to flip the cpuctx's events around.
3438          */
3439         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3440                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3441         perf_event_sched_in(cpuctx, ctx, task);
3442         perf_pmu_enable(ctx->pmu);
3443
3444 unlock:
3445         perf_ctx_unlock(cpuctx, ctx);
3446 }
3447
3448 /*
3449  * Called from scheduler to add the events of the current task
3450  * with interrupts disabled.
3451  *
3452  * We restore the event value and then enable it.
3453  *
3454  * This does not protect us against NMI, but enable()
3455  * sets the enabled bit in the control field of event _before_
3456  * accessing the event control register. If a NMI hits, then it will
3457  * keep the event running.
3458  */
3459 void __perf_event_task_sched_in(struct task_struct *prev,
3460                                 struct task_struct *task)
3461 {
3462         struct perf_event_context *ctx;
3463         int ctxn;
3464
3465         /*
3466          * If cgroup events exist on this CPU, then we need to check if we have
3467          * to switch in PMU state; cgroup event are system-wide mode only.
3468          *
3469          * Since cgroup events are CPU events, we must schedule these in before
3470          * we schedule in the task events.
3471          */
3472         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3473                 perf_cgroup_sched_in(prev, task);
3474
3475         for_each_task_context_nr(ctxn) {
3476                 ctx = task->perf_event_ctxp[ctxn];
3477                 if (likely(!ctx))
3478                         continue;
3479
3480                 perf_event_context_sched_in(ctx, task);
3481         }
3482
3483         if (atomic_read(&nr_switch_events))
3484                 perf_event_switch(task, prev, true);
3485
3486         if (__this_cpu_read(perf_sched_cb_usages))
3487                 perf_pmu_sched_task(prev, task, true);
3488 }
3489
3490 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3491 {
3492         u64 frequency = event->attr.sample_freq;
3493         u64 sec = NSEC_PER_SEC;
3494         u64 divisor, dividend;
3495
3496         int count_fls, nsec_fls, frequency_fls, sec_fls;
3497
3498         count_fls = fls64(count);
3499         nsec_fls = fls64(nsec);
3500         frequency_fls = fls64(frequency);
3501         sec_fls = 30;
3502
3503         /*
3504          * We got @count in @nsec, with a target of sample_freq HZ
3505          * the target period becomes:
3506          *
3507          *             @count * 10^9
3508          * period = -------------------
3509          *          @nsec * sample_freq
3510          *
3511          */
3512
3513         /*
3514          * Reduce accuracy by one bit such that @a and @b converge
3515          * to a similar magnitude.
3516          */
3517 #define REDUCE_FLS(a, b)                \
3518 do {                                    \
3519         if (a##_fls > b##_fls) {        \
3520                 a >>= 1;                \
3521                 a##_fls--;              \
3522         } else {                        \
3523                 b >>= 1;                \
3524                 b##_fls--;              \
3525         }                               \
3526 } while (0)
3527
3528         /*
3529          * Reduce accuracy until either term fits in a u64, then proceed with
3530          * the other, so that finally we can do a u64/u64 division.
3531          */
3532         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3533                 REDUCE_FLS(nsec, frequency);
3534                 REDUCE_FLS(sec, count);
3535         }
3536
3537         if (count_fls + sec_fls > 64) {
3538                 divisor = nsec * frequency;
3539
3540                 while (count_fls + sec_fls > 64) {
3541                         REDUCE_FLS(count, sec);
3542                         divisor >>= 1;
3543                 }
3544
3545                 dividend = count * sec;
3546         } else {
3547                 dividend = count * sec;
3548
3549                 while (nsec_fls + frequency_fls > 64) {
3550                         REDUCE_FLS(nsec, frequency);
3551                         dividend >>= 1;
3552                 }
3553
3554                 divisor = nsec * frequency;
3555         }
3556
3557         if (!divisor)
3558                 return dividend;
3559
3560         return div64_u64(dividend, divisor);
3561 }
3562
3563 static DEFINE_PER_CPU(int, perf_throttled_count);
3564 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3565
3566 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3567 {
3568         struct hw_perf_event *hwc = &event->hw;
3569         s64 period, sample_period;
3570         s64 delta;
3571
3572         period = perf_calculate_period(event, nsec, count);
3573
3574         delta = (s64)(period - hwc->sample_period);
3575         delta = (delta + 7) / 8; /* low pass filter */
3576
3577         sample_period = hwc->sample_period + delta;
3578
3579         if (!sample_period)
3580                 sample_period = 1;
3581
3582         hwc->sample_period = sample_period;
3583
3584         if (local64_read(&hwc->period_left) > 8*sample_period) {
3585                 if (disable)
3586                         event->pmu->stop(event, PERF_EF_UPDATE);
3587
3588                 local64_set(&hwc->period_left, 0);
3589
3590                 if (disable)
3591                         event->pmu->start(event, PERF_EF_RELOAD);
3592         }
3593 }
3594
3595 /*
3596  * combine freq adjustment with unthrottling to avoid two passes over the
3597  * events. At the same time, make sure, having freq events does not change
3598  * the rate of unthrottling as that would introduce bias.
3599  */
3600 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3601                                            int needs_unthr)
3602 {
3603         struct perf_event *event;
3604         struct hw_perf_event *hwc;
3605         u64 now, period = TICK_NSEC;
3606         s64 delta;
3607
3608         /*
3609          * only need to iterate over all events iff:
3610          * - context have events in frequency mode (needs freq adjust)
3611          * - there are events to unthrottle on this cpu
3612          */
3613         if (!(ctx->nr_freq || needs_unthr))
3614                 return;
3615
3616         raw_spin_lock(&ctx->lock);
3617         perf_pmu_disable(ctx->pmu);
3618
3619         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3620                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3621                         continue;
3622
3623                 if (!event_filter_match(event))
3624                         continue;
3625
3626                 perf_pmu_disable(event->pmu);
3627
3628                 hwc = &event->hw;
3629
3630                 if (hwc->interrupts == MAX_INTERRUPTS) {
3631                         hwc->interrupts = 0;
3632                         perf_log_throttle(event, 1);
3633                         event->pmu->start(event, 0);
3634                 }
3635
3636                 if (!event->attr.freq || !event->attr.sample_freq)
3637                         goto next;
3638
3639                 /*
3640                  * stop the event and update event->count
3641                  */
3642                 event->pmu->stop(event, PERF_EF_UPDATE);
3643
3644                 now = local64_read(&event->count);
3645                 delta = now - hwc->freq_count_stamp;
3646                 hwc->freq_count_stamp = now;
3647
3648                 /*
3649                  * restart the event
3650                  * reload only if value has changed
3651                  * we have stopped the event so tell that
3652                  * to perf_adjust_period() to avoid stopping it
3653                  * twice.
3654                  */
3655                 if (delta > 0)
3656                         perf_adjust_period(event, period, delta, false);
3657
3658                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3659         next:
3660                 perf_pmu_enable(event->pmu);
3661         }
3662
3663         perf_pmu_enable(ctx->pmu);
3664         raw_spin_unlock(&ctx->lock);
3665 }
3666
3667 /*
3668  * Move @event to the tail of the @ctx's elegible events.
3669  */
3670 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3671 {
3672         /*
3673          * Rotate the first entry last of non-pinned groups. Rotation might be
3674          * disabled by the inheritance code.
3675          */
3676         if (ctx->rotate_disable)
3677                 return;
3678
3679         perf_event_groups_delete(&ctx->flexible_groups, event);
3680         perf_event_groups_insert(&ctx->flexible_groups, event);
3681 }
3682
3683 static inline struct perf_event *
3684 ctx_first_active(struct perf_event_context *ctx)
3685 {
3686         return list_first_entry_or_null(&ctx->flexible_active,
3687                                         struct perf_event, active_list);
3688 }
3689
3690 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3691 {
3692         struct perf_event *cpu_event = NULL, *task_event = NULL;
3693         bool cpu_rotate = false, task_rotate = false;
3694         struct perf_event_context *ctx = NULL;
3695
3696         /*
3697          * Since we run this from IRQ context, nobody can install new
3698          * events, thus the event count values are stable.
3699          */
3700
3701         if (cpuctx->ctx.nr_events) {
3702                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3703                         cpu_rotate = true;
3704         }
3705
3706         ctx = cpuctx->task_ctx;
3707         if (ctx && ctx->nr_events) {
3708                 if (ctx->nr_events != ctx->nr_active)
3709                         task_rotate = true;
3710         }
3711
3712         if (!(cpu_rotate || task_rotate))
3713                 return false;
3714
3715         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3716         perf_pmu_disable(cpuctx->ctx.pmu);
3717
3718         if (task_rotate)
3719                 task_event = ctx_first_active(ctx);
3720         if (cpu_rotate)
3721                 cpu_event = ctx_first_active(&cpuctx->ctx);
3722
3723         /*
3724          * As per the order given at ctx_resched() first 'pop' task flexible
3725          * and then, if needed CPU flexible.
3726          */
3727         if (task_event || (ctx && cpu_event))
3728                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3729         if (cpu_event)
3730                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3731
3732         if (task_event)
3733                 rotate_ctx(ctx, task_event);
3734         if (cpu_event)
3735                 rotate_ctx(&cpuctx->ctx, cpu_event);
3736
3737         perf_event_sched_in(cpuctx, ctx, current);
3738
3739         perf_pmu_enable(cpuctx->ctx.pmu);
3740         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3741
3742         return true;
3743 }
3744
3745 void perf_event_task_tick(void)
3746 {
3747         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3748         struct perf_event_context *ctx, *tmp;
3749         int throttled;
3750
3751         lockdep_assert_irqs_disabled();
3752
3753         __this_cpu_inc(perf_throttled_seq);
3754         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3755         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3756
3757         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3758                 perf_adjust_freq_unthr_context(ctx, throttled);
3759 }
3760
3761 static int event_enable_on_exec(struct perf_event *event,
3762                                 struct perf_event_context *ctx)
3763 {
3764         if (!event->attr.enable_on_exec)
3765                 return 0;
3766
3767         event->attr.enable_on_exec = 0;
3768         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3769                 return 0;
3770
3771         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3772
3773         return 1;
3774 }
3775
3776 /*
3777  * Enable all of a task's events that have been marked enable-on-exec.
3778  * This expects task == current.
3779  */
3780 static void perf_event_enable_on_exec(int ctxn)
3781 {
3782         struct perf_event_context *ctx, *clone_ctx = NULL;
3783         enum event_type_t event_type = 0;
3784         struct perf_cpu_context *cpuctx;
3785         struct perf_event *event;
3786         unsigned long flags;
3787         int enabled = 0;
3788
3789         local_irq_save(flags);
3790         ctx = current->perf_event_ctxp[ctxn];
3791         if (!ctx || !ctx->nr_events)
3792                 goto out;
3793
3794         cpuctx = __get_cpu_context(ctx);
3795         perf_ctx_lock(cpuctx, ctx);
3796         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3797         list_for_each_entry(event, &ctx->event_list, event_entry) {
3798                 enabled |= event_enable_on_exec(event, ctx);
3799                 event_type |= get_event_type(event);
3800         }
3801
3802         /*
3803          * Unclone and reschedule this context if we enabled any event.
3804          */
3805         if (enabled) {
3806                 clone_ctx = unclone_ctx(ctx);
3807                 ctx_resched(cpuctx, ctx, event_type);
3808         } else {
3809                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3810         }
3811         perf_ctx_unlock(cpuctx, ctx);
3812
3813 out:
3814         local_irq_restore(flags);
3815
3816         if (clone_ctx)
3817                 put_ctx(clone_ctx);
3818 }
3819
3820 struct perf_read_data {
3821         struct perf_event *event;
3822         bool group;
3823         int ret;
3824 };
3825
3826 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3827 {
3828         u16 local_pkg, event_pkg;
3829
3830         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3831                 int local_cpu = smp_processor_id();
3832
3833                 event_pkg = topology_physical_package_id(event_cpu);
3834                 local_pkg = topology_physical_package_id(local_cpu);
3835
3836                 if (event_pkg == local_pkg)
3837                         return local_cpu;
3838         }
3839
3840         return event_cpu;
3841 }
3842
3843 /*
3844  * Cross CPU call to read the hardware event
3845  */
3846 static void __perf_event_read(void *info)
3847 {
3848         struct perf_read_data *data = info;
3849         struct perf_event *sub, *event = data->event;
3850         struct perf_event_context *ctx = event->ctx;
3851         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3852         struct pmu *pmu = event->pmu;
3853
3854         /*
3855          * If this is a task context, we need to check whether it is
3856          * the current task context of this cpu.  If not it has been
3857          * scheduled out before the smp call arrived.  In that case
3858          * event->count would have been updated to a recent sample
3859          * when the event was scheduled out.
3860          */
3861         if (ctx->task && cpuctx->task_ctx != ctx)
3862                 return;
3863
3864         raw_spin_lock(&ctx->lock);
3865         if (ctx->is_active & EVENT_TIME) {
3866                 update_context_time(ctx);
3867                 update_cgrp_time_from_event(event);
3868         }
3869
3870         perf_event_update_time(event);
3871         if (data->group)
3872                 perf_event_update_sibling_time(event);
3873
3874         if (event->state != PERF_EVENT_STATE_ACTIVE)
3875                 goto unlock;
3876
3877         if (!data->group) {
3878                 pmu->read(event);
3879                 data->ret = 0;
3880                 goto unlock;
3881         }
3882
3883         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3884
3885         pmu->read(event);
3886
3887         for_each_sibling_event(sub, event) {
3888                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3889                         /*
3890                          * Use sibling's PMU rather than @event's since
3891                          * sibling could be on different (eg: software) PMU.
3892                          */
3893                         sub->pmu->read(sub);
3894                 }
3895         }
3896
3897         data->ret = pmu->commit_txn(pmu);
3898
3899 unlock:
3900         raw_spin_unlock(&ctx->lock);
3901 }
3902
3903 static inline u64 perf_event_count(struct perf_event *event)
3904 {
3905         return local64_read(&event->count) + atomic64_read(&event->child_count);
3906 }
3907
3908 /*
3909  * NMI-safe method to read a local event, that is an event that
3910  * is:
3911  *   - either for the current task, or for this CPU
3912  *   - does not have inherit set, for inherited task events
3913  *     will not be local and we cannot read them atomically
3914  *   - must not have a pmu::count method
3915  */
3916 int perf_event_read_local(struct perf_event *event, u64 *value,
3917                           u64 *enabled, u64 *running)
3918 {
3919         unsigned long flags;
3920         int ret = 0;
3921
3922         /*
3923          * Disabling interrupts avoids all counter scheduling (context
3924          * switches, timer based rotation and IPIs).
3925          */
3926         local_irq_save(flags);
3927
3928         /*
3929          * It must not be an event with inherit set, we cannot read
3930          * all child counters from atomic context.
3931          */
3932         if (event->attr.inherit) {
3933                 ret = -EOPNOTSUPP;
3934                 goto out;
3935         }
3936
3937         /* If this is a per-task event, it must be for current */
3938         if ((event->attach_state & PERF_ATTACH_TASK) &&
3939             event->hw.target != current) {
3940                 ret = -EINVAL;
3941                 goto out;
3942         }
3943
3944         /* If this is a per-CPU event, it must be for this CPU */
3945         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3946             event->cpu != smp_processor_id()) {
3947                 ret = -EINVAL;
3948                 goto out;
3949         }
3950
3951         /* If this is a pinned event it must be running on this CPU */
3952         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3953                 ret = -EBUSY;
3954                 goto out;
3955         }
3956
3957         /*
3958          * If the event is currently on this CPU, its either a per-task event,
3959          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3960          * oncpu == -1).
3961          */
3962         if (event->oncpu == smp_processor_id())
3963                 event->pmu->read(event);
3964
3965         *value = local64_read(&event->count);
3966         if (enabled || running) {
3967                 u64 now = event->shadow_ctx_time + perf_clock();
3968                 u64 __enabled, __running;
3969
3970                 __perf_update_times(event, now, &__enabled, &__running);
3971                 if (enabled)
3972                         *enabled = __enabled;
3973                 if (running)
3974                         *running = __running;
3975         }
3976 out:
3977         local_irq_restore(flags);
3978
3979         return ret;
3980 }
3981
3982 static int perf_event_read(struct perf_event *event, bool group)
3983 {
3984         enum perf_event_state state = READ_ONCE(event->state);
3985         int event_cpu, ret = 0;
3986
3987         /*
3988          * If event is enabled and currently active on a CPU, update the
3989          * value in the event structure:
3990          */
3991 again:
3992         if (state == PERF_EVENT_STATE_ACTIVE) {
3993                 struct perf_read_data data;
3994
3995                 /*
3996                  * Orders the ->state and ->oncpu loads such that if we see
3997                  * ACTIVE we must also see the right ->oncpu.
3998                  *
3999                  * Matches the smp_wmb() from event_sched_in().
4000                  */
4001                 smp_rmb();
4002
4003                 event_cpu = READ_ONCE(event->oncpu);
4004                 if ((unsigned)event_cpu >= nr_cpu_ids)
4005                         return 0;
4006
4007                 data = (struct perf_read_data){
4008                         .event = event,
4009                         .group = group,
4010                         .ret = 0,
4011                 };
4012
4013                 preempt_disable();
4014                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4015
4016                 /*
4017                  * Purposely ignore the smp_call_function_single() return
4018                  * value.
4019                  *
4020                  * If event_cpu isn't a valid CPU it means the event got
4021                  * scheduled out and that will have updated the event count.
4022                  *
4023                  * Therefore, either way, we'll have an up-to-date event count
4024                  * after this.
4025                  */
4026                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4027                 preempt_enable();
4028                 ret = data.ret;
4029
4030         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4031                 struct perf_event_context *ctx = event->ctx;
4032                 unsigned long flags;
4033
4034                 raw_spin_lock_irqsave(&ctx->lock, flags);
4035                 state = event->state;
4036                 if (state != PERF_EVENT_STATE_INACTIVE) {
4037                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4038                         goto again;
4039                 }
4040
4041                 /*
4042                  * May read while context is not active (e.g., thread is
4043                  * blocked), in that case we cannot update context time
4044                  */
4045                 if (ctx->is_active & EVENT_TIME) {
4046                         update_context_time(ctx);
4047                         update_cgrp_time_from_event(event);
4048                 }
4049
4050                 perf_event_update_time(event);
4051                 if (group)
4052                         perf_event_update_sibling_time(event);
4053                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4054         }
4055
4056         return ret;
4057 }
4058
4059 /*
4060  * Initialize the perf_event context in a task_struct:
4061  */
4062 static void __perf_event_init_context(struct perf_event_context *ctx)
4063 {
4064         raw_spin_lock_init(&ctx->lock);
4065         mutex_init(&ctx->mutex);
4066         INIT_LIST_HEAD(&ctx->active_ctx_list);
4067         perf_event_groups_init(&ctx->pinned_groups);
4068         perf_event_groups_init(&ctx->flexible_groups);
4069         INIT_LIST_HEAD(&ctx->event_list);
4070         INIT_LIST_HEAD(&ctx->pinned_active);
4071         INIT_LIST_HEAD(&ctx->flexible_active);
4072         refcount_set(&ctx->refcount, 1);
4073 }
4074
4075 static struct perf_event_context *
4076 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4077 {
4078         struct perf_event_context *ctx;
4079
4080         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4081         if (!ctx)
4082                 return NULL;
4083
4084         __perf_event_init_context(ctx);
4085         if (task) {
4086                 ctx->task = task;
4087                 get_task_struct(task);
4088         }
4089         ctx->pmu = pmu;
4090
4091         return ctx;
4092 }
4093
4094 static struct task_struct *
4095 find_lively_task_by_vpid(pid_t vpid)
4096 {
4097         struct task_struct *task;
4098
4099         rcu_read_lock();
4100         if (!vpid)
4101                 task = current;
4102         else
4103                 task = find_task_by_vpid(vpid);
4104         if (task)
4105                 get_task_struct(task);
4106         rcu_read_unlock();
4107
4108         if (!task)
4109                 return ERR_PTR(-ESRCH);
4110
4111         return task;
4112 }
4113
4114 /*
4115  * Returns a matching context with refcount and pincount.
4116  */
4117 static struct perf_event_context *
4118 find_get_context(struct pmu *pmu, struct task_struct *task,
4119                 struct perf_event *event)
4120 {
4121         struct perf_event_context *ctx, *clone_ctx = NULL;
4122         struct perf_cpu_context *cpuctx;
4123         void *task_ctx_data = NULL;
4124         unsigned long flags;
4125         int ctxn, err;
4126         int cpu = event->cpu;
4127
4128         if (!task) {
4129                 /* Must be root to operate on a CPU event: */
4130                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4131                         return ERR_PTR(-EACCES);
4132
4133                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4134                 ctx = &cpuctx->ctx;
4135                 get_ctx(ctx);
4136                 ++ctx->pin_count;
4137
4138                 return ctx;
4139         }
4140
4141         err = -EINVAL;
4142         ctxn = pmu->task_ctx_nr;
4143         if (ctxn < 0)
4144                 goto errout;
4145
4146         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4147                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4148                 if (!task_ctx_data) {
4149                         err = -ENOMEM;
4150                         goto errout;
4151                 }
4152         }
4153
4154 retry:
4155         ctx = perf_lock_task_context(task, ctxn, &flags);
4156         if (ctx) {
4157                 clone_ctx = unclone_ctx(ctx);
4158                 ++ctx->pin_count;
4159
4160                 if (task_ctx_data && !ctx->task_ctx_data) {
4161                         ctx->task_ctx_data = task_ctx_data;
4162                         task_ctx_data = NULL;
4163                 }
4164                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4165
4166                 if (clone_ctx)
4167                         put_ctx(clone_ctx);
4168         } else {
4169                 ctx = alloc_perf_context(pmu, task);
4170                 err = -ENOMEM;
4171                 if (!ctx)
4172                         goto errout;
4173
4174                 if (task_ctx_data) {
4175                         ctx->task_ctx_data = task_ctx_data;
4176                         task_ctx_data = NULL;
4177                 }
4178
4179                 err = 0;
4180                 mutex_lock(&task->perf_event_mutex);
4181                 /*
4182                  * If it has already passed perf_event_exit_task().
4183                  * we must see PF_EXITING, it takes this mutex too.
4184                  */
4185                 if (task->flags & PF_EXITING)
4186                         err = -ESRCH;
4187                 else if (task->perf_event_ctxp[ctxn])
4188                         err = -EAGAIN;
4189                 else {
4190                         get_ctx(ctx);
4191                         ++ctx->pin_count;
4192                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4193                 }
4194                 mutex_unlock(&task->perf_event_mutex);
4195
4196                 if (unlikely(err)) {
4197                         put_ctx(ctx);
4198
4199                         if (err == -EAGAIN)
4200                                 goto retry;
4201                         goto errout;
4202                 }
4203         }
4204
4205         kfree(task_ctx_data);
4206         return ctx;
4207
4208 errout:
4209         kfree(task_ctx_data);
4210         return ERR_PTR(err);
4211 }
4212
4213 static void perf_event_free_filter(struct perf_event *event);
4214 static void perf_event_free_bpf_prog(struct perf_event *event);
4215
4216 static void free_event_rcu(struct rcu_head *head)
4217 {
4218         struct perf_event *event;
4219
4220         event = container_of(head, struct perf_event, rcu_head);
4221         if (event->ns)
4222                 put_pid_ns(event->ns);
4223         perf_event_free_filter(event);
4224         kfree(event);
4225 }
4226
4227 static void ring_buffer_attach(struct perf_event *event,
4228                                struct ring_buffer *rb);
4229
4230 static void detach_sb_event(struct perf_event *event)
4231 {
4232         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4233
4234         raw_spin_lock(&pel->lock);
4235         list_del_rcu(&event->sb_list);
4236         raw_spin_unlock(&pel->lock);
4237 }
4238
4239 static bool is_sb_event(struct perf_event *event)
4240 {
4241         struct perf_event_attr *attr = &event->attr;
4242
4243         if (event->parent)
4244                 return false;
4245
4246         if (event->attach_state & PERF_ATTACH_TASK)
4247                 return false;
4248
4249         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4250             attr->comm || attr->comm_exec ||
4251             attr->task || attr->ksymbol ||
4252             attr->context_switch ||
4253             attr->bpf_event)
4254                 return true;
4255         return false;
4256 }
4257
4258 static void unaccount_pmu_sb_event(struct perf_event *event)
4259 {
4260         if (is_sb_event(event))
4261                 detach_sb_event(event);
4262 }
4263
4264 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4265 {
4266         if (event->parent)
4267                 return;
4268
4269         if (is_cgroup_event(event))
4270                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4271 }
4272
4273 #ifdef CONFIG_NO_HZ_FULL
4274 static DEFINE_SPINLOCK(nr_freq_lock);
4275 #endif
4276
4277 static void unaccount_freq_event_nohz(void)
4278 {
4279 #ifdef CONFIG_NO_HZ_FULL
4280         spin_lock(&nr_freq_lock);
4281         if (atomic_dec_and_test(&nr_freq_events))
4282                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4283         spin_unlock(&nr_freq_lock);
4284 #endif
4285 }
4286
4287 static void unaccount_freq_event(void)
4288 {
4289         if (tick_nohz_full_enabled())
4290                 unaccount_freq_event_nohz();
4291         else
4292                 atomic_dec(&nr_freq_events);
4293 }
4294
4295 static void unaccount_event(struct perf_event *event)
4296 {
4297         bool dec = false;
4298
4299         if (event->parent)
4300                 return;
4301
4302         if (event->attach_state & PERF_ATTACH_TASK)
4303                 dec = true;
4304         if (event->attr.mmap || event->attr.mmap_data)
4305                 atomic_dec(&nr_mmap_events);
4306         if (event->attr.comm)
4307                 atomic_dec(&nr_comm_events);
4308         if (event->attr.namespaces)
4309                 atomic_dec(&nr_namespaces_events);
4310         if (event->attr.task)
4311                 atomic_dec(&nr_task_events);
4312         if (event->attr.freq)
4313                 unaccount_freq_event();
4314         if (event->attr.context_switch) {
4315                 dec = true;
4316                 atomic_dec(&nr_switch_events);
4317         }
4318         if (is_cgroup_event(event))
4319                 dec = true;
4320         if (has_branch_stack(event))
4321                 dec = true;
4322         if (event->attr.ksymbol)
4323                 atomic_dec(&nr_ksymbol_events);
4324         if (event->attr.bpf_event)
4325                 atomic_dec(&nr_bpf_events);
4326
4327         if (dec) {
4328                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4329                         schedule_delayed_work(&perf_sched_work, HZ);
4330         }
4331
4332         unaccount_event_cpu(event, event->cpu);
4333
4334         unaccount_pmu_sb_event(event);
4335 }
4336
4337 static void perf_sched_delayed(struct work_struct *work)
4338 {
4339         mutex_lock(&perf_sched_mutex);
4340         if (atomic_dec_and_test(&perf_sched_count))
4341                 static_branch_disable(&perf_sched_events);
4342         mutex_unlock(&perf_sched_mutex);
4343 }
4344
4345 /*
4346  * The following implement mutual exclusion of events on "exclusive" pmus
4347  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4348  * at a time, so we disallow creating events that might conflict, namely:
4349  *
4350  *  1) cpu-wide events in the presence of per-task events,
4351  *  2) per-task events in the presence of cpu-wide events,
4352  *  3) two matching events on the same context.
4353  *
4354  * The former two cases are handled in the allocation path (perf_event_alloc(),
4355  * _free_event()), the latter -- before the first perf_install_in_context().
4356  */
4357 static int exclusive_event_init(struct perf_event *event)
4358 {
4359         struct pmu *pmu = event->pmu;
4360
4361         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4362                 return 0;
4363
4364         /*
4365          * Prevent co-existence of per-task and cpu-wide events on the
4366          * same exclusive pmu.
4367          *
4368          * Negative pmu::exclusive_cnt means there are cpu-wide
4369          * events on this "exclusive" pmu, positive means there are
4370          * per-task events.
4371          *
4372          * Since this is called in perf_event_alloc() path, event::ctx
4373          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4374          * to mean "per-task event", because unlike other attach states it
4375          * never gets cleared.
4376          */
4377         if (event->attach_state & PERF_ATTACH_TASK) {
4378                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4379                         return -EBUSY;
4380         } else {
4381                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4382                         return -EBUSY;
4383         }
4384
4385         return 0;
4386 }
4387
4388 static void exclusive_event_destroy(struct perf_event *event)
4389 {
4390         struct pmu *pmu = event->pmu;
4391
4392         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4393                 return;
4394
4395         /* see comment in exclusive_event_init() */
4396         if (event->attach_state & PERF_ATTACH_TASK)
4397                 atomic_dec(&pmu->exclusive_cnt);
4398         else
4399                 atomic_inc(&pmu->exclusive_cnt);
4400 }
4401
4402 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4403 {
4404         if ((e1->pmu == e2->pmu) &&
4405             (e1->cpu == e2->cpu ||
4406              e1->cpu == -1 ||
4407              e2->cpu == -1))
4408                 return true;
4409         return false;
4410 }
4411
4412 /* Called under the same ctx::mutex as perf_install_in_context() */
4413 static bool exclusive_event_installable(struct perf_event *event,
4414                                         struct perf_event_context *ctx)
4415 {
4416         struct perf_event *iter_event;
4417         struct pmu *pmu = event->pmu;
4418
4419         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4420                 return true;
4421
4422         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4423                 if (exclusive_event_match(iter_event, event))
4424                         return false;
4425         }
4426
4427         return true;
4428 }
4429
4430 static void perf_addr_filters_splice(struct perf_event *event,
4431                                        struct list_head *head);
4432
4433 static void _free_event(struct perf_event *event)
4434 {
4435         irq_work_sync(&event->pending);
4436
4437         unaccount_event(event);
4438
4439         if (event->rb) {
4440                 /*
4441                  * Can happen when we close an event with re-directed output.
4442                  *
4443                  * Since we have a 0 refcount, perf_mmap_close() will skip
4444                  * over us; possibly making our ring_buffer_put() the last.
4445                  */
4446                 mutex_lock(&event->mmap_mutex);
4447                 ring_buffer_attach(event, NULL);
4448                 mutex_unlock(&event->mmap_mutex);
4449         }
4450
4451         if (is_cgroup_event(event))
4452                 perf_detach_cgroup(event);
4453
4454         if (!event->parent) {
4455                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4456                         put_callchain_buffers();
4457         }
4458
4459         perf_event_free_bpf_prog(event);
4460         perf_addr_filters_splice(event, NULL);
4461         kfree(event->addr_filter_ranges);
4462
4463         if (event->destroy)
4464                 event->destroy(event);
4465
4466         if (event->ctx)
4467                 put_ctx(event->ctx);
4468
4469         if (event->hw.target)
4470                 put_task_struct(event->hw.target);
4471
4472         exclusive_event_destroy(event);
4473         module_put(event->pmu->module);
4474
4475         call_rcu(&event->rcu_head, free_event_rcu);
4476 }
4477
4478 /*
4479  * Used to free events which have a known refcount of 1, such as in error paths
4480  * where the event isn't exposed yet and inherited events.
4481  */
4482 static void free_event(struct perf_event *event)
4483 {
4484         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4485                                 "unexpected event refcount: %ld; ptr=%p\n",
4486                                 atomic_long_read(&event->refcount), event)) {
4487                 /* leak to avoid use-after-free */
4488                 return;
4489         }
4490
4491         _free_event(event);
4492 }
4493
4494 /*
4495  * Remove user event from the owner task.
4496  */
4497 static void perf_remove_from_owner(struct perf_event *event)
4498 {
4499         struct task_struct *owner;
4500
4501         rcu_read_lock();
4502         /*
4503          * Matches the smp_store_release() in perf_event_exit_task(). If we
4504          * observe !owner it means the list deletion is complete and we can
4505          * indeed free this event, otherwise we need to serialize on
4506          * owner->perf_event_mutex.
4507          */
4508         owner = READ_ONCE(event->owner);
4509         if (owner) {
4510                 /*
4511                  * Since delayed_put_task_struct() also drops the last
4512                  * task reference we can safely take a new reference
4513                  * while holding the rcu_read_lock().
4514                  */
4515                 get_task_struct(owner);
4516         }
4517         rcu_read_unlock();
4518
4519         if (owner) {
4520                 /*
4521                  * If we're here through perf_event_exit_task() we're already
4522                  * holding ctx->mutex which would be an inversion wrt. the
4523                  * normal lock order.
4524                  *
4525                  * However we can safely take this lock because its the child
4526                  * ctx->mutex.
4527                  */
4528                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4529
4530                 /*
4531                  * We have to re-check the event->owner field, if it is cleared
4532                  * we raced with perf_event_exit_task(), acquiring the mutex
4533                  * ensured they're done, and we can proceed with freeing the
4534                  * event.
4535                  */
4536                 if (event->owner) {
4537                         list_del_init(&event->owner_entry);
4538                         smp_store_release(&event->owner, NULL);
4539                 }
4540                 mutex_unlock(&owner->perf_event_mutex);
4541                 put_task_struct(owner);
4542         }
4543 }
4544
4545 static void put_event(struct perf_event *event)
4546 {
4547         if (!atomic_long_dec_and_test(&event->refcount))
4548                 return;
4549
4550         _free_event(event);
4551 }
4552
4553 /*
4554  * Kill an event dead; while event:refcount will preserve the event
4555  * object, it will not preserve its functionality. Once the last 'user'
4556  * gives up the object, we'll destroy the thing.
4557  */
4558 int perf_event_release_kernel(struct perf_event *event)
4559 {
4560         struct perf_event_context *ctx = event->ctx;
4561         struct perf_event *child, *tmp;
4562         LIST_HEAD(free_list);
4563
4564         /*
4565          * If we got here through err_file: fput(event_file); we will not have
4566          * attached to a context yet.
4567          */
4568         if (!ctx) {
4569                 WARN_ON_ONCE(event->attach_state &
4570                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4571                 goto no_ctx;
4572         }
4573
4574         if (!is_kernel_event(event))
4575                 perf_remove_from_owner(event);
4576
4577         ctx = perf_event_ctx_lock(event);
4578         WARN_ON_ONCE(ctx->parent_ctx);
4579         perf_remove_from_context(event, DETACH_GROUP);
4580
4581         raw_spin_lock_irq(&ctx->lock);
4582         /*
4583          * Mark this event as STATE_DEAD, there is no external reference to it
4584          * anymore.
4585          *
4586          * Anybody acquiring event->child_mutex after the below loop _must_
4587          * also see this, most importantly inherit_event() which will avoid
4588          * placing more children on the list.
4589          *
4590          * Thus this guarantees that we will in fact observe and kill _ALL_
4591          * child events.
4592          */
4593         event->state = PERF_EVENT_STATE_DEAD;
4594         raw_spin_unlock_irq(&ctx->lock);
4595
4596         perf_event_ctx_unlock(event, ctx);
4597
4598 again:
4599         mutex_lock(&event->child_mutex);
4600         list_for_each_entry(child, &event->child_list, child_list) {
4601
4602                 /*
4603                  * Cannot change, child events are not migrated, see the
4604                  * comment with perf_event_ctx_lock_nested().
4605                  */
4606                 ctx = READ_ONCE(child->ctx);
4607                 /*
4608                  * Since child_mutex nests inside ctx::mutex, we must jump
4609                  * through hoops. We start by grabbing a reference on the ctx.
4610                  *
4611                  * Since the event cannot get freed while we hold the
4612                  * child_mutex, the context must also exist and have a !0
4613                  * reference count.
4614                  */
4615                 get_ctx(ctx);
4616
4617                 /*
4618                  * Now that we have a ctx ref, we can drop child_mutex, and
4619                  * acquire ctx::mutex without fear of it going away. Then we
4620                  * can re-acquire child_mutex.
4621                  */
4622                 mutex_unlock(&event->child_mutex);
4623                 mutex_lock(&ctx->mutex);
4624                 mutex_lock(&event->child_mutex);
4625
4626                 /*
4627                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4628                  * state, if child is still the first entry, it didn't get freed
4629                  * and we can continue doing so.
4630                  */
4631                 tmp = list_first_entry_or_null(&event->child_list,
4632                                                struct perf_event, child_list);
4633                 if (tmp == child) {
4634                         perf_remove_from_context(child, DETACH_GROUP);
4635                         list_move(&child->child_list, &free_list);
4636                         /*
4637                          * This matches the refcount bump in inherit_event();
4638                          * this can't be the last reference.
4639                          */
4640                         put_event(event);
4641                 }
4642
4643                 mutex_unlock(&event->child_mutex);
4644                 mutex_unlock(&ctx->mutex);
4645                 put_ctx(ctx);
4646                 goto again;
4647         }
4648         mutex_unlock(&event->child_mutex);
4649
4650         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4651                 list_del(&child->child_list);
4652                 free_event(child);
4653         }
4654
4655 no_ctx:
4656         put_event(event); /* Must be the 'last' reference */
4657         return 0;
4658 }
4659 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4660
4661 /*
4662  * Called when the last reference to the file is gone.
4663  */
4664 static int perf_release(struct inode *inode, struct file *file)
4665 {
4666         perf_event_release_kernel(file->private_data);
4667         return 0;
4668 }
4669
4670 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4671 {
4672         struct perf_event *child;
4673         u64 total = 0;
4674
4675         *enabled = 0;
4676         *running = 0;
4677
4678         mutex_lock(&event->child_mutex);
4679
4680         (void)perf_event_read(event, false);
4681         total += perf_event_count(event);
4682
4683         *enabled += event->total_time_enabled +
4684                         atomic64_read(&event->child_total_time_enabled);
4685         *running += event->total_time_running +
4686                         atomic64_read(&event->child_total_time_running);
4687
4688         list_for_each_entry(child, &event->child_list, child_list) {
4689                 (void)perf_event_read(child, false);
4690                 total += perf_event_count(child);
4691                 *enabled += child->total_time_enabled;
4692                 *running += child->total_time_running;
4693         }
4694         mutex_unlock(&event->child_mutex);
4695
4696         return total;
4697 }
4698
4699 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4700 {
4701         struct perf_event_context *ctx;
4702         u64 count;
4703
4704         ctx = perf_event_ctx_lock(event);
4705         count = __perf_event_read_value(event, enabled, running);
4706         perf_event_ctx_unlock(event, ctx);
4707
4708         return count;
4709 }
4710 EXPORT_SYMBOL_GPL(perf_event_read_value);
4711
4712 static int __perf_read_group_add(struct perf_event *leader,
4713                                         u64 read_format, u64 *values)
4714 {
4715         struct perf_event_context *ctx = leader->ctx;
4716         struct perf_event *sub;
4717         unsigned long flags;
4718         int n = 1; /* skip @nr */
4719         int ret;
4720
4721         ret = perf_event_read(leader, true);
4722         if (ret)
4723                 return ret;
4724
4725         raw_spin_lock_irqsave(&ctx->lock, flags);
4726
4727         /*
4728          * Since we co-schedule groups, {enabled,running} times of siblings
4729          * will be identical to those of the leader, so we only publish one
4730          * set.
4731          */
4732         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4733                 values[n++] += leader->total_time_enabled +
4734                         atomic64_read(&leader->child_total_time_enabled);
4735         }
4736
4737         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4738                 values[n++] += leader->total_time_running +
4739                         atomic64_read(&leader->child_total_time_running);
4740         }
4741
4742         /*
4743          * Write {count,id} tuples for every sibling.
4744          */
4745         values[n++] += perf_event_count(leader);
4746         if (read_format & PERF_FORMAT_ID)
4747                 values[n++] = primary_event_id(leader);
4748
4749         for_each_sibling_event(sub, leader) {
4750                 values[n++] += perf_event_count(sub);
4751                 if (read_format & PERF_FORMAT_ID)
4752                         values[n++] = primary_event_id(sub);
4753         }
4754
4755         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4756         return 0;
4757 }
4758
4759 static int perf_read_group(struct perf_event *event,
4760                                    u64 read_format, char __user *buf)
4761 {
4762         struct perf_event *leader = event->group_leader, *child;
4763         struct perf_event_context *ctx = leader->ctx;
4764         int ret;
4765         u64 *values;
4766
4767         lockdep_assert_held(&ctx->mutex);
4768
4769         values = kzalloc(event->read_size, GFP_KERNEL);
4770         if (!values)
4771                 return -ENOMEM;
4772
4773         values[0] = 1 + leader->nr_siblings;
4774
4775         /*
4776          * By locking the child_mutex of the leader we effectively
4777          * lock the child list of all siblings.. XXX explain how.
4778          */
4779         mutex_lock(&leader->child_mutex);
4780
4781         ret = __perf_read_group_add(leader, read_format, values);
4782         if (ret)
4783                 goto unlock;
4784
4785         list_for_each_entry(child, &leader->child_list, child_list) {
4786                 ret = __perf_read_group_add(child, read_format, values);
4787                 if (ret)
4788                         goto unlock;
4789         }
4790
4791         mutex_unlock(&leader->child_mutex);
4792
4793         ret = event->read_size;
4794         if (copy_to_user(buf, values, event->read_size))
4795                 ret = -EFAULT;
4796         goto out;
4797
4798 unlock:
4799         mutex_unlock(&leader->child_mutex);
4800 out:
4801         kfree(values);
4802         return ret;
4803 }
4804
4805 static int perf_read_one(struct perf_event *event,
4806                                  u64 read_format, char __user *buf)
4807 {
4808         u64 enabled, running;
4809         u64 values[4];
4810         int n = 0;
4811
4812         values[n++] = __perf_event_read_value(event, &enabled, &running);
4813         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4814                 values[n++] = enabled;
4815         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4816                 values[n++] = running;
4817         if (read_format & PERF_FORMAT_ID)
4818                 values[n++] = primary_event_id(event);
4819
4820         if (copy_to_user(buf, values, n * sizeof(u64)))
4821                 return -EFAULT;
4822
4823         return n * sizeof(u64);
4824 }
4825
4826 static bool is_event_hup(struct perf_event *event)
4827 {
4828         bool no_children;
4829
4830         if (event->state > PERF_EVENT_STATE_EXIT)
4831                 return false;
4832
4833         mutex_lock(&event->child_mutex);
4834         no_children = list_empty(&event->child_list);
4835         mutex_unlock(&event->child_mutex);
4836         return no_children;
4837 }
4838
4839 /*
4840  * Read the performance event - simple non blocking version for now
4841  */
4842 static ssize_t
4843 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4844 {
4845         u64 read_format = event->attr.read_format;
4846         int ret;
4847
4848         /*
4849          * Return end-of-file for a read on an event that is in
4850          * error state (i.e. because it was pinned but it couldn't be
4851          * scheduled on to the CPU at some point).
4852          */
4853         if (event->state == PERF_EVENT_STATE_ERROR)
4854                 return 0;
4855
4856         if (count < event->read_size)
4857                 return -ENOSPC;
4858
4859         WARN_ON_ONCE(event->ctx->parent_ctx);
4860         if (read_format & PERF_FORMAT_GROUP)
4861                 ret = perf_read_group(event, read_format, buf);
4862         else
4863                 ret = perf_read_one(event, read_format, buf);
4864
4865         return ret;
4866 }
4867
4868 static ssize_t
4869 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4870 {
4871         struct perf_event *event = file->private_data;
4872         struct perf_event_context *ctx;
4873         int ret;
4874
4875         ctx = perf_event_ctx_lock(event);
4876         ret = __perf_read(event, buf, count);
4877         perf_event_ctx_unlock(event, ctx);
4878
4879         return ret;
4880 }
4881
4882 static __poll_t perf_poll(struct file *file, poll_table *wait)
4883 {
4884         struct perf_event *event = file->private_data;
4885         struct ring_buffer *rb;
4886         __poll_t events = EPOLLHUP;
4887
4888         poll_wait(file, &event->waitq, wait);
4889
4890         if (is_event_hup(event))
4891                 return events;
4892
4893         /*
4894          * Pin the event->rb by taking event->mmap_mutex; otherwise
4895          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4896          */
4897         mutex_lock(&event->mmap_mutex);
4898         rb = event->rb;
4899         if (rb)
4900                 events = atomic_xchg(&rb->poll, 0);
4901         mutex_unlock(&event->mmap_mutex);
4902         return events;
4903 }
4904
4905 static void _perf_event_reset(struct perf_event *event)
4906 {
4907         (void)perf_event_read(event, false);
4908         local64_set(&event->count, 0);
4909         perf_event_update_userpage(event);
4910 }
4911
4912 /*
4913  * Holding the top-level event's child_mutex means that any
4914  * descendant process that has inherited this event will block
4915  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4916  * task existence requirements of perf_event_enable/disable.
4917  */
4918 static void perf_event_for_each_child(struct perf_event *event,
4919                                         void (*func)(struct perf_event *))
4920 {
4921         struct perf_event *child;
4922
4923         WARN_ON_ONCE(event->ctx->parent_ctx);
4924
4925         mutex_lock(&event->child_mutex);
4926         func(event);
4927         list_for_each_entry(child, &event->child_list, child_list)
4928                 func(child);
4929         mutex_unlock(&event->child_mutex);
4930 }
4931
4932 static void perf_event_for_each(struct perf_event *event,
4933                                   void (*func)(struct perf_event *))
4934 {
4935         struct perf_event_context *ctx = event->ctx;
4936         struct perf_event *sibling;
4937
4938         lockdep_assert_held(&ctx->mutex);
4939
4940         event = event->group_leader;
4941
4942         perf_event_for_each_child(event, func);
4943         for_each_sibling_event(sibling, event)
4944                 perf_event_for_each_child(sibling, func);
4945 }
4946
4947 static void __perf_event_period(struct perf_event *event,
4948                                 struct perf_cpu_context *cpuctx,
4949                                 struct perf_event_context *ctx,
4950                                 void *info)
4951 {
4952         u64 value = *((u64 *)info);
4953         bool active;
4954
4955         if (event->attr.freq) {
4956                 event->attr.sample_freq = value;
4957         } else {
4958                 event->attr.sample_period = value;
4959                 event->hw.sample_period = value;
4960         }
4961
4962         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4963         if (active) {
4964                 perf_pmu_disable(ctx->pmu);
4965                 /*
4966                  * We could be throttled; unthrottle now to avoid the tick
4967                  * trying to unthrottle while we already re-started the event.
4968                  */
4969                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4970                         event->hw.interrupts = 0;
4971                         perf_log_throttle(event, 1);
4972                 }
4973                 event->pmu->stop(event, PERF_EF_UPDATE);
4974         }
4975
4976         local64_set(&event->hw.period_left, 0);
4977
4978         if (active) {
4979                 event->pmu->start(event, PERF_EF_RELOAD);
4980                 perf_pmu_enable(ctx->pmu);
4981         }
4982 }
4983
4984 static int perf_event_check_period(struct perf_event *event, u64 value)
4985 {
4986         return event->pmu->check_period(event, value);
4987 }
4988
4989 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4990 {
4991         u64 value;
4992
4993         if (!is_sampling_event(event))
4994                 return -EINVAL;
4995
4996         if (copy_from_user(&value, arg, sizeof(value)))
4997                 return -EFAULT;
4998
4999         if (!value)
5000                 return -EINVAL;
5001
5002         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5003                 return -EINVAL;
5004
5005         if (perf_event_check_period(event, value))
5006                 return -EINVAL;
5007
5008         event_function_call(event, __perf_event_period, &value);
5009
5010         return 0;
5011 }
5012
5013 static const struct file_operations perf_fops;
5014
5015 static inline int perf_fget_light(int fd, struct fd *p)
5016 {
5017         struct fd f = fdget(fd);
5018         if (!f.file)
5019                 return -EBADF;
5020
5021         if (f.file->f_op != &perf_fops) {
5022                 fdput(f);
5023                 return -EBADF;
5024         }
5025         *p = f;
5026         return 0;
5027 }
5028
5029 static int perf_event_set_output(struct perf_event *event,
5030                                  struct perf_event *output_event);
5031 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5032 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5033 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5034                           struct perf_event_attr *attr);
5035
5036 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5037 {
5038         void (*func)(struct perf_event *);
5039         u32 flags = arg;
5040
5041         switch (cmd) {
5042         case PERF_EVENT_IOC_ENABLE:
5043                 func = _perf_event_enable;
5044                 break;
5045         case PERF_EVENT_IOC_DISABLE:
5046                 func = _perf_event_disable;
5047                 break;
5048         case PERF_EVENT_IOC_RESET:
5049                 func = _perf_event_reset;
5050                 break;
5051
5052         case PERF_EVENT_IOC_REFRESH:
5053                 return _perf_event_refresh(event, arg);
5054
5055         case PERF_EVENT_IOC_PERIOD:
5056                 return perf_event_period(event, (u64 __user *)arg);
5057
5058         case PERF_EVENT_IOC_ID:
5059         {
5060                 u64 id = primary_event_id(event);
5061
5062                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5063                         return -EFAULT;
5064                 return 0;
5065         }
5066
5067         case PERF_EVENT_IOC_SET_OUTPUT:
5068         {
5069                 int ret;
5070                 if (arg != -1) {
5071                         struct perf_event *output_event;
5072                         struct fd output;
5073                         ret = perf_fget_light(arg, &output);
5074                         if (ret)
5075                                 return ret;
5076                         output_event = output.file->private_data;
5077                         ret = perf_event_set_output(event, output_event);
5078                         fdput(output);
5079                 } else {
5080                         ret = perf_event_set_output(event, NULL);
5081                 }
5082                 return ret;
5083         }
5084
5085         case PERF_EVENT_IOC_SET_FILTER:
5086                 return perf_event_set_filter(event, (void __user *)arg);
5087
5088         case PERF_EVENT_IOC_SET_BPF:
5089                 return perf_event_set_bpf_prog(event, arg);
5090
5091         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5092                 struct ring_buffer *rb;
5093
5094                 rcu_read_lock();
5095                 rb = rcu_dereference(event->rb);
5096                 if (!rb || !rb->nr_pages) {
5097                         rcu_read_unlock();
5098                         return -EINVAL;
5099                 }
5100                 rb_toggle_paused(rb, !!arg);
5101                 rcu_read_unlock();
5102                 return 0;
5103         }
5104
5105         case PERF_EVENT_IOC_QUERY_BPF:
5106                 return perf_event_query_prog_array(event, (void __user *)arg);
5107
5108         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5109                 struct perf_event_attr new_attr;
5110                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5111                                          &new_attr);
5112
5113                 if (err)
5114                         return err;
5115
5116                 return perf_event_modify_attr(event,  &new_attr);
5117         }
5118         default:
5119                 return -ENOTTY;
5120         }
5121
5122         if (flags & PERF_IOC_FLAG_GROUP)
5123                 perf_event_for_each(event, func);
5124         else
5125                 perf_event_for_each_child(event, func);
5126
5127         return 0;
5128 }
5129
5130 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5131 {
5132         struct perf_event *event = file->private_data;
5133         struct perf_event_context *ctx;
5134         long ret;
5135
5136         ctx = perf_event_ctx_lock(event);
5137         ret = _perf_ioctl(event, cmd, arg);
5138         perf_event_ctx_unlock(event, ctx);
5139
5140         return ret;
5141 }
5142
5143 #ifdef CONFIG_COMPAT
5144 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5145                                 unsigned long arg)
5146 {
5147         switch (_IOC_NR(cmd)) {
5148         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5149         case _IOC_NR(PERF_EVENT_IOC_ID):
5150         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5151         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5152                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5153                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5154                         cmd &= ~IOCSIZE_MASK;
5155                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5156                 }
5157                 break;
5158         }
5159         return perf_ioctl(file, cmd, arg);
5160 }
5161 #else
5162 # define perf_compat_ioctl NULL
5163 #endif
5164
5165 int perf_event_task_enable(void)
5166 {
5167         struct perf_event_context *ctx;
5168         struct perf_event *event;
5169
5170         mutex_lock(&current->perf_event_mutex);
5171         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5172                 ctx = perf_event_ctx_lock(event);
5173                 perf_event_for_each_child(event, _perf_event_enable);
5174                 perf_event_ctx_unlock(event, ctx);
5175         }
5176         mutex_unlock(&current->perf_event_mutex);
5177
5178         return 0;
5179 }
5180
5181 int perf_event_task_disable(void)
5182 {
5183         struct perf_event_context *ctx;
5184         struct perf_event *event;
5185
5186         mutex_lock(&current->perf_event_mutex);
5187         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5188                 ctx = perf_event_ctx_lock(event);
5189                 perf_event_for_each_child(event, _perf_event_disable);
5190                 perf_event_ctx_unlock(event, ctx);
5191         }
5192         mutex_unlock(&current->perf_event_mutex);
5193
5194         return 0;
5195 }
5196
5197 static int perf_event_index(struct perf_event *event)
5198 {
5199         if (event->hw.state & PERF_HES_STOPPED)
5200                 return 0;
5201
5202         if (event->state != PERF_EVENT_STATE_ACTIVE)
5203                 return 0;
5204
5205         return event->pmu->event_idx(event);
5206 }
5207
5208 static void calc_timer_values(struct perf_event *event,
5209                                 u64 *now,
5210                                 u64 *enabled,
5211                                 u64 *running)
5212 {
5213         u64 ctx_time;
5214
5215         *now = perf_clock();
5216         ctx_time = event->shadow_ctx_time + *now;
5217         __perf_update_times(event, ctx_time, enabled, running);
5218 }
5219
5220 static void perf_event_init_userpage(struct perf_event *event)
5221 {
5222         struct perf_event_mmap_page *userpg;
5223         struct ring_buffer *rb;
5224
5225         rcu_read_lock();
5226         rb = rcu_dereference(event->rb);
5227         if (!rb)
5228                 goto unlock;
5229
5230         userpg = rb->user_page;
5231
5232         /* Allow new userspace to detect that bit 0 is deprecated */
5233         userpg->cap_bit0_is_deprecated = 1;
5234         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5235         userpg->data_offset = PAGE_SIZE;
5236         userpg->data_size = perf_data_size(rb);
5237
5238 unlock:
5239         rcu_read_unlock();
5240 }
5241
5242 void __weak arch_perf_update_userpage(
5243         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5244 {
5245 }
5246
5247 /*
5248  * Callers need to ensure there can be no nesting of this function, otherwise
5249  * the seqlock logic goes bad. We can not serialize this because the arch
5250  * code calls this from NMI context.
5251  */
5252 void perf_event_update_userpage(struct perf_event *event)
5253 {
5254         struct perf_event_mmap_page *userpg;
5255         struct ring_buffer *rb;
5256         u64 enabled, running, now;
5257
5258         rcu_read_lock();
5259         rb = rcu_dereference(event->rb);
5260         if (!rb)
5261                 goto unlock;
5262
5263         /*
5264          * compute total_time_enabled, total_time_running
5265          * based on snapshot values taken when the event
5266          * was last scheduled in.
5267          *
5268          * we cannot simply called update_context_time()
5269          * because of locking issue as we can be called in
5270          * NMI context
5271          */
5272         calc_timer_values(event, &now, &enabled, &running);
5273
5274         userpg = rb->user_page;
5275         /*
5276          * Disable preemption to guarantee consistent time stamps are stored to
5277          * the user page.
5278          */
5279         preempt_disable();
5280         ++userpg->lock;
5281         barrier();
5282         userpg->index = perf_event_index(event);
5283         userpg->offset = perf_event_count(event);
5284         if (userpg->index)
5285                 userpg->offset -= local64_read(&event->hw.prev_count);
5286
5287         userpg->time_enabled = enabled +
5288                         atomic64_read(&event->child_total_time_enabled);
5289
5290         userpg->time_running = running +
5291                         atomic64_read(&event->child_total_time_running);
5292
5293         arch_perf_update_userpage(event, userpg, now);
5294
5295         barrier();
5296         ++userpg->lock;
5297         preempt_enable();
5298 unlock:
5299         rcu_read_unlock();
5300 }
5301 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5302
5303 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5304 {
5305         struct perf_event *event = vmf->vma->vm_file->private_data;
5306         struct ring_buffer *rb;
5307         vm_fault_t ret = VM_FAULT_SIGBUS;
5308
5309         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5310                 if (vmf->pgoff == 0)
5311                         ret = 0;
5312                 return ret;
5313         }
5314
5315         rcu_read_lock();
5316         rb = rcu_dereference(event->rb);
5317         if (!rb)
5318                 goto unlock;
5319
5320         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5321                 goto unlock;
5322
5323         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5324         if (!vmf->page)
5325                 goto unlock;
5326
5327         get_page(vmf->page);
5328         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5329         vmf->page->index   = vmf->pgoff;
5330
5331         ret = 0;
5332 unlock:
5333         rcu_read_unlock();
5334
5335         return ret;
5336 }
5337
5338 static void ring_buffer_attach(struct perf_event *event,
5339                                struct ring_buffer *rb)
5340 {
5341         struct ring_buffer *old_rb = NULL;
5342         unsigned long flags;
5343
5344         if (event->rb) {
5345                 /*
5346                  * Should be impossible, we set this when removing
5347                  * event->rb_entry and wait/clear when adding event->rb_entry.
5348                  */
5349                 WARN_ON_ONCE(event->rcu_pending);
5350
5351                 old_rb = event->rb;
5352                 spin_lock_irqsave(&old_rb->event_lock, flags);
5353                 list_del_rcu(&event->rb_entry);
5354                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5355
5356                 event->rcu_batches = get_state_synchronize_rcu();
5357                 event->rcu_pending = 1;
5358         }
5359
5360         if (rb) {
5361                 if (event->rcu_pending) {
5362                         cond_synchronize_rcu(event->rcu_batches);
5363                         event->rcu_pending = 0;
5364                 }
5365
5366                 spin_lock_irqsave(&rb->event_lock, flags);
5367                 list_add_rcu(&event->rb_entry, &rb->event_list);
5368                 spin_unlock_irqrestore(&rb->event_lock, flags);
5369         }
5370
5371         /*
5372          * Avoid racing with perf_mmap_close(AUX): stop the event
5373          * before swizzling the event::rb pointer; if it's getting
5374          * unmapped, its aux_mmap_count will be 0 and it won't
5375          * restart. See the comment in __perf_pmu_output_stop().
5376          *
5377          * Data will inevitably be lost when set_output is done in
5378          * mid-air, but then again, whoever does it like this is
5379          * not in for the data anyway.
5380          */
5381         if (has_aux(event))
5382                 perf_event_stop(event, 0);
5383
5384         rcu_assign_pointer(event->rb, rb);
5385
5386         if (old_rb) {
5387                 ring_buffer_put(old_rb);
5388                 /*
5389                  * Since we detached before setting the new rb, so that we
5390                  * could attach the new rb, we could have missed a wakeup.
5391                  * Provide it now.
5392                  */
5393                 wake_up_all(&event->waitq);
5394         }
5395 }
5396
5397 static void ring_buffer_wakeup(struct perf_event *event)
5398 {
5399         struct ring_buffer *rb;
5400
5401         rcu_read_lock();
5402         rb = rcu_dereference(event->rb);
5403         if (rb) {
5404                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5405                         wake_up_all(&event->waitq);
5406         }
5407         rcu_read_unlock();
5408 }
5409
5410 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5411 {
5412         struct ring_buffer *rb;
5413
5414         rcu_read_lock();
5415         rb = rcu_dereference(event->rb);
5416         if (rb) {
5417                 if (!refcount_inc_not_zero(&rb->refcount))
5418                         rb = NULL;
5419         }
5420         rcu_read_unlock();
5421
5422         return rb;
5423 }
5424
5425 void ring_buffer_put(struct ring_buffer *rb)
5426 {
5427         if (!refcount_dec_and_test(&rb->refcount))
5428                 return;
5429
5430         WARN_ON_ONCE(!list_empty(&rb->event_list));
5431
5432         call_rcu(&rb->rcu_head, rb_free_rcu);
5433 }
5434
5435 static void perf_mmap_open(struct vm_area_struct *vma)
5436 {
5437         struct perf_event *event = vma->vm_file->private_data;
5438
5439         atomic_inc(&event->mmap_count);
5440         atomic_inc(&event->rb->mmap_count);
5441
5442         if (vma->vm_pgoff)
5443                 atomic_inc(&event->rb->aux_mmap_count);
5444
5445         if (event->pmu->event_mapped)
5446                 event->pmu->event_mapped(event, vma->vm_mm);
5447 }
5448
5449 static void perf_pmu_output_stop(struct perf_event *event);
5450
5451 /*
5452  * A buffer can be mmap()ed multiple times; either directly through the same
5453  * event, or through other events by use of perf_event_set_output().
5454  *
5455  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5456  * the buffer here, where we still have a VM context. This means we need
5457  * to detach all events redirecting to us.
5458  */
5459 static void perf_mmap_close(struct vm_area_struct *vma)
5460 {
5461         struct perf_event *event = vma->vm_file->private_data;
5462
5463         struct ring_buffer *rb = ring_buffer_get(event);
5464         struct user_struct *mmap_user = rb->mmap_user;
5465         int mmap_locked = rb->mmap_locked;
5466         unsigned long size = perf_data_size(rb);
5467
5468         if (event->pmu->event_unmapped)
5469                 event->pmu->event_unmapped(event, vma->vm_mm);
5470
5471         /*
5472          * rb->aux_mmap_count will always drop before rb->mmap_count and
5473          * event->mmap_count, so it is ok to use event->mmap_mutex to
5474          * serialize with perf_mmap here.
5475          */
5476         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5477             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5478                 /*
5479                  * Stop all AUX events that are writing to this buffer,
5480                  * so that we can free its AUX pages and corresponding PMU
5481                  * data. Note that after rb::aux_mmap_count dropped to zero,
5482                  * they won't start any more (see perf_aux_output_begin()).
5483                  */
5484                 perf_pmu_output_stop(event);
5485
5486                 /* now it's safe to free the pages */
5487                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5488                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5489
5490                 /* this has to be the last one */
5491                 rb_free_aux(rb);
5492                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5493
5494                 mutex_unlock(&event->mmap_mutex);
5495         }
5496
5497         atomic_dec(&rb->mmap_count);
5498
5499         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5500                 goto out_put;
5501
5502         ring_buffer_attach(event, NULL);
5503         mutex_unlock(&event->mmap_mutex);
5504
5505         /* If there's still other mmap()s of this buffer, we're done. */
5506         if (atomic_read(&rb->mmap_count))
5507                 goto out_put;
5508
5509         /*
5510          * No other mmap()s, detach from all other events that might redirect
5511          * into the now unreachable buffer. Somewhat complicated by the
5512          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5513          */
5514 again:
5515         rcu_read_lock();
5516         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5517                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5518                         /*
5519                          * This event is en-route to free_event() which will
5520                          * detach it and remove it from the list.
5521                          */
5522                         continue;
5523                 }
5524                 rcu_read_unlock();
5525
5526                 mutex_lock(&event->mmap_mutex);
5527                 /*
5528                  * Check we didn't race with perf_event_set_output() which can
5529                  * swizzle the rb from under us while we were waiting to
5530                  * acquire mmap_mutex.
5531                  *
5532                  * If we find a different rb; ignore this event, a next
5533                  * iteration will no longer find it on the list. We have to
5534                  * still restart the iteration to make sure we're not now
5535                  * iterating the wrong list.
5536                  */
5537                 if (event->rb == rb)
5538                         ring_buffer_attach(event, NULL);
5539
5540                 mutex_unlock(&event->mmap_mutex);
5541                 put_event(event);
5542
5543                 /*
5544                  * Restart the iteration; either we're on the wrong list or
5545                  * destroyed its integrity by doing a deletion.
5546                  */
5547                 goto again;
5548         }
5549         rcu_read_unlock();
5550
5551         /*
5552          * It could be there's still a few 0-ref events on the list; they'll
5553          * get cleaned up by free_event() -- they'll also still have their
5554          * ref on the rb and will free it whenever they are done with it.
5555          *
5556          * Aside from that, this buffer is 'fully' detached and unmapped,
5557          * undo the VM accounting.
5558          */
5559
5560         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5561         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5562         free_uid(mmap_user);
5563
5564 out_put:
5565         ring_buffer_put(rb); /* could be last */
5566 }
5567
5568 static const struct vm_operations_struct perf_mmap_vmops = {
5569         .open           = perf_mmap_open,
5570         .close          = perf_mmap_close, /* non mergeable */
5571         .fault          = perf_mmap_fault,
5572         .page_mkwrite   = perf_mmap_fault,
5573 };
5574
5575 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5576 {
5577         struct perf_event *event = file->private_data;
5578         unsigned long user_locked, user_lock_limit;
5579         struct user_struct *user = current_user();
5580         unsigned long locked, lock_limit;
5581         struct ring_buffer *rb = NULL;
5582         unsigned long vma_size;
5583         unsigned long nr_pages;
5584         long user_extra = 0, extra = 0;
5585         int ret = 0, flags = 0;
5586
5587         /*
5588          * Don't allow mmap() of inherited per-task counters. This would
5589          * create a performance issue due to all children writing to the
5590          * same rb.
5591          */
5592         if (event->cpu == -1 && event->attr.inherit)
5593                 return -EINVAL;
5594
5595         if (!(vma->vm_flags & VM_SHARED))
5596                 return -EINVAL;
5597
5598         vma_size = vma->vm_end - vma->vm_start;
5599
5600         if (vma->vm_pgoff == 0) {
5601                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5602         } else {
5603                 /*
5604                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5605                  * mapped, all subsequent mappings should have the same size
5606                  * and offset. Must be above the normal perf buffer.
5607                  */
5608                 u64 aux_offset, aux_size;
5609
5610                 if (!event->rb)
5611                         return -EINVAL;
5612
5613                 nr_pages = vma_size / PAGE_SIZE;
5614
5615                 mutex_lock(&event->mmap_mutex);
5616                 ret = -EINVAL;
5617
5618                 rb = event->rb;
5619                 if (!rb)
5620                         goto aux_unlock;
5621
5622                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5623                 aux_size = READ_ONCE(rb->user_page->aux_size);
5624
5625                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5626                         goto aux_unlock;
5627
5628                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5629                         goto aux_unlock;
5630
5631                 /* already mapped with a different offset */
5632                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5633                         goto aux_unlock;
5634
5635                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5636                         goto aux_unlock;
5637
5638                 /* already mapped with a different size */
5639                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5640                         goto aux_unlock;
5641
5642                 if (!is_power_of_2(nr_pages))
5643                         goto aux_unlock;
5644
5645                 if (!atomic_inc_not_zero(&rb->mmap_count))
5646                         goto aux_unlock;
5647
5648                 if (rb_has_aux(rb)) {
5649                         atomic_inc(&rb->aux_mmap_count);
5650                         ret = 0;
5651                         goto unlock;
5652                 }
5653
5654                 atomic_set(&rb->aux_mmap_count, 1);
5655                 user_extra = nr_pages;
5656
5657                 goto accounting;
5658         }
5659
5660         /*
5661          * If we have rb pages ensure they're a power-of-two number, so we
5662          * can do bitmasks instead of modulo.
5663          */
5664         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5665                 return -EINVAL;
5666
5667         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5668                 return -EINVAL;
5669
5670         WARN_ON_ONCE(event->ctx->parent_ctx);
5671 again:
5672         mutex_lock(&event->mmap_mutex);
5673         if (event->rb) {
5674                 if (event->rb->nr_pages != nr_pages) {
5675                         ret = -EINVAL;
5676                         goto unlock;
5677                 }
5678
5679                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5680                         /*
5681                          * Raced against perf_mmap_close() through
5682                          * perf_event_set_output(). Try again, hope for better
5683                          * luck.
5684                          */
5685                         mutex_unlock(&event->mmap_mutex);
5686                         goto again;
5687                 }
5688
5689                 goto unlock;
5690         }
5691
5692         user_extra = nr_pages + 1;
5693
5694 accounting:
5695         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5696
5697         /*
5698          * Increase the limit linearly with more CPUs:
5699          */
5700         user_lock_limit *= num_online_cpus();
5701
5702         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5703
5704         if (user_locked > user_lock_limit)
5705                 extra = user_locked - user_lock_limit;
5706
5707         lock_limit = rlimit(RLIMIT_MEMLOCK);
5708         lock_limit >>= PAGE_SHIFT;
5709         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
5710
5711         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5712                 !capable(CAP_IPC_LOCK)) {
5713                 ret = -EPERM;
5714                 goto unlock;
5715         }
5716
5717         WARN_ON(!rb && event->rb);
5718
5719         if (vma->vm_flags & VM_WRITE)
5720                 flags |= RING_BUFFER_WRITABLE;
5721
5722         if (!rb) {
5723                 rb = rb_alloc(nr_pages,
5724                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5725                               event->cpu, flags);
5726
5727                 if (!rb) {
5728                         ret = -ENOMEM;
5729                         goto unlock;
5730                 }
5731
5732                 atomic_set(&rb->mmap_count, 1);
5733                 rb->mmap_user = get_current_user();
5734                 rb->mmap_locked = extra;
5735
5736                 ring_buffer_attach(event, rb);
5737
5738                 perf_event_init_userpage(event);
5739                 perf_event_update_userpage(event);
5740         } else {
5741                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5742                                    event->attr.aux_watermark, flags);
5743                 if (!ret)
5744                         rb->aux_mmap_locked = extra;
5745         }
5746
5747 unlock:
5748         if (!ret) {
5749                 atomic_long_add(user_extra, &user->locked_vm);
5750                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
5751
5752                 atomic_inc(&event->mmap_count);
5753         } else if (rb) {
5754                 atomic_dec(&rb->mmap_count);
5755         }
5756 aux_unlock:
5757         mutex_unlock(&event->mmap_mutex);
5758
5759         /*
5760          * Since pinned accounting is per vm we cannot allow fork() to copy our
5761          * vma.
5762          */
5763         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5764         vma->vm_ops = &perf_mmap_vmops;
5765
5766         if (event->pmu->event_mapped)
5767                 event->pmu->event_mapped(event, vma->vm_mm);
5768
5769         return ret;
5770 }
5771
5772 static int perf_fasync(int fd, struct file *filp, int on)
5773 {
5774         struct inode *inode = file_inode(filp);
5775         struct perf_event *event = filp->private_data;
5776         int retval;
5777
5778         inode_lock(inode);
5779         retval = fasync_helper(fd, filp, on, &event->fasync);
5780         inode_unlock(inode);
5781
5782         if (retval < 0)
5783                 return retval;
5784
5785         return 0;
5786 }
5787
5788 static const struct file_operations perf_fops = {
5789         .llseek                 = no_llseek,
5790         .release                = perf_release,
5791         .read                   = perf_read,
5792         .poll                   = perf_poll,
5793         .unlocked_ioctl         = perf_ioctl,
5794         .compat_ioctl           = perf_compat_ioctl,
5795         .mmap                   = perf_mmap,
5796         .fasync                 = perf_fasync,
5797 };
5798
5799 /*
5800  * Perf event wakeup
5801  *
5802  * If there's data, ensure we set the poll() state and publish everything
5803  * to user-space before waking everybody up.
5804  */
5805
5806 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5807 {
5808         /* only the parent has fasync state */
5809         if (event->parent)
5810                 event = event->parent;
5811         return &event->fasync;
5812 }
5813
5814 void perf_event_wakeup(struct perf_event *event)
5815 {
5816         ring_buffer_wakeup(event);
5817
5818         if (event->pending_kill) {
5819                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5820                 event->pending_kill = 0;
5821         }
5822 }
5823
5824 static void perf_pending_event_disable(struct perf_event *event)
5825 {
5826         int cpu = READ_ONCE(event->pending_disable);
5827
5828         if (cpu < 0)
5829                 return;
5830
5831         if (cpu == smp_processor_id()) {
5832                 WRITE_ONCE(event->pending_disable, -1);
5833                 perf_event_disable_local(event);
5834                 return;
5835         }
5836
5837         /*
5838          *  CPU-A                       CPU-B
5839          *
5840          *  perf_event_disable_inatomic()
5841          *    @pending_disable = CPU-A;
5842          *    irq_work_queue();
5843          *
5844          *  sched-out
5845          *    @pending_disable = -1;
5846          *
5847          *                              sched-in
5848          *                              perf_event_disable_inatomic()
5849          *                                @pending_disable = CPU-B;
5850          *                                irq_work_queue(); // FAILS
5851          *
5852          *  irq_work_run()
5853          *    perf_pending_event()
5854          *
5855          * But the event runs on CPU-B and wants disabling there.
5856          */
5857         irq_work_queue_on(&event->pending, cpu);
5858 }
5859
5860 static void perf_pending_event(struct irq_work *entry)
5861 {
5862         struct perf_event *event = container_of(entry, struct perf_event, pending);
5863         int rctx;
5864
5865         rctx = perf_swevent_get_recursion_context();
5866         /*
5867          * If we 'fail' here, that's OK, it means recursion is already disabled
5868          * and we won't recurse 'further'.
5869          */
5870
5871         perf_pending_event_disable(event);
5872
5873         if (event->pending_wakeup) {
5874                 event->pending_wakeup = 0;
5875                 perf_event_wakeup(event);
5876         }
5877
5878         if (rctx >= 0)
5879                 perf_swevent_put_recursion_context(rctx);
5880 }
5881
5882 /*
5883  * We assume there is only KVM supporting the callbacks.
5884  * Later on, we might change it to a list if there is
5885  * another virtualization implementation supporting the callbacks.
5886  */
5887 struct perf_guest_info_callbacks *perf_guest_cbs;
5888
5889 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5890 {
5891         perf_guest_cbs = cbs;
5892         return 0;
5893 }
5894 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5895
5896 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5897 {
5898         perf_guest_cbs = NULL;
5899         return 0;
5900 }
5901 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5902
5903 static void
5904 perf_output_sample_regs(struct perf_output_handle *handle,
5905                         struct pt_regs *regs, u64 mask)
5906 {
5907         int bit;
5908         DECLARE_BITMAP(_mask, 64);
5909
5910         bitmap_from_u64(_mask, mask);
5911         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5912                 u64 val;
5913
5914                 val = perf_reg_value(regs, bit);
5915                 perf_output_put(handle, val);
5916         }
5917 }
5918
5919 static void perf_sample_regs_user(struct perf_regs *regs_user,
5920                                   struct pt_regs *regs,
5921                                   struct pt_regs *regs_user_copy)
5922 {
5923         if (user_mode(regs)) {
5924                 regs_user->abi = perf_reg_abi(current);
5925                 regs_user->regs = regs;
5926         } else if (current->mm) {
5927                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5928         } else {
5929                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5930                 regs_user->regs = NULL;
5931         }
5932 }
5933
5934 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5935                                   struct pt_regs *regs)
5936 {
5937         regs_intr->regs = regs;
5938         regs_intr->abi  = perf_reg_abi(current);
5939 }
5940
5941
5942 /*
5943  * Get remaining task size from user stack pointer.
5944  *
5945  * It'd be better to take stack vma map and limit this more
5946  * precisly, but there's no way to get it safely under interrupt,
5947  * so using TASK_SIZE as limit.
5948  */
5949 static u64 perf_ustack_task_size(struct pt_regs *regs)
5950 {
5951         unsigned long addr = perf_user_stack_pointer(regs);
5952
5953         if (!addr || addr >= TASK_SIZE)
5954                 return 0;
5955
5956         return TASK_SIZE - addr;
5957 }
5958
5959 static u16
5960 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5961                         struct pt_regs *regs)
5962 {
5963         u64 task_size;
5964
5965         /* No regs, no stack pointer, no dump. */
5966         if (!regs)
5967                 return 0;
5968
5969         /*
5970          * Check if we fit in with the requested stack size into the:
5971          * - TASK_SIZE
5972          *   If we don't, we limit the size to the TASK_SIZE.
5973          *
5974          * - remaining sample size
5975          *   If we don't, we customize the stack size to
5976          *   fit in to the remaining sample size.
5977          */
5978
5979         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5980         stack_size = min(stack_size, (u16) task_size);
5981
5982         /* Current header size plus static size and dynamic size. */
5983         header_size += 2 * sizeof(u64);
5984
5985         /* Do we fit in with the current stack dump size? */
5986         if ((u16) (header_size + stack_size) < header_size) {
5987                 /*
5988                  * If we overflow the maximum size for the sample,
5989                  * we customize the stack dump size to fit in.
5990                  */
5991                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5992                 stack_size = round_up(stack_size, sizeof(u64));
5993         }
5994
5995         return stack_size;
5996 }
5997
5998 static void
5999 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6000                           struct pt_regs *regs)
6001 {
6002         /* Case of a kernel thread, nothing to dump */
6003         if (!regs) {
6004                 u64 size = 0;
6005                 perf_output_put(handle, size);
6006         } else {
6007                 unsigned long sp;
6008                 unsigned int rem;
6009                 u64 dyn_size;
6010                 mm_segment_t fs;
6011
6012                 /*
6013                  * We dump:
6014                  * static size
6015                  *   - the size requested by user or the best one we can fit
6016                  *     in to the sample max size
6017                  * data
6018                  *   - user stack dump data
6019                  * dynamic size
6020                  *   - the actual dumped size
6021                  */
6022
6023                 /* Static size. */
6024                 perf_output_put(handle, dump_size);
6025
6026                 /* Data. */
6027                 sp = perf_user_stack_pointer(regs);
6028                 fs = get_fs();
6029                 set_fs(USER_DS);
6030                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6031                 set_fs(fs);
6032                 dyn_size = dump_size - rem;
6033
6034                 perf_output_skip(handle, rem);
6035
6036                 /* Dynamic size. */
6037                 perf_output_put(handle, dyn_size);
6038         }
6039 }
6040
6041 static void __perf_event_header__init_id(struct perf_event_header *header,
6042                                          struct perf_sample_data *data,
6043                                          struct perf_event *event)
6044 {
6045         u64 sample_type = event->attr.sample_type;
6046
6047         data->type = sample_type;
6048         header->size += event->id_header_size;
6049
6050         if (sample_type & PERF_SAMPLE_TID) {
6051                 /* namespace issues */
6052                 data->tid_entry.pid = perf_event_pid(event, current);
6053                 data->tid_entry.tid = perf_event_tid(event, current);
6054         }
6055
6056         if (sample_type & PERF_SAMPLE_TIME)
6057                 data->time = perf_event_clock(event);
6058
6059         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6060                 data->id = primary_event_id(event);
6061
6062         if (sample_type & PERF_SAMPLE_STREAM_ID)
6063                 data->stream_id = event->id;
6064
6065         if (sample_type & PERF_SAMPLE_CPU) {
6066                 data->cpu_entry.cpu      = raw_smp_processor_id();
6067                 data->cpu_entry.reserved = 0;
6068         }
6069 }
6070
6071 void perf_event_header__init_id(struct perf_event_header *header,
6072                                 struct perf_sample_data *data,
6073                                 struct perf_event *event)
6074 {
6075         if (event->attr.sample_id_all)
6076                 __perf_event_header__init_id(header, data, event);
6077 }
6078
6079 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6080                                            struct perf_sample_data *data)
6081 {
6082         u64 sample_type = data->type;
6083
6084         if (sample_type & PERF_SAMPLE_TID)
6085                 perf_output_put(handle, data->tid_entry);
6086
6087         if (sample_type & PERF_SAMPLE_TIME)
6088                 perf_output_put(handle, data->time);
6089
6090         if (sample_type & PERF_SAMPLE_ID)
6091                 perf_output_put(handle, data->id);
6092
6093         if (sample_type & PERF_SAMPLE_STREAM_ID)
6094                 perf_output_put(handle, data->stream_id);
6095
6096         if (sample_type & PERF_SAMPLE_CPU)
6097                 perf_output_put(handle, data->cpu_entry);
6098
6099         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6100                 perf_output_put(handle, data->id);
6101 }
6102
6103 void perf_event__output_id_sample(struct perf_event *event,
6104                                   struct perf_output_handle *handle,
6105                                   struct perf_sample_data *sample)
6106 {
6107         if (event->attr.sample_id_all)
6108                 __perf_event__output_id_sample(handle, sample);
6109 }
6110
6111 static void perf_output_read_one(struct perf_output_handle *handle,
6112                                  struct perf_event *event,
6113                                  u64 enabled, u64 running)
6114 {
6115         u64 read_format = event->attr.read_format;
6116         u64 values[4];
6117         int n = 0;
6118
6119         values[n++] = perf_event_count(event);
6120         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6121                 values[n++] = enabled +
6122                         atomic64_read(&event->child_total_time_enabled);
6123         }
6124         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6125                 values[n++] = running +
6126                         atomic64_read(&event->child_total_time_running);
6127         }
6128         if (read_format & PERF_FORMAT_ID)
6129                 values[n++] = primary_event_id(event);
6130
6131         __output_copy(handle, values, n * sizeof(u64));
6132 }
6133
6134 static void perf_output_read_group(struct perf_output_handle *handle,
6135                             struct perf_event *event,
6136                             u64 enabled, u64 running)
6137 {
6138         struct perf_event *leader = event->group_leader, *sub;
6139         u64 read_format = event->attr.read_format;
6140         u64 values[5];
6141         int n = 0;
6142
6143         values[n++] = 1 + leader->nr_siblings;
6144
6145         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6146                 values[n++] = enabled;
6147
6148         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6149                 values[n++] = running;
6150
6151         if ((leader != event) &&
6152             (leader->state == PERF_EVENT_STATE_ACTIVE))
6153                 leader->pmu->read(leader);
6154
6155         values[n++] = perf_event_count(leader);
6156         if (read_format & PERF_FORMAT_ID)
6157                 values[n++] = primary_event_id(leader);
6158
6159         __output_copy(handle, values, n * sizeof(u64));
6160
6161         for_each_sibling_event(sub, leader) {
6162                 n = 0;
6163
6164                 if ((sub != event) &&
6165                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6166                         sub->pmu->read(sub);
6167
6168                 values[n++] = perf_event_count(sub);
6169                 if (read_format & PERF_FORMAT_ID)
6170                         values[n++] = primary_event_id(sub);
6171
6172                 __output_copy(handle, values, n * sizeof(u64));
6173         }
6174 }
6175
6176 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6177                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6178
6179 /*
6180  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6181  *
6182  * The problem is that its both hard and excessively expensive to iterate the
6183  * child list, not to mention that its impossible to IPI the children running
6184  * on another CPU, from interrupt/NMI context.
6185  */
6186 static void perf_output_read(struct perf_output_handle *handle,
6187                              struct perf_event *event)
6188 {
6189         u64 enabled = 0, running = 0, now;
6190         u64 read_format = event->attr.read_format;
6191
6192         /*
6193          * compute total_time_enabled, total_time_running
6194          * based on snapshot values taken when the event
6195          * was last scheduled in.
6196          *
6197          * we cannot simply called update_context_time()
6198          * because of locking issue as we are called in
6199          * NMI context
6200          */
6201         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6202                 calc_timer_values(event, &now, &enabled, &running);
6203
6204         if (event->attr.read_format & PERF_FORMAT_GROUP)
6205                 perf_output_read_group(handle, event, enabled, running);
6206         else
6207                 perf_output_read_one(handle, event, enabled, running);
6208 }
6209
6210 void perf_output_sample(struct perf_output_handle *handle,
6211                         struct perf_event_header *header,
6212                         struct perf_sample_data *data,
6213                         struct perf_event *event)
6214 {
6215         u64 sample_type = data->type;
6216
6217         perf_output_put(handle, *header);
6218
6219         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6220                 perf_output_put(handle, data->id);
6221
6222         if (sample_type & PERF_SAMPLE_IP)
6223                 perf_output_put(handle, data->ip);
6224
6225         if (sample_type & PERF_SAMPLE_TID)
6226                 perf_output_put(handle, data->tid_entry);
6227
6228         if (sample_type & PERF_SAMPLE_TIME)
6229                 perf_output_put(handle, data->time);
6230
6231         if (sample_type & PERF_SAMPLE_ADDR)
6232                 perf_output_put(handle, data->addr);
6233
6234         if (sample_type & PERF_SAMPLE_ID)
6235                 perf_output_put(handle, data->id);
6236
6237         if (sample_type & PERF_SAMPLE_STREAM_ID)
6238                 perf_output_put(handle, data->stream_id);
6239
6240         if (sample_type & PERF_SAMPLE_CPU)
6241                 perf_output_put(handle, data->cpu_entry);
6242
6243         if (sample_type & PERF_SAMPLE_PERIOD)
6244                 perf_output_put(handle, data->period);
6245
6246         if (sample_type & PERF_SAMPLE_READ)
6247                 perf_output_read(handle, event);
6248
6249         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6250                 int size = 1;
6251
6252                 size += data->callchain->nr;
6253                 size *= sizeof(u64);
6254                 __output_copy(handle, data->callchain, size);
6255         }
6256
6257         if (sample_type & PERF_SAMPLE_RAW) {
6258                 struct perf_raw_record *raw = data->raw;
6259
6260                 if (raw) {
6261                         struct perf_raw_frag *frag = &raw->frag;
6262
6263                         perf_output_put(handle, raw->size);
6264                         do {
6265                                 if (frag->copy) {
6266                                         __output_custom(handle, frag->copy,
6267                                                         frag->data, frag->size);
6268                                 } else {
6269                                         __output_copy(handle, frag->data,
6270                                                       frag->size);
6271                                 }
6272                                 if (perf_raw_frag_last(frag))
6273                                         break;
6274                                 frag = frag->next;
6275                         } while (1);
6276                         if (frag->pad)
6277                                 __output_skip(handle, NULL, frag->pad);
6278                 } else {
6279                         struct {
6280                                 u32     size;
6281                                 u32     data;
6282                         } raw = {
6283                                 .size = sizeof(u32),
6284                                 .data = 0,
6285                         };
6286                         perf_output_put(handle, raw);
6287                 }
6288         }
6289
6290         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6291                 if (data->br_stack) {
6292                         size_t size;
6293
6294                         size = data->br_stack->nr
6295                              * sizeof(struct perf_branch_entry);
6296
6297                         perf_output_put(handle, data->br_stack->nr);
6298                         perf_output_copy(handle, data->br_stack->entries, size);
6299                 } else {
6300                         /*
6301                          * we always store at least the value of nr
6302                          */
6303                         u64 nr = 0;
6304                         perf_output_put(handle, nr);
6305                 }
6306         }
6307
6308         if (sample_type & PERF_SAMPLE_REGS_USER) {
6309                 u64 abi = data->regs_user.abi;
6310
6311                 /*
6312                  * If there are no regs to dump, notice it through
6313                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6314                  */
6315                 perf_output_put(handle, abi);
6316
6317                 if (abi) {
6318                         u64 mask = event->attr.sample_regs_user;
6319                         perf_output_sample_regs(handle,
6320                                                 data->regs_user.regs,
6321                                                 mask);
6322                 }
6323         }
6324
6325         if (sample_type & PERF_SAMPLE_STACK_USER) {
6326                 perf_output_sample_ustack(handle,
6327                                           data->stack_user_size,
6328                                           data->regs_user.regs);
6329         }
6330
6331         if (sample_type & PERF_SAMPLE_WEIGHT)
6332                 perf_output_put(handle, data->weight);
6333
6334         if (sample_type & PERF_SAMPLE_DATA_SRC)
6335                 perf_output_put(handle, data->data_src.val);
6336
6337         if (sample_type & PERF_SAMPLE_TRANSACTION)
6338                 perf_output_put(handle, data->txn);
6339
6340         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6341                 u64 abi = data->regs_intr.abi;
6342                 /*
6343                  * If there are no regs to dump, notice it through
6344                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6345                  */
6346                 perf_output_put(handle, abi);
6347
6348                 if (abi) {
6349                         u64 mask = event->attr.sample_regs_intr;
6350
6351                         perf_output_sample_regs(handle,
6352                                                 data->regs_intr.regs,
6353                                                 mask);
6354                 }
6355         }
6356
6357         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6358                 perf_output_put(handle, data->phys_addr);
6359
6360         if (!event->attr.watermark) {
6361                 int wakeup_events = event->attr.wakeup_events;
6362
6363                 if (wakeup_events) {
6364                         struct ring_buffer *rb = handle->rb;
6365                         int events = local_inc_return(&rb->events);
6366
6367                         if (events >= wakeup_events) {
6368                                 local_sub(wakeup_events, &rb->events);
6369                                 local_inc(&rb->wakeup);
6370                         }
6371                 }
6372         }
6373 }
6374
6375 static u64 perf_virt_to_phys(u64 virt)
6376 {
6377         u64 phys_addr = 0;
6378         struct page *p = NULL;
6379
6380         if (!virt)
6381                 return 0;
6382
6383         if (virt >= TASK_SIZE) {
6384                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6385                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6386                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6387                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6388         } else {
6389                 /*
6390                  * Walking the pages tables for user address.
6391                  * Interrupts are disabled, so it prevents any tear down
6392                  * of the page tables.
6393                  * Try IRQ-safe __get_user_pages_fast first.
6394                  * If failed, leave phys_addr as 0.
6395                  */
6396                 if ((current->mm != NULL) &&
6397                     (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6398                         phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6399
6400                 if (p)
6401                         put_page(p);
6402         }
6403
6404         return phys_addr;
6405 }
6406
6407 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6408
6409 struct perf_callchain_entry *
6410 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6411 {
6412         bool kernel = !event->attr.exclude_callchain_kernel;
6413         bool user   = !event->attr.exclude_callchain_user;
6414         /* Disallow cross-task user callchains. */
6415         bool crosstask = event->ctx->task && event->ctx->task != current;
6416         const u32 max_stack = event->attr.sample_max_stack;
6417         struct perf_callchain_entry *callchain;
6418
6419         if (!kernel && !user)
6420                 return &__empty_callchain;
6421
6422         callchain = get_perf_callchain(regs, 0, kernel, user,
6423                                        max_stack, crosstask, true);
6424         return callchain ?: &__empty_callchain;
6425 }
6426
6427 void perf_prepare_sample(struct perf_event_header *header,
6428                          struct perf_sample_data *data,
6429                          struct perf_event *event,
6430                          struct pt_regs *regs)
6431 {
6432         u64 sample_type = event->attr.sample_type;
6433
6434         header->type = PERF_RECORD_SAMPLE;
6435         header->size = sizeof(*header) + event->header_size;
6436
6437         header->misc = 0;
6438         header->misc |= perf_misc_flags(regs);
6439
6440         __perf_event_header__init_id(header, data, event);
6441
6442         if (sample_type & PERF_SAMPLE_IP)
6443                 data->ip = perf_instruction_pointer(regs);
6444
6445         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6446                 int size = 1;
6447
6448                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6449                         data->callchain = perf_callchain(event, regs);
6450
6451                 size += data->callchain->nr;
6452
6453                 header->size += size * sizeof(u64);
6454         }
6455
6456         if (sample_type & PERF_SAMPLE_RAW) {
6457                 struct perf_raw_record *raw = data->raw;
6458                 int size;
6459
6460                 if (raw) {
6461                         struct perf_raw_frag *frag = &raw->frag;
6462                         u32 sum = 0;
6463
6464                         do {
6465                                 sum += frag->size;
6466                                 if (perf_raw_frag_last(frag))
6467                                         break;
6468                                 frag = frag->next;
6469                         } while (1);
6470
6471                         size = round_up(sum + sizeof(u32), sizeof(u64));
6472                         raw->size = size - sizeof(u32);
6473                         frag->pad = raw->size - sum;
6474                 } else {
6475                         size = sizeof(u64);
6476                 }
6477
6478                 header->size += size;
6479         }
6480
6481         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6482                 int size = sizeof(u64); /* nr */
6483                 if (data->br_stack) {
6484                         size += data->br_stack->nr
6485                               * sizeof(struct perf_branch_entry);
6486                 }
6487                 header->size += size;
6488         }
6489
6490         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6491                 perf_sample_regs_user(&data->regs_user, regs,
6492                                       &data->regs_user_copy);
6493
6494         if (sample_type & PERF_SAMPLE_REGS_USER) {
6495                 /* regs dump ABI info */
6496                 int size = sizeof(u64);
6497
6498                 if (data->regs_user.regs) {
6499                         u64 mask = event->attr.sample_regs_user;
6500                         size += hweight64(mask) * sizeof(u64);
6501                 }
6502
6503                 header->size += size;
6504         }
6505
6506         if (sample_type & PERF_SAMPLE_STACK_USER) {
6507                 /*
6508                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6509                  * processed as the last one or have additional check added
6510                  * in case new sample type is added, because we could eat
6511                  * up the rest of the sample size.
6512                  */
6513                 u16 stack_size = event->attr.sample_stack_user;
6514                 u16 size = sizeof(u64);
6515
6516                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6517                                                      data->regs_user.regs);
6518
6519                 /*
6520                  * If there is something to dump, add space for the dump
6521                  * itself and for the field that tells the dynamic size,
6522                  * which is how many have been actually dumped.
6523                  */
6524                 if (stack_size)
6525                         size += sizeof(u64) + stack_size;
6526
6527                 data->stack_user_size = stack_size;
6528                 header->size += size;
6529         }
6530
6531         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6532                 /* regs dump ABI info */
6533                 int size = sizeof(u64);
6534
6535                 perf_sample_regs_intr(&data->regs_intr, regs);
6536
6537                 if (data->regs_intr.regs) {
6538                         u64 mask = event->attr.sample_regs_intr;
6539
6540                         size += hweight64(mask) * sizeof(u64);
6541                 }
6542
6543                 header->size += size;
6544         }
6545
6546         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6547                 data->phys_addr = perf_virt_to_phys(data->addr);
6548 }
6549
6550 static __always_inline int
6551 __perf_event_output(struct perf_event *event,
6552                     struct perf_sample_data *data,
6553                     struct pt_regs *regs,
6554                     int (*output_begin)(struct perf_output_handle *,
6555                                         struct perf_event *,
6556                                         unsigned int))
6557 {
6558         struct perf_output_handle handle;
6559         struct perf_event_header header;
6560         int err;
6561
6562         /* protect the callchain buffers */
6563         rcu_read_lock();
6564
6565         perf_prepare_sample(&header, data, event, regs);
6566
6567         err = output_begin(&handle, event, header.size);
6568         if (err)
6569                 goto exit;
6570
6571         perf_output_sample(&handle, &header, data, event);
6572
6573         perf_output_end(&handle);
6574
6575 exit:
6576         rcu_read_unlock();
6577         return err;
6578 }
6579
6580 void
6581 perf_event_output_forward(struct perf_event *event,
6582                          struct perf_sample_data *data,
6583                          struct pt_regs *regs)
6584 {
6585         __perf_event_output(event, data, regs, perf_output_begin_forward);
6586 }
6587
6588 void
6589 perf_event_output_backward(struct perf_event *event,
6590                            struct perf_sample_data *data,
6591                            struct pt_regs *regs)
6592 {
6593         __perf_event_output(event, data, regs, perf_output_begin_backward);
6594 }
6595
6596 int
6597 perf_event_output(struct perf_event *event,
6598                   struct perf_sample_data *data,
6599                   struct pt_regs *regs)
6600 {
6601         return __perf_event_output(event, data, regs, perf_output_begin);
6602 }
6603
6604 /*
6605  * read event_id
6606  */
6607
6608 struct perf_read_event {
6609         struct perf_event_header        header;
6610
6611         u32                             pid;
6612         u32                             tid;
6613 };
6614
6615 static void
6616 perf_event_read_event(struct perf_event *event,
6617                         struct task_struct *task)
6618 {
6619         struct perf_output_handle handle;
6620         struct perf_sample_data sample;
6621         struct perf_read_event read_event = {
6622                 .header = {
6623                         .type = PERF_RECORD_READ,
6624                         .misc = 0,
6625                         .size = sizeof(read_event) + event->read_size,
6626                 },
6627                 .pid = perf_event_pid(event, task),
6628                 .tid = perf_event_tid(event, task),
6629         };
6630         int ret;
6631
6632         perf_event_header__init_id(&read_event.header, &sample, event);
6633         ret = perf_output_begin(&handle, event, read_event.header.size);
6634         if (ret)
6635                 return;
6636
6637         perf_output_put(&handle, read_event);
6638         perf_output_read(&handle, event);
6639         perf_event__output_id_sample(event, &handle, &sample);
6640
6641         perf_output_end(&handle);
6642 }
6643
6644 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6645
6646 static void
6647 perf_iterate_ctx(struct perf_event_context *ctx,
6648                    perf_iterate_f output,
6649                    void *data, bool all)
6650 {
6651         struct perf_event *event;
6652
6653         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6654                 if (!all) {
6655                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6656                                 continue;
6657                         if (!event_filter_match(event))
6658                                 continue;
6659                 }
6660
6661                 output(event, data);
6662         }
6663 }
6664
6665 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6666 {
6667         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6668         struct perf_event *event;
6669
6670         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6671                 /*
6672                  * Skip events that are not fully formed yet; ensure that
6673                  * if we observe event->ctx, both event and ctx will be
6674                  * complete enough. See perf_install_in_context().
6675                  */
6676                 if (!smp_load_acquire(&event->ctx))
6677                         continue;
6678
6679                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6680                         continue;
6681                 if (!event_filter_match(event))
6682                         continue;
6683                 output(event, data);
6684         }
6685 }
6686
6687 /*
6688  * Iterate all events that need to receive side-band events.
6689  *
6690  * For new callers; ensure that account_pmu_sb_event() includes
6691  * your event, otherwise it might not get delivered.
6692  */
6693 static void
6694 perf_iterate_sb(perf_iterate_f output, void *data,
6695                struct perf_event_context *task_ctx)
6696 {
6697         struct perf_event_context *ctx;
6698         int ctxn;
6699
6700         rcu_read_lock();
6701         preempt_disable();
6702
6703         /*
6704          * If we have task_ctx != NULL we only notify the task context itself.
6705          * The task_ctx is set only for EXIT events before releasing task
6706          * context.
6707          */
6708         if (task_ctx) {
6709                 perf_iterate_ctx(task_ctx, output, data, false);
6710                 goto done;
6711         }
6712
6713         perf_iterate_sb_cpu(output, data);
6714
6715         for_each_task_context_nr(ctxn) {
6716                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6717                 if (ctx)
6718                         perf_iterate_ctx(ctx, output, data, false);
6719         }
6720 done:
6721         preempt_enable();
6722         rcu_read_unlock();
6723 }
6724
6725 /*
6726  * Clear all file-based filters at exec, they'll have to be
6727  * re-instated when/if these objects are mmapped again.
6728  */
6729 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6730 {
6731         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6732         struct perf_addr_filter *filter;
6733         unsigned int restart = 0, count = 0;
6734         unsigned long flags;
6735
6736         if (!has_addr_filter(event))
6737                 return;
6738
6739         raw_spin_lock_irqsave(&ifh->lock, flags);
6740         list_for_each_entry(filter, &ifh->list, entry) {
6741                 if (filter->path.dentry) {
6742                         event->addr_filter_ranges[count].start = 0;
6743                         event->addr_filter_ranges[count].size = 0;
6744                         restart++;
6745                 }
6746
6747                 count++;
6748         }
6749
6750         if (restart)
6751                 event->addr_filters_gen++;
6752         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6753
6754         if (restart)
6755                 perf_event_stop(event, 1);
6756 }
6757
6758 void perf_event_exec(void)
6759 {
6760         struct perf_event_context *ctx;
6761         int ctxn;
6762
6763         rcu_read_lock();
6764         for_each_task_context_nr(ctxn) {
6765                 ctx = current->perf_event_ctxp[ctxn];
6766                 if (!ctx)
6767                         continue;
6768
6769                 perf_event_enable_on_exec(ctxn);
6770
6771                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6772                                    true);
6773         }
6774         rcu_read_unlock();
6775 }
6776
6777 struct remote_output {
6778         struct ring_buffer      *rb;
6779         int                     err;
6780 };
6781
6782 static void __perf_event_output_stop(struct perf_event *event, void *data)
6783 {
6784         struct perf_event *parent = event->parent;
6785         struct remote_output *ro = data;
6786         struct ring_buffer *rb = ro->rb;
6787         struct stop_event_data sd = {
6788                 .event  = event,
6789         };
6790
6791         if (!has_aux(event))
6792                 return;
6793
6794         if (!parent)
6795                 parent = event;
6796
6797         /*
6798          * In case of inheritance, it will be the parent that links to the
6799          * ring-buffer, but it will be the child that's actually using it.
6800          *
6801          * We are using event::rb to determine if the event should be stopped,
6802          * however this may race with ring_buffer_attach() (through set_output),
6803          * which will make us skip the event that actually needs to be stopped.
6804          * So ring_buffer_attach() has to stop an aux event before re-assigning
6805          * its rb pointer.
6806          */
6807         if (rcu_dereference(parent->rb) == rb)
6808                 ro->err = __perf_event_stop(&sd);
6809 }
6810
6811 static int __perf_pmu_output_stop(void *info)
6812 {
6813         struct perf_event *event = info;
6814         struct pmu *pmu = event->pmu;
6815         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6816         struct remote_output ro = {
6817                 .rb     = event->rb,
6818         };
6819
6820         rcu_read_lock();
6821         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6822         if (cpuctx->task_ctx)
6823                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6824                                    &ro, false);
6825         rcu_read_unlock();
6826
6827         return ro.err;
6828 }
6829
6830 static void perf_pmu_output_stop(struct perf_event *event)
6831 {
6832         struct perf_event *iter;
6833         int err, cpu;
6834
6835 restart:
6836         rcu_read_lock();
6837         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6838                 /*
6839                  * For per-CPU events, we need to make sure that neither they
6840                  * nor their children are running; for cpu==-1 events it's
6841                  * sufficient to stop the event itself if it's active, since
6842                  * it can't have children.
6843                  */
6844                 cpu = iter->cpu;
6845                 if (cpu == -1)
6846                         cpu = READ_ONCE(iter->oncpu);
6847
6848                 if (cpu == -1)
6849                         continue;
6850
6851                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6852                 if (err == -EAGAIN) {
6853                         rcu_read_unlock();
6854                         goto restart;
6855                 }
6856         }
6857         rcu_read_unlock();
6858 }
6859
6860 /*
6861  * task tracking -- fork/exit
6862  *
6863  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6864  */
6865
6866 struct perf_task_event {
6867         struct task_struct              *task;
6868         struct perf_event_context       *task_ctx;
6869
6870         struct {
6871                 struct perf_event_header        header;
6872
6873                 u32                             pid;
6874                 u32                             ppid;
6875                 u32                             tid;
6876                 u32                             ptid;
6877                 u64                             time;
6878         } event_id;
6879 };
6880
6881 static int perf_event_task_match(struct perf_event *event)
6882 {
6883         return event->attr.comm  || event->attr.mmap ||
6884                event->attr.mmap2 || event->attr.mmap_data ||
6885                event->attr.task;
6886 }
6887
6888 static void perf_event_task_output(struct perf_event *event,
6889                                    void *data)
6890 {
6891         struct perf_task_event *task_event = data;
6892         struct perf_output_handle handle;
6893         struct perf_sample_data sample;
6894         struct task_struct *task = task_event->task;
6895         int ret, size = task_event->event_id.header.size;
6896
6897         if (!perf_event_task_match(event))
6898                 return;
6899
6900         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6901
6902         ret = perf_output_begin(&handle, event,
6903                                 task_event->event_id.header.size);
6904         if (ret)
6905                 goto out;
6906
6907         task_event->event_id.pid = perf_event_pid(event, task);
6908         task_event->event_id.ppid = perf_event_pid(event, current);
6909
6910         task_event->event_id.tid = perf_event_tid(event, task);
6911         task_event->event_id.ptid = perf_event_tid(event, current);
6912
6913         task_event->event_id.time = perf_event_clock(event);
6914
6915         perf_output_put(&handle, task_event->event_id);
6916
6917         perf_event__output_id_sample(event, &handle, &sample);
6918
6919         perf_output_end(&handle);
6920 out:
6921         task_event->event_id.header.size = size;
6922 }
6923
6924 static void perf_event_task(struct task_struct *task,
6925                               struct perf_event_context *task_ctx,
6926                               int new)
6927 {
6928         struct perf_task_event task_event;
6929
6930         if (!atomic_read(&nr_comm_events) &&
6931             !atomic_read(&nr_mmap_events) &&
6932             !atomic_read(&nr_task_events))
6933                 return;
6934
6935         task_event = (struct perf_task_event){
6936                 .task     = task,
6937                 .task_ctx = task_ctx,
6938                 .event_id    = {
6939                         .header = {
6940                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6941                                 .misc = 0,
6942                                 .size = sizeof(task_event.event_id),
6943                         },
6944                         /* .pid  */
6945                         /* .ppid */
6946                         /* .tid  */
6947                         /* .ptid */
6948                         /* .time */
6949                 },
6950         };
6951
6952         perf_iterate_sb(perf_event_task_output,
6953                        &task_event,
6954                        task_ctx);
6955 }
6956
6957 void perf_event_fork(struct task_struct *task)
6958 {
6959         perf_event_task(task, NULL, 1);
6960         perf_event_namespaces(task);
6961 }
6962
6963 /*
6964  * comm tracking
6965  */
6966
6967 struct perf_comm_event {
6968         struct task_struct      *task;
6969         char                    *comm;
6970         int                     comm_size;
6971
6972         struct {
6973                 struct perf_event_header        header;
6974
6975                 u32                             pid;
6976                 u32                             tid;
6977         } event_id;
6978 };
6979
6980 static int perf_event_comm_match(struct perf_event *event)
6981 {
6982         return event->attr.comm;
6983 }
6984
6985 static void perf_event_comm_output(struct perf_event *event,
6986                                    void *data)
6987 {
6988         struct perf_comm_event *comm_event = data;
6989         struct perf_output_handle handle;
6990         struct perf_sample_data sample;
6991         int size = comm_event->event_id.header.size;
6992         int ret;
6993
6994         if (!perf_event_comm_match(event))
6995                 return;
6996
6997         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6998         ret = perf_output_begin(&handle, event,
6999                                 comm_event->event_id.header.size);
7000
7001         if (ret)
7002                 goto out;
7003
7004         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7005         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7006
7007         perf_output_put(&handle, comm_event->event_id);
7008         __output_copy(&handle, comm_event->comm,
7009                                    comm_event->comm_size);
7010
7011         perf_event__output_id_sample(event, &handle, &sample);
7012
7013         perf_output_end(&handle);
7014 out:
7015         comm_event->event_id.header.size = size;
7016 }
7017
7018 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7019 {
7020         char comm[TASK_COMM_LEN];
7021         unsigned int size;
7022
7023         memset(comm, 0, sizeof(comm));
7024         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7025         size = ALIGN(strlen(comm)+1, sizeof(u64));
7026
7027         comm_event->comm = comm;
7028         comm_event->comm_size = size;
7029
7030         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7031
7032         perf_iterate_sb(perf_event_comm_output,
7033                        comm_event,
7034                        NULL);
7035 }
7036
7037 void perf_event_comm(struct task_struct *task, bool exec)
7038 {
7039         struct perf_comm_event comm_event;
7040
7041         if (!atomic_read(&nr_comm_events))
7042                 return;
7043
7044         comm_event = (struct perf_comm_event){
7045                 .task   = task,
7046                 /* .comm      */
7047                 /* .comm_size */
7048                 .event_id  = {
7049                         .header = {
7050                                 .type = PERF_RECORD_COMM,
7051                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7052                                 /* .size */
7053                         },
7054                         /* .pid */
7055                         /* .tid */
7056                 },
7057         };
7058
7059         perf_event_comm_event(&comm_event);
7060 }
7061
7062 /*
7063  * namespaces tracking
7064  */
7065
7066 struct perf_namespaces_event {
7067         struct task_struct              *task;
7068
7069         struct {
7070                 struct perf_event_header        header;
7071
7072                 u32                             pid;
7073                 u32                             tid;
7074                 u64                             nr_namespaces;
7075                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7076         } event_id;
7077 };
7078
7079 static int perf_event_namespaces_match(struct perf_event *event)
7080 {
7081         return event->attr.namespaces;
7082 }
7083
7084 static void perf_event_namespaces_output(struct perf_event *event,
7085                                          void *data)
7086 {
7087         struct perf_namespaces_event *namespaces_event = data;
7088         struct perf_output_handle handle;
7089         struct perf_sample_data sample;
7090         u16 header_size = namespaces_event->event_id.header.size;
7091         int ret;
7092
7093         if (!perf_event_namespaces_match(event))
7094                 return;
7095
7096         perf_event_header__init_id(&namespaces_event->event_id.header,
7097                                    &sample, event);
7098         ret = perf_output_begin(&handle, event,
7099                                 namespaces_event->event_id.header.size);
7100         if (ret)
7101                 goto out;
7102
7103         namespaces_event->event_id.pid = perf_event_pid(event,
7104                                                         namespaces_event->task);
7105         namespaces_event->event_id.tid = perf_event_tid(event,
7106                                                         namespaces_event->task);
7107
7108         perf_output_put(&handle, namespaces_event->event_id);
7109
7110         perf_event__output_id_sample(event, &handle, &sample);
7111
7112         perf_output_end(&handle);
7113 out:
7114         namespaces_event->event_id.header.size = header_size;
7115 }
7116
7117 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7118                                    struct task_struct *task,
7119                                    const struct proc_ns_operations *ns_ops)
7120 {
7121         struct path ns_path;
7122         struct inode *ns_inode;
7123         void *error;
7124
7125         error = ns_get_path(&ns_path, task, ns_ops);
7126         if (!error) {
7127                 ns_inode = ns_path.dentry->d_inode;
7128                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7129                 ns_link_info->ino = ns_inode->i_ino;
7130                 path_put(&ns_path);
7131         }
7132 }
7133
7134 void perf_event_namespaces(struct task_struct *task)
7135 {
7136         struct perf_namespaces_event namespaces_event;
7137         struct perf_ns_link_info *ns_link_info;
7138
7139         if (!atomic_read(&nr_namespaces_events))
7140                 return;
7141
7142         namespaces_event = (struct perf_namespaces_event){
7143                 .task   = task,
7144                 .event_id  = {
7145                         .header = {
7146                                 .type = PERF_RECORD_NAMESPACES,
7147                                 .misc = 0,
7148                                 .size = sizeof(namespaces_event.event_id),
7149                         },
7150                         /* .pid */
7151                         /* .tid */
7152                         .nr_namespaces = NR_NAMESPACES,
7153                         /* .link_info[NR_NAMESPACES] */
7154                 },
7155         };
7156
7157         ns_link_info = namespaces_event.event_id.link_info;
7158
7159         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7160                                task, &mntns_operations);
7161
7162 #ifdef CONFIG_USER_NS
7163         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7164                                task, &userns_operations);
7165 #endif
7166 #ifdef CONFIG_NET_NS
7167         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7168                                task, &netns_operations);
7169 #endif
7170 #ifdef CONFIG_UTS_NS
7171         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7172                                task, &utsns_operations);
7173 #endif
7174 #ifdef CONFIG_IPC_NS
7175         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7176                                task, &ipcns_operations);
7177 #endif
7178 #ifdef CONFIG_PID_NS
7179         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7180                                task, &pidns_operations);
7181 #endif
7182 #ifdef CONFIG_CGROUPS
7183         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7184                                task, &cgroupns_operations);
7185 #endif
7186
7187         perf_iterate_sb(perf_event_namespaces_output,
7188                         &namespaces_event,
7189                         NULL);
7190 }
7191
7192 /*
7193  * mmap tracking
7194  */
7195
7196 struct perf_mmap_event {
7197         struct vm_area_struct   *vma;
7198
7199         const char              *file_name;
7200         int                     file_size;
7201         int                     maj, min;
7202         u64                     ino;
7203         u64                     ino_generation;
7204         u32                     prot, flags;
7205
7206         struct {
7207                 struct perf_event_header        header;
7208
7209                 u32                             pid;
7210                 u32                             tid;
7211                 u64                             start;
7212                 u64                             len;
7213                 u64                             pgoff;
7214         } event_id;
7215 };
7216
7217 static int perf_event_mmap_match(struct perf_event *event,
7218                                  void *data)
7219 {
7220         struct perf_mmap_event *mmap_event = data;
7221         struct vm_area_struct *vma = mmap_event->vma;
7222         int executable = vma->vm_flags & VM_EXEC;
7223
7224         return (!executable && event->attr.mmap_data) ||
7225                (executable && (event->attr.mmap || event->attr.mmap2));
7226 }
7227
7228 static void perf_event_mmap_output(struct perf_event *event,
7229                                    void *data)
7230 {
7231         struct perf_mmap_event *mmap_event = data;
7232         struct perf_output_handle handle;
7233         struct perf_sample_data sample;
7234         int size = mmap_event->event_id.header.size;
7235         u32 type = mmap_event->event_id.header.type;
7236         int ret;
7237
7238         if (!perf_event_mmap_match(event, data))
7239                 return;
7240
7241         if (event->attr.mmap2) {
7242                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7243                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7244                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7245                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7246                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7247                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7248                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7249         }
7250
7251         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7252         ret = perf_output_begin(&handle, event,
7253                                 mmap_event->event_id.header.size);
7254         if (ret)
7255                 goto out;
7256
7257         mmap_event->event_id.pid = perf_event_pid(event, current);
7258         mmap_event->event_id.tid = perf_event_tid(event, current);
7259
7260         perf_output_put(&handle, mmap_event->event_id);
7261
7262         if (event->attr.mmap2) {
7263                 perf_output_put(&handle, mmap_event->maj);
7264                 perf_output_put(&handle, mmap_event->min);
7265                 perf_output_put(&handle, mmap_event->ino);
7266                 perf_output_put(&handle, mmap_event->ino_generation);
7267                 perf_output_put(&handle, mmap_event->prot);
7268                 perf_output_put(&handle, mmap_event->flags);
7269         }
7270
7271         __output_copy(&handle, mmap_event->file_name,
7272                                    mmap_event->file_size);
7273
7274         perf_event__output_id_sample(event, &handle, &sample);
7275
7276         perf_output_end(&handle);
7277 out:
7278         mmap_event->event_id.header.size = size;
7279         mmap_event->event_id.header.type = type;
7280 }
7281
7282 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7283 {
7284         struct vm_area_struct *vma = mmap_event->vma;
7285         struct file *file = vma->vm_file;
7286         int maj = 0, min = 0;
7287         u64 ino = 0, gen = 0;
7288         u32 prot = 0, flags = 0;
7289         unsigned int size;
7290         char tmp[16];
7291         char *buf = NULL;
7292         char *name;
7293
7294         if (vma->vm_flags & VM_READ)
7295                 prot |= PROT_READ;
7296         if (vma->vm_flags & VM_WRITE)
7297                 prot |= PROT_WRITE;
7298         if (vma->vm_flags & VM_EXEC)
7299                 prot |= PROT_EXEC;
7300
7301         if (vma->vm_flags & VM_MAYSHARE)
7302                 flags = MAP_SHARED;
7303         else
7304                 flags = MAP_PRIVATE;
7305
7306         if (vma->vm_flags & VM_DENYWRITE)
7307                 flags |= MAP_DENYWRITE;
7308         if (vma->vm_flags & VM_MAYEXEC)
7309                 flags |= MAP_EXECUTABLE;
7310         if (vma->vm_flags & VM_LOCKED)
7311                 flags |= MAP_LOCKED;
7312         if (vma->vm_flags & VM_HUGETLB)
7313                 flags |= MAP_HUGETLB;
7314
7315         if (file) {
7316                 struct inode *inode;
7317                 dev_t dev;
7318
7319                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7320                 if (!buf) {
7321                         name = "//enomem";
7322                         goto cpy_name;
7323                 }
7324                 /*
7325                  * d_path() works from the end of the rb backwards, so we
7326                  * need to add enough zero bytes after the string to handle
7327                  * the 64bit alignment we do later.
7328                  */
7329                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7330                 if (IS_ERR(name)) {
7331                         name = "//toolong";
7332                         goto cpy_name;
7333                 }
7334                 inode = file_inode(vma->vm_file);
7335                 dev = inode->i_sb->s_dev;
7336                 ino = inode->i_ino;
7337                 gen = inode->i_generation;
7338                 maj = MAJOR(dev);
7339                 min = MINOR(dev);
7340
7341                 goto got_name;
7342         } else {
7343                 if (vma->vm_ops && vma->vm_ops->name) {
7344                         name = (char *) vma->vm_ops->name(vma);
7345                         if (name)
7346                                 goto cpy_name;
7347                 }
7348
7349                 name = (char *)arch_vma_name(vma);
7350                 if (name)
7351                         goto cpy_name;
7352
7353                 if (vma->vm_start <= vma->vm_mm->start_brk &&
7354                                 vma->vm_end >= vma->vm_mm->brk) {
7355                         name = "[heap]";
7356                         goto cpy_name;
7357                 }
7358                 if (vma->vm_start <= vma->vm_mm->start_stack &&
7359                                 vma->vm_end >= vma->vm_mm->start_stack) {
7360                         name = "[stack]";
7361                         goto cpy_name;
7362                 }
7363
7364                 name = "//anon";
7365                 goto cpy_name;
7366         }
7367
7368 cpy_name:
7369         strlcpy(tmp, name, sizeof(tmp));
7370         name = tmp;
7371 got_name:
7372         /*
7373          * Since our buffer works in 8 byte units we need to align our string
7374          * size to a multiple of 8. However, we must guarantee the tail end is
7375          * zero'd out to avoid leaking random bits to userspace.
7376          */
7377         size = strlen(name)+1;
7378         while (!IS_ALIGNED(size, sizeof(u64)))
7379                 name[size++] = '\0';
7380
7381         mmap_event->file_name = name;
7382         mmap_event->file_size = size;
7383         mmap_event->maj = maj;
7384         mmap_event->min = min;
7385         mmap_event->ino = ino;
7386         mmap_event->ino_generation = gen;
7387         mmap_event->prot = prot;
7388         mmap_event->flags = flags;
7389
7390         if (!(vma->vm_flags & VM_EXEC))
7391                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7392
7393         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7394
7395         perf_iterate_sb(perf_event_mmap_output,
7396                        mmap_event,
7397                        NULL);
7398
7399         kfree(buf);
7400 }
7401
7402 /*
7403  * Check whether inode and address range match filter criteria.
7404  */
7405 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7406                                      struct file *file, unsigned long offset,
7407                                      unsigned long size)
7408 {
7409         /* d_inode(NULL) won't be equal to any mapped user-space file */
7410         if (!filter->path.dentry)
7411                 return false;
7412
7413         if (d_inode(filter->path.dentry) != file_inode(file))
7414                 return false;
7415
7416         if (filter->offset > offset + size)
7417                 return false;
7418
7419         if (filter->offset + filter->size < offset)
7420                 return false;
7421
7422         return true;
7423 }
7424
7425 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7426                                         struct vm_area_struct *vma,
7427                                         struct perf_addr_filter_range *fr)
7428 {
7429         unsigned long vma_size = vma->vm_end - vma->vm_start;
7430         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7431         struct file *file = vma->vm_file;
7432
7433         if (!perf_addr_filter_match(filter, file, off, vma_size))
7434                 return false;
7435
7436         if (filter->offset < off) {
7437                 fr->start = vma->vm_start;
7438                 fr->size = min(vma_size, filter->size - (off - filter->offset));
7439         } else {
7440                 fr->start = vma->vm_start + filter->offset - off;
7441                 fr->size = min(vma->vm_end - fr->start, filter->size);
7442         }
7443
7444         return true;
7445 }
7446
7447 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7448 {
7449         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7450         struct vm_area_struct *vma = data;
7451         struct perf_addr_filter *filter;
7452         unsigned int restart = 0, count = 0;
7453         unsigned long flags;
7454
7455         if (!has_addr_filter(event))
7456                 return;
7457
7458         if (!vma->vm_file)
7459                 return;
7460
7461         raw_spin_lock_irqsave(&ifh->lock, flags);
7462         list_for_each_entry(filter, &ifh->list, entry) {
7463                 if (perf_addr_filter_vma_adjust(filter, vma,
7464                                                 &event->addr_filter_ranges[count]))
7465                         restart++;
7466
7467                 count++;
7468         }
7469
7470         if (restart)
7471                 event->addr_filters_gen++;
7472         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7473
7474         if (restart)
7475                 perf_event_stop(event, 1);
7476 }
7477
7478 /*
7479  * Adjust all task's events' filters to the new vma
7480  */
7481 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7482 {
7483         struct perf_event_context *ctx;
7484         int ctxn;
7485
7486         /*
7487          * Data tracing isn't supported yet and as such there is no need
7488          * to keep track of anything that isn't related to executable code:
7489          */
7490         if (!(vma->vm_flags & VM_EXEC))
7491                 return;
7492
7493         rcu_read_lock();
7494         for_each_task_context_nr(ctxn) {
7495                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7496                 if (!ctx)
7497                         continue;
7498
7499                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7500         }
7501         rcu_read_unlock();
7502 }
7503
7504 void perf_event_mmap(struct vm_area_struct *vma)
7505 {
7506         struct perf_mmap_event mmap_event;
7507
7508         if (!atomic_read(&nr_mmap_events))
7509                 return;
7510
7511         mmap_event = (struct perf_mmap_event){
7512                 .vma    = vma,
7513                 /* .file_name */
7514                 /* .file_size */
7515                 .event_id  = {
7516                         .header = {
7517                                 .type = PERF_RECORD_MMAP,
7518                                 .misc = PERF_RECORD_MISC_USER,
7519                                 /* .size */
7520                         },
7521                         /* .pid */
7522                         /* .tid */
7523                         .start  = vma->vm_start,
7524                         .len    = vma->vm_end - vma->vm_start,
7525                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7526                 },
7527                 /* .maj (attr_mmap2 only) */
7528                 /* .min (attr_mmap2 only) */
7529                 /* .ino (attr_mmap2 only) */
7530                 /* .ino_generation (attr_mmap2 only) */
7531                 /* .prot (attr_mmap2 only) */
7532                 /* .flags (attr_mmap2 only) */
7533         };
7534
7535         perf_addr_filters_adjust(vma);
7536         perf_event_mmap_event(&mmap_event);
7537 }
7538
7539 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7540                           unsigned long size, u64 flags)
7541 {
7542         struct perf_output_handle handle;
7543         struct perf_sample_data sample;
7544         struct perf_aux_event {
7545                 struct perf_event_header        header;
7546                 u64                             offset;
7547                 u64                             size;
7548                 u64                             flags;
7549         } rec = {
7550                 .header = {
7551                         .type = PERF_RECORD_AUX,
7552                         .misc = 0,
7553                         .size = sizeof(rec),
7554                 },
7555                 .offset         = head,
7556                 .size           = size,
7557                 .flags          = flags,
7558         };
7559         int ret;
7560
7561         perf_event_header__init_id(&rec.header, &sample, event);
7562         ret = perf_output_begin(&handle, event, rec.header.size);
7563
7564         if (ret)
7565                 return;
7566
7567         perf_output_put(&handle, rec);
7568         perf_event__output_id_sample(event, &handle, &sample);
7569
7570         perf_output_end(&handle);
7571 }
7572
7573 /*
7574  * Lost/dropped samples logging
7575  */
7576 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7577 {
7578         struct perf_output_handle handle;
7579         struct perf_sample_data sample;
7580         int ret;
7581
7582         struct {
7583                 struct perf_event_header        header;
7584                 u64                             lost;
7585         } lost_samples_event = {
7586                 .header = {
7587                         .type = PERF_RECORD_LOST_SAMPLES,
7588                         .misc = 0,
7589                         .size = sizeof(lost_samples_event),
7590                 },
7591                 .lost           = lost,
7592         };
7593
7594         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7595
7596         ret = perf_output_begin(&handle, event,
7597                                 lost_samples_event.header.size);
7598         if (ret)
7599                 return;
7600
7601         perf_output_put(&handle, lost_samples_event);
7602         perf_event__output_id_sample(event, &handle, &sample);
7603         perf_output_end(&handle);
7604 }
7605
7606 /*
7607  * context_switch tracking
7608  */
7609
7610 struct perf_switch_event {
7611         struct task_struct      *task;
7612         struct task_struct      *next_prev;
7613
7614         struct {
7615                 struct perf_event_header        header;
7616                 u32                             next_prev_pid;
7617                 u32                             next_prev_tid;
7618         } event_id;
7619 };
7620
7621 static int perf_event_switch_match(struct perf_event *event)
7622 {
7623         return event->attr.context_switch;
7624 }
7625
7626 static void perf_event_switch_output(struct perf_event *event, void *data)
7627 {
7628         struct perf_switch_event *se = data;
7629         struct perf_output_handle handle;
7630         struct perf_sample_data sample;
7631         int ret;
7632
7633         if (!perf_event_switch_match(event))
7634                 return;
7635
7636         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7637         if (event->ctx->task) {
7638                 se->event_id.header.type = PERF_RECORD_SWITCH;
7639                 se->event_id.header.size = sizeof(se->event_id.header);
7640         } else {
7641                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7642                 se->event_id.header.size = sizeof(se->event_id);
7643                 se->event_id.next_prev_pid =
7644                                         perf_event_pid(event, se->next_prev);
7645                 se->event_id.next_prev_tid =
7646                                         perf_event_tid(event, se->next_prev);
7647         }
7648
7649         perf_event_header__init_id(&se->event_id.header, &sample, event);
7650
7651         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7652         if (ret)
7653                 return;
7654
7655         if (event->ctx->task)
7656                 perf_output_put(&handle, se->event_id.header);
7657         else
7658                 perf_output_put(&handle, se->event_id);
7659
7660         perf_event__output_id_sample(event, &handle, &sample);
7661
7662         perf_output_end(&handle);
7663 }
7664
7665 static void perf_event_switch(struct task_struct *task,
7666                               struct task_struct *next_prev, bool sched_in)
7667 {
7668         struct perf_switch_event switch_event;
7669
7670         /* N.B. caller checks nr_switch_events != 0 */
7671
7672         switch_event = (struct perf_switch_event){
7673                 .task           = task,
7674                 .next_prev      = next_prev,
7675                 .event_id       = {
7676                         .header = {
7677                                 /* .type */
7678                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7679                                 /* .size */
7680                         },
7681                         /* .next_prev_pid */
7682                         /* .next_prev_tid */
7683                 },
7684         };
7685
7686         if (!sched_in && task->state == TASK_RUNNING)
7687                 switch_event.event_id.header.misc |=
7688                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7689
7690         perf_iterate_sb(perf_event_switch_output,
7691                        &switch_event,
7692                        NULL);
7693 }
7694
7695 /*
7696  * IRQ throttle logging
7697  */
7698
7699 static void perf_log_throttle(struct perf_event *event, int enable)
7700 {
7701         struct perf_output_handle handle;
7702         struct perf_sample_data sample;
7703         int ret;
7704
7705         struct {
7706                 struct perf_event_header        header;
7707                 u64                             time;
7708                 u64                             id;
7709                 u64                             stream_id;
7710         } throttle_event = {
7711                 .header = {
7712                         .type = PERF_RECORD_THROTTLE,
7713                         .misc = 0,
7714                         .size = sizeof(throttle_event),
7715                 },
7716                 .time           = perf_event_clock(event),
7717                 .id             = primary_event_id(event),
7718                 .stream_id      = event->id,
7719         };
7720
7721         if (enable)
7722                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7723
7724         perf_event_header__init_id(&throttle_event.header, &sample, event);
7725
7726         ret = perf_output_begin(&handle, event,
7727                                 throttle_event.header.size);
7728         if (ret)
7729                 return;
7730
7731         perf_output_put(&handle, throttle_event);
7732         perf_event__output_id_sample(event, &handle, &sample);
7733         perf_output_end(&handle);
7734 }
7735
7736 /*
7737  * ksymbol register/unregister tracking
7738  */
7739
7740 struct perf_ksymbol_event {
7741         const char      *name;
7742         int             name_len;
7743         struct {
7744                 struct perf_event_header        header;
7745                 u64                             addr;
7746                 u32                             len;
7747                 u16                             ksym_type;
7748                 u16                             flags;
7749         } event_id;
7750 };
7751
7752 static int perf_event_ksymbol_match(struct perf_event *event)
7753 {
7754         return event->attr.ksymbol;
7755 }
7756
7757 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7758 {
7759         struct perf_ksymbol_event *ksymbol_event = data;
7760         struct perf_output_handle handle;
7761         struct perf_sample_data sample;
7762         int ret;
7763
7764         if (!perf_event_ksymbol_match(event))
7765                 return;
7766
7767         perf_event_header__init_id(&ksymbol_event->event_id.header,
7768                                    &sample, event);
7769         ret = perf_output_begin(&handle, event,
7770                                 ksymbol_event->event_id.header.size);
7771         if (ret)
7772                 return;
7773
7774         perf_output_put(&handle, ksymbol_event->event_id);
7775         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7776         perf_event__output_id_sample(event, &handle, &sample);
7777
7778         perf_output_end(&handle);
7779 }
7780
7781 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7782                         const char *sym)
7783 {
7784         struct perf_ksymbol_event ksymbol_event;
7785         char name[KSYM_NAME_LEN];
7786         u16 flags = 0;
7787         int name_len;
7788
7789         if (!atomic_read(&nr_ksymbol_events))
7790                 return;
7791
7792         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7793             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7794                 goto err;
7795
7796         strlcpy(name, sym, KSYM_NAME_LEN);
7797         name_len = strlen(name) + 1;
7798         while (!IS_ALIGNED(name_len, sizeof(u64)))
7799                 name[name_len++] = '\0';
7800         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7801
7802         if (unregister)
7803                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7804
7805         ksymbol_event = (struct perf_ksymbol_event){
7806                 .name = name,
7807                 .name_len = name_len,
7808                 .event_id = {
7809                         .header = {
7810                                 .type = PERF_RECORD_KSYMBOL,
7811                                 .size = sizeof(ksymbol_event.event_id) +
7812                                         name_len,
7813                         },
7814                         .addr = addr,
7815                         .len = len,
7816                         .ksym_type = ksym_type,
7817                         .flags = flags,
7818                 },
7819         };
7820
7821         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7822         return;
7823 err:
7824         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7825 }
7826
7827 /*
7828  * bpf program load/unload tracking
7829  */
7830
7831 struct perf_bpf_event {
7832         struct bpf_prog *prog;
7833         struct {
7834                 struct perf_event_header        header;
7835                 u16                             type;
7836                 u16                             flags;
7837                 u32                             id;
7838                 u8                              tag[BPF_TAG_SIZE];
7839         } event_id;
7840 };
7841
7842 static int perf_event_bpf_match(struct perf_event *event)
7843 {
7844         return event->attr.bpf_event;
7845 }
7846
7847 static void perf_event_bpf_output(struct perf_event *event, void *data)
7848 {
7849         struct perf_bpf_event *bpf_event = data;
7850         struct perf_output_handle handle;
7851         struct perf_sample_data sample;
7852         int ret;
7853
7854         if (!perf_event_bpf_match(event))
7855                 return;
7856
7857         perf_event_header__init_id(&bpf_event->event_id.header,
7858                                    &sample, event);
7859         ret = perf_output_begin(&handle, event,
7860                                 bpf_event->event_id.header.size);
7861         if (ret)
7862                 return;
7863
7864         perf_output_put(&handle, bpf_event->event_id);
7865         perf_event__output_id_sample(event, &handle, &sample);
7866
7867         perf_output_end(&handle);
7868 }
7869
7870 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
7871                                          enum perf_bpf_event_type type)
7872 {
7873         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
7874         char sym[KSYM_NAME_LEN];
7875         int i;
7876
7877         if (prog->aux->func_cnt == 0) {
7878                 bpf_get_prog_name(prog, sym);
7879                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
7880                                    (u64)(unsigned long)prog->bpf_func,
7881                                    prog->jited_len, unregister, sym);
7882         } else {
7883                 for (i = 0; i < prog->aux->func_cnt; i++) {
7884                         struct bpf_prog *subprog = prog->aux->func[i];
7885
7886                         bpf_get_prog_name(subprog, sym);
7887                         perf_event_ksymbol(
7888                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
7889                                 (u64)(unsigned long)subprog->bpf_func,
7890                                 subprog->jited_len, unregister, sym);
7891                 }
7892         }
7893 }
7894
7895 void perf_event_bpf_event(struct bpf_prog *prog,
7896                           enum perf_bpf_event_type type,
7897                           u16 flags)
7898 {
7899         struct perf_bpf_event bpf_event;
7900
7901         if (type <= PERF_BPF_EVENT_UNKNOWN ||
7902             type >= PERF_BPF_EVENT_MAX)
7903                 return;
7904
7905         switch (type) {
7906         case PERF_BPF_EVENT_PROG_LOAD:
7907         case PERF_BPF_EVENT_PROG_UNLOAD:
7908                 if (atomic_read(&nr_ksymbol_events))
7909                         perf_event_bpf_emit_ksymbols(prog, type);
7910                 break;
7911         default:
7912                 break;
7913         }
7914
7915         if (!atomic_read(&nr_bpf_events))
7916                 return;
7917
7918         bpf_event = (struct perf_bpf_event){
7919                 .prog = prog,
7920                 .event_id = {
7921                         .header = {
7922                                 .type = PERF_RECORD_BPF_EVENT,
7923                                 .size = sizeof(bpf_event.event_id),
7924                         },
7925                         .type = type,
7926                         .flags = flags,
7927                         .id = prog->aux->id,
7928                 },
7929         };
7930
7931         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
7932
7933         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
7934         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
7935 }
7936
7937 void perf_event_itrace_started(struct perf_event *event)
7938 {
7939         event->attach_state |= PERF_ATTACH_ITRACE;
7940 }
7941
7942 static void perf_log_itrace_start(struct perf_event *event)
7943 {
7944         struct perf_output_handle handle;
7945         struct perf_sample_data sample;
7946         struct perf_aux_event {
7947                 struct perf_event_header        header;
7948                 u32                             pid;
7949                 u32                             tid;
7950         } rec;
7951         int ret;
7952
7953         if (event->parent)
7954                 event = event->parent;
7955
7956         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7957             event->attach_state & PERF_ATTACH_ITRACE)
7958                 return;
7959
7960         rec.header.type = PERF_RECORD_ITRACE_START;
7961         rec.header.misc = 0;
7962         rec.header.size = sizeof(rec);
7963         rec.pid = perf_event_pid(event, current);
7964         rec.tid = perf_event_tid(event, current);
7965
7966         perf_event_header__init_id(&rec.header, &sample, event);
7967         ret = perf_output_begin(&handle, event, rec.header.size);
7968
7969         if (ret)
7970                 return;
7971
7972         perf_output_put(&handle, rec);
7973         perf_event__output_id_sample(event, &handle, &sample);
7974
7975         perf_output_end(&handle);
7976 }
7977
7978 static int
7979 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7980 {
7981         struct hw_perf_event *hwc = &event->hw;
7982         int ret = 0;
7983         u64 seq;
7984
7985         seq = __this_cpu_read(perf_throttled_seq);
7986         if (seq != hwc->interrupts_seq) {
7987                 hwc->interrupts_seq = seq;
7988                 hwc->interrupts = 1;
7989         } else {
7990                 hwc->interrupts++;
7991                 if (unlikely(throttle
7992                              && hwc->interrupts >= max_samples_per_tick)) {
7993                         __this_cpu_inc(perf_throttled_count);
7994                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7995                         hwc->interrupts = MAX_INTERRUPTS;
7996                         perf_log_throttle(event, 0);
7997                         ret = 1;
7998                 }
7999         }
8000
8001         if (event->attr.freq) {
8002                 u64 now = perf_clock();
8003                 s64 delta = now - hwc->freq_time_stamp;
8004
8005                 hwc->freq_time_stamp = now;
8006
8007                 if (delta > 0 && delta < 2*TICK_NSEC)
8008                         perf_adjust_period(event, delta, hwc->last_period, true);
8009         }
8010
8011         return ret;
8012 }
8013
8014 int perf_event_account_interrupt(struct perf_event *event)
8015 {
8016         return __perf_event_account_interrupt(event, 1);
8017 }
8018
8019 /*
8020  * Generic event overflow handling, sampling.
8021  */
8022
8023 static int __perf_event_overflow(struct perf_event *event,
8024                                    int throttle, struct perf_sample_data *data,
8025                                    struct pt_regs *regs)
8026 {
8027         int events = atomic_read(&event->event_limit);
8028         int ret = 0;
8029
8030         /*
8031          * Non-sampling counters might still use the PMI to fold short
8032          * hardware counters, ignore those.
8033          */
8034         if (unlikely(!is_sampling_event(event)))
8035                 return 0;
8036
8037         ret = __perf_event_account_interrupt(event, throttle);
8038
8039         /*
8040          * XXX event_limit might not quite work as expected on inherited
8041          * events
8042          */
8043
8044         event->pending_kill = POLL_IN;
8045         if (events && atomic_dec_and_test(&event->event_limit)) {
8046                 ret = 1;
8047                 event->pending_kill = POLL_HUP;
8048
8049                 perf_event_disable_inatomic(event);
8050         }
8051
8052         READ_ONCE(event->overflow_handler)(event, data, regs);
8053
8054         if (*perf_event_fasync(event) && event->pending_kill) {
8055                 event->pending_wakeup = 1;
8056                 irq_work_queue(&event->pending);
8057         }
8058
8059         return ret;
8060 }
8061
8062 int perf_event_overflow(struct perf_event *event,
8063                           struct perf_sample_data *data,
8064                           struct pt_regs *regs)
8065 {
8066         return __perf_event_overflow(event, 1, data, regs);
8067 }
8068
8069 /*
8070  * Generic software event infrastructure
8071  */
8072
8073 struct swevent_htable {
8074         struct swevent_hlist            *swevent_hlist;
8075         struct mutex                    hlist_mutex;
8076         int                             hlist_refcount;
8077
8078         /* Recursion avoidance in each contexts */
8079         int                             recursion[PERF_NR_CONTEXTS];
8080 };
8081
8082 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8083
8084 /*
8085  * We directly increment event->count and keep a second value in
8086  * event->hw.period_left to count intervals. This period event
8087  * is kept in the range [-sample_period, 0] so that we can use the
8088  * sign as trigger.
8089  */
8090
8091 u64 perf_swevent_set_period(struct perf_event *event)
8092 {
8093         struct hw_perf_event *hwc = &event->hw;
8094         u64 period = hwc->last_period;
8095         u64 nr, offset;
8096         s64 old, val;
8097
8098         hwc->last_period = hwc->sample_period;
8099
8100 again:
8101         old = val = local64_read(&hwc->period_left);
8102         if (val < 0)
8103                 return 0;
8104
8105         nr = div64_u64(period + val, period);
8106         offset = nr * period;
8107         val -= offset;
8108         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8109                 goto again;
8110
8111         return nr;
8112 }
8113
8114 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8115                                     struct perf_sample_data *data,
8116                                     struct pt_regs *regs)
8117 {
8118         struct hw_perf_event *hwc = &event->hw;
8119         int throttle = 0;
8120
8121         if (!overflow)
8122                 overflow = perf_swevent_set_period(event);
8123
8124         if (hwc->interrupts == MAX_INTERRUPTS)
8125                 return;
8126
8127         for (; overflow; overflow--) {
8128                 if (__perf_event_overflow(event, throttle,
8129                                             data, regs)) {
8130                         /*
8131                          * We inhibit the overflow from happening when
8132                          * hwc->interrupts == MAX_INTERRUPTS.
8133                          */
8134                         break;
8135                 }
8136                 throttle = 1;
8137         }
8138 }
8139
8140 static void perf_swevent_event(struct perf_event *event, u64 nr,
8141                                struct perf_sample_data *data,
8142                                struct pt_regs *regs)
8143 {
8144         struct hw_perf_event *hwc = &event->hw;
8145
8146         local64_add(nr, &event->count);
8147
8148         if (!regs)
8149                 return;
8150
8151         if (!is_sampling_event(event))
8152                 return;
8153
8154         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8155                 data->period = nr;
8156                 return perf_swevent_overflow(event, 1, data, regs);
8157         } else
8158                 data->period = event->hw.last_period;
8159
8160         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8161                 return perf_swevent_overflow(event, 1, data, regs);
8162
8163         if (local64_add_negative(nr, &hwc->period_left))
8164                 return;
8165
8166         perf_swevent_overflow(event, 0, data, regs);
8167 }
8168
8169 static int perf_exclude_event(struct perf_event *event,
8170                               struct pt_regs *regs)
8171 {
8172         if (event->hw.state & PERF_HES_STOPPED)
8173                 return 1;
8174
8175         if (regs) {
8176                 if (event->attr.exclude_user && user_mode(regs))
8177                         return 1;
8178
8179                 if (event->attr.exclude_kernel && !user_mode(regs))
8180                         return 1;
8181         }
8182
8183         return 0;
8184 }
8185
8186 static int perf_swevent_match(struct perf_event *event,
8187                                 enum perf_type_id type,
8188                                 u32 event_id,
8189                                 struct perf_sample_data *data,
8190                                 struct pt_regs *regs)
8191 {
8192         if (event->attr.type != type)
8193                 return 0;
8194
8195         if (event->attr.config != event_id)
8196                 return 0;
8197
8198         if (perf_exclude_event(event, regs))
8199                 return 0;
8200
8201         return 1;
8202 }
8203
8204 static inline u64 swevent_hash(u64 type, u32 event_id)
8205 {
8206         u64 val = event_id | (type << 32);
8207
8208         return hash_64(val, SWEVENT_HLIST_BITS);
8209 }
8210
8211 static inline struct hlist_head *
8212 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8213 {
8214         u64 hash = swevent_hash(type, event_id);
8215
8216         return &hlist->heads[hash];
8217 }
8218
8219 /* For the read side: events when they trigger */
8220 static inline struct hlist_head *
8221 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8222 {
8223         struct swevent_hlist *hlist;
8224
8225         hlist = rcu_dereference(swhash->swevent_hlist);
8226         if (!hlist)
8227                 return NULL;
8228
8229         return __find_swevent_head(hlist, type, event_id);
8230 }
8231
8232 /* For the event head insertion and removal in the hlist */
8233 static inline struct hlist_head *
8234 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8235 {
8236         struct swevent_hlist *hlist;
8237         u32 event_id = event->attr.config;
8238         u64 type = event->attr.type;
8239
8240         /*
8241          * Event scheduling is always serialized against hlist allocation
8242          * and release. Which makes the protected version suitable here.
8243          * The context lock guarantees that.
8244          */
8245         hlist = rcu_dereference_protected(swhash->swevent_hlist,
8246                                           lockdep_is_held(&event->ctx->lock));
8247         if (!hlist)
8248                 return NULL;
8249
8250         return __find_swevent_head(hlist, type, event_id);
8251 }
8252
8253 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8254                                     u64 nr,
8255                                     struct perf_sample_data *data,
8256                                     struct pt_regs *regs)
8257 {
8258         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8259         struct perf_event *event;
8260         struct hlist_head *head;
8261
8262         rcu_read_lock();
8263         head = find_swevent_head_rcu(swhash, type, event_id);
8264         if (!head)
8265                 goto end;
8266
8267         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8268                 if (perf_swevent_match(event, type, event_id, data, regs))
8269                         perf_swevent_event(event, nr, data, regs);
8270         }
8271 end:
8272         rcu_read_unlock();
8273 }
8274
8275 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8276
8277 int perf_swevent_get_recursion_context(void)
8278 {
8279         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8280
8281         return get_recursion_context(swhash->recursion);
8282 }
8283 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8284
8285 void perf_swevent_put_recursion_context(int rctx)
8286 {
8287         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8288
8289         put_recursion_context(swhash->recursion, rctx);
8290 }
8291
8292 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8293 {
8294         struct perf_sample_data data;
8295
8296         if (WARN_ON_ONCE(!regs))
8297                 return;
8298
8299         perf_sample_data_init(&data, addr, 0);
8300         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8301 }
8302
8303 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8304 {
8305         int rctx;
8306
8307         preempt_disable_notrace();
8308         rctx = perf_swevent_get_recursion_context();
8309         if (unlikely(rctx < 0))
8310                 goto fail;
8311
8312         ___perf_sw_event(event_id, nr, regs, addr);
8313
8314         perf_swevent_put_recursion_context(rctx);
8315 fail:
8316         preempt_enable_notrace();
8317 }
8318
8319 static void perf_swevent_read(struct perf_event *event)
8320 {
8321 }
8322
8323 static int perf_swevent_add(struct perf_event *event, int flags)
8324 {
8325         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8326         struct hw_perf_event *hwc = &event->hw;
8327         struct hlist_head *head;
8328
8329         if (is_sampling_event(event)) {
8330                 hwc->last_period = hwc->sample_period;
8331                 perf_swevent_set_period(event);
8332         }
8333
8334         hwc->state = !(flags & PERF_EF_START);
8335
8336         head = find_swevent_head(swhash, event);
8337         if (WARN_ON_ONCE(!head))
8338                 return -EINVAL;
8339
8340         hlist_add_head_rcu(&event->hlist_entry, head);
8341         perf_event_update_userpage(event);
8342
8343         return 0;
8344 }
8345
8346 static void perf_swevent_del(struct perf_event *event, int flags)
8347 {
8348         hlist_del_rcu(&event->hlist_entry);
8349 }
8350
8351 static void perf_swevent_start(struct perf_event *event, int flags)
8352 {
8353         event->hw.state = 0;
8354 }
8355
8356 static void perf_swevent_stop(struct perf_event *event, int flags)
8357 {
8358         event->hw.state = PERF_HES_STOPPED;
8359 }
8360
8361 /* Deref the hlist from the update side */
8362 static inline struct swevent_hlist *
8363 swevent_hlist_deref(struct swevent_htable *swhash)
8364 {
8365         return rcu_dereference_protected(swhash->swevent_hlist,
8366                                          lockdep_is_held(&swhash->hlist_mutex));
8367 }
8368
8369 static void swevent_hlist_release(struct swevent_htable *swhash)
8370 {
8371         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8372
8373         if (!hlist)
8374                 return;
8375
8376         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8377         kfree_rcu(hlist, rcu_head);
8378 }
8379
8380 static void swevent_hlist_put_cpu(int cpu)
8381 {
8382         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8383
8384         mutex_lock(&swhash->hlist_mutex);
8385
8386         if (!--swhash->hlist_refcount)
8387                 swevent_hlist_release(swhash);
8388
8389         mutex_unlock(&swhash->hlist_mutex);
8390 }
8391
8392 static void swevent_hlist_put(void)
8393 {
8394         int cpu;
8395
8396         for_each_possible_cpu(cpu)
8397                 swevent_hlist_put_cpu(cpu);
8398 }
8399
8400 static int swevent_hlist_get_cpu(int cpu)
8401 {
8402         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8403         int err = 0;
8404
8405         mutex_lock(&swhash->hlist_mutex);
8406         if (!swevent_hlist_deref(swhash) &&
8407             cpumask_test_cpu(cpu, perf_online_mask)) {
8408                 struct swevent_hlist *hlist;
8409
8410                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8411                 if (!hlist) {
8412                         err = -ENOMEM;
8413                         goto exit;
8414                 }
8415                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8416         }
8417         swhash->hlist_refcount++;
8418 exit:
8419         mutex_unlock(&swhash->hlist_mutex);
8420
8421         return err;
8422 }
8423
8424 static int swevent_hlist_get(void)
8425 {
8426         int err, cpu, failed_cpu;
8427
8428         mutex_lock(&pmus_lock);
8429         for_each_possible_cpu(cpu) {
8430                 err = swevent_hlist_get_cpu(cpu);
8431                 if (err) {
8432                         failed_cpu = cpu;
8433                         goto fail;
8434                 }
8435         }
8436         mutex_unlock(&pmus_lock);
8437         return 0;
8438 fail:
8439         for_each_possible_cpu(cpu) {
8440                 if (cpu == failed_cpu)
8441                         break;
8442                 swevent_hlist_put_cpu(cpu);
8443         }
8444         mutex_unlock(&pmus_lock);
8445         return err;
8446 }
8447
8448 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8449
8450 static void sw_perf_event_destroy(struct perf_event *event)
8451 {
8452         u64 event_id = event->attr.config;
8453
8454         WARN_ON(event->parent);
8455
8456         static_key_slow_dec(&perf_swevent_enabled[event_id]);
8457         swevent_hlist_put();
8458 }
8459
8460 static int perf_swevent_init(struct perf_event *event)
8461 {
8462         u64 event_id = event->attr.config;
8463
8464         if (event->attr.type != PERF_TYPE_SOFTWARE)
8465                 return -ENOENT;
8466
8467         /*
8468          * no branch sampling for software events
8469          */
8470         if (has_branch_stack(event))
8471                 return -EOPNOTSUPP;
8472
8473         switch (event_id) {
8474         case PERF_COUNT_SW_CPU_CLOCK:
8475         case PERF_COUNT_SW_TASK_CLOCK:
8476                 return -ENOENT;
8477
8478         default:
8479                 break;
8480         }
8481
8482         if (event_id >= PERF_COUNT_SW_MAX)
8483                 return -ENOENT;
8484
8485         if (!event->parent) {
8486                 int err;
8487
8488                 err = swevent_hlist_get();
8489                 if (err)
8490                         return err;
8491
8492                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8493                 event->destroy = sw_perf_event_destroy;
8494         }
8495
8496         return 0;
8497 }
8498
8499 static struct pmu perf_swevent = {
8500         .task_ctx_nr    = perf_sw_context,
8501
8502         .capabilities   = PERF_PMU_CAP_NO_NMI,
8503
8504         .event_init     = perf_swevent_init,
8505         .add            = perf_swevent_add,
8506         .del            = perf_swevent_del,
8507         .start          = perf_swevent_start,
8508         .stop           = perf_swevent_stop,
8509         .read           = perf_swevent_read,
8510 };
8511
8512 #ifdef CONFIG_EVENT_TRACING
8513
8514 static int perf_tp_filter_match(struct perf_event *event,
8515                                 struct perf_sample_data *data)
8516 {
8517         void *record = data->raw->frag.data;
8518
8519         /* only top level events have filters set */
8520         if (event->parent)
8521                 event = event->parent;
8522
8523         if (likely(!event->filter) || filter_match_preds(event->filter, record))
8524                 return 1;
8525         return 0;
8526 }
8527
8528 static int perf_tp_event_match(struct perf_event *event,
8529                                 struct perf_sample_data *data,
8530                                 struct pt_regs *regs)
8531 {
8532         if (event->hw.state & PERF_HES_STOPPED)
8533                 return 0;
8534         /*
8535          * All tracepoints are from kernel-space.
8536          */
8537         if (event->attr.exclude_kernel)
8538                 return 0;
8539
8540         if (!perf_tp_filter_match(event, data))
8541                 return 0;
8542
8543         return 1;
8544 }
8545
8546 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8547                                struct trace_event_call *call, u64 count,
8548                                struct pt_regs *regs, struct hlist_head *head,
8549                                struct task_struct *task)
8550 {
8551         if (bpf_prog_array_valid(call)) {
8552                 *(struct pt_regs **)raw_data = regs;
8553                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8554                         perf_swevent_put_recursion_context(rctx);
8555                         return;
8556                 }
8557         }
8558         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8559                       rctx, task);
8560 }
8561 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8562
8563 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8564                    struct pt_regs *regs, struct hlist_head *head, int rctx,
8565                    struct task_struct *task)
8566 {
8567         struct perf_sample_data data;
8568         struct perf_event *event;
8569
8570         struct perf_raw_record raw = {
8571                 .frag = {
8572                         .size = entry_size,
8573                         .data = record,
8574                 },
8575         };
8576
8577         perf_sample_data_init(&data, 0, 0);
8578         data.raw = &raw;
8579
8580         perf_trace_buf_update(record, event_type);
8581
8582         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8583                 if (perf_tp_event_match(event, &data, regs))
8584                         perf_swevent_event(event, count, &data, regs);
8585         }
8586
8587         /*
8588          * If we got specified a target task, also iterate its context and
8589          * deliver this event there too.
8590          */
8591         if (task && task != current) {
8592                 struct perf_event_context *ctx;
8593                 struct trace_entry *entry = record;
8594
8595                 rcu_read_lock();
8596                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8597                 if (!ctx)
8598                         goto unlock;
8599
8600                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8601                         if (event->cpu != smp_processor_id())
8602                                 continue;
8603                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8604                                 continue;
8605                         if (event->attr.config != entry->type)
8606                                 continue;
8607                         if (perf_tp_event_match(event, &data, regs))
8608                                 perf_swevent_event(event, count, &data, regs);
8609                 }
8610 unlock:
8611                 rcu_read_unlock();
8612         }
8613
8614         perf_swevent_put_recursion_context(rctx);
8615 }
8616 EXPORT_SYMBOL_GPL(perf_tp_event);
8617
8618 static void tp_perf_event_destroy(struct perf_event *event)
8619 {
8620         perf_trace_destroy(event);
8621 }
8622
8623 static int perf_tp_event_init(struct perf_event *event)
8624 {
8625         int err;
8626
8627         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8628                 return -ENOENT;
8629
8630         /*
8631          * no branch sampling for tracepoint events
8632          */
8633         if (has_branch_stack(event))
8634                 return -EOPNOTSUPP;
8635
8636         err = perf_trace_init(event);
8637         if (err)
8638                 return err;
8639
8640         event->destroy = tp_perf_event_destroy;
8641
8642         return 0;
8643 }
8644
8645 static struct pmu perf_tracepoint = {
8646         .task_ctx_nr    = perf_sw_context,
8647
8648         .event_init     = perf_tp_event_init,
8649         .add            = perf_trace_add,
8650         .del            = perf_trace_del,
8651         .start          = perf_swevent_start,
8652         .stop           = perf_swevent_stop,
8653         .read           = perf_swevent_read,
8654 };
8655
8656 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8657 /*
8658  * Flags in config, used by dynamic PMU kprobe and uprobe
8659  * The flags should match following PMU_FORMAT_ATTR().
8660  *
8661  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8662  *                               if not set, create kprobe/uprobe
8663  *
8664  * The following values specify a reference counter (or semaphore in the
8665  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8666  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8667  *
8668  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
8669  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
8670  */
8671 enum perf_probe_config {
8672         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8673         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8674         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
8675 };
8676
8677 PMU_FORMAT_ATTR(retprobe, "config:0");
8678 #endif
8679
8680 #ifdef CONFIG_KPROBE_EVENTS
8681 static struct attribute *kprobe_attrs[] = {
8682         &format_attr_retprobe.attr,
8683         NULL,
8684 };
8685
8686 static struct attribute_group kprobe_format_group = {
8687         .name = "format",
8688         .attrs = kprobe_attrs,
8689 };
8690
8691 static const struct attribute_group *kprobe_attr_groups[] = {
8692         &kprobe_format_group,
8693         NULL,
8694 };
8695
8696 static int perf_kprobe_event_init(struct perf_event *event);
8697 static struct pmu perf_kprobe = {
8698         .task_ctx_nr    = perf_sw_context,
8699         .event_init     = perf_kprobe_event_init,
8700         .add            = perf_trace_add,
8701         .del            = perf_trace_del,
8702         .start          = perf_swevent_start,
8703         .stop           = perf_swevent_stop,
8704         .read           = perf_swevent_read,
8705         .attr_groups    = kprobe_attr_groups,
8706 };
8707
8708 static int perf_kprobe_event_init(struct perf_event *event)
8709 {
8710         int err;
8711         bool is_retprobe;
8712
8713         if (event->attr.type != perf_kprobe.type)
8714                 return -ENOENT;
8715
8716         if (!capable(CAP_SYS_ADMIN))
8717                 return -EACCES;
8718
8719         /*
8720          * no branch sampling for probe events
8721          */
8722         if (has_branch_stack(event))
8723                 return -EOPNOTSUPP;
8724
8725         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8726         err = perf_kprobe_init(event, is_retprobe);
8727         if (err)
8728                 return err;
8729
8730         event->destroy = perf_kprobe_destroy;
8731
8732         return 0;
8733 }
8734 #endif /* CONFIG_KPROBE_EVENTS */
8735
8736 #ifdef CONFIG_UPROBE_EVENTS
8737 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8738
8739 static struct attribute *uprobe_attrs[] = {
8740         &format_attr_retprobe.attr,
8741         &format_attr_ref_ctr_offset.attr,
8742         NULL,
8743 };
8744
8745 static struct attribute_group uprobe_format_group = {
8746         .name = "format",
8747         .attrs = uprobe_attrs,
8748 };
8749
8750 static const struct attribute_group *uprobe_attr_groups[] = {
8751         &uprobe_format_group,
8752         NULL,
8753 };
8754
8755 static int perf_uprobe_event_init(struct perf_event *event);
8756 static struct pmu perf_uprobe = {
8757         .task_ctx_nr    = perf_sw_context,
8758         .event_init     = perf_uprobe_event_init,
8759         .add            = perf_trace_add,
8760         .del            = perf_trace_del,
8761         .start          = perf_swevent_start,
8762         .stop           = perf_swevent_stop,
8763         .read           = perf_swevent_read,
8764         .attr_groups    = uprobe_attr_groups,
8765 };
8766
8767 static int perf_uprobe_event_init(struct perf_event *event)
8768 {
8769         int err;
8770         unsigned long ref_ctr_offset;
8771         bool is_retprobe;
8772
8773         if (event->attr.type != perf_uprobe.type)
8774                 return -ENOENT;
8775
8776         if (!capable(CAP_SYS_ADMIN))
8777                 return -EACCES;
8778
8779         /*
8780          * no branch sampling for probe events
8781          */
8782         if (has_branch_stack(event))
8783                 return -EOPNOTSUPP;
8784
8785         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8786         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8787         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
8788         if (err)
8789                 return err;
8790
8791         event->destroy = perf_uprobe_destroy;
8792
8793         return 0;
8794 }
8795 #endif /* CONFIG_UPROBE_EVENTS */
8796
8797 static inline void perf_tp_register(void)
8798 {
8799         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8800 #ifdef CONFIG_KPROBE_EVENTS
8801         perf_pmu_register(&perf_kprobe, "kprobe", -1);
8802 #endif
8803 #ifdef CONFIG_UPROBE_EVENTS
8804         perf_pmu_register(&perf_uprobe, "uprobe", -1);
8805 #endif
8806 }
8807
8808 static void perf_event_free_filter(struct perf_event *event)
8809 {
8810         ftrace_profile_free_filter(event);
8811 }
8812
8813 #ifdef CONFIG_BPF_SYSCALL
8814 static void bpf_overflow_handler(struct perf_event *event,
8815                                  struct perf_sample_data *data,
8816                                  struct pt_regs *regs)
8817 {
8818         struct bpf_perf_event_data_kern ctx = {
8819                 .data = data,
8820                 .event = event,
8821         };
8822         int ret = 0;
8823
8824         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8825         preempt_disable();
8826         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8827                 goto out;
8828         rcu_read_lock();
8829         ret = BPF_PROG_RUN(event->prog, &ctx);
8830         rcu_read_unlock();
8831 out:
8832         __this_cpu_dec(bpf_prog_active);
8833         preempt_enable();
8834         if (!ret)
8835                 return;
8836
8837         event->orig_overflow_handler(event, data, regs);
8838 }
8839
8840 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8841 {
8842         struct bpf_prog *prog;
8843
8844         if (event->overflow_handler_context)
8845                 /* hw breakpoint or kernel counter */
8846                 return -EINVAL;
8847
8848         if (event->prog)
8849                 return -EEXIST;
8850
8851         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8852         if (IS_ERR(prog))
8853                 return PTR_ERR(prog);
8854
8855         event->prog = prog;
8856         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8857         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8858         return 0;
8859 }
8860
8861 static void perf_event_free_bpf_handler(struct perf_event *event)
8862 {
8863         struct bpf_prog *prog = event->prog;
8864
8865         if (!prog)
8866                 return;
8867
8868         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8869         event->prog = NULL;
8870         bpf_prog_put(prog);
8871 }
8872 #else
8873 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8874 {
8875         return -EOPNOTSUPP;
8876 }
8877 static void perf_event_free_bpf_handler(struct perf_event *event)
8878 {
8879 }
8880 #endif
8881
8882 /*
8883  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8884  * with perf_event_open()
8885  */
8886 static inline bool perf_event_is_tracing(struct perf_event *event)
8887 {
8888         if (event->pmu == &perf_tracepoint)
8889                 return true;
8890 #ifdef CONFIG_KPROBE_EVENTS
8891         if (event->pmu == &perf_kprobe)
8892                 return true;
8893 #endif
8894 #ifdef CONFIG_UPROBE_EVENTS
8895         if (event->pmu == &perf_uprobe)
8896                 return true;
8897 #endif
8898         return false;
8899 }
8900
8901 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8902 {
8903         bool is_kprobe, is_tracepoint, is_syscall_tp;
8904         struct bpf_prog *prog;
8905         int ret;
8906
8907         if (!perf_event_is_tracing(event))
8908                 return perf_event_set_bpf_handler(event, prog_fd);
8909
8910         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8911         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8912         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8913         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8914                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8915                 return -EINVAL;
8916
8917         prog = bpf_prog_get(prog_fd);
8918         if (IS_ERR(prog))
8919                 return PTR_ERR(prog);
8920
8921         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8922             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8923             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8924                 /* valid fd, but invalid bpf program type */
8925                 bpf_prog_put(prog);
8926                 return -EINVAL;
8927         }
8928
8929         /* Kprobe override only works for kprobes, not uprobes. */
8930         if (prog->kprobe_override &&
8931             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8932                 bpf_prog_put(prog);
8933                 return -EINVAL;
8934         }
8935
8936         if (is_tracepoint || is_syscall_tp) {
8937                 int off = trace_event_get_offsets(event->tp_event);
8938
8939                 if (prog->aux->max_ctx_offset > off) {
8940                         bpf_prog_put(prog);
8941                         return -EACCES;
8942                 }
8943         }
8944
8945         ret = perf_event_attach_bpf_prog(event, prog);
8946         if (ret)
8947                 bpf_prog_put(prog);
8948         return ret;
8949 }
8950
8951 static void perf_event_free_bpf_prog(struct perf_event *event)
8952 {
8953         if (!perf_event_is_tracing(event)) {
8954                 perf_event_free_bpf_handler(event);
8955                 return;
8956         }
8957         perf_event_detach_bpf_prog(event);
8958 }
8959
8960 #else
8961
8962 static inline void perf_tp_register(void)
8963 {
8964 }
8965
8966 static void perf_event_free_filter(struct perf_event *event)
8967 {
8968 }
8969
8970 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8971 {
8972         return -ENOENT;
8973 }
8974
8975 static void perf_event_free_bpf_prog(struct perf_event *event)
8976 {
8977 }
8978 #endif /* CONFIG_EVENT_TRACING */
8979
8980 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8981 void perf_bp_event(struct perf_event *bp, void *data)
8982 {
8983         struct perf_sample_data sample;
8984         struct pt_regs *regs = data;
8985
8986         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8987
8988         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8989                 perf_swevent_event(bp, 1, &sample, regs);
8990 }
8991 #endif
8992
8993 /*
8994  * Allocate a new address filter
8995  */
8996 static struct perf_addr_filter *
8997 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8998 {
8999         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9000         struct perf_addr_filter *filter;
9001
9002         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9003         if (!filter)
9004                 return NULL;
9005
9006         INIT_LIST_HEAD(&filter->entry);
9007         list_add_tail(&filter->entry, filters);
9008
9009         return filter;
9010 }
9011
9012 static void free_filters_list(struct list_head *filters)
9013 {
9014         struct perf_addr_filter *filter, *iter;
9015
9016         list_for_each_entry_safe(filter, iter, filters, entry) {
9017                 path_put(&filter->path);
9018                 list_del(&filter->entry);
9019                 kfree(filter);
9020         }
9021 }
9022
9023 /*
9024  * Free existing address filters and optionally install new ones
9025  */
9026 static void perf_addr_filters_splice(struct perf_event *event,
9027                                      struct list_head *head)
9028 {
9029         unsigned long flags;
9030         LIST_HEAD(list);
9031
9032         if (!has_addr_filter(event))
9033                 return;
9034
9035         /* don't bother with children, they don't have their own filters */
9036         if (event->parent)
9037                 return;
9038
9039         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9040
9041         list_splice_init(&event->addr_filters.list, &list);
9042         if (head)
9043                 list_splice(head, &event->addr_filters.list);
9044
9045         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9046
9047         free_filters_list(&list);
9048 }
9049
9050 /*
9051  * Scan through mm's vmas and see if one of them matches the
9052  * @filter; if so, adjust filter's address range.
9053  * Called with mm::mmap_sem down for reading.
9054  */
9055 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9056                                    struct mm_struct *mm,
9057                                    struct perf_addr_filter_range *fr)
9058 {
9059         struct vm_area_struct *vma;
9060
9061         for (vma = mm->mmap; vma; vma = vma->vm_next) {
9062                 if (!vma->vm_file)
9063                         continue;
9064
9065                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9066                         return;
9067         }
9068 }
9069
9070 /*
9071  * Update event's address range filters based on the
9072  * task's existing mappings, if any.
9073  */
9074 static void perf_event_addr_filters_apply(struct perf_event *event)
9075 {
9076         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9077         struct task_struct *task = READ_ONCE(event->ctx->task);
9078         struct perf_addr_filter *filter;
9079         struct mm_struct *mm = NULL;
9080         unsigned int count = 0;
9081         unsigned long flags;
9082
9083         /*
9084          * We may observe TASK_TOMBSTONE, which means that the event tear-down
9085          * will stop on the parent's child_mutex that our caller is also holding
9086          */
9087         if (task == TASK_TOMBSTONE)
9088                 return;
9089
9090         if (ifh->nr_file_filters) {
9091                 mm = get_task_mm(event->ctx->task);
9092                 if (!mm)
9093                         goto restart;
9094
9095                 down_read(&mm->mmap_sem);
9096         }
9097
9098         raw_spin_lock_irqsave(&ifh->lock, flags);
9099         list_for_each_entry(filter, &ifh->list, entry) {
9100                 if (filter->path.dentry) {
9101                         /*
9102                          * Adjust base offset if the filter is associated to a
9103                          * binary that needs to be mapped:
9104                          */
9105                         event->addr_filter_ranges[count].start = 0;
9106                         event->addr_filter_ranges[count].size = 0;
9107
9108                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9109                 } else {
9110                         event->addr_filter_ranges[count].start = filter->offset;
9111                         event->addr_filter_ranges[count].size  = filter->size;
9112                 }
9113
9114                 count++;
9115         }
9116
9117         event->addr_filters_gen++;
9118         raw_spin_unlock_irqrestore(&ifh->lock, flags);
9119
9120         if (ifh->nr_file_filters) {
9121                 up_read(&mm->mmap_sem);
9122
9123                 mmput(mm);
9124         }
9125
9126 restart:
9127         perf_event_stop(event, 1);
9128 }
9129
9130 /*
9131  * Address range filtering: limiting the data to certain
9132  * instruction address ranges. Filters are ioctl()ed to us from
9133  * userspace as ascii strings.
9134  *
9135  * Filter string format:
9136  *
9137  * ACTION RANGE_SPEC
9138  * where ACTION is one of the
9139  *  * "filter": limit the trace to this region
9140  *  * "start": start tracing from this address
9141  *  * "stop": stop tracing at this address/region;
9142  * RANGE_SPEC is
9143  *  * for kernel addresses: <start address>[/<size>]
9144  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9145  *
9146  * if <size> is not specified or is zero, the range is treated as a single
9147  * address; not valid for ACTION=="filter".
9148  */
9149 enum {
9150         IF_ACT_NONE = -1,
9151         IF_ACT_FILTER,
9152         IF_ACT_START,
9153         IF_ACT_STOP,
9154         IF_SRC_FILE,
9155         IF_SRC_KERNEL,
9156         IF_SRC_FILEADDR,
9157         IF_SRC_KERNELADDR,
9158 };
9159
9160 enum {
9161         IF_STATE_ACTION = 0,
9162         IF_STATE_SOURCE,
9163         IF_STATE_END,
9164 };
9165
9166 static const match_table_t if_tokens = {
9167         { IF_ACT_FILTER,        "filter" },
9168         { IF_ACT_START,         "start" },
9169         { IF_ACT_STOP,          "stop" },
9170         { IF_SRC_FILE,          "%u/%u@%s" },
9171         { IF_SRC_KERNEL,        "%u/%u" },
9172         { IF_SRC_FILEADDR,      "%u@%s" },
9173         { IF_SRC_KERNELADDR,    "%u" },
9174         { IF_ACT_NONE,          NULL },
9175 };
9176
9177 /*
9178  * Address filter string parser
9179  */
9180 static int
9181 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9182                              struct list_head *filters)
9183 {
9184         struct perf_addr_filter *filter = NULL;
9185         char *start, *orig, *filename = NULL;
9186         substring_t args[MAX_OPT_ARGS];
9187         int state = IF_STATE_ACTION, token;
9188         unsigned int kernel = 0;
9189         int ret = -EINVAL;
9190
9191         orig = fstr = kstrdup(fstr, GFP_KERNEL);
9192         if (!fstr)
9193                 return -ENOMEM;
9194
9195         while ((start = strsep(&fstr, " ,\n")) != NULL) {
9196                 static const enum perf_addr_filter_action_t actions[] = {
9197                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9198                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
9199                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
9200                 };
9201                 ret = -EINVAL;
9202
9203                 if (!*start)
9204                         continue;
9205
9206                 /* filter definition begins */
9207                 if (state == IF_STATE_ACTION) {
9208                         filter = perf_addr_filter_new(event, filters);
9209                         if (!filter)
9210                                 goto fail;
9211                 }
9212
9213                 token = match_token(start, if_tokens, args);
9214                 switch (token) {
9215                 case IF_ACT_FILTER:
9216                 case IF_ACT_START:
9217                 case IF_ACT_STOP:
9218                         if (state != IF_STATE_ACTION)
9219                                 goto fail;
9220
9221                         filter->action = actions[token];
9222                         state = IF_STATE_SOURCE;
9223                         break;
9224
9225                 case IF_SRC_KERNELADDR:
9226                 case IF_SRC_KERNEL:
9227                         kernel = 1;
9228                         /* fall through */
9229
9230                 case IF_SRC_FILEADDR:
9231                 case IF_SRC_FILE:
9232                         if (state != IF_STATE_SOURCE)
9233                                 goto fail;
9234
9235                         *args[0].to = 0;
9236                         ret = kstrtoul(args[0].from, 0, &filter->offset);
9237                         if (ret)
9238                                 goto fail;
9239
9240                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9241                                 *args[1].to = 0;
9242                                 ret = kstrtoul(args[1].from, 0, &filter->size);
9243                                 if (ret)
9244                                         goto fail;
9245                         }
9246
9247                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9248                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
9249
9250                                 filename = match_strdup(&args[fpos]);
9251                                 if (!filename) {
9252                                         ret = -ENOMEM;
9253                                         goto fail;
9254                                 }
9255                         }
9256
9257                         state = IF_STATE_END;
9258                         break;
9259
9260                 default:
9261                         goto fail;
9262                 }
9263
9264                 /*
9265                  * Filter definition is fully parsed, validate and install it.
9266                  * Make sure that it doesn't contradict itself or the event's
9267                  * attribute.
9268                  */
9269                 if (state == IF_STATE_END) {
9270                         ret = -EINVAL;
9271                         if (kernel && event->attr.exclude_kernel)
9272                                 goto fail;
9273
9274                         /*
9275                          * ACTION "filter" must have a non-zero length region
9276                          * specified.
9277                          */
9278                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9279                             !filter->size)
9280                                 goto fail;
9281
9282                         if (!kernel) {
9283                                 if (!filename)
9284                                         goto fail;
9285
9286                                 /*
9287                                  * For now, we only support file-based filters
9288                                  * in per-task events; doing so for CPU-wide
9289                                  * events requires additional context switching
9290                                  * trickery, since same object code will be
9291                                  * mapped at different virtual addresses in
9292                                  * different processes.
9293                                  */
9294                                 ret = -EOPNOTSUPP;
9295                                 if (!event->ctx->task)
9296                                         goto fail_free_name;
9297
9298                                 /* look up the path and grab its inode */
9299                                 ret = kern_path(filename, LOOKUP_FOLLOW,
9300                                                 &filter->path);
9301                                 if (ret)
9302                                         goto fail_free_name;
9303
9304                                 kfree(filename);
9305                                 filename = NULL;
9306
9307                                 ret = -EINVAL;
9308                                 if (!filter->path.dentry ||
9309                                     !S_ISREG(d_inode(filter->path.dentry)
9310                                              ->i_mode))
9311                                         goto fail;
9312
9313                                 event->addr_filters.nr_file_filters++;
9314                         }
9315
9316                         /* ready to consume more filters */
9317                         state = IF_STATE_ACTION;
9318                         filter = NULL;
9319                 }
9320         }
9321
9322         if (state != IF_STATE_ACTION)
9323                 goto fail;
9324
9325         kfree(orig);
9326
9327         return 0;
9328
9329 fail_free_name:
9330         kfree(filename);
9331 fail:
9332         free_filters_list(filters);
9333         kfree(orig);
9334
9335         return ret;
9336 }
9337
9338 static int
9339 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9340 {
9341         LIST_HEAD(filters);
9342         int ret;
9343
9344         /*
9345          * Since this is called in perf_ioctl() path, we're already holding
9346          * ctx::mutex.
9347          */
9348         lockdep_assert_held(&event->ctx->mutex);
9349
9350         if (WARN_ON_ONCE(event->parent))
9351                 return -EINVAL;
9352
9353         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9354         if (ret)
9355                 goto fail_clear_files;
9356
9357         ret = event->pmu->addr_filters_validate(&filters);
9358         if (ret)
9359                 goto fail_free_filters;
9360
9361         /* remove existing filters, if any */
9362         perf_addr_filters_splice(event, &filters);
9363
9364         /* install new filters */
9365         perf_event_for_each_child(event, perf_event_addr_filters_apply);
9366
9367         return ret;
9368
9369 fail_free_filters:
9370         free_filters_list(&filters);
9371
9372 fail_clear_files:
9373         event->addr_filters.nr_file_filters = 0;
9374
9375         return ret;
9376 }
9377
9378 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9379 {
9380         int ret = -EINVAL;
9381         char *filter_str;
9382
9383         filter_str = strndup_user(arg, PAGE_SIZE);
9384         if (IS_ERR(filter_str))
9385                 return PTR_ERR(filter_str);
9386
9387 #ifdef CONFIG_EVENT_TRACING
9388         if (perf_event_is_tracing(event)) {
9389                 struct perf_event_context *ctx = event->ctx;
9390
9391                 /*
9392                  * Beware, here be dragons!!
9393                  *
9394                  * the tracepoint muck will deadlock against ctx->mutex, but
9395                  * the tracepoint stuff does not actually need it. So
9396                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9397                  * already have a reference on ctx.
9398                  *
9399                  * This can result in event getting moved to a different ctx,
9400                  * but that does not affect the tracepoint state.
9401                  */
9402                 mutex_unlock(&ctx->mutex);
9403                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9404                 mutex_lock(&ctx->mutex);
9405         } else
9406 #endif
9407         if (has_addr_filter(event))
9408                 ret = perf_event_set_addr_filter(event, filter_str);
9409
9410         kfree(filter_str);
9411         return ret;
9412 }
9413
9414 /*
9415  * hrtimer based swevent callback
9416  */
9417
9418 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9419 {
9420         enum hrtimer_restart ret = HRTIMER_RESTART;
9421         struct perf_sample_data data;
9422         struct pt_regs *regs;
9423         struct perf_event *event;
9424         u64 period;
9425
9426         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9427
9428         if (event->state != PERF_EVENT_STATE_ACTIVE)
9429                 return HRTIMER_NORESTART;
9430
9431         event->pmu->read(event);
9432
9433         perf_sample_data_init(&data, 0, event->hw.last_period);
9434         regs = get_irq_regs();
9435
9436         if (regs && !perf_exclude_event(event, regs)) {
9437                 if (!(event->attr.exclude_idle && is_idle_task(current)))
9438                         if (__perf_event_overflow(event, 1, &data, regs))
9439                                 ret = HRTIMER_NORESTART;
9440         }
9441
9442         period = max_t(u64, 10000, event->hw.sample_period);
9443         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9444
9445         return ret;
9446 }
9447
9448 static void perf_swevent_start_hrtimer(struct perf_event *event)
9449 {
9450         struct hw_perf_event *hwc = &event->hw;
9451         s64 period;
9452
9453         if (!is_sampling_event(event))
9454                 return;
9455
9456         period = local64_read(&hwc->period_left);
9457         if (period) {
9458                 if (period < 0)
9459                         period = 10000;
9460
9461                 local64_set(&hwc->period_left, 0);
9462         } else {
9463                 period = max_t(u64, 10000, hwc->sample_period);
9464         }
9465         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9466                       HRTIMER_MODE_REL_PINNED);
9467 }
9468
9469 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9470 {
9471         struct hw_perf_event *hwc = &event->hw;
9472
9473         if (is_sampling_event(event)) {
9474                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9475                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9476
9477                 hrtimer_cancel(&hwc->hrtimer);
9478         }
9479 }
9480
9481 static void perf_swevent_init_hrtimer(struct perf_event *event)
9482 {
9483         struct hw_perf_event *hwc = &event->hw;
9484
9485         if (!is_sampling_event(event))
9486                 return;
9487
9488         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9489         hwc->hrtimer.function = perf_swevent_hrtimer;
9490
9491         /*
9492          * Since hrtimers have a fixed rate, we can do a static freq->period
9493          * mapping and avoid the whole period adjust feedback stuff.
9494          */
9495         if (event->attr.freq) {
9496                 long freq = event->attr.sample_freq;
9497
9498                 event->attr.sample_period = NSEC_PER_SEC / freq;
9499                 hwc->sample_period = event->attr.sample_period;
9500                 local64_set(&hwc->period_left, hwc->sample_period);
9501                 hwc->last_period = hwc->sample_period;
9502                 event->attr.freq = 0;
9503         }
9504 }
9505
9506 /*
9507  * Software event: cpu wall time clock
9508  */
9509
9510 static void cpu_clock_event_update(struct perf_event *event)
9511 {
9512         s64 prev;
9513         u64 now;
9514
9515         now = local_clock();
9516         prev = local64_xchg(&event->hw.prev_count, now);
9517         local64_add(now - prev, &event->count);
9518 }
9519
9520 static void cpu_clock_event_start(struct perf_event *event, int flags)
9521 {
9522         local64_set(&event->hw.prev_count, local_clock());
9523         perf_swevent_start_hrtimer(event);
9524 }
9525
9526 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9527 {
9528         perf_swevent_cancel_hrtimer(event);
9529         cpu_clock_event_update(event);
9530 }
9531
9532 static int cpu_clock_event_add(struct perf_event *event, int flags)
9533 {
9534         if (flags & PERF_EF_START)
9535                 cpu_clock_event_start(event, flags);
9536         perf_event_update_userpage(event);
9537
9538         return 0;
9539 }
9540
9541 static void cpu_clock_event_del(struct perf_event *event, int flags)
9542 {
9543         cpu_clock_event_stop(event, flags);
9544 }
9545
9546 static void cpu_clock_event_read(struct perf_event *event)
9547 {
9548         cpu_clock_event_update(event);
9549 }
9550
9551 static int cpu_clock_event_init(struct perf_event *event)
9552 {
9553         if (event->attr.type != PERF_TYPE_SOFTWARE)
9554                 return -ENOENT;
9555
9556         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9557                 return -ENOENT;
9558
9559         /*
9560          * no branch sampling for software events
9561          */
9562         if (has_branch_stack(event))
9563                 return -EOPNOTSUPP;
9564
9565         perf_swevent_init_hrtimer(event);
9566
9567         return 0;
9568 }
9569
9570 static struct pmu perf_cpu_clock = {
9571         .task_ctx_nr    = perf_sw_context,
9572
9573         .capabilities   = PERF_PMU_CAP_NO_NMI,
9574
9575         .event_init     = cpu_clock_event_init,
9576         .add            = cpu_clock_event_add,
9577         .del            = cpu_clock_event_del,
9578         .start          = cpu_clock_event_start,
9579         .stop           = cpu_clock_event_stop,
9580         .read           = cpu_clock_event_read,
9581 };
9582
9583 /*
9584  * Software event: task time clock
9585  */
9586
9587 static void task_clock_event_update(struct perf_event *event, u64 now)
9588 {
9589         u64 prev;
9590         s64 delta;
9591
9592         prev = local64_xchg(&event->hw.prev_count, now);
9593         delta = now - prev;
9594         local64_add(delta, &event->count);
9595 }
9596
9597 static void task_clock_event_start(struct perf_event *event, int flags)
9598 {
9599         local64_set(&event->hw.prev_count, event->ctx->time);
9600         perf_swevent_start_hrtimer(event);
9601 }
9602
9603 static void task_clock_event_stop(struct perf_event *event, int flags)
9604 {
9605         perf_swevent_cancel_hrtimer(event);
9606         task_clock_event_update(event, event->ctx->time);
9607 }
9608
9609 static int task_clock_event_add(struct perf_event *event, int flags)
9610 {
9611         if (flags & PERF_EF_START)
9612                 task_clock_event_start(event, flags);
9613         perf_event_update_userpage(event);
9614
9615         return 0;
9616 }
9617
9618 static void task_clock_event_del(struct perf_event *event, int flags)
9619 {
9620         task_clock_event_stop(event, PERF_EF_UPDATE);
9621 }
9622
9623 static void task_clock_event_read(struct perf_event *event)
9624 {
9625         u64 now = perf_clock();
9626         u64 delta = now - event->ctx->timestamp;
9627         u64 time = event->ctx->time + delta;
9628
9629         task_clock_event_update(event, time);
9630 }
9631
9632 static int task_clock_event_init(struct perf_event *event)
9633 {
9634         if (event->attr.type != PERF_TYPE_SOFTWARE)
9635                 return -ENOENT;
9636
9637         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9638                 return -ENOENT;
9639
9640         /*
9641          * no branch sampling for software events
9642          */
9643         if (has_branch_stack(event))
9644                 return -EOPNOTSUPP;
9645
9646         perf_swevent_init_hrtimer(event);
9647
9648         return 0;
9649 }
9650
9651 static struct pmu perf_task_clock = {
9652         .task_ctx_nr    = perf_sw_context,
9653
9654         .capabilities   = PERF_PMU_CAP_NO_NMI,
9655
9656         .event_init     = task_clock_event_init,
9657         .add            = task_clock_event_add,
9658         .del            = task_clock_event_del,
9659         .start          = task_clock_event_start,
9660         .stop           = task_clock_event_stop,
9661         .read           = task_clock_event_read,
9662 };
9663
9664 static void perf_pmu_nop_void(struct pmu *pmu)
9665 {
9666 }
9667
9668 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9669 {
9670 }
9671
9672 static int perf_pmu_nop_int(struct pmu *pmu)
9673 {
9674         return 0;
9675 }
9676
9677 static int perf_event_nop_int(struct perf_event *event, u64 value)
9678 {
9679         return 0;
9680 }
9681
9682 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9683
9684 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9685 {
9686         __this_cpu_write(nop_txn_flags, flags);
9687
9688         if (flags & ~PERF_PMU_TXN_ADD)
9689                 return;
9690
9691         perf_pmu_disable(pmu);
9692 }
9693
9694 static int perf_pmu_commit_txn(struct pmu *pmu)
9695 {
9696         unsigned int flags = __this_cpu_read(nop_txn_flags);
9697
9698         __this_cpu_write(nop_txn_flags, 0);
9699
9700         if (flags & ~PERF_PMU_TXN_ADD)
9701                 return 0;
9702
9703         perf_pmu_enable(pmu);
9704         return 0;
9705 }
9706
9707 static void perf_pmu_cancel_txn(struct pmu *pmu)
9708 {
9709         unsigned int flags =  __this_cpu_read(nop_txn_flags);
9710
9711         __this_cpu_write(nop_txn_flags, 0);
9712
9713         if (flags & ~PERF_PMU_TXN_ADD)
9714                 return;
9715
9716         perf_pmu_enable(pmu);
9717 }
9718
9719 static int perf_event_idx_default(struct perf_event *event)
9720 {
9721         return 0;
9722 }
9723
9724 /*
9725  * Ensures all contexts with the same task_ctx_nr have the same
9726  * pmu_cpu_context too.
9727  */
9728 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9729 {
9730         struct pmu *pmu;
9731
9732         if (ctxn < 0)
9733                 return NULL;
9734
9735         list_for_each_entry(pmu, &pmus, entry) {
9736                 if (pmu->task_ctx_nr == ctxn)
9737                         return pmu->pmu_cpu_context;
9738         }
9739
9740         return NULL;
9741 }
9742
9743 static void free_pmu_context(struct pmu *pmu)
9744 {
9745         /*
9746          * Static contexts such as perf_sw_context have a global lifetime
9747          * and may be shared between different PMUs. Avoid freeing them
9748          * when a single PMU is going away.
9749          */
9750         if (pmu->task_ctx_nr > perf_invalid_context)
9751                 return;
9752
9753         free_percpu(pmu->pmu_cpu_context);
9754 }
9755
9756 /*
9757  * Let userspace know that this PMU supports address range filtering:
9758  */
9759 static ssize_t nr_addr_filters_show(struct device *dev,
9760                                     struct device_attribute *attr,
9761                                     char *page)
9762 {
9763         struct pmu *pmu = dev_get_drvdata(dev);
9764
9765         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9766 }
9767 DEVICE_ATTR_RO(nr_addr_filters);
9768
9769 static struct idr pmu_idr;
9770
9771 static ssize_t
9772 type_show(struct device *dev, struct device_attribute *attr, char *page)
9773 {
9774         struct pmu *pmu = dev_get_drvdata(dev);
9775
9776         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9777 }
9778 static DEVICE_ATTR_RO(type);
9779
9780 static ssize_t
9781 perf_event_mux_interval_ms_show(struct device *dev,
9782                                 struct device_attribute *attr,
9783                                 char *page)
9784 {
9785         struct pmu *pmu = dev_get_drvdata(dev);
9786
9787         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9788 }
9789
9790 static DEFINE_MUTEX(mux_interval_mutex);
9791
9792 static ssize_t
9793 perf_event_mux_interval_ms_store(struct device *dev,
9794                                  struct device_attribute *attr,
9795                                  const char *buf, size_t count)
9796 {
9797         struct pmu *pmu = dev_get_drvdata(dev);
9798         int timer, cpu, ret;
9799
9800         ret = kstrtoint(buf, 0, &timer);
9801         if (ret)
9802                 return ret;
9803
9804         if (timer < 1)
9805                 return -EINVAL;
9806
9807         /* same value, noting to do */
9808         if (timer == pmu->hrtimer_interval_ms)
9809                 return count;
9810
9811         mutex_lock(&mux_interval_mutex);
9812         pmu->hrtimer_interval_ms = timer;
9813
9814         /* update all cpuctx for this PMU */
9815         cpus_read_lock();
9816         for_each_online_cpu(cpu) {
9817                 struct perf_cpu_context *cpuctx;
9818                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9819                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9820
9821                 cpu_function_call(cpu,
9822                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9823         }
9824         cpus_read_unlock();
9825         mutex_unlock(&mux_interval_mutex);
9826
9827         return count;
9828 }
9829 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9830
9831 static struct attribute *pmu_dev_attrs[] = {
9832         &dev_attr_type.attr,
9833         &dev_attr_perf_event_mux_interval_ms.attr,
9834         NULL,
9835 };
9836 ATTRIBUTE_GROUPS(pmu_dev);
9837
9838 static int pmu_bus_running;
9839 static struct bus_type pmu_bus = {
9840         .name           = "event_source",
9841         .dev_groups     = pmu_dev_groups,
9842 };
9843
9844 static void pmu_dev_release(struct device *dev)
9845 {
9846         kfree(dev);
9847 }
9848
9849 static int pmu_dev_alloc(struct pmu *pmu)
9850 {
9851         int ret = -ENOMEM;
9852
9853         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9854         if (!pmu->dev)
9855                 goto out;
9856
9857         pmu->dev->groups = pmu->attr_groups;
9858         device_initialize(pmu->dev);
9859         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9860         if (ret)
9861                 goto free_dev;
9862
9863         dev_set_drvdata(pmu->dev, pmu);
9864         pmu->dev->bus = &pmu_bus;
9865         pmu->dev->release = pmu_dev_release;
9866         ret = device_add(pmu->dev);
9867         if (ret)
9868                 goto free_dev;
9869
9870         /* For PMUs with address filters, throw in an extra attribute: */
9871         if (pmu->nr_addr_filters)
9872                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9873
9874         if (ret)
9875                 goto del_dev;
9876
9877 out:
9878         return ret;
9879
9880 del_dev:
9881         device_del(pmu->dev);
9882
9883 free_dev:
9884         put_device(pmu->dev);
9885         goto out;
9886 }
9887
9888 static struct lock_class_key cpuctx_mutex;
9889 static struct lock_class_key cpuctx_lock;
9890
9891 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9892 {
9893         int cpu, ret;
9894
9895         mutex_lock(&pmus_lock);
9896         ret = -ENOMEM;
9897         pmu->pmu_disable_count = alloc_percpu(int);
9898         if (!pmu->pmu_disable_count)
9899                 goto unlock;
9900
9901         pmu->type = -1;
9902         if (!name)
9903                 goto skip_type;
9904         pmu->name = name;
9905
9906         if (type < 0) {
9907                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9908                 if (type < 0) {
9909                         ret = type;
9910                         goto free_pdc;
9911                 }
9912         }
9913         pmu->type = type;
9914
9915         if (pmu_bus_running) {
9916                 ret = pmu_dev_alloc(pmu);
9917                 if (ret)
9918                         goto free_idr;
9919         }
9920
9921 skip_type:
9922         if (pmu->task_ctx_nr == perf_hw_context) {
9923                 static int hw_context_taken = 0;
9924
9925                 /*
9926                  * Other than systems with heterogeneous CPUs, it never makes
9927                  * sense for two PMUs to share perf_hw_context. PMUs which are
9928                  * uncore must use perf_invalid_context.
9929                  */
9930                 if (WARN_ON_ONCE(hw_context_taken &&
9931                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9932                         pmu->task_ctx_nr = perf_invalid_context;
9933
9934                 hw_context_taken = 1;
9935         }
9936
9937         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9938         if (pmu->pmu_cpu_context)
9939                 goto got_cpu_context;
9940
9941         ret = -ENOMEM;
9942         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9943         if (!pmu->pmu_cpu_context)
9944                 goto free_dev;
9945
9946         for_each_possible_cpu(cpu) {
9947                 struct perf_cpu_context *cpuctx;
9948
9949                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9950                 __perf_event_init_context(&cpuctx->ctx);
9951                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9952                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9953                 cpuctx->ctx.pmu = pmu;
9954                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9955
9956                 __perf_mux_hrtimer_init(cpuctx, cpu);
9957         }
9958
9959 got_cpu_context:
9960         if (!pmu->start_txn) {
9961                 if (pmu->pmu_enable) {
9962                         /*
9963                          * If we have pmu_enable/pmu_disable calls, install
9964                          * transaction stubs that use that to try and batch
9965                          * hardware accesses.
9966                          */
9967                         pmu->start_txn  = perf_pmu_start_txn;
9968                         pmu->commit_txn = perf_pmu_commit_txn;
9969                         pmu->cancel_txn = perf_pmu_cancel_txn;
9970                 } else {
9971                         pmu->start_txn  = perf_pmu_nop_txn;
9972                         pmu->commit_txn = perf_pmu_nop_int;
9973                         pmu->cancel_txn = perf_pmu_nop_void;
9974                 }
9975         }
9976
9977         if (!pmu->pmu_enable) {
9978                 pmu->pmu_enable  = perf_pmu_nop_void;
9979                 pmu->pmu_disable = perf_pmu_nop_void;
9980         }
9981
9982         if (!pmu->check_period)
9983                 pmu->check_period = perf_event_nop_int;
9984
9985         if (!pmu->event_idx)
9986                 pmu->event_idx = perf_event_idx_default;
9987
9988         list_add_rcu(&pmu->entry, &pmus);
9989         atomic_set(&pmu->exclusive_cnt, 0);
9990         ret = 0;
9991 unlock:
9992         mutex_unlock(&pmus_lock);
9993
9994         return ret;
9995
9996 free_dev:
9997         device_del(pmu->dev);
9998         put_device(pmu->dev);
9999
10000 free_idr:
10001         if (pmu->type >= PERF_TYPE_MAX)
10002                 idr_remove(&pmu_idr, pmu->type);
10003
10004 free_pdc:
10005         free_percpu(pmu->pmu_disable_count);
10006         goto unlock;
10007 }
10008 EXPORT_SYMBOL_GPL(perf_pmu_register);
10009
10010 void perf_pmu_unregister(struct pmu *pmu)
10011 {
10012         mutex_lock(&pmus_lock);
10013         list_del_rcu(&pmu->entry);
10014
10015         /*
10016          * We dereference the pmu list under both SRCU and regular RCU, so
10017          * synchronize against both of those.
10018          */
10019         synchronize_srcu(&pmus_srcu);
10020         synchronize_rcu();
10021
10022         free_percpu(pmu->pmu_disable_count);
10023         if (pmu->type >= PERF_TYPE_MAX)
10024                 idr_remove(&pmu_idr, pmu->type);
10025         if (pmu_bus_running) {
10026                 if (pmu->nr_addr_filters)
10027                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10028                 device_del(pmu->dev);
10029                 put_device(pmu->dev);
10030         }
10031         free_pmu_context(pmu);
10032         mutex_unlock(&pmus_lock);
10033 }
10034 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10035
10036 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10037 {
10038         struct perf_event_context *ctx = NULL;
10039         int ret;
10040
10041         if (!try_module_get(pmu->module))
10042                 return -ENODEV;
10043
10044         /*
10045          * A number of pmu->event_init() methods iterate the sibling_list to,
10046          * for example, validate if the group fits on the PMU. Therefore,
10047          * if this is a sibling event, acquire the ctx->mutex to protect
10048          * the sibling_list.
10049          */
10050         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10051                 /*
10052                  * This ctx->mutex can nest when we're called through
10053                  * inheritance. See the perf_event_ctx_lock_nested() comment.
10054                  */
10055                 ctx = perf_event_ctx_lock_nested(event->group_leader,
10056                                                  SINGLE_DEPTH_NESTING);
10057                 BUG_ON(!ctx);
10058         }
10059
10060         event->pmu = pmu;
10061         ret = pmu->event_init(event);
10062
10063         if (ctx)
10064                 perf_event_ctx_unlock(event->group_leader, ctx);
10065
10066         if (!ret) {
10067                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10068                                 event_has_any_exclude_flag(event)) {
10069                         if (event->destroy)
10070                                 event->destroy(event);
10071                         ret = -EINVAL;
10072                 }
10073         }
10074
10075         if (ret)
10076                 module_put(pmu->module);
10077
10078         return ret;
10079 }
10080
10081 static struct pmu *perf_init_event(struct perf_event *event)
10082 {
10083         struct pmu *pmu;
10084         int idx;
10085         int ret;
10086
10087         idx = srcu_read_lock(&pmus_srcu);
10088
10089         /* Try parent's PMU first: */
10090         if (event->parent && event->parent->pmu) {
10091                 pmu = event->parent->pmu;
10092                 ret = perf_try_init_event(pmu, event);
10093                 if (!ret)
10094                         goto unlock;
10095         }
10096
10097         rcu_read_lock();
10098         pmu = idr_find(&pmu_idr, event->attr.type);
10099         rcu_read_unlock();
10100         if (pmu) {
10101                 ret = perf_try_init_event(pmu, event);
10102                 if (ret)
10103                         pmu = ERR_PTR(ret);
10104                 goto unlock;
10105         }
10106
10107         list_for_each_entry_rcu(pmu, &pmus, entry) {
10108                 ret = perf_try_init_event(pmu, event);
10109                 if (!ret)
10110                         goto unlock;
10111
10112                 if (ret != -ENOENT) {
10113                         pmu = ERR_PTR(ret);
10114                         goto unlock;
10115                 }
10116         }
10117         pmu = ERR_PTR(-ENOENT);
10118 unlock:
10119         srcu_read_unlock(&pmus_srcu, idx);
10120
10121         return pmu;
10122 }
10123
10124 static void attach_sb_event(struct perf_event *event)
10125 {
10126         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10127
10128         raw_spin_lock(&pel->lock);
10129         list_add_rcu(&event->sb_list, &pel->list);
10130         raw_spin_unlock(&pel->lock);
10131 }
10132
10133 /*
10134  * We keep a list of all !task (and therefore per-cpu) events
10135  * that need to receive side-band records.
10136  *
10137  * This avoids having to scan all the various PMU per-cpu contexts
10138  * looking for them.
10139  */
10140 static void account_pmu_sb_event(struct perf_event *event)
10141 {
10142         if (is_sb_event(event))
10143                 attach_sb_event(event);
10144 }
10145
10146 static void account_event_cpu(struct perf_event *event, int cpu)
10147 {
10148         if (event->parent)
10149                 return;
10150
10151         if (is_cgroup_event(event))
10152                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10153 }
10154
10155 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10156 static void account_freq_event_nohz(void)
10157 {
10158 #ifdef CONFIG_NO_HZ_FULL
10159         /* Lock so we don't race with concurrent unaccount */
10160         spin_lock(&nr_freq_lock);
10161         if (atomic_inc_return(&nr_freq_events) == 1)
10162                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10163         spin_unlock(&nr_freq_lock);
10164 #endif
10165 }
10166
10167 static void account_freq_event(void)
10168 {
10169         if (tick_nohz_full_enabled())
10170                 account_freq_event_nohz();
10171         else
10172                 atomic_inc(&nr_freq_events);
10173 }
10174
10175
10176 static void account_event(struct perf_event *event)
10177 {
10178         bool inc = false;
10179
10180         if (event->parent)
10181                 return;
10182
10183         if (event->attach_state & PERF_ATTACH_TASK)
10184                 inc = true;
10185         if (event->attr.mmap || event->attr.mmap_data)
10186                 atomic_inc(&nr_mmap_events);
10187         if (event->attr.comm)
10188                 atomic_inc(&nr_comm_events);
10189         if (event->attr.namespaces)
10190                 atomic_inc(&nr_namespaces_events);
10191         if (event->attr.task)
10192                 atomic_inc(&nr_task_events);
10193         if (event->attr.freq)
10194                 account_freq_event();
10195         if (event->attr.context_switch) {
10196                 atomic_inc(&nr_switch_events);
10197                 inc = true;
10198         }
10199         if (has_branch_stack(event))
10200                 inc = true;
10201         if (is_cgroup_event(event))
10202                 inc = true;
10203         if (event->attr.ksymbol)
10204                 atomic_inc(&nr_ksymbol_events);
10205         if (event->attr.bpf_event)
10206                 atomic_inc(&nr_bpf_events);
10207
10208         if (inc) {
10209                 /*
10210                  * We need the mutex here because static_branch_enable()
10211                  * must complete *before* the perf_sched_count increment
10212                  * becomes visible.
10213                  */
10214                 if (atomic_inc_not_zero(&perf_sched_count))
10215                         goto enabled;
10216
10217                 mutex_lock(&perf_sched_mutex);
10218                 if (!atomic_read(&perf_sched_count)) {
10219                         static_branch_enable(&perf_sched_events);
10220                         /*
10221                          * Guarantee that all CPUs observe they key change and
10222                          * call the perf scheduling hooks before proceeding to
10223                          * install events that need them.
10224                          */
10225                         synchronize_rcu();
10226                 }
10227                 /*
10228                  * Now that we have waited for the sync_sched(), allow further
10229                  * increments to by-pass the mutex.
10230                  */
10231                 atomic_inc(&perf_sched_count);
10232                 mutex_unlock(&perf_sched_mutex);
10233         }
10234 enabled:
10235
10236         account_event_cpu(event, event->cpu);
10237
10238         account_pmu_sb_event(event);
10239 }
10240
10241 /*
10242  * Allocate and initialize an event structure
10243  */
10244 static struct perf_event *
10245 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10246                  struct task_struct *task,
10247                  struct perf_event *group_leader,
10248                  struct perf_event *parent_event,
10249                  perf_overflow_handler_t overflow_handler,
10250                  void *context, int cgroup_fd)
10251 {
10252         struct pmu *pmu;
10253         struct perf_event *event;
10254         struct hw_perf_event *hwc;
10255         long err = -EINVAL;
10256
10257         if ((unsigned)cpu >= nr_cpu_ids) {
10258                 if (!task || cpu != -1)
10259                         return ERR_PTR(-EINVAL);
10260         }
10261
10262         event = kzalloc(sizeof(*event), GFP_KERNEL);
10263         if (!event)
10264                 return ERR_PTR(-ENOMEM);
10265
10266         /*
10267          * Single events are their own group leaders, with an
10268          * empty sibling list:
10269          */
10270         if (!group_leader)
10271                 group_leader = event;
10272
10273         mutex_init(&event->child_mutex);
10274         INIT_LIST_HEAD(&event->child_list);
10275
10276         INIT_LIST_HEAD(&event->event_entry);
10277         INIT_LIST_HEAD(&event->sibling_list);
10278         INIT_LIST_HEAD(&event->active_list);
10279         init_event_group(event);
10280         INIT_LIST_HEAD(&event->rb_entry);
10281         INIT_LIST_HEAD(&event->active_entry);
10282         INIT_LIST_HEAD(&event->addr_filters.list);
10283         INIT_HLIST_NODE(&event->hlist_entry);
10284
10285
10286         init_waitqueue_head(&event->waitq);
10287         event->pending_disable = -1;
10288         init_irq_work(&event->pending, perf_pending_event);
10289
10290         mutex_init(&event->mmap_mutex);
10291         raw_spin_lock_init(&event->addr_filters.lock);
10292
10293         atomic_long_set(&event->refcount, 1);
10294         event->cpu              = cpu;
10295         event->attr             = *attr;
10296         event->group_leader     = group_leader;
10297         event->pmu              = NULL;
10298         event->oncpu            = -1;
10299
10300         event->parent           = parent_event;
10301
10302         event->ns               = get_pid_ns(task_active_pid_ns(current));
10303         event->id               = atomic64_inc_return(&perf_event_id);
10304
10305         event->state            = PERF_EVENT_STATE_INACTIVE;
10306
10307         if (task) {
10308                 event->attach_state = PERF_ATTACH_TASK;
10309                 /*
10310                  * XXX pmu::event_init needs to know what task to account to
10311                  * and we cannot use the ctx information because we need the
10312                  * pmu before we get a ctx.
10313                  */
10314                 get_task_struct(task);
10315                 event->hw.target = task;
10316         }
10317
10318         event->clock = &local_clock;
10319         if (parent_event)
10320                 event->clock = parent_event->clock;
10321
10322         if (!overflow_handler && parent_event) {
10323                 overflow_handler = parent_event->overflow_handler;
10324                 context = parent_event->overflow_handler_context;
10325 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10326                 if (overflow_handler == bpf_overflow_handler) {
10327                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10328
10329                         if (IS_ERR(prog)) {
10330                                 err = PTR_ERR(prog);
10331                                 goto err_ns;
10332                         }
10333                         event->prog = prog;
10334                         event->orig_overflow_handler =
10335                                 parent_event->orig_overflow_handler;
10336                 }
10337 #endif
10338         }
10339
10340         if (overflow_handler) {
10341                 event->overflow_handler = overflow_handler;
10342                 event->overflow_handler_context = context;
10343         } else if (is_write_backward(event)){
10344                 event->overflow_handler = perf_event_output_backward;
10345                 event->overflow_handler_context = NULL;
10346         } else {
10347                 event->overflow_handler = perf_event_output_forward;
10348                 event->overflow_handler_context = NULL;
10349         }
10350
10351         perf_event__state_init(event);
10352
10353         pmu = NULL;
10354
10355         hwc = &event->hw;
10356         hwc->sample_period = attr->sample_period;
10357         if (attr->freq && attr->sample_freq)
10358                 hwc->sample_period = 1;
10359         hwc->last_period = hwc->sample_period;
10360
10361         local64_set(&hwc->period_left, hwc->sample_period);
10362
10363         /*
10364          * We currently do not support PERF_SAMPLE_READ on inherited events.
10365          * See perf_output_read().
10366          */
10367         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10368                 goto err_ns;
10369
10370         if (!has_branch_stack(event))
10371                 event->attr.branch_sample_type = 0;
10372
10373         if (cgroup_fd != -1) {
10374                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10375                 if (err)
10376                         goto err_ns;
10377         }
10378
10379         pmu = perf_init_event(event);
10380         if (IS_ERR(pmu)) {
10381                 err = PTR_ERR(pmu);
10382                 goto err_ns;
10383         }
10384
10385         err = exclusive_event_init(event);
10386         if (err)
10387                 goto err_pmu;
10388
10389         if (has_addr_filter(event)) {
10390                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10391                                                     sizeof(struct perf_addr_filter_range),
10392                                                     GFP_KERNEL);
10393                 if (!event->addr_filter_ranges) {
10394                         err = -ENOMEM;
10395                         goto err_per_task;
10396                 }
10397
10398                 /*
10399                  * Clone the parent's vma offsets: they are valid until exec()
10400                  * even if the mm is not shared with the parent.
10401                  */
10402                 if (event->parent) {
10403                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10404
10405                         raw_spin_lock_irq(&ifh->lock);
10406                         memcpy(event->addr_filter_ranges,
10407                                event->parent->addr_filter_ranges,
10408                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10409                         raw_spin_unlock_irq(&ifh->lock);
10410                 }
10411
10412                 /* force hw sync on the address filters */
10413                 event->addr_filters_gen = 1;
10414         }
10415
10416         if (!event->parent) {
10417                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10418                         err = get_callchain_buffers(attr->sample_max_stack);
10419                         if (err)
10420                                 goto err_addr_filters;
10421                 }
10422         }
10423
10424         /* symmetric to unaccount_event() in _free_event() */
10425         account_event(event);
10426
10427         return event;
10428
10429 err_addr_filters:
10430         kfree(event->addr_filter_ranges);
10431
10432 err_per_task:
10433         exclusive_event_destroy(event);
10434
10435 err_pmu:
10436         if (event->destroy)
10437                 event->destroy(event);
10438         module_put(pmu->module);
10439 err_ns:
10440         if (is_cgroup_event(event))
10441                 perf_detach_cgroup(event);
10442         if (event->ns)
10443                 put_pid_ns(event->ns);
10444         if (event->hw.target)
10445                 put_task_struct(event->hw.target);
10446         kfree(event);
10447
10448         return ERR_PTR(err);
10449 }
10450
10451 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10452                           struct perf_event_attr *attr)
10453 {
10454         u32 size;
10455         int ret;
10456
10457         if (!access_ok(uattr, PERF_ATTR_SIZE_VER0))
10458                 return -EFAULT;
10459
10460         /*
10461          * zero the full structure, so that a short copy will be nice.
10462          */
10463         memset(attr, 0, sizeof(*attr));
10464
10465         ret = get_user(size, &uattr->size);
10466         if (ret)
10467                 return ret;
10468
10469         if (size > PAGE_SIZE)   /* silly large */
10470                 goto err_size;
10471
10472         if (!size)              /* abi compat */
10473                 size = PERF_ATTR_SIZE_VER0;
10474
10475         if (size < PERF_ATTR_SIZE_VER0)
10476                 goto err_size;
10477
10478         /*
10479          * If we're handed a bigger struct than we know of,
10480          * ensure all the unknown bits are 0 - i.e. new
10481          * user-space does not rely on any kernel feature
10482          * extensions we dont know about yet.
10483          */
10484         if (size > sizeof(*attr)) {
10485                 unsigned char __user *addr;
10486                 unsigned char __user *end;
10487                 unsigned char val;
10488
10489                 addr = (void __user *)uattr + sizeof(*attr);
10490                 end  = (void __user *)uattr + size;
10491
10492                 for (; addr < end; addr++) {
10493                         ret = get_user(val, addr);
10494                         if (ret)
10495                                 return ret;
10496                         if (val)
10497                                 goto err_size;
10498                 }
10499                 size = sizeof(*attr);
10500         }
10501
10502         ret = copy_from_user(attr, uattr, size);
10503         if (ret)
10504                 return -EFAULT;
10505
10506         attr->size = size;
10507
10508         if (attr->__reserved_1)
10509                 return -EINVAL;
10510
10511         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10512                 return -EINVAL;
10513
10514         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10515                 return -EINVAL;
10516
10517         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10518                 u64 mask = attr->branch_sample_type;
10519
10520                 /* only using defined bits */
10521                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10522                         return -EINVAL;
10523
10524                 /* at least one branch bit must be set */
10525                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10526                         return -EINVAL;
10527
10528                 /* propagate priv level, when not set for branch */
10529                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10530
10531                         /* exclude_kernel checked on syscall entry */
10532                         if (!attr->exclude_kernel)
10533                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10534
10535                         if (!attr->exclude_user)
10536                                 mask |= PERF_SAMPLE_BRANCH_USER;
10537
10538                         if (!attr->exclude_hv)
10539                                 mask |= PERF_SAMPLE_BRANCH_HV;
10540                         /*
10541                          * adjust user setting (for HW filter setup)
10542                          */
10543                         attr->branch_sample_type = mask;
10544                 }
10545                 /* privileged levels capture (kernel, hv): check permissions */
10546                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10547                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10548                         return -EACCES;
10549         }
10550
10551         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10552                 ret = perf_reg_validate(attr->sample_regs_user);
10553                 if (ret)
10554                         return ret;
10555         }
10556
10557         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10558                 if (!arch_perf_have_user_stack_dump())
10559                         return -ENOSYS;
10560
10561                 /*
10562                  * We have __u32 type for the size, but so far
10563                  * we can only use __u16 as maximum due to the
10564                  * __u16 sample size limit.
10565                  */
10566                 if (attr->sample_stack_user >= USHRT_MAX)
10567                         return -EINVAL;
10568                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10569                         return -EINVAL;
10570         }
10571
10572         if (!attr->sample_max_stack)
10573                 attr->sample_max_stack = sysctl_perf_event_max_stack;
10574
10575         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10576                 ret = perf_reg_validate(attr->sample_regs_intr);
10577 out:
10578         return ret;
10579
10580 err_size:
10581         put_user(sizeof(*attr), &uattr->size);
10582         ret = -E2BIG;
10583         goto out;
10584 }
10585
10586 static int
10587 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10588 {
10589         struct ring_buffer *rb = NULL;
10590         int ret = -EINVAL;
10591
10592         if (!output_event)
10593                 goto set;
10594
10595         /* don't allow circular references */
10596         if (event == output_event)
10597                 goto out;
10598
10599         /*
10600          * Don't allow cross-cpu buffers
10601          */
10602         if (output_event->cpu != event->cpu)
10603                 goto out;
10604
10605         /*
10606          * If its not a per-cpu rb, it must be the same task.
10607          */
10608         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10609                 goto out;
10610
10611         /*
10612          * Mixing clocks in the same buffer is trouble you don't need.
10613          */
10614         if (output_event->clock != event->clock)
10615                 goto out;
10616
10617         /*
10618          * Either writing ring buffer from beginning or from end.
10619          * Mixing is not allowed.
10620          */
10621         if (is_write_backward(output_event) != is_write_backward(event))
10622                 goto out;
10623
10624         /*
10625          * If both events generate aux data, they must be on the same PMU
10626          */
10627         if (has_aux(event) && has_aux(output_event) &&
10628             event->pmu != output_event->pmu)
10629                 goto out;
10630
10631 set:
10632         mutex_lock(&event->mmap_mutex);
10633         /* Can't redirect output if we've got an active mmap() */
10634         if (atomic_read(&event->mmap_count))
10635                 goto unlock;
10636
10637         if (output_event) {
10638                 /* get the rb we want to redirect to */
10639                 rb = ring_buffer_get(output_event);
10640                 if (!rb)
10641                         goto unlock;
10642         }
10643
10644         ring_buffer_attach(event, rb);
10645
10646         ret = 0;
10647 unlock:
10648         mutex_unlock(&event->mmap_mutex);
10649
10650 out:
10651         return ret;
10652 }
10653
10654 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10655 {
10656         if (b < a)
10657                 swap(a, b);
10658
10659         mutex_lock(a);
10660         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10661 }
10662
10663 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10664 {
10665         bool nmi_safe = false;
10666
10667         switch (clk_id) {
10668         case CLOCK_MONOTONIC:
10669                 event->clock = &ktime_get_mono_fast_ns;
10670                 nmi_safe = true;
10671                 break;
10672
10673         case CLOCK_MONOTONIC_RAW:
10674                 event->clock = &ktime_get_raw_fast_ns;
10675                 nmi_safe = true;
10676                 break;
10677
10678         case CLOCK_REALTIME:
10679                 event->clock = &ktime_get_real_ns;
10680                 break;
10681
10682         case CLOCK_BOOTTIME:
10683                 event->clock = &ktime_get_boot_ns;
10684                 break;
10685
10686         case CLOCK_TAI:
10687                 event->clock = &ktime_get_tai_ns;
10688                 break;
10689
10690         default:
10691                 return -EINVAL;
10692         }
10693
10694         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10695                 return -EINVAL;
10696
10697         return 0;
10698 }
10699
10700 /*
10701  * Variation on perf_event_ctx_lock_nested(), except we take two context
10702  * mutexes.
10703  */
10704 static struct perf_event_context *
10705 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10706                              struct perf_event_context *ctx)
10707 {
10708         struct perf_event_context *gctx;
10709
10710 again:
10711         rcu_read_lock();
10712         gctx = READ_ONCE(group_leader->ctx);
10713         if (!refcount_inc_not_zero(&gctx->refcount)) {
10714                 rcu_read_unlock();
10715                 goto again;
10716         }
10717         rcu_read_unlock();
10718
10719         mutex_lock_double(&gctx->mutex, &ctx->mutex);
10720
10721         if (group_leader->ctx != gctx) {
10722                 mutex_unlock(&ctx->mutex);
10723                 mutex_unlock(&gctx->mutex);
10724                 put_ctx(gctx);
10725                 goto again;
10726         }
10727
10728         return gctx;
10729 }
10730
10731 /**
10732  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10733  *
10734  * @attr_uptr:  event_id type attributes for monitoring/sampling
10735  * @pid:                target pid
10736  * @cpu:                target cpu
10737  * @group_fd:           group leader event fd
10738  */
10739 SYSCALL_DEFINE5(perf_event_open,
10740                 struct perf_event_attr __user *, attr_uptr,
10741                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10742 {
10743         struct perf_event *group_leader = NULL, *output_event = NULL;
10744         struct perf_event *event, *sibling;
10745         struct perf_event_attr attr;
10746         struct perf_event_context *ctx, *uninitialized_var(gctx);
10747         struct file *event_file = NULL;
10748         struct fd group = {NULL, 0};
10749         struct task_struct *task = NULL;
10750         struct pmu *pmu;
10751         int event_fd;
10752         int move_group = 0;
10753         int err;
10754         int f_flags = O_RDWR;
10755         int cgroup_fd = -1;
10756
10757         /* for future expandability... */
10758         if (flags & ~PERF_FLAG_ALL)
10759                 return -EINVAL;
10760
10761         err = perf_copy_attr(attr_uptr, &attr);
10762         if (err)
10763                 return err;
10764
10765         if (!attr.exclude_kernel) {
10766                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10767                         return -EACCES;
10768         }
10769
10770         if (attr.namespaces) {
10771                 if (!capable(CAP_SYS_ADMIN))
10772                         return -EACCES;
10773         }
10774
10775         if (attr.freq) {
10776                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10777                         return -EINVAL;
10778         } else {
10779                 if (attr.sample_period & (1ULL << 63))
10780                         return -EINVAL;
10781         }
10782
10783         /* Only privileged users can get physical addresses */
10784         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10785             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10786                 return -EACCES;
10787
10788         /*
10789          * In cgroup mode, the pid argument is used to pass the fd
10790          * opened to the cgroup directory in cgroupfs. The cpu argument
10791          * designates the cpu on which to monitor threads from that
10792          * cgroup.
10793          */
10794         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10795                 return -EINVAL;
10796
10797         if (flags & PERF_FLAG_FD_CLOEXEC)
10798                 f_flags |= O_CLOEXEC;
10799
10800         event_fd = get_unused_fd_flags(f_flags);
10801         if (event_fd < 0)
10802                 return event_fd;
10803
10804         if (group_fd != -1) {
10805                 err = perf_fget_light(group_fd, &group);
10806                 if (err)
10807                         goto err_fd;
10808                 group_leader = group.file->private_data;
10809                 if (flags & PERF_FLAG_FD_OUTPUT)
10810                         output_event = group_leader;
10811                 if (flags & PERF_FLAG_FD_NO_GROUP)
10812                         group_leader = NULL;
10813         }
10814
10815         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10816                 task = find_lively_task_by_vpid(pid);
10817                 if (IS_ERR(task)) {
10818                         err = PTR_ERR(task);
10819                         goto err_group_fd;
10820                 }
10821         }
10822
10823         if (task && group_leader &&
10824             group_leader->attr.inherit != attr.inherit) {
10825                 err = -EINVAL;
10826                 goto err_task;
10827         }
10828
10829         if (task) {
10830                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10831                 if (err)
10832                         goto err_task;
10833
10834                 /*
10835                  * Reuse ptrace permission checks for now.
10836                  *
10837                  * We must hold cred_guard_mutex across this and any potential
10838                  * perf_install_in_context() call for this new event to
10839                  * serialize against exec() altering our credentials (and the
10840                  * perf_event_exit_task() that could imply).
10841                  */
10842                 err = -EACCES;
10843                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10844                         goto err_cred;
10845         }
10846
10847         if (flags & PERF_FLAG_PID_CGROUP)
10848                 cgroup_fd = pid;
10849
10850         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10851                                  NULL, NULL, cgroup_fd);
10852         if (IS_ERR(event)) {
10853                 err = PTR_ERR(event);
10854                 goto err_cred;
10855         }
10856
10857         if (is_sampling_event(event)) {
10858                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10859                         err = -EOPNOTSUPP;
10860                         goto err_alloc;
10861                 }
10862         }
10863
10864         /*
10865          * Special case software events and allow them to be part of
10866          * any hardware group.
10867          */
10868         pmu = event->pmu;
10869
10870         if (attr.use_clockid) {
10871                 err = perf_event_set_clock(event, attr.clockid);
10872                 if (err)
10873                         goto err_alloc;
10874         }
10875
10876         if (pmu->task_ctx_nr == perf_sw_context)
10877                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10878
10879         if (group_leader) {
10880                 if (is_software_event(event) &&
10881                     !in_software_context(group_leader)) {
10882                         /*
10883                          * If the event is a sw event, but the group_leader
10884                          * is on hw context.
10885                          *
10886                          * Allow the addition of software events to hw
10887                          * groups, this is safe because software events
10888                          * never fail to schedule.
10889                          */
10890                         pmu = group_leader->ctx->pmu;
10891                 } else if (!is_software_event(event) &&
10892                            is_software_event(group_leader) &&
10893                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10894                         /*
10895                          * In case the group is a pure software group, and we
10896                          * try to add a hardware event, move the whole group to
10897                          * the hardware context.
10898                          */
10899                         move_group = 1;
10900                 }
10901         }
10902
10903         /*
10904          * Get the target context (task or percpu):
10905          */
10906         ctx = find_get_context(pmu, task, event);
10907         if (IS_ERR(ctx)) {
10908                 err = PTR_ERR(ctx);
10909                 goto err_alloc;
10910         }
10911
10912         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10913                 err = -EBUSY;
10914                 goto err_context;
10915         }
10916
10917         /*
10918          * Look up the group leader (we will attach this event to it):
10919          */
10920         if (group_leader) {
10921                 err = -EINVAL;
10922
10923                 /*
10924                  * Do not allow a recursive hierarchy (this new sibling
10925                  * becoming part of another group-sibling):
10926                  */
10927                 if (group_leader->group_leader != group_leader)
10928                         goto err_context;
10929
10930                 /* All events in a group should have the same clock */
10931                 if (group_leader->clock != event->clock)
10932                         goto err_context;
10933
10934                 /*
10935                  * Make sure we're both events for the same CPU;
10936                  * grouping events for different CPUs is broken; since
10937                  * you can never concurrently schedule them anyhow.
10938                  */
10939                 if (group_leader->cpu != event->cpu)
10940                         goto err_context;
10941
10942                 /*
10943                  * Make sure we're both on the same task, or both
10944                  * per-CPU events.
10945                  */
10946                 if (group_leader->ctx->task != ctx->task)
10947                         goto err_context;
10948
10949                 /*
10950                  * Do not allow to attach to a group in a different task
10951                  * or CPU context. If we're moving SW events, we'll fix
10952                  * this up later, so allow that.
10953                  */
10954                 if (!move_group && group_leader->ctx != ctx)
10955                         goto err_context;
10956
10957                 /*
10958                  * Only a group leader can be exclusive or pinned
10959                  */
10960                 if (attr.exclusive || attr.pinned)
10961                         goto err_context;
10962         }
10963
10964         if (output_event) {
10965                 err = perf_event_set_output(event, output_event);
10966                 if (err)
10967                         goto err_context;
10968         }
10969
10970         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10971                                         f_flags);
10972         if (IS_ERR(event_file)) {
10973                 err = PTR_ERR(event_file);
10974                 event_file = NULL;
10975                 goto err_context;
10976         }
10977
10978         if (move_group) {
10979                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10980
10981                 if (gctx->task == TASK_TOMBSTONE) {
10982                         err = -ESRCH;
10983                         goto err_locked;
10984                 }
10985
10986                 /*
10987                  * Check if we raced against another sys_perf_event_open() call
10988                  * moving the software group underneath us.
10989                  */
10990                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10991                         /*
10992                          * If someone moved the group out from under us, check
10993                          * if this new event wound up on the same ctx, if so
10994                          * its the regular !move_group case, otherwise fail.
10995                          */
10996                         if (gctx != ctx) {
10997                                 err = -EINVAL;
10998                                 goto err_locked;
10999                         } else {
11000                                 perf_event_ctx_unlock(group_leader, gctx);
11001                                 move_group = 0;
11002                         }
11003                 }
11004         } else {
11005                 mutex_lock(&ctx->mutex);
11006         }
11007
11008         if (ctx->task == TASK_TOMBSTONE) {
11009                 err = -ESRCH;
11010                 goto err_locked;
11011         }
11012
11013         if (!perf_event_validate_size(event)) {
11014                 err = -E2BIG;
11015                 goto err_locked;
11016         }
11017
11018         if (!task) {
11019                 /*
11020                  * Check if the @cpu we're creating an event for is online.
11021                  *
11022                  * We use the perf_cpu_context::ctx::mutex to serialize against
11023                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11024                  */
11025                 struct perf_cpu_context *cpuctx =
11026                         container_of(ctx, struct perf_cpu_context, ctx);
11027
11028                 if (!cpuctx->online) {
11029                         err = -ENODEV;
11030                         goto err_locked;
11031                 }
11032         }
11033
11034
11035         /*
11036          * Must be under the same ctx::mutex as perf_install_in_context(),
11037          * because we need to serialize with concurrent event creation.
11038          */
11039         if (!exclusive_event_installable(event, ctx)) {
11040                 /* exclusive and group stuff are assumed mutually exclusive */
11041                 WARN_ON_ONCE(move_group);
11042
11043                 err = -EBUSY;
11044                 goto err_locked;
11045         }
11046
11047         WARN_ON_ONCE(ctx->parent_ctx);
11048
11049         /*
11050          * This is the point on no return; we cannot fail hereafter. This is
11051          * where we start modifying current state.
11052          */
11053
11054         if (move_group) {
11055                 /*
11056                  * See perf_event_ctx_lock() for comments on the details
11057                  * of swizzling perf_event::ctx.
11058                  */
11059                 perf_remove_from_context(group_leader, 0);
11060                 put_ctx(gctx);
11061
11062                 for_each_sibling_event(sibling, group_leader) {
11063                         perf_remove_from_context(sibling, 0);
11064                         put_ctx(gctx);
11065                 }
11066
11067                 /*
11068                  * Wait for everybody to stop referencing the events through
11069                  * the old lists, before installing it on new lists.
11070                  */
11071                 synchronize_rcu();
11072
11073                 /*
11074                  * Install the group siblings before the group leader.
11075                  *
11076                  * Because a group leader will try and install the entire group
11077                  * (through the sibling list, which is still in-tact), we can
11078                  * end up with siblings installed in the wrong context.
11079                  *
11080                  * By installing siblings first we NO-OP because they're not
11081                  * reachable through the group lists.
11082                  */
11083                 for_each_sibling_event(sibling, group_leader) {
11084                         perf_event__state_init(sibling);
11085                         perf_install_in_context(ctx, sibling, sibling->cpu);
11086                         get_ctx(ctx);
11087                 }
11088
11089                 /*
11090                  * Removing from the context ends up with disabled
11091                  * event. What we want here is event in the initial
11092                  * startup state, ready to be add into new context.
11093                  */
11094                 perf_event__state_init(group_leader);
11095                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11096                 get_ctx(ctx);
11097         }
11098
11099         /*
11100          * Precalculate sample_data sizes; do while holding ctx::mutex such
11101          * that we're serialized against further additions and before
11102          * perf_install_in_context() which is the point the event is active and
11103          * can use these values.
11104          */
11105         perf_event__header_size(event);
11106         perf_event__id_header_size(event);
11107
11108         event->owner = current;
11109
11110         perf_install_in_context(ctx, event, event->cpu);
11111         perf_unpin_context(ctx);
11112
11113         if (move_group)
11114                 perf_event_ctx_unlock(group_leader, gctx);
11115         mutex_unlock(&ctx->mutex);
11116
11117         if (task) {
11118                 mutex_unlock(&task->signal->cred_guard_mutex);
11119                 put_task_struct(task);
11120         }
11121
11122         mutex_lock(&current->perf_event_mutex);
11123         list_add_tail(&event->owner_entry, &current->perf_event_list);
11124         mutex_unlock(&current->perf_event_mutex);
11125
11126         /*
11127          * Drop the reference on the group_event after placing the
11128          * new event on the sibling_list. This ensures destruction
11129          * of the group leader will find the pointer to itself in
11130          * perf_group_detach().
11131          */
11132         fdput(group);
11133         fd_install(event_fd, event_file);
11134         return event_fd;
11135
11136 err_locked:
11137         if (move_group)
11138                 perf_event_ctx_unlock(group_leader, gctx);
11139         mutex_unlock(&ctx->mutex);
11140 /* err_file: */
11141         fput(event_file);
11142 err_context:
11143         perf_unpin_context(ctx);
11144         put_ctx(ctx);
11145 err_alloc:
11146         /*
11147          * If event_file is set, the fput() above will have called ->release()
11148          * and that will take care of freeing the event.
11149          */
11150         if (!event_file)
11151                 free_event(event);
11152 err_cred:
11153         if (task)
11154                 mutex_unlock(&task->signal->cred_guard_mutex);
11155 err_task:
11156         if (task)
11157                 put_task_struct(task);
11158 err_group_fd:
11159         fdput(group);
11160 err_fd:
11161         put_unused_fd(event_fd);
11162         return err;
11163 }
11164
11165 /**
11166  * perf_event_create_kernel_counter
11167  *
11168  * @attr: attributes of the counter to create
11169  * @cpu: cpu in which the counter is bound
11170  * @task: task to profile (NULL for percpu)
11171  */
11172 struct perf_event *
11173 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11174                                  struct task_struct *task,
11175                                  perf_overflow_handler_t overflow_handler,
11176                                  void *context)
11177 {
11178         struct perf_event_context *ctx;
11179         struct perf_event *event;
11180         int err;
11181
11182         /*
11183          * Get the target context (task or percpu):
11184          */
11185
11186         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11187                                  overflow_handler, context, -1);
11188         if (IS_ERR(event)) {
11189                 err = PTR_ERR(event);
11190                 goto err;
11191         }
11192
11193         /* Mark owner so we could distinguish it from user events. */
11194         event->owner = TASK_TOMBSTONE;
11195
11196         ctx = find_get_context(event->pmu, task, event);
11197         if (IS_ERR(ctx)) {
11198                 err = PTR_ERR(ctx);
11199                 goto err_free;
11200         }
11201
11202         WARN_ON_ONCE(ctx->parent_ctx);
11203         mutex_lock(&ctx->mutex);
11204         if (ctx->task == TASK_TOMBSTONE) {
11205                 err = -ESRCH;
11206                 goto err_unlock;
11207         }
11208
11209         if (!task) {
11210                 /*
11211                  * Check if the @cpu we're creating an event for is online.
11212                  *
11213                  * We use the perf_cpu_context::ctx::mutex to serialize against
11214                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11215                  */
11216                 struct perf_cpu_context *cpuctx =
11217                         container_of(ctx, struct perf_cpu_context, ctx);
11218                 if (!cpuctx->online) {
11219                         err = -ENODEV;
11220                         goto err_unlock;
11221                 }
11222         }
11223
11224         if (!exclusive_event_installable(event, ctx)) {
11225                 err = -EBUSY;
11226                 goto err_unlock;
11227         }
11228
11229         perf_install_in_context(ctx, event, cpu);
11230         perf_unpin_context(ctx);
11231         mutex_unlock(&ctx->mutex);
11232
11233         return event;
11234
11235 err_unlock:
11236         mutex_unlock(&ctx->mutex);
11237         perf_unpin_context(ctx);
11238         put_ctx(ctx);
11239 err_free:
11240         free_event(event);
11241 err:
11242         return ERR_PTR(err);
11243 }
11244 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11245
11246 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11247 {
11248         struct perf_event_context *src_ctx;
11249         struct perf_event_context *dst_ctx;
11250         struct perf_event *event, *tmp;
11251         LIST_HEAD(events);
11252
11253         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11254         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11255
11256         /*
11257          * See perf_event_ctx_lock() for comments on the details
11258          * of swizzling perf_event::ctx.
11259          */
11260         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11261         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11262                                  event_entry) {
11263                 perf_remove_from_context(event, 0);
11264                 unaccount_event_cpu(event, src_cpu);
11265                 put_ctx(src_ctx);
11266                 list_add(&event->migrate_entry, &events);
11267         }
11268
11269         /*
11270          * Wait for the events to quiesce before re-instating them.
11271          */
11272         synchronize_rcu();
11273
11274         /*
11275          * Re-instate events in 2 passes.
11276          *
11277          * Skip over group leaders and only install siblings on this first
11278          * pass, siblings will not get enabled without a leader, however a
11279          * leader will enable its siblings, even if those are still on the old
11280          * context.
11281          */
11282         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11283                 if (event->group_leader == event)
11284                         continue;
11285
11286                 list_del(&event->migrate_entry);
11287                 if (event->state >= PERF_EVENT_STATE_OFF)
11288                         event->state = PERF_EVENT_STATE_INACTIVE;
11289                 account_event_cpu(event, dst_cpu);
11290                 perf_install_in_context(dst_ctx, event, dst_cpu);
11291                 get_ctx(dst_ctx);
11292         }
11293
11294         /*
11295          * Once all the siblings are setup properly, install the group leaders
11296          * to make it go.
11297          */
11298         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11299                 list_del(&event->migrate_entry);
11300                 if (event->state >= PERF_EVENT_STATE_OFF)
11301                         event->state = PERF_EVENT_STATE_INACTIVE;
11302                 account_event_cpu(event, dst_cpu);
11303                 perf_install_in_context(dst_ctx, event, dst_cpu);
11304                 get_ctx(dst_ctx);
11305         }
11306         mutex_unlock(&dst_ctx->mutex);
11307         mutex_unlock(&src_ctx->mutex);
11308 }
11309 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11310
11311 static void sync_child_event(struct perf_event *child_event,
11312                                struct task_struct *child)
11313 {
11314         struct perf_event *parent_event = child_event->parent;
11315         u64 child_val;
11316
11317         if (child_event->attr.inherit_stat)
11318                 perf_event_read_event(child_event, child);
11319
11320         child_val = perf_event_count(child_event);
11321
11322         /*
11323          * Add back the child's count to the parent's count:
11324          */
11325         atomic64_add(child_val, &parent_event->child_count);
11326         atomic64_add(child_event->total_time_enabled,
11327                      &parent_event->child_total_time_enabled);
11328         atomic64_add(child_event->total_time_running,
11329                      &parent_event->child_total_time_running);
11330 }
11331
11332 static void
11333 perf_event_exit_event(struct perf_event *child_event,
11334                       struct perf_event_context *child_ctx,
11335                       struct task_struct *child)
11336 {
11337         struct perf_event *parent_event = child_event->parent;
11338
11339         /*
11340          * Do not destroy the 'original' grouping; because of the context
11341          * switch optimization the original events could've ended up in a
11342          * random child task.
11343          *
11344          * If we were to destroy the original group, all group related
11345          * operations would cease to function properly after this random
11346          * child dies.
11347          *
11348          * Do destroy all inherited groups, we don't care about those
11349          * and being thorough is better.
11350          */
11351         raw_spin_lock_irq(&child_ctx->lock);
11352         WARN_ON_ONCE(child_ctx->is_active);
11353
11354         if (parent_event)
11355                 perf_group_detach(child_event);
11356         list_del_event(child_event, child_ctx);
11357         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11358         raw_spin_unlock_irq(&child_ctx->lock);
11359
11360         /*
11361          * Parent events are governed by their filedesc, retain them.
11362          */
11363         if (!parent_event) {
11364                 perf_event_wakeup(child_event);
11365                 return;
11366         }
11367         /*
11368          * Child events can be cleaned up.
11369          */
11370
11371         sync_child_event(child_event, child);
11372
11373         /*
11374          * Remove this event from the parent's list
11375          */
11376         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11377         mutex_lock(&parent_event->child_mutex);
11378         list_del_init(&child_event->child_list);
11379         mutex_unlock(&parent_event->child_mutex);
11380
11381         /*
11382          * Kick perf_poll() for is_event_hup().
11383          */
11384         perf_event_wakeup(parent_event);
11385         free_event(child_event);
11386         put_event(parent_event);
11387 }
11388
11389 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11390 {
11391         struct perf_event_context *child_ctx, *clone_ctx = NULL;
11392         struct perf_event *child_event, *next;
11393
11394         WARN_ON_ONCE(child != current);
11395
11396         child_ctx = perf_pin_task_context(child, ctxn);
11397         if (!child_ctx)
11398                 return;
11399
11400         /*
11401          * In order to reduce the amount of tricky in ctx tear-down, we hold
11402          * ctx::mutex over the entire thing. This serializes against almost
11403          * everything that wants to access the ctx.
11404          *
11405          * The exception is sys_perf_event_open() /
11406          * perf_event_create_kernel_count() which does find_get_context()
11407          * without ctx::mutex (it cannot because of the move_group double mutex
11408          * lock thing). See the comments in perf_install_in_context().
11409          */
11410         mutex_lock(&child_ctx->mutex);
11411
11412         /*
11413          * In a single ctx::lock section, de-schedule the events and detach the
11414          * context from the task such that we cannot ever get it scheduled back
11415          * in.
11416          */
11417         raw_spin_lock_irq(&child_ctx->lock);
11418         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11419
11420         /*
11421          * Now that the context is inactive, destroy the task <-> ctx relation
11422          * and mark the context dead.
11423          */
11424         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11425         put_ctx(child_ctx); /* cannot be last */
11426         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11427         put_task_struct(current); /* cannot be last */
11428
11429         clone_ctx = unclone_ctx(child_ctx);
11430         raw_spin_unlock_irq(&child_ctx->lock);
11431
11432         if (clone_ctx)
11433                 put_ctx(clone_ctx);
11434
11435         /*
11436          * Report the task dead after unscheduling the events so that we
11437          * won't get any samples after PERF_RECORD_EXIT. We can however still
11438          * get a few PERF_RECORD_READ events.
11439          */
11440         perf_event_task(child, child_ctx, 0);
11441
11442         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11443                 perf_event_exit_event(child_event, child_ctx, child);
11444
11445         mutex_unlock(&child_ctx->mutex);
11446
11447         put_ctx(child_ctx);
11448 }
11449
11450 /*
11451  * When a child task exits, feed back event values to parent events.
11452  *
11453  * Can be called with cred_guard_mutex held when called from
11454  * install_exec_creds().
11455  */
11456 void perf_event_exit_task(struct task_struct *child)
11457 {
11458         struct perf_event *event, *tmp;
11459         int ctxn;
11460
11461         mutex_lock(&child->perf_event_mutex);
11462         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11463                                  owner_entry) {
11464                 list_del_init(&event->owner_entry);
11465
11466                 /*
11467                  * Ensure the list deletion is visible before we clear
11468                  * the owner, closes a race against perf_release() where
11469                  * we need to serialize on the owner->perf_event_mutex.
11470                  */
11471                 smp_store_release(&event->owner, NULL);
11472         }
11473         mutex_unlock(&child->perf_event_mutex);
11474
11475         for_each_task_context_nr(ctxn)
11476                 perf_event_exit_task_context(child, ctxn);
11477
11478         /*
11479          * The perf_event_exit_task_context calls perf_event_task
11480          * with child's task_ctx, which generates EXIT events for
11481          * child contexts and sets child->perf_event_ctxp[] to NULL.
11482          * At this point we need to send EXIT events to cpu contexts.
11483          */
11484         perf_event_task(child, NULL, 0);
11485 }
11486
11487 static void perf_free_event(struct perf_event *event,
11488                             struct perf_event_context *ctx)
11489 {
11490         struct perf_event *parent = event->parent;
11491
11492         if (WARN_ON_ONCE(!parent))
11493                 return;
11494
11495         mutex_lock(&parent->child_mutex);
11496         list_del_init(&event->child_list);
11497         mutex_unlock(&parent->child_mutex);
11498
11499         put_event(parent);
11500
11501         raw_spin_lock_irq(&ctx->lock);
11502         perf_group_detach(event);
11503         list_del_event(event, ctx);
11504         raw_spin_unlock_irq(&ctx->lock);
11505         free_event(event);
11506 }
11507
11508 /*
11509  * Free an unexposed, unused context as created by inheritance by
11510  * perf_event_init_task below, used by fork() in case of fail.
11511  *
11512  * Not all locks are strictly required, but take them anyway to be nice and
11513  * help out with the lockdep assertions.
11514  */
11515 void perf_event_free_task(struct task_struct *task)
11516 {
11517         struct perf_event_context *ctx;
11518         struct perf_event *event, *tmp;
11519         int ctxn;
11520
11521         for_each_task_context_nr(ctxn) {
11522                 ctx = task->perf_event_ctxp[ctxn];
11523                 if (!ctx)
11524                         continue;
11525
11526                 mutex_lock(&ctx->mutex);
11527                 raw_spin_lock_irq(&ctx->lock);
11528                 /*
11529                  * Destroy the task <-> ctx relation and mark the context dead.
11530                  *
11531                  * This is important because even though the task hasn't been
11532                  * exposed yet the context has been (through child_list).
11533                  */
11534                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11535                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11536                 put_task_struct(task); /* cannot be last */
11537                 raw_spin_unlock_irq(&ctx->lock);
11538
11539                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11540                         perf_free_event(event, ctx);
11541
11542                 mutex_unlock(&ctx->mutex);
11543                 put_ctx(ctx);
11544         }
11545 }
11546
11547 void perf_event_delayed_put(struct task_struct *task)
11548 {
11549         int ctxn;
11550
11551         for_each_task_context_nr(ctxn)
11552                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11553 }
11554
11555 struct file *perf_event_get(unsigned int fd)
11556 {
11557         struct file *file;
11558
11559         file = fget_raw(fd);
11560         if (!file)
11561                 return ERR_PTR(-EBADF);
11562
11563         if (file->f_op != &perf_fops) {
11564                 fput(file);
11565                 return ERR_PTR(-EBADF);
11566         }
11567
11568         return file;
11569 }
11570
11571 const struct perf_event *perf_get_event(struct file *file)
11572 {
11573         if (file->f_op != &perf_fops)
11574                 return ERR_PTR(-EINVAL);
11575
11576         return file->private_data;
11577 }
11578
11579 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11580 {
11581         if (!event)
11582                 return ERR_PTR(-EINVAL);
11583
11584         return &event->attr;
11585 }
11586
11587 /*
11588  * Inherit an event from parent task to child task.
11589  *
11590  * Returns:
11591  *  - valid pointer on success
11592  *  - NULL for orphaned events
11593  *  - IS_ERR() on error
11594  */
11595 static struct perf_event *
11596 inherit_event(struct perf_event *parent_event,
11597               struct task_struct *parent,
11598               struct perf_event_context *parent_ctx,
11599               struct task_struct *child,
11600               struct perf_event *group_leader,
11601               struct perf_event_context *child_ctx)
11602 {
11603         enum perf_event_state parent_state = parent_event->state;
11604         struct perf_event *child_event;
11605         unsigned long flags;
11606
11607         /*
11608          * Instead of creating recursive hierarchies of events,
11609          * we link inherited events back to the original parent,
11610          * which has a filp for sure, which we use as the reference
11611          * count:
11612          */
11613         if (parent_event->parent)
11614                 parent_event = parent_event->parent;
11615
11616         child_event = perf_event_alloc(&parent_event->attr,
11617                                            parent_event->cpu,
11618                                            child,
11619                                            group_leader, parent_event,
11620                                            NULL, NULL, -1);
11621         if (IS_ERR(child_event))
11622                 return child_event;
11623
11624
11625         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11626             !child_ctx->task_ctx_data) {
11627                 struct pmu *pmu = child_event->pmu;
11628
11629                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11630                                                    GFP_KERNEL);
11631                 if (!child_ctx->task_ctx_data) {
11632                         free_event(child_event);
11633                         return NULL;
11634                 }
11635         }
11636
11637         /*
11638          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11639          * must be under the same lock in order to serialize against
11640          * perf_event_release_kernel(), such that either we must observe
11641          * is_orphaned_event() or they will observe us on the child_list.
11642          */
11643         mutex_lock(&parent_event->child_mutex);
11644         if (is_orphaned_event(parent_event) ||
11645             !atomic_long_inc_not_zero(&parent_event->refcount)) {
11646                 mutex_unlock(&parent_event->child_mutex);
11647                 /* task_ctx_data is freed with child_ctx */
11648                 free_event(child_event);
11649                 return NULL;
11650         }
11651
11652         get_ctx(child_ctx);
11653
11654         /*
11655          * Make the child state follow the state of the parent event,
11656          * not its attr.disabled bit.  We hold the parent's mutex,
11657          * so we won't race with perf_event_{en, dis}able_family.
11658          */
11659         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11660                 child_event->state = PERF_EVENT_STATE_INACTIVE;
11661         else
11662                 child_event->state = PERF_EVENT_STATE_OFF;
11663
11664         if (parent_event->attr.freq) {
11665                 u64 sample_period = parent_event->hw.sample_period;
11666                 struct hw_perf_event *hwc = &child_event->hw;
11667
11668                 hwc->sample_period = sample_period;
11669                 hwc->last_period   = sample_period;
11670
11671                 local64_set(&hwc->period_left, sample_period);
11672         }
11673
11674         child_event->ctx = child_ctx;
11675         child_event->overflow_handler = parent_event->overflow_handler;
11676         child_event->overflow_handler_context
11677                 = parent_event->overflow_handler_context;
11678
11679         /*
11680          * Precalculate sample_data sizes
11681          */
11682         perf_event__header_size(child_event);
11683         perf_event__id_header_size(child_event);
11684
11685         /*
11686          * Link it up in the child's context:
11687          */
11688         raw_spin_lock_irqsave(&child_ctx->lock, flags);
11689         add_event_to_ctx(child_event, child_ctx);
11690         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11691
11692         /*
11693          * Link this into the parent event's child list
11694          */
11695         list_add_tail(&child_event->child_list, &parent_event->child_list);
11696         mutex_unlock(&parent_event->child_mutex);
11697
11698         return child_event;
11699 }
11700
11701 /*
11702  * Inherits an event group.
11703  *
11704  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11705  * This matches with perf_event_release_kernel() removing all child events.
11706  *
11707  * Returns:
11708  *  - 0 on success
11709  *  - <0 on error
11710  */
11711 static int inherit_group(struct perf_event *parent_event,
11712               struct task_struct *parent,
11713               struct perf_event_context *parent_ctx,
11714               struct task_struct *child,
11715               struct perf_event_context *child_ctx)
11716 {
11717         struct perf_event *leader;
11718         struct perf_event *sub;
11719         struct perf_event *child_ctr;
11720
11721         leader = inherit_event(parent_event, parent, parent_ctx,
11722                                  child, NULL, child_ctx);
11723         if (IS_ERR(leader))
11724                 return PTR_ERR(leader);
11725         /*
11726          * @leader can be NULL here because of is_orphaned_event(). In this
11727          * case inherit_event() will create individual events, similar to what
11728          * perf_group_detach() would do anyway.
11729          */
11730         for_each_sibling_event(sub, parent_event) {
11731                 child_ctr = inherit_event(sub, parent, parent_ctx,
11732                                             child, leader, child_ctx);
11733                 if (IS_ERR(child_ctr))
11734                         return PTR_ERR(child_ctr);
11735         }
11736         return 0;
11737 }
11738
11739 /*
11740  * Creates the child task context and tries to inherit the event-group.
11741  *
11742  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11743  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11744  * consistent with perf_event_release_kernel() removing all child events.
11745  *
11746  * Returns:
11747  *  - 0 on success
11748  *  - <0 on error
11749  */
11750 static int
11751 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11752                    struct perf_event_context *parent_ctx,
11753                    struct task_struct *child, int ctxn,
11754                    int *inherited_all)
11755 {
11756         int ret;
11757         struct perf_event_context *child_ctx;
11758
11759         if (!event->attr.inherit) {
11760                 *inherited_all = 0;
11761                 return 0;
11762         }
11763
11764         child_ctx = child->perf_event_ctxp[ctxn];
11765         if (!child_ctx) {
11766                 /*
11767                  * This is executed from the parent task context, so
11768                  * inherit events that have been marked for cloning.
11769                  * First allocate and initialize a context for the
11770                  * child.
11771                  */
11772                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11773                 if (!child_ctx)
11774                         return -ENOMEM;
11775
11776                 child->perf_event_ctxp[ctxn] = child_ctx;
11777         }
11778
11779         ret = inherit_group(event, parent, parent_ctx,
11780                             child, child_ctx);
11781
11782         if (ret)
11783                 *inherited_all = 0;
11784
11785         return ret;
11786 }
11787
11788 /*
11789  * Initialize the perf_event context in task_struct
11790  */
11791 static int perf_event_init_context(struct task_struct *child, int ctxn)
11792 {
11793         struct perf_event_context *child_ctx, *parent_ctx;
11794         struct perf_event_context *cloned_ctx;
11795         struct perf_event *event;
11796         struct task_struct *parent = current;
11797         int inherited_all = 1;
11798         unsigned long flags;
11799         int ret = 0;
11800
11801         if (likely(!parent->perf_event_ctxp[ctxn]))
11802                 return 0;
11803
11804         /*
11805          * If the parent's context is a clone, pin it so it won't get
11806          * swapped under us.
11807          */
11808         parent_ctx = perf_pin_task_context(parent, ctxn);
11809         if (!parent_ctx)
11810                 return 0;
11811
11812         /*
11813          * No need to check if parent_ctx != NULL here; since we saw
11814          * it non-NULL earlier, the only reason for it to become NULL
11815          * is if we exit, and since we're currently in the middle of
11816          * a fork we can't be exiting at the same time.
11817          */
11818
11819         /*
11820          * Lock the parent list. No need to lock the child - not PID
11821          * hashed yet and not running, so nobody can access it.
11822          */
11823         mutex_lock(&parent_ctx->mutex);
11824
11825         /*
11826          * We dont have to disable NMIs - we are only looking at
11827          * the list, not manipulating it:
11828          */
11829         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11830                 ret = inherit_task_group(event, parent, parent_ctx,
11831                                          child, ctxn, &inherited_all);
11832                 if (ret)
11833                         goto out_unlock;
11834         }
11835
11836         /*
11837          * We can't hold ctx->lock when iterating the ->flexible_group list due
11838          * to allocations, but we need to prevent rotation because
11839          * rotate_ctx() will change the list from interrupt context.
11840          */
11841         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11842         parent_ctx->rotate_disable = 1;
11843         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11844
11845         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11846                 ret = inherit_task_group(event, parent, parent_ctx,
11847                                          child, ctxn, &inherited_all);
11848                 if (ret)
11849                         goto out_unlock;
11850         }
11851
11852         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11853         parent_ctx->rotate_disable = 0;
11854
11855         child_ctx = child->perf_event_ctxp[ctxn];
11856
11857         if (child_ctx && inherited_all) {
11858                 /*
11859                  * Mark the child context as a clone of the parent
11860                  * context, or of whatever the parent is a clone of.
11861                  *
11862                  * Note that if the parent is a clone, the holding of
11863                  * parent_ctx->lock avoids it from being uncloned.
11864                  */
11865                 cloned_ctx = parent_ctx->parent_ctx;
11866                 if (cloned_ctx) {
11867                         child_ctx->parent_ctx = cloned_ctx;
11868                         child_ctx->parent_gen = parent_ctx->parent_gen;
11869                 } else {
11870                         child_ctx->parent_ctx = parent_ctx;
11871                         child_ctx->parent_gen = parent_ctx->generation;
11872                 }
11873                 get_ctx(child_ctx->parent_ctx);
11874         }
11875
11876         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11877 out_unlock:
11878         mutex_unlock(&parent_ctx->mutex);
11879
11880         perf_unpin_context(parent_ctx);
11881         put_ctx(parent_ctx);
11882
11883         return ret;
11884 }
11885
11886 /*
11887  * Initialize the perf_event context in task_struct
11888  */
11889 int perf_event_init_task(struct task_struct *child)
11890 {
11891         int ctxn, ret;
11892
11893         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11894         mutex_init(&child->perf_event_mutex);
11895         INIT_LIST_HEAD(&child->perf_event_list);
11896
11897         for_each_task_context_nr(ctxn) {
11898                 ret = perf_event_init_context(child, ctxn);
11899                 if (ret) {
11900                         perf_event_free_task(child);
11901                         return ret;
11902                 }
11903         }
11904
11905         return 0;
11906 }
11907
11908 static void __init perf_event_init_all_cpus(void)
11909 {
11910         struct swevent_htable *swhash;
11911         int cpu;
11912
11913         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11914
11915         for_each_possible_cpu(cpu) {
11916                 swhash = &per_cpu(swevent_htable, cpu);
11917                 mutex_init(&swhash->hlist_mutex);
11918                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11919
11920                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11921                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11922
11923 #ifdef CONFIG_CGROUP_PERF
11924                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11925 #endif
11926                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11927         }
11928 }
11929
11930 static void perf_swevent_init_cpu(unsigned int cpu)
11931 {
11932         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11933
11934         mutex_lock(&swhash->hlist_mutex);
11935         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11936                 struct swevent_hlist *hlist;
11937
11938                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11939                 WARN_ON(!hlist);
11940                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11941         }
11942         mutex_unlock(&swhash->hlist_mutex);
11943 }
11944
11945 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11946 static void __perf_event_exit_context(void *__info)
11947 {
11948         struct perf_event_context *ctx = __info;
11949         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11950         struct perf_event *event;
11951
11952         raw_spin_lock(&ctx->lock);
11953         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11954         list_for_each_entry(event, &ctx->event_list, event_entry)
11955                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11956         raw_spin_unlock(&ctx->lock);
11957 }
11958
11959 static void perf_event_exit_cpu_context(int cpu)
11960 {
11961         struct perf_cpu_context *cpuctx;
11962         struct perf_event_context *ctx;
11963         struct pmu *pmu;
11964
11965         mutex_lock(&pmus_lock);
11966         list_for_each_entry(pmu, &pmus, entry) {
11967                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11968                 ctx = &cpuctx->ctx;
11969
11970                 mutex_lock(&ctx->mutex);
11971                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11972                 cpuctx->online = 0;
11973                 mutex_unlock(&ctx->mutex);
11974         }
11975         cpumask_clear_cpu(cpu, perf_online_mask);
11976         mutex_unlock(&pmus_lock);
11977 }
11978 #else
11979
11980 static void perf_event_exit_cpu_context(int cpu) { }
11981
11982 #endif
11983
11984 int perf_event_init_cpu(unsigned int cpu)
11985 {
11986         struct perf_cpu_context *cpuctx;
11987         struct perf_event_context *ctx;
11988         struct pmu *pmu;
11989
11990         perf_swevent_init_cpu(cpu);
11991
11992         mutex_lock(&pmus_lock);
11993         cpumask_set_cpu(cpu, perf_online_mask);
11994         list_for_each_entry(pmu, &pmus, entry) {
11995                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11996                 ctx = &cpuctx->ctx;
11997
11998                 mutex_lock(&ctx->mutex);
11999                 cpuctx->online = 1;
12000                 mutex_unlock(&ctx->mutex);
12001         }
12002         mutex_unlock(&pmus_lock);
12003
12004         return 0;
12005 }
12006
12007 int perf_event_exit_cpu(unsigned int cpu)
12008 {
12009         perf_event_exit_cpu_context(cpu);
12010         return 0;
12011 }
12012
12013 static int
12014 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12015 {
12016         int cpu;
12017
12018         for_each_online_cpu(cpu)
12019                 perf_event_exit_cpu(cpu);
12020
12021         return NOTIFY_OK;
12022 }
12023
12024 /*
12025  * Run the perf reboot notifier at the very last possible moment so that
12026  * the generic watchdog code runs as long as possible.
12027  */
12028 static struct notifier_block perf_reboot_notifier = {
12029         .notifier_call = perf_reboot,
12030         .priority = INT_MIN,
12031 };
12032
12033 void __init perf_event_init(void)
12034 {
12035         int ret;
12036
12037         idr_init(&pmu_idr);
12038
12039         perf_event_init_all_cpus();
12040         init_srcu_struct(&pmus_srcu);
12041         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12042         perf_pmu_register(&perf_cpu_clock, NULL, -1);
12043         perf_pmu_register(&perf_task_clock, NULL, -1);
12044         perf_tp_register();
12045         perf_event_init_cpu(smp_processor_id());
12046         register_reboot_notifier(&perf_reboot_notifier);
12047
12048         ret = init_hw_breakpoint();
12049         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12050
12051         /*
12052          * Build time assertion that we keep the data_head at the intended
12053          * location.  IOW, validation we got the __reserved[] size right.
12054          */
12055         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12056                      != 1024);
12057 }
12058
12059 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12060                               char *page)
12061 {
12062         struct perf_pmu_events_attr *pmu_attr =
12063                 container_of(attr, struct perf_pmu_events_attr, attr);
12064
12065         if (pmu_attr->event_str)
12066                 return sprintf(page, "%s\n", pmu_attr->event_str);
12067
12068         return 0;
12069 }
12070 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12071
12072 static int __init perf_event_sysfs_init(void)
12073 {
12074         struct pmu *pmu;
12075         int ret;
12076
12077         mutex_lock(&pmus_lock);
12078
12079         ret = bus_register(&pmu_bus);
12080         if (ret)
12081                 goto unlock;
12082
12083         list_for_each_entry(pmu, &pmus, entry) {
12084                 if (!pmu->name || pmu->type < 0)
12085                         continue;
12086
12087                 ret = pmu_dev_alloc(pmu);
12088                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12089         }
12090         pmu_bus_running = 1;
12091         ret = 0;
12092
12093 unlock:
12094         mutex_unlock(&pmus_lock);
12095
12096         return ret;
12097 }
12098 device_initcall(perf_event_sysfs_init);
12099
12100 #ifdef CONFIG_CGROUP_PERF
12101 static struct cgroup_subsys_state *
12102 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12103 {
12104         struct perf_cgroup *jc;
12105
12106         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12107         if (!jc)
12108                 return ERR_PTR(-ENOMEM);
12109
12110         jc->info = alloc_percpu(struct perf_cgroup_info);
12111         if (!jc->info) {
12112                 kfree(jc);
12113                 return ERR_PTR(-ENOMEM);
12114         }
12115
12116         return &jc->css;
12117 }
12118
12119 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12120 {
12121         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12122
12123         free_percpu(jc->info);
12124         kfree(jc);
12125 }
12126
12127 static int __perf_cgroup_move(void *info)
12128 {
12129         struct task_struct *task = info;
12130         rcu_read_lock();
12131         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12132         rcu_read_unlock();
12133         return 0;
12134 }
12135
12136 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12137 {
12138         struct task_struct *task;
12139         struct cgroup_subsys_state *css;
12140
12141         cgroup_taskset_for_each(task, css, tset)
12142                 task_function_call(task, __perf_cgroup_move, task);
12143 }
12144
12145 struct cgroup_subsys perf_event_cgrp_subsys = {
12146         .css_alloc      = perf_cgroup_css_alloc,
12147         .css_free       = perf_cgroup_css_free,
12148         .attach         = perf_cgroup_attach,
12149         /*
12150          * Implicitly enable on dfl hierarchy so that perf events can
12151          * always be filtered by cgroup2 path as long as perf_event
12152          * controller is not mounted on a legacy hierarchy.
12153          */
12154         .implicit_on_dfl = true,
12155         .threaded       = true,
12156 };
12157 #endif /* CONFIG_CGROUP_PERF */