]> asedeno.scripts.mit.edu Git - linux.git/blob - kernel/events/core.c
perf/core: Do error out on a kernel filter on an exclude_filter event
[linux.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49
50 #include "internal.h"
51
52 #include <asm/irq_regs.h>
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57         struct task_struct      *p;
58         remote_function_f       func;
59         void                    *info;
60         int                     ret;
61 };
62
63 static void remote_function(void *data)
64 {
65         struct remote_function_call *tfc = data;
66         struct task_struct *p = tfc->p;
67
68         if (p) {
69                 /* -EAGAIN */
70                 if (task_cpu(p) != smp_processor_id())
71                         return;
72
73                 /*
74                  * Now that we're on right CPU with IRQs disabled, we can test
75                  * if we hit the right task without races.
76                  */
77
78                 tfc->ret = -ESRCH; /* No such (running) process */
79                 if (p != current)
80                         return;
81         }
82
83         tfc->ret = tfc->func(tfc->info);
84 }
85
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:          the task to evaluate
89  * @func:       the function to be called
90  * @info:       the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *          -ESRCH  - when the process isn't running
97  *          -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102         struct remote_function_call data = {
103                 .p      = p,
104                 .func   = func,
105                 .info   = info,
106                 .ret    = -EAGAIN,
107         };
108         int ret;
109
110         do {
111                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112                 if (!ret)
113                         ret = data.ret;
114         } while (ret == -EAGAIN);
115
116         return ret;
117 }
118
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:       the function to be called
122  * @info:       the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130         struct remote_function_call data = {
131                 .p      = NULL,
132                 .func   = func,
133                 .info   = info,
134                 .ret    = -ENXIO, /* No such CPU */
135         };
136
137         smp_call_function_single(cpu, remote_function, &data, 1);
138
139         return data.ret;
140 }
141
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149                           struct perf_event_context *ctx)
150 {
151         raw_spin_lock(&cpuctx->ctx.lock);
152         if (ctx)
153                 raw_spin_lock(&ctx->lock);
154 }
155
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157                             struct perf_event_context *ctx)
158 {
159         if (ctx)
160                 raw_spin_unlock(&ctx->lock);
161         raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163
164 #define TASK_TOMBSTONE ((void *)-1L)
165
166 static bool is_kernel_event(struct perf_event *event)
167 {
168         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191                         struct perf_event_context *, void *);
192
193 struct event_function_struct {
194         struct perf_event *event;
195         event_f func;
196         void *data;
197 };
198
199 static int event_function(void *info)
200 {
201         struct event_function_struct *efs = info;
202         struct perf_event *event = efs->event;
203         struct perf_event_context *ctx = event->ctx;
204         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205         struct perf_event_context *task_ctx = cpuctx->task_ctx;
206         int ret = 0;
207
208         WARN_ON_ONCE(!irqs_disabled());
209
210         perf_ctx_lock(cpuctx, task_ctx);
211         /*
212          * Since we do the IPI call without holding ctx->lock things can have
213          * changed, double check we hit the task we set out to hit.
214          */
215         if (ctx->task) {
216                 if (ctx->task != current) {
217                         ret = -ESRCH;
218                         goto unlock;
219                 }
220
221                 /*
222                  * We only use event_function_call() on established contexts,
223                  * and event_function() is only ever called when active (or
224                  * rather, we'll have bailed in task_function_call() or the
225                  * above ctx->task != current test), therefore we must have
226                  * ctx->is_active here.
227                  */
228                 WARN_ON_ONCE(!ctx->is_active);
229                 /*
230                  * And since we have ctx->is_active, cpuctx->task_ctx must
231                  * match.
232                  */
233                 WARN_ON_ONCE(task_ctx != ctx);
234         } else {
235                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236         }
237
238         efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240         perf_ctx_unlock(cpuctx, task_ctx);
241
242         return ret;
243 }
244
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
246 {
247         struct perf_event_context *ctx = event->ctx;
248         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249         struct event_function_struct efs = {
250                 .event = event,
251                 .func = func,
252                 .data = data,
253         };
254
255         if (!event->parent) {
256                 /*
257                  * If this is a !child event, we must hold ctx::mutex to
258                  * stabilize the the event->ctx relation. See
259                  * perf_event_ctx_lock().
260                  */
261                 lockdep_assert_held(&ctx->mutex);
262         }
263
264         if (!task) {
265                 cpu_function_call(event->cpu, event_function, &efs);
266                 return;
267         }
268
269         if (task == TASK_TOMBSTONE)
270                 return;
271
272 again:
273         if (!task_function_call(task, event_function, &efs))
274                 return;
275
276         raw_spin_lock_irq(&ctx->lock);
277         /*
278          * Reload the task pointer, it might have been changed by
279          * a concurrent perf_event_context_sched_out().
280          */
281         task = ctx->task;
282         if (task == TASK_TOMBSTONE) {
283                 raw_spin_unlock_irq(&ctx->lock);
284                 return;
285         }
286         if (ctx->is_active) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 goto again;
289         }
290         func(event, NULL, ctx, data);
291         raw_spin_unlock_irq(&ctx->lock);
292 }
293
294 /*
295  * Similar to event_function_call() + event_function(), but hard assumes IRQs
296  * are already disabled and we're on the right CPU.
297  */
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
299 {
300         struct perf_event_context *ctx = event->ctx;
301         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302         struct task_struct *task = READ_ONCE(ctx->task);
303         struct perf_event_context *task_ctx = NULL;
304
305         WARN_ON_ONCE(!irqs_disabled());
306
307         if (task) {
308                 if (task == TASK_TOMBSTONE)
309                         return;
310
311                 task_ctx = ctx;
312         }
313
314         perf_ctx_lock(cpuctx, task_ctx);
315
316         task = ctx->task;
317         if (task == TASK_TOMBSTONE)
318                 goto unlock;
319
320         if (task) {
321                 /*
322                  * We must be either inactive or active and the right task,
323                  * otherwise we're screwed, since we cannot IPI to somewhere
324                  * else.
325                  */
326                 if (ctx->is_active) {
327                         if (WARN_ON_ONCE(task != current))
328                                 goto unlock;
329
330                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331                                 goto unlock;
332                 }
333         } else {
334                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
335         }
336
337         func(event, cpuctx, ctx, data);
338 unlock:
339         perf_ctx_unlock(cpuctx, task_ctx);
340 }
341
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343                        PERF_FLAG_FD_OUTPUT  |\
344                        PERF_FLAG_PID_CGROUP |\
345                        PERF_FLAG_FD_CLOEXEC)
346
347 /*
348  * branch priv levels that need permission checks
349  */
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351         (PERF_SAMPLE_BRANCH_KERNEL |\
352          PERF_SAMPLE_BRANCH_HV)
353
354 enum event_type_t {
355         EVENT_FLEXIBLE = 0x1,
356         EVENT_PINNED = 0x2,
357         EVENT_TIME = 0x4,
358         /* see ctx_resched() for details */
359         EVENT_CPU = 0x8,
360         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
361 };
362
363 /*
364  * perf_sched_events : >0 events exist
365  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
366  */
367
368 static void perf_sched_delayed(struct work_struct *work);
369 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
370 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
371 static DEFINE_MUTEX(perf_sched_mutex);
372 static atomic_t perf_sched_count;
373
374 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
375 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
376 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
377
378 static atomic_t nr_mmap_events __read_mostly;
379 static atomic_t nr_comm_events __read_mostly;
380 static atomic_t nr_task_events __read_mostly;
381 static atomic_t nr_freq_events __read_mostly;
382 static atomic_t nr_switch_events __read_mostly;
383
384 static LIST_HEAD(pmus);
385 static DEFINE_MUTEX(pmus_lock);
386 static struct srcu_struct pmus_srcu;
387
388 /*
389  * perf event paranoia level:
390  *  -1 - not paranoid at all
391  *   0 - disallow raw tracepoint access for unpriv
392  *   1 - disallow cpu events for unpriv
393  *   2 - disallow kernel profiling for unpriv
394  */
395 int sysctl_perf_event_paranoid __read_mostly = 2;
396
397 /* Minimum for 512 kiB + 1 user control page */
398 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
399
400 /*
401  * max perf event sample rate
402  */
403 #define DEFAULT_MAX_SAMPLE_RATE         100000
404 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
405 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
406
407 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
408
409 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
410 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
411
412 static int perf_sample_allowed_ns __read_mostly =
413         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
414
415 static void update_perf_cpu_limits(void)
416 {
417         u64 tmp = perf_sample_period_ns;
418
419         tmp *= sysctl_perf_cpu_time_max_percent;
420         tmp = div_u64(tmp, 100);
421         if (!tmp)
422                 tmp = 1;
423
424         WRITE_ONCE(perf_sample_allowed_ns, tmp);
425 }
426
427 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
428
429 int perf_proc_update_handler(struct ctl_table *table, int write,
430                 void __user *buffer, size_t *lenp,
431                 loff_t *ppos)
432 {
433         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
434
435         if (ret || !write)
436                 return ret;
437
438         /*
439          * If throttling is disabled don't allow the write:
440          */
441         if (sysctl_perf_cpu_time_max_percent == 100 ||
442             sysctl_perf_cpu_time_max_percent == 0)
443                 return -EINVAL;
444
445         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
446         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
447         update_perf_cpu_limits();
448
449         return 0;
450 }
451
452 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
453
454 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
455                                 void __user *buffer, size_t *lenp,
456                                 loff_t *ppos)
457 {
458         int ret = proc_dointvec(table, write, buffer, lenp, ppos);
459
460         if (ret || !write)
461                 return ret;
462
463         if (sysctl_perf_cpu_time_max_percent == 100 ||
464             sysctl_perf_cpu_time_max_percent == 0) {
465                 printk(KERN_WARNING
466                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
467                 WRITE_ONCE(perf_sample_allowed_ns, 0);
468         } else {
469                 update_perf_cpu_limits();
470         }
471
472         return 0;
473 }
474
475 /*
476  * perf samples are done in some very critical code paths (NMIs).
477  * If they take too much CPU time, the system can lock up and not
478  * get any real work done.  This will drop the sample rate when
479  * we detect that events are taking too long.
480  */
481 #define NR_ACCUMULATED_SAMPLES 128
482 static DEFINE_PER_CPU(u64, running_sample_length);
483
484 static u64 __report_avg;
485 static u64 __report_allowed;
486
487 static void perf_duration_warn(struct irq_work *w)
488 {
489         printk_ratelimited(KERN_INFO
490                 "perf: interrupt took too long (%lld > %lld), lowering "
491                 "kernel.perf_event_max_sample_rate to %d\n",
492                 __report_avg, __report_allowed,
493                 sysctl_perf_event_sample_rate);
494 }
495
496 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
497
498 void perf_sample_event_took(u64 sample_len_ns)
499 {
500         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
501         u64 running_len;
502         u64 avg_len;
503         u32 max;
504
505         if (max_len == 0)
506                 return;
507
508         /* Decay the counter by 1 average sample. */
509         running_len = __this_cpu_read(running_sample_length);
510         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
511         running_len += sample_len_ns;
512         __this_cpu_write(running_sample_length, running_len);
513
514         /*
515          * Note: this will be biased artifically low until we have
516          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
517          * from having to maintain a count.
518          */
519         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
520         if (avg_len <= max_len)
521                 return;
522
523         __report_avg = avg_len;
524         __report_allowed = max_len;
525
526         /*
527          * Compute a throttle threshold 25% below the current duration.
528          */
529         avg_len += avg_len / 4;
530         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
531         if (avg_len < max)
532                 max /= (u32)avg_len;
533         else
534                 max = 1;
535
536         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
537         WRITE_ONCE(max_samples_per_tick, max);
538
539         sysctl_perf_event_sample_rate = max * HZ;
540         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
541
542         if (!irq_work_queue(&perf_duration_work)) {
543                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
544                              "kernel.perf_event_max_sample_rate to %d\n",
545                              __report_avg, __report_allowed,
546                              sysctl_perf_event_sample_rate);
547         }
548 }
549
550 static atomic64_t perf_event_id;
551
552 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
553                               enum event_type_t event_type);
554
555 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
556                              enum event_type_t event_type,
557                              struct task_struct *task);
558
559 static void update_context_time(struct perf_event_context *ctx);
560 static u64 perf_event_time(struct perf_event *event);
561
562 void __weak perf_event_print_debug(void)        { }
563
564 extern __weak const char *perf_pmu_name(void)
565 {
566         return "pmu";
567 }
568
569 static inline u64 perf_clock(void)
570 {
571         return local_clock();
572 }
573
574 static inline u64 perf_event_clock(struct perf_event *event)
575 {
576         return event->clock();
577 }
578
579 #ifdef CONFIG_CGROUP_PERF
580
581 static inline bool
582 perf_cgroup_match(struct perf_event *event)
583 {
584         struct perf_event_context *ctx = event->ctx;
585         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
586
587         /* @event doesn't care about cgroup */
588         if (!event->cgrp)
589                 return true;
590
591         /* wants specific cgroup scope but @cpuctx isn't associated with any */
592         if (!cpuctx->cgrp)
593                 return false;
594
595         /*
596          * Cgroup scoping is recursive.  An event enabled for a cgroup is
597          * also enabled for all its descendant cgroups.  If @cpuctx's
598          * cgroup is a descendant of @event's (the test covers identity
599          * case), it's a match.
600          */
601         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
602                                     event->cgrp->css.cgroup);
603 }
604
605 static inline void perf_detach_cgroup(struct perf_event *event)
606 {
607         css_put(&event->cgrp->css);
608         event->cgrp = NULL;
609 }
610
611 static inline int is_cgroup_event(struct perf_event *event)
612 {
613         return event->cgrp != NULL;
614 }
615
616 static inline u64 perf_cgroup_event_time(struct perf_event *event)
617 {
618         struct perf_cgroup_info *t;
619
620         t = per_cpu_ptr(event->cgrp->info, event->cpu);
621         return t->time;
622 }
623
624 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
625 {
626         struct perf_cgroup_info *info;
627         u64 now;
628
629         now = perf_clock();
630
631         info = this_cpu_ptr(cgrp->info);
632
633         info->time += now - info->timestamp;
634         info->timestamp = now;
635 }
636
637 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
638 {
639         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
640         if (cgrp_out)
641                 __update_cgrp_time(cgrp_out);
642 }
643
644 static inline void update_cgrp_time_from_event(struct perf_event *event)
645 {
646         struct perf_cgroup *cgrp;
647
648         /*
649          * ensure we access cgroup data only when needed and
650          * when we know the cgroup is pinned (css_get)
651          */
652         if (!is_cgroup_event(event))
653                 return;
654
655         cgrp = perf_cgroup_from_task(current, event->ctx);
656         /*
657          * Do not update time when cgroup is not active
658          */
659         if (cgrp == event->cgrp)
660                 __update_cgrp_time(event->cgrp);
661 }
662
663 static inline void
664 perf_cgroup_set_timestamp(struct task_struct *task,
665                           struct perf_event_context *ctx)
666 {
667         struct perf_cgroup *cgrp;
668         struct perf_cgroup_info *info;
669
670         /*
671          * ctx->lock held by caller
672          * ensure we do not access cgroup data
673          * unless we have the cgroup pinned (css_get)
674          */
675         if (!task || !ctx->nr_cgroups)
676                 return;
677
678         cgrp = perf_cgroup_from_task(task, ctx);
679         info = this_cpu_ptr(cgrp->info);
680         info->timestamp = ctx->timestamp;
681 }
682
683 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
684
685 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
686 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
687
688 /*
689  * reschedule events based on the cgroup constraint of task.
690  *
691  * mode SWOUT : schedule out everything
692  * mode SWIN : schedule in based on cgroup for next
693  */
694 static void perf_cgroup_switch(struct task_struct *task, int mode)
695 {
696         struct perf_cpu_context *cpuctx;
697         struct list_head *list;
698         unsigned long flags;
699
700         /*
701          * Disable interrupts and preemption to avoid this CPU's
702          * cgrp_cpuctx_entry to change under us.
703          */
704         local_irq_save(flags);
705
706         list = this_cpu_ptr(&cgrp_cpuctx_list);
707         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
708                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
709
710                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
711                 perf_pmu_disable(cpuctx->ctx.pmu);
712
713                 if (mode & PERF_CGROUP_SWOUT) {
714                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
715                         /*
716                          * must not be done before ctxswout due
717                          * to event_filter_match() in event_sched_out()
718                          */
719                         cpuctx->cgrp = NULL;
720                 }
721
722                 if (mode & PERF_CGROUP_SWIN) {
723                         WARN_ON_ONCE(cpuctx->cgrp);
724                         /*
725                          * set cgrp before ctxsw in to allow
726                          * event_filter_match() to not have to pass
727                          * task around
728                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
729                          * because cgorup events are only per-cpu
730                          */
731                         cpuctx->cgrp = perf_cgroup_from_task(task,
732                                                              &cpuctx->ctx);
733                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
734                 }
735                 perf_pmu_enable(cpuctx->ctx.pmu);
736                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
737         }
738
739         local_irq_restore(flags);
740 }
741
742 static inline void perf_cgroup_sched_out(struct task_struct *task,
743                                          struct task_struct *next)
744 {
745         struct perf_cgroup *cgrp1;
746         struct perf_cgroup *cgrp2 = NULL;
747
748         rcu_read_lock();
749         /*
750          * we come here when we know perf_cgroup_events > 0
751          * we do not need to pass the ctx here because we know
752          * we are holding the rcu lock
753          */
754         cgrp1 = perf_cgroup_from_task(task, NULL);
755         cgrp2 = perf_cgroup_from_task(next, NULL);
756
757         /*
758          * only schedule out current cgroup events if we know
759          * that we are switching to a different cgroup. Otherwise,
760          * do no touch the cgroup events.
761          */
762         if (cgrp1 != cgrp2)
763                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
764
765         rcu_read_unlock();
766 }
767
768 static inline void perf_cgroup_sched_in(struct task_struct *prev,
769                                         struct task_struct *task)
770 {
771         struct perf_cgroup *cgrp1;
772         struct perf_cgroup *cgrp2 = NULL;
773
774         rcu_read_lock();
775         /*
776          * we come here when we know perf_cgroup_events > 0
777          * we do not need to pass the ctx here because we know
778          * we are holding the rcu lock
779          */
780         cgrp1 = perf_cgroup_from_task(task, NULL);
781         cgrp2 = perf_cgroup_from_task(prev, NULL);
782
783         /*
784          * only need to schedule in cgroup events if we are changing
785          * cgroup during ctxsw. Cgroup events were not scheduled
786          * out of ctxsw out if that was not the case.
787          */
788         if (cgrp1 != cgrp2)
789                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
790
791         rcu_read_unlock();
792 }
793
794 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
795                                       struct perf_event_attr *attr,
796                                       struct perf_event *group_leader)
797 {
798         struct perf_cgroup *cgrp;
799         struct cgroup_subsys_state *css;
800         struct fd f = fdget(fd);
801         int ret = 0;
802
803         if (!f.file)
804                 return -EBADF;
805
806         css = css_tryget_online_from_dir(f.file->f_path.dentry,
807                                          &perf_event_cgrp_subsys);
808         if (IS_ERR(css)) {
809                 ret = PTR_ERR(css);
810                 goto out;
811         }
812
813         cgrp = container_of(css, struct perf_cgroup, css);
814         event->cgrp = cgrp;
815
816         /*
817          * all events in a group must monitor
818          * the same cgroup because a task belongs
819          * to only one perf cgroup at a time
820          */
821         if (group_leader && group_leader->cgrp != cgrp) {
822                 perf_detach_cgroup(event);
823                 ret = -EINVAL;
824         }
825 out:
826         fdput(f);
827         return ret;
828 }
829
830 static inline void
831 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
832 {
833         struct perf_cgroup_info *t;
834         t = per_cpu_ptr(event->cgrp->info, event->cpu);
835         event->shadow_ctx_time = now - t->timestamp;
836 }
837
838 static inline void
839 perf_cgroup_defer_enabled(struct perf_event *event)
840 {
841         /*
842          * when the current task's perf cgroup does not match
843          * the event's, we need to remember to call the
844          * perf_mark_enable() function the first time a task with
845          * a matching perf cgroup is scheduled in.
846          */
847         if (is_cgroup_event(event) && !perf_cgroup_match(event))
848                 event->cgrp_defer_enabled = 1;
849 }
850
851 static inline void
852 perf_cgroup_mark_enabled(struct perf_event *event,
853                          struct perf_event_context *ctx)
854 {
855         struct perf_event *sub;
856         u64 tstamp = perf_event_time(event);
857
858         if (!event->cgrp_defer_enabled)
859                 return;
860
861         event->cgrp_defer_enabled = 0;
862
863         event->tstamp_enabled = tstamp - event->total_time_enabled;
864         list_for_each_entry(sub, &event->sibling_list, group_entry) {
865                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
866                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
867                         sub->cgrp_defer_enabled = 0;
868                 }
869         }
870 }
871
872 /*
873  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
874  * cleared when last cgroup event is removed.
875  */
876 static inline void
877 list_update_cgroup_event(struct perf_event *event,
878                          struct perf_event_context *ctx, bool add)
879 {
880         struct perf_cpu_context *cpuctx;
881         struct list_head *cpuctx_entry;
882
883         if (!is_cgroup_event(event))
884                 return;
885
886         if (add && ctx->nr_cgroups++)
887                 return;
888         else if (!add && --ctx->nr_cgroups)
889                 return;
890         /*
891          * Because cgroup events are always per-cpu events,
892          * this will always be called from the right CPU.
893          */
894         cpuctx = __get_cpu_context(ctx);
895         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
896         /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
897         if (add) {
898                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
899                 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
900                         cpuctx->cgrp = event->cgrp;
901         } else {
902                 list_del(cpuctx_entry);
903                 cpuctx->cgrp = NULL;
904         }
905 }
906
907 #else /* !CONFIG_CGROUP_PERF */
908
909 static inline bool
910 perf_cgroup_match(struct perf_event *event)
911 {
912         return true;
913 }
914
915 static inline void perf_detach_cgroup(struct perf_event *event)
916 {}
917
918 static inline int is_cgroup_event(struct perf_event *event)
919 {
920         return 0;
921 }
922
923 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
924 {
925         return 0;
926 }
927
928 static inline void update_cgrp_time_from_event(struct perf_event *event)
929 {
930 }
931
932 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
933 {
934 }
935
936 static inline void perf_cgroup_sched_out(struct task_struct *task,
937                                          struct task_struct *next)
938 {
939 }
940
941 static inline void perf_cgroup_sched_in(struct task_struct *prev,
942                                         struct task_struct *task)
943 {
944 }
945
946 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
947                                       struct perf_event_attr *attr,
948                                       struct perf_event *group_leader)
949 {
950         return -EINVAL;
951 }
952
953 static inline void
954 perf_cgroup_set_timestamp(struct task_struct *task,
955                           struct perf_event_context *ctx)
956 {
957 }
958
959 void
960 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
961 {
962 }
963
964 static inline void
965 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
966 {
967 }
968
969 static inline u64 perf_cgroup_event_time(struct perf_event *event)
970 {
971         return 0;
972 }
973
974 static inline void
975 perf_cgroup_defer_enabled(struct perf_event *event)
976 {
977 }
978
979 static inline void
980 perf_cgroup_mark_enabled(struct perf_event *event,
981                          struct perf_event_context *ctx)
982 {
983 }
984
985 static inline void
986 list_update_cgroup_event(struct perf_event *event,
987                          struct perf_event_context *ctx, bool add)
988 {
989 }
990
991 #endif
992
993 /*
994  * set default to be dependent on timer tick just
995  * like original code
996  */
997 #define PERF_CPU_HRTIMER (1000 / HZ)
998 /*
999  * function must be called with interrupts disbled
1000  */
1001 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1002 {
1003         struct perf_cpu_context *cpuctx;
1004         int rotations = 0;
1005
1006         WARN_ON(!irqs_disabled());
1007
1008         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1009         rotations = perf_rotate_context(cpuctx);
1010
1011         raw_spin_lock(&cpuctx->hrtimer_lock);
1012         if (rotations)
1013                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1014         else
1015                 cpuctx->hrtimer_active = 0;
1016         raw_spin_unlock(&cpuctx->hrtimer_lock);
1017
1018         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1019 }
1020
1021 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1022 {
1023         struct hrtimer *timer = &cpuctx->hrtimer;
1024         struct pmu *pmu = cpuctx->ctx.pmu;
1025         u64 interval;
1026
1027         /* no multiplexing needed for SW PMU */
1028         if (pmu->task_ctx_nr == perf_sw_context)
1029                 return;
1030
1031         /*
1032          * check default is sane, if not set then force to
1033          * default interval (1/tick)
1034          */
1035         interval = pmu->hrtimer_interval_ms;
1036         if (interval < 1)
1037                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1038
1039         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1040
1041         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1042         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1043         timer->function = perf_mux_hrtimer_handler;
1044 }
1045
1046 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1047 {
1048         struct hrtimer *timer = &cpuctx->hrtimer;
1049         struct pmu *pmu = cpuctx->ctx.pmu;
1050         unsigned long flags;
1051
1052         /* not for SW PMU */
1053         if (pmu->task_ctx_nr == perf_sw_context)
1054                 return 0;
1055
1056         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1057         if (!cpuctx->hrtimer_active) {
1058                 cpuctx->hrtimer_active = 1;
1059                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1060                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1061         }
1062         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1063
1064         return 0;
1065 }
1066
1067 void perf_pmu_disable(struct pmu *pmu)
1068 {
1069         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1070         if (!(*count)++)
1071                 pmu->pmu_disable(pmu);
1072 }
1073
1074 void perf_pmu_enable(struct pmu *pmu)
1075 {
1076         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1077         if (!--(*count))
1078                 pmu->pmu_enable(pmu);
1079 }
1080
1081 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1082
1083 /*
1084  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1085  * perf_event_task_tick() are fully serialized because they're strictly cpu
1086  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1087  * disabled, while perf_event_task_tick is called from IRQ context.
1088  */
1089 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1090 {
1091         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1092
1093         WARN_ON(!irqs_disabled());
1094
1095         WARN_ON(!list_empty(&ctx->active_ctx_list));
1096
1097         list_add(&ctx->active_ctx_list, head);
1098 }
1099
1100 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1101 {
1102         WARN_ON(!irqs_disabled());
1103
1104         WARN_ON(list_empty(&ctx->active_ctx_list));
1105
1106         list_del_init(&ctx->active_ctx_list);
1107 }
1108
1109 static void get_ctx(struct perf_event_context *ctx)
1110 {
1111         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1112 }
1113
1114 static void free_ctx(struct rcu_head *head)
1115 {
1116         struct perf_event_context *ctx;
1117
1118         ctx = container_of(head, struct perf_event_context, rcu_head);
1119         kfree(ctx->task_ctx_data);
1120         kfree(ctx);
1121 }
1122
1123 static void put_ctx(struct perf_event_context *ctx)
1124 {
1125         if (atomic_dec_and_test(&ctx->refcount)) {
1126                 if (ctx->parent_ctx)
1127                         put_ctx(ctx->parent_ctx);
1128                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1129                         put_task_struct(ctx->task);
1130                 call_rcu(&ctx->rcu_head, free_ctx);
1131         }
1132 }
1133
1134 /*
1135  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1136  * perf_pmu_migrate_context() we need some magic.
1137  *
1138  * Those places that change perf_event::ctx will hold both
1139  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1140  *
1141  * Lock ordering is by mutex address. There are two other sites where
1142  * perf_event_context::mutex nests and those are:
1143  *
1144  *  - perf_event_exit_task_context()    [ child , 0 ]
1145  *      perf_event_exit_event()
1146  *        put_event()                   [ parent, 1 ]
1147  *
1148  *  - perf_event_init_context()         [ parent, 0 ]
1149  *      inherit_task_group()
1150  *        inherit_group()
1151  *          inherit_event()
1152  *            perf_event_alloc()
1153  *              perf_init_event()
1154  *                perf_try_init_event() [ child , 1 ]
1155  *
1156  * While it appears there is an obvious deadlock here -- the parent and child
1157  * nesting levels are inverted between the two. This is in fact safe because
1158  * life-time rules separate them. That is an exiting task cannot fork, and a
1159  * spawning task cannot (yet) exit.
1160  *
1161  * But remember that that these are parent<->child context relations, and
1162  * migration does not affect children, therefore these two orderings should not
1163  * interact.
1164  *
1165  * The change in perf_event::ctx does not affect children (as claimed above)
1166  * because the sys_perf_event_open() case will install a new event and break
1167  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1168  * concerned with cpuctx and that doesn't have children.
1169  *
1170  * The places that change perf_event::ctx will issue:
1171  *
1172  *   perf_remove_from_context();
1173  *   synchronize_rcu();
1174  *   perf_install_in_context();
1175  *
1176  * to affect the change. The remove_from_context() + synchronize_rcu() should
1177  * quiesce the event, after which we can install it in the new location. This
1178  * means that only external vectors (perf_fops, prctl) can perturb the event
1179  * while in transit. Therefore all such accessors should also acquire
1180  * perf_event_context::mutex to serialize against this.
1181  *
1182  * However; because event->ctx can change while we're waiting to acquire
1183  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1184  * function.
1185  *
1186  * Lock order:
1187  *    cred_guard_mutex
1188  *      task_struct::perf_event_mutex
1189  *        perf_event_context::mutex
1190  *          perf_event::child_mutex;
1191  *            perf_event_context::lock
1192  *          perf_event::mmap_mutex
1193  *          mmap_sem
1194  */
1195 static struct perf_event_context *
1196 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1197 {
1198         struct perf_event_context *ctx;
1199
1200 again:
1201         rcu_read_lock();
1202         ctx = ACCESS_ONCE(event->ctx);
1203         if (!atomic_inc_not_zero(&ctx->refcount)) {
1204                 rcu_read_unlock();
1205                 goto again;
1206         }
1207         rcu_read_unlock();
1208
1209         mutex_lock_nested(&ctx->mutex, nesting);
1210         if (event->ctx != ctx) {
1211                 mutex_unlock(&ctx->mutex);
1212                 put_ctx(ctx);
1213                 goto again;
1214         }
1215
1216         return ctx;
1217 }
1218
1219 static inline struct perf_event_context *
1220 perf_event_ctx_lock(struct perf_event *event)
1221 {
1222         return perf_event_ctx_lock_nested(event, 0);
1223 }
1224
1225 static void perf_event_ctx_unlock(struct perf_event *event,
1226                                   struct perf_event_context *ctx)
1227 {
1228         mutex_unlock(&ctx->mutex);
1229         put_ctx(ctx);
1230 }
1231
1232 /*
1233  * This must be done under the ctx->lock, such as to serialize against
1234  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1235  * calling scheduler related locks and ctx->lock nests inside those.
1236  */
1237 static __must_check struct perf_event_context *
1238 unclone_ctx(struct perf_event_context *ctx)
1239 {
1240         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1241
1242         lockdep_assert_held(&ctx->lock);
1243
1244         if (parent_ctx)
1245                 ctx->parent_ctx = NULL;
1246         ctx->generation++;
1247
1248         return parent_ctx;
1249 }
1250
1251 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1252 {
1253         /*
1254          * only top level events have the pid namespace they were created in
1255          */
1256         if (event->parent)
1257                 event = event->parent;
1258
1259         return task_tgid_nr_ns(p, event->ns);
1260 }
1261
1262 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1263 {
1264         /*
1265          * only top level events have the pid namespace they were created in
1266          */
1267         if (event->parent)
1268                 event = event->parent;
1269
1270         return task_pid_nr_ns(p, event->ns);
1271 }
1272
1273 /*
1274  * If we inherit events we want to return the parent event id
1275  * to userspace.
1276  */
1277 static u64 primary_event_id(struct perf_event *event)
1278 {
1279         u64 id = event->id;
1280
1281         if (event->parent)
1282                 id = event->parent->id;
1283
1284         return id;
1285 }
1286
1287 /*
1288  * Get the perf_event_context for a task and lock it.
1289  *
1290  * This has to cope with with the fact that until it is locked,
1291  * the context could get moved to another task.
1292  */
1293 static struct perf_event_context *
1294 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1295 {
1296         struct perf_event_context *ctx;
1297
1298 retry:
1299         /*
1300          * One of the few rules of preemptible RCU is that one cannot do
1301          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1302          * part of the read side critical section was irqs-enabled -- see
1303          * rcu_read_unlock_special().
1304          *
1305          * Since ctx->lock nests under rq->lock we must ensure the entire read
1306          * side critical section has interrupts disabled.
1307          */
1308         local_irq_save(*flags);
1309         rcu_read_lock();
1310         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1311         if (ctx) {
1312                 /*
1313                  * If this context is a clone of another, it might
1314                  * get swapped for another underneath us by
1315                  * perf_event_task_sched_out, though the
1316                  * rcu_read_lock() protects us from any context
1317                  * getting freed.  Lock the context and check if it
1318                  * got swapped before we could get the lock, and retry
1319                  * if so.  If we locked the right context, then it
1320                  * can't get swapped on us any more.
1321                  */
1322                 raw_spin_lock(&ctx->lock);
1323                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1324                         raw_spin_unlock(&ctx->lock);
1325                         rcu_read_unlock();
1326                         local_irq_restore(*flags);
1327                         goto retry;
1328                 }
1329
1330                 if (ctx->task == TASK_TOMBSTONE ||
1331                     !atomic_inc_not_zero(&ctx->refcount)) {
1332                         raw_spin_unlock(&ctx->lock);
1333                         ctx = NULL;
1334                 } else {
1335                         WARN_ON_ONCE(ctx->task != task);
1336                 }
1337         }
1338         rcu_read_unlock();
1339         if (!ctx)
1340                 local_irq_restore(*flags);
1341         return ctx;
1342 }
1343
1344 /*
1345  * Get the context for a task and increment its pin_count so it
1346  * can't get swapped to another task.  This also increments its
1347  * reference count so that the context can't get freed.
1348  */
1349 static struct perf_event_context *
1350 perf_pin_task_context(struct task_struct *task, int ctxn)
1351 {
1352         struct perf_event_context *ctx;
1353         unsigned long flags;
1354
1355         ctx = perf_lock_task_context(task, ctxn, &flags);
1356         if (ctx) {
1357                 ++ctx->pin_count;
1358                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1359         }
1360         return ctx;
1361 }
1362
1363 static void perf_unpin_context(struct perf_event_context *ctx)
1364 {
1365         unsigned long flags;
1366
1367         raw_spin_lock_irqsave(&ctx->lock, flags);
1368         --ctx->pin_count;
1369         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1370 }
1371
1372 /*
1373  * Update the record of the current time in a context.
1374  */
1375 static void update_context_time(struct perf_event_context *ctx)
1376 {
1377         u64 now = perf_clock();
1378
1379         ctx->time += now - ctx->timestamp;
1380         ctx->timestamp = now;
1381 }
1382
1383 static u64 perf_event_time(struct perf_event *event)
1384 {
1385         struct perf_event_context *ctx = event->ctx;
1386
1387         if (is_cgroup_event(event))
1388                 return perf_cgroup_event_time(event);
1389
1390         return ctx ? ctx->time : 0;
1391 }
1392
1393 /*
1394  * Update the total_time_enabled and total_time_running fields for a event.
1395  */
1396 static void update_event_times(struct perf_event *event)
1397 {
1398         struct perf_event_context *ctx = event->ctx;
1399         u64 run_end;
1400
1401         lockdep_assert_held(&ctx->lock);
1402
1403         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1404             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1405                 return;
1406
1407         /*
1408          * in cgroup mode, time_enabled represents
1409          * the time the event was enabled AND active
1410          * tasks were in the monitored cgroup. This is
1411          * independent of the activity of the context as
1412          * there may be a mix of cgroup and non-cgroup events.
1413          *
1414          * That is why we treat cgroup events differently
1415          * here.
1416          */
1417         if (is_cgroup_event(event))
1418                 run_end = perf_cgroup_event_time(event);
1419         else if (ctx->is_active)
1420                 run_end = ctx->time;
1421         else
1422                 run_end = event->tstamp_stopped;
1423
1424         event->total_time_enabled = run_end - event->tstamp_enabled;
1425
1426         if (event->state == PERF_EVENT_STATE_INACTIVE)
1427                 run_end = event->tstamp_stopped;
1428         else
1429                 run_end = perf_event_time(event);
1430
1431         event->total_time_running = run_end - event->tstamp_running;
1432
1433 }
1434
1435 /*
1436  * Update total_time_enabled and total_time_running for all events in a group.
1437  */
1438 static void update_group_times(struct perf_event *leader)
1439 {
1440         struct perf_event *event;
1441
1442         update_event_times(leader);
1443         list_for_each_entry(event, &leader->sibling_list, group_entry)
1444                 update_event_times(event);
1445 }
1446
1447 static enum event_type_t get_event_type(struct perf_event *event)
1448 {
1449         struct perf_event_context *ctx = event->ctx;
1450         enum event_type_t event_type;
1451
1452         lockdep_assert_held(&ctx->lock);
1453
1454         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1455         if (!ctx->task)
1456                 event_type |= EVENT_CPU;
1457
1458         return event_type;
1459 }
1460
1461 static struct list_head *
1462 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1463 {
1464         if (event->attr.pinned)
1465                 return &ctx->pinned_groups;
1466         else
1467                 return &ctx->flexible_groups;
1468 }
1469
1470 /*
1471  * Add a event from the lists for its context.
1472  * Must be called with ctx->mutex and ctx->lock held.
1473  */
1474 static void
1475 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1476 {
1477         lockdep_assert_held(&ctx->lock);
1478
1479         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1480         event->attach_state |= PERF_ATTACH_CONTEXT;
1481
1482         /*
1483          * If we're a stand alone event or group leader, we go to the context
1484          * list, group events are kept attached to the group so that
1485          * perf_group_detach can, at all times, locate all siblings.
1486          */
1487         if (event->group_leader == event) {
1488                 struct list_head *list;
1489
1490                 event->group_caps = event->event_caps;
1491
1492                 list = ctx_group_list(event, ctx);
1493                 list_add_tail(&event->group_entry, list);
1494         }
1495
1496         list_update_cgroup_event(event, ctx, true);
1497
1498         list_add_rcu(&event->event_entry, &ctx->event_list);
1499         ctx->nr_events++;
1500         if (event->attr.inherit_stat)
1501                 ctx->nr_stat++;
1502
1503         ctx->generation++;
1504 }
1505
1506 /*
1507  * Initialize event state based on the perf_event_attr::disabled.
1508  */
1509 static inline void perf_event__state_init(struct perf_event *event)
1510 {
1511         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1512                                               PERF_EVENT_STATE_INACTIVE;
1513 }
1514
1515 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1516 {
1517         int entry = sizeof(u64); /* value */
1518         int size = 0;
1519         int nr = 1;
1520
1521         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1522                 size += sizeof(u64);
1523
1524         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1525                 size += sizeof(u64);
1526
1527         if (event->attr.read_format & PERF_FORMAT_ID)
1528                 entry += sizeof(u64);
1529
1530         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1531                 nr += nr_siblings;
1532                 size += sizeof(u64);
1533         }
1534
1535         size += entry * nr;
1536         event->read_size = size;
1537 }
1538
1539 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1540 {
1541         struct perf_sample_data *data;
1542         u16 size = 0;
1543
1544         if (sample_type & PERF_SAMPLE_IP)
1545                 size += sizeof(data->ip);
1546
1547         if (sample_type & PERF_SAMPLE_ADDR)
1548                 size += sizeof(data->addr);
1549
1550         if (sample_type & PERF_SAMPLE_PERIOD)
1551                 size += sizeof(data->period);
1552
1553         if (sample_type & PERF_SAMPLE_WEIGHT)
1554                 size += sizeof(data->weight);
1555
1556         if (sample_type & PERF_SAMPLE_READ)
1557                 size += event->read_size;
1558
1559         if (sample_type & PERF_SAMPLE_DATA_SRC)
1560                 size += sizeof(data->data_src.val);
1561
1562         if (sample_type & PERF_SAMPLE_TRANSACTION)
1563                 size += sizeof(data->txn);
1564
1565         event->header_size = size;
1566 }
1567
1568 /*
1569  * Called at perf_event creation and when events are attached/detached from a
1570  * group.
1571  */
1572 static void perf_event__header_size(struct perf_event *event)
1573 {
1574         __perf_event_read_size(event,
1575                                event->group_leader->nr_siblings);
1576         __perf_event_header_size(event, event->attr.sample_type);
1577 }
1578
1579 static void perf_event__id_header_size(struct perf_event *event)
1580 {
1581         struct perf_sample_data *data;
1582         u64 sample_type = event->attr.sample_type;
1583         u16 size = 0;
1584
1585         if (sample_type & PERF_SAMPLE_TID)
1586                 size += sizeof(data->tid_entry);
1587
1588         if (sample_type & PERF_SAMPLE_TIME)
1589                 size += sizeof(data->time);
1590
1591         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1592                 size += sizeof(data->id);
1593
1594         if (sample_type & PERF_SAMPLE_ID)
1595                 size += sizeof(data->id);
1596
1597         if (sample_type & PERF_SAMPLE_STREAM_ID)
1598                 size += sizeof(data->stream_id);
1599
1600         if (sample_type & PERF_SAMPLE_CPU)
1601                 size += sizeof(data->cpu_entry);
1602
1603         event->id_header_size = size;
1604 }
1605
1606 static bool perf_event_validate_size(struct perf_event *event)
1607 {
1608         /*
1609          * The values computed here will be over-written when we actually
1610          * attach the event.
1611          */
1612         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1613         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1614         perf_event__id_header_size(event);
1615
1616         /*
1617          * Sum the lot; should not exceed the 64k limit we have on records.
1618          * Conservative limit to allow for callchains and other variable fields.
1619          */
1620         if (event->read_size + event->header_size +
1621             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1622                 return false;
1623
1624         return true;
1625 }
1626
1627 static void perf_group_attach(struct perf_event *event)
1628 {
1629         struct perf_event *group_leader = event->group_leader, *pos;
1630
1631         lockdep_assert_held(&event->ctx->lock);
1632
1633         /*
1634          * We can have double attach due to group movement in perf_event_open.
1635          */
1636         if (event->attach_state & PERF_ATTACH_GROUP)
1637                 return;
1638
1639         event->attach_state |= PERF_ATTACH_GROUP;
1640
1641         if (group_leader == event)
1642                 return;
1643
1644         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1645
1646         group_leader->group_caps &= event->event_caps;
1647
1648         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1649         group_leader->nr_siblings++;
1650
1651         perf_event__header_size(group_leader);
1652
1653         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1654                 perf_event__header_size(pos);
1655 }
1656
1657 /*
1658  * Remove a event from the lists for its context.
1659  * Must be called with ctx->mutex and ctx->lock held.
1660  */
1661 static void
1662 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1663 {
1664         WARN_ON_ONCE(event->ctx != ctx);
1665         lockdep_assert_held(&ctx->lock);
1666
1667         /*
1668          * We can have double detach due to exit/hot-unplug + close.
1669          */
1670         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1671                 return;
1672
1673         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1674
1675         list_update_cgroup_event(event, ctx, false);
1676
1677         ctx->nr_events--;
1678         if (event->attr.inherit_stat)
1679                 ctx->nr_stat--;
1680
1681         list_del_rcu(&event->event_entry);
1682
1683         if (event->group_leader == event)
1684                 list_del_init(&event->group_entry);
1685
1686         update_group_times(event);
1687
1688         /*
1689          * If event was in error state, then keep it
1690          * that way, otherwise bogus counts will be
1691          * returned on read(). The only way to get out
1692          * of error state is by explicit re-enabling
1693          * of the event
1694          */
1695         if (event->state > PERF_EVENT_STATE_OFF)
1696                 event->state = PERF_EVENT_STATE_OFF;
1697
1698         ctx->generation++;
1699 }
1700
1701 static void perf_group_detach(struct perf_event *event)
1702 {
1703         struct perf_event *sibling, *tmp;
1704         struct list_head *list = NULL;
1705
1706         lockdep_assert_held(&event->ctx->lock);
1707
1708         /*
1709          * We can have double detach due to exit/hot-unplug + close.
1710          */
1711         if (!(event->attach_state & PERF_ATTACH_GROUP))
1712                 return;
1713
1714         event->attach_state &= ~PERF_ATTACH_GROUP;
1715
1716         /*
1717          * If this is a sibling, remove it from its group.
1718          */
1719         if (event->group_leader != event) {
1720                 list_del_init(&event->group_entry);
1721                 event->group_leader->nr_siblings--;
1722                 goto out;
1723         }
1724
1725         if (!list_empty(&event->group_entry))
1726                 list = &event->group_entry;
1727
1728         /*
1729          * If this was a group event with sibling events then
1730          * upgrade the siblings to singleton events by adding them
1731          * to whatever list we are on.
1732          */
1733         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1734                 if (list)
1735                         list_move_tail(&sibling->group_entry, list);
1736                 sibling->group_leader = sibling;
1737
1738                 /* Inherit group flags from the previous leader */
1739                 sibling->group_caps = event->group_caps;
1740
1741                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1742         }
1743
1744 out:
1745         perf_event__header_size(event->group_leader);
1746
1747         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1748                 perf_event__header_size(tmp);
1749 }
1750
1751 static bool is_orphaned_event(struct perf_event *event)
1752 {
1753         return event->state == PERF_EVENT_STATE_DEAD;
1754 }
1755
1756 static inline int __pmu_filter_match(struct perf_event *event)
1757 {
1758         struct pmu *pmu = event->pmu;
1759         return pmu->filter_match ? pmu->filter_match(event) : 1;
1760 }
1761
1762 /*
1763  * Check whether we should attempt to schedule an event group based on
1764  * PMU-specific filtering. An event group can consist of HW and SW events,
1765  * potentially with a SW leader, so we must check all the filters, to
1766  * determine whether a group is schedulable:
1767  */
1768 static inline int pmu_filter_match(struct perf_event *event)
1769 {
1770         struct perf_event *child;
1771
1772         if (!__pmu_filter_match(event))
1773                 return 0;
1774
1775         list_for_each_entry(child, &event->sibling_list, group_entry) {
1776                 if (!__pmu_filter_match(child))
1777                         return 0;
1778         }
1779
1780         return 1;
1781 }
1782
1783 static inline int
1784 event_filter_match(struct perf_event *event)
1785 {
1786         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1787                perf_cgroup_match(event) && pmu_filter_match(event);
1788 }
1789
1790 static void
1791 event_sched_out(struct perf_event *event,
1792                   struct perf_cpu_context *cpuctx,
1793                   struct perf_event_context *ctx)
1794 {
1795         u64 tstamp = perf_event_time(event);
1796         u64 delta;
1797
1798         WARN_ON_ONCE(event->ctx != ctx);
1799         lockdep_assert_held(&ctx->lock);
1800
1801         /*
1802          * An event which could not be activated because of
1803          * filter mismatch still needs to have its timings
1804          * maintained, otherwise bogus information is return
1805          * via read() for time_enabled, time_running:
1806          */
1807         if (event->state == PERF_EVENT_STATE_INACTIVE &&
1808             !event_filter_match(event)) {
1809                 delta = tstamp - event->tstamp_stopped;
1810                 event->tstamp_running += delta;
1811                 event->tstamp_stopped = tstamp;
1812         }
1813
1814         if (event->state != PERF_EVENT_STATE_ACTIVE)
1815                 return;
1816
1817         perf_pmu_disable(event->pmu);
1818
1819         event->tstamp_stopped = tstamp;
1820         event->pmu->del(event, 0);
1821         event->oncpu = -1;
1822         event->state = PERF_EVENT_STATE_INACTIVE;
1823         if (event->pending_disable) {
1824                 event->pending_disable = 0;
1825                 event->state = PERF_EVENT_STATE_OFF;
1826         }
1827
1828         if (!is_software_event(event))
1829                 cpuctx->active_oncpu--;
1830         if (!--ctx->nr_active)
1831                 perf_event_ctx_deactivate(ctx);
1832         if (event->attr.freq && event->attr.sample_freq)
1833                 ctx->nr_freq--;
1834         if (event->attr.exclusive || !cpuctx->active_oncpu)
1835                 cpuctx->exclusive = 0;
1836
1837         perf_pmu_enable(event->pmu);
1838 }
1839
1840 static void
1841 group_sched_out(struct perf_event *group_event,
1842                 struct perf_cpu_context *cpuctx,
1843                 struct perf_event_context *ctx)
1844 {
1845         struct perf_event *event;
1846         int state = group_event->state;
1847
1848         perf_pmu_disable(ctx->pmu);
1849
1850         event_sched_out(group_event, cpuctx, ctx);
1851
1852         /*
1853          * Schedule out siblings (if any):
1854          */
1855         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1856                 event_sched_out(event, cpuctx, ctx);
1857
1858         perf_pmu_enable(ctx->pmu);
1859
1860         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1861                 cpuctx->exclusive = 0;
1862 }
1863
1864 #define DETACH_GROUP    0x01UL
1865
1866 /*
1867  * Cross CPU call to remove a performance event
1868  *
1869  * We disable the event on the hardware level first. After that we
1870  * remove it from the context list.
1871  */
1872 static void
1873 __perf_remove_from_context(struct perf_event *event,
1874                            struct perf_cpu_context *cpuctx,
1875                            struct perf_event_context *ctx,
1876                            void *info)
1877 {
1878         unsigned long flags = (unsigned long)info;
1879
1880         event_sched_out(event, cpuctx, ctx);
1881         if (flags & DETACH_GROUP)
1882                 perf_group_detach(event);
1883         list_del_event(event, ctx);
1884
1885         if (!ctx->nr_events && ctx->is_active) {
1886                 ctx->is_active = 0;
1887                 if (ctx->task) {
1888                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1889                         cpuctx->task_ctx = NULL;
1890                 }
1891         }
1892 }
1893
1894 /*
1895  * Remove the event from a task's (or a CPU's) list of events.
1896  *
1897  * If event->ctx is a cloned context, callers must make sure that
1898  * every task struct that event->ctx->task could possibly point to
1899  * remains valid.  This is OK when called from perf_release since
1900  * that only calls us on the top-level context, which can't be a clone.
1901  * When called from perf_event_exit_task, it's OK because the
1902  * context has been detached from its task.
1903  */
1904 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1905 {
1906         struct perf_event_context *ctx = event->ctx;
1907
1908         lockdep_assert_held(&ctx->mutex);
1909
1910         event_function_call(event, __perf_remove_from_context, (void *)flags);
1911
1912         /*
1913          * The above event_function_call() can NO-OP when it hits
1914          * TASK_TOMBSTONE. In that case we must already have been detached
1915          * from the context (by perf_event_exit_event()) but the grouping
1916          * might still be in-tact.
1917          */
1918         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1919         if ((flags & DETACH_GROUP) &&
1920             (event->attach_state & PERF_ATTACH_GROUP)) {
1921                 /*
1922                  * Since in that case we cannot possibly be scheduled, simply
1923                  * detach now.
1924                  */
1925                 raw_spin_lock_irq(&ctx->lock);
1926                 perf_group_detach(event);
1927                 raw_spin_unlock_irq(&ctx->lock);
1928         }
1929 }
1930
1931 /*
1932  * Cross CPU call to disable a performance event
1933  */
1934 static void __perf_event_disable(struct perf_event *event,
1935                                  struct perf_cpu_context *cpuctx,
1936                                  struct perf_event_context *ctx,
1937                                  void *info)
1938 {
1939         if (event->state < PERF_EVENT_STATE_INACTIVE)
1940                 return;
1941
1942         update_context_time(ctx);
1943         update_cgrp_time_from_event(event);
1944         update_group_times(event);
1945         if (event == event->group_leader)
1946                 group_sched_out(event, cpuctx, ctx);
1947         else
1948                 event_sched_out(event, cpuctx, ctx);
1949         event->state = PERF_EVENT_STATE_OFF;
1950 }
1951
1952 /*
1953  * Disable a event.
1954  *
1955  * If event->ctx is a cloned context, callers must make sure that
1956  * every task struct that event->ctx->task could possibly point to
1957  * remains valid.  This condition is satisifed when called through
1958  * perf_event_for_each_child or perf_event_for_each because they
1959  * hold the top-level event's child_mutex, so any descendant that
1960  * goes to exit will block in perf_event_exit_event().
1961  *
1962  * When called from perf_pending_event it's OK because event->ctx
1963  * is the current context on this CPU and preemption is disabled,
1964  * hence we can't get into perf_event_task_sched_out for this context.
1965  */
1966 static void _perf_event_disable(struct perf_event *event)
1967 {
1968         struct perf_event_context *ctx = event->ctx;
1969
1970         raw_spin_lock_irq(&ctx->lock);
1971         if (event->state <= PERF_EVENT_STATE_OFF) {
1972                 raw_spin_unlock_irq(&ctx->lock);
1973                 return;
1974         }
1975         raw_spin_unlock_irq(&ctx->lock);
1976
1977         event_function_call(event, __perf_event_disable, NULL);
1978 }
1979
1980 void perf_event_disable_local(struct perf_event *event)
1981 {
1982         event_function_local(event, __perf_event_disable, NULL);
1983 }
1984
1985 /*
1986  * Strictly speaking kernel users cannot create groups and therefore this
1987  * interface does not need the perf_event_ctx_lock() magic.
1988  */
1989 void perf_event_disable(struct perf_event *event)
1990 {
1991         struct perf_event_context *ctx;
1992
1993         ctx = perf_event_ctx_lock(event);
1994         _perf_event_disable(event);
1995         perf_event_ctx_unlock(event, ctx);
1996 }
1997 EXPORT_SYMBOL_GPL(perf_event_disable);
1998
1999 void perf_event_disable_inatomic(struct perf_event *event)
2000 {
2001         event->pending_disable = 1;
2002         irq_work_queue(&event->pending);
2003 }
2004
2005 static void perf_set_shadow_time(struct perf_event *event,
2006                                  struct perf_event_context *ctx,
2007                                  u64 tstamp)
2008 {
2009         /*
2010          * use the correct time source for the time snapshot
2011          *
2012          * We could get by without this by leveraging the
2013          * fact that to get to this function, the caller
2014          * has most likely already called update_context_time()
2015          * and update_cgrp_time_xx() and thus both timestamp
2016          * are identical (or very close). Given that tstamp is,
2017          * already adjusted for cgroup, we could say that:
2018          *    tstamp - ctx->timestamp
2019          * is equivalent to
2020          *    tstamp - cgrp->timestamp.
2021          *
2022          * Then, in perf_output_read(), the calculation would
2023          * work with no changes because:
2024          * - event is guaranteed scheduled in
2025          * - no scheduled out in between
2026          * - thus the timestamp would be the same
2027          *
2028          * But this is a bit hairy.
2029          *
2030          * So instead, we have an explicit cgroup call to remain
2031          * within the time time source all along. We believe it
2032          * is cleaner and simpler to understand.
2033          */
2034         if (is_cgroup_event(event))
2035                 perf_cgroup_set_shadow_time(event, tstamp);
2036         else
2037                 event->shadow_ctx_time = tstamp - ctx->timestamp;
2038 }
2039
2040 #define MAX_INTERRUPTS (~0ULL)
2041
2042 static void perf_log_throttle(struct perf_event *event, int enable);
2043 static void perf_log_itrace_start(struct perf_event *event);
2044
2045 static int
2046 event_sched_in(struct perf_event *event,
2047                  struct perf_cpu_context *cpuctx,
2048                  struct perf_event_context *ctx)
2049 {
2050         u64 tstamp = perf_event_time(event);
2051         int ret = 0;
2052
2053         lockdep_assert_held(&ctx->lock);
2054
2055         if (event->state <= PERF_EVENT_STATE_OFF)
2056                 return 0;
2057
2058         WRITE_ONCE(event->oncpu, smp_processor_id());
2059         /*
2060          * Order event::oncpu write to happen before the ACTIVE state
2061          * is visible.
2062          */
2063         smp_wmb();
2064         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2065
2066         /*
2067          * Unthrottle events, since we scheduled we might have missed several
2068          * ticks already, also for a heavily scheduling task there is little
2069          * guarantee it'll get a tick in a timely manner.
2070          */
2071         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2072                 perf_log_throttle(event, 1);
2073                 event->hw.interrupts = 0;
2074         }
2075
2076         /*
2077          * The new state must be visible before we turn it on in the hardware:
2078          */
2079         smp_wmb();
2080
2081         perf_pmu_disable(event->pmu);
2082
2083         perf_set_shadow_time(event, ctx, tstamp);
2084
2085         perf_log_itrace_start(event);
2086
2087         if (event->pmu->add(event, PERF_EF_START)) {
2088                 event->state = PERF_EVENT_STATE_INACTIVE;
2089                 event->oncpu = -1;
2090                 ret = -EAGAIN;
2091                 goto out;
2092         }
2093
2094         event->tstamp_running += tstamp - event->tstamp_stopped;
2095
2096         if (!is_software_event(event))
2097                 cpuctx->active_oncpu++;
2098         if (!ctx->nr_active++)
2099                 perf_event_ctx_activate(ctx);
2100         if (event->attr.freq && event->attr.sample_freq)
2101                 ctx->nr_freq++;
2102
2103         if (event->attr.exclusive)
2104                 cpuctx->exclusive = 1;
2105
2106 out:
2107         perf_pmu_enable(event->pmu);
2108
2109         return ret;
2110 }
2111
2112 static int
2113 group_sched_in(struct perf_event *group_event,
2114                struct perf_cpu_context *cpuctx,
2115                struct perf_event_context *ctx)
2116 {
2117         struct perf_event *event, *partial_group = NULL;
2118         struct pmu *pmu = ctx->pmu;
2119         u64 now = ctx->time;
2120         bool simulate = false;
2121
2122         if (group_event->state == PERF_EVENT_STATE_OFF)
2123                 return 0;
2124
2125         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2126
2127         if (event_sched_in(group_event, cpuctx, ctx)) {
2128                 pmu->cancel_txn(pmu);
2129                 perf_mux_hrtimer_restart(cpuctx);
2130                 return -EAGAIN;
2131         }
2132
2133         /*
2134          * Schedule in siblings as one group (if any):
2135          */
2136         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2137                 if (event_sched_in(event, cpuctx, ctx)) {
2138                         partial_group = event;
2139                         goto group_error;
2140                 }
2141         }
2142
2143         if (!pmu->commit_txn(pmu))
2144                 return 0;
2145
2146 group_error:
2147         /*
2148          * Groups can be scheduled in as one unit only, so undo any
2149          * partial group before returning:
2150          * The events up to the failed event are scheduled out normally,
2151          * tstamp_stopped will be updated.
2152          *
2153          * The failed events and the remaining siblings need to have
2154          * their timings updated as if they had gone thru event_sched_in()
2155          * and event_sched_out(). This is required to get consistent timings
2156          * across the group. This also takes care of the case where the group
2157          * could never be scheduled by ensuring tstamp_stopped is set to mark
2158          * the time the event was actually stopped, such that time delta
2159          * calculation in update_event_times() is correct.
2160          */
2161         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2162                 if (event == partial_group)
2163                         simulate = true;
2164
2165                 if (simulate) {
2166                         event->tstamp_running += now - event->tstamp_stopped;
2167                         event->tstamp_stopped = now;
2168                 } else {
2169                         event_sched_out(event, cpuctx, ctx);
2170                 }
2171         }
2172         event_sched_out(group_event, cpuctx, ctx);
2173
2174         pmu->cancel_txn(pmu);
2175
2176         perf_mux_hrtimer_restart(cpuctx);
2177
2178         return -EAGAIN;
2179 }
2180
2181 /*
2182  * Work out whether we can put this event group on the CPU now.
2183  */
2184 static int group_can_go_on(struct perf_event *event,
2185                            struct perf_cpu_context *cpuctx,
2186                            int can_add_hw)
2187 {
2188         /*
2189          * Groups consisting entirely of software events can always go on.
2190          */
2191         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2192                 return 1;
2193         /*
2194          * If an exclusive group is already on, no other hardware
2195          * events can go on.
2196          */
2197         if (cpuctx->exclusive)
2198                 return 0;
2199         /*
2200          * If this group is exclusive and there are already
2201          * events on the CPU, it can't go on.
2202          */
2203         if (event->attr.exclusive && cpuctx->active_oncpu)
2204                 return 0;
2205         /*
2206          * Otherwise, try to add it if all previous groups were able
2207          * to go on.
2208          */
2209         return can_add_hw;
2210 }
2211
2212 static void add_event_to_ctx(struct perf_event *event,
2213                                struct perf_event_context *ctx)
2214 {
2215         u64 tstamp = perf_event_time(event);
2216
2217         list_add_event(event, ctx);
2218         perf_group_attach(event);
2219         event->tstamp_enabled = tstamp;
2220         event->tstamp_running = tstamp;
2221         event->tstamp_stopped = tstamp;
2222 }
2223
2224 static void ctx_sched_out(struct perf_event_context *ctx,
2225                           struct perf_cpu_context *cpuctx,
2226                           enum event_type_t event_type);
2227 static void
2228 ctx_sched_in(struct perf_event_context *ctx,
2229              struct perf_cpu_context *cpuctx,
2230              enum event_type_t event_type,
2231              struct task_struct *task);
2232
2233 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2234                                struct perf_event_context *ctx,
2235                                enum event_type_t event_type)
2236 {
2237         if (!cpuctx->task_ctx)
2238                 return;
2239
2240         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2241                 return;
2242
2243         ctx_sched_out(ctx, cpuctx, event_type);
2244 }
2245
2246 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2247                                 struct perf_event_context *ctx,
2248                                 struct task_struct *task)
2249 {
2250         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2251         if (ctx)
2252                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2253         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2254         if (ctx)
2255                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2256 }
2257
2258 /*
2259  * We want to maintain the following priority of scheduling:
2260  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2261  *  - task pinned (EVENT_PINNED)
2262  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2263  *  - task flexible (EVENT_FLEXIBLE).
2264  *
2265  * In order to avoid unscheduling and scheduling back in everything every
2266  * time an event is added, only do it for the groups of equal priority and
2267  * below.
2268  *
2269  * This can be called after a batch operation on task events, in which case
2270  * event_type is a bit mask of the types of events involved. For CPU events,
2271  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2272  */
2273 static void ctx_resched(struct perf_cpu_context *cpuctx,
2274                         struct perf_event_context *task_ctx,
2275                         enum event_type_t event_type)
2276 {
2277         enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2278         bool cpu_event = !!(event_type & EVENT_CPU);
2279
2280         /*
2281          * If pinned groups are involved, flexible groups also need to be
2282          * scheduled out.
2283          */
2284         if (event_type & EVENT_PINNED)
2285                 event_type |= EVENT_FLEXIBLE;
2286
2287         perf_pmu_disable(cpuctx->ctx.pmu);
2288         if (task_ctx)
2289                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2290
2291         /*
2292          * Decide which cpu ctx groups to schedule out based on the types
2293          * of events that caused rescheduling:
2294          *  - EVENT_CPU: schedule out corresponding groups;
2295          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2296          *  - otherwise, do nothing more.
2297          */
2298         if (cpu_event)
2299                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2300         else if (ctx_event_type & EVENT_PINNED)
2301                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2302
2303         perf_event_sched_in(cpuctx, task_ctx, current);
2304         perf_pmu_enable(cpuctx->ctx.pmu);
2305 }
2306
2307 /*
2308  * Cross CPU call to install and enable a performance event
2309  *
2310  * Very similar to remote_function() + event_function() but cannot assume that
2311  * things like ctx->is_active and cpuctx->task_ctx are set.
2312  */
2313 static int  __perf_install_in_context(void *info)
2314 {
2315         struct perf_event *event = info;
2316         struct perf_event_context *ctx = event->ctx;
2317         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2318         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2319         bool reprogram = true;
2320         int ret = 0;
2321
2322         raw_spin_lock(&cpuctx->ctx.lock);
2323         if (ctx->task) {
2324                 raw_spin_lock(&ctx->lock);
2325                 task_ctx = ctx;
2326
2327                 reprogram = (ctx->task == current);
2328
2329                 /*
2330                  * If the task is running, it must be running on this CPU,
2331                  * otherwise we cannot reprogram things.
2332                  *
2333                  * If its not running, we don't care, ctx->lock will
2334                  * serialize against it becoming runnable.
2335                  */
2336                 if (task_curr(ctx->task) && !reprogram) {
2337                         ret = -ESRCH;
2338                         goto unlock;
2339                 }
2340
2341                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2342         } else if (task_ctx) {
2343                 raw_spin_lock(&task_ctx->lock);
2344         }
2345
2346         if (reprogram) {
2347                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2348                 add_event_to_ctx(event, ctx);
2349                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2350         } else {
2351                 add_event_to_ctx(event, ctx);
2352         }
2353
2354 unlock:
2355         perf_ctx_unlock(cpuctx, task_ctx);
2356
2357         return ret;
2358 }
2359
2360 /*
2361  * Attach a performance event to a context.
2362  *
2363  * Very similar to event_function_call, see comment there.
2364  */
2365 static void
2366 perf_install_in_context(struct perf_event_context *ctx,
2367                         struct perf_event *event,
2368                         int cpu)
2369 {
2370         struct task_struct *task = READ_ONCE(ctx->task);
2371
2372         lockdep_assert_held(&ctx->mutex);
2373
2374         if (event->cpu != -1)
2375                 event->cpu = cpu;
2376
2377         /*
2378          * Ensures that if we can observe event->ctx, both the event and ctx
2379          * will be 'complete'. See perf_iterate_sb_cpu().
2380          */
2381         smp_store_release(&event->ctx, ctx);
2382
2383         if (!task) {
2384                 cpu_function_call(cpu, __perf_install_in_context, event);
2385                 return;
2386         }
2387
2388         /*
2389          * Should not happen, we validate the ctx is still alive before calling.
2390          */
2391         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2392                 return;
2393
2394         /*
2395          * Installing events is tricky because we cannot rely on ctx->is_active
2396          * to be set in case this is the nr_events 0 -> 1 transition.
2397          *
2398          * Instead we use task_curr(), which tells us if the task is running.
2399          * However, since we use task_curr() outside of rq::lock, we can race
2400          * against the actual state. This means the result can be wrong.
2401          *
2402          * If we get a false positive, we retry, this is harmless.
2403          *
2404          * If we get a false negative, things are complicated. If we are after
2405          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2406          * value must be correct. If we're before, it doesn't matter since
2407          * perf_event_context_sched_in() will program the counter.
2408          *
2409          * However, this hinges on the remote context switch having observed
2410          * our task->perf_event_ctxp[] store, such that it will in fact take
2411          * ctx::lock in perf_event_context_sched_in().
2412          *
2413          * We do this by task_function_call(), if the IPI fails to hit the task
2414          * we know any future context switch of task must see the
2415          * perf_event_ctpx[] store.
2416          */
2417
2418         /*
2419          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2420          * task_cpu() load, such that if the IPI then does not find the task
2421          * running, a future context switch of that task must observe the
2422          * store.
2423          */
2424         smp_mb();
2425 again:
2426         if (!task_function_call(task, __perf_install_in_context, event))
2427                 return;
2428
2429         raw_spin_lock_irq(&ctx->lock);
2430         task = ctx->task;
2431         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2432                 /*
2433                  * Cannot happen because we already checked above (which also
2434                  * cannot happen), and we hold ctx->mutex, which serializes us
2435                  * against perf_event_exit_task_context().
2436                  */
2437                 raw_spin_unlock_irq(&ctx->lock);
2438                 return;
2439         }
2440         /*
2441          * If the task is not running, ctx->lock will avoid it becoming so,
2442          * thus we can safely install the event.
2443          */
2444         if (task_curr(task)) {
2445                 raw_spin_unlock_irq(&ctx->lock);
2446                 goto again;
2447         }
2448         add_event_to_ctx(event, ctx);
2449         raw_spin_unlock_irq(&ctx->lock);
2450 }
2451
2452 /*
2453  * Put a event into inactive state and update time fields.
2454  * Enabling the leader of a group effectively enables all
2455  * the group members that aren't explicitly disabled, so we
2456  * have to update their ->tstamp_enabled also.
2457  * Note: this works for group members as well as group leaders
2458  * since the non-leader members' sibling_lists will be empty.
2459  */
2460 static void __perf_event_mark_enabled(struct perf_event *event)
2461 {
2462         struct perf_event *sub;
2463         u64 tstamp = perf_event_time(event);
2464
2465         event->state = PERF_EVENT_STATE_INACTIVE;
2466         event->tstamp_enabled = tstamp - event->total_time_enabled;
2467         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2468                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2469                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2470         }
2471 }
2472
2473 /*
2474  * Cross CPU call to enable a performance event
2475  */
2476 static void __perf_event_enable(struct perf_event *event,
2477                                 struct perf_cpu_context *cpuctx,
2478                                 struct perf_event_context *ctx,
2479                                 void *info)
2480 {
2481         struct perf_event *leader = event->group_leader;
2482         struct perf_event_context *task_ctx;
2483
2484         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2485             event->state <= PERF_EVENT_STATE_ERROR)
2486                 return;
2487
2488         if (ctx->is_active)
2489                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2490
2491         __perf_event_mark_enabled(event);
2492
2493         if (!ctx->is_active)
2494                 return;
2495
2496         if (!event_filter_match(event)) {
2497                 if (is_cgroup_event(event))
2498                         perf_cgroup_defer_enabled(event);
2499                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2500                 return;
2501         }
2502
2503         /*
2504          * If the event is in a group and isn't the group leader,
2505          * then don't put it on unless the group is on.
2506          */
2507         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2508                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2509                 return;
2510         }
2511
2512         task_ctx = cpuctx->task_ctx;
2513         if (ctx->task)
2514                 WARN_ON_ONCE(task_ctx != ctx);
2515
2516         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2517 }
2518
2519 /*
2520  * Enable a event.
2521  *
2522  * If event->ctx is a cloned context, callers must make sure that
2523  * every task struct that event->ctx->task could possibly point to
2524  * remains valid.  This condition is satisfied when called through
2525  * perf_event_for_each_child or perf_event_for_each as described
2526  * for perf_event_disable.
2527  */
2528 static void _perf_event_enable(struct perf_event *event)
2529 {
2530         struct perf_event_context *ctx = event->ctx;
2531
2532         raw_spin_lock_irq(&ctx->lock);
2533         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2534             event->state <  PERF_EVENT_STATE_ERROR) {
2535                 raw_spin_unlock_irq(&ctx->lock);
2536                 return;
2537         }
2538
2539         /*
2540          * If the event is in error state, clear that first.
2541          *
2542          * That way, if we see the event in error state below, we know that it
2543          * has gone back into error state, as distinct from the task having
2544          * been scheduled away before the cross-call arrived.
2545          */
2546         if (event->state == PERF_EVENT_STATE_ERROR)
2547                 event->state = PERF_EVENT_STATE_OFF;
2548         raw_spin_unlock_irq(&ctx->lock);
2549
2550         event_function_call(event, __perf_event_enable, NULL);
2551 }
2552
2553 /*
2554  * See perf_event_disable();
2555  */
2556 void perf_event_enable(struct perf_event *event)
2557 {
2558         struct perf_event_context *ctx;
2559
2560         ctx = perf_event_ctx_lock(event);
2561         _perf_event_enable(event);
2562         perf_event_ctx_unlock(event, ctx);
2563 }
2564 EXPORT_SYMBOL_GPL(perf_event_enable);
2565
2566 struct stop_event_data {
2567         struct perf_event       *event;
2568         unsigned int            restart;
2569 };
2570
2571 static int __perf_event_stop(void *info)
2572 {
2573         struct stop_event_data *sd = info;
2574         struct perf_event *event = sd->event;
2575
2576         /* if it's already INACTIVE, do nothing */
2577         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2578                 return 0;
2579
2580         /* matches smp_wmb() in event_sched_in() */
2581         smp_rmb();
2582
2583         /*
2584          * There is a window with interrupts enabled before we get here,
2585          * so we need to check again lest we try to stop another CPU's event.
2586          */
2587         if (READ_ONCE(event->oncpu) != smp_processor_id())
2588                 return -EAGAIN;
2589
2590         event->pmu->stop(event, PERF_EF_UPDATE);
2591
2592         /*
2593          * May race with the actual stop (through perf_pmu_output_stop()),
2594          * but it is only used for events with AUX ring buffer, and such
2595          * events will refuse to restart because of rb::aux_mmap_count==0,
2596          * see comments in perf_aux_output_begin().
2597          *
2598          * Since this is happening on a event-local CPU, no trace is lost
2599          * while restarting.
2600          */
2601         if (sd->restart)
2602                 event->pmu->start(event, 0);
2603
2604         return 0;
2605 }
2606
2607 static int perf_event_stop(struct perf_event *event, int restart)
2608 {
2609         struct stop_event_data sd = {
2610                 .event          = event,
2611                 .restart        = restart,
2612         };
2613         int ret = 0;
2614
2615         do {
2616                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2617                         return 0;
2618
2619                 /* matches smp_wmb() in event_sched_in() */
2620                 smp_rmb();
2621
2622                 /*
2623                  * We only want to restart ACTIVE events, so if the event goes
2624                  * inactive here (event->oncpu==-1), there's nothing more to do;
2625                  * fall through with ret==-ENXIO.
2626                  */
2627                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2628                                         __perf_event_stop, &sd);
2629         } while (ret == -EAGAIN);
2630
2631         return ret;
2632 }
2633
2634 /*
2635  * In order to contain the amount of racy and tricky in the address filter
2636  * configuration management, it is a two part process:
2637  *
2638  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2639  *      we update the addresses of corresponding vmas in
2640  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2641  * (p2) when an event is scheduled in (pmu::add), it calls
2642  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2643  *      if the generation has changed since the previous call.
2644  *
2645  * If (p1) happens while the event is active, we restart it to force (p2).
2646  *
2647  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2648  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2649  *     ioctl;
2650  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2651  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2652  *     for reading;
2653  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2654  *     of exec.
2655  */
2656 void perf_event_addr_filters_sync(struct perf_event *event)
2657 {
2658         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2659
2660         if (!has_addr_filter(event))
2661                 return;
2662
2663         raw_spin_lock(&ifh->lock);
2664         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2665                 event->pmu->addr_filters_sync(event);
2666                 event->hw.addr_filters_gen = event->addr_filters_gen;
2667         }
2668         raw_spin_unlock(&ifh->lock);
2669 }
2670 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2671
2672 static int _perf_event_refresh(struct perf_event *event, int refresh)
2673 {
2674         /*
2675          * not supported on inherited events
2676          */
2677         if (event->attr.inherit || !is_sampling_event(event))
2678                 return -EINVAL;
2679
2680         atomic_add(refresh, &event->event_limit);
2681         _perf_event_enable(event);
2682
2683         return 0;
2684 }
2685
2686 /*
2687  * See perf_event_disable()
2688  */
2689 int perf_event_refresh(struct perf_event *event, int refresh)
2690 {
2691         struct perf_event_context *ctx;
2692         int ret;
2693
2694         ctx = perf_event_ctx_lock(event);
2695         ret = _perf_event_refresh(event, refresh);
2696         perf_event_ctx_unlock(event, ctx);
2697
2698         return ret;
2699 }
2700 EXPORT_SYMBOL_GPL(perf_event_refresh);
2701
2702 static void ctx_sched_out(struct perf_event_context *ctx,
2703                           struct perf_cpu_context *cpuctx,
2704                           enum event_type_t event_type)
2705 {
2706         int is_active = ctx->is_active;
2707         struct perf_event *event;
2708
2709         lockdep_assert_held(&ctx->lock);
2710
2711         if (likely(!ctx->nr_events)) {
2712                 /*
2713                  * See __perf_remove_from_context().
2714                  */
2715                 WARN_ON_ONCE(ctx->is_active);
2716                 if (ctx->task)
2717                         WARN_ON_ONCE(cpuctx->task_ctx);
2718                 return;
2719         }
2720
2721         ctx->is_active &= ~event_type;
2722         if (!(ctx->is_active & EVENT_ALL))
2723                 ctx->is_active = 0;
2724
2725         if (ctx->task) {
2726                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2727                 if (!ctx->is_active)
2728                         cpuctx->task_ctx = NULL;
2729         }
2730
2731         /*
2732          * Always update time if it was set; not only when it changes.
2733          * Otherwise we can 'forget' to update time for any but the last
2734          * context we sched out. For example:
2735          *
2736          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2737          *   ctx_sched_out(.event_type = EVENT_PINNED)
2738          *
2739          * would only update time for the pinned events.
2740          */
2741         if (is_active & EVENT_TIME) {
2742                 /* update (and stop) ctx time */
2743                 update_context_time(ctx);
2744                 update_cgrp_time_from_cpuctx(cpuctx);
2745         }
2746
2747         is_active ^= ctx->is_active; /* changed bits */
2748
2749         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2750                 return;
2751
2752         perf_pmu_disable(ctx->pmu);
2753         if (is_active & EVENT_PINNED) {
2754                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2755                         group_sched_out(event, cpuctx, ctx);
2756         }
2757
2758         if (is_active & EVENT_FLEXIBLE) {
2759                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2760                         group_sched_out(event, cpuctx, ctx);
2761         }
2762         perf_pmu_enable(ctx->pmu);
2763 }
2764
2765 /*
2766  * Test whether two contexts are equivalent, i.e. whether they have both been
2767  * cloned from the same version of the same context.
2768  *
2769  * Equivalence is measured using a generation number in the context that is
2770  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2771  * and list_del_event().
2772  */
2773 static int context_equiv(struct perf_event_context *ctx1,
2774                          struct perf_event_context *ctx2)
2775 {
2776         lockdep_assert_held(&ctx1->lock);
2777         lockdep_assert_held(&ctx2->lock);
2778
2779         /* Pinning disables the swap optimization */
2780         if (ctx1->pin_count || ctx2->pin_count)
2781                 return 0;
2782
2783         /* If ctx1 is the parent of ctx2 */
2784         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2785                 return 1;
2786
2787         /* If ctx2 is the parent of ctx1 */
2788         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2789                 return 1;
2790
2791         /*
2792          * If ctx1 and ctx2 have the same parent; we flatten the parent
2793          * hierarchy, see perf_event_init_context().
2794          */
2795         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2796                         ctx1->parent_gen == ctx2->parent_gen)
2797                 return 1;
2798
2799         /* Unmatched */
2800         return 0;
2801 }
2802
2803 static void __perf_event_sync_stat(struct perf_event *event,
2804                                      struct perf_event *next_event)
2805 {
2806         u64 value;
2807
2808         if (!event->attr.inherit_stat)
2809                 return;
2810
2811         /*
2812          * Update the event value, we cannot use perf_event_read()
2813          * because we're in the middle of a context switch and have IRQs
2814          * disabled, which upsets smp_call_function_single(), however
2815          * we know the event must be on the current CPU, therefore we
2816          * don't need to use it.
2817          */
2818         switch (event->state) {
2819         case PERF_EVENT_STATE_ACTIVE:
2820                 event->pmu->read(event);
2821                 /* fall-through */
2822
2823         case PERF_EVENT_STATE_INACTIVE:
2824                 update_event_times(event);
2825                 break;
2826
2827         default:
2828                 break;
2829         }
2830
2831         /*
2832          * In order to keep per-task stats reliable we need to flip the event
2833          * values when we flip the contexts.
2834          */
2835         value = local64_read(&next_event->count);
2836         value = local64_xchg(&event->count, value);
2837         local64_set(&next_event->count, value);
2838
2839         swap(event->total_time_enabled, next_event->total_time_enabled);
2840         swap(event->total_time_running, next_event->total_time_running);
2841
2842         /*
2843          * Since we swizzled the values, update the user visible data too.
2844          */
2845         perf_event_update_userpage(event);
2846         perf_event_update_userpage(next_event);
2847 }
2848
2849 static void perf_event_sync_stat(struct perf_event_context *ctx,
2850                                    struct perf_event_context *next_ctx)
2851 {
2852         struct perf_event *event, *next_event;
2853
2854         if (!ctx->nr_stat)
2855                 return;
2856
2857         update_context_time(ctx);
2858
2859         event = list_first_entry(&ctx->event_list,
2860                                    struct perf_event, event_entry);
2861
2862         next_event = list_first_entry(&next_ctx->event_list,
2863                                         struct perf_event, event_entry);
2864
2865         while (&event->event_entry != &ctx->event_list &&
2866                &next_event->event_entry != &next_ctx->event_list) {
2867
2868                 __perf_event_sync_stat(event, next_event);
2869
2870                 event = list_next_entry(event, event_entry);
2871                 next_event = list_next_entry(next_event, event_entry);
2872         }
2873 }
2874
2875 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2876                                          struct task_struct *next)
2877 {
2878         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2879         struct perf_event_context *next_ctx;
2880         struct perf_event_context *parent, *next_parent;
2881         struct perf_cpu_context *cpuctx;
2882         int do_switch = 1;
2883
2884         if (likely(!ctx))
2885                 return;
2886
2887         cpuctx = __get_cpu_context(ctx);
2888         if (!cpuctx->task_ctx)
2889                 return;
2890
2891         rcu_read_lock();
2892         next_ctx = next->perf_event_ctxp[ctxn];
2893         if (!next_ctx)
2894                 goto unlock;
2895
2896         parent = rcu_dereference(ctx->parent_ctx);
2897         next_parent = rcu_dereference(next_ctx->parent_ctx);
2898
2899         /* If neither context have a parent context; they cannot be clones. */
2900         if (!parent && !next_parent)
2901                 goto unlock;
2902
2903         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2904                 /*
2905                  * Looks like the two contexts are clones, so we might be
2906                  * able to optimize the context switch.  We lock both
2907                  * contexts and check that they are clones under the
2908                  * lock (including re-checking that neither has been
2909                  * uncloned in the meantime).  It doesn't matter which
2910                  * order we take the locks because no other cpu could
2911                  * be trying to lock both of these tasks.
2912                  */
2913                 raw_spin_lock(&ctx->lock);
2914                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2915                 if (context_equiv(ctx, next_ctx)) {
2916                         WRITE_ONCE(ctx->task, next);
2917                         WRITE_ONCE(next_ctx->task, task);
2918
2919                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2920
2921                         /*
2922                          * RCU_INIT_POINTER here is safe because we've not
2923                          * modified the ctx and the above modification of
2924                          * ctx->task and ctx->task_ctx_data are immaterial
2925                          * since those values are always verified under
2926                          * ctx->lock which we're now holding.
2927                          */
2928                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2929                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2930
2931                         do_switch = 0;
2932
2933                         perf_event_sync_stat(ctx, next_ctx);
2934                 }
2935                 raw_spin_unlock(&next_ctx->lock);
2936                 raw_spin_unlock(&ctx->lock);
2937         }
2938 unlock:
2939         rcu_read_unlock();
2940
2941         if (do_switch) {
2942                 raw_spin_lock(&ctx->lock);
2943                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2944                 raw_spin_unlock(&ctx->lock);
2945         }
2946 }
2947
2948 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2949
2950 void perf_sched_cb_dec(struct pmu *pmu)
2951 {
2952         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2953
2954         this_cpu_dec(perf_sched_cb_usages);
2955
2956         if (!--cpuctx->sched_cb_usage)
2957                 list_del(&cpuctx->sched_cb_entry);
2958 }
2959
2960
2961 void perf_sched_cb_inc(struct pmu *pmu)
2962 {
2963         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2964
2965         if (!cpuctx->sched_cb_usage++)
2966                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2967
2968         this_cpu_inc(perf_sched_cb_usages);
2969 }
2970
2971 /*
2972  * This function provides the context switch callback to the lower code
2973  * layer. It is invoked ONLY when the context switch callback is enabled.
2974  *
2975  * This callback is relevant even to per-cpu events; for example multi event
2976  * PEBS requires this to provide PID/TID information. This requires we flush
2977  * all queued PEBS records before we context switch to a new task.
2978  */
2979 static void perf_pmu_sched_task(struct task_struct *prev,
2980                                 struct task_struct *next,
2981                                 bool sched_in)
2982 {
2983         struct perf_cpu_context *cpuctx;
2984         struct pmu *pmu;
2985
2986         if (prev == next)
2987                 return;
2988
2989         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2990                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2991
2992                 if (WARN_ON_ONCE(!pmu->sched_task))
2993                         continue;
2994
2995                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2996                 perf_pmu_disable(pmu);
2997
2998                 pmu->sched_task(cpuctx->task_ctx, sched_in);
2999
3000                 perf_pmu_enable(pmu);
3001                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3002         }
3003 }
3004
3005 static void perf_event_switch(struct task_struct *task,
3006                               struct task_struct *next_prev, bool sched_in);
3007
3008 #define for_each_task_context_nr(ctxn)                                  \
3009         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3010
3011 /*
3012  * Called from scheduler to remove the events of the current task,
3013  * with interrupts disabled.
3014  *
3015  * We stop each event and update the event value in event->count.
3016  *
3017  * This does not protect us against NMI, but disable()
3018  * sets the disabled bit in the control field of event _before_
3019  * accessing the event control register. If a NMI hits, then it will
3020  * not restart the event.
3021  */
3022 void __perf_event_task_sched_out(struct task_struct *task,
3023                                  struct task_struct *next)
3024 {
3025         int ctxn;
3026
3027         if (__this_cpu_read(perf_sched_cb_usages))
3028                 perf_pmu_sched_task(task, next, false);
3029
3030         if (atomic_read(&nr_switch_events))
3031                 perf_event_switch(task, next, false);
3032
3033         for_each_task_context_nr(ctxn)
3034                 perf_event_context_sched_out(task, ctxn, next);
3035
3036         /*
3037          * if cgroup events exist on this CPU, then we need
3038          * to check if we have to switch out PMU state.
3039          * cgroup event are system-wide mode only
3040          */
3041         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3042                 perf_cgroup_sched_out(task, next);
3043 }
3044
3045 /*
3046  * Called with IRQs disabled
3047  */
3048 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3049                               enum event_type_t event_type)
3050 {
3051         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3052 }
3053
3054 static void
3055 ctx_pinned_sched_in(struct perf_event_context *ctx,
3056                     struct perf_cpu_context *cpuctx)
3057 {
3058         struct perf_event *event;
3059
3060         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3061                 if (event->state <= PERF_EVENT_STATE_OFF)
3062                         continue;
3063                 if (!event_filter_match(event))
3064                         continue;
3065
3066                 /* may need to reset tstamp_enabled */
3067                 if (is_cgroup_event(event))
3068                         perf_cgroup_mark_enabled(event, ctx);
3069
3070                 if (group_can_go_on(event, cpuctx, 1))
3071                         group_sched_in(event, cpuctx, ctx);
3072
3073                 /*
3074                  * If this pinned group hasn't been scheduled,
3075                  * put it in error state.
3076                  */
3077                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3078                         update_group_times(event);
3079                         event->state = PERF_EVENT_STATE_ERROR;
3080                 }
3081         }
3082 }
3083
3084 static void
3085 ctx_flexible_sched_in(struct perf_event_context *ctx,
3086                       struct perf_cpu_context *cpuctx)
3087 {
3088         struct perf_event *event;
3089         int can_add_hw = 1;
3090
3091         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3092                 /* Ignore events in OFF or ERROR state */
3093                 if (event->state <= PERF_EVENT_STATE_OFF)
3094                         continue;
3095                 /*
3096                  * Listen to the 'cpu' scheduling filter constraint
3097                  * of events:
3098                  */
3099                 if (!event_filter_match(event))
3100                         continue;
3101
3102                 /* may need to reset tstamp_enabled */
3103                 if (is_cgroup_event(event))
3104                         perf_cgroup_mark_enabled(event, ctx);
3105
3106                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3107                         if (group_sched_in(event, cpuctx, ctx))
3108                                 can_add_hw = 0;
3109                 }
3110         }
3111 }
3112
3113 static void
3114 ctx_sched_in(struct perf_event_context *ctx,
3115              struct perf_cpu_context *cpuctx,
3116              enum event_type_t event_type,
3117              struct task_struct *task)
3118 {
3119         int is_active = ctx->is_active;
3120         u64 now;
3121
3122         lockdep_assert_held(&ctx->lock);
3123
3124         if (likely(!ctx->nr_events))
3125                 return;
3126
3127         ctx->is_active |= (event_type | EVENT_TIME);
3128         if (ctx->task) {
3129                 if (!is_active)
3130                         cpuctx->task_ctx = ctx;
3131                 else
3132                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3133         }
3134
3135         is_active ^= ctx->is_active; /* changed bits */
3136
3137         if (is_active & EVENT_TIME) {
3138                 /* start ctx time */
3139                 now = perf_clock();
3140                 ctx->timestamp = now;
3141                 perf_cgroup_set_timestamp(task, ctx);
3142         }
3143
3144         /*
3145          * First go through the list and put on any pinned groups
3146          * in order to give them the best chance of going on.
3147          */
3148         if (is_active & EVENT_PINNED)
3149                 ctx_pinned_sched_in(ctx, cpuctx);
3150
3151         /* Then walk through the lower prio flexible groups */
3152         if (is_active & EVENT_FLEXIBLE)
3153                 ctx_flexible_sched_in(ctx, cpuctx);
3154 }
3155
3156 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3157                              enum event_type_t event_type,
3158                              struct task_struct *task)
3159 {
3160         struct perf_event_context *ctx = &cpuctx->ctx;
3161
3162         ctx_sched_in(ctx, cpuctx, event_type, task);
3163 }
3164
3165 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3166                                         struct task_struct *task)
3167 {
3168         struct perf_cpu_context *cpuctx;
3169
3170         cpuctx = __get_cpu_context(ctx);
3171         if (cpuctx->task_ctx == ctx)
3172                 return;
3173
3174         perf_ctx_lock(cpuctx, ctx);
3175         perf_pmu_disable(ctx->pmu);
3176         /*
3177          * We want to keep the following priority order:
3178          * cpu pinned (that don't need to move), task pinned,
3179          * cpu flexible, task flexible.
3180          *
3181          * However, if task's ctx is not carrying any pinned
3182          * events, no need to flip the cpuctx's events around.
3183          */
3184         if (!list_empty(&ctx->pinned_groups))
3185                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3186         perf_event_sched_in(cpuctx, ctx, task);
3187         perf_pmu_enable(ctx->pmu);
3188         perf_ctx_unlock(cpuctx, ctx);
3189 }
3190
3191 /*
3192  * Called from scheduler to add the events of the current task
3193  * with interrupts disabled.
3194  *
3195  * We restore the event value and then enable it.
3196  *
3197  * This does not protect us against NMI, but enable()
3198  * sets the enabled bit in the control field of event _before_
3199  * accessing the event control register. If a NMI hits, then it will
3200  * keep the event running.
3201  */
3202 void __perf_event_task_sched_in(struct task_struct *prev,
3203                                 struct task_struct *task)
3204 {
3205         struct perf_event_context *ctx;
3206         int ctxn;
3207
3208         /*
3209          * If cgroup events exist on this CPU, then we need to check if we have
3210          * to switch in PMU state; cgroup event are system-wide mode only.
3211          *
3212          * Since cgroup events are CPU events, we must schedule these in before
3213          * we schedule in the task events.
3214          */
3215         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3216                 perf_cgroup_sched_in(prev, task);
3217
3218         for_each_task_context_nr(ctxn) {
3219                 ctx = task->perf_event_ctxp[ctxn];
3220                 if (likely(!ctx))
3221                         continue;
3222
3223                 perf_event_context_sched_in(ctx, task);
3224         }
3225
3226         if (atomic_read(&nr_switch_events))
3227                 perf_event_switch(task, prev, true);
3228
3229         if (__this_cpu_read(perf_sched_cb_usages))
3230                 perf_pmu_sched_task(prev, task, true);
3231 }
3232
3233 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3234 {
3235         u64 frequency = event->attr.sample_freq;
3236         u64 sec = NSEC_PER_SEC;
3237         u64 divisor, dividend;
3238
3239         int count_fls, nsec_fls, frequency_fls, sec_fls;
3240
3241         count_fls = fls64(count);
3242         nsec_fls = fls64(nsec);
3243         frequency_fls = fls64(frequency);
3244         sec_fls = 30;
3245
3246         /*
3247          * We got @count in @nsec, with a target of sample_freq HZ
3248          * the target period becomes:
3249          *
3250          *             @count * 10^9
3251          * period = -------------------
3252          *          @nsec * sample_freq
3253          *
3254          */
3255
3256         /*
3257          * Reduce accuracy by one bit such that @a and @b converge
3258          * to a similar magnitude.
3259          */
3260 #define REDUCE_FLS(a, b)                \
3261 do {                                    \
3262         if (a##_fls > b##_fls) {        \
3263                 a >>= 1;                \
3264                 a##_fls--;              \
3265         } else {                        \
3266                 b >>= 1;                \
3267                 b##_fls--;              \
3268         }                               \
3269 } while (0)
3270
3271         /*
3272          * Reduce accuracy until either term fits in a u64, then proceed with
3273          * the other, so that finally we can do a u64/u64 division.
3274          */
3275         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3276                 REDUCE_FLS(nsec, frequency);
3277                 REDUCE_FLS(sec, count);
3278         }
3279
3280         if (count_fls + sec_fls > 64) {
3281                 divisor = nsec * frequency;
3282
3283                 while (count_fls + sec_fls > 64) {
3284                         REDUCE_FLS(count, sec);
3285                         divisor >>= 1;
3286                 }
3287
3288                 dividend = count * sec;
3289         } else {
3290                 dividend = count * sec;
3291
3292                 while (nsec_fls + frequency_fls > 64) {
3293                         REDUCE_FLS(nsec, frequency);
3294                         dividend >>= 1;
3295                 }
3296
3297                 divisor = nsec * frequency;
3298         }
3299
3300         if (!divisor)
3301                 return dividend;
3302
3303         return div64_u64(dividend, divisor);
3304 }
3305
3306 static DEFINE_PER_CPU(int, perf_throttled_count);
3307 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3308
3309 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3310 {
3311         struct hw_perf_event *hwc = &event->hw;
3312         s64 period, sample_period;
3313         s64 delta;
3314
3315         period = perf_calculate_period(event, nsec, count);
3316
3317         delta = (s64)(period - hwc->sample_period);
3318         delta = (delta + 7) / 8; /* low pass filter */
3319
3320         sample_period = hwc->sample_period + delta;
3321
3322         if (!sample_period)
3323                 sample_period = 1;
3324
3325         hwc->sample_period = sample_period;
3326
3327         if (local64_read(&hwc->period_left) > 8*sample_period) {
3328                 if (disable)
3329                         event->pmu->stop(event, PERF_EF_UPDATE);
3330
3331                 local64_set(&hwc->period_left, 0);
3332
3333                 if (disable)
3334                         event->pmu->start(event, PERF_EF_RELOAD);
3335         }
3336 }
3337
3338 /*
3339  * combine freq adjustment with unthrottling to avoid two passes over the
3340  * events. At the same time, make sure, having freq events does not change
3341  * the rate of unthrottling as that would introduce bias.
3342  */
3343 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3344                                            int needs_unthr)
3345 {
3346         struct perf_event *event;
3347         struct hw_perf_event *hwc;
3348         u64 now, period = TICK_NSEC;
3349         s64 delta;
3350
3351         /*
3352          * only need to iterate over all events iff:
3353          * - context have events in frequency mode (needs freq adjust)
3354          * - there are events to unthrottle on this cpu
3355          */
3356         if (!(ctx->nr_freq || needs_unthr))
3357                 return;
3358
3359         raw_spin_lock(&ctx->lock);
3360         perf_pmu_disable(ctx->pmu);
3361
3362         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3363                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3364                         continue;
3365
3366                 if (!event_filter_match(event))
3367                         continue;
3368
3369                 perf_pmu_disable(event->pmu);
3370
3371                 hwc = &event->hw;
3372
3373                 if (hwc->interrupts == MAX_INTERRUPTS) {
3374                         hwc->interrupts = 0;
3375                         perf_log_throttle(event, 1);
3376                         event->pmu->start(event, 0);
3377                 }
3378
3379                 if (!event->attr.freq || !event->attr.sample_freq)
3380                         goto next;
3381
3382                 /*
3383                  * stop the event and update event->count
3384                  */
3385                 event->pmu->stop(event, PERF_EF_UPDATE);
3386
3387                 now = local64_read(&event->count);
3388                 delta = now - hwc->freq_count_stamp;
3389                 hwc->freq_count_stamp = now;
3390
3391                 /*
3392                  * restart the event
3393                  * reload only if value has changed
3394                  * we have stopped the event so tell that
3395                  * to perf_adjust_period() to avoid stopping it
3396                  * twice.
3397                  */
3398                 if (delta > 0)
3399                         perf_adjust_period(event, period, delta, false);
3400
3401                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3402         next:
3403                 perf_pmu_enable(event->pmu);
3404         }
3405
3406         perf_pmu_enable(ctx->pmu);
3407         raw_spin_unlock(&ctx->lock);
3408 }
3409
3410 /*
3411  * Round-robin a context's events:
3412  */
3413 static void rotate_ctx(struct perf_event_context *ctx)
3414 {
3415         /*
3416          * Rotate the first entry last of non-pinned groups. Rotation might be
3417          * disabled by the inheritance code.
3418          */
3419         if (!ctx->rotate_disable)
3420                 list_rotate_left(&ctx->flexible_groups);
3421 }
3422
3423 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3424 {
3425         struct perf_event_context *ctx = NULL;
3426         int rotate = 0;
3427
3428         if (cpuctx->ctx.nr_events) {
3429                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3430                         rotate = 1;
3431         }
3432
3433         ctx = cpuctx->task_ctx;
3434         if (ctx && ctx->nr_events) {
3435                 if (ctx->nr_events != ctx->nr_active)
3436                         rotate = 1;
3437         }
3438
3439         if (!rotate)
3440                 goto done;
3441
3442         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3443         perf_pmu_disable(cpuctx->ctx.pmu);
3444
3445         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3446         if (ctx)
3447                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3448
3449         rotate_ctx(&cpuctx->ctx);
3450         if (ctx)
3451                 rotate_ctx(ctx);
3452
3453         perf_event_sched_in(cpuctx, ctx, current);
3454
3455         perf_pmu_enable(cpuctx->ctx.pmu);
3456         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3457 done:
3458
3459         return rotate;
3460 }
3461
3462 void perf_event_task_tick(void)
3463 {
3464         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3465         struct perf_event_context *ctx, *tmp;
3466         int throttled;
3467
3468         WARN_ON(!irqs_disabled());
3469
3470         __this_cpu_inc(perf_throttled_seq);
3471         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3472         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3473
3474         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3475                 perf_adjust_freq_unthr_context(ctx, throttled);
3476 }
3477
3478 static int event_enable_on_exec(struct perf_event *event,
3479                                 struct perf_event_context *ctx)
3480 {
3481         if (!event->attr.enable_on_exec)
3482                 return 0;
3483
3484         event->attr.enable_on_exec = 0;
3485         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3486                 return 0;
3487
3488         __perf_event_mark_enabled(event);
3489
3490         return 1;
3491 }
3492
3493 /*
3494  * Enable all of a task's events that have been marked enable-on-exec.
3495  * This expects task == current.
3496  */
3497 static void perf_event_enable_on_exec(int ctxn)
3498 {
3499         struct perf_event_context *ctx, *clone_ctx = NULL;
3500         enum event_type_t event_type = 0;
3501         struct perf_cpu_context *cpuctx;
3502         struct perf_event *event;
3503         unsigned long flags;
3504         int enabled = 0;
3505
3506         local_irq_save(flags);
3507         ctx = current->perf_event_ctxp[ctxn];
3508         if (!ctx || !ctx->nr_events)
3509                 goto out;
3510
3511         cpuctx = __get_cpu_context(ctx);
3512         perf_ctx_lock(cpuctx, ctx);
3513         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3514         list_for_each_entry(event, &ctx->event_list, event_entry) {
3515                 enabled |= event_enable_on_exec(event, ctx);
3516                 event_type |= get_event_type(event);
3517         }
3518
3519         /*
3520          * Unclone and reschedule this context if we enabled any event.
3521          */
3522         if (enabled) {
3523                 clone_ctx = unclone_ctx(ctx);
3524                 ctx_resched(cpuctx, ctx, event_type);
3525         }
3526         perf_ctx_unlock(cpuctx, ctx);
3527
3528 out:
3529         local_irq_restore(flags);
3530
3531         if (clone_ctx)
3532                 put_ctx(clone_ctx);
3533 }
3534
3535 struct perf_read_data {
3536         struct perf_event *event;
3537         bool group;
3538         int ret;
3539 };
3540
3541 static int find_cpu_to_read(struct perf_event *event, int local_cpu)
3542 {
3543         int event_cpu = event->oncpu;
3544         u16 local_pkg, event_pkg;
3545
3546         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3547                 event_pkg =  topology_physical_package_id(event_cpu);
3548                 local_pkg =  topology_physical_package_id(local_cpu);
3549
3550                 if (event_pkg == local_pkg)
3551                         return local_cpu;
3552         }
3553
3554         return event_cpu;
3555 }
3556
3557 /*
3558  * Cross CPU call to read the hardware event
3559  */
3560 static void __perf_event_read(void *info)
3561 {
3562         struct perf_read_data *data = info;
3563         struct perf_event *sub, *event = data->event;
3564         struct perf_event_context *ctx = event->ctx;
3565         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3566         struct pmu *pmu = event->pmu;
3567
3568         /*
3569          * If this is a task context, we need to check whether it is
3570          * the current task context of this cpu.  If not it has been
3571          * scheduled out before the smp call arrived.  In that case
3572          * event->count would have been updated to a recent sample
3573          * when the event was scheduled out.
3574          */
3575         if (ctx->task && cpuctx->task_ctx != ctx)
3576                 return;
3577
3578         raw_spin_lock(&ctx->lock);
3579         if (ctx->is_active) {
3580                 update_context_time(ctx);
3581                 update_cgrp_time_from_event(event);
3582         }
3583
3584         update_event_times(event);
3585         if (event->state != PERF_EVENT_STATE_ACTIVE)
3586                 goto unlock;
3587
3588         if (!data->group) {
3589                 pmu->read(event);
3590                 data->ret = 0;
3591                 goto unlock;
3592         }
3593
3594         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3595
3596         pmu->read(event);
3597
3598         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3599                 update_event_times(sub);
3600                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3601                         /*
3602                          * Use sibling's PMU rather than @event's since
3603                          * sibling could be on different (eg: software) PMU.
3604                          */
3605                         sub->pmu->read(sub);
3606                 }
3607         }
3608
3609         data->ret = pmu->commit_txn(pmu);
3610
3611 unlock:
3612         raw_spin_unlock(&ctx->lock);
3613 }
3614
3615 static inline u64 perf_event_count(struct perf_event *event)
3616 {
3617         if (event->pmu->count)
3618                 return event->pmu->count(event);
3619
3620         return __perf_event_count(event);
3621 }
3622
3623 /*
3624  * NMI-safe method to read a local event, that is an event that
3625  * is:
3626  *   - either for the current task, or for this CPU
3627  *   - does not have inherit set, for inherited task events
3628  *     will not be local and we cannot read them atomically
3629  *   - must not have a pmu::count method
3630  */
3631 u64 perf_event_read_local(struct perf_event *event)
3632 {
3633         unsigned long flags;
3634         u64 val;
3635
3636         /*
3637          * Disabling interrupts avoids all counter scheduling (context
3638          * switches, timer based rotation and IPIs).
3639          */
3640         local_irq_save(flags);
3641
3642         /* If this is a per-task event, it must be for current */
3643         WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3644                      event->hw.target != current);
3645
3646         /* If this is a per-CPU event, it must be for this CPU */
3647         WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3648                      event->cpu != smp_processor_id());
3649
3650         /*
3651          * It must not be an event with inherit set, we cannot read
3652          * all child counters from atomic context.
3653          */
3654         WARN_ON_ONCE(event->attr.inherit);
3655
3656         /*
3657          * It must not have a pmu::count method, those are not
3658          * NMI safe.
3659          */
3660         WARN_ON_ONCE(event->pmu->count);
3661
3662         /*
3663          * If the event is currently on this CPU, its either a per-task event,
3664          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3665          * oncpu == -1).
3666          */
3667         if (event->oncpu == smp_processor_id())
3668                 event->pmu->read(event);
3669
3670         val = local64_read(&event->count);
3671         local_irq_restore(flags);
3672
3673         return val;
3674 }
3675
3676 static int perf_event_read(struct perf_event *event, bool group)
3677 {
3678         int ret = 0, cpu_to_read, local_cpu;
3679
3680         /*
3681          * If event is enabled and currently active on a CPU, update the
3682          * value in the event structure:
3683          */
3684         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3685                 struct perf_read_data data = {
3686                         .event = event,
3687                         .group = group,
3688                         .ret = 0,
3689                 };
3690
3691                 local_cpu = get_cpu();
3692                 cpu_to_read = find_cpu_to_read(event, local_cpu);
3693                 put_cpu();
3694
3695                 /*
3696                  * Purposely ignore the smp_call_function_single() return
3697                  * value.
3698                  *
3699                  * If event->oncpu isn't a valid CPU it means the event got
3700                  * scheduled out and that will have updated the event count.
3701                  *
3702                  * Therefore, either way, we'll have an up-to-date event count
3703                  * after this.
3704                  */
3705                 (void)smp_call_function_single(cpu_to_read, __perf_event_read, &data, 1);
3706                 ret = data.ret;
3707         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3708                 struct perf_event_context *ctx = event->ctx;
3709                 unsigned long flags;
3710
3711                 raw_spin_lock_irqsave(&ctx->lock, flags);
3712                 /*
3713                  * may read while context is not active
3714                  * (e.g., thread is blocked), in that case
3715                  * we cannot update context time
3716                  */
3717                 if (ctx->is_active) {
3718                         update_context_time(ctx);
3719                         update_cgrp_time_from_event(event);
3720                 }
3721                 if (group)
3722                         update_group_times(event);
3723                 else
3724                         update_event_times(event);
3725                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3726         }
3727
3728         return ret;
3729 }
3730
3731 /*
3732  * Initialize the perf_event context in a task_struct:
3733  */
3734 static void __perf_event_init_context(struct perf_event_context *ctx)
3735 {
3736         raw_spin_lock_init(&ctx->lock);
3737         mutex_init(&ctx->mutex);
3738         INIT_LIST_HEAD(&ctx->active_ctx_list);
3739         INIT_LIST_HEAD(&ctx->pinned_groups);
3740         INIT_LIST_HEAD(&ctx->flexible_groups);
3741         INIT_LIST_HEAD(&ctx->event_list);
3742         atomic_set(&ctx->refcount, 1);
3743 }
3744
3745 static struct perf_event_context *
3746 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3747 {
3748         struct perf_event_context *ctx;
3749
3750         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3751         if (!ctx)
3752                 return NULL;
3753
3754         __perf_event_init_context(ctx);
3755         if (task) {
3756                 ctx->task = task;
3757                 get_task_struct(task);
3758         }
3759         ctx->pmu = pmu;
3760
3761         return ctx;
3762 }
3763
3764 static struct task_struct *
3765 find_lively_task_by_vpid(pid_t vpid)
3766 {
3767         struct task_struct *task;
3768
3769         rcu_read_lock();
3770         if (!vpid)
3771                 task = current;
3772         else
3773                 task = find_task_by_vpid(vpid);
3774         if (task)
3775                 get_task_struct(task);
3776         rcu_read_unlock();
3777
3778         if (!task)
3779                 return ERR_PTR(-ESRCH);
3780
3781         return task;
3782 }
3783
3784 /*
3785  * Returns a matching context with refcount and pincount.
3786  */
3787 static struct perf_event_context *
3788 find_get_context(struct pmu *pmu, struct task_struct *task,
3789                 struct perf_event *event)
3790 {
3791         struct perf_event_context *ctx, *clone_ctx = NULL;
3792         struct perf_cpu_context *cpuctx;
3793         void *task_ctx_data = NULL;
3794         unsigned long flags;
3795         int ctxn, err;
3796         int cpu = event->cpu;
3797
3798         if (!task) {
3799                 /* Must be root to operate on a CPU event: */
3800                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3801                         return ERR_PTR(-EACCES);
3802
3803                 /*
3804                  * We could be clever and allow to attach a event to an
3805                  * offline CPU and activate it when the CPU comes up, but
3806                  * that's for later.
3807                  */
3808                 if (!cpu_online(cpu))
3809                         return ERR_PTR(-ENODEV);
3810
3811                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3812                 ctx = &cpuctx->ctx;
3813                 get_ctx(ctx);
3814                 ++ctx->pin_count;
3815
3816                 return ctx;
3817         }
3818
3819         err = -EINVAL;
3820         ctxn = pmu->task_ctx_nr;
3821         if (ctxn < 0)
3822                 goto errout;
3823
3824         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3825                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3826                 if (!task_ctx_data) {
3827                         err = -ENOMEM;
3828                         goto errout;
3829                 }
3830         }
3831
3832 retry:
3833         ctx = perf_lock_task_context(task, ctxn, &flags);
3834         if (ctx) {
3835                 clone_ctx = unclone_ctx(ctx);
3836                 ++ctx->pin_count;
3837
3838                 if (task_ctx_data && !ctx->task_ctx_data) {
3839                         ctx->task_ctx_data = task_ctx_data;
3840                         task_ctx_data = NULL;
3841                 }
3842                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3843
3844                 if (clone_ctx)
3845                         put_ctx(clone_ctx);
3846         } else {
3847                 ctx = alloc_perf_context(pmu, task);
3848                 err = -ENOMEM;
3849                 if (!ctx)
3850                         goto errout;
3851
3852                 if (task_ctx_data) {
3853                         ctx->task_ctx_data = task_ctx_data;
3854                         task_ctx_data = NULL;
3855                 }
3856
3857                 err = 0;
3858                 mutex_lock(&task->perf_event_mutex);
3859                 /*
3860                  * If it has already passed perf_event_exit_task().
3861                  * we must see PF_EXITING, it takes this mutex too.
3862                  */
3863                 if (task->flags & PF_EXITING)
3864                         err = -ESRCH;
3865                 else if (task->perf_event_ctxp[ctxn])
3866                         err = -EAGAIN;
3867                 else {
3868                         get_ctx(ctx);
3869                         ++ctx->pin_count;
3870                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3871                 }
3872                 mutex_unlock(&task->perf_event_mutex);
3873
3874                 if (unlikely(err)) {
3875                         put_ctx(ctx);
3876
3877                         if (err == -EAGAIN)
3878                                 goto retry;
3879                         goto errout;
3880                 }
3881         }
3882
3883         kfree(task_ctx_data);
3884         return ctx;
3885
3886 errout:
3887         kfree(task_ctx_data);
3888         return ERR_PTR(err);
3889 }
3890
3891 static void perf_event_free_filter(struct perf_event *event);
3892 static void perf_event_free_bpf_prog(struct perf_event *event);
3893
3894 static void free_event_rcu(struct rcu_head *head)
3895 {
3896         struct perf_event *event;
3897
3898         event = container_of(head, struct perf_event, rcu_head);
3899         if (event->ns)
3900                 put_pid_ns(event->ns);
3901         perf_event_free_filter(event);
3902         kfree(event);
3903 }
3904
3905 static void ring_buffer_attach(struct perf_event *event,
3906                                struct ring_buffer *rb);
3907
3908 static void detach_sb_event(struct perf_event *event)
3909 {
3910         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3911
3912         raw_spin_lock(&pel->lock);
3913         list_del_rcu(&event->sb_list);
3914         raw_spin_unlock(&pel->lock);
3915 }
3916
3917 static bool is_sb_event(struct perf_event *event)
3918 {
3919         struct perf_event_attr *attr = &event->attr;
3920
3921         if (event->parent)
3922                 return false;
3923
3924         if (event->attach_state & PERF_ATTACH_TASK)
3925                 return false;
3926
3927         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3928             attr->comm || attr->comm_exec ||
3929             attr->task ||
3930             attr->context_switch)
3931                 return true;
3932         return false;
3933 }
3934
3935 static void unaccount_pmu_sb_event(struct perf_event *event)
3936 {
3937         if (is_sb_event(event))
3938                 detach_sb_event(event);
3939 }
3940
3941 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3942 {
3943         if (event->parent)
3944                 return;
3945
3946         if (is_cgroup_event(event))
3947                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3948 }
3949
3950 #ifdef CONFIG_NO_HZ_FULL
3951 static DEFINE_SPINLOCK(nr_freq_lock);
3952 #endif
3953
3954 static void unaccount_freq_event_nohz(void)
3955 {
3956 #ifdef CONFIG_NO_HZ_FULL
3957         spin_lock(&nr_freq_lock);
3958         if (atomic_dec_and_test(&nr_freq_events))
3959                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3960         spin_unlock(&nr_freq_lock);
3961 #endif
3962 }
3963
3964 static void unaccount_freq_event(void)
3965 {
3966         if (tick_nohz_full_enabled())
3967                 unaccount_freq_event_nohz();
3968         else
3969                 atomic_dec(&nr_freq_events);
3970 }
3971
3972 static void unaccount_event(struct perf_event *event)
3973 {
3974         bool dec = false;
3975
3976         if (event->parent)
3977                 return;
3978
3979         if (event->attach_state & PERF_ATTACH_TASK)
3980                 dec = true;
3981         if (event->attr.mmap || event->attr.mmap_data)
3982                 atomic_dec(&nr_mmap_events);
3983         if (event->attr.comm)
3984                 atomic_dec(&nr_comm_events);
3985         if (event->attr.task)
3986                 atomic_dec(&nr_task_events);
3987         if (event->attr.freq)
3988                 unaccount_freq_event();
3989         if (event->attr.context_switch) {
3990                 dec = true;
3991                 atomic_dec(&nr_switch_events);
3992         }
3993         if (is_cgroup_event(event))
3994                 dec = true;
3995         if (has_branch_stack(event))
3996                 dec = true;
3997
3998         if (dec) {
3999                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4000                         schedule_delayed_work(&perf_sched_work, HZ);
4001         }
4002
4003         unaccount_event_cpu(event, event->cpu);
4004
4005         unaccount_pmu_sb_event(event);
4006 }
4007
4008 static void perf_sched_delayed(struct work_struct *work)
4009 {
4010         mutex_lock(&perf_sched_mutex);
4011         if (atomic_dec_and_test(&perf_sched_count))
4012                 static_branch_disable(&perf_sched_events);
4013         mutex_unlock(&perf_sched_mutex);
4014 }
4015
4016 /*
4017  * The following implement mutual exclusion of events on "exclusive" pmus
4018  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4019  * at a time, so we disallow creating events that might conflict, namely:
4020  *
4021  *  1) cpu-wide events in the presence of per-task events,
4022  *  2) per-task events in the presence of cpu-wide events,
4023  *  3) two matching events on the same context.
4024  *
4025  * The former two cases are handled in the allocation path (perf_event_alloc(),
4026  * _free_event()), the latter -- before the first perf_install_in_context().
4027  */
4028 static int exclusive_event_init(struct perf_event *event)
4029 {
4030         struct pmu *pmu = event->pmu;
4031
4032         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4033                 return 0;
4034
4035         /*
4036          * Prevent co-existence of per-task and cpu-wide events on the
4037          * same exclusive pmu.
4038          *
4039          * Negative pmu::exclusive_cnt means there are cpu-wide
4040          * events on this "exclusive" pmu, positive means there are
4041          * per-task events.
4042          *
4043          * Since this is called in perf_event_alloc() path, event::ctx
4044          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4045          * to mean "per-task event", because unlike other attach states it
4046          * never gets cleared.
4047          */
4048         if (event->attach_state & PERF_ATTACH_TASK) {
4049                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4050                         return -EBUSY;
4051         } else {
4052                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4053                         return -EBUSY;
4054         }
4055
4056         return 0;
4057 }
4058
4059 static void exclusive_event_destroy(struct perf_event *event)
4060 {
4061         struct pmu *pmu = event->pmu;
4062
4063         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4064                 return;
4065
4066         /* see comment in exclusive_event_init() */
4067         if (event->attach_state & PERF_ATTACH_TASK)
4068                 atomic_dec(&pmu->exclusive_cnt);
4069         else
4070                 atomic_inc(&pmu->exclusive_cnt);
4071 }
4072
4073 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4074 {
4075         if ((e1->pmu == e2->pmu) &&
4076             (e1->cpu == e2->cpu ||
4077              e1->cpu == -1 ||
4078              e2->cpu == -1))
4079                 return true;
4080         return false;
4081 }
4082
4083 /* Called under the same ctx::mutex as perf_install_in_context() */
4084 static bool exclusive_event_installable(struct perf_event *event,
4085                                         struct perf_event_context *ctx)
4086 {
4087         struct perf_event *iter_event;
4088         struct pmu *pmu = event->pmu;
4089
4090         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4091                 return true;
4092
4093         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4094                 if (exclusive_event_match(iter_event, event))
4095                         return false;
4096         }
4097
4098         return true;
4099 }
4100
4101 static void perf_addr_filters_splice(struct perf_event *event,
4102                                        struct list_head *head);
4103
4104 static void _free_event(struct perf_event *event)
4105 {
4106         irq_work_sync(&event->pending);
4107
4108         unaccount_event(event);
4109
4110         if (event->rb) {
4111                 /*
4112                  * Can happen when we close an event with re-directed output.
4113                  *
4114                  * Since we have a 0 refcount, perf_mmap_close() will skip
4115                  * over us; possibly making our ring_buffer_put() the last.
4116                  */
4117                 mutex_lock(&event->mmap_mutex);
4118                 ring_buffer_attach(event, NULL);
4119                 mutex_unlock(&event->mmap_mutex);
4120         }
4121
4122         if (is_cgroup_event(event))
4123                 perf_detach_cgroup(event);
4124
4125         if (!event->parent) {
4126                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4127                         put_callchain_buffers();
4128         }
4129
4130         perf_event_free_bpf_prog(event);
4131         perf_addr_filters_splice(event, NULL);
4132         kfree(event->addr_filters_offs);
4133
4134         if (event->destroy)
4135                 event->destroy(event);
4136
4137         if (event->ctx)
4138                 put_ctx(event->ctx);
4139
4140         exclusive_event_destroy(event);
4141         module_put(event->pmu->module);
4142
4143         call_rcu(&event->rcu_head, free_event_rcu);
4144 }
4145
4146 /*
4147  * Used to free events which have a known refcount of 1, such as in error paths
4148  * where the event isn't exposed yet and inherited events.
4149  */
4150 static void free_event(struct perf_event *event)
4151 {
4152         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4153                                 "unexpected event refcount: %ld; ptr=%p\n",
4154                                 atomic_long_read(&event->refcount), event)) {
4155                 /* leak to avoid use-after-free */
4156                 return;
4157         }
4158
4159         _free_event(event);
4160 }
4161
4162 /*
4163  * Remove user event from the owner task.
4164  */
4165 static void perf_remove_from_owner(struct perf_event *event)
4166 {
4167         struct task_struct *owner;
4168
4169         rcu_read_lock();
4170         /*
4171          * Matches the smp_store_release() in perf_event_exit_task(). If we
4172          * observe !owner it means the list deletion is complete and we can
4173          * indeed free this event, otherwise we need to serialize on
4174          * owner->perf_event_mutex.
4175          */
4176         owner = lockless_dereference(event->owner);
4177         if (owner) {
4178                 /*
4179                  * Since delayed_put_task_struct() also drops the last
4180                  * task reference we can safely take a new reference
4181                  * while holding the rcu_read_lock().
4182                  */
4183                 get_task_struct(owner);
4184         }
4185         rcu_read_unlock();
4186
4187         if (owner) {
4188                 /*
4189                  * If we're here through perf_event_exit_task() we're already
4190                  * holding ctx->mutex which would be an inversion wrt. the
4191                  * normal lock order.
4192                  *
4193                  * However we can safely take this lock because its the child
4194                  * ctx->mutex.
4195                  */
4196                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4197
4198                 /*
4199                  * We have to re-check the event->owner field, if it is cleared
4200                  * we raced with perf_event_exit_task(), acquiring the mutex
4201                  * ensured they're done, and we can proceed with freeing the
4202                  * event.
4203                  */
4204                 if (event->owner) {
4205                         list_del_init(&event->owner_entry);
4206                         smp_store_release(&event->owner, NULL);
4207                 }
4208                 mutex_unlock(&owner->perf_event_mutex);
4209                 put_task_struct(owner);
4210         }
4211 }
4212
4213 static void put_event(struct perf_event *event)
4214 {
4215         if (!atomic_long_dec_and_test(&event->refcount))
4216                 return;
4217
4218         _free_event(event);
4219 }
4220
4221 /*
4222  * Kill an event dead; while event:refcount will preserve the event
4223  * object, it will not preserve its functionality. Once the last 'user'
4224  * gives up the object, we'll destroy the thing.
4225  */
4226 int perf_event_release_kernel(struct perf_event *event)
4227 {
4228         struct perf_event_context *ctx = event->ctx;
4229         struct perf_event *child, *tmp;
4230
4231         /*
4232          * If we got here through err_file: fput(event_file); we will not have
4233          * attached to a context yet.
4234          */
4235         if (!ctx) {
4236                 WARN_ON_ONCE(event->attach_state &
4237                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4238                 goto no_ctx;
4239         }
4240
4241         if (!is_kernel_event(event))
4242                 perf_remove_from_owner(event);
4243
4244         ctx = perf_event_ctx_lock(event);
4245         WARN_ON_ONCE(ctx->parent_ctx);
4246         perf_remove_from_context(event, DETACH_GROUP);
4247
4248         raw_spin_lock_irq(&ctx->lock);
4249         /*
4250          * Mark this even as STATE_DEAD, there is no external reference to it
4251          * anymore.
4252          *
4253          * Anybody acquiring event->child_mutex after the below loop _must_
4254          * also see this, most importantly inherit_event() which will avoid
4255          * placing more children on the list.
4256          *
4257          * Thus this guarantees that we will in fact observe and kill _ALL_
4258          * child events.
4259          */
4260         event->state = PERF_EVENT_STATE_DEAD;
4261         raw_spin_unlock_irq(&ctx->lock);
4262
4263         perf_event_ctx_unlock(event, ctx);
4264
4265 again:
4266         mutex_lock(&event->child_mutex);
4267         list_for_each_entry(child, &event->child_list, child_list) {
4268
4269                 /*
4270                  * Cannot change, child events are not migrated, see the
4271                  * comment with perf_event_ctx_lock_nested().
4272                  */
4273                 ctx = lockless_dereference(child->ctx);
4274                 /*
4275                  * Since child_mutex nests inside ctx::mutex, we must jump
4276                  * through hoops. We start by grabbing a reference on the ctx.
4277                  *
4278                  * Since the event cannot get freed while we hold the
4279                  * child_mutex, the context must also exist and have a !0
4280                  * reference count.
4281                  */
4282                 get_ctx(ctx);
4283
4284                 /*
4285                  * Now that we have a ctx ref, we can drop child_mutex, and
4286                  * acquire ctx::mutex without fear of it going away. Then we
4287                  * can re-acquire child_mutex.
4288                  */
4289                 mutex_unlock(&event->child_mutex);
4290                 mutex_lock(&ctx->mutex);
4291                 mutex_lock(&event->child_mutex);
4292
4293                 /*
4294                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4295                  * state, if child is still the first entry, it didn't get freed
4296                  * and we can continue doing so.
4297                  */
4298                 tmp = list_first_entry_or_null(&event->child_list,
4299                                                struct perf_event, child_list);
4300                 if (tmp == child) {
4301                         perf_remove_from_context(child, DETACH_GROUP);
4302                         list_del(&child->child_list);
4303                         free_event(child);
4304                         /*
4305                          * This matches the refcount bump in inherit_event();
4306                          * this can't be the last reference.
4307                          */
4308                         put_event(event);
4309                 }
4310
4311                 mutex_unlock(&event->child_mutex);
4312                 mutex_unlock(&ctx->mutex);
4313                 put_ctx(ctx);
4314                 goto again;
4315         }
4316         mutex_unlock(&event->child_mutex);
4317
4318 no_ctx:
4319         put_event(event); /* Must be the 'last' reference */
4320         return 0;
4321 }
4322 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4323
4324 /*
4325  * Called when the last reference to the file is gone.
4326  */
4327 static int perf_release(struct inode *inode, struct file *file)
4328 {
4329         perf_event_release_kernel(file->private_data);
4330         return 0;
4331 }
4332
4333 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4334 {
4335         struct perf_event *child;
4336         u64 total = 0;
4337
4338         *enabled = 0;
4339         *running = 0;
4340
4341         mutex_lock(&event->child_mutex);
4342
4343         (void)perf_event_read(event, false);
4344         total += perf_event_count(event);
4345
4346         *enabled += event->total_time_enabled +
4347                         atomic64_read(&event->child_total_time_enabled);
4348         *running += event->total_time_running +
4349                         atomic64_read(&event->child_total_time_running);
4350
4351         list_for_each_entry(child, &event->child_list, child_list) {
4352                 (void)perf_event_read(child, false);
4353                 total += perf_event_count(child);
4354                 *enabled += child->total_time_enabled;
4355                 *running += child->total_time_running;
4356         }
4357         mutex_unlock(&event->child_mutex);
4358
4359         return total;
4360 }
4361 EXPORT_SYMBOL_GPL(perf_event_read_value);
4362
4363 static int __perf_read_group_add(struct perf_event *leader,
4364                                         u64 read_format, u64 *values)
4365 {
4366         struct perf_event *sub;
4367         int n = 1; /* skip @nr */
4368         int ret;
4369
4370         ret = perf_event_read(leader, true);
4371         if (ret)
4372                 return ret;
4373
4374         /*
4375          * Since we co-schedule groups, {enabled,running} times of siblings
4376          * will be identical to those of the leader, so we only publish one
4377          * set.
4378          */
4379         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4380                 values[n++] += leader->total_time_enabled +
4381                         atomic64_read(&leader->child_total_time_enabled);
4382         }
4383
4384         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4385                 values[n++] += leader->total_time_running +
4386                         atomic64_read(&leader->child_total_time_running);
4387         }
4388
4389         /*
4390          * Write {count,id} tuples for every sibling.
4391          */
4392         values[n++] += perf_event_count(leader);
4393         if (read_format & PERF_FORMAT_ID)
4394                 values[n++] = primary_event_id(leader);
4395
4396         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4397                 values[n++] += perf_event_count(sub);
4398                 if (read_format & PERF_FORMAT_ID)
4399                         values[n++] = primary_event_id(sub);
4400         }
4401
4402         return 0;
4403 }
4404
4405 static int perf_read_group(struct perf_event *event,
4406                                    u64 read_format, char __user *buf)
4407 {
4408         struct perf_event *leader = event->group_leader, *child;
4409         struct perf_event_context *ctx = leader->ctx;
4410         int ret;
4411         u64 *values;
4412
4413         lockdep_assert_held(&ctx->mutex);
4414
4415         values = kzalloc(event->read_size, GFP_KERNEL);
4416         if (!values)
4417                 return -ENOMEM;
4418
4419         values[0] = 1 + leader->nr_siblings;
4420
4421         /*
4422          * By locking the child_mutex of the leader we effectively
4423          * lock the child list of all siblings.. XXX explain how.
4424          */
4425         mutex_lock(&leader->child_mutex);
4426
4427         ret = __perf_read_group_add(leader, read_format, values);
4428         if (ret)
4429                 goto unlock;
4430
4431         list_for_each_entry(child, &leader->child_list, child_list) {
4432                 ret = __perf_read_group_add(child, read_format, values);
4433                 if (ret)
4434                         goto unlock;
4435         }
4436
4437         mutex_unlock(&leader->child_mutex);
4438
4439         ret = event->read_size;
4440         if (copy_to_user(buf, values, event->read_size))
4441                 ret = -EFAULT;
4442         goto out;
4443
4444 unlock:
4445         mutex_unlock(&leader->child_mutex);
4446 out:
4447         kfree(values);
4448         return ret;
4449 }
4450
4451 static int perf_read_one(struct perf_event *event,
4452                                  u64 read_format, char __user *buf)
4453 {
4454         u64 enabled, running;
4455         u64 values[4];
4456         int n = 0;
4457
4458         values[n++] = perf_event_read_value(event, &enabled, &running);
4459         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4460                 values[n++] = enabled;
4461         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4462                 values[n++] = running;
4463         if (read_format & PERF_FORMAT_ID)
4464                 values[n++] = primary_event_id(event);
4465
4466         if (copy_to_user(buf, values, n * sizeof(u64)))
4467                 return -EFAULT;
4468
4469         return n * sizeof(u64);
4470 }
4471
4472 static bool is_event_hup(struct perf_event *event)
4473 {
4474         bool no_children;
4475
4476         if (event->state > PERF_EVENT_STATE_EXIT)
4477                 return false;
4478
4479         mutex_lock(&event->child_mutex);
4480         no_children = list_empty(&event->child_list);
4481         mutex_unlock(&event->child_mutex);
4482         return no_children;
4483 }
4484
4485 /*
4486  * Read the performance event - simple non blocking version for now
4487  */
4488 static ssize_t
4489 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4490 {
4491         u64 read_format = event->attr.read_format;
4492         int ret;
4493
4494         /*
4495          * Return end-of-file for a read on a event that is in
4496          * error state (i.e. because it was pinned but it couldn't be
4497          * scheduled on to the CPU at some point).
4498          */
4499         if (event->state == PERF_EVENT_STATE_ERROR)
4500                 return 0;
4501
4502         if (count < event->read_size)
4503                 return -ENOSPC;
4504
4505         WARN_ON_ONCE(event->ctx->parent_ctx);
4506         if (read_format & PERF_FORMAT_GROUP)
4507                 ret = perf_read_group(event, read_format, buf);
4508         else
4509                 ret = perf_read_one(event, read_format, buf);
4510
4511         return ret;
4512 }
4513
4514 static ssize_t
4515 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4516 {
4517         struct perf_event *event = file->private_data;
4518         struct perf_event_context *ctx;
4519         int ret;
4520
4521         ctx = perf_event_ctx_lock(event);
4522         ret = __perf_read(event, buf, count);
4523         perf_event_ctx_unlock(event, ctx);
4524
4525         return ret;
4526 }
4527
4528 static unsigned int perf_poll(struct file *file, poll_table *wait)
4529 {
4530         struct perf_event *event = file->private_data;
4531         struct ring_buffer *rb;
4532         unsigned int events = POLLHUP;
4533
4534         poll_wait(file, &event->waitq, wait);
4535
4536         if (is_event_hup(event))
4537                 return events;
4538
4539         /*
4540          * Pin the event->rb by taking event->mmap_mutex; otherwise
4541          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4542          */
4543         mutex_lock(&event->mmap_mutex);
4544         rb = event->rb;
4545         if (rb)
4546                 events = atomic_xchg(&rb->poll, 0);
4547         mutex_unlock(&event->mmap_mutex);
4548         return events;
4549 }
4550
4551 static void _perf_event_reset(struct perf_event *event)
4552 {
4553         (void)perf_event_read(event, false);
4554         local64_set(&event->count, 0);
4555         perf_event_update_userpage(event);
4556 }
4557
4558 /*
4559  * Holding the top-level event's child_mutex means that any
4560  * descendant process that has inherited this event will block
4561  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4562  * task existence requirements of perf_event_enable/disable.
4563  */
4564 static void perf_event_for_each_child(struct perf_event *event,
4565                                         void (*func)(struct perf_event *))
4566 {
4567         struct perf_event *child;
4568
4569         WARN_ON_ONCE(event->ctx->parent_ctx);
4570
4571         mutex_lock(&event->child_mutex);
4572         func(event);
4573         list_for_each_entry(child, &event->child_list, child_list)
4574                 func(child);
4575         mutex_unlock(&event->child_mutex);
4576 }
4577
4578 static void perf_event_for_each(struct perf_event *event,
4579                                   void (*func)(struct perf_event *))
4580 {
4581         struct perf_event_context *ctx = event->ctx;
4582         struct perf_event *sibling;
4583
4584         lockdep_assert_held(&ctx->mutex);
4585
4586         event = event->group_leader;
4587
4588         perf_event_for_each_child(event, func);
4589         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4590                 perf_event_for_each_child(sibling, func);
4591 }
4592
4593 static void __perf_event_period(struct perf_event *event,
4594                                 struct perf_cpu_context *cpuctx,
4595                                 struct perf_event_context *ctx,
4596                                 void *info)
4597 {
4598         u64 value = *((u64 *)info);
4599         bool active;
4600
4601         if (event->attr.freq) {
4602                 event->attr.sample_freq = value;
4603         } else {
4604                 event->attr.sample_period = value;
4605                 event->hw.sample_period = value;
4606         }
4607
4608         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4609         if (active) {
4610                 perf_pmu_disable(ctx->pmu);
4611                 /*
4612                  * We could be throttled; unthrottle now to avoid the tick
4613                  * trying to unthrottle while we already re-started the event.
4614                  */
4615                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4616                         event->hw.interrupts = 0;
4617                         perf_log_throttle(event, 1);
4618                 }
4619                 event->pmu->stop(event, PERF_EF_UPDATE);
4620         }
4621
4622         local64_set(&event->hw.period_left, 0);
4623
4624         if (active) {
4625                 event->pmu->start(event, PERF_EF_RELOAD);
4626                 perf_pmu_enable(ctx->pmu);
4627         }
4628 }
4629
4630 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4631 {
4632         u64 value;
4633
4634         if (!is_sampling_event(event))
4635                 return -EINVAL;
4636
4637         if (copy_from_user(&value, arg, sizeof(value)))
4638                 return -EFAULT;
4639
4640         if (!value)
4641                 return -EINVAL;
4642
4643         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4644                 return -EINVAL;
4645
4646         event_function_call(event, __perf_event_period, &value);
4647
4648         return 0;
4649 }
4650
4651 static const struct file_operations perf_fops;
4652
4653 static inline int perf_fget_light(int fd, struct fd *p)
4654 {
4655         struct fd f = fdget(fd);
4656         if (!f.file)
4657                 return -EBADF;
4658
4659         if (f.file->f_op != &perf_fops) {
4660                 fdput(f);
4661                 return -EBADF;
4662         }
4663         *p = f;
4664         return 0;
4665 }
4666
4667 static int perf_event_set_output(struct perf_event *event,
4668                                  struct perf_event *output_event);
4669 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4670 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4671
4672 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4673 {
4674         void (*func)(struct perf_event *);
4675         u32 flags = arg;
4676
4677         switch (cmd) {
4678         case PERF_EVENT_IOC_ENABLE:
4679                 func = _perf_event_enable;
4680                 break;
4681         case PERF_EVENT_IOC_DISABLE:
4682                 func = _perf_event_disable;
4683                 break;
4684         case PERF_EVENT_IOC_RESET:
4685                 func = _perf_event_reset;
4686                 break;
4687
4688         case PERF_EVENT_IOC_REFRESH:
4689                 return _perf_event_refresh(event, arg);
4690
4691         case PERF_EVENT_IOC_PERIOD:
4692                 return perf_event_period(event, (u64 __user *)arg);
4693
4694         case PERF_EVENT_IOC_ID:
4695         {
4696                 u64 id = primary_event_id(event);
4697
4698                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4699                         return -EFAULT;
4700                 return 0;
4701         }
4702
4703         case PERF_EVENT_IOC_SET_OUTPUT:
4704         {
4705                 int ret;
4706                 if (arg != -1) {
4707                         struct perf_event *output_event;
4708                         struct fd output;
4709                         ret = perf_fget_light(arg, &output);
4710                         if (ret)
4711                                 return ret;
4712                         output_event = output.file->private_data;
4713                         ret = perf_event_set_output(event, output_event);
4714                         fdput(output);
4715                 } else {
4716                         ret = perf_event_set_output(event, NULL);
4717                 }
4718                 return ret;
4719         }
4720
4721         case PERF_EVENT_IOC_SET_FILTER:
4722                 return perf_event_set_filter(event, (void __user *)arg);
4723
4724         case PERF_EVENT_IOC_SET_BPF:
4725                 return perf_event_set_bpf_prog(event, arg);
4726
4727         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4728                 struct ring_buffer *rb;
4729
4730                 rcu_read_lock();
4731                 rb = rcu_dereference(event->rb);
4732                 if (!rb || !rb->nr_pages) {
4733                         rcu_read_unlock();
4734                         return -EINVAL;
4735                 }
4736                 rb_toggle_paused(rb, !!arg);
4737                 rcu_read_unlock();
4738                 return 0;
4739         }
4740         default:
4741                 return -ENOTTY;
4742         }
4743
4744         if (flags & PERF_IOC_FLAG_GROUP)
4745                 perf_event_for_each(event, func);
4746         else
4747                 perf_event_for_each_child(event, func);
4748
4749         return 0;
4750 }
4751
4752 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4753 {
4754         struct perf_event *event = file->private_data;
4755         struct perf_event_context *ctx;
4756         long ret;
4757
4758         ctx = perf_event_ctx_lock(event);
4759         ret = _perf_ioctl(event, cmd, arg);
4760         perf_event_ctx_unlock(event, ctx);
4761
4762         return ret;
4763 }
4764
4765 #ifdef CONFIG_COMPAT
4766 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4767                                 unsigned long arg)
4768 {
4769         switch (_IOC_NR(cmd)) {
4770         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4771         case _IOC_NR(PERF_EVENT_IOC_ID):
4772                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4773                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4774                         cmd &= ~IOCSIZE_MASK;
4775                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4776                 }
4777                 break;
4778         }
4779         return perf_ioctl(file, cmd, arg);
4780 }
4781 #else
4782 # define perf_compat_ioctl NULL
4783 #endif
4784
4785 int perf_event_task_enable(void)
4786 {
4787         struct perf_event_context *ctx;
4788         struct perf_event *event;
4789
4790         mutex_lock(&current->perf_event_mutex);
4791         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4792                 ctx = perf_event_ctx_lock(event);
4793                 perf_event_for_each_child(event, _perf_event_enable);
4794                 perf_event_ctx_unlock(event, ctx);
4795         }
4796         mutex_unlock(&current->perf_event_mutex);
4797
4798         return 0;
4799 }
4800
4801 int perf_event_task_disable(void)
4802 {
4803         struct perf_event_context *ctx;
4804         struct perf_event *event;
4805
4806         mutex_lock(&current->perf_event_mutex);
4807         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4808                 ctx = perf_event_ctx_lock(event);
4809                 perf_event_for_each_child(event, _perf_event_disable);
4810                 perf_event_ctx_unlock(event, ctx);
4811         }
4812         mutex_unlock(&current->perf_event_mutex);
4813
4814         return 0;
4815 }
4816
4817 static int perf_event_index(struct perf_event *event)
4818 {
4819         if (event->hw.state & PERF_HES_STOPPED)
4820                 return 0;
4821
4822         if (event->state != PERF_EVENT_STATE_ACTIVE)
4823                 return 0;
4824
4825         return event->pmu->event_idx(event);
4826 }
4827
4828 static void calc_timer_values(struct perf_event *event,
4829                                 u64 *now,
4830                                 u64 *enabled,
4831                                 u64 *running)
4832 {
4833         u64 ctx_time;
4834
4835         *now = perf_clock();
4836         ctx_time = event->shadow_ctx_time + *now;
4837         *enabled = ctx_time - event->tstamp_enabled;
4838         *running = ctx_time - event->tstamp_running;
4839 }
4840
4841 static void perf_event_init_userpage(struct perf_event *event)
4842 {
4843         struct perf_event_mmap_page *userpg;
4844         struct ring_buffer *rb;
4845
4846         rcu_read_lock();
4847         rb = rcu_dereference(event->rb);
4848         if (!rb)
4849                 goto unlock;
4850
4851         userpg = rb->user_page;
4852
4853         /* Allow new userspace to detect that bit 0 is deprecated */
4854         userpg->cap_bit0_is_deprecated = 1;
4855         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4856         userpg->data_offset = PAGE_SIZE;
4857         userpg->data_size = perf_data_size(rb);
4858
4859 unlock:
4860         rcu_read_unlock();
4861 }
4862
4863 void __weak arch_perf_update_userpage(
4864         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4865 {
4866 }
4867
4868 /*
4869  * Callers need to ensure there can be no nesting of this function, otherwise
4870  * the seqlock logic goes bad. We can not serialize this because the arch
4871  * code calls this from NMI context.
4872  */
4873 void perf_event_update_userpage(struct perf_event *event)
4874 {
4875         struct perf_event_mmap_page *userpg;
4876         struct ring_buffer *rb;
4877         u64 enabled, running, now;
4878
4879         rcu_read_lock();
4880         rb = rcu_dereference(event->rb);
4881         if (!rb)
4882                 goto unlock;
4883
4884         /*
4885          * compute total_time_enabled, total_time_running
4886          * based on snapshot values taken when the event
4887          * was last scheduled in.
4888          *
4889          * we cannot simply called update_context_time()
4890          * because of locking issue as we can be called in
4891          * NMI context
4892          */
4893         calc_timer_values(event, &now, &enabled, &running);
4894
4895         userpg = rb->user_page;
4896         /*
4897          * Disable preemption so as to not let the corresponding user-space
4898          * spin too long if we get preempted.
4899          */
4900         preempt_disable();
4901         ++userpg->lock;
4902         barrier();
4903         userpg->index = perf_event_index(event);
4904         userpg->offset = perf_event_count(event);
4905         if (userpg->index)
4906                 userpg->offset -= local64_read(&event->hw.prev_count);
4907
4908         userpg->time_enabled = enabled +
4909                         atomic64_read(&event->child_total_time_enabled);
4910
4911         userpg->time_running = running +
4912                         atomic64_read(&event->child_total_time_running);
4913
4914         arch_perf_update_userpage(event, userpg, now);
4915
4916         barrier();
4917         ++userpg->lock;
4918         preempt_enable();
4919 unlock:
4920         rcu_read_unlock();
4921 }
4922
4923 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4924 {
4925         struct perf_event *event = vma->vm_file->private_data;
4926         struct ring_buffer *rb;
4927         int ret = VM_FAULT_SIGBUS;
4928
4929         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4930                 if (vmf->pgoff == 0)
4931                         ret = 0;
4932                 return ret;
4933         }
4934
4935         rcu_read_lock();
4936         rb = rcu_dereference(event->rb);
4937         if (!rb)
4938                 goto unlock;
4939
4940         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4941                 goto unlock;
4942
4943         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4944         if (!vmf->page)
4945                 goto unlock;
4946
4947         get_page(vmf->page);
4948         vmf->page->mapping = vma->vm_file->f_mapping;
4949         vmf->page->index   = vmf->pgoff;
4950
4951         ret = 0;
4952 unlock:
4953         rcu_read_unlock();
4954
4955         return ret;
4956 }
4957
4958 static void ring_buffer_attach(struct perf_event *event,
4959                                struct ring_buffer *rb)
4960 {
4961         struct ring_buffer *old_rb = NULL;
4962         unsigned long flags;
4963
4964         if (event->rb) {
4965                 /*
4966                  * Should be impossible, we set this when removing
4967                  * event->rb_entry and wait/clear when adding event->rb_entry.
4968                  */
4969                 WARN_ON_ONCE(event->rcu_pending);
4970
4971                 old_rb = event->rb;
4972                 spin_lock_irqsave(&old_rb->event_lock, flags);
4973                 list_del_rcu(&event->rb_entry);
4974                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4975
4976                 event->rcu_batches = get_state_synchronize_rcu();
4977                 event->rcu_pending = 1;
4978         }
4979
4980         if (rb) {
4981                 if (event->rcu_pending) {
4982                         cond_synchronize_rcu(event->rcu_batches);
4983                         event->rcu_pending = 0;
4984                 }
4985
4986                 spin_lock_irqsave(&rb->event_lock, flags);
4987                 list_add_rcu(&event->rb_entry, &rb->event_list);
4988                 spin_unlock_irqrestore(&rb->event_lock, flags);
4989         }
4990
4991         /*
4992          * Avoid racing with perf_mmap_close(AUX): stop the event
4993          * before swizzling the event::rb pointer; if it's getting
4994          * unmapped, its aux_mmap_count will be 0 and it won't
4995          * restart. See the comment in __perf_pmu_output_stop().
4996          *
4997          * Data will inevitably be lost when set_output is done in
4998          * mid-air, but then again, whoever does it like this is
4999          * not in for the data anyway.
5000          */
5001         if (has_aux(event))
5002                 perf_event_stop(event, 0);
5003
5004         rcu_assign_pointer(event->rb, rb);
5005
5006         if (old_rb) {
5007                 ring_buffer_put(old_rb);
5008                 /*
5009                  * Since we detached before setting the new rb, so that we
5010                  * could attach the new rb, we could have missed a wakeup.
5011                  * Provide it now.
5012                  */
5013                 wake_up_all(&event->waitq);
5014         }
5015 }
5016
5017 static void ring_buffer_wakeup(struct perf_event *event)
5018 {
5019         struct ring_buffer *rb;
5020
5021         rcu_read_lock();
5022         rb = rcu_dereference(event->rb);
5023         if (rb) {
5024                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5025                         wake_up_all(&event->waitq);
5026         }
5027         rcu_read_unlock();
5028 }
5029
5030 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5031 {
5032         struct ring_buffer *rb;
5033
5034         rcu_read_lock();
5035         rb = rcu_dereference(event->rb);
5036         if (rb) {
5037                 if (!atomic_inc_not_zero(&rb->refcount))
5038                         rb = NULL;
5039         }
5040         rcu_read_unlock();
5041
5042         return rb;
5043 }
5044
5045 void ring_buffer_put(struct ring_buffer *rb)
5046 {
5047         if (!atomic_dec_and_test(&rb->refcount))
5048                 return;
5049
5050         WARN_ON_ONCE(!list_empty(&rb->event_list));
5051
5052         call_rcu(&rb->rcu_head, rb_free_rcu);
5053 }
5054
5055 static void perf_mmap_open(struct vm_area_struct *vma)
5056 {
5057         struct perf_event *event = vma->vm_file->private_data;
5058
5059         atomic_inc(&event->mmap_count);
5060         atomic_inc(&event->rb->mmap_count);
5061
5062         if (vma->vm_pgoff)
5063                 atomic_inc(&event->rb->aux_mmap_count);
5064
5065         if (event->pmu->event_mapped)
5066                 event->pmu->event_mapped(event);
5067 }
5068
5069 static void perf_pmu_output_stop(struct perf_event *event);
5070
5071 /*
5072  * A buffer can be mmap()ed multiple times; either directly through the same
5073  * event, or through other events by use of perf_event_set_output().
5074  *
5075  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5076  * the buffer here, where we still have a VM context. This means we need
5077  * to detach all events redirecting to us.
5078  */
5079 static void perf_mmap_close(struct vm_area_struct *vma)
5080 {
5081         struct perf_event *event = vma->vm_file->private_data;
5082
5083         struct ring_buffer *rb = ring_buffer_get(event);
5084         struct user_struct *mmap_user = rb->mmap_user;
5085         int mmap_locked = rb->mmap_locked;
5086         unsigned long size = perf_data_size(rb);
5087
5088         if (event->pmu->event_unmapped)
5089                 event->pmu->event_unmapped(event);
5090
5091         /*
5092          * rb->aux_mmap_count will always drop before rb->mmap_count and
5093          * event->mmap_count, so it is ok to use event->mmap_mutex to
5094          * serialize with perf_mmap here.
5095          */
5096         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5097             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5098                 /*
5099                  * Stop all AUX events that are writing to this buffer,
5100                  * so that we can free its AUX pages and corresponding PMU
5101                  * data. Note that after rb::aux_mmap_count dropped to zero,
5102                  * they won't start any more (see perf_aux_output_begin()).
5103                  */
5104                 perf_pmu_output_stop(event);
5105
5106                 /* now it's safe to free the pages */
5107                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5108                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5109
5110                 /* this has to be the last one */
5111                 rb_free_aux(rb);
5112                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5113
5114                 mutex_unlock(&event->mmap_mutex);
5115         }
5116
5117         atomic_dec(&rb->mmap_count);
5118
5119         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5120                 goto out_put;
5121
5122         ring_buffer_attach(event, NULL);
5123         mutex_unlock(&event->mmap_mutex);
5124
5125         /* If there's still other mmap()s of this buffer, we're done. */
5126         if (atomic_read(&rb->mmap_count))
5127                 goto out_put;
5128
5129         /*
5130          * No other mmap()s, detach from all other events that might redirect
5131          * into the now unreachable buffer. Somewhat complicated by the
5132          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5133          */
5134 again:
5135         rcu_read_lock();
5136         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5137                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5138                         /*
5139                          * This event is en-route to free_event() which will
5140                          * detach it and remove it from the list.
5141                          */
5142                         continue;
5143                 }
5144                 rcu_read_unlock();
5145
5146                 mutex_lock(&event->mmap_mutex);
5147                 /*
5148                  * Check we didn't race with perf_event_set_output() which can
5149                  * swizzle the rb from under us while we were waiting to
5150                  * acquire mmap_mutex.
5151                  *
5152                  * If we find a different rb; ignore this event, a next
5153                  * iteration will no longer find it on the list. We have to
5154                  * still restart the iteration to make sure we're not now
5155                  * iterating the wrong list.
5156                  */
5157                 if (event->rb == rb)
5158                         ring_buffer_attach(event, NULL);
5159
5160                 mutex_unlock(&event->mmap_mutex);
5161                 put_event(event);
5162
5163                 /*
5164                  * Restart the iteration; either we're on the wrong list or
5165                  * destroyed its integrity by doing a deletion.
5166                  */
5167                 goto again;
5168         }
5169         rcu_read_unlock();
5170
5171         /*
5172          * It could be there's still a few 0-ref events on the list; they'll
5173          * get cleaned up by free_event() -- they'll also still have their
5174          * ref on the rb and will free it whenever they are done with it.
5175          *
5176          * Aside from that, this buffer is 'fully' detached and unmapped,
5177          * undo the VM accounting.
5178          */
5179
5180         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5181         vma->vm_mm->pinned_vm -= mmap_locked;
5182         free_uid(mmap_user);
5183
5184 out_put:
5185         ring_buffer_put(rb); /* could be last */
5186 }
5187
5188 static const struct vm_operations_struct perf_mmap_vmops = {
5189         .open           = perf_mmap_open,
5190         .close          = perf_mmap_close, /* non mergable */
5191         .fault          = perf_mmap_fault,
5192         .page_mkwrite   = perf_mmap_fault,
5193 };
5194
5195 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5196 {
5197         struct perf_event *event = file->private_data;
5198         unsigned long user_locked, user_lock_limit;
5199         struct user_struct *user = current_user();
5200         unsigned long locked, lock_limit;
5201         struct ring_buffer *rb = NULL;
5202         unsigned long vma_size;
5203         unsigned long nr_pages;
5204         long user_extra = 0, extra = 0;
5205         int ret = 0, flags = 0;
5206
5207         /*
5208          * Don't allow mmap() of inherited per-task counters. This would
5209          * create a performance issue due to all children writing to the
5210          * same rb.
5211          */
5212         if (event->cpu == -1 && event->attr.inherit)
5213                 return -EINVAL;
5214
5215         if (!(vma->vm_flags & VM_SHARED))
5216                 return -EINVAL;
5217
5218         vma_size = vma->vm_end - vma->vm_start;
5219
5220         if (vma->vm_pgoff == 0) {
5221                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5222         } else {
5223                 /*
5224                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5225                  * mapped, all subsequent mappings should have the same size
5226                  * and offset. Must be above the normal perf buffer.
5227                  */
5228                 u64 aux_offset, aux_size;
5229
5230                 if (!event->rb)
5231                         return -EINVAL;
5232
5233                 nr_pages = vma_size / PAGE_SIZE;
5234
5235                 mutex_lock(&event->mmap_mutex);
5236                 ret = -EINVAL;
5237
5238                 rb = event->rb;
5239                 if (!rb)
5240                         goto aux_unlock;
5241
5242                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5243                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5244
5245                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5246                         goto aux_unlock;
5247
5248                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5249                         goto aux_unlock;
5250
5251                 /* already mapped with a different offset */
5252                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5253                         goto aux_unlock;
5254
5255                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5256                         goto aux_unlock;
5257
5258                 /* already mapped with a different size */
5259                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5260                         goto aux_unlock;
5261
5262                 if (!is_power_of_2(nr_pages))
5263                         goto aux_unlock;
5264
5265                 if (!atomic_inc_not_zero(&rb->mmap_count))
5266                         goto aux_unlock;
5267
5268                 if (rb_has_aux(rb)) {
5269                         atomic_inc(&rb->aux_mmap_count);
5270                         ret = 0;
5271                         goto unlock;
5272                 }
5273
5274                 atomic_set(&rb->aux_mmap_count, 1);
5275                 user_extra = nr_pages;
5276
5277                 goto accounting;
5278         }
5279
5280         /*
5281          * If we have rb pages ensure they're a power-of-two number, so we
5282          * can do bitmasks instead of modulo.
5283          */
5284         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5285                 return -EINVAL;
5286
5287         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5288                 return -EINVAL;
5289
5290         WARN_ON_ONCE(event->ctx->parent_ctx);
5291 again:
5292         mutex_lock(&event->mmap_mutex);
5293         if (event->rb) {
5294                 if (event->rb->nr_pages != nr_pages) {
5295                         ret = -EINVAL;
5296                         goto unlock;
5297                 }
5298
5299                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5300                         /*
5301                          * Raced against perf_mmap_close() through
5302                          * perf_event_set_output(). Try again, hope for better
5303                          * luck.
5304                          */
5305                         mutex_unlock(&event->mmap_mutex);
5306                         goto again;
5307                 }
5308
5309                 goto unlock;
5310         }
5311
5312         user_extra = nr_pages + 1;
5313
5314 accounting:
5315         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5316
5317         /*
5318          * Increase the limit linearly with more CPUs:
5319          */
5320         user_lock_limit *= num_online_cpus();
5321
5322         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5323
5324         if (user_locked > user_lock_limit)
5325                 extra = user_locked - user_lock_limit;
5326
5327         lock_limit = rlimit(RLIMIT_MEMLOCK);
5328         lock_limit >>= PAGE_SHIFT;
5329         locked = vma->vm_mm->pinned_vm + extra;
5330
5331         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5332                 !capable(CAP_IPC_LOCK)) {
5333                 ret = -EPERM;
5334                 goto unlock;
5335         }
5336
5337         WARN_ON(!rb && event->rb);
5338
5339         if (vma->vm_flags & VM_WRITE)
5340                 flags |= RING_BUFFER_WRITABLE;
5341
5342         if (!rb) {
5343                 rb = rb_alloc(nr_pages,
5344                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5345                               event->cpu, flags);
5346
5347                 if (!rb) {
5348                         ret = -ENOMEM;
5349                         goto unlock;
5350                 }
5351
5352                 atomic_set(&rb->mmap_count, 1);
5353                 rb->mmap_user = get_current_user();
5354                 rb->mmap_locked = extra;
5355
5356                 ring_buffer_attach(event, rb);
5357
5358                 perf_event_init_userpage(event);
5359                 perf_event_update_userpage(event);
5360         } else {
5361                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5362                                    event->attr.aux_watermark, flags);
5363                 if (!ret)
5364                         rb->aux_mmap_locked = extra;
5365         }
5366
5367 unlock:
5368         if (!ret) {
5369                 atomic_long_add(user_extra, &user->locked_vm);
5370                 vma->vm_mm->pinned_vm += extra;
5371
5372                 atomic_inc(&event->mmap_count);
5373         } else if (rb) {
5374                 atomic_dec(&rb->mmap_count);
5375         }
5376 aux_unlock:
5377         mutex_unlock(&event->mmap_mutex);
5378
5379         /*
5380          * Since pinned accounting is per vm we cannot allow fork() to copy our
5381          * vma.
5382          */
5383         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5384         vma->vm_ops = &perf_mmap_vmops;
5385
5386         if (event->pmu->event_mapped)
5387                 event->pmu->event_mapped(event);
5388
5389         return ret;
5390 }
5391
5392 static int perf_fasync(int fd, struct file *filp, int on)
5393 {
5394         struct inode *inode = file_inode(filp);
5395         struct perf_event *event = filp->private_data;
5396         int retval;
5397
5398         inode_lock(inode);
5399         retval = fasync_helper(fd, filp, on, &event->fasync);
5400         inode_unlock(inode);
5401
5402         if (retval < 0)
5403                 return retval;
5404
5405         return 0;
5406 }
5407
5408 static const struct file_operations perf_fops = {
5409         .llseek                 = no_llseek,
5410         .release                = perf_release,
5411         .read                   = perf_read,
5412         .poll                   = perf_poll,
5413         .unlocked_ioctl         = perf_ioctl,
5414         .compat_ioctl           = perf_compat_ioctl,
5415         .mmap                   = perf_mmap,
5416         .fasync                 = perf_fasync,
5417 };
5418
5419 /*
5420  * Perf event wakeup
5421  *
5422  * If there's data, ensure we set the poll() state and publish everything
5423  * to user-space before waking everybody up.
5424  */
5425
5426 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5427 {
5428         /* only the parent has fasync state */
5429         if (event->parent)
5430                 event = event->parent;
5431         return &event->fasync;
5432 }
5433
5434 void perf_event_wakeup(struct perf_event *event)
5435 {
5436         ring_buffer_wakeup(event);
5437
5438         if (event->pending_kill) {
5439                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5440                 event->pending_kill = 0;
5441         }
5442 }
5443
5444 static void perf_pending_event(struct irq_work *entry)
5445 {
5446         struct perf_event *event = container_of(entry,
5447                         struct perf_event, pending);
5448         int rctx;
5449
5450         rctx = perf_swevent_get_recursion_context();
5451         /*
5452          * If we 'fail' here, that's OK, it means recursion is already disabled
5453          * and we won't recurse 'further'.
5454          */
5455
5456         if (event->pending_disable) {
5457                 event->pending_disable = 0;
5458                 perf_event_disable_local(event);
5459         }
5460
5461         if (event->pending_wakeup) {
5462                 event->pending_wakeup = 0;
5463                 perf_event_wakeup(event);
5464         }
5465
5466         if (rctx >= 0)
5467                 perf_swevent_put_recursion_context(rctx);
5468 }
5469
5470 /*
5471  * We assume there is only KVM supporting the callbacks.
5472  * Later on, we might change it to a list if there is
5473  * another virtualization implementation supporting the callbacks.
5474  */
5475 struct perf_guest_info_callbacks *perf_guest_cbs;
5476
5477 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5478 {
5479         perf_guest_cbs = cbs;
5480         return 0;
5481 }
5482 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5483
5484 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5485 {
5486         perf_guest_cbs = NULL;
5487         return 0;
5488 }
5489 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5490
5491 static void
5492 perf_output_sample_regs(struct perf_output_handle *handle,
5493                         struct pt_regs *regs, u64 mask)
5494 {
5495         int bit;
5496         DECLARE_BITMAP(_mask, 64);
5497
5498         bitmap_from_u64(_mask, mask);
5499         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5500                 u64 val;
5501
5502                 val = perf_reg_value(regs, bit);
5503                 perf_output_put(handle, val);
5504         }
5505 }
5506
5507 static void perf_sample_regs_user(struct perf_regs *regs_user,
5508                                   struct pt_regs *regs,
5509                                   struct pt_regs *regs_user_copy)
5510 {
5511         if (user_mode(regs)) {
5512                 regs_user->abi = perf_reg_abi(current);
5513                 regs_user->regs = regs;
5514         } else if (current->mm) {
5515                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5516         } else {
5517                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5518                 regs_user->regs = NULL;
5519         }
5520 }
5521
5522 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5523                                   struct pt_regs *regs)
5524 {
5525         regs_intr->regs = regs;
5526         regs_intr->abi  = perf_reg_abi(current);
5527 }
5528
5529
5530 /*
5531  * Get remaining task size from user stack pointer.
5532  *
5533  * It'd be better to take stack vma map and limit this more
5534  * precisly, but there's no way to get it safely under interrupt,
5535  * so using TASK_SIZE as limit.
5536  */
5537 static u64 perf_ustack_task_size(struct pt_regs *regs)
5538 {
5539         unsigned long addr = perf_user_stack_pointer(regs);
5540
5541         if (!addr || addr >= TASK_SIZE)
5542                 return 0;
5543
5544         return TASK_SIZE - addr;
5545 }
5546
5547 static u16
5548 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5549                         struct pt_regs *regs)
5550 {
5551         u64 task_size;
5552
5553         /* No regs, no stack pointer, no dump. */
5554         if (!regs)
5555                 return 0;
5556
5557         /*
5558          * Check if we fit in with the requested stack size into the:
5559          * - TASK_SIZE
5560          *   If we don't, we limit the size to the TASK_SIZE.
5561          *
5562          * - remaining sample size
5563          *   If we don't, we customize the stack size to
5564          *   fit in to the remaining sample size.
5565          */
5566
5567         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5568         stack_size = min(stack_size, (u16) task_size);
5569
5570         /* Current header size plus static size and dynamic size. */
5571         header_size += 2 * sizeof(u64);
5572
5573         /* Do we fit in with the current stack dump size? */
5574         if ((u16) (header_size + stack_size) < header_size) {
5575                 /*
5576                  * If we overflow the maximum size for the sample,
5577                  * we customize the stack dump size to fit in.
5578                  */
5579                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5580                 stack_size = round_up(stack_size, sizeof(u64));
5581         }
5582
5583         return stack_size;
5584 }
5585
5586 static void
5587 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5588                           struct pt_regs *regs)
5589 {
5590         /* Case of a kernel thread, nothing to dump */
5591         if (!regs) {
5592                 u64 size = 0;
5593                 perf_output_put(handle, size);
5594         } else {
5595                 unsigned long sp;
5596                 unsigned int rem;
5597                 u64 dyn_size;
5598
5599                 /*
5600                  * We dump:
5601                  * static size
5602                  *   - the size requested by user or the best one we can fit
5603                  *     in to the sample max size
5604                  * data
5605                  *   - user stack dump data
5606                  * dynamic size
5607                  *   - the actual dumped size
5608                  */
5609
5610                 /* Static size. */
5611                 perf_output_put(handle, dump_size);
5612
5613                 /* Data. */
5614                 sp = perf_user_stack_pointer(regs);
5615                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5616                 dyn_size = dump_size - rem;
5617
5618                 perf_output_skip(handle, rem);
5619
5620                 /* Dynamic size. */
5621                 perf_output_put(handle, dyn_size);
5622         }
5623 }
5624
5625 static void __perf_event_header__init_id(struct perf_event_header *header,
5626                                          struct perf_sample_data *data,
5627                                          struct perf_event *event)
5628 {
5629         u64 sample_type = event->attr.sample_type;
5630
5631         data->type = sample_type;
5632         header->size += event->id_header_size;
5633
5634         if (sample_type & PERF_SAMPLE_TID) {
5635                 /* namespace issues */
5636                 data->tid_entry.pid = perf_event_pid(event, current);
5637                 data->tid_entry.tid = perf_event_tid(event, current);
5638         }
5639
5640         if (sample_type & PERF_SAMPLE_TIME)
5641                 data->time = perf_event_clock(event);
5642
5643         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5644                 data->id = primary_event_id(event);
5645
5646         if (sample_type & PERF_SAMPLE_STREAM_ID)
5647                 data->stream_id = event->id;
5648
5649         if (sample_type & PERF_SAMPLE_CPU) {
5650                 data->cpu_entry.cpu      = raw_smp_processor_id();
5651                 data->cpu_entry.reserved = 0;
5652         }
5653 }
5654
5655 void perf_event_header__init_id(struct perf_event_header *header,
5656                                 struct perf_sample_data *data,
5657                                 struct perf_event *event)
5658 {
5659         if (event->attr.sample_id_all)
5660                 __perf_event_header__init_id(header, data, event);
5661 }
5662
5663 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5664                                            struct perf_sample_data *data)
5665 {
5666         u64 sample_type = data->type;
5667
5668         if (sample_type & PERF_SAMPLE_TID)
5669                 perf_output_put(handle, data->tid_entry);
5670
5671         if (sample_type & PERF_SAMPLE_TIME)
5672                 perf_output_put(handle, data->time);
5673
5674         if (sample_type & PERF_SAMPLE_ID)
5675                 perf_output_put(handle, data->id);
5676
5677         if (sample_type & PERF_SAMPLE_STREAM_ID)
5678                 perf_output_put(handle, data->stream_id);
5679
5680         if (sample_type & PERF_SAMPLE_CPU)
5681                 perf_output_put(handle, data->cpu_entry);
5682
5683         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5684                 perf_output_put(handle, data->id);
5685 }
5686
5687 void perf_event__output_id_sample(struct perf_event *event,
5688                                   struct perf_output_handle *handle,
5689                                   struct perf_sample_data *sample)
5690 {
5691         if (event->attr.sample_id_all)
5692                 __perf_event__output_id_sample(handle, sample);
5693 }
5694
5695 static void perf_output_read_one(struct perf_output_handle *handle,
5696                                  struct perf_event *event,
5697                                  u64 enabled, u64 running)
5698 {
5699         u64 read_format = event->attr.read_format;
5700         u64 values[4];
5701         int n = 0;
5702
5703         values[n++] = perf_event_count(event);
5704         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5705                 values[n++] = enabled +
5706                         atomic64_read(&event->child_total_time_enabled);
5707         }
5708         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5709                 values[n++] = running +
5710                         atomic64_read(&event->child_total_time_running);
5711         }
5712         if (read_format & PERF_FORMAT_ID)
5713                 values[n++] = primary_event_id(event);
5714
5715         __output_copy(handle, values, n * sizeof(u64));
5716 }
5717
5718 /*
5719  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5720  */
5721 static void perf_output_read_group(struct perf_output_handle *handle,
5722                             struct perf_event *event,
5723                             u64 enabled, u64 running)
5724 {
5725         struct perf_event *leader = event->group_leader, *sub;
5726         u64 read_format = event->attr.read_format;
5727         u64 values[5];
5728         int n = 0;
5729
5730         values[n++] = 1 + leader->nr_siblings;
5731
5732         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5733                 values[n++] = enabled;
5734
5735         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5736                 values[n++] = running;
5737
5738         if (leader != event)
5739                 leader->pmu->read(leader);
5740
5741         values[n++] = perf_event_count(leader);
5742         if (read_format & PERF_FORMAT_ID)
5743                 values[n++] = primary_event_id(leader);
5744
5745         __output_copy(handle, values, n * sizeof(u64));
5746
5747         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5748                 n = 0;
5749
5750                 if ((sub != event) &&
5751                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5752                         sub->pmu->read(sub);
5753
5754                 values[n++] = perf_event_count(sub);
5755                 if (read_format & PERF_FORMAT_ID)
5756                         values[n++] = primary_event_id(sub);
5757
5758                 __output_copy(handle, values, n * sizeof(u64));
5759         }
5760 }
5761
5762 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5763                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5764
5765 static void perf_output_read(struct perf_output_handle *handle,
5766                              struct perf_event *event)
5767 {
5768         u64 enabled = 0, running = 0, now;
5769         u64 read_format = event->attr.read_format;
5770
5771         /*
5772          * compute total_time_enabled, total_time_running
5773          * based on snapshot values taken when the event
5774          * was last scheduled in.
5775          *
5776          * we cannot simply called update_context_time()
5777          * because of locking issue as we are called in
5778          * NMI context
5779          */
5780         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5781                 calc_timer_values(event, &now, &enabled, &running);
5782
5783         if (event->attr.read_format & PERF_FORMAT_GROUP)
5784                 perf_output_read_group(handle, event, enabled, running);
5785         else
5786                 perf_output_read_one(handle, event, enabled, running);
5787 }
5788
5789 void perf_output_sample(struct perf_output_handle *handle,
5790                         struct perf_event_header *header,
5791                         struct perf_sample_data *data,
5792                         struct perf_event *event)
5793 {
5794         u64 sample_type = data->type;
5795
5796         perf_output_put(handle, *header);
5797
5798         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5799                 perf_output_put(handle, data->id);
5800
5801         if (sample_type & PERF_SAMPLE_IP)
5802                 perf_output_put(handle, data->ip);
5803
5804         if (sample_type & PERF_SAMPLE_TID)
5805                 perf_output_put(handle, data->tid_entry);
5806
5807         if (sample_type & PERF_SAMPLE_TIME)
5808                 perf_output_put(handle, data->time);
5809
5810         if (sample_type & PERF_SAMPLE_ADDR)
5811                 perf_output_put(handle, data->addr);
5812
5813         if (sample_type & PERF_SAMPLE_ID)
5814                 perf_output_put(handle, data->id);
5815
5816         if (sample_type & PERF_SAMPLE_STREAM_ID)
5817                 perf_output_put(handle, data->stream_id);
5818
5819         if (sample_type & PERF_SAMPLE_CPU)
5820                 perf_output_put(handle, data->cpu_entry);
5821
5822         if (sample_type & PERF_SAMPLE_PERIOD)
5823                 perf_output_put(handle, data->period);
5824
5825         if (sample_type & PERF_SAMPLE_READ)
5826                 perf_output_read(handle, event);
5827
5828         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5829                 if (data->callchain) {
5830                         int size = 1;
5831
5832                         if (data->callchain)
5833                                 size += data->callchain->nr;
5834
5835                         size *= sizeof(u64);
5836
5837                         __output_copy(handle, data->callchain, size);
5838                 } else {
5839                         u64 nr = 0;
5840                         perf_output_put(handle, nr);
5841                 }
5842         }
5843
5844         if (sample_type & PERF_SAMPLE_RAW) {
5845                 struct perf_raw_record *raw = data->raw;
5846
5847                 if (raw) {
5848                         struct perf_raw_frag *frag = &raw->frag;
5849
5850                         perf_output_put(handle, raw->size);
5851                         do {
5852                                 if (frag->copy) {
5853                                         __output_custom(handle, frag->copy,
5854                                                         frag->data, frag->size);
5855                                 } else {
5856                                         __output_copy(handle, frag->data,
5857                                                       frag->size);
5858                                 }
5859                                 if (perf_raw_frag_last(frag))
5860                                         break;
5861                                 frag = frag->next;
5862                         } while (1);
5863                         if (frag->pad)
5864                                 __output_skip(handle, NULL, frag->pad);
5865                 } else {
5866                         struct {
5867                                 u32     size;
5868                                 u32     data;
5869                         } raw = {
5870                                 .size = sizeof(u32),
5871                                 .data = 0,
5872                         };
5873                         perf_output_put(handle, raw);
5874                 }
5875         }
5876
5877         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5878                 if (data->br_stack) {
5879                         size_t size;
5880
5881                         size = data->br_stack->nr
5882                              * sizeof(struct perf_branch_entry);
5883
5884                         perf_output_put(handle, data->br_stack->nr);
5885                         perf_output_copy(handle, data->br_stack->entries, size);
5886                 } else {
5887                         /*
5888                          * we always store at least the value of nr
5889                          */
5890                         u64 nr = 0;
5891                         perf_output_put(handle, nr);
5892                 }
5893         }
5894
5895         if (sample_type & PERF_SAMPLE_REGS_USER) {
5896                 u64 abi = data->regs_user.abi;
5897
5898                 /*
5899                  * If there are no regs to dump, notice it through
5900                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5901                  */
5902                 perf_output_put(handle, abi);
5903
5904                 if (abi) {
5905                         u64 mask = event->attr.sample_regs_user;
5906                         perf_output_sample_regs(handle,
5907                                                 data->regs_user.regs,
5908                                                 mask);
5909                 }
5910         }
5911
5912         if (sample_type & PERF_SAMPLE_STACK_USER) {
5913                 perf_output_sample_ustack(handle,
5914                                           data->stack_user_size,
5915                                           data->regs_user.regs);
5916         }
5917
5918         if (sample_type & PERF_SAMPLE_WEIGHT)
5919                 perf_output_put(handle, data->weight);
5920
5921         if (sample_type & PERF_SAMPLE_DATA_SRC)
5922                 perf_output_put(handle, data->data_src.val);
5923
5924         if (sample_type & PERF_SAMPLE_TRANSACTION)
5925                 perf_output_put(handle, data->txn);
5926
5927         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5928                 u64 abi = data->regs_intr.abi;
5929                 /*
5930                  * If there are no regs to dump, notice it through
5931                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5932                  */
5933                 perf_output_put(handle, abi);
5934
5935                 if (abi) {
5936                         u64 mask = event->attr.sample_regs_intr;
5937
5938                         perf_output_sample_regs(handle,
5939                                                 data->regs_intr.regs,
5940                                                 mask);
5941                 }
5942         }
5943
5944         if (!event->attr.watermark) {
5945                 int wakeup_events = event->attr.wakeup_events;
5946
5947                 if (wakeup_events) {
5948                         struct ring_buffer *rb = handle->rb;
5949                         int events = local_inc_return(&rb->events);
5950
5951                         if (events >= wakeup_events) {
5952                                 local_sub(wakeup_events, &rb->events);
5953                                 local_inc(&rb->wakeup);
5954                         }
5955                 }
5956         }
5957 }
5958
5959 void perf_prepare_sample(struct perf_event_header *header,
5960                          struct perf_sample_data *data,
5961                          struct perf_event *event,
5962                          struct pt_regs *regs)
5963 {
5964         u64 sample_type = event->attr.sample_type;
5965
5966         header->type = PERF_RECORD_SAMPLE;
5967         header->size = sizeof(*header) + event->header_size;
5968
5969         header->misc = 0;
5970         header->misc |= perf_misc_flags(regs);
5971
5972         __perf_event_header__init_id(header, data, event);
5973
5974         if (sample_type & PERF_SAMPLE_IP)
5975                 data->ip = perf_instruction_pointer(regs);
5976
5977         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5978                 int size = 1;
5979
5980                 data->callchain = perf_callchain(event, regs);
5981
5982                 if (data->callchain)
5983                         size += data->callchain->nr;
5984
5985                 header->size += size * sizeof(u64);
5986         }
5987
5988         if (sample_type & PERF_SAMPLE_RAW) {
5989                 struct perf_raw_record *raw = data->raw;
5990                 int size;
5991
5992                 if (raw) {
5993                         struct perf_raw_frag *frag = &raw->frag;
5994                         u32 sum = 0;
5995
5996                         do {
5997                                 sum += frag->size;
5998                                 if (perf_raw_frag_last(frag))
5999                                         break;
6000                                 frag = frag->next;
6001                         } while (1);
6002
6003                         size = round_up(sum + sizeof(u32), sizeof(u64));
6004                         raw->size = size - sizeof(u32);
6005                         frag->pad = raw->size - sum;
6006                 } else {
6007                         size = sizeof(u64);
6008                 }
6009
6010                 header->size += size;
6011         }
6012
6013         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6014                 int size = sizeof(u64); /* nr */
6015                 if (data->br_stack) {
6016                         size += data->br_stack->nr
6017                               * sizeof(struct perf_branch_entry);
6018                 }
6019                 header->size += size;
6020         }
6021
6022         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6023                 perf_sample_regs_user(&data->regs_user, regs,
6024                                       &data->regs_user_copy);
6025
6026         if (sample_type & PERF_SAMPLE_REGS_USER) {
6027                 /* regs dump ABI info */
6028                 int size = sizeof(u64);
6029
6030                 if (data->regs_user.regs) {
6031                         u64 mask = event->attr.sample_regs_user;
6032                         size += hweight64(mask) * sizeof(u64);
6033                 }
6034
6035                 header->size += size;
6036         }
6037
6038         if (sample_type & PERF_SAMPLE_STACK_USER) {
6039                 /*
6040                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6041                  * processed as the last one or have additional check added
6042                  * in case new sample type is added, because we could eat
6043                  * up the rest of the sample size.
6044                  */
6045                 u16 stack_size = event->attr.sample_stack_user;
6046                 u16 size = sizeof(u64);
6047
6048                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6049                                                      data->regs_user.regs);
6050
6051                 /*
6052                  * If there is something to dump, add space for the dump
6053                  * itself and for the field that tells the dynamic size,
6054                  * which is how many have been actually dumped.
6055                  */
6056                 if (stack_size)
6057                         size += sizeof(u64) + stack_size;
6058
6059                 data->stack_user_size = stack_size;
6060                 header->size += size;
6061         }
6062
6063         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6064                 /* regs dump ABI info */
6065                 int size = sizeof(u64);
6066
6067                 perf_sample_regs_intr(&data->regs_intr, regs);
6068
6069                 if (data->regs_intr.regs) {
6070                         u64 mask = event->attr.sample_regs_intr;
6071
6072                         size += hweight64(mask) * sizeof(u64);
6073                 }
6074
6075                 header->size += size;
6076         }
6077 }
6078
6079 static void __always_inline
6080 __perf_event_output(struct perf_event *event,
6081                     struct perf_sample_data *data,
6082                     struct pt_regs *regs,
6083                     int (*output_begin)(struct perf_output_handle *,
6084                                         struct perf_event *,
6085                                         unsigned int))
6086 {
6087         struct perf_output_handle handle;
6088         struct perf_event_header header;
6089
6090         /* protect the callchain buffers */
6091         rcu_read_lock();
6092
6093         perf_prepare_sample(&header, data, event, regs);
6094
6095         if (output_begin(&handle, event, header.size))
6096                 goto exit;
6097
6098         perf_output_sample(&handle, &header, data, event);
6099
6100         perf_output_end(&handle);
6101
6102 exit:
6103         rcu_read_unlock();
6104 }
6105
6106 void
6107 perf_event_output_forward(struct perf_event *event,
6108                          struct perf_sample_data *data,
6109                          struct pt_regs *regs)
6110 {
6111         __perf_event_output(event, data, regs, perf_output_begin_forward);
6112 }
6113
6114 void
6115 perf_event_output_backward(struct perf_event *event,
6116                            struct perf_sample_data *data,
6117                            struct pt_regs *regs)
6118 {
6119         __perf_event_output(event, data, regs, perf_output_begin_backward);
6120 }
6121
6122 void
6123 perf_event_output(struct perf_event *event,
6124                   struct perf_sample_data *data,
6125                   struct pt_regs *regs)
6126 {
6127         __perf_event_output(event, data, regs, perf_output_begin);
6128 }
6129
6130 /*
6131  * read event_id
6132  */
6133
6134 struct perf_read_event {
6135         struct perf_event_header        header;
6136
6137         u32                             pid;
6138         u32                             tid;
6139 };
6140
6141 static void
6142 perf_event_read_event(struct perf_event *event,
6143                         struct task_struct *task)
6144 {
6145         struct perf_output_handle handle;
6146         struct perf_sample_data sample;
6147         struct perf_read_event read_event = {
6148                 .header = {
6149                         .type = PERF_RECORD_READ,
6150                         .misc = 0,
6151                         .size = sizeof(read_event) + event->read_size,
6152                 },
6153                 .pid = perf_event_pid(event, task),
6154                 .tid = perf_event_tid(event, task),
6155         };
6156         int ret;
6157
6158         perf_event_header__init_id(&read_event.header, &sample, event);
6159         ret = perf_output_begin(&handle, event, read_event.header.size);
6160         if (ret)
6161                 return;
6162
6163         perf_output_put(&handle, read_event);
6164         perf_output_read(&handle, event);
6165         perf_event__output_id_sample(event, &handle, &sample);
6166
6167         perf_output_end(&handle);
6168 }
6169
6170 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6171
6172 static void
6173 perf_iterate_ctx(struct perf_event_context *ctx,
6174                    perf_iterate_f output,
6175                    void *data, bool all)
6176 {
6177         struct perf_event *event;
6178
6179         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6180                 if (!all) {
6181                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6182                                 continue;
6183                         if (!event_filter_match(event))
6184                                 continue;
6185                 }
6186
6187                 output(event, data);
6188         }
6189 }
6190
6191 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6192 {
6193         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6194         struct perf_event *event;
6195
6196         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6197                 /*
6198                  * Skip events that are not fully formed yet; ensure that
6199                  * if we observe event->ctx, both event and ctx will be
6200                  * complete enough. See perf_install_in_context().
6201                  */
6202                 if (!smp_load_acquire(&event->ctx))
6203                         continue;
6204
6205                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6206                         continue;
6207                 if (!event_filter_match(event))
6208                         continue;
6209                 output(event, data);
6210         }
6211 }
6212
6213 /*
6214  * Iterate all events that need to receive side-band events.
6215  *
6216  * For new callers; ensure that account_pmu_sb_event() includes
6217  * your event, otherwise it might not get delivered.
6218  */
6219 static void
6220 perf_iterate_sb(perf_iterate_f output, void *data,
6221                struct perf_event_context *task_ctx)
6222 {
6223         struct perf_event_context *ctx;
6224         int ctxn;
6225
6226         rcu_read_lock();
6227         preempt_disable();
6228
6229         /*
6230          * If we have task_ctx != NULL we only notify the task context itself.
6231          * The task_ctx is set only for EXIT events before releasing task
6232          * context.
6233          */
6234         if (task_ctx) {
6235                 perf_iterate_ctx(task_ctx, output, data, false);
6236                 goto done;
6237         }
6238
6239         perf_iterate_sb_cpu(output, data);
6240
6241         for_each_task_context_nr(ctxn) {
6242                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6243                 if (ctx)
6244                         perf_iterate_ctx(ctx, output, data, false);
6245         }
6246 done:
6247         preempt_enable();
6248         rcu_read_unlock();
6249 }
6250
6251 /*
6252  * Clear all file-based filters at exec, they'll have to be
6253  * re-instated when/if these objects are mmapped again.
6254  */
6255 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6256 {
6257         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6258         struct perf_addr_filter *filter;
6259         unsigned int restart = 0, count = 0;
6260         unsigned long flags;
6261
6262         if (!has_addr_filter(event))
6263                 return;
6264
6265         raw_spin_lock_irqsave(&ifh->lock, flags);
6266         list_for_each_entry(filter, &ifh->list, entry) {
6267                 if (filter->inode) {
6268                         event->addr_filters_offs[count] = 0;
6269                         restart++;
6270                 }
6271
6272                 count++;
6273         }
6274
6275         if (restart)
6276                 event->addr_filters_gen++;
6277         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6278
6279         if (restart)
6280                 perf_event_stop(event, 1);
6281 }
6282
6283 void perf_event_exec(void)
6284 {
6285         struct perf_event_context *ctx;
6286         int ctxn;
6287
6288         rcu_read_lock();
6289         for_each_task_context_nr(ctxn) {
6290                 ctx = current->perf_event_ctxp[ctxn];
6291                 if (!ctx)
6292                         continue;
6293
6294                 perf_event_enable_on_exec(ctxn);
6295
6296                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6297                                    true);
6298         }
6299         rcu_read_unlock();
6300 }
6301
6302 struct remote_output {
6303         struct ring_buffer      *rb;
6304         int                     err;
6305 };
6306
6307 static void __perf_event_output_stop(struct perf_event *event, void *data)
6308 {
6309         struct perf_event *parent = event->parent;
6310         struct remote_output *ro = data;
6311         struct ring_buffer *rb = ro->rb;
6312         struct stop_event_data sd = {
6313                 .event  = event,
6314         };
6315
6316         if (!has_aux(event))
6317                 return;
6318
6319         if (!parent)
6320                 parent = event;
6321
6322         /*
6323          * In case of inheritance, it will be the parent that links to the
6324          * ring-buffer, but it will be the child that's actually using it.
6325          *
6326          * We are using event::rb to determine if the event should be stopped,
6327          * however this may race with ring_buffer_attach() (through set_output),
6328          * which will make us skip the event that actually needs to be stopped.
6329          * So ring_buffer_attach() has to stop an aux event before re-assigning
6330          * its rb pointer.
6331          */
6332         if (rcu_dereference(parent->rb) == rb)
6333                 ro->err = __perf_event_stop(&sd);
6334 }
6335
6336 static int __perf_pmu_output_stop(void *info)
6337 {
6338         struct perf_event *event = info;
6339         struct pmu *pmu = event->pmu;
6340         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6341         struct remote_output ro = {
6342                 .rb     = event->rb,
6343         };
6344
6345         rcu_read_lock();
6346         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6347         if (cpuctx->task_ctx)
6348                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6349                                    &ro, false);
6350         rcu_read_unlock();
6351
6352         return ro.err;
6353 }
6354
6355 static void perf_pmu_output_stop(struct perf_event *event)
6356 {
6357         struct perf_event *iter;
6358         int err, cpu;
6359
6360 restart:
6361         rcu_read_lock();
6362         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6363                 /*
6364                  * For per-CPU events, we need to make sure that neither they
6365                  * nor their children are running; for cpu==-1 events it's
6366                  * sufficient to stop the event itself if it's active, since
6367                  * it can't have children.
6368                  */
6369                 cpu = iter->cpu;
6370                 if (cpu == -1)
6371                         cpu = READ_ONCE(iter->oncpu);
6372
6373                 if (cpu == -1)
6374                         continue;
6375
6376                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6377                 if (err == -EAGAIN) {
6378                         rcu_read_unlock();
6379                         goto restart;
6380                 }
6381         }
6382         rcu_read_unlock();
6383 }
6384
6385 /*
6386  * task tracking -- fork/exit
6387  *
6388  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6389  */
6390
6391 struct perf_task_event {
6392         struct task_struct              *task;
6393         struct perf_event_context       *task_ctx;
6394
6395         struct {
6396                 struct perf_event_header        header;
6397
6398                 u32                             pid;
6399                 u32                             ppid;
6400                 u32                             tid;
6401                 u32                             ptid;
6402                 u64                             time;
6403         } event_id;
6404 };
6405
6406 static int perf_event_task_match(struct perf_event *event)
6407 {
6408         return event->attr.comm  || event->attr.mmap ||
6409                event->attr.mmap2 || event->attr.mmap_data ||
6410                event->attr.task;
6411 }
6412
6413 static void perf_event_task_output(struct perf_event *event,
6414                                    void *data)
6415 {
6416         struct perf_task_event *task_event = data;
6417         struct perf_output_handle handle;
6418         struct perf_sample_data sample;
6419         struct task_struct *task = task_event->task;
6420         int ret, size = task_event->event_id.header.size;
6421
6422         if (!perf_event_task_match(event))
6423                 return;
6424
6425         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6426
6427         ret = perf_output_begin(&handle, event,
6428                                 task_event->event_id.header.size);
6429         if (ret)
6430                 goto out;
6431
6432         task_event->event_id.pid = perf_event_pid(event, task);
6433         task_event->event_id.ppid = perf_event_pid(event, current);
6434
6435         task_event->event_id.tid = perf_event_tid(event, task);
6436         task_event->event_id.ptid = perf_event_tid(event, current);
6437
6438         task_event->event_id.time = perf_event_clock(event);
6439
6440         perf_output_put(&handle, task_event->event_id);
6441
6442         perf_event__output_id_sample(event, &handle, &sample);
6443
6444         perf_output_end(&handle);
6445 out:
6446         task_event->event_id.header.size = size;
6447 }
6448
6449 static void perf_event_task(struct task_struct *task,
6450                               struct perf_event_context *task_ctx,
6451                               int new)
6452 {
6453         struct perf_task_event task_event;
6454
6455         if (!atomic_read(&nr_comm_events) &&
6456             !atomic_read(&nr_mmap_events) &&
6457             !atomic_read(&nr_task_events))
6458                 return;
6459
6460         task_event = (struct perf_task_event){
6461                 .task     = task,
6462                 .task_ctx = task_ctx,
6463                 .event_id    = {
6464                         .header = {
6465                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6466                                 .misc = 0,
6467                                 .size = sizeof(task_event.event_id),
6468                         },
6469                         /* .pid  */
6470                         /* .ppid */
6471                         /* .tid  */
6472                         /* .ptid */
6473                         /* .time */
6474                 },
6475         };
6476
6477         perf_iterate_sb(perf_event_task_output,
6478                        &task_event,
6479                        task_ctx);
6480 }
6481
6482 void perf_event_fork(struct task_struct *task)
6483 {
6484         perf_event_task(task, NULL, 1);
6485 }
6486
6487 /*
6488  * comm tracking
6489  */
6490
6491 struct perf_comm_event {
6492         struct task_struct      *task;
6493         char                    *comm;
6494         int                     comm_size;
6495
6496         struct {
6497                 struct perf_event_header        header;
6498
6499                 u32                             pid;
6500                 u32                             tid;
6501         } event_id;
6502 };
6503
6504 static int perf_event_comm_match(struct perf_event *event)
6505 {
6506         return event->attr.comm;
6507 }
6508
6509 static void perf_event_comm_output(struct perf_event *event,
6510                                    void *data)
6511 {
6512         struct perf_comm_event *comm_event = data;
6513         struct perf_output_handle handle;
6514         struct perf_sample_data sample;
6515         int size = comm_event->event_id.header.size;
6516         int ret;
6517
6518         if (!perf_event_comm_match(event))
6519                 return;
6520
6521         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6522         ret = perf_output_begin(&handle, event,
6523                                 comm_event->event_id.header.size);
6524
6525         if (ret)
6526                 goto out;
6527
6528         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6529         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6530
6531         perf_output_put(&handle, comm_event->event_id);
6532         __output_copy(&handle, comm_event->comm,
6533                                    comm_event->comm_size);
6534
6535         perf_event__output_id_sample(event, &handle, &sample);
6536
6537         perf_output_end(&handle);
6538 out:
6539         comm_event->event_id.header.size = size;
6540 }
6541
6542 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6543 {
6544         char comm[TASK_COMM_LEN];
6545         unsigned int size;
6546
6547         memset(comm, 0, sizeof(comm));
6548         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6549         size = ALIGN(strlen(comm)+1, sizeof(u64));
6550
6551         comm_event->comm = comm;
6552         comm_event->comm_size = size;
6553
6554         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6555
6556         perf_iterate_sb(perf_event_comm_output,
6557                        comm_event,
6558                        NULL);
6559 }
6560
6561 void perf_event_comm(struct task_struct *task, bool exec)
6562 {
6563         struct perf_comm_event comm_event;
6564
6565         if (!atomic_read(&nr_comm_events))
6566                 return;
6567
6568         comm_event = (struct perf_comm_event){
6569                 .task   = task,
6570                 /* .comm      */
6571                 /* .comm_size */
6572                 .event_id  = {
6573                         .header = {
6574                                 .type = PERF_RECORD_COMM,
6575                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6576                                 /* .size */
6577                         },
6578                         /* .pid */
6579                         /* .tid */
6580                 },
6581         };
6582
6583         perf_event_comm_event(&comm_event);
6584 }
6585
6586 /*
6587  * mmap tracking
6588  */
6589
6590 struct perf_mmap_event {
6591         struct vm_area_struct   *vma;
6592
6593         const char              *file_name;
6594         int                     file_size;
6595         int                     maj, min;
6596         u64                     ino;
6597         u64                     ino_generation;
6598         u32                     prot, flags;
6599
6600         struct {
6601                 struct perf_event_header        header;
6602
6603                 u32                             pid;
6604                 u32                             tid;
6605                 u64                             start;
6606                 u64                             len;
6607                 u64                             pgoff;
6608         } event_id;
6609 };
6610
6611 static int perf_event_mmap_match(struct perf_event *event,
6612                                  void *data)
6613 {
6614         struct perf_mmap_event *mmap_event = data;
6615         struct vm_area_struct *vma = mmap_event->vma;
6616         int executable = vma->vm_flags & VM_EXEC;
6617
6618         return (!executable && event->attr.mmap_data) ||
6619                (executable && (event->attr.mmap || event->attr.mmap2));
6620 }
6621
6622 static void perf_event_mmap_output(struct perf_event *event,
6623                                    void *data)
6624 {
6625         struct perf_mmap_event *mmap_event = data;
6626         struct perf_output_handle handle;
6627         struct perf_sample_data sample;
6628         int size = mmap_event->event_id.header.size;
6629         int ret;
6630
6631         if (!perf_event_mmap_match(event, data))
6632                 return;
6633
6634         if (event->attr.mmap2) {
6635                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6636                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6637                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6638                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6639                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6640                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6641                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6642         }
6643
6644         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6645         ret = perf_output_begin(&handle, event,
6646                                 mmap_event->event_id.header.size);
6647         if (ret)
6648                 goto out;
6649
6650         mmap_event->event_id.pid = perf_event_pid(event, current);
6651         mmap_event->event_id.tid = perf_event_tid(event, current);
6652
6653         perf_output_put(&handle, mmap_event->event_id);
6654
6655         if (event->attr.mmap2) {
6656                 perf_output_put(&handle, mmap_event->maj);
6657                 perf_output_put(&handle, mmap_event->min);
6658                 perf_output_put(&handle, mmap_event->ino);
6659                 perf_output_put(&handle, mmap_event->ino_generation);
6660                 perf_output_put(&handle, mmap_event->prot);
6661                 perf_output_put(&handle, mmap_event->flags);
6662         }
6663
6664         __output_copy(&handle, mmap_event->file_name,
6665                                    mmap_event->file_size);
6666
6667         perf_event__output_id_sample(event, &handle, &sample);
6668
6669         perf_output_end(&handle);
6670 out:
6671         mmap_event->event_id.header.size = size;
6672 }
6673
6674 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6675 {
6676         struct vm_area_struct *vma = mmap_event->vma;
6677         struct file *file = vma->vm_file;
6678         int maj = 0, min = 0;
6679         u64 ino = 0, gen = 0;
6680         u32 prot = 0, flags = 0;
6681         unsigned int size;
6682         char tmp[16];
6683         char *buf = NULL;
6684         char *name;
6685
6686         if (vma->vm_flags & VM_READ)
6687                 prot |= PROT_READ;
6688         if (vma->vm_flags & VM_WRITE)
6689                 prot |= PROT_WRITE;
6690         if (vma->vm_flags & VM_EXEC)
6691                 prot |= PROT_EXEC;
6692
6693         if (vma->vm_flags & VM_MAYSHARE)
6694                 flags = MAP_SHARED;
6695         else
6696                 flags = MAP_PRIVATE;
6697
6698         if (vma->vm_flags & VM_DENYWRITE)
6699                 flags |= MAP_DENYWRITE;
6700         if (vma->vm_flags & VM_MAYEXEC)
6701                 flags |= MAP_EXECUTABLE;
6702         if (vma->vm_flags & VM_LOCKED)
6703                 flags |= MAP_LOCKED;
6704         if (vma->vm_flags & VM_HUGETLB)
6705                 flags |= MAP_HUGETLB;
6706
6707         if (file) {
6708                 struct inode *inode;
6709                 dev_t dev;
6710
6711                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6712                 if (!buf) {
6713                         name = "//enomem";
6714                         goto cpy_name;
6715                 }
6716                 /*
6717                  * d_path() works from the end of the rb backwards, so we
6718                  * need to add enough zero bytes after the string to handle
6719                  * the 64bit alignment we do later.
6720                  */
6721                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6722                 if (IS_ERR(name)) {
6723                         name = "//toolong";
6724                         goto cpy_name;
6725                 }
6726                 inode = file_inode(vma->vm_file);
6727                 dev = inode->i_sb->s_dev;
6728                 ino = inode->i_ino;
6729                 gen = inode->i_generation;
6730                 maj = MAJOR(dev);
6731                 min = MINOR(dev);
6732
6733                 goto got_name;
6734         } else {
6735                 if (vma->vm_ops && vma->vm_ops->name) {
6736                         name = (char *) vma->vm_ops->name(vma);
6737                         if (name)
6738                                 goto cpy_name;
6739                 }
6740
6741                 name = (char *)arch_vma_name(vma);
6742                 if (name)
6743                         goto cpy_name;
6744
6745                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6746                                 vma->vm_end >= vma->vm_mm->brk) {
6747                         name = "[heap]";
6748                         goto cpy_name;
6749                 }
6750                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6751                                 vma->vm_end >= vma->vm_mm->start_stack) {
6752                         name = "[stack]";
6753                         goto cpy_name;
6754                 }
6755
6756                 name = "//anon";
6757                 goto cpy_name;
6758         }
6759
6760 cpy_name:
6761         strlcpy(tmp, name, sizeof(tmp));
6762         name = tmp;
6763 got_name:
6764         /*
6765          * Since our buffer works in 8 byte units we need to align our string
6766          * size to a multiple of 8. However, we must guarantee the tail end is
6767          * zero'd out to avoid leaking random bits to userspace.
6768          */
6769         size = strlen(name)+1;
6770         while (!IS_ALIGNED(size, sizeof(u64)))
6771                 name[size++] = '\0';
6772
6773         mmap_event->file_name = name;
6774         mmap_event->file_size = size;
6775         mmap_event->maj = maj;
6776         mmap_event->min = min;
6777         mmap_event->ino = ino;
6778         mmap_event->ino_generation = gen;
6779         mmap_event->prot = prot;
6780         mmap_event->flags = flags;
6781
6782         if (!(vma->vm_flags & VM_EXEC))
6783                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6784
6785         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6786
6787         perf_iterate_sb(perf_event_mmap_output,
6788                        mmap_event,
6789                        NULL);
6790
6791         kfree(buf);
6792 }
6793
6794 /*
6795  * Check whether inode and address range match filter criteria.
6796  */
6797 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6798                                      struct file *file, unsigned long offset,
6799                                      unsigned long size)
6800 {
6801         if (filter->inode != file_inode(file))
6802                 return false;
6803
6804         if (filter->offset > offset + size)
6805                 return false;
6806
6807         if (filter->offset + filter->size < offset)
6808                 return false;
6809
6810         return true;
6811 }
6812
6813 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6814 {
6815         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6816         struct vm_area_struct *vma = data;
6817         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6818         struct file *file = vma->vm_file;
6819         struct perf_addr_filter *filter;
6820         unsigned int restart = 0, count = 0;
6821
6822         if (!has_addr_filter(event))
6823                 return;
6824
6825         if (!file)
6826                 return;
6827
6828         raw_spin_lock_irqsave(&ifh->lock, flags);
6829         list_for_each_entry(filter, &ifh->list, entry) {
6830                 if (perf_addr_filter_match(filter, file, off,
6831                                              vma->vm_end - vma->vm_start)) {
6832                         event->addr_filters_offs[count] = vma->vm_start;
6833                         restart++;
6834                 }
6835
6836                 count++;
6837         }
6838
6839         if (restart)
6840                 event->addr_filters_gen++;
6841         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6842
6843         if (restart)
6844                 perf_event_stop(event, 1);
6845 }
6846
6847 /*
6848  * Adjust all task's events' filters to the new vma
6849  */
6850 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6851 {
6852         struct perf_event_context *ctx;
6853         int ctxn;
6854
6855         /*
6856          * Data tracing isn't supported yet and as such there is no need
6857          * to keep track of anything that isn't related to executable code:
6858          */
6859         if (!(vma->vm_flags & VM_EXEC))
6860                 return;
6861
6862         rcu_read_lock();
6863         for_each_task_context_nr(ctxn) {
6864                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6865                 if (!ctx)
6866                         continue;
6867
6868                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6869         }
6870         rcu_read_unlock();
6871 }
6872
6873 void perf_event_mmap(struct vm_area_struct *vma)
6874 {
6875         struct perf_mmap_event mmap_event;
6876
6877         if (!atomic_read(&nr_mmap_events))
6878                 return;
6879
6880         mmap_event = (struct perf_mmap_event){
6881                 .vma    = vma,
6882                 /* .file_name */
6883                 /* .file_size */
6884                 .event_id  = {
6885                         .header = {
6886                                 .type = PERF_RECORD_MMAP,
6887                                 .misc = PERF_RECORD_MISC_USER,
6888                                 /* .size */
6889                         },
6890                         /* .pid */
6891                         /* .tid */
6892                         .start  = vma->vm_start,
6893                         .len    = vma->vm_end - vma->vm_start,
6894                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6895                 },
6896                 /* .maj (attr_mmap2 only) */
6897                 /* .min (attr_mmap2 only) */
6898                 /* .ino (attr_mmap2 only) */
6899                 /* .ino_generation (attr_mmap2 only) */
6900                 /* .prot (attr_mmap2 only) */
6901                 /* .flags (attr_mmap2 only) */
6902         };
6903
6904         perf_addr_filters_adjust(vma);
6905         perf_event_mmap_event(&mmap_event);
6906 }
6907
6908 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6909                           unsigned long size, u64 flags)
6910 {
6911         struct perf_output_handle handle;
6912         struct perf_sample_data sample;
6913         struct perf_aux_event {
6914                 struct perf_event_header        header;
6915                 u64                             offset;
6916                 u64                             size;
6917                 u64                             flags;
6918         } rec = {
6919                 .header = {
6920                         .type = PERF_RECORD_AUX,
6921                         .misc = 0,
6922                         .size = sizeof(rec),
6923                 },
6924                 .offset         = head,
6925                 .size           = size,
6926                 .flags          = flags,
6927         };
6928         int ret;
6929
6930         perf_event_header__init_id(&rec.header, &sample, event);
6931         ret = perf_output_begin(&handle, event, rec.header.size);
6932
6933         if (ret)
6934                 return;
6935
6936         perf_output_put(&handle, rec);
6937         perf_event__output_id_sample(event, &handle, &sample);
6938
6939         perf_output_end(&handle);
6940 }
6941
6942 /*
6943  * Lost/dropped samples logging
6944  */
6945 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6946 {
6947         struct perf_output_handle handle;
6948         struct perf_sample_data sample;
6949         int ret;
6950
6951         struct {
6952                 struct perf_event_header        header;
6953                 u64                             lost;
6954         } lost_samples_event = {
6955                 .header = {
6956                         .type = PERF_RECORD_LOST_SAMPLES,
6957                         .misc = 0,
6958                         .size = sizeof(lost_samples_event),
6959                 },
6960                 .lost           = lost,
6961         };
6962
6963         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6964
6965         ret = perf_output_begin(&handle, event,
6966                                 lost_samples_event.header.size);
6967         if (ret)
6968                 return;
6969
6970         perf_output_put(&handle, lost_samples_event);
6971         perf_event__output_id_sample(event, &handle, &sample);
6972         perf_output_end(&handle);
6973 }
6974
6975 /*
6976  * context_switch tracking
6977  */
6978
6979 struct perf_switch_event {
6980         struct task_struct      *task;
6981         struct task_struct      *next_prev;
6982
6983         struct {
6984                 struct perf_event_header        header;
6985                 u32                             next_prev_pid;
6986                 u32                             next_prev_tid;
6987         } event_id;
6988 };
6989
6990 static int perf_event_switch_match(struct perf_event *event)
6991 {
6992         return event->attr.context_switch;
6993 }
6994
6995 static void perf_event_switch_output(struct perf_event *event, void *data)
6996 {
6997         struct perf_switch_event *se = data;
6998         struct perf_output_handle handle;
6999         struct perf_sample_data sample;
7000         int ret;
7001
7002         if (!perf_event_switch_match(event))
7003                 return;
7004
7005         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7006         if (event->ctx->task) {
7007                 se->event_id.header.type = PERF_RECORD_SWITCH;
7008                 se->event_id.header.size = sizeof(se->event_id.header);
7009         } else {
7010                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7011                 se->event_id.header.size = sizeof(se->event_id);
7012                 se->event_id.next_prev_pid =
7013                                         perf_event_pid(event, se->next_prev);
7014                 se->event_id.next_prev_tid =
7015                                         perf_event_tid(event, se->next_prev);
7016         }
7017
7018         perf_event_header__init_id(&se->event_id.header, &sample, event);
7019
7020         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7021         if (ret)
7022                 return;
7023
7024         if (event->ctx->task)
7025                 perf_output_put(&handle, se->event_id.header);
7026         else
7027                 perf_output_put(&handle, se->event_id);
7028
7029         perf_event__output_id_sample(event, &handle, &sample);
7030
7031         perf_output_end(&handle);
7032 }
7033
7034 static void perf_event_switch(struct task_struct *task,
7035                               struct task_struct *next_prev, bool sched_in)
7036 {
7037         struct perf_switch_event switch_event;
7038
7039         /* N.B. caller checks nr_switch_events != 0 */
7040
7041         switch_event = (struct perf_switch_event){
7042                 .task           = task,
7043                 .next_prev      = next_prev,
7044                 .event_id       = {
7045                         .header = {
7046                                 /* .type */
7047                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7048                                 /* .size */
7049                         },
7050                         /* .next_prev_pid */
7051                         /* .next_prev_tid */
7052                 },
7053         };
7054
7055         perf_iterate_sb(perf_event_switch_output,
7056                        &switch_event,
7057                        NULL);
7058 }
7059
7060 /*
7061  * IRQ throttle logging
7062  */
7063
7064 static void perf_log_throttle(struct perf_event *event, int enable)
7065 {
7066         struct perf_output_handle handle;
7067         struct perf_sample_data sample;
7068         int ret;
7069
7070         struct {
7071                 struct perf_event_header        header;
7072                 u64                             time;
7073                 u64                             id;
7074                 u64                             stream_id;
7075         } throttle_event = {
7076                 .header = {
7077                         .type = PERF_RECORD_THROTTLE,
7078                         .misc = 0,
7079                         .size = sizeof(throttle_event),
7080                 },
7081                 .time           = perf_event_clock(event),
7082                 .id             = primary_event_id(event),
7083                 .stream_id      = event->id,
7084         };
7085
7086         if (enable)
7087                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7088
7089         perf_event_header__init_id(&throttle_event.header, &sample, event);
7090
7091         ret = perf_output_begin(&handle, event,
7092                                 throttle_event.header.size);
7093         if (ret)
7094                 return;
7095
7096         perf_output_put(&handle, throttle_event);
7097         perf_event__output_id_sample(event, &handle, &sample);
7098         perf_output_end(&handle);
7099 }
7100
7101 static void perf_log_itrace_start(struct perf_event *event)
7102 {
7103         struct perf_output_handle handle;
7104         struct perf_sample_data sample;
7105         struct perf_aux_event {
7106                 struct perf_event_header        header;
7107                 u32                             pid;
7108                 u32                             tid;
7109         } rec;
7110         int ret;
7111
7112         if (event->parent)
7113                 event = event->parent;
7114
7115         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7116             event->hw.itrace_started)
7117                 return;
7118
7119         rec.header.type = PERF_RECORD_ITRACE_START;
7120         rec.header.misc = 0;
7121         rec.header.size = sizeof(rec);
7122         rec.pid = perf_event_pid(event, current);
7123         rec.tid = perf_event_tid(event, current);
7124
7125         perf_event_header__init_id(&rec.header, &sample, event);
7126         ret = perf_output_begin(&handle, event, rec.header.size);
7127
7128         if (ret)
7129                 return;
7130
7131         perf_output_put(&handle, rec);
7132         perf_event__output_id_sample(event, &handle, &sample);
7133
7134         perf_output_end(&handle);
7135 }
7136
7137 static int
7138 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7139 {
7140         struct hw_perf_event *hwc = &event->hw;
7141         int ret = 0;
7142         u64 seq;
7143
7144         seq = __this_cpu_read(perf_throttled_seq);
7145         if (seq != hwc->interrupts_seq) {
7146                 hwc->interrupts_seq = seq;
7147                 hwc->interrupts = 1;
7148         } else {
7149                 hwc->interrupts++;
7150                 if (unlikely(throttle
7151                              && hwc->interrupts >= max_samples_per_tick)) {
7152                         __this_cpu_inc(perf_throttled_count);
7153                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7154                         hwc->interrupts = MAX_INTERRUPTS;
7155                         perf_log_throttle(event, 0);
7156                         ret = 1;
7157                 }
7158         }
7159
7160         if (event->attr.freq) {
7161                 u64 now = perf_clock();
7162                 s64 delta = now - hwc->freq_time_stamp;
7163
7164                 hwc->freq_time_stamp = now;
7165
7166                 if (delta > 0 && delta < 2*TICK_NSEC)
7167                         perf_adjust_period(event, delta, hwc->last_period, true);
7168         }
7169
7170         return ret;
7171 }
7172
7173 int perf_event_account_interrupt(struct perf_event *event)
7174 {
7175         return __perf_event_account_interrupt(event, 1);
7176 }
7177
7178 /*
7179  * Generic event overflow handling, sampling.
7180  */
7181
7182 static int __perf_event_overflow(struct perf_event *event,
7183                                    int throttle, struct perf_sample_data *data,
7184                                    struct pt_regs *regs)
7185 {
7186         int events = atomic_read(&event->event_limit);
7187         int ret = 0;
7188
7189         /*
7190          * Non-sampling counters might still use the PMI to fold short
7191          * hardware counters, ignore those.
7192          */
7193         if (unlikely(!is_sampling_event(event)))
7194                 return 0;
7195
7196         ret = __perf_event_account_interrupt(event, throttle);
7197
7198         /*
7199          * XXX event_limit might not quite work as expected on inherited
7200          * events
7201          */
7202
7203         event->pending_kill = POLL_IN;
7204         if (events && atomic_dec_and_test(&event->event_limit)) {
7205                 ret = 1;
7206                 event->pending_kill = POLL_HUP;
7207
7208                 perf_event_disable_inatomic(event);
7209         }
7210
7211         READ_ONCE(event->overflow_handler)(event, data, regs);
7212
7213         if (*perf_event_fasync(event) && event->pending_kill) {
7214                 event->pending_wakeup = 1;
7215                 irq_work_queue(&event->pending);
7216         }
7217
7218         return ret;
7219 }
7220
7221 int perf_event_overflow(struct perf_event *event,
7222                           struct perf_sample_data *data,
7223                           struct pt_regs *regs)
7224 {
7225         return __perf_event_overflow(event, 1, data, regs);
7226 }
7227
7228 /*
7229  * Generic software event infrastructure
7230  */
7231
7232 struct swevent_htable {
7233         struct swevent_hlist            *swevent_hlist;
7234         struct mutex                    hlist_mutex;
7235         int                             hlist_refcount;
7236
7237         /* Recursion avoidance in each contexts */
7238         int                             recursion[PERF_NR_CONTEXTS];
7239 };
7240
7241 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7242
7243 /*
7244  * We directly increment event->count and keep a second value in
7245  * event->hw.period_left to count intervals. This period event
7246  * is kept in the range [-sample_period, 0] so that we can use the
7247  * sign as trigger.
7248  */
7249
7250 u64 perf_swevent_set_period(struct perf_event *event)
7251 {
7252         struct hw_perf_event *hwc = &event->hw;
7253         u64 period = hwc->last_period;
7254         u64 nr, offset;
7255         s64 old, val;
7256
7257         hwc->last_period = hwc->sample_period;
7258
7259 again:
7260         old = val = local64_read(&hwc->period_left);
7261         if (val < 0)
7262                 return 0;
7263
7264         nr = div64_u64(period + val, period);
7265         offset = nr * period;
7266         val -= offset;
7267         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7268                 goto again;
7269
7270         return nr;
7271 }
7272
7273 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7274                                     struct perf_sample_data *data,
7275                                     struct pt_regs *regs)
7276 {
7277         struct hw_perf_event *hwc = &event->hw;
7278         int throttle = 0;
7279
7280         if (!overflow)
7281                 overflow = perf_swevent_set_period(event);
7282
7283         if (hwc->interrupts == MAX_INTERRUPTS)
7284                 return;
7285
7286         for (; overflow; overflow--) {
7287                 if (__perf_event_overflow(event, throttle,
7288                                             data, regs)) {
7289                         /*
7290                          * We inhibit the overflow from happening when
7291                          * hwc->interrupts == MAX_INTERRUPTS.
7292                          */
7293                         break;
7294                 }
7295                 throttle = 1;
7296         }
7297 }
7298
7299 static void perf_swevent_event(struct perf_event *event, u64 nr,
7300                                struct perf_sample_data *data,
7301                                struct pt_regs *regs)
7302 {
7303         struct hw_perf_event *hwc = &event->hw;
7304
7305         local64_add(nr, &event->count);
7306
7307         if (!regs)
7308                 return;
7309
7310         if (!is_sampling_event(event))
7311                 return;
7312
7313         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7314                 data->period = nr;
7315                 return perf_swevent_overflow(event, 1, data, regs);
7316         } else
7317                 data->period = event->hw.last_period;
7318
7319         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7320                 return perf_swevent_overflow(event, 1, data, regs);
7321
7322         if (local64_add_negative(nr, &hwc->period_left))
7323                 return;
7324
7325         perf_swevent_overflow(event, 0, data, regs);
7326 }
7327
7328 static int perf_exclude_event(struct perf_event *event,
7329                               struct pt_regs *regs)
7330 {
7331         if (event->hw.state & PERF_HES_STOPPED)
7332                 return 1;
7333
7334         if (regs) {
7335                 if (event->attr.exclude_user && user_mode(regs))
7336                         return 1;
7337
7338                 if (event->attr.exclude_kernel && !user_mode(regs))
7339                         return 1;
7340         }
7341
7342         return 0;
7343 }
7344
7345 static int perf_swevent_match(struct perf_event *event,
7346                                 enum perf_type_id type,
7347                                 u32 event_id,
7348                                 struct perf_sample_data *data,
7349                                 struct pt_regs *regs)
7350 {
7351         if (event->attr.type != type)
7352                 return 0;
7353
7354         if (event->attr.config != event_id)
7355                 return 0;
7356
7357         if (perf_exclude_event(event, regs))
7358                 return 0;
7359
7360         return 1;
7361 }
7362
7363 static inline u64 swevent_hash(u64 type, u32 event_id)
7364 {
7365         u64 val = event_id | (type << 32);
7366
7367         return hash_64(val, SWEVENT_HLIST_BITS);
7368 }
7369
7370 static inline struct hlist_head *
7371 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7372 {
7373         u64 hash = swevent_hash(type, event_id);
7374
7375         return &hlist->heads[hash];
7376 }
7377
7378 /* For the read side: events when they trigger */
7379 static inline struct hlist_head *
7380 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7381 {
7382         struct swevent_hlist *hlist;
7383
7384         hlist = rcu_dereference(swhash->swevent_hlist);
7385         if (!hlist)
7386                 return NULL;
7387
7388         return __find_swevent_head(hlist, type, event_id);
7389 }
7390
7391 /* For the event head insertion and removal in the hlist */
7392 static inline struct hlist_head *
7393 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7394 {
7395         struct swevent_hlist *hlist;
7396         u32 event_id = event->attr.config;
7397         u64 type = event->attr.type;
7398
7399         /*
7400          * Event scheduling is always serialized against hlist allocation
7401          * and release. Which makes the protected version suitable here.
7402          * The context lock guarantees that.
7403          */
7404         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7405                                           lockdep_is_held(&event->ctx->lock));
7406         if (!hlist)
7407                 return NULL;
7408
7409         return __find_swevent_head(hlist, type, event_id);
7410 }
7411
7412 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7413                                     u64 nr,
7414                                     struct perf_sample_data *data,
7415                                     struct pt_regs *regs)
7416 {
7417         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7418         struct perf_event *event;
7419         struct hlist_head *head;
7420
7421         rcu_read_lock();
7422         head = find_swevent_head_rcu(swhash, type, event_id);
7423         if (!head)
7424                 goto end;
7425
7426         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7427                 if (perf_swevent_match(event, type, event_id, data, regs))
7428                         perf_swevent_event(event, nr, data, regs);
7429         }
7430 end:
7431         rcu_read_unlock();
7432 }
7433
7434 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7435
7436 int perf_swevent_get_recursion_context(void)
7437 {
7438         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7439
7440         return get_recursion_context(swhash->recursion);
7441 }
7442 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7443
7444 void perf_swevent_put_recursion_context(int rctx)
7445 {
7446         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7447
7448         put_recursion_context(swhash->recursion, rctx);
7449 }
7450
7451 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7452 {
7453         struct perf_sample_data data;
7454
7455         if (WARN_ON_ONCE(!regs))
7456                 return;
7457
7458         perf_sample_data_init(&data, addr, 0);
7459         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7460 }
7461
7462 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7463 {
7464         int rctx;
7465
7466         preempt_disable_notrace();
7467         rctx = perf_swevent_get_recursion_context();
7468         if (unlikely(rctx < 0))
7469                 goto fail;
7470
7471         ___perf_sw_event(event_id, nr, regs, addr);
7472
7473         perf_swevent_put_recursion_context(rctx);
7474 fail:
7475         preempt_enable_notrace();
7476 }
7477
7478 static void perf_swevent_read(struct perf_event *event)
7479 {
7480 }
7481
7482 static int perf_swevent_add(struct perf_event *event, int flags)
7483 {
7484         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7485         struct hw_perf_event *hwc = &event->hw;
7486         struct hlist_head *head;
7487
7488         if (is_sampling_event(event)) {
7489                 hwc->last_period = hwc->sample_period;
7490                 perf_swevent_set_period(event);
7491         }
7492
7493         hwc->state = !(flags & PERF_EF_START);
7494
7495         head = find_swevent_head(swhash, event);
7496         if (WARN_ON_ONCE(!head))
7497                 return -EINVAL;
7498
7499         hlist_add_head_rcu(&event->hlist_entry, head);
7500         perf_event_update_userpage(event);
7501
7502         return 0;
7503 }
7504
7505 static void perf_swevent_del(struct perf_event *event, int flags)
7506 {
7507         hlist_del_rcu(&event->hlist_entry);
7508 }
7509
7510 static void perf_swevent_start(struct perf_event *event, int flags)
7511 {
7512         event->hw.state = 0;
7513 }
7514
7515 static void perf_swevent_stop(struct perf_event *event, int flags)
7516 {
7517         event->hw.state = PERF_HES_STOPPED;
7518 }
7519
7520 /* Deref the hlist from the update side */
7521 static inline struct swevent_hlist *
7522 swevent_hlist_deref(struct swevent_htable *swhash)
7523 {
7524         return rcu_dereference_protected(swhash->swevent_hlist,
7525                                          lockdep_is_held(&swhash->hlist_mutex));
7526 }
7527
7528 static void swevent_hlist_release(struct swevent_htable *swhash)
7529 {
7530         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7531
7532         if (!hlist)
7533                 return;
7534
7535         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7536         kfree_rcu(hlist, rcu_head);
7537 }
7538
7539 static void swevent_hlist_put_cpu(int cpu)
7540 {
7541         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7542
7543         mutex_lock(&swhash->hlist_mutex);
7544
7545         if (!--swhash->hlist_refcount)
7546                 swevent_hlist_release(swhash);
7547
7548         mutex_unlock(&swhash->hlist_mutex);
7549 }
7550
7551 static void swevent_hlist_put(void)
7552 {
7553         int cpu;
7554
7555         for_each_possible_cpu(cpu)
7556                 swevent_hlist_put_cpu(cpu);
7557 }
7558
7559 static int swevent_hlist_get_cpu(int cpu)
7560 {
7561         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7562         int err = 0;
7563
7564         mutex_lock(&swhash->hlist_mutex);
7565         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7566                 struct swevent_hlist *hlist;
7567
7568                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7569                 if (!hlist) {
7570                         err = -ENOMEM;
7571                         goto exit;
7572                 }
7573                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7574         }
7575         swhash->hlist_refcount++;
7576 exit:
7577         mutex_unlock(&swhash->hlist_mutex);
7578
7579         return err;
7580 }
7581
7582 static int swevent_hlist_get(void)
7583 {
7584         int err, cpu, failed_cpu;
7585
7586         get_online_cpus();
7587         for_each_possible_cpu(cpu) {
7588                 err = swevent_hlist_get_cpu(cpu);
7589                 if (err) {
7590                         failed_cpu = cpu;
7591                         goto fail;
7592                 }
7593         }
7594         put_online_cpus();
7595
7596         return 0;
7597 fail:
7598         for_each_possible_cpu(cpu) {
7599                 if (cpu == failed_cpu)
7600                         break;
7601                 swevent_hlist_put_cpu(cpu);
7602         }
7603
7604         put_online_cpus();
7605         return err;
7606 }
7607
7608 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7609
7610 static void sw_perf_event_destroy(struct perf_event *event)
7611 {
7612         u64 event_id = event->attr.config;
7613
7614         WARN_ON(event->parent);
7615
7616         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7617         swevent_hlist_put();
7618 }
7619
7620 static int perf_swevent_init(struct perf_event *event)
7621 {
7622         u64 event_id = event->attr.config;
7623
7624         if (event->attr.type != PERF_TYPE_SOFTWARE)
7625                 return -ENOENT;
7626
7627         /*
7628          * no branch sampling for software events
7629          */
7630         if (has_branch_stack(event))
7631                 return -EOPNOTSUPP;
7632
7633         switch (event_id) {
7634         case PERF_COUNT_SW_CPU_CLOCK:
7635         case PERF_COUNT_SW_TASK_CLOCK:
7636                 return -ENOENT;
7637
7638         default:
7639                 break;
7640         }
7641
7642         if (event_id >= PERF_COUNT_SW_MAX)
7643                 return -ENOENT;
7644
7645         if (!event->parent) {
7646                 int err;
7647
7648                 err = swevent_hlist_get();
7649                 if (err)
7650                         return err;
7651
7652                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7653                 event->destroy = sw_perf_event_destroy;
7654         }
7655
7656         return 0;
7657 }
7658
7659 static struct pmu perf_swevent = {
7660         .task_ctx_nr    = perf_sw_context,
7661
7662         .capabilities   = PERF_PMU_CAP_NO_NMI,
7663
7664         .event_init     = perf_swevent_init,
7665         .add            = perf_swevent_add,
7666         .del            = perf_swevent_del,
7667         .start          = perf_swevent_start,
7668         .stop           = perf_swevent_stop,
7669         .read           = perf_swevent_read,
7670 };
7671
7672 #ifdef CONFIG_EVENT_TRACING
7673
7674 static int perf_tp_filter_match(struct perf_event *event,
7675                                 struct perf_sample_data *data)
7676 {
7677         void *record = data->raw->frag.data;
7678
7679         /* only top level events have filters set */
7680         if (event->parent)
7681                 event = event->parent;
7682
7683         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7684                 return 1;
7685         return 0;
7686 }
7687
7688 static int perf_tp_event_match(struct perf_event *event,
7689                                 struct perf_sample_data *data,
7690                                 struct pt_regs *regs)
7691 {
7692         if (event->hw.state & PERF_HES_STOPPED)
7693                 return 0;
7694         /*
7695          * All tracepoints are from kernel-space.
7696          */
7697         if (event->attr.exclude_kernel)
7698                 return 0;
7699
7700         if (!perf_tp_filter_match(event, data))
7701                 return 0;
7702
7703         return 1;
7704 }
7705
7706 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7707                                struct trace_event_call *call, u64 count,
7708                                struct pt_regs *regs, struct hlist_head *head,
7709                                struct task_struct *task)
7710 {
7711         struct bpf_prog *prog = call->prog;
7712
7713         if (prog) {
7714                 *(struct pt_regs **)raw_data = regs;
7715                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7716                         perf_swevent_put_recursion_context(rctx);
7717                         return;
7718                 }
7719         }
7720         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7721                       rctx, task);
7722 }
7723 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7724
7725 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7726                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7727                    struct task_struct *task)
7728 {
7729         struct perf_sample_data data;
7730         struct perf_event *event;
7731
7732         struct perf_raw_record raw = {
7733                 .frag = {
7734                         .size = entry_size,
7735                         .data = record,
7736                 },
7737         };
7738
7739         perf_sample_data_init(&data, 0, 0);
7740         data.raw = &raw;
7741
7742         perf_trace_buf_update(record, event_type);
7743
7744         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7745                 if (perf_tp_event_match(event, &data, regs))
7746                         perf_swevent_event(event, count, &data, regs);
7747         }
7748
7749         /*
7750          * If we got specified a target task, also iterate its context and
7751          * deliver this event there too.
7752          */
7753         if (task && task != current) {
7754                 struct perf_event_context *ctx;
7755                 struct trace_entry *entry = record;
7756
7757                 rcu_read_lock();
7758                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7759                 if (!ctx)
7760                         goto unlock;
7761
7762                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7763                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7764                                 continue;
7765                         if (event->attr.config != entry->type)
7766                                 continue;
7767                         if (perf_tp_event_match(event, &data, regs))
7768                                 perf_swevent_event(event, count, &data, regs);
7769                 }
7770 unlock:
7771                 rcu_read_unlock();
7772         }
7773
7774         perf_swevent_put_recursion_context(rctx);
7775 }
7776 EXPORT_SYMBOL_GPL(perf_tp_event);
7777
7778 static void tp_perf_event_destroy(struct perf_event *event)
7779 {
7780         perf_trace_destroy(event);
7781 }
7782
7783 static int perf_tp_event_init(struct perf_event *event)
7784 {
7785         int err;
7786
7787         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7788                 return -ENOENT;
7789
7790         /*
7791          * no branch sampling for tracepoint events
7792          */
7793         if (has_branch_stack(event))
7794                 return -EOPNOTSUPP;
7795
7796         err = perf_trace_init(event);
7797         if (err)
7798                 return err;
7799
7800         event->destroy = tp_perf_event_destroy;
7801
7802         return 0;
7803 }
7804
7805 static struct pmu perf_tracepoint = {
7806         .task_ctx_nr    = perf_sw_context,
7807
7808         .event_init     = perf_tp_event_init,
7809         .add            = perf_trace_add,
7810         .del            = perf_trace_del,
7811         .start          = perf_swevent_start,
7812         .stop           = perf_swevent_stop,
7813         .read           = perf_swevent_read,
7814 };
7815
7816 static inline void perf_tp_register(void)
7817 {
7818         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7819 }
7820
7821 static void perf_event_free_filter(struct perf_event *event)
7822 {
7823         ftrace_profile_free_filter(event);
7824 }
7825
7826 #ifdef CONFIG_BPF_SYSCALL
7827 static void bpf_overflow_handler(struct perf_event *event,
7828                                  struct perf_sample_data *data,
7829                                  struct pt_regs *regs)
7830 {
7831         struct bpf_perf_event_data_kern ctx = {
7832                 .data = data,
7833                 .regs = regs,
7834         };
7835         int ret = 0;
7836
7837         preempt_disable();
7838         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7839                 goto out;
7840         rcu_read_lock();
7841         ret = BPF_PROG_RUN(event->prog, &ctx);
7842         rcu_read_unlock();
7843 out:
7844         __this_cpu_dec(bpf_prog_active);
7845         preempt_enable();
7846         if (!ret)
7847                 return;
7848
7849         event->orig_overflow_handler(event, data, regs);
7850 }
7851
7852 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7853 {
7854         struct bpf_prog *prog;
7855
7856         if (event->overflow_handler_context)
7857                 /* hw breakpoint or kernel counter */
7858                 return -EINVAL;
7859
7860         if (event->prog)
7861                 return -EEXIST;
7862
7863         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7864         if (IS_ERR(prog))
7865                 return PTR_ERR(prog);
7866
7867         event->prog = prog;
7868         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7869         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7870         return 0;
7871 }
7872
7873 static void perf_event_free_bpf_handler(struct perf_event *event)
7874 {
7875         struct bpf_prog *prog = event->prog;
7876
7877         if (!prog)
7878                 return;
7879
7880         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7881         event->prog = NULL;
7882         bpf_prog_put(prog);
7883 }
7884 #else
7885 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7886 {
7887         return -EOPNOTSUPP;
7888 }
7889 static void perf_event_free_bpf_handler(struct perf_event *event)
7890 {
7891 }
7892 #endif
7893
7894 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7895 {
7896         bool is_kprobe, is_tracepoint;
7897         struct bpf_prog *prog;
7898
7899         if (event->attr.type == PERF_TYPE_HARDWARE ||
7900             event->attr.type == PERF_TYPE_SOFTWARE)
7901                 return perf_event_set_bpf_handler(event, prog_fd);
7902
7903         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7904                 return -EINVAL;
7905
7906         if (event->tp_event->prog)
7907                 return -EEXIST;
7908
7909         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7910         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7911         if (!is_kprobe && !is_tracepoint)
7912                 /* bpf programs can only be attached to u/kprobe or tracepoint */
7913                 return -EINVAL;
7914
7915         prog = bpf_prog_get(prog_fd);
7916         if (IS_ERR(prog))
7917                 return PTR_ERR(prog);
7918
7919         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7920             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7921                 /* valid fd, but invalid bpf program type */
7922                 bpf_prog_put(prog);
7923                 return -EINVAL;
7924         }
7925
7926         if (is_tracepoint) {
7927                 int off = trace_event_get_offsets(event->tp_event);
7928
7929                 if (prog->aux->max_ctx_offset > off) {
7930                         bpf_prog_put(prog);
7931                         return -EACCES;
7932                 }
7933         }
7934         event->tp_event->prog = prog;
7935
7936         return 0;
7937 }
7938
7939 static void perf_event_free_bpf_prog(struct perf_event *event)
7940 {
7941         struct bpf_prog *prog;
7942
7943         perf_event_free_bpf_handler(event);
7944
7945         if (!event->tp_event)
7946                 return;
7947
7948         prog = event->tp_event->prog;
7949         if (prog) {
7950                 event->tp_event->prog = NULL;
7951                 bpf_prog_put(prog);
7952         }
7953 }
7954
7955 #else
7956
7957 static inline void perf_tp_register(void)
7958 {
7959 }
7960
7961 static void perf_event_free_filter(struct perf_event *event)
7962 {
7963 }
7964
7965 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7966 {
7967         return -ENOENT;
7968 }
7969
7970 static void perf_event_free_bpf_prog(struct perf_event *event)
7971 {
7972 }
7973 #endif /* CONFIG_EVENT_TRACING */
7974
7975 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7976 void perf_bp_event(struct perf_event *bp, void *data)
7977 {
7978         struct perf_sample_data sample;
7979         struct pt_regs *regs = data;
7980
7981         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7982
7983         if (!bp->hw.state && !perf_exclude_event(bp, regs))
7984                 perf_swevent_event(bp, 1, &sample, regs);
7985 }
7986 #endif
7987
7988 /*
7989  * Allocate a new address filter
7990  */
7991 static struct perf_addr_filter *
7992 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7993 {
7994         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7995         struct perf_addr_filter *filter;
7996
7997         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7998         if (!filter)
7999                 return NULL;
8000
8001         INIT_LIST_HEAD(&filter->entry);
8002         list_add_tail(&filter->entry, filters);
8003
8004         return filter;
8005 }
8006
8007 static void free_filters_list(struct list_head *filters)
8008 {
8009         struct perf_addr_filter *filter, *iter;
8010
8011         list_for_each_entry_safe(filter, iter, filters, entry) {
8012                 if (filter->inode)
8013                         iput(filter->inode);
8014                 list_del(&filter->entry);
8015                 kfree(filter);
8016         }
8017 }
8018
8019 /*
8020  * Free existing address filters and optionally install new ones
8021  */
8022 static void perf_addr_filters_splice(struct perf_event *event,
8023                                      struct list_head *head)
8024 {
8025         unsigned long flags;
8026         LIST_HEAD(list);
8027
8028         if (!has_addr_filter(event))
8029                 return;
8030
8031         /* don't bother with children, they don't have their own filters */
8032         if (event->parent)
8033                 return;
8034
8035         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8036
8037         list_splice_init(&event->addr_filters.list, &list);
8038         if (head)
8039                 list_splice(head, &event->addr_filters.list);
8040
8041         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8042
8043         free_filters_list(&list);
8044 }
8045
8046 /*
8047  * Scan through mm's vmas and see if one of them matches the
8048  * @filter; if so, adjust filter's address range.
8049  * Called with mm::mmap_sem down for reading.
8050  */
8051 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8052                                             struct mm_struct *mm)
8053 {
8054         struct vm_area_struct *vma;
8055
8056         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8057                 struct file *file = vma->vm_file;
8058                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8059                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8060
8061                 if (!file)
8062                         continue;
8063
8064                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8065                         continue;
8066
8067                 return vma->vm_start;
8068         }
8069
8070         return 0;
8071 }
8072
8073 /*
8074  * Update event's address range filters based on the
8075  * task's existing mappings, if any.
8076  */
8077 static void perf_event_addr_filters_apply(struct perf_event *event)
8078 {
8079         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8080         struct task_struct *task = READ_ONCE(event->ctx->task);
8081         struct perf_addr_filter *filter;
8082         struct mm_struct *mm = NULL;
8083         unsigned int count = 0;
8084         unsigned long flags;
8085
8086         /*
8087          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8088          * will stop on the parent's child_mutex that our caller is also holding
8089          */
8090         if (task == TASK_TOMBSTONE)
8091                 return;
8092
8093         mm = get_task_mm(event->ctx->task);
8094         if (!mm)
8095                 goto restart;
8096
8097         down_read(&mm->mmap_sem);
8098
8099         raw_spin_lock_irqsave(&ifh->lock, flags);
8100         list_for_each_entry(filter, &ifh->list, entry) {
8101                 event->addr_filters_offs[count] = 0;
8102
8103                 /*
8104                  * Adjust base offset if the filter is associated to a binary
8105                  * that needs to be mapped:
8106                  */
8107                 if (filter->inode)
8108                         event->addr_filters_offs[count] =
8109                                 perf_addr_filter_apply(filter, mm);
8110
8111                 count++;
8112         }
8113
8114         event->addr_filters_gen++;
8115         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8116
8117         up_read(&mm->mmap_sem);
8118
8119         mmput(mm);
8120
8121 restart:
8122         perf_event_stop(event, 1);
8123 }
8124
8125 /*
8126  * Address range filtering: limiting the data to certain
8127  * instruction address ranges. Filters are ioctl()ed to us from
8128  * userspace as ascii strings.
8129  *
8130  * Filter string format:
8131  *
8132  * ACTION RANGE_SPEC
8133  * where ACTION is one of the
8134  *  * "filter": limit the trace to this region
8135  *  * "start": start tracing from this address
8136  *  * "stop": stop tracing at this address/region;
8137  * RANGE_SPEC is
8138  *  * for kernel addresses: <start address>[/<size>]
8139  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8140  *
8141  * if <size> is not specified, the range is treated as a single address.
8142  */
8143 enum {
8144         IF_ACT_NONE = -1,
8145         IF_ACT_FILTER,
8146         IF_ACT_START,
8147         IF_ACT_STOP,
8148         IF_SRC_FILE,
8149         IF_SRC_KERNEL,
8150         IF_SRC_FILEADDR,
8151         IF_SRC_KERNELADDR,
8152 };
8153
8154 enum {
8155         IF_STATE_ACTION = 0,
8156         IF_STATE_SOURCE,
8157         IF_STATE_END,
8158 };
8159
8160 static const match_table_t if_tokens = {
8161         { IF_ACT_FILTER,        "filter" },
8162         { IF_ACT_START,         "start" },
8163         { IF_ACT_STOP,          "stop" },
8164         { IF_SRC_FILE,          "%u/%u@%s" },
8165         { IF_SRC_KERNEL,        "%u/%u" },
8166         { IF_SRC_FILEADDR,      "%u@%s" },
8167         { IF_SRC_KERNELADDR,    "%u" },
8168         { IF_ACT_NONE,          NULL },
8169 };
8170
8171 /*
8172  * Address filter string parser
8173  */
8174 static int
8175 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8176                              struct list_head *filters)
8177 {
8178         struct perf_addr_filter *filter = NULL;
8179         char *start, *orig, *filename = NULL;
8180         struct path path;
8181         substring_t args[MAX_OPT_ARGS];
8182         int state = IF_STATE_ACTION, token;
8183         unsigned int kernel = 0;
8184         int ret = -EINVAL;
8185
8186         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8187         if (!fstr)
8188                 return -ENOMEM;
8189
8190         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8191                 ret = -EINVAL;
8192
8193                 if (!*start)
8194                         continue;
8195
8196                 /* filter definition begins */
8197                 if (state == IF_STATE_ACTION) {
8198                         filter = perf_addr_filter_new(event, filters);
8199                         if (!filter)
8200                                 goto fail;
8201                 }
8202
8203                 token = match_token(start, if_tokens, args);
8204                 switch (token) {
8205                 case IF_ACT_FILTER:
8206                 case IF_ACT_START:
8207                         filter->filter = 1;
8208
8209                 case IF_ACT_STOP:
8210                         if (state != IF_STATE_ACTION)
8211                                 goto fail;
8212
8213                         state = IF_STATE_SOURCE;
8214                         break;
8215
8216                 case IF_SRC_KERNELADDR:
8217                 case IF_SRC_KERNEL:
8218                         kernel = 1;
8219
8220                 case IF_SRC_FILEADDR:
8221                 case IF_SRC_FILE:
8222                         if (state != IF_STATE_SOURCE)
8223                                 goto fail;
8224
8225                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8226                                 filter->range = 1;
8227
8228                         *args[0].to = 0;
8229                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8230                         if (ret)
8231                                 goto fail;
8232
8233                         if (filter->range) {
8234                                 *args[1].to = 0;
8235                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8236                                 if (ret)
8237                                         goto fail;
8238                         }
8239
8240                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8241                                 int fpos = filter->range ? 2 : 1;
8242
8243                                 filename = match_strdup(&args[fpos]);
8244                                 if (!filename) {
8245                                         ret = -ENOMEM;
8246                                         goto fail;
8247                                 }
8248                         }
8249
8250                         state = IF_STATE_END;
8251                         break;
8252
8253                 default:
8254                         goto fail;
8255                 }
8256
8257                 /*
8258                  * Filter definition is fully parsed, validate and install it.
8259                  * Make sure that it doesn't contradict itself or the event's
8260                  * attribute.
8261                  */
8262                 if (state == IF_STATE_END) {
8263                         ret = -EINVAL;
8264                         if (kernel && event->attr.exclude_kernel)
8265                                 goto fail;
8266
8267                         if (!kernel) {
8268                                 if (!filename)
8269                                         goto fail;
8270
8271                                 /* look up the path and grab its inode */
8272                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8273                                 if (ret)
8274                                         goto fail_free_name;
8275
8276                                 filter->inode = igrab(d_inode(path.dentry));
8277                                 path_put(&path);
8278                                 kfree(filename);
8279                                 filename = NULL;
8280
8281                                 ret = -EINVAL;
8282                                 if (!filter->inode ||
8283                                     !S_ISREG(filter->inode->i_mode))
8284                                         /* free_filters_list() will iput() */
8285                                         goto fail;
8286                         }
8287
8288                         /* ready to consume more filters */
8289                         state = IF_STATE_ACTION;
8290                         filter = NULL;
8291                 }
8292         }
8293
8294         if (state != IF_STATE_ACTION)
8295                 goto fail;
8296
8297         kfree(orig);
8298
8299         return 0;
8300
8301 fail_free_name:
8302         kfree(filename);
8303 fail:
8304         free_filters_list(filters);
8305         kfree(orig);
8306
8307         return ret;
8308 }
8309
8310 static int
8311 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8312 {
8313         LIST_HEAD(filters);
8314         int ret;
8315
8316         /*
8317          * Since this is called in perf_ioctl() path, we're already holding
8318          * ctx::mutex.
8319          */
8320         lockdep_assert_held(&event->ctx->mutex);
8321
8322         if (WARN_ON_ONCE(event->parent))
8323                 return -EINVAL;
8324
8325         /*
8326          * For now, we only support filtering in per-task events; doing so
8327          * for CPU-wide events requires additional context switching trickery,
8328          * since same object code will be mapped at different virtual
8329          * addresses in different processes.
8330          */
8331         if (!event->ctx->task)
8332                 return -EOPNOTSUPP;
8333
8334         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8335         if (ret)
8336                 return ret;
8337
8338         ret = event->pmu->addr_filters_validate(&filters);
8339         if (ret) {
8340                 free_filters_list(&filters);
8341                 return ret;
8342         }
8343
8344         /* remove existing filters, if any */
8345         perf_addr_filters_splice(event, &filters);
8346
8347         /* install new filters */
8348         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8349
8350         return ret;
8351 }
8352
8353 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8354 {
8355         char *filter_str;
8356         int ret = -EINVAL;
8357
8358         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8359             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8360             !has_addr_filter(event))
8361                 return -EINVAL;
8362
8363         filter_str = strndup_user(arg, PAGE_SIZE);
8364         if (IS_ERR(filter_str))
8365                 return PTR_ERR(filter_str);
8366
8367         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8368             event->attr.type == PERF_TYPE_TRACEPOINT)
8369                 ret = ftrace_profile_set_filter(event, event->attr.config,
8370                                                 filter_str);
8371         else if (has_addr_filter(event))
8372                 ret = perf_event_set_addr_filter(event, filter_str);
8373
8374         kfree(filter_str);
8375         return ret;
8376 }
8377
8378 /*
8379  * hrtimer based swevent callback
8380  */
8381
8382 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8383 {
8384         enum hrtimer_restart ret = HRTIMER_RESTART;
8385         struct perf_sample_data data;
8386         struct pt_regs *regs;
8387         struct perf_event *event;
8388         u64 period;
8389
8390         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8391
8392         if (event->state != PERF_EVENT_STATE_ACTIVE)
8393                 return HRTIMER_NORESTART;
8394
8395         event->pmu->read(event);
8396
8397         perf_sample_data_init(&data, 0, event->hw.last_period);
8398         regs = get_irq_regs();
8399
8400         if (regs && !perf_exclude_event(event, regs)) {
8401                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8402                         if (__perf_event_overflow(event, 1, &data, regs))
8403                                 ret = HRTIMER_NORESTART;
8404         }
8405
8406         period = max_t(u64, 10000, event->hw.sample_period);
8407         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8408
8409         return ret;
8410 }
8411
8412 static void perf_swevent_start_hrtimer(struct perf_event *event)
8413 {
8414         struct hw_perf_event *hwc = &event->hw;
8415         s64 period;
8416
8417         if (!is_sampling_event(event))
8418                 return;
8419
8420         period = local64_read(&hwc->period_left);
8421         if (period) {
8422                 if (period < 0)
8423                         period = 10000;
8424
8425                 local64_set(&hwc->period_left, 0);
8426         } else {
8427                 period = max_t(u64, 10000, hwc->sample_period);
8428         }
8429         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8430                       HRTIMER_MODE_REL_PINNED);
8431 }
8432
8433 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8434 {
8435         struct hw_perf_event *hwc = &event->hw;
8436
8437         if (is_sampling_event(event)) {
8438                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8439                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8440
8441                 hrtimer_cancel(&hwc->hrtimer);
8442         }
8443 }
8444
8445 static void perf_swevent_init_hrtimer(struct perf_event *event)
8446 {
8447         struct hw_perf_event *hwc = &event->hw;
8448
8449         if (!is_sampling_event(event))
8450                 return;
8451
8452         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8453         hwc->hrtimer.function = perf_swevent_hrtimer;
8454
8455         /*
8456          * Since hrtimers have a fixed rate, we can do a static freq->period
8457          * mapping and avoid the whole period adjust feedback stuff.
8458          */
8459         if (event->attr.freq) {
8460                 long freq = event->attr.sample_freq;
8461
8462                 event->attr.sample_period = NSEC_PER_SEC / freq;
8463                 hwc->sample_period = event->attr.sample_period;
8464                 local64_set(&hwc->period_left, hwc->sample_period);
8465                 hwc->last_period = hwc->sample_period;
8466                 event->attr.freq = 0;
8467         }
8468 }
8469
8470 /*
8471  * Software event: cpu wall time clock
8472  */
8473
8474 static void cpu_clock_event_update(struct perf_event *event)
8475 {
8476         s64 prev;
8477         u64 now;
8478
8479         now = local_clock();
8480         prev = local64_xchg(&event->hw.prev_count, now);
8481         local64_add(now - prev, &event->count);
8482 }
8483
8484 static void cpu_clock_event_start(struct perf_event *event, int flags)
8485 {
8486         local64_set(&event->hw.prev_count, local_clock());
8487         perf_swevent_start_hrtimer(event);
8488 }
8489
8490 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8491 {
8492         perf_swevent_cancel_hrtimer(event);
8493         cpu_clock_event_update(event);
8494 }
8495
8496 static int cpu_clock_event_add(struct perf_event *event, int flags)
8497 {
8498         if (flags & PERF_EF_START)
8499                 cpu_clock_event_start(event, flags);
8500         perf_event_update_userpage(event);
8501
8502         return 0;
8503 }
8504
8505 static void cpu_clock_event_del(struct perf_event *event, int flags)
8506 {
8507         cpu_clock_event_stop(event, flags);
8508 }
8509
8510 static void cpu_clock_event_read(struct perf_event *event)
8511 {
8512         cpu_clock_event_update(event);
8513 }
8514
8515 static int cpu_clock_event_init(struct perf_event *event)
8516 {
8517         if (event->attr.type != PERF_TYPE_SOFTWARE)
8518                 return -ENOENT;
8519
8520         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8521                 return -ENOENT;
8522
8523         /*
8524          * no branch sampling for software events
8525          */
8526         if (has_branch_stack(event))
8527                 return -EOPNOTSUPP;
8528
8529         perf_swevent_init_hrtimer(event);
8530
8531         return 0;
8532 }
8533
8534 static struct pmu perf_cpu_clock = {
8535         .task_ctx_nr    = perf_sw_context,
8536
8537         .capabilities   = PERF_PMU_CAP_NO_NMI,
8538
8539         .event_init     = cpu_clock_event_init,
8540         .add            = cpu_clock_event_add,
8541         .del            = cpu_clock_event_del,
8542         .start          = cpu_clock_event_start,
8543         .stop           = cpu_clock_event_stop,
8544         .read           = cpu_clock_event_read,
8545 };
8546
8547 /*
8548  * Software event: task time clock
8549  */
8550
8551 static void task_clock_event_update(struct perf_event *event, u64 now)
8552 {
8553         u64 prev;
8554         s64 delta;
8555
8556         prev = local64_xchg(&event->hw.prev_count, now);
8557         delta = now - prev;
8558         local64_add(delta, &event->count);
8559 }
8560
8561 static void task_clock_event_start(struct perf_event *event, int flags)
8562 {
8563         local64_set(&event->hw.prev_count, event->ctx->time);
8564         perf_swevent_start_hrtimer(event);
8565 }
8566
8567 static void task_clock_event_stop(struct perf_event *event, int flags)
8568 {
8569         perf_swevent_cancel_hrtimer(event);
8570         task_clock_event_update(event, event->ctx->time);
8571 }
8572
8573 static int task_clock_event_add(struct perf_event *event, int flags)
8574 {
8575         if (flags & PERF_EF_START)
8576                 task_clock_event_start(event, flags);
8577         perf_event_update_userpage(event);
8578
8579         return 0;
8580 }
8581
8582 static void task_clock_event_del(struct perf_event *event, int flags)
8583 {
8584         task_clock_event_stop(event, PERF_EF_UPDATE);
8585 }
8586
8587 static void task_clock_event_read(struct perf_event *event)
8588 {
8589         u64 now = perf_clock();
8590         u64 delta = now - event->ctx->timestamp;
8591         u64 time = event->ctx->time + delta;
8592
8593         task_clock_event_update(event, time);
8594 }
8595
8596 static int task_clock_event_init(struct perf_event *event)
8597 {
8598         if (event->attr.type != PERF_TYPE_SOFTWARE)
8599                 return -ENOENT;
8600
8601         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8602                 return -ENOENT;
8603
8604         /*
8605          * no branch sampling for software events
8606          */
8607         if (has_branch_stack(event))
8608                 return -EOPNOTSUPP;
8609
8610         perf_swevent_init_hrtimer(event);
8611
8612         return 0;
8613 }
8614
8615 static struct pmu perf_task_clock = {
8616         .task_ctx_nr    = perf_sw_context,
8617
8618         .capabilities   = PERF_PMU_CAP_NO_NMI,
8619
8620         .event_init     = task_clock_event_init,
8621         .add            = task_clock_event_add,
8622         .del            = task_clock_event_del,
8623         .start          = task_clock_event_start,
8624         .stop           = task_clock_event_stop,
8625         .read           = task_clock_event_read,
8626 };
8627
8628 static void perf_pmu_nop_void(struct pmu *pmu)
8629 {
8630 }
8631
8632 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8633 {
8634 }
8635
8636 static int perf_pmu_nop_int(struct pmu *pmu)
8637 {
8638         return 0;
8639 }
8640
8641 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8642
8643 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8644 {
8645         __this_cpu_write(nop_txn_flags, flags);
8646
8647         if (flags & ~PERF_PMU_TXN_ADD)
8648                 return;
8649
8650         perf_pmu_disable(pmu);
8651 }
8652
8653 static int perf_pmu_commit_txn(struct pmu *pmu)
8654 {
8655         unsigned int flags = __this_cpu_read(nop_txn_flags);
8656
8657         __this_cpu_write(nop_txn_flags, 0);
8658
8659         if (flags & ~PERF_PMU_TXN_ADD)
8660                 return 0;
8661
8662         perf_pmu_enable(pmu);
8663         return 0;
8664 }
8665
8666 static void perf_pmu_cancel_txn(struct pmu *pmu)
8667 {
8668         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8669
8670         __this_cpu_write(nop_txn_flags, 0);
8671
8672         if (flags & ~PERF_PMU_TXN_ADD)
8673                 return;
8674
8675         perf_pmu_enable(pmu);
8676 }
8677
8678 static int perf_event_idx_default(struct perf_event *event)
8679 {
8680         return 0;
8681 }
8682
8683 /*
8684  * Ensures all contexts with the same task_ctx_nr have the same
8685  * pmu_cpu_context too.
8686  */
8687 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8688 {
8689         struct pmu *pmu;
8690
8691         if (ctxn < 0)
8692                 return NULL;
8693
8694         list_for_each_entry(pmu, &pmus, entry) {
8695                 if (pmu->task_ctx_nr == ctxn)
8696                         return pmu->pmu_cpu_context;
8697         }
8698
8699         return NULL;
8700 }
8701
8702 static void free_pmu_context(struct pmu *pmu)
8703 {
8704         mutex_lock(&pmus_lock);
8705         free_percpu(pmu->pmu_cpu_context);
8706         mutex_unlock(&pmus_lock);
8707 }
8708
8709 /*
8710  * Let userspace know that this PMU supports address range filtering:
8711  */
8712 static ssize_t nr_addr_filters_show(struct device *dev,
8713                                     struct device_attribute *attr,
8714                                     char *page)
8715 {
8716         struct pmu *pmu = dev_get_drvdata(dev);
8717
8718         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8719 }
8720 DEVICE_ATTR_RO(nr_addr_filters);
8721
8722 static struct idr pmu_idr;
8723
8724 static ssize_t
8725 type_show(struct device *dev, struct device_attribute *attr, char *page)
8726 {
8727         struct pmu *pmu = dev_get_drvdata(dev);
8728
8729         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8730 }
8731 static DEVICE_ATTR_RO(type);
8732
8733 static ssize_t
8734 perf_event_mux_interval_ms_show(struct device *dev,
8735                                 struct device_attribute *attr,
8736                                 char *page)
8737 {
8738         struct pmu *pmu = dev_get_drvdata(dev);
8739
8740         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8741 }
8742
8743 static DEFINE_MUTEX(mux_interval_mutex);
8744
8745 static ssize_t
8746 perf_event_mux_interval_ms_store(struct device *dev,
8747                                  struct device_attribute *attr,
8748                                  const char *buf, size_t count)
8749 {
8750         struct pmu *pmu = dev_get_drvdata(dev);
8751         int timer, cpu, ret;
8752
8753         ret = kstrtoint(buf, 0, &timer);
8754         if (ret)
8755                 return ret;
8756
8757         if (timer < 1)
8758                 return -EINVAL;
8759
8760         /* same value, noting to do */
8761         if (timer == pmu->hrtimer_interval_ms)
8762                 return count;
8763
8764         mutex_lock(&mux_interval_mutex);
8765         pmu->hrtimer_interval_ms = timer;
8766
8767         /* update all cpuctx for this PMU */
8768         get_online_cpus();
8769         for_each_online_cpu(cpu) {
8770                 struct perf_cpu_context *cpuctx;
8771                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8772                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8773
8774                 cpu_function_call(cpu,
8775                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8776         }
8777         put_online_cpus();
8778         mutex_unlock(&mux_interval_mutex);
8779
8780         return count;
8781 }
8782 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8783
8784 static struct attribute *pmu_dev_attrs[] = {
8785         &dev_attr_type.attr,
8786         &dev_attr_perf_event_mux_interval_ms.attr,
8787         NULL,
8788 };
8789 ATTRIBUTE_GROUPS(pmu_dev);
8790
8791 static int pmu_bus_running;
8792 static struct bus_type pmu_bus = {
8793         .name           = "event_source",
8794         .dev_groups     = pmu_dev_groups,
8795 };
8796
8797 static void pmu_dev_release(struct device *dev)
8798 {
8799         kfree(dev);
8800 }
8801
8802 static int pmu_dev_alloc(struct pmu *pmu)
8803 {
8804         int ret = -ENOMEM;
8805
8806         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8807         if (!pmu->dev)
8808                 goto out;
8809
8810         pmu->dev->groups = pmu->attr_groups;
8811         device_initialize(pmu->dev);
8812         ret = dev_set_name(pmu->dev, "%s", pmu->name);
8813         if (ret)
8814                 goto free_dev;
8815
8816         dev_set_drvdata(pmu->dev, pmu);
8817         pmu->dev->bus = &pmu_bus;
8818         pmu->dev->release = pmu_dev_release;
8819         ret = device_add(pmu->dev);
8820         if (ret)
8821                 goto free_dev;
8822
8823         /* For PMUs with address filters, throw in an extra attribute: */
8824         if (pmu->nr_addr_filters)
8825                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8826
8827         if (ret)
8828                 goto del_dev;
8829
8830 out:
8831         return ret;
8832
8833 del_dev:
8834         device_del(pmu->dev);
8835
8836 free_dev:
8837         put_device(pmu->dev);
8838         goto out;
8839 }
8840
8841 static struct lock_class_key cpuctx_mutex;
8842 static struct lock_class_key cpuctx_lock;
8843
8844 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8845 {
8846         int cpu, ret;
8847
8848         mutex_lock(&pmus_lock);
8849         ret = -ENOMEM;
8850         pmu->pmu_disable_count = alloc_percpu(int);
8851         if (!pmu->pmu_disable_count)
8852                 goto unlock;
8853
8854         pmu->type = -1;
8855         if (!name)
8856                 goto skip_type;
8857         pmu->name = name;
8858
8859         if (type < 0) {
8860                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8861                 if (type < 0) {
8862                         ret = type;
8863                         goto free_pdc;
8864                 }
8865         }
8866         pmu->type = type;
8867
8868         if (pmu_bus_running) {
8869                 ret = pmu_dev_alloc(pmu);
8870                 if (ret)
8871                         goto free_idr;
8872         }
8873
8874 skip_type:
8875         if (pmu->task_ctx_nr == perf_hw_context) {
8876                 static int hw_context_taken = 0;
8877
8878                 /*
8879                  * Other than systems with heterogeneous CPUs, it never makes
8880                  * sense for two PMUs to share perf_hw_context. PMUs which are
8881                  * uncore must use perf_invalid_context.
8882                  */
8883                 if (WARN_ON_ONCE(hw_context_taken &&
8884                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8885                         pmu->task_ctx_nr = perf_invalid_context;
8886
8887                 hw_context_taken = 1;
8888         }
8889
8890         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8891         if (pmu->pmu_cpu_context)
8892                 goto got_cpu_context;
8893
8894         ret = -ENOMEM;
8895         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8896         if (!pmu->pmu_cpu_context)
8897                 goto free_dev;
8898
8899         for_each_possible_cpu(cpu) {
8900                 struct perf_cpu_context *cpuctx;
8901
8902                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8903                 __perf_event_init_context(&cpuctx->ctx);
8904                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8905                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8906                 cpuctx->ctx.pmu = pmu;
8907
8908                 __perf_mux_hrtimer_init(cpuctx, cpu);
8909         }
8910
8911 got_cpu_context:
8912         if (!pmu->start_txn) {
8913                 if (pmu->pmu_enable) {
8914                         /*
8915                          * If we have pmu_enable/pmu_disable calls, install
8916                          * transaction stubs that use that to try and batch
8917                          * hardware accesses.
8918                          */
8919                         pmu->start_txn  = perf_pmu_start_txn;
8920                         pmu->commit_txn = perf_pmu_commit_txn;
8921                         pmu->cancel_txn = perf_pmu_cancel_txn;
8922                 } else {
8923                         pmu->start_txn  = perf_pmu_nop_txn;
8924                         pmu->commit_txn = perf_pmu_nop_int;
8925                         pmu->cancel_txn = perf_pmu_nop_void;
8926                 }
8927         }
8928
8929         if (!pmu->pmu_enable) {
8930                 pmu->pmu_enable  = perf_pmu_nop_void;
8931                 pmu->pmu_disable = perf_pmu_nop_void;
8932         }
8933
8934         if (!pmu->event_idx)
8935                 pmu->event_idx = perf_event_idx_default;
8936
8937         list_add_rcu(&pmu->entry, &pmus);
8938         atomic_set(&pmu->exclusive_cnt, 0);
8939         ret = 0;
8940 unlock:
8941         mutex_unlock(&pmus_lock);
8942
8943         return ret;
8944
8945 free_dev:
8946         device_del(pmu->dev);
8947         put_device(pmu->dev);
8948
8949 free_idr:
8950         if (pmu->type >= PERF_TYPE_MAX)
8951                 idr_remove(&pmu_idr, pmu->type);
8952
8953 free_pdc:
8954         free_percpu(pmu->pmu_disable_count);
8955         goto unlock;
8956 }
8957 EXPORT_SYMBOL_GPL(perf_pmu_register);
8958
8959 void perf_pmu_unregister(struct pmu *pmu)
8960 {
8961         int remove_device;
8962
8963         mutex_lock(&pmus_lock);
8964         remove_device = pmu_bus_running;
8965         list_del_rcu(&pmu->entry);
8966         mutex_unlock(&pmus_lock);
8967
8968         /*
8969          * We dereference the pmu list under both SRCU and regular RCU, so
8970          * synchronize against both of those.
8971          */
8972         synchronize_srcu(&pmus_srcu);
8973         synchronize_rcu();
8974
8975         free_percpu(pmu->pmu_disable_count);
8976         if (pmu->type >= PERF_TYPE_MAX)
8977                 idr_remove(&pmu_idr, pmu->type);
8978         if (remove_device) {
8979                 if (pmu->nr_addr_filters)
8980                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8981                 device_del(pmu->dev);
8982                 put_device(pmu->dev);
8983         }
8984         free_pmu_context(pmu);
8985 }
8986 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8987
8988 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8989 {
8990         struct perf_event_context *ctx = NULL;
8991         int ret;
8992
8993         if (!try_module_get(pmu->module))
8994                 return -ENODEV;
8995
8996         if (event->group_leader != event) {
8997                 /*
8998                  * This ctx->mutex can nest when we're called through
8999                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9000                  */
9001                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9002                                                  SINGLE_DEPTH_NESTING);
9003                 BUG_ON(!ctx);
9004         }
9005
9006         event->pmu = pmu;
9007         ret = pmu->event_init(event);
9008
9009         if (ctx)
9010                 perf_event_ctx_unlock(event->group_leader, ctx);
9011
9012         if (ret)
9013                 module_put(pmu->module);
9014
9015         return ret;
9016 }
9017
9018 static struct pmu *perf_init_event(struct perf_event *event)
9019 {
9020         struct pmu *pmu = NULL;
9021         int idx;
9022         int ret;
9023
9024         idx = srcu_read_lock(&pmus_srcu);
9025
9026         /* Try parent's PMU first: */
9027         if (event->parent && event->parent->pmu) {
9028                 pmu = event->parent->pmu;
9029                 ret = perf_try_init_event(pmu, event);
9030                 if (!ret)
9031                         goto unlock;
9032         }
9033
9034         rcu_read_lock();
9035         pmu = idr_find(&pmu_idr, event->attr.type);
9036         rcu_read_unlock();
9037         if (pmu) {
9038                 ret = perf_try_init_event(pmu, event);
9039                 if (ret)
9040                         pmu = ERR_PTR(ret);
9041                 goto unlock;
9042         }
9043
9044         list_for_each_entry_rcu(pmu, &pmus, entry) {
9045                 ret = perf_try_init_event(pmu, event);
9046                 if (!ret)
9047                         goto unlock;
9048
9049                 if (ret != -ENOENT) {
9050                         pmu = ERR_PTR(ret);
9051                         goto unlock;
9052                 }
9053         }
9054         pmu = ERR_PTR(-ENOENT);
9055 unlock:
9056         srcu_read_unlock(&pmus_srcu, idx);
9057
9058         return pmu;
9059 }
9060
9061 static void attach_sb_event(struct perf_event *event)
9062 {
9063         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9064
9065         raw_spin_lock(&pel->lock);
9066         list_add_rcu(&event->sb_list, &pel->list);
9067         raw_spin_unlock(&pel->lock);
9068 }
9069
9070 /*
9071  * We keep a list of all !task (and therefore per-cpu) events
9072  * that need to receive side-band records.
9073  *
9074  * This avoids having to scan all the various PMU per-cpu contexts
9075  * looking for them.
9076  */
9077 static void account_pmu_sb_event(struct perf_event *event)
9078 {
9079         if (is_sb_event(event))
9080                 attach_sb_event(event);
9081 }
9082
9083 static void account_event_cpu(struct perf_event *event, int cpu)
9084 {
9085         if (event->parent)
9086                 return;
9087
9088         if (is_cgroup_event(event))
9089                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9090 }
9091
9092 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9093 static void account_freq_event_nohz(void)
9094 {
9095 #ifdef CONFIG_NO_HZ_FULL
9096         /* Lock so we don't race with concurrent unaccount */
9097         spin_lock(&nr_freq_lock);
9098         if (atomic_inc_return(&nr_freq_events) == 1)
9099                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9100         spin_unlock(&nr_freq_lock);
9101 #endif
9102 }
9103
9104 static void account_freq_event(void)
9105 {
9106         if (tick_nohz_full_enabled())
9107                 account_freq_event_nohz();
9108         else
9109                 atomic_inc(&nr_freq_events);
9110 }
9111
9112
9113 static void account_event(struct perf_event *event)
9114 {
9115         bool inc = false;
9116
9117         if (event->parent)
9118                 return;
9119
9120         if (event->attach_state & PERF_ATTACH_TASK)
9121                 inc = true;
9122         if (event->attr.mmap || event->attr.mmap_data)
9123                 atomic_inc(&nr_mmap_events);
9124         if (event->attr.comm)
9125                 atomic_inc(&nr_comm_events);
9126         if (event->attr.task)
9127                 atomic_inc(&nr_task_events);
9128         if (event->attr.freq)
9129                 account_freq_event();
9130         if (event->attr.context_switch) {
9131                 atomic_inc(&nr_switch_events);
9132                 inc = true;
9133         }
9134         if (has_branch_stack(event))
9135                 inc = true;
9136         if (is_cgroup_event(event))
9137                 inc = true;
9138
9139         if (inc) {
9140                 if (atomic_inc_not_zero(&perf_sched_count))
9141                         goto enabled;
9142
9143                 mutex_lock(&perf_sched_mutex);
9144                 if (!atomic_read(&perf_sched_count)) {
9145                         static_branch_enable(&perf_sched_events);
9146                         /*
9147                          * Guarantee that all CPUs observe they key change and
9148                          * call the perf scheduling hooks before proceeding to
9149                          * install events that need them.
9150                          */
9151                         synchronize_sched();
9152                 }
9153                 /*
9154                  * Now that we have waited for the sync_sched(), allow further
9155                  * increments to by-pass the mutex.
9156                  */
9157                 atomic_inc(&perf_sched_count);
9158                 mutex_unlock(&perf_sched_mutex);
9159         }
9160 enabled:
9161
9162         account_event_cpu(event, event->cpu);
9163
9164         account_pmu_sb_event(event);
9165 }
9166
9167 /*
9168  * Allocate and initialize a event structure
9169  */
9170 static struct perf_event *
9171 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9172                  struct task_struct *task,
9173                  struct perf_event *group_leader,
9174                  struct perf_event *parent_event,
9175                  perf_overflow_handler_t overflow_handler,
9176                  void *context, int cgroup_fd)
9177 {
9178         struct pmu *pmu;
9179         struct perf_event *event;
9180         struct hw_perf_event *hwc;
9181         long err = -EINVAL;
9182
9183         if ((unsigned)cpu >= nr_cpu_ids) {
9184                 if (!task || cpu != -1)
9185                         return ERR_PTR(-EINVAL);
9186         }
9187
9188         event = kzalloc(sizeof(*event), GFP_KERNEL);
9189         if (!event)
9190                 return ERR_PTR(-ENOMEM);
9191
9192         /*
9193          * Single events are their own group leaders, with an
9194          * empty sibling list:
9195          */
9196         if (!group_leader)
9197                 group_leader = event;
9198
9199         mutex_init(&event->child_mutex);
9200         INIT_LIST_HEAD(&event->child_list);
9201
9202         INIT_LIST_HEAD(&event->group_entry);
9203         INIT_LIST_HEAD(&event->event_entry);
9204         INIT_LIST_HEAD(&event->sibling_list);
9205         INIT_LIST_HEAD(&event->rb_entry);
9206         INIT_LIST_HEAD(&event->active_entry);
9207         INIT_LIST_HEAD(&event->addr_filters.list);
9208         INIT_HLIST_NODE(&event->hlist_entry);
9209
9210
9211         init_waitqueue_head(&event->waitq);
9212         init_irq_work(&event->pending, perf_pending_event);
9213
9214         mutex_init(&event->mmap_mutex);
9215         raw_spin_lock_init(&event->addr_filters.lock);
9216
9217         atomic_long_set(&event->refcount, 1);
9218         event->cpu              = cpu;
9219         event->attr             = *attr;
9220         event->group_leader     = group_leader;
9221         event->pmu              = NULL;
9222         event->oncpu            = -1;
9223
9224         event->parent           = parent_event;
9225
9226         event->ns               = get_pid_ns(task_active_pid_ns(current));
9227         event->id               = atomic64_inc_return(&perf_event_id);
9228
9229         event->state            = PERF_EVENT_STATE_INACTIVE;
9230
9231         if (task) {
9232                 event->attach_state = PERF_ATTACH_TASK;
9233                 /*
9234                  * XXX pmu::event_init needs to know what task to account to
9235                  * and we cannot use the ctx information because we need the
9236                  * pmu before we get a ctx.
9237                  */
9238                 event->hw.target = task;
9239         }
9240
9241         event->clock = &local_clock;
9242         if (parent_event)
9243                 event->clock = parent_event->clock;
9244
9245         if (!overflow_handler && parent_event) {
9246                 overflow_handler = parent_event->overflow_handler;
9247                 context = parent_event->overflow_handler_context;
9248 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9249                 if (overflow_handler == bpf_overflow_handler) {
9250                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9251
9252                         if (IS_ERR(prog)) {
9253                                 err = PTR_ERR(prog);
9254                                 goto err_ns;
9255                         }
9256                         event->prog = prog;
9257                         event->orig_overflow_handler =
9258                                 parent_event->orig_overflow_handler;
9259                 }
9260 #endif
9261         }
9262
9263         if (overflow_handler) {
9264                 event->overflow_handler = overflow_handler;
9265                 event->overflow_handler_context = context;
9266         } else if (is_write_backward(event)){
9267                 event->overflow_handler = perf_event_output_backward;
9268                 event->overflow_handler_context = NULL;
9269         } else {
9270                 event->overflow_handler = perf_event_output_forward;
9271                 event->overflow_handler_context = NULL;
9272         }
9273
9274         perf_event__state_init(event);
9275
9276         pmu = NULL;
9277
9278         hwc = &event->hw;
9279         hwc->sample_period = attr->sample_period;
9280         if (attr->freq && attr->sample_freq)
9281                 hwc->sample_period = 1;
9282         hwc->last_period = hwc->sample_period;
9283
9284         local64_set(&hwc->period_left, hwc->sample_period);
9285
9286         /*
9287          * we currently do not support PERF_FORMAT_GROUP on inherited events
9288          */
9289         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9290                 goto err_ns;
9291
9292         if (!has_branch_stack(event))
9293                 event->attr.branch_sample_type = 0;
9294
9295         if (cgroup_fd != -1) {
9296                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9297                 if (err)
9298                         goto err_ns;
9299         }
9300
9301         pmu = perf_init_event(event);
9302         if (!pmu)
9303                 goto err_ns;
9304         else if (IS_ERR(pmu)) {
9305                 err = PTR_ERR(pmu);
9306                 goto err_ns;
9307         }
9308
9309         err = exclusive_event_init(event);
9310         if (err)
9311                 goto err_pmu;
9312
9313         if (has_addr_filter(event)) {
9314                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9315                                                    sizeof(unsigned long),
9316                                                    GFP_KERNEL);
9317                 if (!event->addr_filters_offs)
9318                         goto err_per_task;
9319
9320                 /* force hw sync on the address filters */
9321                 event->addr_filters_gen = 1;
9322         }
9323
9324         if (!event->parent) {
9325                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9326                         err = get_callchain_buffers(attr->sample_max_stack);
9327                         if (err)
9328                                 goto err_addr_filters;
9329                 }
9330         }
9331
9332         /* symmetric to unaccount_event() in _free_event() */
9333         account_event(event);
9334
9335         return event;
9336
9337 err_addr_filters:
9338         kfree(event->addr_filters_offs);
9339
9340 err_per_task:
9341         exclusive_event_destroy(event);
9342
9343 err_pmu:
9344         if (event->destroy)
9345                 event->destroy(event);
9346         module_put(pmu->module);
9347 err_ns:
9348         if (is_cgroup_event(event))
9349                 perf_detach_cgroup(event);
9350         if (event->ns)
9351                 put_pid_ns(event->ns);
9352         kfree(event);
9353
9354         return ERR_PTR(err);
9355 }
9356
9357 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9358                           struct perf_event_attr *attr)
9359 {
9360         u32 size;
9361         int ret;
9362
9363         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9364                 return -EFAULT;
9365
9366         /*
9367          * zero the full structure, so that a short copy will be nice.
9368          */
9369         memset(attr, 0, sizeof(*attr));
9370
9371         ret = get_user(size, &uattr->size);
9372         if (ret)
9373                 return ret;
9374
9375         if (size > PAGE_SIZE)   /* silly large */
9376                 goto err_size;
9377
9378         if (!size)              /* abi compat */
9379                 size = PERF_ATTR_SIZE_VER0;
9380
9381         if (size < PERF_ATTR_SIZE_VER0)
9382                 goto err_size;
9383
9384         /*
9385          * If we're handed a bigger struct than we know of,
9386          * ensure all the unknown bits are 0 - i.e. new
9387          * user-space does not rely on any kernel feature
9388          * extensions we dont know about yet.
9389          */
9390         if (size > sizeof(*attr)) {
9391                 unsigned char __user *addr;
9392                 unsigned char __user *end;
9393                 unsigned char val;
9394
9395                 addr = (void __user *)uattr + sizeof(*attr);
9396                 end  = (void __user *)uattr + size;
9397
9398                 for (; addr < end; addr++) {
9399                         ret = get_user(val, addr);
9400                         if (ret)
9401                                 return ret;
9402                         if (val)
9403                                 goto err_size;
9404                 }
9405                 size = sizeof(*attr);
9406         }
9407
9408         ret = copy_from_user(attr, uattr, size);
9409         if (ret)
9410                 return -EFAULT;
9411
9412         if (attr->__reserved_1)
9413                 return -EINVAL;
9414
9415         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9416                 return -EINVAL;
9417
9418         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9419                 return -EINVAL;
9420
9421         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9422                 u64 mask = attr->branch_sample_type;
9423
9424                 /* only using defined bits */
9425                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9426                         return -EINVAL;
9427
9428                 /* at least one branch bit must be set */
9429                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9430                         return -EINVAL;
9431
9432                 /* propagate priv level, when not set for branch */
9433                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9434
9435                         /* exclude_kernel checked on syscall entry */
9436                         if (!attr->exclude_kernel)
9437                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9438
9439                         if (!attr->exclude_user)
9440                                 mask |= PERF_SAMPLE_BRANCH_USER;
9441
9442                         if (!attr->exclude_hv)
9443                                 mask |= PERF_SAMPLE_BRANCH_HV;
9444                         /*
9445                          * adjust user setting (for HW filter setup)
9446                          */
9447                         attr->branch_sample_type = mask;
9448                 }
9449                 /* privileged levels capture (kernel, hv): check permissions */
9450                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9451                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9452                         return -EACCES;
9453         }
9454
9455         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9456                 ret = perf_reg_validate(attr->sample_regs_user);
9457                 if (ret)
9458                         return ret;
9459         }
9460
9461         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9462                 if (!arch_perf_have_user_stack_dump())
9463                         return -ENOSYS;
9464
9465                 /*
9466                  * We have __u32 type for the size, but so far
9467                  * we can only use __u16 as maximum due to the
9468                  * __u16 sample size limit.
9469                  */
9470                 if (attr->sample_stack_user >= USHRT_MAX)
9471                         ret = -EINVAL;
9472                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9473                         ret = -EINVAL;
9474         }
9475
9476         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9477                 ret = perf_reg_validate(attr->sample_regs_intr);
9478 out:
9479         return ret;
9480
9481 err_size:
9482         put_user(sizeof(*attr), &uattr->size);
9483         ret = -E2BIG;
9484         goto out;
9485 }
9486
9487 static int
9488 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9489 {
9490         struct ring_buffer *rb = NULL;
9491         int ret = -EINVAL;
9492
9493         if (!output_event)
9494                 goto set;
9495
9496         /* don't allow circular references */
9497         if (event == output_event)
9498                 goto out;
9499
9500         /*
9501          * Don't allow cross-cpu buffers
9502          */
9503         if (output_event->cpu != event->cpu)
9504                 goto out;
9505
9506         /*
9507          * If its not a per-cpu rb, it must be the same task.
9508          */
9509         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9510                 goto out;
9511
9512         /*
9513          * Mixing clocks in the same buffer is trouble you don't need.
9514          */
9515         if (output_event->clock != event->clock)
9516                 goto out;
9517
9518         /*
9519          * Either writing ring buffer from beginning or from end.
9520          * Mixing is not allowed.
9521          */
9522         if (is_write_backward(output_event) != is_write_backward(event))
9523                 goto out;
9524
9525         /*
9526          * If both events generate aux data, they must be on the same PMU
9527          */
9528         if (has_aux(event) && has_aux(output_event) &&
9529             event->pmu != output_event->pmu)
9530                 goto out;
9531
9532 set:
9533         mutex_lock(&event->mmap_mutex);
9534         /* Can't redirect output if we've got an active mmap() */
9535         if (atomic_read(&event->mmap_count))
9536                 goto unlock;
9537
9538         if (output_event) {
9539                 /* get the rb we want to redirect to */
9540                 rb = ring_buffer_get(output_event);
9541                 if (!rb)
9542                         goto unlock;
9543         }
9544
9545         ring_buffer_attach(event, rb);
9546
9547         ret = 0;
9548 unlock:
9549         mutex_unlock(&event->mmap_mutex);
9550
9551 out:
9552         return ret;
9553 }
9554
9555 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9556 {
9557         if (b < a)
9558                 swap(a, b);
9559
9560         mutex_lock(a);
9561         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9562 }
9563
9564 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9565 {
9566         bool nmi_safe = false;
9567
9568         switch (clk_id) {
9569         case CLOCK_MONOTONIC:
9570                 event->clock = &ktime_get_mono_fast_ns;
9571                 nmi_safe = true;
9572                 break;
9573
9574         case CLOCK_MONOTONIC_RAW:
9575                 event->clock = &ktime_get_raw_fast_ns;
9576                 nmi_safe = true;
9577                 break;
9578
9579         case CLOCK_REALTIME:
9580                 event->clock = &ktime_get_real_ns;
9581                 break;
9582
9583         case CLOCK_BOOTTIME:
9584                 event->clock = &ktime_get_boot_ns;
9585                 break;
9586
9587         case CLOCK_TAI:
9588                 event->clock = &ktime_get_tai_ns;
9589                 break;
9590
9591         default:
9592                 return -EINVAL;
9593         }
9594
9595         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9596                 return -EINVAL;
9597
9598         return 0;
9599 }
9600
9601 /*
9602  * Variation on perf_event_ctx_lock_nested(), except we take two context
9603  * mutexes.
9604  */
9605 static struct perf_event_context *
9606 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9607                              struct perf_event_context *ctx)
9608 {
9609         struct perf_event_context *gctx;
9610
9611 again:
9612         rcu_read_lock();
9613         gctx = READ_ONCE(group_leader->ctx);
9614         if (!atomic_inc_not_zero(&gctx->refcount)) {
9615                 rcu_read_unlock();
9616                 goto again;
9617         }
9618         rcu_read_unlock();
9619
9620         mutex_lock_double(&gctx->mutex, &ctx->mutex);
9621
9622         if (group_leader->ctx != gctx) {
9623                 mutex_unlock(&ctx->mutex);
9624                 mutex_unlock(&gctx->mutex);
9625                 put_ctx(gctx);
9626                 goto again;
9627         }
9628
9629         return gctx;
9630 }
9631
9632 /**
9633  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9634  *
9635  * @attr_uptr:  event_id type attributes for monitoring/sampling
9636  * @pid:                target pid
9637  * @cpu:                target cpu
9638  * @group_fd:           group leader event fd
9639  */
9640 SYSCALL_DEFINE5(perf_event_open,
9641                 struct perf_event_attr __user *, attr_uptr,
9642                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9643 {
9644         struct perf_event *group_leader = NULL, *output_event = NULL;
9645         struct perf_event *event, *sibling;
9646         struct perf_event_attr attr;
9647         struct perf_event_context *ctx, *uninitialized_var(gctx);
9648         struct file *event_file = NULL;
9649         struct fd group = {NULL, 0};
9650         struct task_struct *task = NULL;
9651         struct pmu *pmu;
9652         int event_fd;
9653         int move_group = 0;
9654         int err;
9655         int f_flags = O_RDWR;
9656         int cgroup_fd = -1;
9657
9658         /* for future expandability... */
9659         if (flags & ~PERF_FLAG_ALL)
9660                 return -EINVAL;
9661
9662         err = perf_copy_attr(attr_uptr, &attr);
9663         if (err)
9664                 return err;
9665
9666         if (!attr.exclude_kernel) {
9667                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9668                         return -EACCES;
9669         }
9670
9671         if (attr.freq) {
9672                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9673                         return -EINVAL;
9674         } else {
9675                 if (attr.sample_period & (1ULL << 63))
9676                         return -EINVAL;
9677         }
9678
9679         if (!attr.sample_max_stack)
9680                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9681
9682         /*
9683          * In cgroup mode, the pid argument is used to pass the fd
9684          * opened to the cgroup directory in cgroupfs. The cpu argument
9685          * designates the cpu on which to monitor threads from that
9686          * cgroup.
9687          */
9688         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9689                 return -EINVAL;
9690
9691         if (flags & PERF_FLAG_FD_CLOEXEC)
9692                 f_flags |= O_CLOEXEC;
9693
9694         event_fd = get_unused_fd_flags(f_flags);
9695         if (event_fd < 0)
9696                 return event_fd;
9697
9698         if (group_fd != -1) {
9699                 err = perf_fget_light(group_fd, &group);
9700                 if (err)
9701                         goto err_fd;
9702                 group_leader = group.file->private_data;
9703                 if (flags & PERF_FLAG_FD_OUTPUT)
9704                         output_event = group_leader;
9705                 if (flags & PERF_FLAG_FD_NO_GROUP)
9706                         group_leader = NULL;
9707         }
9708
9709         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9710                 task = find_lively_task_by_vpid(pid);
9711                 if (IS_ERR(task)) {
9712                         err = PTR_ERR(task);
9713                         goto err_group_fd;
9714                 }
9715         }
9716
9717         if (task && group_leader &&
9718             group_leader->attr.inherit != attr.inherit) {
9719                 err = -EINVAL;
9720                 goto err_task;
9721         }
9722
9723         get_online_cpus();
9724
9725         if (task) {
9726                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9727                 if (err)
9728                         goto err_cpus;
9729
9730                 /*
9731                  * Reuse ptrace permission checks for now.
9732                  *
9733                  * We must hold cred_guard_mutex across this and any potential
9734                  * perf_install_in_context() call for this new event to
9735                  * serialize against exec() altering our credentials (and the
9736                  * perf_event_exit_task() that could imply).
9737                  */
9738                 err = -EACCES;
9739                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9740                         goto err_cred;
9741         }
9742
9743         if (flags & PERF_FLAG_PID_CGROUP)
9744                 cgroup_fd = pid;
9745
9746         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9747                                  NULL, NULL, cgroup_fd);
9748         if (IS_ERR(event)) {
9749                 err = PTR_ERR(event);
9750                 goto err_cred;
9751         }
9752
9753         if (is_sampling_event(event)) {
9754                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9755                         err = -EOPNOTSUPP;
9756                         goto err_alloc;
9757                 }
9758         }
9759
9760         /*
9761          * Special case software events and allow them to be part of
9762          * any hardware group.
9763          */
9764         pmu = event->pmu;
9765
9766         if (attr.use_clockid) {
9767                 err = perf_event_set_clock(event, attr.clockid);
9768                 if (err)
9769                         goto err_alloc;
9770         }
9771
9772         if (pmu->task_ctx_nr == perf_sw_context)
9773                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9774
9775         if (group_leader &&
9776             (is_software_event(event) != is_software_event(group_leader))) {
9777                 if (is_software_event(event)) {
9778                         /*
9779                          * If event and group_leader are not both a software
9780                          * event, and event is, then group leader is not.
9781                          *
9782                          * Allow the addition of software events to !software
9783                          * groups, this is safe because software events never
9784                          * fail to schedule.
9785                          */
9786                         pmu = group_leader->pmu;
9787                 } else if (is_software_event(group_leader) &&
9788                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9789                         /*
9790                          * In case the group is a pure software group, and we
9791                          * try to add a hardware event, move the whole group to
9792                          * the hardware context.
9793                          */
9794                         move_group = 1;
9795                 }
9796         }
9797
9798         /*
9799          * Get the target context (task or percpu):
9800          */
9801         ctx = find_get_context(pmu, task, event);
9802         if (IS_ERR(ctx)) {
9803                 err = PTR_ERR(ctx);
9804                 goto err_alloc;
9805         }
9806
9807         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9808                 err = -EBUSY;
9809                 goto err_context;
9810         }
9811
9812         /*
9813          * Look up the group leader (we will attach this event to it):
9814          */
9815         if (group_leader) {
9816                 err = -EINVAL;
9817
9818                 /*
9819                  * Do not allow a recursive hierarchy (this new sibling
9820                  * becoming part of another group-sibling):
9821                  */
9822                 if (group_leader->group_leader != group_leader)
9823                         goto err_context;
9824
9825                 /* All events in a group should have the same clock */
9826                 if (group_leader->clock != event->clock)
9827                         goto err_context;
9828
9829                 /*
9830                  * Do not allow to attach to a group in a different
9831                  * task or CPU context:
9832                  */
9833                 if (move_group) {
9834                         /*
9835                          * Make sure we're both on the same task, or both
9836                          * per-cpu events.
9837                          */
9838                         if (group_leader->ctx->task != ctx->task)
9839                                 goto err_context;
9840
9841                         /*
9842                          * Make sure we're both events for the same CPU;
9843                          * grouping events for different CPUs is broken; since
9844                          * you can never concurrently schedule them anyhow.
9845                          */
9846                         if (group_leader->cpu != event->cpu)
9847                                 goto err_context;
9848                 } else {
9849                         if (group_leader->ctx != ctx)
9850                                 goto err_context;
9851                 }
9852
9853                 /*
9854                  * Only a group leader can be exclusive or pinned
9855                  */
9856                 if (attr.exclusive || attr.pinned)
9857                         goto err_context;
9858         }
9859
9860         if (output_event) {
9861                 err = perf_event_set_output(event, output_event);
9862                 if (err)
9863                         goto err_context;
9864         }
9865
9866         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9867                                         f_flags);
9868         if (IS_ERR(event_file)) {
9869                 err = PTR_ERR(event_file);
9870                 event_file = NULL;
9871                 goto err_context;
9872         }
9873
9874         if (move_group) {
9875                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
9876
9877                 if (gctx->task == TASK_TOMBSTONE) {
9878                         err = -ESRCH;
9879                         goto err_locked;
9880                 }
9881
9882                 /*
9883                  * Check if we raced against another sys_perf_event_open() call
9884                  * moving the software group underneath us.
9885                  */
9886                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9887                         /*
9888                          * If someone moved the group out from under us, check
9889                          * if this new event wound up on the same ctx, if so
9890                          * its the regular !move_group case, otherwise fail.
9891                          */
9892                         if (gctx != ctx) {
9893                                 err = -EINVAL;
9894                                 goto err_locked;
9895                         } else {
9896                                 perf_event_ctx_unlock(group_leader, gctx);
9897                                 move_group = 0;
9898                         }
9899                 }
9900         } else {
9901                 mutex_lock(&ctx->mutex);
9902         }
9903
9904         if (ctx->task == TASK_TOMBSTONE) {
9905                 err = -ESRCH;
9906                 goto err_locked;
9907         }
9908
9909         if (!perf_event_validate_size(event)) {
9910                 err = -E2BIG;
9911                 goto err_locked;
9912         }
9913
9914         /*
9915          * Must be under the same ctx::mutex as perf_install_in_context(),
9916          * because we need to serialize with concurrent event creation.
9917          */
9918         if (!exclusive_event_installable(event, ctx)) {
9919                 /* exclusive and group stuff are assumed mutually exclusive */
9920                 WARN_ON_ONCE(move_group);
9921
9922                 err = -EBUSY;
9923                 goto err_locked;
9924         }
9925
9926         WARN_ON_ONCE(ctx->parent_ctx);
9927
9928         /*
9929          * This is the point on no return; we cannot fail hereafter. This is
9930          * where we start modifying current state.
9931          */
9932
9933         if (move_group) {
9934                 /*
9935                  * See perf_event_ctx_lock() for comments on the details
9936                  * of swizzling perf_event::ctx.
9937                  */
9938                 perf_remove_from_context(group_leader, 0);
9939
9940                 list_for_each_entry(sibling, &group_leader->sibling_list,
9941                                     group_entry) {
9942                         perf_remove_from_context(sibling, 0);
9943                         put_ctx(gctx);
9944                 }
9945
9946                 /*
9947                  * Wait for everybody to stop referencing the events through
9948                  * the old lists, before installing it on new lists.
9949                  */
9950                 synchronize_rcu();
9951
9952                 /*
9953                  * Install the group siblings before the group leader.
9954                  *
9955                  * Because a group leader will try and install the entire group
9956                  * (through the sibling list, which is still in-tact), we can
9957                  * end up with siblings installed in the wrong context.
9958                  *
9959                  * By installing siblings first we NO-OP because they're not
9960                  * reachable through the group lists.
9961                  */
9962                 list_for_each_entry(sibling, &group_leader->sibling_list,
9963                                     group_entry) {
9964                         perf_event__state_init(sibling);
9965                         perf_install_in_context(ctx, sibling, sibling->cpu);
9966                         get_ctx(ctx);
9967                 }
9968
9969                 /*
9970                  * Removing from the context ends up with disabled
9971                  * event. What we want here is event in the initial
9972                  * startup state, ready to be add into new context.
9973                  */
9974                 perf_event__state_init(group_leader);
9975                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9976                 get_ctx(ctx);
9977
9978                 /*
9979                  * Now that all events are installed in @ctx, nothing
9980                  * references @gctx anymore, so drop the last reference we have
9981                  * on it.
9982                  */
9983                 put_ctx(gctx);
9984         }
9985
9986         /*
9987          * Precalculate sample_data sizes; do while holding ctx::mutex such
9988          * that we're serialized against further additions and before
9989          * perf_install_in_context() which is the point the event is active and
9990          * can use these values.
9991          */
9992         perf_event__header_size(event);
9993         perf_event__id_header_size(event);
9994
9995         event->owner = current;
9996
9997         perf_install_in_context(ctx, event, event->cpu);
9998         perf_unpin_context(ctx);
9999
10000         if (move_group)
10001                 perf_event_ctx_unlock(group_leader, gctx);
10002         mutex_unlock(&ctx->mutex);
10003
10004         if (task) {
10005                 mutex_unlock(&task->signal->cred_guard_mutex);
10006                 put_task_struct(task);
10007         }
10008
10009         put_online_cpus();
10010
10011         mutex_lock(&current->perf_event_mutex);
10012         list_add_tail(&event->owner_entry, &current->perf_event_list);
10013         mutex_unlock(&current->perf_event_mutex);
10014
10015         /*
10016          * Drop the reference on the group_event after placing the
10017          * new event on the sibling_list. This ensures destruction
10018          * of the group leader will find the pointer to itself in
10019          * perf_group_detach().
10020          */
10021         fdput(group);
10022         fd_install(event_fd, event_file);
10023         return event_fd;
10024
10025 err_locked:
10026         if (move_group)
10027                 perf_event_ctx_unlock(group_leader, gctx);
10028         mutex_unlock(&ctx->mutex);
10029 /* err_file: */
10030         fput(event_file);
10031 err_context:
10032         perf_unpin_context(ctx);
10033         put_ctx(ctx);
10034 err_alloc:
10035         /*
10036          * If event_file is set, the fput() above will have called ->release()
10037          * and that will take care of freeing the event.
10038          */
10039         if (!event_file)
10040                 free_event(event);
10041 err_cred:
10042         if (task)
10043                 mutex_unlock(&task->signal->cred_guard_mutex);
10044 err_cpus:
10045         put_online_cpus();
10046 err_task:
10047         if (task)
10048                 put_task_struct(task);
10049 err_group_fd:
10050         fdput(group);
10051 err_fd:
10052         put_unused_fd(event_fd);
10053         return err;
10054 }
10055
10056 /**
10057  * perf_event_create_kernel_counter
10058  *
10059  * @attr: attributes of the counter to create
10060  * @cpu: cpu in which the counter is bound
10061  * @task: task to profile (NULL for percpu)
10062  */
10063 struct perf_event *
10064 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10065                                  struct task_struct *task,
10066                                  perf_overflow_handler_t overflow_handler,
10067                                  void *context)
10068 {
10069         struct perf_event_context *ctx;
10070         struct perf_event *event;
10071         int err;
10072
10073         /*
10074          * Get the target context (task or percpu):
10075          */
10076
10077         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10078                                  overflow_handler, context, -1);
10079         if (IS_ERR(event)) {
10080                 err = PTR_ERR(event);
10081                 goto err;
10082         }
10083
10084         /* Mark owner so we could distinguish it from user events. */
10085         event->owner = TASK_TOMBSTONE;
10086
10087         ctx = find_get_context(event->pmu, task, event);
10088         if (IS_ERR(ctx)) {
10089                 err = PTR_ERR(ctx);
10090                 goto err_free;
10091         }
10092
10093         WARN_ON_ONCE(ctx->parent_ctx);
10094         mutex_lock(&ctx->mutex);
10095         if (ctx->task == TASK_TOMBSTONE) {
10096                 err = -ESRCH;
10097                 goto err_unlock;
10098         }
10099
10100         if (!exclusive_event_installable(event, ctx)) {
10101                 err = -EBUSY;
10102                 goto err_unlock;
10103         }
10104
10105         perf_install_in_context(ctx, event, cpu);
10106         perf_unpin_context(ctx);
10107         mutex_unlock(&ctx->mutex);
10108
10109         return event;
10110
10111 err_unlock:
10112         mutex_unlock(&ctx->mutex);
10113         perf_unpin_context(ctx);
10114         put_ctx(ctx);
10115 err_free:
10116         free_event(event);
10117 err:
10118         return ERR_PTR(err);
10119 }
10120 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10121
10122 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10123 {
10124         struct perf_event_context *src_ctx;
10125         struct perf_event_context *dst_ctx;
10126         struct perf_event *event, *tmp;
10127         LIST_HEAD(events);
10128
10129         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10130         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10131
10132         /*
10133          * See perf_event_ctx_lock() for comments on the details
10134          * of swizzling perf_event::ctx.
10135          */
10136         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10137         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10138                                  event_entry) {
10139                 perf_remove_from_context(event, 0);
10140                 unaccount_event_cpu(event, src_cpu);
10141                 put_ctx(src_ctx);
10142                 list_add(&event->migrate_entry, &events);
10143         }
10144
10145         /*
10146          * Wait for the events to quiesce before re-instating them.
10147          */
10148         synchronize_rcu();
10149
10150         /*
10151          * Re-instate events in 2 passes.
10152          *
10153          * Skip over group leaders and only install siblings on this first
10154          * pass, siblings will not get enabled without a leader, however a
10155          * leader will enable its siblings, even if those are still on the old
10156          * context.
10157          */
10158         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10159                 if (event->group_leader == event)
10160                         continue;
10161
10162                 list_del(&event->migrate_entry);
10163                 if (event->state >= PERF_EVENT_STATE_OFF)
10164                         event->state = PERF_EVENT_STATE_INACTIVE;
10165                 account_event_cpu(event, dst_cpu);
10166                 perf_install_in_context(dst_ctx, event, dst_cpu);
10167                 get_ctx(dst_ctx);
10168         }
10169
10170         /*
10171          * Once all the siblings are setup properly, install the group leaders
10172          * to make it go.
10173          */
10174         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10175                 list_del(&event->migrate_entry);
10176                 if (event->state >= PERF_EVENT_STATE_OFF)
10177                         event->state = PERF_EVENT_STATE_INACTIVE;
10178                 account_event_cpu(event, dst_cpu);
10179                 perf_install_in_context(dst_ctx, event, dst_cpu);
10180                 get_ctx(dst_ctx);
10181         }
10182         mutex_unlock(&dst_ctx->mutex);
10183         mutex_unlock(&src_ctx->mutex);
10184 }
10185 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10186
10187 static void sync_child_event(struct perf_event *child_event,
10188                                struct task_struct *child)
10189 {
10190         struct perf_event *parent_event = child_event->parent;
10191         u64 child_val;
10192
10193         if (child_event->attr.inherit_stat)
10194                 perf_event_read_event(child_event, child);
10195
10196         child_val = perf_event_count(child_event);
10197
10198         /*
10199          * Add back the child's count to the parent's count:
10200          */
10201         atomic64_add(child_val, &parent_event->child_count);
10202         atomic64_add(child_event->total_time_enabled,
10203                      &parent_event->child_total_time_enabled);
10204         atomic64_add(child_event->total_time_running,
10205                      &parent_event->child_total_time_running);
10206 }
10207
10208 static void
10209 perf_event_exit_event(struct perf_event *child_event,
10210                       struct perf_event_context *child_ctx,
10211                       struct task_struct *child)
10212 {
10213         struct perf_event *parent_event = child_event->parent;
10214
10215         /*
10216          * Do not destroy the 'original' grouping; because of the context
10217          * switch optimization the original events could've ended up in a
10218          * random child task.
10219          *
10220          * If we were to destroy the original group, all group related
10221          * operations would cease to function properly after this random
10222          * child dies.
10223          *
10224          * Do destroy all inherited groups, we don't care about those
10225          * and being thorough is better.
10226          */
10227         raw_spin_lock_irq(&child_ctx->lock);
10228         WARN_ON_ONCE(child_ctx->is_active);
10229
10230         if (parent_event)
10231                 perf_group_detach(child_event);
10232         list_del_event(child_event, child_ctx);
10233         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10234         raw_spin_unlock_irq(&child_ctx->lock);
10235
10236         /*
10237          * Parent events are governed by their filedesc, retain them.
10238          */
10239         if (!parent_event) {
10240                 perf_event_wakeup(child_event);
10241                 return;
10242         }
10243         /*
10244          * Child events can be cleaned up.
10245          */
10246
10247         sync_child_event(child_event, child);
10248
10249         /*
10250          * Remove this event from the parent's list
10251          */
10252         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10253         mutex_lock(&parent_event->child_mutex);
10254         list_del_init(&child_event->child_list);
10255         mutex_unlock(&parent_event->child_mutex);
10256
10257         /*
10258          * Kick perf_poll() for is_event_hup().
10259          */
10260         perf_event_wakeup(parent_event);
10261         free_event(child_event);
10262         put_event(parent_event);
10263 }
10264
10265 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10266 {
10267         struct perf_event_context *child_ctx, *clone_ctx = NULL;
10268         struct perf_event *child_event, *next;
10269
10270         WARN_ON_ONCE(child != current);
10271
10272         child_ctx = perf_pin_task_context(child, ctxn);
10273         if (!child_ctx)
10274                 return;
10275
10276         /*
10277          * In order to reduce the amount of tricky in ctx tear-down, we hold
10278          * ctx::mutex over the entire thing. This serializes against almost
10279          * everything that wants to access the ctx.
10280          *
10281          * The exception is sys_perf_event_open() /
10282          * perf_event_create_kernel_count() which does find_get_context()
10283          * without ctx::mutex (it cannot because of the move_group double mutex
10284          * lock thing). See the comments in perf_install_in_context().
10285          */
10286         mutex_lock(&child_ctx->mutex);
10287
10288         /*
10289          * In a single ctx::lock section, de-schedule the events and detach the
10290          * context from the task such that we cannot ever get it scheduled back
10291          * in.
10292          */
10293         raw_spin_lock_irq(&child_ctx->lock);
10294         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10295
10296         /*
10297          * Now that the context is inactive, destroy the task <-> ctx relation
10298          * and mark the context dead.
10299          */
10300         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10301         put_ctx(child_ctx); /* cannot be last */
10302         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10303         put_task_struct(current); /* cannot be last */
10304
10305         clone_ctx = unclone_ctx(child_ctx);
10306         raw_spin_unlock_irq(&child_ctx->lock);
10307
10308         if (clone_ctx)
10309                 put_ctx(clone_ctx);
10310
10311         /*
10312          * Report the task dead after unscheduling the events so that we
10313          * won't get any samples after PERF_RECORD_EXIT. We can however still
10314          * get a few PERF_RECORD_READ events.
10315          */
10316         perf_event_task(child, child_ctx, 0);
10317
10318         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10319                 perf_event_exit_event(child_event, child_ctx, child);
10320
10321         mutex_unlock(&child_ctx->mutex);
10322
10323         put_ctx(child_ctx);
10324 }
10325
10326 /*
10327  * When a child task exits, feed back event values to parent events.
10328  *
10329  * Can be called with cred_guard_mutex held when called from
10330  * install_exec_creds().
10331  */
10332 void perf_event_exit_task(struct task_struct *child)
10333 {
10334         struct perf_event *event, *tmp;
10335         int ctxn;
10336
10337         mutex_lock(&child->perf_event_mutex);
10338         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10339                                  owner_entry) {
10340                 list_del_init(&event->owner_entry);
10341
10342                 /*
10343                  * Ensure the list deletion is visible before we clear
10344                  * the owner, closes a race against perf_release() where
10345                  * we need to serialize on the owner->perf_event_mutex.
10346                  */
10347                 smp_store_release(&event->owner, NULL);
10348         }
10349         mutex_unlock(&child->perf_event_mutex);
10350
10351         for_each_task_context_nr(ctxn)
10352                 perf_event_exit_task_context(child, ctxn);
10353
10354         /*
10355          * The perf_event_exit_task_context calls perf_event_task
10356          * with child's task_ctx, which generates EXIT events for
10357          * child contexts and sets child->perf_event_ctxp[] to NULL.
10358          * At this point we need to send EXIT events to cpu contexts.
10359          */
10360         perf_event_task(child, NULL, 0);
10361 }
10362
10363 static void perf_free_event(struct perf_event *event,
10364                             struct perf_event_context *ctx)
10365 {
10366         struct perf_event *parent = event->parent;
10367
10368         if (WARN_ON_ONCE(!parent))
10369                 return;
10370
10371         mutex_lock(&parent->child_mutex);
10372         list_del_init(&event->child_list);
10373         mutex_unlock(&parent->child_mutex);
10374
10375         put_event(parent);
10376
10377         raw_spin_lock_irq(&ctx->lock);
10378         perf_group_detach(event);
10379         list_del_event(event, ctx);
10380         raw_spin_unlock_irq(&ctx->lock);
10381         free_event(event);
10382 }
10383
10384 /*
10385  * Free an unexposed, unused context as created by inheritance by
10386  * perf_event_init_task below, used by fork() in case of fail.
10387  *
10388  * Not all locks are strictly required, but take them anyway to be nice and
10389  * help out with the lockdep assertions.
10390  */
10391 void perf_event_free_task(struct task_struct *task)
10392 {
10393         struct perf_event_context *ctx;
10394         struct perf_event *event, *tmp;
10395         int ctxn;
10396
10397         for_each_task_context_nr(ctxn) {
10398                 ctx = task->perf_event_ctxp[ctxn];
10399                 if (!ctx)
10400                         continue;
10401
10402                 mutex_lock(&ctx->mutex);
10403 again:
10404                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10405                                 group_entry)
10406                         perf_free_event(event, ctx);
10407
10408                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10409                                 group_entry)
10410                         perf_free_event(event, ctx);
10411
10412                 if (!list_empty(&ctx->pinned_groups) ||
10413                                 !list_empty(&ctx->flexible_groups))
10414                         goto again;
10415
10416                 mutex_unlock(&ctx->mutex);
10417
10418                 put_ctx(ctx);
10419         }
10420 }
10421
10422 void perf_event_delayed_put(struct task_struct *task)
10423 {
10424         int ctxn;
10425
10426         for_each_task_context_nr(ctxn)
10427                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10428 }
10429
10430 struct file *perf_event_get(unsigned int fd)
10431 {
10432         struct file *file;
10433
10434         file = fget_raw(fd);
10435         if (!file)
10436                 return ERR_PTR(-EBADF);
10437
10438         if (file->f_op != &perf_fops) {
10439                 fput(file);
10440                 return ERR_PTR(-EBADF);
10441         }
10442
10443         return file;
10444 }
10445
10446 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10447 {
10448         if (!event)
10449                 return ERR_PTR(-EINVAL);
10450
10451         return &event->attr;
10452 }
10453
10454 /*
10455  * inherit a event from parent task to child task:
10456  */
10457 static struct perf_event *
10458 inherit_event(struct perf_event *parent_event,
10459               struct task_struct *parent,
10460               struct perf_event_context *parent_ctx,
10461               struct task_struct *child,
10462               struct perf_event *group_leader,
10463               struct perf_event_context *child_ctx)
10464 {
10465         enum perf_event_active_state parent_state = parent_event->state;
10466         struct perf_event *child_event;
10467         unsigned long flags;
10468
10469         /*
10470          * Instead of creating recursive hierarchies of events,
10471          * we link inherited events back to the original parent,
10472          * which has a filp for sure, which we use as the reference
10473          * count:
10474          */
10475         if (parent_event->parent)
10476                 parent_event = parent_event->parent;
10477
10478         child_event = perf_event_alloc(&parent_event->attr,
10479                                            parent_event->cpu,
10480                                            child,
10481                                            group_leader, parent_event,
10482                                            NULL, NULL, -1);
10483         if (IS_ERR(child_event))
10484                 return child_event;
10485
10486         /*
10487          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10488          * must be under the same lock in order to serialize against
10489          * perf_event_release_kernel(), such that either we must observe
10490          * is_orphaned_event() or they will observe us on the child_list.
10491          */
10492         mutex_lock(&parent_event->child_mutex);
10493         if (is_orphaned_event(parent_event) ||
10494             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10495                 mutex_unlock(&parent_event->child_mutex);
10496                 free_event(child_event);
10497                 return NULL;
10498         }
10499
10500         get_ctx(child_ctx);
10501
10502         /*
10503          * Make the child state follow the state of the parent event,
10504          * not its attr.disabled bit.  We hold the parent's mutex,
10505          * so we won't race with perf_event_{en, dis}able_family.
10506          */
10507         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10508                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10509         else
10510                 child_event->state = PERF_EVENT_STATE_OFF;
10511
10512         if (parent_event->attr.freq) {
10513                 u64 sample_period = parent_event->hw.sample_period;
10514                 struct hw_perf_event *hwc = &child_event->hw;
10515
10516                 hwc->sample_period = sample_period;
10517                 hwc->last_period   = sample_period;
10518
10519                 local64_set(&hwc->period_left, sample_period);
10520         }
10521
10522         child_event->ctx = child_ctx;
10523         child_event->overflow_handler = parent_event->overflow_handler;
10524         child_event->overflow_handler_context
10525                 = parent_event->overflow_handler_context;
10526
10527         /*
10528          * Precalculate sample_data sizes
10529          */
10530         perf_event__header_size(child_event);
10531         perf_event__id_header_size(child_event);
10532
10533         /*
10534          * Link it up in the child's context:
10535          */
10536         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10537         add_event_to_ctx(child_event, child_ctx);
10538         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10539
10540         /*
10541          * Link this into the parent event's child list
10542          */
10543         list_add_tail(&child_event->child_list, &parent_event->child_list);
10544         mutex_unlock(&parent_event->child_mutex);
10545
10546         return child_event;
10547 }
10548
10549 static int inherit_group(struct perf_event *parent_event,
10550               struct task_struct *parent,
10551               struct perf_event_context *parent_ctx,
10552               struct task_struct *child,
10553               struct perf_event_context *child_ctx)
10554 {
10555         struct perf_event *leader;
10556         struct perf_event *sub;
10557         struct perf_event *child_ctr;
10558
10559         leader = inherit_event(parent_event, parent, parent_ctx,
10560                                  child, NULL, child_ctx);
10561         if (IS_ERR(leader))
10562                 return PTR_ERR(leader);
10563         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10564                 child_ctr = inherit_event(sub, parent, parent_ctx,
10565                                             child, leader, child_ctx);
10566                 if (IS_ERR(child_ctr))
10567                         return PTR_ERR(child_ctr);
10568         }
10569         return 0;
10570 }
10571
10572 static int
10573 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10574                    struct perf_event_context *parent_ctx,
10575                    struct task_struct *child, int ctxn,
10576                    int *inherited_all)
10577 {
10578         int ret;
10579         struct perf_event_context *child_ctx;
10580
10581         if (!event->attr.inherit) {
10582                 *inherited_all = 0;
10583                 return 0;
10584         }
10585
10586         child_ctx = child->perf_event_ctxp[ctxn];
10587         if (!child_ctx) {
10588                 /*
10589                  * This is executed from the parent task context, so
10590                  * inherit events that have been marked for cloning.
10591                  * First allocate and initialize a context for the
10592                  * child.
10593                  */
10594
10595                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10596                 if (!child_ctx)
10597                         return -ENOMEM;
10598
10599                 child->perf_event_ctxp[ctxn] = child_ctx;
10600         }
10601
10602         ret = inherit_group(event, parent, parent_ctx,
10603                             child, child_ctx);
10604
10605         if (ret)
10606                 *inherited_all = 0;
10607
10608         return ret;
10609 }
10610
10611 /*
10612  * Initialize the perf_event context in task_struct
10613  */
10614 static int perf_event_init_context(struct task_struct *child, int ctxn)
10615 {
10616         struct perf_event_context *child_ctx, *parent_ctx;
10617         struct perf_event_context *cloned_ctx;
10618         struct perf_event *event;
10619         struct task_struct *parent = current;
10620         int inherited_all = 1;
10621         unsigned long flags;
10622         int ret = 0;
10623
10624         if (likely(!parent->perf_event_ctxp[ctxn]))
10625                 return 0;
10626
10627         /*
10628          * If the parent's context is a clone, pin it so it won't get
10629          * swapped under us.
10630          */
10631         parent_ctx = perf_pin_task_context(parent, ctxn);
10632         if (!parent_ctx)
10633                 return 0;
10634
10635         /*
10636          * No need to check if parent_ctx != NULL here; since we saw
10637          * it non-NULL earlier, the only reason for it to become NULL
10638          * is if we exit, and since we're currently in the middle of
10639          * a fork we can't be exiting at the same time.
10640          */
10641
10642         /*
10643          * Lock the parent list. No need to lock the child - not PID
10644          * hashed yet and not running, so nobody can access it.
10645          */
10646         mutex_lock(&parent_ctx->mutex);
10647
10648         /*
10649          * We dont have to disable NMIs - we are only looking at
10650          * the list, not manipulating it:
10651          */
10652         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10653                 ret = inherit_task_group(event, parent, parent_ctx,
10654                                          child, ctxn, &inherited_all);
10655                 if (ret)
10656                         break;
10657         }
10658
10659         /*
10660          * We can't hold ctx->lock when iterating the ->flexible_group list due
10661          * to allocations, but we need to prevent rotation because
10662          * rotate_ctx() will change the list from interrupt context.
10663          */
10664         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10665         parent_ctx->rotate_disable = 1;
10666         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10667
10668         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10669                 ret = inherit_task_group(event, parent, parent_ctx,
10670                                          child, ctxn, &inherited_all);
10671                 if (ret)
10672                         break;
10673         }
10674
10675         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10676         parent_ctx->rotate_disable = 0;
10677
10678         child_ctx = child->perf_event_ctxp[ctxn];
10679
10680         if (child_ctx && inherited_all) {
10681                 /*
10682                  * Mark the child context as a clone of the parent
10683                  * context, or of whatever the parent is a clone of.
10684                  *
10685                  * Note that if the parent is a clone, the holding of
10686                  * parent_ctx->lock avoids it from being uncloned.
10687                  */
10688                 cloned_ctx = parent_ctx->parent_ctx;
10689                 if (cloned_ctx) {
10690                         child_ctx->parent_ctx = cloned_ctx;
10691                         child_ctx->parent_gen = parent_ctx->parent_gen;
10692                 } else {
10693                         child_ctx->parent_ctx = parent_ctx;
10694                         child_ctx->parent_gen = parent_ctx->generation;
10695                 }
10696                 get_ctx(child_ctx->parent_ctx);
10697         }
10698
10699         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10700         mutex_unlock(&parent_ctx->mutex);
10701
10702         perf_unpin_context(parent_ctx);
10703         put_ctx(parent_ctx);
10704
10705         return ret;
10706 }
10707
10708 /*
10709  * Initialize the perf_event context in task_struct
10710  */
10711 int perf_event_init_task(struct task_struct *child)
10712 {
10713         int ctxn, ret;
10714
10715         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10716         mutex_init(&child->perf_event_mutex);
10717         INIT_LIST_HEAD(&child->perf_event_list);
10718
10719         for_each_task_context_nr(ctxn) {
10720                 ret = perf_event_init_context(child, ctxn);
10721                 if (ret) {
10722                         perf_event_free_task(child);
10723                         return ret;
10724                 }
10725         }
10726
10727         return 0;
10728 }
10729
10730 static void __init perf_event_init_all_cpus(void)
10731 {
10732         struct swevent_htable *swhash;
10733         int cpu;
10734
10735         for_each_possible_cpu(cpu) {
10736                 swhash = &per_cpu(swevent_htable, cpu);
10737                 mutex_init(&swhash->hlist_mutex);
10738                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10739
10740                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10741                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10742
10743 #ifdef CONFIG_CGROUP_PERF
10744                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10745 #endif
10746                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10747         }
10748 }
10749
10750 int perf_event_init_cpu(unsigned int cpu)
10751 {
10752         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10753
10754         mutex_lock(&swhash->hlist_mutex);
10755         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10756                 struct swevent_hlist *hlist;
10757
10758                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10759                 WARN_ON(!hlist);
10760                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10761         }
10762         mutex_unlock(&swhash->hlist_mutex);
10763         return 0;
10764 }
10765
10766 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10767 static void __perf_event_exit_context(void *__info)
10768 {
10769         struct perf_event_context *ctx = __info;
10770         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10771         struct perf_event *event;
10772
10773         raw_spin_lock(&ctx->lock);
10774         list_for_each_entry(event, &ctx->event_list, event_entry)
10775                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10776         raw_spin_unlock(&ctx->lock);
10777 }
10778
10779 static void perf_event_exit_cpu_context(int cpu)
10780 {
10781         struct perf_event_context *ctx;
10782         struct pmu *pmu;
10783         int idx;
10784
10785         idx = srcu_read_lock(&pmus_srcu);
10786         list_for_each_entry_rcu(pmu, &pmus, entry) {
10787                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10788
10789                 mutex_lock(&ctx->mutex);
10790                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10791                 mutex_unlock(&ctx->mutex);
10792         }
10793         srcu_read_unlock(&pmus_srcu, idx);
10794 }
10795 #else
10796
10797 static void perf_event_exit_cpu_context(int cpu) { }
10798
10799 #endif
10800
10801 int perf_event_exit_cpu(unsigned int cpu)
10802 {
10803         perf_event_exit_cpu_context(cpu);
10804         return 0;
10805 }
10806
10807 static int
10808 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10809 {
10810         int cpu;
10811
10812         for_each_online_cpu(cpu)
10813                 perf_event_exit_cpu(cpu);
10814
10815         return NOTIFY_OK;
10816 }
10817
10818 /*
10819  * Run the perf reboot notifier at the very last possible moment so that
10820  * the generic watchdog code runs as long as possible.
10821  */
10822 static struct notifier_block perf_reboot_notifier = {
10823         .notifier_call = perf_reboot,
10824         .priority = INT_MIN,
10825 };
10826
10827 void __init perf_event_init(void)
10828 {
10829         int ret;
10830
10831         idr_init(&pmu_idr);
10832
10833         perf_event_init_all_cpus();
10834         init_srcu_struct(&pmus_srcu);
10835         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10836         perf_pmu_register(&perf_cpu_clock, NULL, -1);
10837         perf_pmu_register(&perf_task_clock, NULL, -1);
10838         perf_tp_register();
10839         perf_event_init_cpu(smp_processor_id());
10840         register_reboot_notifier(&perf_reboot_notifier);
10841
10842         ret = init_hw_breakpoint();
10843         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10844
10845         /*
10846          * Build time assertion that we keep the data_head at the intended
10847          * location.  IOW, validation we got the __reserved[] size right.
10848          */
10849         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10850                      != 1024);
10851 }
10852
10853 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10854                               char *page)
10855 {
10856         struct perf_pmu_events_attr *pmu_attr =
10857                 container_of(attr, struct perf_pmu_events_attr, attr);
10858
10859         if (pmu_attr->event_str)
10860                 return sprintf(page, "%s\n", pmu_attr->event_str);
10861
10862         return 0;
10863 }
10864 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10865
10866 static int __init perf_event_sysfs_init(void)
10867 {
10868         struct pmu *pmu;
10869         int ret;
10870
10871         mutex_lock(&pmus_lock);
10872
10873         ret = bus_register(&pmu_bus);
10874         if (ret)
10875                 goto unlock;
10876
10877         list_for_each_entry(pmu, &pmus, entry) {
10878                 if (!pmu->name || pmu->type < 0)
10879                         continue;
10880
10881                 ret = pmu_dev_alloc(pmu);
10882                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10883         }
10884         pmu_bus_running = 1;
10885         ret = 0;
10886
10887 unlock:
10888         mutex_unlock(&pmus_lock);
10889
10890         return ret;
10891 }
10892 device_initcall(perf_event_sysfs_init);
10893
10894 #ifdef CONFIG_CGROUP_PERF
10895 static struct cgroup_subsys_state *
10896 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10897 {
10898         struct perf_cgroup *jc;
10899
10900         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10901         if (!jc)
10902                 return ERR_PTR(-ENOMEM);
10903
10904         jc->info = alloc_percpu(struct perf_cgroup_info);
10905         if (!jc->info) {
10906                 kfree(jc);
10907                 return ERR_PTR(-ENOMEM);
10908         }
10909
10910         return &jc->css;
10911 }
10912
10913 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10914 {
10915         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10916
10917         free_percpu(jc->info);
10918         kfree(jc);
10919 }
10920
10921 static int __perf_cgroup_move(void *info)
10922 {
10923         struct task_struct *task = info;
10924         rcu_read_lock();
10925         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10926         rcu_read_unlock();
10927         return 0;
10928 }
10929
10930 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10931 {
10932         struct task_struct *task;
10933         struct cgroup_subsys_state *css;
10934
10935         cgroup_taskset_for_each(task, css, tset)
10936                 task_function_call(task, __perf_cgroup_move, task);
10937 }
10938
10939 struct cgroup_subsys perf_event_cgrp_subsys = {
10940         .css_alloc      = perf_cgroup_css_alloc,
10941         .css_free       = perf_cgroup_css_free,
10942         .attach         = perf_cgroup_attach,
10943 };
10944 #endif /* CONFIG_CGROUP_PERF */