]> asedeno.scripts.mit.edu Git - linux.git/blob - kernel/events/core.c
Linux 5.6-rc7
[linux.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
52
53 #include "internal.h"
54
55 #include <asm/irq_regs.h>
56
57 typedef int (*remote_function_f)(void *);
58
59 struct remote_function_call {
60         struct task_struct      *p;
61         remote_function_f       func;
62         void                    *info;
63         int                     ret;
64 };
65
66 static void remote_function(void *data)
67 {
68         struct remote_function_call *tfc = data;
69         struct task_struct *p = tfc->p;
70
71         if (p) {
72                 /* -EAGAIN */
73                 if (task_cpu(p) != smp_processor_id())
74                         return;
75
76                 /*
77                  * Now that we're on right CPU with IRQs disabled, we can test
78                  * if we hit the right task without races.
79                  */
80
81                 tfc->ret = -ESRCH; /* No such (running) process */
82                 if (p != current)
83                         return;
84         }
85
86         tfc->ret = tfc->func(tfc->info);
87 }
88
89 /**
90  * task_function_call - call a function on the cpu on which a task runs
91  * @p:          the task to evaluate
92  * @func:       the function to be called
93  * @info:       the function call argument
94  *
95  * Calls the function @func when the task is currently running. This might
96  * be on the current CPU, which just calls the function directly
97  *
98  * returns: @func return value, or
99  *          -ESRCH  - when the process isn't running
100  *          -EAGAIN - when the process moved away
101  */
102 static int
103 task_function_call(struct task_struct *p, remote_function_f func, void *info)
104 {
105         struct remote_function_call data = {
106                 .p      = p,
107                 .func   = func,
108                 .info   = info,
109                 .ret    = -EAGAIN,
110         };
111         int ret;
112
113         do {
114                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115                 if (!ret)
116                         ret = data.ret;
117         } while (ret == -EAGAIN);
118
119         return ret;
120 }
121
122 /**
123  * cpu_function_call - call a function on the cpu
124  * @func:       the function to be called
125  * @info:       the function call argument
126  *
127  * Calls the function @func on the remote cpu.
128  *
129  * returns: @func return value or -ENXIO when the cpu is offline
130  */
131 static int cpu_function_call(int cpu, remote_function_f func, void *info)
132 {
133         struct remote_function_call data = {
134                 .p      = NULL,
135                 .func   = func,
136                 .info   = info,
137                 .ret    = -ENXIO, /* No such CPU */
138         };
139
140         smp_call_function_single(cpu, remote_function, &data, 1);
141
142         return data.ret;
143 }
144
145 static inline struct perf_cpu_context *
146 __get_cpu_context(struct perf_event_context *ctx)
147 {
148         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149 }
150
151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152                           struct perf_event_context *ctx)
153 {
154         raw_spin_lock(&cpuctx->ctx.lock);
155         if (ctx)
156                 raw_spin_lock(&ctx->lock);
157 }
158
159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160                             struct perf_event_context *ctx)
161 {
162         if (ctx)
163                 raw_spin_unlock(&ctx->lock);
164         raw_spin_unlock(&cpuctx->ctx.lock);
165 }
166
167 #define TASK_TOMBSTONE ((void *)-1L)
168
169 static bool is_kernel_event(struct perf_event *event)
170 {
171         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172 }
173
174 /*
175  * On task ctx scheduling...
176  *
177  * When !ctx->nr_events a task context will not be scheduled. This means
178  * we can disable the scheduler hooks (for performance) without leaving
179  * pending task ctx state.
180  *
181  * This however results in two special cases:
182  *
183  *  - removing the last event from a task ctx; this is relatively straight
184  *    forward and is done in __perf_remove_from_context.
185  *
186  *  - adding the first event to a task ctx; this is tricky because we cannot
187  *    rely on ctx->is_active and therefore cannot use event_function_call().
188  *    See perf_install_in_context().
189  *
190  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191  */
192
193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194                         struct perf_event_context *, void *);
195
196 struct event_function_struct {
197         struct perf_event *event;
198         event_f func;
199         void *data;
200 };
201
202 static int event_function(void *info)
203 {
204         struct event_function_struct *efs = info;
205         struct perf_event *event = efs->event;
206         struct perf_event_context *ctx = event->ctx;
207         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208         struct perf_event_context *task_ctx = cpuctx->task_ctx;
209         int ret = 0;
210
211         lockdep_assert_irqs_disabled();
212
213         perf_ctx_lock(cpuctx, task_ctx);
214         /*
215          * Since we do the IPI call without holding ctx->lock things can have
216          * changed, double check we hit the task we set out to hit.
217          */
218         if (ctx->task) {
219                 if (ctx->task != current) {
220                         ret = -ESRCH;
221                         goto unlock;
222                 }
223
224                 /*
225                  * We only use event_function_call() on established contexts,
226                  * and event_function() is only ever called when active (or
227                  * rather, we'll have bailed in task_function_call() or the
228                  * above ctx->task != current test), therefore we must have
229                  * ctx->is_active here.
230                  */
231                 WARN_ON_ONCE(!ctx->is_active);
232                 /*
233                  * And since we have ctx->is_active, cpuctx->task_ctx must
234                  * match.
235                  */
236                 WARN_ON_ONCE(task_ctx != ctx);
237         } else {
238                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
239         }
240
241         efs->func(event, cpuctx, ctx, efs->data);
242 unlock:
243         perf_ctx_unlock(cpuctx, task_ctx);
244
245         return ret;
246 }
247
248 static void event_function_call(struct perf_event *event, event_f func, void *data)
249 {
250         struct perf_event_context *ctx = event->ctx;
251         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
252         struct event_function_struct efs = {
253                 .event = event,
254                 .func = func,
255                 .data = data,
256         };
257
258         if (!event->parent) {
259                 /*
260                  * If this is a !child event, we must hold ctx::mutex to
261                  * stabilize the the event->ctx relation. See
262                  * perf_event_ctx_lock().
263                  */
264                 lockdep_assert_held(&ctx->mutex);
265         }
266
267         if (!task) {
268                 cpu_function_call(event->cpu, event_function, &efs);
269                 return;
270         }
271
272         if (task == TASK_TOMBSTONE)
273                 return;
274
275 again:
276         if (!task_function_call(task, event_function, &efs))
277                 return;
278
279         raw_spin_lock_irq(&ctx->lock);
280         /*
281          * Reload the task pointer, it might have been changed by
282          * a concurrent perf_event_context_sched_out().
283          */
284         task = ctx->task;
285         if (task == TASK_TOMBSTONE) {
286                 raw_spin_unlock_irq(&ctx->lock);
287                 return;
288         }
289         if (ctx->is_active) {
290                 raw_spin_unlock_irq(&ctx->lock);
291                 goto again;
292         }
293         func(event, NULL, ctx, data);
294         raw_spin_unlock_irq(&ctx->lock);
295 }
296
297 /*
298  * Similar to event_function_call() + event_function(), but hard assumes IRQs
299  * are already disabled and we're on the right CPU.
300  */
301 static void event_function_local(struct perf_event *event, event_f func, void *data)
302 {
303         struct perf_event_context *ctx = event->ctx;
304         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305         struct task_struct *task = READ_ONCE(ctx->task);
306         struct perf_event_context *task_ctx = NULL;
307
308         lockdep_assert_irqs_disabled();
309
310         if (task) {
311                 if (task == TASK_TOMBSTONE)
312                         return;
313
314                 task_ctx = ctx;
315         }
316
317         perf_ctx_lock(cpuctx, task_ctx);
318
319         task = ctx->task;
320         if (task == TASK_TOMBSTONE)
321                 goto unlock;
322
323         if (task) {
324                 /*
325                  * We must be either inactive or active and the right task,
326                  * otherwise we're screwed, since we cannot IPI to somewhere
327                  * else.
328                  */
329                 if (ctx->is_active) {
330                         if (WARN_ON_ONCE(task != current))
331                                 goto unlock;
332
333                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334                                 goto unlock;
335                 }
336         } else {
337                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
338         }
339
340         func(event, cpuctx, ctx, data);
341 unlock:
342         perf_ctx_unlock(cpuctx, task_ctx);
343 }
344
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346                        PERF_FLAG_FD_OUTPUT  |\
347                        PERF_FLAG_PID_CGROUP |\
348                        PERF_FLAG_FD_CLOEXEC)
349
350 /*
351  * branch priv levels that need permission checks
352  */
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354         (PERF_SAMPLE_BRANCH_KERNEL |\
355          PERF_SAMPLE_BRANCH_HV)
356
357 enum event_type_t {
358         EVENT_FLEXIBLE = 0x1,
359         EVENT_PINNED = 0x2,
360         EVENT_TIME = 0x4,
361         /* see ctx_resched() for details */
362         EVENT_CPU = 0x8,
363         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364 };
365
366 /*
367  * perf_sched_events : >0 events exist
368  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369  */
370
371 static void perf_sched_delayed(struct work_struct *work);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374 static DEFINE_MUTEX(perf_sched_mutex);
375 static atomic_t perf_sched_count;
376
377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
380
381 static atomic_t nr_mmap_events __read_mostly;
382 static atomic_t nr_comm_events __read_mostly;
383 static atomic_t nr_namespaces_events __read_mostly;
384 static atomic_t nr_task_events __read_mostly;
385 static atomic_t nr_freq_events __read_mostly;
386 static atomic_t nr_switch_events __read_mostly;
387 static atomic_t nr_ksymbol_events __read_mostly;
388 static atomic_t nr_bpf_events __read_mostly;
389
390 static LIST_HEAD(pmus);
391 static DEFINE_MUTEX(pmus_lock);
392 static struct srcu_struct pmus_srcu;
393 static cpumask_var_t perf_online_mask;
394
395 /*
396  * perf event paranoia level:
397  *  -1 - not paranoid at all
398  *   0 - disallow raw tracepoint access for unpriv
399  *   1 - disallow cpu events for unpriv
400  *   2 - disallow kernel profiling for unpriv
401  */
402 int sysctl_perf_event_paranoid __read_mostly = 2;
403
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
406
407 /*
408  * max perf event sample rate
409  */
410 #define DEFAULT_MAX_SAMPLE_RATE         100000
411 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
413
414 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
415
416 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
418
419 static int perf_sample_allowed_ns __read_mostly =
420         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421
422 static void update_perf_cpu_limits(void)
423 {
424         u64 tmp = perf_sample_period_ns;
425
426         tmp *= sysctl_perf_cpu_time_max_percent;
427         tmp = div_u64(tmp, 100);
428         if (!tmp)
429                 tmp = 1;
430
431         WRITE_ONCE(perf_sample_allowed_ns, tmp);
432 }
433
434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
435
436 int perf_proc_update_handler(struct ctl_table *table, int write,
437                 void __user *buffer, size_t *lenp,
438                 loff_t *ppos)
439 {
440         int ret;
441         int perf_cpu = sysctl_perf_cpu_time_max_percent;
442         /*
443          * If throttling is disabled don't allow the write:
444          */
445         if (write && (perf_cpu == 100 || perf_cpu == 0))
446                 return -EINVAL;
447
448         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449         if (ret || !write)
450                 return ret;
451
452         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
453         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454         update_perf_cpu_limits();
455
456         return 0;
457 }
458
459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460
461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462                                 void __user *buffer, size_t *lenp,
463                                 loff_t *ppos)
464 {
465         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466
467         if (ret || !write)
468                 return ret;
469
470         if (sysctl_perf_cpu_time_max_percent == 100 ||
471             sysctl_perf_cpu_time_max_percent == 0) {
472                 printk(KERN_WARNING
473                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474                 WRITE_ONCE(perf_sample_allowed_ns, 0);
475         } else {
476                 update_perf_cpu_limits();
477         }
478
479         return 0;
480 }
481
482 /*
483  * perf samples are done in some very critical code paths (NMIs).
484  * If they take too much CPU time, the system can lock up and not
485  * get any real work done.  This will drop the sample rate when
486  * we detect that events are taking too long.
487  */
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64, running_sample_length);
490
491 static u64 __report_avg;
492 static u64 __report_allowed;
493
494 static void perf_duration_warn(struct irq_work *w)
495 {
496         printk_ratelimited(KERN_INFO
497                 "perf: interrupt took too long (%lld > %lld), lowering "
498                 "kernel.perf_event_max_sample_rate to %d\n",
499                 __report_avg, __report_allowed,
500                 sysctl_perf_event_sample_rate);
501 }
502
503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504
505 void perf_sample_event_took(u64 sample_len_ns)
506 {
507         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508         u64 running_len;
509         u64 avg_len;
510         u32 max;
511
512         if (max_len == 0)
513                 return;
514
515         /* Decay the counter by 1 average sample. */
516         running_len = __this_cpu_read(running_sample_length);
517         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518         running_len += sample_len_ns;
519         __this_cpu_write(running_sample_length, running_len);
520
521         /*
522          * Note: this will be biased artifically low until we have
523          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524          * from having to maintain a count.
525          */
526         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527         if (avg_len <= max_len)
528                 return;
529
530         __report_avg = avg_len;
531         __report_allowed = max_len;
532
533         /*
534          * Compute a throttle threshold 25% below the current duration.
535          */
536         avg_len += avg_len / 4;
537         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538         if (avg_len < max)
539                 max /= (u32)avg_len;
540         else
541                 max = 1;
542
543         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544         WRITE_ONCE(max_samples_per_tick, max);
545
546         sysctl_perf_event_sample_rate = max * HZ;
547         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548
549         if (!irq_work_queue(&perf_duration_work)) {
550                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551                              "kernel.perf_event_max_sample_rate to %d\n",
552                              __report_avg, __report_allowed,
553                              sysctl_perf_event_sample_rate);
554         }
555 }
556
557 static atomic64_t perf_event_id;
558
559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560                               enum event_type_t event_type);
561
562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
563                              enum event_type_t event_type,
564                              struct task_struct *task);
565
566 static void update_context_time(struct perf_event_context *ctx);
567 static u64 perf_event_time(struct perf_event *event);
568
569 void __weak perf_event_print_debug(void)        { }
570
571 extern __weak const char *perf_pmu_name(void)
572 {
573         return "pmu";
574 }
575
576 static inline u64 perf_clock(void)
577 {
578         return local_clock();
579 }
580
581 static inline u64 perf_event_clock(struct perf_event *event)
582 {
583         return event->clock();
584 }
585
586 /*
587  * State based event timekeeping...
588  *
589  * The basic idea is to use event->state to determine which (if any) time
590  * fields to increment with the current delta. This means we only need to
591  * update timestamps when we change state or when they are explicitly requested
592  * (read).
593  *
594  * Event groups make things a little more complicated, but not terribly so. The
595  * rules for a group are that if the group leader is OFF the entire group is
596  * OFF, irrespecive of what the group member states are. This results in
597  * __perf_effective_state().
598  *
599  * A futher ramification is that when a group leader flips between OFF and
600  * !OFF, we need to update all group member times.
601  *
602  *
603  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604  * need to make sure the relevant context time is updated before we try and
605  * update our timestamps.
606  */
607
608 static __always_inline enum perf_event_state
609 __perf_effective_state(struct perf_event *event)
610 {
611         struct perf_event *leader = event->group_leader;
612
613         if (leader->state <= PERF_EVENT_STATE_OFF)
614                 return leader->state;
615
616         return event->state;
617 }
618
619 static __always_inline void
620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621 {
622         enum perf_event_state state = __perf_effective_state(event);
623         u64 delta = now - event->tstamp;
624
625         *enabled = event->total_time_enabled;
626         if (state >= PERF_EVENT_STATE_INACTIVE)
627                 *enabled += delta;
628
629         *running = event->total_time_running;
630         if (state >= PERF_EVENT_STATE_ACTIVE)
631                 *running += delta;
632 }
633
634 static void perf_event_update_time(struct perf_event *event)
635 {
636         u64 now = perf_event_time(event);
637
638         __perf_update_times(event, now, &event->total_time_enabled,
639                                         &event->total_time_running);
640         event->tstamp = now;
641 }
642
643 static void perf_event_update_sibling_time(struct perf_event *leader)
644 {
645         struct perf_event *sibling;
646
647         for_each_sibling_event(sibling, leader)
648                 perf_event_update_time(sibling);
649 }
650
651 static void
652 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653 {
654         if (event->state == state)
655                 return;
656
657         perf_event_update_time(event);
658         /*
659          * If a group leader gets enabled/disabled all its siblings
660          * are affected too.
661          */
662         if ((event->state < 0) ^ (state < 0))
663                 perf_event_update_sibling_time(event);
664
665         WRITE_ONCE(event->state, state);
666 }
667
668 #ifdef CONFIG_CGROUP_PERF
669
670 static inline bool
671 perf_cgroup_match(struct perf_event *event)
672 {
673         struct perf_event_context *ctx = event->ctx;
674         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675
676         /* @event doesn't care about cgroup */
677         if (!event->cgrp)
678                 return true;
679
680         /* wants specific cgroup scope but @cpuctx isn't associated with any */
681         if (!cpuctx->cgrp)
682                 return false;
683
684         /*
685          * Cgroup scoping is recursive.  An event enabled for a cgroup is
686          * also enabled for all its descendant cgroups.  If @cpuctx's
687          * cgroup is a descendant of @event's (the test covers identity
688          * case), it's a match.
689          */
690         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691                                     event->cgrp->css.cgroup);
692 }
693
694 static inline void perf_detach_cgroup(struct perf_event *event)
695 {
696         css_put(&event->cgrp->css);
697         event->cgrp = NULL;
698 }
699
700 static inline int is_cgroup_event(struct perf_event *event)
701 {
702         return event->cgrp != NULL;
703 }
704
705 static inline u64 perf_cgroup_event_time(struct perf_event *event)
706 {
707         struct perf_cgroup_info *t;
708
709         t = per_cpu_ptr(event->cgrp->info, event->cpu);
710         return t->time;
711 }
712
713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714 {
715         struct perf_cgroup_info *info;
716         u64 now;
717
718         now = perf_clock();
719
720         info = this_cpu_ptr(cgrp->info);
721
722         info->time += now - info->timestamp;
723         info->timestamp = now;
724 }
725
726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727 {
728         struct perf_cgroup *cgrp = cpuctx->cgrp;
729         struct cgroup_subsys_state *css;
730
731         if (cgrp) {
732                 for (css = &cgrp->css; css; css = css->parent) {
733                         cgrp = container_of(css, struct perf_cgroup, css);
734                         __update_cgrp_time(cgrp);
735                 }
736         }
737 }
738
739 static inline void update_cgrp_time_from_event(struct perf_event *event)
740 {
741         struct perf_cgroup *cgrp;
742
743         /*
744          * ensure we access cgroup data only when needed and
745          * when we know the cgroup is pinned (css_get)
746          */
747         if (!is_cgroup_event(event))
748                 return;
749
750         cgrp = perf_cgroup_from_task(current, event->ctx);
751         /*
752          * Do not update time when cgroup is not active
753          */
754         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
755                 __update_cgrp_time(event->cgrp);
756 }
757
758 static inline void
759 perf_cgroup_set_timestamp(struct task_struct *task,
760                           struct perf_event_context *ctx)
761 {
762         struct perf_cgroup *cgrp;
763         struct perf_cgroup_info *info;
764         struct cgroup_subsys_state *css;
765
766         /*
767          * ctx->lock held by caller
768          * ensure we do not access cgroup data
769          * unless we have the cgroup pinned (css_get)
770          */
771         if (!task || !ctx->nr_cgroups)
772                 return;
773
774         cgrp = perf_cgroup_from_task(task, ctx);
775
776         for (css = &cgrp->css; css; css = css->parent) {
777                 cgrp = container_of(css, struct perf_cgroup, css);
778                 info = this_cpu_ptr(cgrp->info);
779                 info->timestamp = ctx->timestamp;
780         }
781 }
782
783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784
785 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
787
788 /*
789  * reschedule events based on the cgroup constraint of task.
790  *
791  * mode SWOUT : schedule out everything
792  * mode SWIN : schedule in based on cgroup for next
793  */
794 static void perf_cgroup_switch(struct task_struct *task, int mode)
795 {
796         struct perf_cpu_context *cpuctx;
797         struct list_head *list;
798         unsigned long flags;
799
800         /*
801          * Disable interrupts and preemption to avoid this CPU's
802          * cgrp_cpuctx_entry to change under us.
803          */
804         local_irq_save(flags);
805
806         list = this_cpu_ptr(&cgrp_cpuctx_list);
807         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
809
810                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811                 perf_pmu_disable(cpuctx->ctx.pmu);
812
813                 if (mode & PERF_CGROUP_SWOUT) {
814                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815                         /*
816                          * must not be done before ctxswout due
817                          * to event_filter_match() in event_sched_out()
818                          */
819                         cpuctx->cgrp = NULL;
820                 }
821
822                 if (mode & PERF_CGROUP_SWIN) {
823                         WARN_ON_ONCE(cpuctx->cgrp);
824                         /*
825                          * set cgrp before ctxsw in to allow
826                          * event_filter_match() to not have to pass
827                          * task around
828                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
829                          * because cgorup events are only per-cpu
830                          */
831                         cpuctx->cgrp = perf_cgroup_from_task(task,
832                                                              &cpuctx->ctx);
833                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
834                 }
835                 perf_pmu_enable(cpuctx->ctx.pmu);
836                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
837         }
838
839         local_irq_restore(flags);
840 }
841
842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843                                          struct task_struct *next)
844 {
845         struct perf_cgroup *cgrp1;
846         struct perf_cgroup *cgrp2 = NULL;
847
848         rcu_read_lock();
849         /*
850          * we come here when we know perf_cgroup_events > 0
851          * we do not need to pass the ctx here because we know
852          * we are holding the rcu lock
853          */
854         cgrp1 = perf_cgroup_from_task(task, NULL);
855         cgrp2 = perf_cgroup_from_task(next, NULL);
856
857         /*
858          * only schedule out current cgroup events if we know
859          * that we are switching to a different cgroup. Otherwise,
860          * do no touch the cgroup events.
861          */
862         if (cgrp1 != cgrp2)
863                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
864
865         rcu_read_unlock();
866 }
867
868 static inline void perf_cgroup_sched_in(struct task_struct *prev,
869                                         struct task_struct *task)
870 {
871         struct perf_cgroup *cgrp1;
872         struct perf_cgroup *cgrp2 = NULL;
873
874         rcu_read_lock();
875         /*
876          * we come here when we know perf_cgroup_events > 0
877          * we do not need to pass the ctx here because we know
878          * we are holding the rcu lock
879          */
880         cgrp1 = perf_cgroup_from_task(task, NULL);
881         cgrp2 = perf_cgroup_from_task(prev, NULL);
882
883         /*
884          * only need to schedule in cgroup events if we are changing
885          * cgroup during ctxsw. Cgroup events were not scheduled
886          * out of ctxsw out if that was not the case.
887          */
888         if (cgrp1 != cgrp2)
889                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
890
891         rcu_read_unlock();
892 }
893
894 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895                                       struct perf_event_attr *attr,
896                                       struct perf_event *group_leader)
897 {
898         struct perf_cgroup *cgrp;
899         struct cgroup_subsys_state *css;
900         struct fd f = fdget(fd);
901         int ret = 0;
902
903         if (!f.file)
904                 return -EBADF;
905
906         css = css_tryget_online_from_dir(f.file->f_path.dentry,
907                                          &perf_event_cgrp_subsys);
908         if (IS_ERR(css)) {
909                 ret = PTR_ERR(css);
910                 goto out;
911         }
912
913         cgrp = container_of(css, struct perf_cgroup, css);
914         event->cgrp = cgrp;
915
916         /*
917          * all events in a group must monitor
918          * the same cgroup because a task belongs
919          * to only one perf cgroup at a time
920          */
921         if (group_leader && group_leader->cgrp != cgrp) {
922                 perf_detach_cgroup(event);
923                 ret = -EINVAL;
924         }
925 out:
926         fdput(f);
927         return ret;
928 }
929
930 static inline void
931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932 {
933         struct perf_cgroup_info *t;
934         t = per_cpu_ptr(event->cgrp->info, event->cpu);
935         event->shadow_ctx_time = now - t->timestamp;
936 }
937
938 /*
939  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940  * cleared when last cgroup event is removed.
941  */
942 static inline void
943 list_update_cgroup_event(struct perf_event *event,
944                          struct perf_event_context *ctx, bool add)
945 {
946         struct perf_cpu_context *cpuctx;
947         struct list_head *cpuctx_entry;
948
949         if (!is_cgroup_event(event))
950                 return;
951
952         /*
953          * Because cgroup events are always per-cpu events,
954          * @ctx == &cpuctx->ctx.
955          */
956         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
957
958         /*
959          * Since setting cpuctx->cgrp is conditional on the current @cgrp
960          * matching the event's cgroup, we must do this for every new event,
961          * because if the first would mismatch, the second would not try again
962          * and we would leave cpuctx->cgrp unset.
963          */
964         if (add && !cpuctx->cgrp) {
965                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966
967                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968                         cpuctx->cgrp = cgrp;
969         }
970
971         if (add && ctx->nr_cgroups++)
972                 return;
973         else if (!add && --ctx->nr_cgroups)
974                 return;
975
976         /* no cgroup running */
977         if (!add)
978                 cpuctx->cgrp = NULL;
979
980         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981         if (add)
982                 list_add(cpuctx_entry,
983                          per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
984         else
985                 list_del(cpuctx_entry);
986 }
987
988 #else /* !CONFIG_CGROUP_PERF */
989
990 static inline bool
991 perf_cgroup_match(struct perf_event *event)
992 {
993         return true;
994 }
995
996 static inline void perf_detach_cgroup(struct perf_event *event)
997 {}
998
999 static inline int is_cgroup_event(struct perf_event *event)
1000 {
1001         return 0;
1002 }
1003
1004 static inline void update_cgrp_time_from_event(struct perf_event *event)
1005 {
1006 }
1007
1008 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1009 {
1010 }
1011
1012 static inline void perf_cgroup_sched_out(struct task_struct *task,
1013                                          struct task_struct *next)
1014 {
1015 }
1016
1017 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1018                                         struct task_struct *task)
1019 {
1020 }
1021
1022 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1023                                       struct perf_event_attr *attr,
1024                                       struct perf_event *group_leader)
1025 {
1026         return -EINVAL;
1027 }
1028
1029 static inline void
1030 perf_cgroup_set_timestamp(struct task_struct *task,
1031                           struct perf_event_context *ctx)
1032 {
1033 }
1034
1035 static inline void
1036 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1037 {
1038 }
1039
1040 static inline void
1041 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1042 {
1043 }
1044
1045 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1046 {
1047         return 0;
1048 }
1049
1050 static inline void
1051 list_update_cgroup_event(struct perf_event *event,
1052                          struct perf_event_context *ctx, bool add)
1053 {
1054 }
1055
1056 #endif
1057
1058 /*
1059  * set default to be dependent on timer tick just
1060  * like original code
1061  */
1062 #define PERF_CPU_HRTIMER (1000 / HZ)
1063 /*
1064  * function must be called with interrupts disabled
1065  */
1066 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1067 {
1068         struct perf_cpu_context *cpuctx;
1069         bool rotations;
1070
1071         lockdep_assert_irqs_disabled();
1072
1073         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1074         rotations = perf_rotate_context(cpuctx);
1075
1076         raw_spin_lock(&cpuctx->hrtimer_lock);
1077         if (rotations)
1078                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1079         else
1080                 cpuctx->hrtimer_active = 0;
1081         raw_spin_unlock(&cpuctx->hrtimer_lock);
1082
1083         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1084 }
1085
1086 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1087 {
1088         struct hrtimer *timer = &cpuctx->hrtimer;
1089         struct pmu *pmu = cpuctx->ctx.pmu;
1090         u64 interval;
1091
1092         /* no multiplexing needed for SW PMU */
1093         if (pmu->task_ctx_nr == perf_sw_context)
1094                 return;
1095
1096         /*
1097          * check default is sane, if not set then force to
1098          * default interval (1/tick)
1099          */
1100         interval = pmu->hrtimer_interval_ms;
1101         if (interval < 1)
1102                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1103
1104         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1105
1106         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1107         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1108         timer->function = perf_mux_hrtimer_handler;
1109 }
1110
1111 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1112 {
1113         struct hrtimer *timer = &cpuctx->hrtimer;
1114         struct pmu *pmu = cpuctx->ctx.pmu;
1115         unsigned long flags;
1116
1117         /* not for SW PMU */
1118         if (pmu->task_ctx_nr == perf_sw_context)
1119                 return 0;
1120
1121         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1122         if (!cpuctx->hrtimer_active) {
1123                 cpuctx->hrtimer_active = 1;
1124                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1125                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1126         }
1127         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1128
1129         return 0;
1130 }
1131
1132 void perf_pmu_disable(struct pmu *pmu)
1133 {
1134         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1135         if (!(*count)++)
1136                 pmu->pmu_disable(pmu);
1137 }
1138
1139 void perf_pmu_enable(struct pmu *pmu)
1140 {
1141         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1142         if (!--(*count))
1143                 pmu->pmu_enable(pmu);
1144 }
1145
1146 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1147
1148 /*
1149  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1150  * perf_event_task_tick() are fully serialized because they're strictly cpu
1151  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1152  * disabled, while perf_event_task_tick is called from IRQ context.
1153  */
1154 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1155 {
1156         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1157
1158         lockdep_assert_irqs_disabled();
1159
1160         WARN_ON(!list_empty(&ctx->active_ctx_list));
1161
1162         list_add(&ctx->active_ctx_list, head);
1163 }
1164
1165 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1166 {
1167         lockdep_assert_irqs_disabled();
1168
1169         WARN_ON(list_empty(&ctx->active_ctx_list));
1170
1171         list_del_init(&ctx->active_ctx_list);
1172 }
1173
1174 static void get_ctx(struct perf_event_context *ctx)
1175 {
1176         refcount_inc(&ctx->refcount);
1177 }
1178
1179 static void free_ctx(struct rcu_head *head)
1180 {
1181         struct perf_event_context *ctx;
1182
1183         ctx = container_of(head, struct perf_event_context, rcu_head);
1184         kfree(ctx->task_ctx_data);
1185         kfree(ctx);
1186 }
1187
1188 static void put_ctx(struct perf_event_context *ctx)
1189 {
1190         if (refcount_dec_and_test(&ctx->refcount)) {
1191                 if (ctx->parent_ctx)
1192                         put_ctx(ctx->parent_ctx);
1193                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1194                         put_task_struct(ctx->task);
1195                 call_rcu(&ctx->rcu_head, free_ctx);
1196         }
1197 }
1198
1199 /*
1200  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1201  * perf_pmu_migrate_context() we need some magic.
1202  *
1203  * Those places that change perf_event::ctx will hold both
1204  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1205  *
1206  * Lock ordering is by mutex address. There are two other sites where
1207  * perf_event_context::mutex nests and those are:
1208  *
1209  *  - perf_event_exit_task_context()    [ child , 0 ]
1210  *      perf_event_exit_event()
1211  *        put_event()                   [ parent, 1 ]
1212  *
1213  *  - perf_event_init_context()         [ parent, 0 ]
1214  *      inherit_task_group()
1215  *        inherit_group()
1216  *          inherit_event()
1217  *            perf_event_alloc()
1218  *              perf_init_event()
1219  *                perf_try_init_event() [ child , 1 ]
1220  *
1221  * While it appears there is an obvious deadlock here -- the parent and child
1222  * nesting levels are inverted between the two. This is in fact safe because
1223  * life-time rules separate them. That is an exiting task cannot fork, and a
1224  * spawning task cannot (yet) exit.
1225  *
1226  * But remember that that these are parent<->child context relations, and
1227  * migration does not affect children, therefore these two orderings should not
1228  * interact.
1229  *
1230  * The change in perf_event::ctx does not affect children (as claimed above)
1231  * because the sys_perf_event_open() case will install a new event and break
1232  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1233  * concerned with cpuctx and that doesn't have children.
1234  *
1235  * The places that change perf_event::ctx will issue:
1236  *
1237  *   perf_remove_from_context();
1238  *   synchronize_rcu();
1239  *   perf_install_in_context();
1240  *
1241  * to affect the change. The remove_from_context() + synchronize_rcu() should
1242  * quiesce the event, after which we can install it in the new location. This
1243  * means that only external vectors (perf_fops, prctl) can perturb the event
1244  * while in transit. Therefore all such accessors should also acquire
1245  * perf_event_context::mutex to serialize against this.
1246  *
1247  * However; because event->ctx can change while we're waiting to acquire
1248  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1249  * function.
1250  *
1251  * Lock order:
1252  *    cred_guard_mutex
1253  *      task_struct::perf_event_mutex
1254  *        perf_event_context::mutex
1255  *          perf_event::child_mutex;
1256  *            perf_event_context::lock
1257  *          perf_event::mmap_mutex
1258  *          mmap_sem
1259  *            perf_addr_filters_head::lock
1260  *
1261  *    cpu_hotplug_lock
1262  *      pmus_lock
1263  *        cpuctx->mutex / perf_event_context::mutex
1264  */
1265 static struct perf_event_context *
1266 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1267 {
1268         struct perf_event_context *ctx;
1269
1270 again:
1271         rcu_read_lock();
1272         ctx = READ_ONCE(event->ctx);
1273         if (!refcount_inc_not_zero(&ctx->refcount)) {
1274                 rcu_read_unlock();
1275                 goto again;
1276         }
1277         rcu_read_unlock();
1278
1279         mutex_lock_nested(&ctx->mutex, nesting);
1280         if (event->ctx != ctx) {
1281                 mutex_unlock(&ctx->mutex);
1282                 put_ctx(ctx);
1283                 goto again;
1284         }
1285
1286         return ctx;
1287 }
1288
1289 static inline struct perf_event_context *
1290 perf_event_ctx_lock(struct perf_event *event)
1291 {
1292         return perf_event_ctx_lock_nested(event, 0);
1293 }
1294
1295 static void perf_event_ctx_unlock(struct perf_event *event,
1296                                   struct perf_event_context *ctx)
1297 {
1298         mutex_unlock(&ctx->mutex);
1299         put_ctx(ctx);
1300 }
1301
1302 /*
1303  * This must be done under the ctx->lock, such as to serialize against
1304  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1305  * calling scheduler related locks and ctx->lock nests inside those.
1306  */
1307 static __must_check struct perf_event_context *
1308 unclone_ctx(struct perf_event_context *ctx)
1309 {
1310         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1311
1312         lockdep_assert_held(&ctx->lock);
1313
1314         if (parent_ctx)
1315                 ctx->parent_ctx = NULL;
1316         ctx->generation++;
1317
1318         return parent_ctx;
1319 }
1320
1321 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1322                                 enum pid_type type)
1323 {
1324         u32 nr;
1325         /*
1326          * only top level events have the pid namespace they were created in
1327          */
1328         if (event->parent)
1329                 event = event->parent;
1330
1331         nr = __task_pid_nr_ns(p, type, event->ns);
1332         /* avoid -1 if it is idle thread or runs in another ns */
1333         if (!nr && !pid_alive(p))
1334                 nr = -1;
1335         return nr;
1336 }
1337
1338 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1339 {
1340         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1341 }
1342
1343 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1344 {
1345         return perf_event_pid_type(event, p, PIDTYPE_PID);
1346 }
1347
1348 /*
1349  * If we inherit events we want to return the parent event id
1350  * to userspace.
1351  */
1352 static u64 primary_event_id(struct perf_event *event)
1353 {
1354         u64 id = event->id;
1355
1356         if (event->parent)
1357                 id = event->parent->id;
1358
1359         return id;
1360 }
1361
1362 /*
1363  * Get the perf_event_context for a task and lock it.
1364  *
1365  * This has to cope with with the fact that until it is locked,
1366  * the context could get moved to another task.
1367  */
1368 static struct perf_event_context *
1369 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1370 {
1371         struct perf_event_context *ctx;
1372
1373 retry:
1374         /*
1375          * One of the few rules of preemptible RCU is that one cannot do
1376          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1377          * part of the read side critical section was irqs-enabled -- see
1378          * rcu_read_unlock_special().
1379          *
1380          * Since ctx->lock nests under rq->lock we must ensure the entire read
1381          * side critical section has interrupts disabled.
1382          */
1383         local_irq_save(*flags);
1384         rcu_read_lock();
1385         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1386         if (ctx) {
1387                 /*
1388                  * If this context is a clone of another, it might
1389                  * get swapped for another underneath us by
1390                  * perf_event_task_sched_out, though the
1391                  * rcu_read_lock() protects us from any context
1392                  * getting freed.  Lock the context and check if it
1393                  * got swapped before we could get the lock, and retry
1394                  * if so.  If we locked the right context, then it
1395                  * can't get swapped on us any more.
1396                  */
1397                 raw_spin_lock(&ctx->lock);
1398                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1399                         raw_spin_unlock(&ctx->lock);
1400                         rcu_read_unlock();
1401                         local_irq_restore(*flags);
1402                         goto retry;
1403                 }
1404
1405                 if (ctx->task == TASK_TOMBSTONE ||
1406                     !refcount_inc_not_zero(&ctx->refcount)) {
1407                         raw_spin_unlock(&ctx->lock);
1408                         ctx = NULL;
1409                 } else {
1410                         WARN_ON_ONCE(ctx->task != task);
1411                 }
1412         }
1413         rcu_read_unlock();
1414         if (!ctx)
1415                 local_irq_restore(*flags);
1416         return ctx;
1417 }
1418
1419 /*
1420  * Get the context for a task and increment its pin_count so it
1421  * can't get swapped to another task.  This also increments its
1422  * reference count so that the context can't get freed.
1423  */
1424 static struct perf_event_context *
1425 perf_pin_task_context(struct task_struct *task, int ctxn)
1426 {
1427         struct perf_event_context *ctx;
1428         unsigned long flags;
1429
1430         ctx = perf_lock_task_context(task, ctxn, &flags);
1431         if (ctx) {
1432                 ++ctx->pin_count;
1433                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1434         }
1435         return ctx;
1436 }
1437
1438 static void perf_unpin_context(struct perf_event_context *ctx)
1439 {
1440         unsigned long flags;
1441
1442         raw_spin_lock_irqsave(&ctx->lock, flags);
1443         --ctx->pin_count;
1444         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1445 }
1446
1447 /*
1448  * Update the record of the current time in a context.
1449  */
1450 static void update_context_time(struct perf_event_context *ctx)
1451 {
1452         u64 now = perf_clock();
1453
1454         ctx->time += now - ctx->timestamp;
1455         ctx->timestamp = now;
1456 }
1457
1458 static u64 perf_event_time(struct perf_event *event)
1459 {
1460         struct perf_event_context *ctx = event->ctx;
1461
1462         if (is_cgroup_event(event))
1463                 return perf_cgroup_event_time(event);
1464
1465         return ctx ? ctx->time : 0;
1466 }
1467
1468 static enum event_type_t get_event_type(struct perf_event *event)
1469 {
1470         struct perf_event_context *ctx = event->ctx;
1471         enum event_type_t event_type;
1472
1473         lockdep_assert_held(&ctx->lock);
1474
1475         /*
1476          * It's 'group type', really, because if our group leader is
1477          * pinned, so are we.
1478          */
1479         if (event->group_leader != event)
1480                 event = event->group_leader;
1481
1482         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1483         if (!ctx->task)
1484                 event_type |= EVENT_CPU;
1485
1486         return event_type;
1487 }
1488
1489 /*
1490  * Helper function to initialize event group nodes.
1491  */
1492 static void init_event_group(struct perf_event *event)
1493 {
1494         RB_CLEAR_NODE(&event->group_node);
1495         event->group_index = 0;
1496 }
1497
1498 /*
1499  * Extract pinned or flexible groups from the context
1500  * based on event attrs bits.
1501  */
1502 static struct perf_event_groups *
1503 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1504 {
1505         if (event->attr.pinned)
1506                 return &ctx->pinned_groups;
1507         else
1508                 return &ctx->flexible_groups;
1509 }
1510
1511 /*
1512  * Helper function to initializes perf_event_group trees.
1513  */
1514 static void perf_event_groups_init(struct perf_event_groups *groups)
1515 {
1516         groups->tree = RB_ROOT;
1517         groups->index = 0;
1518 }
1519
1520 /*
1521  * Compare function for event groups;
1522  *
1523  * Implements complex key that first sorts by CPU and then by virtual index
1524  * which provides ordering when rotating groups for the same CPU.
1525  */
1526 static bool
1527 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1528 {
1529         if (left->cpu < right->cpu)
1530                 return true;
1531         if (left->cpu > right->cpu)
1532                 return false;
1533
1534         if (left->group_index < right->group_index)
1535                 return true;
1536         if (left->group_index > right->group_index)
1537                 return false;
1538
1539         return false;
1540 }
1541
1542 /*
1543  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1544  * key (see perf_event_groups_less). This places it last inside the CPU
1545  * subtree.
1546  */
1547 static void
1548 perf_event_groups_insert(struct perf_event_groups *groups,
1549                          struct perf_event *event)
1550 {
1551         struct perf_event *node_event;
1552         struct rb_node *parent;
1553         struct rb_node **node;
1554
1555         event->group_index = ++groups->index;
1556
1557         node = &groups->tree.rb_node;
1558         parent = *node;
1559
1560         while (*node) {
1561                 parent = *node;
1562                 node_event = container_of(*node, struct perf_event, group_node);
1563
1564                 if (perf_event_groups_less(event, node_event))
1565                         node = &parent->rb_left;
1566                 else
1567                         node = &parent->rb_right;
1568         }
1569
1570         rb_link_node(&event->group_node, parent, node);
1571         rb_insert_color(&event->group_node, &groups->tree);
1572 }
1573
1574 /*
1575  * Helper function to insert event into the pinned or flexible groups.
1576  */
1577 static void
1578 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1579 {
1580         struct perf_event_groups *groups;
1581
1582         groups = get_event_groups(event, ctx);
1583         perf_event_groups_insert(groups, event);
1584 }
1585
1586 /*
1587  * Delete a group from a tree.
1588  */
1589 static void
1590 perf_event_groups_delete(struct perf_event_groups *groups,
1591                          struct perf_event *event)
1592 {
1593         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1594                      RB_EMPTY_ROOT(&groups->tree));
1595
1596         rb_erase(&event->group_node, &groups->tree);
1597         init_event_group(event);
1598 }
1599
1600 /*
1601  * Helper function to delete event from its groups.
1602  */
1603 static void
1604 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1605 {
1606         struct perf_event_groups *groups;
1607
1608         groups = get_event_groups(event, ctx);
1609         perf_event_groups_delete(groups, event);
1610 }
1611
1612 /*
1613  * Get the leftmost event in the @cpu subtree.
1614  */
1615 static struct perf_event *
1616 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1617 {
1618         struct perf_event *node_event = NULL, *match = NULL;
1619         struct rb_node *node = groups->tree.rb_node;
1620
1621         while (node) {
1622                 node_event = container_of(node, struct perf_event, group_node);
1623
1624                 if (cpu < node_event->cpu) {
1625                         node = node->rb_left;
1626                 } else if (cpu > node_event->cpu) {
1627                         node = node->rb_right;
1628                 } else {
1629                         match = node_event;
1630                         node = node->rb_left;
1631                 }
1632         }
1633
1634         return match;
1635 }
1636
1637 /*
1638  * Like rb_entry_next_safe() for the @cpu subtree.
1639  */
1640 static struct perf_event *
1641 perf_event_groups_next(struct perf_event *event)
1642 {
1643         struct perf_event *next;
1644
1645         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1646         if (next && next->cpu == event->cpu)
1647                 return next;
1648
1649         return NULL;
1650 }
1651
1652 /*
1653  * Iterate through the whole groups tree.
1654  */
1655 #define perf_event_groups_for_each(event, groups)                       \
1656         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1657                                 typeof(*event), group_node); event;     \
1658                 event = rb_entry_safe(rb_next(&event->group_node),      \
1659                                 typeof(*event), group_node))
1660
1661 /*
1662  * Add an event from the lists for its context.
1663  * Must be called with ctx->mutex and ctx->lock held.
1664  */
1665 static void
1666 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1667 {
1668         lockdep_assert_held(&ctx->lock);
1669
1670         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1671         event->attach_state |= PERF_ATTACH_CONTEXT;
1672
1673         event->tstamp = perf_event_time(event);
1674
1675         /*
1676          * If we're a stand alone event or group leader, we go to the context
1677          * list, group events are kept attached to the group so that
1678          * perf_group_detach can, at all times, locate all siblings.
1679          */
1680         if (event->group_leader == event) {
1681                 event->group_caps = event->event_caps;
1682                 add_event_to_groups(event, ctx);
1683         }
1684
1685         list_update_cgroup_event(event, ctx, true);
1686
1687         list_add_rcu(&event->event_entry, &ctx->event_list);
1688         ctx->nr_events++;
1689         if (event->attr.inherit_stat)
1690                 ctx->nr_stat++;
1691
1692         ctx->generation++;
1693 }
1694
1695 /*
1696  * Initialize event state based on the perf_event_attr::disabled.
1697  */
1698 static inline void perf_event__state_init(struct perf_event *event)
1699 {
1700         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1701                                               PERF_EVENT_STATE_INACTIVE;
1702 }
1703
1704 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1705 {
1706         int entry = sizeof(u64); /* value */
1707         int size = 0;
1708         int nr = 1;
1709
1710         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1711                 size += sizeof(u64);
1712
1713         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1714                 size += sizeof(u64);
1715
1716         if (event->attr.read_format & PERF_FORMAT_ID)
1717                 entry += sizeof(u64);
1718
1719         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1720                 nr += nr_siblings;
1721                 size += sizeof(u64);
1722         }
1723
1724         size += entry * nr;
1725         event->read_size = size;
1726 }
1727
1728 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1729 {
1730         struct perf_sample_data *data;
1731         u16 size = 0;
1732
1733         if (sample_type & PERF_SAMPLE_IP)
1734                 size += sizeof(data->ip);
1735
1736         if (sample_type & PERF_SAMPLE_ADDR)
1737                 size += sizeof(data->addr);
1738
1739         if (sample_type & PERF_SAMPLE_PERIOD)
1740                 size += sizeof(data->period);
1741
1742         if (sample_type & PERF_SAMPLE_WEIGHT)
1743                 size += sizeof(data->weight);
1744
1745         if (sample_type & PERF_SAMPLE_READ)
1746                 size += event->read_size;
1747
1748         if (sample_type & PERF_SAMPLE_DATA_SRC)
1749                 size += sizeof(data->data_src.val);
1750
1751         if (sample_type & PERF_SAMPLE_TRANSACTION)
1752                 size += sizeof(data->txn);
1753
1754         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1755                 size += sizeof(data->phys_addr);
1756
1757         event->header_size = size;
1758 }
1759
1760 /*
1761  * Called at perf_event creation and when events are attached/detached from a
1762  * group.
1763  */
1764 static void perf_event__header_size(struct perf_event *event)
1765 {
1766         __perf_event_read_size(event,
1767                                event->group_leader->nr_siblings);
1768         __perf_event_header_size(event, event->attr.sample_type);
1769 }
1770
1771 static void perf_event__id_header_size(struct perf_event *event)
1772 {
1773         struct perf_sample_data *data;
1774         u64 sample_type = event->attr.sample_type;
1775         u16 size = 0;
1776
1777         if (sample_type & PERF_SAMPLE_TID)
1778                 size += sizeof(data->tid_entry);
1779
1780         if (sample_type & PERF_SAMPLE_TIME)
1781                 size += sizeof(data->time);
1782
1783         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1784                 size += sizeof(data->id);
1785
1786         if (sample_type & PERF_SAMPLE_ID)
1787                 size += sizeof(data->id);
1788
1789         if (sample_type & PERF_SAMPLE_STREAM_ID)
1790                 size += sizeof(data->stream_id);
1791
1792         if (sample_type & PERF_SAMPLE_CPU)
1793                 size += sizeof(data->cpu_entry);
1794
1795         event->id_header_size = size;
1796 }
1797
1798 static bool perf_event_validate_size(struct perf_event *event)
1799 {
1800         /*
1801          * The values computed here will be over-written when we actually
1802          * attach the event.
1803          */
1804         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1805         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1806         perf_event__id_header_size(event);
1807
1808         /*
1809          * Sum the lot; should not exceed the 64k limit we have on records.
1810          * Conservative limit to allow for callchains and other variable fields.
1811          */
1812         if (event->read_size + event->header_size +
1813             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1814                 return false;
1815
1816         return true;
1817 }
1818
1819 static void perf_group_attach(struct perf_event *event)
1820 {
1821         struct perf_event *group_leader = event->group_leader, *pos;
1822
1823         lockdep_assert_held(&event->ctx->lock);
1824
1825         /*
1826          * We can have double attach due to group movement in perf_event_open.
1827          */
1828         if (event->attach_state & PERF_ATTACH_GROUP)
1829                 return;
1830
1831         event->attach_state |= PERF_ATTACH_GROUP;
1832
1833         if (group_leader == event)
1834                 return;
1835
1836         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1837
1838         group_leader->group_caps &= event->event_caps;
1839
1840         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1841         group_leader->nr_siblings++;
1842
1843         perf_event__header_size(group_leader);
1844
1845         for_each_sibling_event(pos, group_leader)
1846                 perf_event__header_size(pos);
1847 }
1848
1849 /*
1850  * Remove an event from the lists for its context.
1851  * Must be called with ctx->mutex and ctx->lock held.
1852  */
1853 static void
1854 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1855 {
1856         WARN_ON_ONCE(event->ctx != ctx);
1857         lockdep_assert_held(&ctx->lock);
1858
1859         /*
1860          * We can have double detach due to exit/hot-unplug + close.
1861          */
1862         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1863                 return;
1864
1865         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1866
1867         list_update_cgroup_event(event, ctx, false);
1868
1869         ctx->nr_events--;
1870         if (event->attr.inherit_stat)
1871                 ctx->nr_stat--;
1872
1873         list_del_rcu(&event->event_entry);
1874
1875         if (event->group_leader == event)
1876                 del_event_from_groups(event, ctx);
1877
1878         /*
1879          * If event was in error state, then keep it
1880          * that way, otherwise bogus counts will be
1881          * returned on read(). The only way to get out
1882          * of error state is by explicit re-enabling
1883          * of the event
1884          */
1885         if (event->state > PERF_EVENT_STATE_OFF)
1886                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1887
1888         ctx->generation++;
1889 }
1890
1891 static int
1892 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
1893 {
1894         if (!has_aux(aux_event))
1895                 return 0;
1896
1897         if (!event->pmu->aux_output_match)
1898                 return 0;
1899
1900         return event->pmu->aux_output_match(aux_event);
1901 }
1902
1903 static void put_event(struct perf_event *event);
1904 static void event_sched_out(struct perf_event *event,
1905                             struct perf_cpu_context *cpuctx,
1906                             struct perf_event_context *ctx);
1907
1908 static void perf_put_aux_event(struct perf_event *event)
1909 {
1910         struct perf_event_context *ctx = event->ctx;
1911         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1912         struct perf_event *iter;
1913
1914         /*
1915          * If event uses aux_event tear down the link
1916          */
1917         if (event->aux_event) {
1918                 iter = event->aux_event;
1919                 event->aux_event = NULL;
1920                 put_event(iter);
1921                 return;
1922         }
1923
1924         /*
1925          * If the event is an aux_event, tear down all links to
1926          * it from other events.
1927          */
1928         for_each_sibling_event(iter, event->group_leader) {
1929                 if (iter->aux_event != event)
1930                         continue;
1931
1932                 iter->aux_event = NULL;
1933                 put_event(event);
1934
1935                 /*
1936                  * If it's ACTIVE, schedule it out and put it into ERROR
1937                  * state so that we don't try to schedule it again. Note
1938                  * that perf_event_enable() will clear the ERROR status.
1939                  */
1940                 event_sched_out(iter, cpuctx, ctx);
1941                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
1942         }
1943 }
1944
1945 static bool perf_need_aux_event(struct perf_event *event)
1946 {
1947         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
1948 }
1949
1950 static int perf_get_aux_event(struct perf_event *event,
1951                               struct perf_event *group_leader)
1952 {
1953         /*
1954          * Our group leader must be an aux event if we want to be
1955          * an aux_output. This way, the aux event will precede its
1956          * aux_output events in the group, and therefore will always
1957          * schedule first.
1958          */
1959         if (!group_leader)
1960                 return 0;
1961
1962         /*
1963          * aux_output and aux_sample_size are mutually exclusive.
1964          */
1965         if (event->attr.aux_output && event->attr.aux_sample_size)
1966                 return 0;
1967
1968         if (event->attr.aux_output &&
1969             !perf_aux_output_match(event, group_leader))
1970                 return 0;
1971
1972         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
1973                 return 0;
1974
1975         if (!atomic_long_inc_not_zero(&group_leader->refcount))
1976                 return 0;
1977
1978         /*
1979          * Link aux_outputs to their aux event; this is undone in
1980          * perf_group_detach() by perf_put_aux_event(). When the
1981          * group in torn down, the aux_output events loose their
1982          * link to the aux_event and can't schedule any more.
1983          */
1984         event->aux_event = group_leader;
1985
1986         return 1;
1987 }
1988
1989 static void perf_group_detach(struct perf_event *event)
1990 {
1991         struct perf_event *sibling, *tmp;
1992         struct perf_event_context *ctx = event->ctx;
1993
1994         lockdep_assert_held(&ctx->lock);
1995
1996         /*
1997          * We can have double detach due to exit/hot-unplug + close.
1998          */
1999         if (!(event->attach_state & PERF_ATTACH_GROUP))
2000                 return;
2001
2002         event->attach_state &= ~PERF_ATTACH_GROUP;
2003
2004         perf_put_aux_event(event);
2005
2006         /*
2007          * If this is a sibling, remove it from its group.
2008          */
2009         if (event->group_leader != event) {
2010                 list_del_init(&event->sibling_list);
2011                 event->group_leader->nr_siblings--;
2012                 goto out;
2013         }
2014
2015         /*
2016          * If this was a group event with sibling events then
2017          * upgrade the siblings to singleton events by adding them
2018          * to whatever list we are on.
2019          */
2020         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2021
2022                 sibling->group_leader = sibling;
2023                 list_del_init(&sibling->sibling_list);
2024
2025                 /* Inherit group flags from the previous leader */
2026                 sibling->group_caps = event->group_caps;
2027
2028                 if (!RB_EMPTY_NODE(&event->group_node)) {
2029                         add_event_to_groups(sibling, event->ctx);
2030
2031                         if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
2032                                 struct list_head *list = sibling->attr.pinned ?
2033                                         &ctx->pinned_active : &ctx->flexible_active;
2034
2035                                 list_add_tail(&sibling->active_list, list);
2036                         }
2037                 }
2038
2039                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2040         }
2041
2042 out:
2043         perf_event__header_size(event->group_leader);
2044
2045         for_each_sibling_event(tmp, event->group_leader)
2046                 perf_event__header_size(tmp);
2047 }
2048
2049 static bool is_orphaned_event(struct perf_event *event)
2050 {
2051         return event->state == PERF_EVENT_STATE_DEAD;
2052 }
2053
2054 static inline int __pmu_filter_match(struct perf_event *event)
2055 {
2056         struct pmu *pmu = event->pmu;
2057         return pmu->filter_match ? pmu->filter_match(event) : 1;
2058 }
2059
2060 /*
2061  * Check whether we should attempt to schedule an event group based on
2062  * PMU-specific filtering. An event group can consist of HW and SW events,
2063  * potentially with a SW leader, so we must check all the filters, to
2064  * determine whether a group is schedulable:
2065  */
2066 static inline int pmu_filter_match(struct perf_event *event)
2067 {
2068         struct perf_event *sibling;
2069
2070         if (!__pmu_filter_match(event))
2071                 return 0;
2072
2073         for_each_sibling_event(sibling, event) {
2074                 if (!__pmu_filter_match(sibling))
2075                         return 0;
2076         }
2077
2078         return 1;
2079 }
2080
2081 static inline int
2082 event_filter_match(struct perf_event *event)
2083 {
2084         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2085                perf_cgroup_match(event) && pmu_filter_match(event);
2086 }
2087
2088 static void
2089 event_sched_out(struct perf_event *event,
2090                   struct perf_cpu_context *cpuctx,
2091                   struct perf_event_context *ctx)
2092 {
2093         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2094
2095         WARN_ON_ONCE(event->ctx != ctx);
2096         lockdep_assert_held(&ctx->lock);
2097
2098         if (event->state != PERF_EVENT_STATE_ACTIVE)
2099                 return;
2100
2101         /*
2102          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2103          * we can schedule events _OUT_ individually through things like
2104          * __perf_remove_from_context().
2105          */
2106         list_del_init(&event->active_list);
2107
2108         perf_pmu_disable(event->pmu);
2109
2110         event->pmu->del(event, 0);
2111         event->oncpu = -1;
2112
2113         if (READ_ONCE(event->pending_disable) >= 0) {
2114                 WRITE_ONCE(event->pending_disable, -1);
2115                 state = PERF_EVENT_STATE_OFF;
2116         }
2117         perf_event_set_state(event, state);
2118
2119         if (!is_software_event(event))
2120                 cpuctx->active_oncpu--;
2121         if (!--ctx->nr_active)
2122                 perf_event_ctx_deactivate(ctx);
2123         if (event->attr.freq && event->attr.sample_freq)
2124                 ctx->nr_freq--;
2125         if (event->attr.exclusive || !cpuctx->active_oncpu)
2126                 cpuctx->exclusive = 0;
2127
2128         perf_pmu_enable(event->pmu);
2129 }
2130
2131 static void
2132 group_sched_out(struct perf_event *group_event,
2133                 struct perf_cpu_context *cpuctx,
2134                 struct perf_event_context *ctx)
2135 {
2136         struct perf_event *event;
2137
2138         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2139                 return;
2140
2141         perf_pmu_disable(ctx->pmu);
2142
2143         event_sched_out(group_event, cpuctx, ctx);
2144
2145         /*
2146          * Schedule out siblings (if any):
2147          */
2148         for_each_sibling_event(event, group_event)
2149                 event_sched_out(event, cpuctx, ctx);
2150
2151         perf_pmu_enable(ctx->pmu);
2152
2153         if (group_event->attr.exclusive)
2154                 cpuctx->exclusive = 0;
2155 }
2156
2157 #define DETACH_GROUP    0x01UL
2158
2159 /*
2160  * Cross CPU call to remove a performance event
2161  *
2162  * We disable the event on the hardware level first. After that we
2163  * remove it from the context list.
2164  */
2165 static void
2166 __perf_remove_from_context(struct perf_event *event,
2167                            struct perf_cpu_context *cpuctx,
2168                            struct perf_event_context *ctx,
2169                            void *info)
2170 {
2171         unsigned long flags = (unsigned long)info;
2172
2173         if (ctx->is_active & EVENT_TIME) {
2174                 update_context_time(ctx);
2175                 update_cgrp_time_from_cpuctx(cpuctx);
2176         }
2177
2178         event_sched_out(event, cpuctx, ctx);
2179         if (flags & DETACH_GROUP)
2180                 perf_group_detach(event);
2181         list_del_event(event, ctx);
2182
2183         if (!ctx->nr_events && ctx->is_active) {
2184                 ctx->is_active = 0;
2185                 if (ctx->task) {
2186                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2187                         cpuctx->task_ctx = NULL;
2188                 }
2189         }
2190 }
2191
2192 /*
2193  * Remove the event from a task's (or a CPU's) list of events.
2194  *
2195  * If event->ctx is a cloned context, callers must make sure that
2196  * every task struct that event->ctx->task could possibly point to
2197  * remains valid.  This is OK when called from perf_release since
2198  * that only calls us on the top-level context, which can't be a clone.
2199  * When called from perf_event_exit_task, it's OK because the
2200  * context has been detached from its task.
2201  */
2202 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2203 {
2204         struct perf_event_context *ctx = event->ctx;
2205
2206         lockdep_assert_held(&ctx->mutex);
2207
2208         event_function_call(event, __perf_remove_from_context, (void *)flags);
2209
2210         /*
2211          * The above event_function_call() can NO-OP when it hits
2212          * TASK_TOMBSTONE. In that case we must already have been detached
2213          * from the context (by perf_event_exit_event()) but the grouping
2214          * might still be in-tact.
2215          */
2216         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2217         if ((flags & DETACH_GROUP) &&
2218             (event->attach_state & PERF_ATTACH_GROUP)) {
2219                 /*
2220                  * Since in that case we cannot possibly be scheduled, simply
2221                  * detach now.
2222                  */
2223                 raw_spin_lock_irq(&ctx->lock);
2224                 perf_group_detach(event);
2225                 raw_spin_unlock_irq(&ctx->lock);
2226         }
2227 }
2228
2229 /*
2230  * Cross CPU call to disable a performance event
2231  */
2232 static void __perf_event_disable(struct perf_event *event,
2233                                  struct perf_cpu_context *cpuctx,
2234                                  struct perf_event_context *ctx,
2235                                  void *info)
2236 {
2237         if (event->state < PERF_EVENT_STATE_INACTIVE)
2238                 return;
2239
2240         if (ctx->is_active & EVENT_TIME) {
2241                 update_context_time(ctx);
2242                 update_cgrp_time_from_event(event);
2243         }
2244
2245         if (event == event->group_leader)
2246                 group_sched_out(event, cpuctx, ctx);
2247         else
2248                 event_sched_out(event, cpuctx, ctx);
2249
2250         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2251 }
2252
2253 /*
2254  * Disable an event.
2255  *
2256  * If event->ctx is a cloned context, callers must make sure that
2257  * every task struct that event->ctx->task could possibly point to
2258  * remains valid.  This condition is satisfied when called through
2259  * perf_event_for_each_child or perf_event_for_each because they
2260  * hold the top-level event's child_mutex, so any descendant that
2261  * goes to exit will block in perf_event_exit_event().
2262  *
2263  * When called from perf_pending_event it's OK because event->ctx
2264  * is the current context on this CPU and preemption is disabled,
2265  * hence we can't get into perf_event_task_sched_out for this context.
2266  */
2267 static void _perf_event_disable(struct perf_event *event)
2268 {
2269         struct perf_event_context *ctx = event->ctx;
2270
2271         raw_spin_lock_irq(&ctx->lock);
2272         if (event->state <= PERF_EVENT_STATE_OFF) {
2273                 raw_spin_unlock_irq(&ctx->lock);
2274                 return;
2275         }
2276         raw_spin_unlock_irq(&ctx->lock);
2277
2278         event_function_call(event, __perf_event_disable, NULL);
2279 }
2280
2281 void perf_event_disable_local(struct perf_event *event)
2282 {
2283         event_function_local(event, __perf_event_disable, NULL);
2284 }
2285
2286 /*
2287  * Strictly speaking kernel users cannot create groups and therefore this
2288  * interface does not need the perf_event_ctx_lock() magic.
2289  */
2290 void perf_event_disable(struct perf_event *event)
2291 {
2292         struct perf_event_context *ctx;
2293
2294         ctx = perf_event_ctx_lock(event);
2295         _perf_event_disable(event);
2296         perf_event_ctx_unlock(event, ctx);
2297 }
2298 EXPORT_SYMBOL_GPL(perf_event_disable);
2299
2300 void perf_event_disable_inatomic(struct perf_event *event)
2301 {
2302         WRITE_ONCE(event->pending_disable, smp_processor_id());
2303         /* can fail, see perf_pending_event_disable() */
2304         irq_work_queue(&event->pending);
2305 }
2306
2307 static void perf_set_shadow_time(struct perf_event *event,
2308                                  struct perf_event_context *ctx)
2309 {
2310         /*
2311          * use the correct time source for the time snapshot
2312          *
2313          * We could get by without this by leveraging the
2314          * fact that to get to this function, the caller
2315          * has most likely already called update_context_time()
2316          * and update_cgrp_time_xx() and thus both timestamp
2317          * are identical (or very close). Given that tstamp is,
2318          * already adjusted for cgroup, we could say that:
2319          *    tstamp - ctx->timestamp
2320          * is equivalent to
2321          *    tstamp - cgrp->timestamp.
2322          *
2323          * Then, in perf_output_read(), the calculation would
2324          * work with no changes because:
2325          * - event is guaranteed scheduled in
2326          * - no scheduled out in between
2327          * - thus the timestamp would be the same
2328          *
2329          * But this is a bit hairy.
2330          *
2331          * So instead, we have an explicit cgroup call to remain
2332          * within the time time source all along. We believe it
2333          * is cleaner and simpler to understand.
2334          */
2335         if (is_cgroup_event(event))
2336                 perf_cgroup_set_shadow_time(event, event->tstamp);
2337         else
2338                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2339 }
2340
2341 #define MAX_INTERRUPTS (~0ULL)
2342
2343 static void perf_log_throttle(struct perf_event *event, int enable);
2344 static void perf_log_itrace_start(struct perf_event *event);
2345
2346 static int
2347 event_sched_in(struct perf_event *event,
2348                  struct perf_cpu_context *cpuctx,
2349                  struct perf_event_context *ctx)
2350 {
2351         int ret = 0;
2352
2353         lockdep_assert_held(&ctx->lock);
2354
2355         if (event->state <= PERF_EVENT_STATE_OFF)
2356                 return 0;
2357
2358         WRITE_ONCE(event->oncpu, smp_processor_id());
2359         /*
2360          * Order event::oncpu write to happen before the ACTIVE state is
2361          * visible. This allows perf_event_{stop,read}() to observe the correct
2362          * ->oncpu if it sees ACTIVE.
2363          */
2364         smp_wmb();
2365         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2366
2367         /*
2368          * Unthrottle events, since we scheduled we might have missed several
2369          * ticks already, also for a heavily scheduling task there is little
2370          * guarantee it'll get a tick in a timely manner.
2371          */
2372         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2373                 perf_log_throttle(event, 1);
2374                 event->hw.interrupts = 0;
2375         }
2376
2377         perf_pmu_disable(event->pmu);
2378
2379         perf_set_shadow_time(event, ctx);
2380
2381         perf_log_itrace_start(event);
2382
2383         if (event->pmu->add(event, PERF_EF_START)) {
2384                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2385                 event->oncpu = -1;
2386                 ret = -EAGAIN;
2387                 goto out;
2388         }
2389
2390         if (!is_software_event(event))
2391                 cpuctx->active_oncpu++;
2392         if (!ctx->nr_active++)
2393                 perf_event_ctx_activate(ctx);
2394         if (event->attr.freq && event->attr.sample_freq)
2395                 ctx->nr_freq++;
2396
2397         if (event->attr.exclusive)
2398                 cpuctx->exclusive = 1;
2399
2400 out:
2401         perf_pmu_enable(event->pmu);
2402
2403         return ret;
2404 }
2405
2406 static int
2407 group_sched_in(struct perf_event *group_event,
2408                struct perf_cpu_context *cpuctx,
2409                struct perf_event_context *ctx)
2410 {
2411         struct perf_event *event, *partial_group = NULL;
2412         struct pmu *pmu = ctx->pmu;
2413
2414         if (group_event->state == PERF_EVENT_STATE_OFF)
2415                 return 0;
2416
2417         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2418
2419         if (event_sched_in(group_event, cpuctx, ctx)) {
2420                 pmu->cancel_txn(pmu);
2421                 perf_mux_hrtimer_restart(cpuctx);
2422                 return -EAGAIN;
2423         }
2424
2425         /*
2426          * Schedule in siblings as one group (if any):
2427          */
2428         for_each_sibling_event(event, group_event) {
2429                 if (event_sched_in(event, cpuctx, ctx)) {
2430                         partial_group = event;
2431                         goto group_error;
2432                 }
2433         }
2434
2435         if (!pmu->commit_txn(pmu))
2436                 return 0;
2437
2438 group_error:
2439         /*
2440          * Groups can be scheduled in as one unit only, so undo any
2441          * partial group before returning:
2442          * The events up to the failed event are scheduled out normally.
2443          */
2444         for_each_sibling_event(event, group_event) {
2445                 if (event == partial_group)
2446                         break;
2447
2448                 event_sched_out(event, cpuctx, ctx);
2449         }
2450         event_sched_out(group_event, cpuctx, ctx);
2451
2452         pmu->cancel_txn(pmu);
2453
2454         perf_mux_hrtimer_restart(cpuctx);
2455
2456         return -EAGAIN;
2457 }
2458
2459 /*
2460  * Work out whether we can put this event group on the CPU now.
2461  */
2462 static int group_can_go_on(struct perf_event *event,
2463                            struct perf_cpu_context *cpuctx,
2464                            int can_add_hw)
2465 {
2466         /*
2467          * Groups consisting entirely of software events can always go on.
2468          */
2469         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2470                 return 1;
2471         /*
2472          * If an exclusive group is already on, no other hardware
2473          * events can go on.
2474          */
2475         if (cpuctx->exclusive)
2476                 return 0;
2477         /*
2478          * If this group is exclusive and there are already
2479          * events on the CPU, it can't go on.
2480          */
2481         if (event->attr.exclusive && cpuctx->active_oncpu)
2482                 return 0;
2483         /*
2484          * Otherwise, try to add it if all previous groups were able
2485          * to go on.
2486          */
2487         return can_add_hw;
2488 }
2489
2490 static void add_event_to_ctx(struct perf_event *event,
2491                                struct perf_event_context *ctx)
2492 {
2493         list_add_event(event, ctx);
2494         perf_group_attach(event);
2495 }
2496
2497 static void ctx_sched_out(struct perf_event_context *ctx,
2498                           struct perf_cpu_context *cpuctx,
2499                           enum event_type_t event_type);
2500 static void
2501 ctx_sched_in(struct perf_event_context *ctx,
2502              struct perf_cpu_context *cpuctx,
2503              enum event_type_t event_type,
2504              struct task_struct *task);
2505
2506 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2507                                struct perf_event_context *ctx,
2508                                enum event_type_t event_type)
2509 {
2510         if (!cpuctx->task_ctx)
2511                 return;
2512
2513         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2514                 return;
2515
2516         ctx_sched_out(ctx, cpuctx, event_type);
2517 }
2518
2519 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2520                                 struct perf_event_context *ctx,
2521                                 struct task_struct *task)
2522 {
2523         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2524         if (ctx)
2525                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2526         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2527         if (ctx)
2528                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2529 }
2530
2531 /*
2532  * We want to maintain the following priority of scheduling:
2533  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2534  *  - task pinned (EVENT_PINNED)
2535  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2536  *  - task flexible (EVENT_FLEXIBLE).
2537  *
2538  * In order to avoid unscheduling and scheduling back in everything every
2539  * time an event is added, only do it for the groups of equal priority and
2540  * below.
2541  *
2542  * This can be called after a batch operation on task events, in which case
2543  * event_type is a bit mask of the types of events involved. For CPU events,
2544  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2545  */
2546 static void ctx_resched(struct perf_cpu_context *cpuctx,
2547                         struct perf_event_context *task_ctx,
2548                         enum event_type_t event_type)
2549 {
2550         enum event_type_t ctx_event_type;
2551         bool cpu_event = !!(event_type & EVENT_CPU);
2552
2553         /*
2554          * If pinned groups are involved, flexible groups also need to be
2555          * scheduled out.
2556          */
2557         if (event_type & EVENT_PINNED)
2558                 event_type |= EVENT_FLEXIBLE;
2559
2560         ctx_event_type = event_type & EVENT_ALL;
2561
2562         perf_pmu_disable(cpuctx->ctx.pmu);
2563         if (task_ctx)
2564                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2565
2566         /*
2567          * Decide which cpu ctx groups to schedule out based on the types
2568          * of events that caused rescheduling:
2569          *  - EVENT_CPU: schedule out corresponding groups;
2570          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2571          *  - otherwise, do nothing more.
2572          */
2573         if (cpu_event)
2574                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2575         else if (ctx_event_type & EVENT_PINNED)
2576                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2577
2578         perf_event_sched_in(cpuctx, task_ctx, current);
2579         perf_pmu_enable(cpuctx->ctx.pmu);
2580 }
2581
2582 void perf_pmu_resched(struct pmu *pmu)
2583 {
2584         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2585         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2586
2587         perf_ctx_lock(cpuctx, task_ctx);
2588         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2589         perf_ctx_unlock(cpuctx, task_ctx);
2590 }
2591
2592 /*
2593  * Cross CPU call to install and enable a performance event
2594  *
2595  * Very similar to remote_function() + event_function() but cannot assume that
2596  * things like ctx->is_active and cpuctx->task_ctx are set.
2597  */
2598 static int  __perf_install_in_context(void *info)
2599 {
2600         struct perf_event *event = info;
2601         struct perf_event_context *ctx = event->ctx;
2602         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2603         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2604         bool reprogram = true;
2605         int ret = 0;
2606
2607         raw_spin_lock(&cpuctx->ctx.lock);
2608         if (ctx->task) {
2609                 raw_spin_lock(&ctx->lock);
2610                 task_ctx = ctx;
2611
2612                 reprogram = (ctx->task == current);
2613
2614                 /*
2615                  * If the task is running, it must be running on this CPU,
2616                  * otherwise we cannot reprogram things.
2617                  *
2618                  * If its not running, we don't care, ctx->lock will
2619                  * serialize against it becoming runnable.
2620                  */
2621                 if (task_curr(ctx->task) && !reprogram) {
2622                         ret = -ESRCH;
2623                         goto unlock;
2624                 }
2625
2626                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2627         } else if (task_ctx) {
2628                 raw_spin_lock(&task_ctx->lock);
2629         }
2630
2631 #ifdef CONFIG_CGROUP_PERF
2632         if (is_cgroup_event(event)) {
2633                 /*
2634                  * If the current cgroup doesn't match the event's
2635                  * cgroup, we should not try to schedule it.
2636                  */
2637                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2638                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2639                                         event->cgrp->css.cgroup);
2640         }
2641 #endif
2642
2643         if (reprogram) {
2644                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2645                 add_event_to_ctx(event, ctx);
2646                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2647         } else {
2648                 add_event_to_ctx(event, ctx);
2649         }
2650
2651 unlock:
2652         perf_ctx_unlock(cpuctx, task_ctx);
2653
2654         return ret;
2655 }
2656
2657 static bool exclusive_event_installable(struct perf_event *event,
2658                                         struct perf_event_context *ctx);
2659
2660 /*
2661  * Attach a performance event to a context.
2662  *
2663  * Very similar to event_function_call, see comment there.
2664  */
2665 static void
2666 perf_install_in_context(struct perf_event_context *ctx,
2667                         struct perf_event *event,
2668                         int cpu)
2669 {
2670         struct task_struct *task = READ_ONCE(ctx->task);
2671
2672         lockdep_assert_held(&ctx->mutex);
2673
2674         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2675
2676         if (event->cpu != -1)
2677                 event->cpu = cpu;
2678
2679         /*
2680          * Ensures that if we can observe event->ctx, both the event and ctx
2681          * will be 'complete'. See perf_iterate_sb_cpu().
2682          */
2683         smp_store_release(&event->ctx, ctx);
2684
2685         /*
2686          * perf_event_attr::disabled events will not run and can be initialized
2687          * without IPI. Except when this is the first event for the context, in
2688          * that case we need the magic of the IPI to set ctx->is_active.
2689          *
2690          * The IOC_ENABLE that is sure to follow the creation of a disabled
2691          * event will issue the IPI and reprogram the hardware.
2692          */
2693         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2694                 raw_spin_lock_irq(&ctx->lock);
2695                 if (ctx->task == TASK_TOMBSTONE) {
2696                         raw_spin_unlock_irq(&ctx->lock);
2697                         return;
2698                 }
2699                 add_event_to_ctx(event, ctx);
2700                 raw_spin_unlock_irq(&ctx->lock);
2701                 return;
2702         }
2703
2704         if (!task) {
2705                 cpu_function_call(cpu, __perf_install_in_context, event);
2706                 return;
2707         }
2708
2709         /*
2710          * Should not happen, we validate the ctx is still alive before calling.
2711          */
2712         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2713                 return;
2714
2715         /*
2716          * Installing events is tricky because we cannot rely on ctx->is_active
2717          * to be set in case this is the nr_events 0 -> 1 transition.
2718          *
2719          * Instead we use task_curr(), which tells us if the task is running.
2720          * However, since we use task_curr() outside of rq::lock, we can race
2721          * against the actual state. This means the result can be wrong.
2722          *
2723          * If we get a false positive, we retry, this is harmless.
2724          *
2725          * If we get a false negative, things are complicated. If we are after
2726          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2727          * value must be correct. If we're before, it doesn't matter since
2728          * perf_event_context_sched_in() will program the counter.
2729          *
2730          * However, this hinges on the remote context switch having observed
2731          * our task->perf_event_ctxp[] store, such that it will in fact take
2732          * ctx::lock in perf_event_context_sched_in().
2733          *
2734          * We do this by task_function_call(), if the IPI fails to hit the task
2735          * we know any future context switch of task must see the
2736          * perf_event_ctpx[] store.
2737          */
2738
2739         /*
2740          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2741          * task_cpu() load, such that if the IPI then does not find the task
2742          * running, a future context switch of that task must observe the
2743          * store.
2744          */
2745         smp_mb();
2746 again:
2747         if (!task_function_call(task, __perf_install_in_context, event))
2748                 return;
2749
2750         raw_spin_lock_irq(&ctx->lock);
2751         task = ctx->task;
2752         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2753                 /*
2754                  * Cannot happen because we already checked above (which also
2755                  * cannot happen), and we hold ctx->mutex, which serializes us
2756                  * against perf_event_exit_task_context().
2757                  */
2758                 raw_spin_unlock_irq(&ctx->lock);
2759                 return;
2760         }
2761         /*
2762          * If the task is not running, ctx->lock will avoid it becoming so,
2763          * thus we can safely install the event.
2764          */
2765         if (task_curr(task)) {
2766                 raw_spin_unlock_irq(&ctx->lock);
2767                 goto again;
2768         }
2769         add_event_to_ctx(event, ctx);
2770         raw_spin_unlock_irq(&ctx->lock);
2771 }
2772
2773 /*
2774  * Cross CPU call to enable a performance event
2775  */
2776 static void __perf_event_enable(struct perf_event *event,
2777                                 struct perf_cpu_context *cpuctx,
2778                                 struct perf_event_context *ctx,
2779                                 void *info)
2780 {
2781         struct perf_event *leader = event->group_leader;
2782         struct perf_event_context *task_ctx;
2783
2784         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2785             event->state <= PERF_EVENT_STATE_ERROR)
2786                 return;
2787
2788         if (ctx->is_active)
2789                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2790
2791         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2792
2793         if (!ctx->is_active)
2794                 return;
2795
2796         if (!event_filter_match(event)) {
2797                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2798                 return;
2799         }
2800
2801         /*
2802          * If the event is in a group and isn't the group leader,
2803          * then don't put it on unless the group is on.
2804          */
2805         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2806                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2807                 return;
2808         }
2809
2810         task_ctx = cpuctx->task_ctx;
2811         if (ctx->task)
2812                 WARN_ON_ONCE(task_ctx != ctx);
2813
2814         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2815 }
2816
2817 /*
2818  * Enable an event.
2819  *
2820  * If event->ctx is a cloned context, callers must make sure that
2821  * every task struct that event->ctx->task could possibly point to
2822  * remains valid.  This condition is satisfied when called through
2823  * perf_event_for_each_child or perf_event_for_each as described
2824  * for perf_event_disable.
2825  */
2826 static void _perf_event_enable(struct perf_event *event)
2827 {
2828         struct perf_event_context *ctx = event->ctx;
2829
2830         raw_spin_lock_irq(&ctx->lock);
2831         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2832             event->state <  PERF_EVENT_STATE_ERROR) {
2833                 raw_spin_unlock_irq(&ctx->lock);
2834                 return;
2835         }
2836
2837         /*
2838          * If the event is in error state, clear that first.
2839          *
2840          * That way, if we see the event in error state below, we know that it
2841          * has gone back into error state, as distinct from the task having
2842          * been scheduled away before the cross-call arrived.
2843          */
2844         if (event->state == PERF_EVENT_STATE_ERROR)
2845                 event->state = PERF_EVENT_STATE_OFF;
2846         raw_spin_unlock_irq(&ctx->lock);
2847
2848         event_function_call(event, __perf_event_enable, NULL);
2849 }
2850
2851 /*
2852  * See perf_event_disable();
2853  */
2854 void perf_event_enable(struct perf_event *event)
2855 {
2856         struct perf_event_context *ctx;
2857
2858         ctx = perf_event_ctx_lock(event);
2859         _perf_event_enable(event);
2860         perf_event_ctx_unlock(event, ctx);
2861 }
2862 EXPORT_SYMBOL_GPL(perf_event_enable);
2863
2864 struct stop_event_data {
2865         struct perf_event       *event;
2866         unsigned int            restart;
2867 };
2868
2869 static int __perf_event_stop(void *info)
2870 {
2871         struct stop_event_data *sd = info;
2872         struct perf_event *event = sd->event;
2873
2874         /* if it's already INACTIVE, do nothing */
2875         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2876                 return 0;
2877
2878         /* matches smp_wmb() in event_sched_in() */
2879         smp_rmb();
2880
2881         /*
2882          * There is a window with interrupts enabled before we get here,
2883          * so we need to check again lest we try to stop another CPU's event.
2884          */
2885         if (READ_ONCE(event->oncpu) != smp_processor_id())
2886                 return -EAGAIN;
2887
2888         event->pmu->stop(event, PERF_EF_UPDATE);
2889
2890         /*
2891          * May race with the actual stop (through perf_pmu_output_stop()),
2892          * but it is only used for events with AUX ring buffer, and such
2893          * events will refuse to restart because of rb::aux_mmap_count==0,
2894          * see comments in perf_aux_output_begin().
2895          *
2896          * Since this is happening on an event-local CPU, no trace is lost
2897          * while restarting.
2898          */
2899         if (sd->restart)
2900                 event->pmu->start(event, 0);
2901
2902         return 0;
2903 }
2904
2905 static int perf_event_stop(struct perf_event *event, int restart)
2906 {
2907         struct stop_event_data sd = {
2908                 .event          = event,
2909                 .restart        = restart,
2910         };
2911         int ret = 0;
2912
2913         do {
2914                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2915                         return 0;
2916
2917                 /* matches smp_wmb() in event_sched_in() */
2918                 smp_rmb();
2919
2920                 /*
2921                  * We only want to restart ACTIVE events, so if the event goes
2922                  * inactive here (event->oncpu==-1), there's nothing more to do;
2923                  * fall through with ret==-ENXIO.
2924                  */
2925                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2926                                         __perf_event_stop, &sd);
2927         } while (ret == -EAGAIN);
2928
2929         return ret;
2930 }
2931
2932 /*
2933  * In order to contain the amount of racy and tricky in the address filter
2934  * configuration management, it is a two part process:
2935  *
2936  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2937  *      we update the addresses of corresponding vmas in
2938  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
2939  * (p2) when an event is scheduled in (pmu::add), it calls
2940  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2941  *      if the generation has changed since the previous call.
2942  *
2943  * If (p1) happens while the event is active, we restart it to force (p2).
2944  *
2945  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2946  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2947  *     ioctl;
2948  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2949  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2950  *     for reading;
2951  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2952  *     of exec.
2953  */
2954 void perf_event_addr_filters_sync(struct perf_event *event)
2955 {
2956         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2957
2958         if (!has_addr_filter(event))
2959                 return;
2960
2961         raw_spin_lock(&ifh->lock);
2962         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2963                 event->pmu->addr_filters_sync(event);
2964                 event->hw.addr_filters_gen = event->addr_filters_gen;
2965         }
2966         raw_spin_unlock(&ifh->lock);
2967 }
2968 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2969
2970 static int _perf_event_refresh(struct perf_event *event, int refresh)
2971 {
2972         /*
2973          * not supported on inherited events
2974          */
2975         if (event->attr.inherit || !is_sampling_event(event))
2976                 return -EINVAL;
2977
2978         atomic_add(refresh, &event->event_limit);
2979         _perf_event_enable(event);
2980
2981         return 0;
2982 }
2983
2984 /*
2985  * See perf_event_disable()
2986  */
2987 int perf_event_refresh(struct perf_event *event, int refresh)
2988 {
2989         struct perf_event_context *ctx;
2990         int ret;
2991
2992         ctx = perf_event_ctx_lock(event);
2993         ret = _perf_event_refresh(event, refresh);
2994         perf_event_ctx_unlock(event, ctx);
2995
2996         return ret;
2997 }
2998 EXPORT_SYMBOL_GPL(perf_event_refresh);
2999
3000 static int perf_event_modify_breakpoint(struct perf_event *bp,
3001                                          struct perf_event_attr *attr)
3002 {
3003         int err;
3004
3005         _perf_event_disable(bp);
3006
3007         err = modify_user_hw_breakpoint_check(bp, attr, true);
3008
3009         if (!bp->attr.disabled)
3010                 _perf_event_enable(bp);
3011
3012         return err;
3013 }
3014
3015 static int perf_event_modify_attr(struct perf_event *event,
3016                                   struct perf_event_attr *attr)
3017 {
3018         if (event->attr.type != attr->type)
3019                 return -EINVAL;
3020
3021         switch (event->attr.type) {
3022         case PERF_TYPE_BREAKPOINT:
3023                 return perf_event_modify_breakpoint(event, attr);
3024         default:
3025                 /* Place holder for future additions. */
3026                 return -EOPNOTSUPP;
3027         }
3028 }
3029
3030 static void ctx_sched_out(struct perf_event_context *ctx,
3031                           struct perf_cpu_context *cpuctx,
3032                           enum event_type_t event_type)
3033 {
3034         struct perf_event *event, *tmp;
3035         int is_active = ctx->is_active;
3036
3037         lockdep_assert_held(&ctx->lock);
3038
3039         if (likely(!ctx->nr_events)) {
3040                 /*
3041                  * See __perf_remove_from_context().
3042                  */
3043                 WARN_ON_ONCE(ctx->is_active);
3044                 if (ctx->task)
3045                         WARN_ON_ONCE(cpuctx->task_ctx);
3046                 return;
3047         }
3048
3049         ctx->is_active &= ~event_type;
3050         if (!(ctx->is_active & EVENT_ALL))
3051                 ctx->is_active = 0;
3052
3053         if (ctx->task) {
3054                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3055                 if (!ctx->is_active)
3056                         cpuctx->task_ctx = NULL;
3057         }
3058
3059         /*
3060          * Always update time if it was set; not only when it changes.
3061          * Otherwise we can 'forget' to update time for any but the last
3062          * context we sched out. For example:
3063          *
3064          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3065          *   ctx_sched_out(.event_type = EVENT_PINNED)
3066          *
3067          * would only update time for the pinned events.
3068          */
3069         if (is_active & EVENT_TIME) {
3070                 /* update (and stop) ctx time */
3071                 update_context_time(ctx);
3072                 update_cgrp_time_from_cpuctx(cpuctx);
3073         }
3074
3075         is_active ^= ctx->is_active; /* changed bits */
3076
3077         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3078                 return;
3079
3080         /*
3081          * If we had been multiplexing, no rotations are necessary, now no events
3082          * are active.
3083          */
3084         ctx->rotate_necessary = 0;
3085
3086         perf_pmu_disable(ctx->pmu);
3087         if (is_active & EVENT_PINNED) {
3088                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3089                         group_sched_out(event, cpuctx, ctx);
3090         }
3091
3092         if (is_active & EVENT_FLEXIBLE) {
3093                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3094                         group_sched_out(event, cpuctx, ctx);
3095         }
3096         perf_pmu_enable(ctx->pmu);
3097 }
3098
3099 /*
3100  * Test whether two contexts are equivalent, i.e. whether they have both been
3101  * cloned from the same version of the same context.
3102  *
3103  * Equivalence is measured using a generation number in the context that is
3104  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3105  * and list_del_event().
3106  */
3107 static int context_equiv(struct perf_event_context *ctx1,
3108                          struct perf_event_context *ctx2)
3109 {
3110         lockdep_assert_held(&ctx1->lock);
3111         lockdep_assert_held(&ctx2->lock);
3112
3113         /* Pinning disables the swap optimization */
3114         if (ctx1->pin_count || ctx2->pin_count)
3115                 return 0;
3116
3117         /* If ctx1 is the parent of ctx2 */
3118         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3119                 return 1;
3120
3121         /* If ctx2 is the parent of ctx1 */
3122         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3123                 return 1;
3124
3125         /*
3126          * If ctx1 and ctx2 have the same parent; we flatten the parent
3127          * hierarchy, see perf_event_init_context().
3128          */
3129         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3130                         ctx1->parent_gen == ctx2->parent_gen)
3131                 return 1;
3132
3133         /* Unmatched */
3134         return 0;
3135 }
3136
3137 static void __perf_event_sync_stat(struct perf_event *event,
3138                                      struct perf_event *next_event)
3139 {
3140         u64 value;
3141
3142         if (!event->attr.inherit_stat)
3143                 return;
3144
3145         /*
3146          * Update the event value, we cannot use perf_event_read()
3147          * because we're in the middle of a context switch and have IRQs
3148          * disabled, which upsets smp_call_function_single(), however
3149          * we know the event must be on the current CPU, therefore we
3150          * don't need to use it.
3151          */
3152         if (event->state == PERF_EVENT_STATE_ACTIVE)
3153                 event->pmu->read(event);
3154
3155         perf_event_update_time(event);
3156
3157         /*
3158          * In order to keep per-task stats reliable we need to flip the event
3159          * values when we flip the contexts.
3160          */
3161         value = local64_read(&next_event->count);
3162         value = local64_xchg(&event->count, value);
3163         local64_set(&next_event->count, value);
3164
3165         swap(event->total_time_enabled, next_event->total_time_enabled);
3166         swap(event->total_time_running, next_event->total_time_running);
3167
3168         /*
3169          * Since we swizzled the values, update the user visible data too.
3170          */
3171         perf_event_update_userpage(event);
3172         perf_event_update_userpage(next_event);
3173 }
3174
3175 static void perf_event_sync_stat(struct perf_event_context *ctx,
3176                                    struct perf_event_context *next_ctx)
3177 {
3178         struct perf_event *event, *next_event;
3179
3180         if (!ctx->nr_stat)
3181                 return;
3182
3183         update_context_time(ctx);
3184
3185         event = list_first_entry(&ctx->event_list,
3186                                    struct perf_event, event_entry);
3187
3188         next_event = list_first_entry(&next_ctx->event_list,
3189                                         struct perf_event, event_entry);
3190
3191         while (&event->event_entry != &ctx->event_list &&
3192                &next_event->event_entry != &next_ctx->event_list) {
3193
3194                 __perf_event_sync_stat(event, next_event);
3195
3196                 event = list_next_entry(event, event_entry);
3197                 next_event = list_next_entry(next_event, event_entry);
3198         }
3199 }
3200
3201 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3202                                          struct task_struct *next)
3203 {
3204         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3205         struct perf_event_context *next_ctx;
3206         struct perf_event_context *parent, *next_parent;
3207         struct perf_cpu_context *cpuctx;
3208         int do_switch = 1;
3209
3210         if (likely(!ctx))
3211                 return;
3212
3213         cpuctx = __get_cpu_context(ctx);
3214         if (!cpuctx->task_ctx)
3215                 return;
3216
3217         rcu_read_lock();
3218         next_ctx = next->perf_event_ctxp[ctxn];
3219         if (!next_ctx)
3220                 goto unlock;
3221
3222         parent = rcu_dereference(ctx->parent_ctx);
3223         next_parent = rcu_dereference(next_ctx->parent_ctx);
3224
3225         /* If neither context have a parent context; they cannot be clones. */
3226         if (!parent && !next_parent)
3227                 goto unlock;
3228
3229         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3230                 /*
3231                  * Looks like the two contexts are clones, so we might be
3232                  * able to optimize the context switch.  We lock both
3233                  * contexts and check that they are clones under the
3234                  * lock (including re-checking that neither has been
3235                  * uncloned in the meantime).  It doesn't matter which
3236                  * order we take the locks because no other cpu could
3237                  * be trying to lock both of these tasks.
3238                  */
3239                 raw_spin_lock(&ctx->lock);
3240                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3241                 if (context_equiv(ctx, next_ctx)) {
3242                         struct pmu *pmu = ctx->pmu;
3243
3244                         WRITE_ONCE(ctx->task, next);
3245                         WRITE_ONCE(next_ctx->task, task);
3246
3247                         /*
3248                          * PMU specific parts of task perf context can require
3249                          * additional synchronization. As an example of such
3250                          * synchronization see implementation details of Intel
3251                          * LBR call stack data profiling;
3252                          */
3253                         if (pmu->swap_task_ctx)
3254                                 pmu->swap_task_ctx(ctx, next_ctx);
3255                         else
3256                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3257
3258                         /*
3259                          * RCU_INIT_POINTER here is safe because we've not
3260                          * modified the ctx and the above modification of
3261                          * ctx->task and ctx->task_ctx_data are immaterial
3262                          * since those values are always verified under
3263                          * ctx->lock which we're now holding.
3264                          */
3265                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3266                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3267
3268                         do_switch = 0;
3269
3270                         perf_event_sync_stat(ctx, next_ctx);
3271                 }
3272                 raw_spin_unlock(&next_ctx->lock);
3273                 raw_spin_unlock(&ctx->lock);
3274         }
3275 unlock:
3276         rcu_read_unlock();
3277
3278         if (do_switch) {
3279                 raw_spin_lock(&ctx->lock);
3280                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3281                 raw_spin_unlock(&ctx->lock);
3282         }
3283 }
3284
3285 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3286
3287 void perf_sched_cb_dec(struct pmu *pmu)
3288 {
3289         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3290
3291         this_cpu_dec(perf_sched_cb_usages);
3292
3293         if (!--cpuctx->sched_cb_usage)
3294                 list_del(&cpuctx->sched_cb_entry);
3295 }
3296
3297
3298 void perf_sched_cb_inc(struct pmu *pmu)
3299 {
3300         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3301
3302         if (!cpuctx->sched_cb_usage++)
3303                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3304
3305         this_cpu_inc(perf_sched_cb_usages);
3306 }
3307
3308 /*
3309  * This function provides the context switch callback to the lower code
3310  * layer. It is invoked ONLY when the context switch callback is enabled.
3311  *
3312  * This callback is relevant even to per-cpu events; for example multi event
3313  * PEBS requires this to provide PID/TID information. This requires we flush
3314  * all queued PEBS records before we context switch to a new task.
3315  */
3316 static void perf_pmu_sched_task(struct task_struct *prev,
3317                                 struct task_struct *next,
3318                                 bool sched_in)
3319 {
3320         struct perf_cpu_context *cpuctx;
3321         struct pmu *pmu;
3322
3323         if (prev == next)
3324                 return;
3325
3326         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3327                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3328
3329                 if (WARN_ON_ONCE(!pmu->sched_task))
3330                         continue;
3331
3332                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3333                 perf_pmu_disable(pmu);
3334
3335                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3336
3337                 perf_pmu_enable(pmu);
3338                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3339         }
3340 }
3341
3342 static void perf_event_switch(struct task_struct *task,
3343                               struct task_struct *next_prev, bool sched_in);
3344
3345 #define for_each_task_context_nr(ctxn)                                  \
3346         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3347
3348 /*
3349  * Called from scheduler to remove the events of the current task,
3350  * with interrupts disabled.
3351  *
3352  * We stop each event and update the event value in event->count.
3353  *
3354  * This does not protect us against NMI, but disable()
3355  * sets the disabled bit in the control field of event _before_
3356  * accessing the event control register. If a NMI hits, then it will
3357  * not restart the event.
3358  */
3359 void __perf_event_task_sched_out(struct task_struct *task,
3360                                  struct task_struct *next)
3361 {
3362         int ctxn;
3363
3364         if (__this_cpu_read(perf_sched_cb_usages))
3365                 perf_pmu_sched_task(task, next, false);
3366
3367         if (atomic_read(&nr_switch_events))
3368                 perf_event_switch(task, next, false);
3369
3370         for_each_task_context_nr(ctxn)
3371                 perf_event_context_sched_out(task, ctxn, next);
3372
3373         /*
3374          * if cgroup events exist on this CPU, then we need
3375          * to check if we have to switch out PMU state.
3376          * cgroup event are system-wide mode only
3377          */
3378         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3379                 perf_cgroup_sched_out(task, next);
3380 }
3381
3382 /*
3383  * Called with IRQs disabled
3384  */
3385 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3386                               enum event_type_t event_type)
3387 {
3388         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3389 }
3390
3391 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3392                               int (*func)(struct perf_event *, void *), void *data)
3393 {
3394         struct perf_event **evt, *evt1, *evt2;
3395         int ret;
3396
3397         evt1 = perf_event_groups_first(groups, -1);
3398         evt2 = perf_event_groups_first(groups, cpu);
3399
3400         while (evt1 || evt2) {
3401                 if (evt1 && evt2) {
3402                         if (evt1->group_index < evt2->group_index)
3403                                 evt = &evt1;
3404                         else
3405                                 evt = &evt2;
3406                 } else if (evt1) {
3407                         evt = &evt1;
3408                 } else {
3409                         evt = &evt2;
3410                 }
3411
3412                 ret = func(*evt, data);
3413                 if (ret)
3414                         return ret;
3415
3416                 *evt = perf_event_groups_next(*evt);
3417         }
3418
3419         return 0;
3420 }
3421
3422 struct sched_in_data {
3423         struct perf_event_context *ctx;
3424         struct perf_cpu_context *cpuctx;
3425         int can_add_hw;
3426 };
3427
3428 static int pinned_sched_in(struct perf_event *event, void *data)
3429 {
3430         struct sched_in_data *sid = data;
3431
3432         if (event->state <= PERF_EVENT_STATE_OFF)
3433                 return 0;
3434
3435         if (!event_filter_match(event))
3436                 return 0;
3437
3438         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3439                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3440                         list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3441         }
3442
3443         /*
3444          * If this pinned group hasn't been scheduled,
3445          * put it in error state.
3446          */
3447         if (event->state == PERF_EVENT_STATE_INACTIVE)
3448                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3449
3450         return 0;
3451 }
3452
3453 static int flexible_sched_in(struct perf_event *event, void *data)
3454 {
3455         struct sched_in_data *sid = data;
3456
3457         if (event->state <= PERF_EVENT_STATE_OFF)
3458                 return 0;
3459
3460         if (!event_filter_match(event))
3461                 return 0;
3462
3463         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3464                 int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3465                 if (ret) {
3466                         sid->can_add_hw = 0;
3467                         sid->ctx->rotate_necessary = 1;
3468                         return 0;
3469                 }
3470                 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3471         }
3472
3473         return 0;
3474 }
3475
3476 static void
3477 ctx_pinned_sched_in(struct perf_event_context *ctx,
3478                     struct perf_cpu_context *cpuctx)
3479 {
3480         struct sched_in_data sid = {
3481                 .ctx = ctx,
3482                 .cpuctx = cpuctx,
3483                 .can_add_hw = 1,
3484         };
3485
3486         visit_groups_merge(&ctx->pinned_groups,
3487                            smp_processor_id(),
3488                            pinned_sched_in, &sid);
3489 }
3490
3491 static void
3492 ctx_flexible_sched_in(struct perf_event_context *ctx,
3493                       struct perf_cpu_context *cpuctx)
3494 {
3495         struct sched_in_data sid = {
3496                 .ctx = ctx,
3497                 .cpuctx = cpuctx,
3498                 .can_add_hw = 1,
3499         };
3500
3501         visit_groups_merge(&ctx->flexible_groups,
3502                            smp_processor_id(),
3503                            flexible_sched_in, &sid);
3504 }
3505
3506 static void
3507 ctx_sched_in(struct perf_event_context *ctx,
3508              struct perf_cpu_context *cpuctx,
3509              enum event_type_t event_type,
3510              struct task_struct *task)
3511 {
3512         int is_active = ctx->is_active;
3513         u64 now;
3514
3515         lockdep_assert_held(&ctx->lock);
3516
3517         if (likely(!ctx->nr_events))
3518                 return;
3519
3520         ctx->is_active |= (event_type | EVENT_TIME);
3521         if (ctx->task) {
3522                 if (!is_active)
3523                         cpuctx->task_ctx = ctx;
3524                 else
3525                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3526         }
3527
3528         is_active ^= ctx->is_active; /* changed bits */
3529
3530         if (is_active & EVENT_TIME) {
3531                 /* start ctx time */
3532                 now = perf_clock();
3533                 ctx->timestamp = now;
3534                 perf_cgroup_set_timestamp(task, ctx);
3535         }
3536
3537         /*
3538          * First go through the list and put on any pinned groups
3539          * in order to give them the best chance of going on.
3540          */
3541         if (is_active & EVENT_PINNED)
3542                 ctx_pinned_sched_in(ctx, cpuctx);
3543
3544         /* Then walk through the lower prio flexible groups */
3545         if (is_active & EVENT_FLEXIBLE)
3546                 ctx_flexible_sched_in(ctx, cpuctx);
3547 }
3548
3549 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3550                              enum event_type_t event_type,
3551                              struct task_struct *task)
3552 {
3553         struct perf_event_context *ctx = &cpuctx->ctx;
3554
3555         ctx_sched_in(ctx, cpuctx, event_type, task);
3556 }
3557
3558 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3559                                         struct task_struct *task)
3560 {
3561         struct perf_cpu_context *cpuctx;
3562
3563         cpuctx = __get_cpu_context(ctx);
3564         if (cpuctx->task_ctx == ctx)
3565                 return;
3566
3567         perf_ctx_lock(cpuctx, ctx);
3568         /*
3569          * We must check ctx->nr_events while holding ctx->lock, such
3570          * that we serialize against perf_install_in_context().
3571          */
3572         if (!ctx->nr_events)
3573                 goto unlock;
3574
3575         perf_pmu_disable(ctx->pmu);
3576         /*
3577          * We want to keep the following priority order:
3578          * cpu pinned (that don't need to move), task pinned,
3579          * cpu flexible, task flexible.
3580          *
3581          * However, if task's ctx is not carrying any pinned
3582          * events, no need to flip the cpuctx's events around.
3583          */
3584         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3585                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3586         perf_event_sched_in(cpuctx, ctx, task);
3587         perf_pmu_enable(ctx->pmu);
3588
3589 unlock:
3590         perf_ctx_unlock(cpuctx, ctx);
3591 }
3592
3593 /*
3594  * Called from scheduler to add the events of the current task
3595  * with interrupts disabled.
3596  *
3597  * We restore the event value and then enable it.
3598  *
3599  * This does not protect us against NMI, but enable()
3600  * sets the enabled bit in the control field of event _before_
3601  * accessing the event control register. If a NMI hits, then it will
3602  * keep the event running.
3603  */
3604 void __perf_event_task_sched_in(struct task_struct *prev,
3605                                 struct task_struct *task)
3606 {
3607         struct perf_event_context *ctx;
3608         int ctxn;
3609
3610         /*
3611          * If cgroup events exist on this CPU, then we need to check if we have
3612          * to switch in PMU state; cgroup event are system-wide mode only.
3613          *
3614          * Since cgroup events are CPU events, we must schedule these in before
3615          * we schedule in the task events.
3616          */
3617         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3618                 perf_cgroup_sched_in(prev, task);
3619
3620         for_each_task_context_nr(ctxn) {
3621                 ctx = task->perf_event_ctxp[ctxn];
3622                 if (likely(!ctx))
3623                         continue;
3624
3625                 perf_event_context_sched_in(ctx, task);
3626         }
3627
3628         if (atomic_read(&nr_switch_events))
3629                 perf_event_switch(task, prev, true);
3630
3631         if (__this_cpu_read(perf_sched_cb_usages))
3632                 perf_pmu_sched_task(prev, task, true);
3633 }
3634
3635 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3636 {
3637         u64 frequency = event->attr.sample_freq;
3638         u64 sec = NSEC_PER_SEC;
3639         u64 divisor, dividend;
3640
3641         int count_fls, nsec_fls, frequency_fls, sec_fls;
3642
3643         count_fls = fls64(count);
3644         nsec_fls = fls64(nsec);
3645         frequency_fls = fls64(frequency);
3646         sec_fls = 30;
3647
3648         /*
3649          * We got @count in @nsec, with a target of sample_freq HZ
3650          * the target period becomes:
3651          *
3652          *             @count * 10^9
3653          * period = -------------------
3654          *          @nsec * sample_freq
3655          *
3656          */
3657
3658         /*
3659          * Reduce accuracy by one bit such that @a and @b converge
3660          * to a similar magnitude.
3661          */
3662 #define REDUCE_FLS(a, b)                \
3663 do {                                    \
3664         if (a##_fls > b##_fls) {        \
3665                 a >>= 1;                \
3666                 a##_fls--;              \
3667         } else {                        \
3668                 b >>= 1;                \
3669                 b##_fls--;              \
3670         }                               \
3671 } while (0)
3672
3673         /*
3674          * Reduce accuracy until either term fits in a u64, then proceed with
3675          * the other, so that finally we can do a u64/u64 division.
3676          */
3677         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3678                 REDUCE_FLS(nsec, frequency);
3679                 REDUCE_FLS(sec, count);
3680         }
3681
3682         if (count_fls + sec_fls > 64) {
3683                 divisor = nsec * frequency;
3684
3685                 while (count_fls + sec_fls > 64) {
3686                         REDUCE_FLS(count, sec);
3687                         divisor >>= 1;
3688                 }
3689
3690                 dividend = count * sec;
3691         } else {
3692                 dividend = count * sec;
3693
3694                 while (nsec_fls + frequency_fls > 64) {
3695                         REDUCE_FLS(nsec, frequency);
3696                         dividend >>= 1;
3697                 }
3698
3699                 divisor = nsec * frequency;
3700         }
3701
3702         if (!divisor)
3703                 return dividend;
3704
3705         return div64_u64(dividend, divisor);
3706 }
3707
3708 static DEFINE_PER_CPU(int, perf_throttled_count);
3709 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3710
3711 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3712 {
3713         struct hw_perf_event *hwc = &event->hw;
3714         s64 period, sample_period;
3715         s64 delta;
3716
3717         period = perf_calculate_period(event, nsec, count);
3718
3719         delta = (s64)(period - hwc->sample_period);
3720         delta = (delta + 7) / 8; /* low pass filter */
3721
3722         sample_period = hwc->sample_period + delta;
3723
3724         if (!sample_period)
3725                 sample_period = 1;
3726
3727         hwc->sample_period = sample_period;
3728
3729         if (local64_read(&hwc->period_left) > 8*sample_period) {
3730                 if (disable)
3731                         event->pmu->stop(event, PERF_EF_UPDATE);
3732
3733                 local64_set(&hwc->period_left, 0);
3734
3735                 if (disable)
3736                         event->pmu->start(event, PERF_EF_RELOAD);
3737         }
3738 }
3739
3740 /*
3741  * combine freq adjustment with unthrottling to avoid two passes over the
3742  * events. At the same time, make sure, having freq events does not change
3743  * the rate of unthrottling as that would introduce bias.
3744  */
3745 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3746                                            int needs_unthr)
3747 {
3748         struct perf_event *event;
3749         struct hw_perf_event *hwc;
3750         u64 now, period = TICK_NSEC;
3751         s64 delta;
3752
3753         /*
3754          * only need to iterate over all events iff:
3755          * - context have events in frequency mode (needs freq adjust)
3756          * - there are events to unthrottle on this cpu
3757          */
3758         if (!(ctx->nr_freq || needs_unthr))
3759                 return;
3760
3761         raw_spin_lock(&ctx->lock);
3762         perf_pmu_disable(ctx->pmu);
3763
3764         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3765                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3766                         continue;
3767
3768                 if (!event_filter_match(event))
3769                         continue;
3770
3771                 perf_pmu_disable(event->pmu);
3772
3773                 hwc = &event->hw;
3774
3775                 if (hwc->interrupts == MAX_INTERRUPTS) {
3776                         hwc->interrupts = 0;
3777                         perf_log_throttle(event, 1);
3778                         event->pmu->start(event, 0);
3779                 }
3780
3781                 if (!event->attr.freq || !event->attr.sample_freq)
3782                         goto next;
3783
3784                 /*
3785                  * stop the event and update event->count
3786                  */
3787                 event->pmu->stop(event, PERF_EF_UPDATE);
3788
3789                 now = local64_read(&event->count);
3790                 delta = now - hwc->freq_count_stamp;
3791                 hwc->freq_count_stamp = now;
3792
3793                 /*
3794                  * restart the event
3795                  * reload only if value has changed
3796                  * we have stopped the event so tell that
3797                  * to perf_adjust_period() to avoid stopping it
3798                  * twice.
3799                  */
3800                 if (delta > 0)
3801                         perf_adjust_period(event, period, delta, false);
3802
3803                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3804         next:
3805                 perf_pmu_enable(event->pmu);
3806         }
3807
3808         perf_pmu_enable(ctx->pmu);
3809         raw_spin_unlock(&ctx->lock);
3810 }
3811
3812 /*
3813  * Move @event to the tail of the @ctx's elegible events.
3814  */
3815 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3816 {
3817         /*
3818          * Rotate the first entry last of non-pinned groups. Rotation might be
3819          * disabled by the inheritance code.
3820          */
3821         if (ctx->rotate_disable)
3822                 return;
3823
3824         perf_event_groups_delete(&ctx->flexible_groups, event);
3825         perf_event_groups_insert(&ctx->flexible_groups, event);
3826 }
3827
3828 /* pick an event from the flexible_groups to rotate */
3829 static inline struct perf_event *
3830 ctx_event_to_rotate(struct perf_event_context *ctx)
3831 {
3832         struct perf_event *event;
3833
3834         /* pick the first active flexible event */
3835         event = list_first_entry_or_null(&ctx->flexible_active,
3836                                          struct perf_event, active_list);
3837
3838         /* if no active flexible event, pick the first event */
3839         if (!event) {
3840                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
3841                                       typeof(*event), group_node);
3842         }
3843
3844         return event;
3845 }
3846
3847 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3848 {
3849         struct perf_event *cpu_event = NULL, *task_event = NULL;
3850         struct perf_event_context *task_ctx = NULL;
3851         int cpu_rotate, task_rotate;
3852
3853         /*
3854          * Since we run this from IRQ context, nobody can install new
3855          * events, thus the event count values are stable.
3856          */
3857
3858         cpu_rotate = cpuctx->ctx.rotate_necessary;
3859         task_ctx = cpuctx->task_ctx;
3860         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
3861
3862         if (!(cpu_rotate || task_rotate))
3863                 return false;
3864
3865         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3866         perf_pmu_disable(cpuctx->ctx.pmu);
3867
3868         if (task_rotate)
3869                 task_event = ctx_event_to_rotate(task_ctx);
3870         if (cpu_rotate)
3871                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
3872
3873         /*
3874          * As per the order given at ctx_resched() first 'pop' task flexible
3875          * and then, if needed CPU flexible.
3876          */
3877         if (task_event || (task_ctx && cpu_event))
3878                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
3879         if (cpu_event)
3880                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3881
3882         if (task_event)
3883                 rotate_ctx(task_ctx, task_event);
3884         if (cpu_event)
3885                 rotate_ctx(&cpuctx->ctx, cpu_event);
3886
3887         perf_event_sched_in(cpuctx, task_ctx, current);
3888
3889         perf_pmu_enable(cpuctx->ctx.pmu);
3890         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3891
3892         return true;
3893 }
3894
3895 void perf_event_task_tick(void)
3896 {
3897         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3898         struct perf_event_context *ctx, *tmp;
3899         int throttled;
3900
3901         lockdep_assert_irqs_disabled();
3902
3903         __this_cpu_inc(perf_throttled_seq);
3904         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3905         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3906
3907         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3908                 perf_adjust_freq_unthr_context(ctx, throttled);
3909 }
3910
3911 static int event_enable_on_exec(struct perf_event *event,
3912                                 struct perf_event_context *ctx)
3913 {
3914         if (!event->attr.enable_on_exec)
3915                 return 0;
3916
3917         event->attr.enable_on_exec = 0;
3918         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3919                 return 0;
3920
3921         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3922
3923         return 1;
3924 }
3925
3926 /*
3927  * Enable all of a task's events that have been marked enable-on-exec.
3928  * This expects task == current.
3929  */
3930 static void perf_event_enable_on_exec(int ctxn)
3931 {
3932         struct perf_event_context *ctx, *clone_ctx = NULL;
3933         enum event_type_t event_type = 0;
3934         struct perf_cpu_context *cpuctx;
3935         struct perf_event *event;
3936         unsigned long flags;
3937         int enabled = 0;
3938
3939         local_irq_save(flags);
3940         ctx = current->perf_event_ctxp[ctxn];
3941         if (!ctx || !ctx->nr_events)
3942                 goto out;
3943
3944         cpuctx = __get_cpu_context(ctx);
3945         perf_ctx_lock(cpuctx, ctx);
3946         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3947         list_for_each_entry(event, &ctx->event_list, event_entry) {
3948                 enabled |= event_enable_on_exec(event, ctx);
3949                 event_type |= get_event_type(event);
3950         }
3951
3952         /*
3953          * Unclone and reschedule this context if we enabled any event.
3954          */
3955         if (enabled) {
3956                 clone_ctx = unclone_ctx(ctx);
3957                 ctx_resched(cpuctx, ctx, event_type);
3958         } else {
3959                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3960         }
3961         perf_ctx_unlock(cpuctx, ctx);
3962
3963 out:
3964         local_irq_restore(flags);
3965
3966         if (clone_ctx)
3967                 put_ctx(clone_ctx);
3968 }
3969
3970 struct perf_read_data {
3971         struct perf_event *event;
3972         bool group;
3973         int ret;
3974 };
3975
3976 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3977 {
3978         u16 local_pkg, event_pkg;
3979
3980         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3981                 int local_cpu = smp_processor_id();
3982
3983                 event_pkg = topology_physical_package_id(event_cpu);
3984                 local_pkg = topology_physical_package_id(local_cpu);
3985
3986                 if (event_pkg == local_pkg)
3987                         return local_cpu;
3988         }
3989
3990         return event_cpu;
3991 }
3992
3993 /*
3994  * Cross CPU call to read the hardware event
3995  */
3996 static void __perf_event_read(void *info)
3997 {
3998         struct perf_read_data *data = info;
3999         struct perf_event *sub, *event = data->event;
4000         struct perf_event_context *ctx = event->ctx;
4001         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4002         struct pmu *pmu = event->pmu;
4003
4004         /*
4005          * If this is a task context, we need to check whether it is
4006          * the current task context of this cpu.  If not it has been
4007          * scheduled out before the smp call arrived.  In that case
4008          * event->count would have been updated to a recent sample
4009          * when the event was scheduled out.
4010          */
4011         if (ctx->task && cpuctx->task_ctx != ctx)
4012                 return;
4013
4014         raw_spin_lock(&ctx->lock);
4015         if (ctx->is_active & EVENT_TIME) {
4016                 update_context_time(ctx);
4017                 update_cgrp_time_from_event(event);
4018         }
4019
4020         perf_event_update_time(event);
4021         if (data->group)
4022                 perf_event_update_sibling_time(event);
4023
4024         if (event->state != PERF_EVENT_STATE_ACTIVE)
4025                 goto unlock;
4026
4027         if (!data->group) {
4028                 pmu->read(event);
4029                 data->ret = 0;
4030                 goto unlock;
4031         }
4032
4033         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4034
4035         pmu->read(event);
4036
4037         for_each_sibling_event(sub, event) {
4038                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4039                         /*
4040                          * Use sibling's PMU rather than @event's since
4041                          * sibling could be on different (eg: software) PMU.
4042                          */
4043                         sub->pmu->read(sub);
4044                 }
4045         }
4046
4047         data->ret = pmu->commit_txn(pmu);
4048
4049 unlock:
4050         raw_spin_unlock(&ctx->lock);
4051 }
4052
4053 static inline u64 perf_event_count(struct perf_event *event)
4054 {
4055         return local64_read(&event->count) + atomic64_read(&event->child_count);
4056 }
4057
4058 /*
4059  * NMI-safe method to read a local event, that is an event that
4060  * is:
4061  *   - either for the current task, or for this CPU
4062  *   - does not have inherit set, for inherited task events
4063  *     will not be local and we cannot read them atomically
4064  *   - must not have a pmu::count method
4065  */
4066 int perf_event_read_local(struct perf_event *event, u64 *value,
4067                           u64 *enabled, u64 *running)
4068 {
4069         unsigned long flags;
4070         int ret = 0;
4071
4072         /*
4073          * Disabling interrupts avoids all counter scheduling (context
4074          * switches, timer based rotation and IPIs).
4075          */
4076         local_irq_save(flags);
4077
4078         /*
4079          * It must not be an event with inherit set, we cannot read
4080          * all child counters from atomic context.
4081          */
4082         if (event->attr.inherit) {
4083                 ret = -EOPNOTSUPP;
4084                 goto out;
4085         }
4086
4087         /* If this is a per-task event, it must be for current */
4088         if ((event->attach_state & PERF_ATTACH_TASK) &&
4089             event->hw.target != current) {
4090                 ret = -EINVAL;
4091                 goto out;
4092         }
4093
4094         /* If this is a per-CPU event, it must be for this CPU */
4095         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4096             event->cpu != smp_processor_id()) {
4097                 ret = -EINVAL;
4098                 goto out;
4099         }
4100
4101         /* If this is a pinned event it must be running on this CPU */
4102         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4103                 ret = -EBUSY;
4104                 goto out;
4105         }
4106
4107         /*
4108          * If the event is currently on this CPU, its either a per-task event,
4109          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4110          * oncpu == -1).
4111          */
4112         if (event->oncpu == smp_processor_id())
4113                 event->pmu->read(event);
4114
4115         *value = local64_read(&event->count);
4116         if (enabled || running) {
4117                 u64 now = event->shadow_ctx_time + perf_clock();
4118                 u64 __enabled, __running;
4119
4120                 __perf_update_times(event, now, &__enabled, &__running);
4121                 if (enabled)
4122                         *enabled = __enabled;
4123                 if (running)
4124                         *running = __running;
4125         }
4126 out:
4127         local_irq_restore(flags);
4128
4129         return ret;
4130 }
4131
4132 static int perf_event_read(struct perf_event *event, bool group)
4133 {
4134         enum perf_event_state state = READ_ONCE(event->state);
4135         int event_cpu, ret = 0;
4136
4137         /*
4138          * If event is enabled and currently active on a CPU, update the
4139          * value in the event structure:
4140          */
4141 again:
4142         if (state == PERF_EVENT_STATE_ACTIVE) {
4143                 struct perf_read_data data;
4144
4145                 /*
4146                  * Orders the ->state and ->oncpu loads such that if we see
4147                  * ACTIVE we must also see the right ->oncpu.
4148                  *
4149                  * Matches the smp_wmb() from event_sched_in().
4150                  */
4151                 smp_rmb();
4152
4153                 event_cpu = READ_ONCE(event->oncpu);
4154                 if ((unsigned)event_cpu >= nr_cpu_ids)
4155                         return 0;
4156
4157                 data = (struct perf_read_data){
4158                         .event = event,
4159                         .group = group,
4160                         .ret = 0,
4161                 };
4162
4163                 preempt_disable();
4164                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4165
4166                 /*
4167                  * Purposely ignore the smp_call_function_single() return
4168                  * value.
4169                  *
4170                  * If event_cpu isn't a valid CPU it means the event got
4171                  * scheduled out and that will have updated the event count.
4172                  *
4173                  * Therefore, either way, we'll have an up-to-date event count
4174                  * after this.
4175                  */
4176                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4177                 preempt_enable();
4178                 ret = data.ret;
4179
4180         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4181                 struct perf_event_context *ctx = event->ctx;
4182                 unsigned long flags;
4183
4184                 raw_spin_lock_irqsave(&ctx->lock, flags);
4185                 state = event->state;
4186                 if (state != PERF_EVENT_STATE_INACTIVE) {
4187                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4188                         goto again;
4189                 }
4190
4191                 /*
4192                  * May read while context is not active (e.g., thread is
4193                  * blocked), in that case we cannot update context time
4194                  */
4195                 if (ctx->is_active & EVENT_TIME) {
4196                         update_context_time(ctx);
4197                         update_cgrp_time_from_event(event);
4198                 }
4199
4200                 perf_event_update_time(event);
4201                 if (group)
4202                         perf_event_update_sibling_time(event);
4203                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4204         }
4205
4206         return ret;
4207 }
4208
4209 /*
4210  * Initialize the perf_event context in a task_struct:
4211  */
4212 static void __perf_event_init_context(struct perf_event_context *ctx)
4213 {
4214         raw_spin_lock_init(&ctx->lock);
4215         mutex_init(&ctx->mutex);
4216         INIT_LIST_HEAD(&ctx->active_ctx_list);
4217         perf_event_groups_init(&ctx->pinned_groups);
4218         perf_event_groups_init(&ctx->flexible_groups);
4219         INIT_LIST_HEAD(&ctx->event_list);
4220         INIT_LIST_HEAD(&ctx->pinned_active);
4221         INIT_LIST_HEAD(&ctx->flexible_active);
4222         refcount_set(&ctx->refcount, 1);
4223 }
4224
4225 static struct perf_event_context *
4226 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4227 {
4228         struct perf_event_context *ctx;
4229
4230         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4231         if (!ctx)
4232                 return NULL;
4233
4234         __perf_event_init_context(ctx);
4235         if (task)
4236                 ctx->task = get_task_struct(task);
4237         ctx->pmu = pmu;
4238
4239         return ctx;
4240 }
4241
4242 static struct task_struct *
4243 find_lively_task_by_vpid(pid_t vpid)
4244 {
4245         struct task_struct *task;
4246
4247         rcu_read_lock();
4248         if (!vpid)
4249                 task = current;
4250         else
4251                 task = find_task_by_vpid(vpid);
4252         if (task)
4253                 get_task_struct(task);
4254         rcu_read_unlock();
4255
4256         if (!task)
4257                 return ERR_PTR(-ESRCH);
4258
4259         return task;
4260 }
4261
4262 /*
4263  * Returns a matching context with refcount and pincount.
4264  */
4265 static struct perf_event_context *
4266 find_get_context(struct pmu *pmu, struct task_struct *task,
4267                 struct perf_event *event)
4268 {
4269         struct perf_event_context *ctx, *clone_ctx = NULL;
4270         struct perf_cpu_context *cpuctx;
4271         void *task_ctx_data = NULL;
4272         unsigned long flags;
4273         int ctxn, err;
4274         int cpu = event->cpu;
4275
4276         if (!task) {
4277                 /* Must be root to operate on a CPU event: */
4278                 err = perf_allow_cpu(&event->attr);
4279                 if (err)
4280                         return ERR_PTR(err);
4281
4282                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4283                 ctx = &cpuctx->ctx;
4284                 get_ctx(ctx);
4285                 ++ctx->pin_count;
4286
4287                 return ctx;
4288         }
4289
4290         err = -EINVAL;
4291         ctxn = pmu->task_ctx_nr;
4292         if (ctxn < 0)
4293                 goto errout;
4294
4295         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4296                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4297                 if (!task_ctx_data) {
4298                         err = -ENOMEM;
4299                         goto errout;
4300                 }
4301         }
4302
4303 retry:
4304         ctx = perf_lock_task_context(task, ctxn, &flags);
4305         if (ctx) {
4306                 clone_ctx = unclone_ctx(ctx);
4307                 ++ctx->pin_count;
4308
4309                 if (task_ctx_data && !ctx->task_ctx_data) {
4310                         ctx->task_ctx_data = task_ctx_data;
4311                         task_ctx_data = NULL;
4312                 }
4313                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4314
4315                 if (clone_ctx)
4316                         put_ctx(clone_ctx);
4317         } else {
4318                 ctx = alloc_perf_context(pmu, task);
4319                 err = -ENOMEM;
4320                 if (!ctx)
4321                         goto errout;
4322
4323                 if (task_ctx_data) {
4324                         ctx->task_ctx_data = task_ctx_data;
4325                         task_ctx_data = NULL;
4326                 }
4327
4328                 err = 0;
4329                 mutex_lock(&task->perf_event_mutex);
4330                 /*
4331                  * If it has already passed perf_event_exit_task().
4332                  * we must see PF_EXITING, it takes this mutex too.
4333                  */
4334                 if (task->flags & PF_EXITING)
4335                         err = -ESRCH;
4336                 else if (task->perf_event_ctxp[ctxn])
4337                         err = -EAGAIN;
4338                 else {
4339                         get_ctx(ctx);
4340                         ++ctx->pin_count;
4341                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4342                 }
4343                 mutex_unlock(&task->perf_event_mutex);
4344
4345                 if (unlikely(err)) {
4346                         put_ctx(ctx);
4347
4348                         if (err == -EAGAIN)
4349                                 goto retry;
4350                         goto errout;
4351                 }
4352         }
4353
4354         kfree(task_ctx_data);
4355         return ctx;
4356
4357 errout:
4358         kfree(task_ctx_data);
4359         return ERR_PTR(err);
4360 }
4361
4362 static void perf_event_free_filter(struct perf_event *event);
4363 static void perf_event_free_bpf_prog(struct perf_event *event);
4364
4365 static void free_event_rcu(struct rcu_head *head)
4366 {
4367         struct perf_event *event;
4368
4369         event = container_of(head, struct perf_event, rcu_head);
4370         if (event->ns)
4371                 put_pid_ns(event->ns);
4372         perf_event_free_filter(event);
4373         kfree(event);
4374 }
4375
4376 static void ring_buffer_attach(struct perf_event *event,
4377                                struct perf_buffer *rb);
4378
4379 static void detach_sb_event(struct perf_event *event)
4380 {
4381         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4382
4383         raw_spin_lock(&pel->lock);
4384         list_del_rcu(&event->sb_list);
4385         raw_spin_unlock(&pel->lock);
4386 }
4387
4388 static bool is_sb_event(struct perf_event *event)
4389 {
4390         struct perf_event_attr *attr = &event->attr;
4391
4392         if (event->parent)
4393                 return false;
4394
4395         if (event->attach_state & PERF_ATTACH_TASK)
4396                 return false;
4397
4398         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4399             attr->comm || attr->comm_exec ||
4400             attr->task || attr->ksymbol ||
4401             attr->context_switch ||
4402             attr->bpf_event)
4403                 return true;
4404         return false;
4405 }
4406
4407 static void unaccount_pmu_sb_event(struct perf_event *event)
4408 {
4409         if (is_sb_event(event))
4410                 detach_sb_event(event);
4411 }
4412
4413 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4414 {
4415         if (event->parent)
4416                 return;
4417
4418         if (is_cgroup_event(event))
4419                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4420 }
4421
4422 #ifdef CONFIG_NO_HZ_FULL
4423 static DEFINE_SPINLOCK(nr_freq_lock);
4424 #endif
4425
4426 static void unaccount_freq_event_nohz(void)
4427 {
4428 #ifdef CONFIG_NO_HZ_FULL
4429         spin_lock(&nr_freq_lock);
4430         if (atomic_dec_and_test(&nr_freq_events))
4431                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4432         spin_unlock(&nr_freq_lock);
4433 #endif
4434 }
4435
4436 static void unaccount_freq_event(void)
4437 {
4438         if (tick_nohz_full_enabled())
4439                 unaccount_freq_event_nohz();
4440         else
4441                 atomic_dec(&nr_freq_events);
4442 }
4443
4444 static void unaccount_event(struct perf_event *event)
4445 {
4446         bool dec = false;
4447
4448         if (event->parent)
4449                 return;
4450
4451         if (event->attach_state & PERF_ATTACH_TASK)
4452                 dec = true;
4453         if (event->attr.mmap || event->attr.mmap_data)
4454                 atomic_dec(&nr_mmap_events);
4455         if (event->attr.comm)
4456                 atomic_dec(&nr_comm_events);
4457         if (event->attr.namespaces)
4458                 atomic_dec(&nr_namespaces_events);
4459         if (event->attr.task)
4460                 atomic_dec(&nr_task_events);
4461         if (event->attr.freq)
4462                 unaccount_freq_event();
4463         if (event->attr.context_switch) {
4464                 dec = true;
4465                 atomic_dec(&nr_switch_events);
4466         }
4467         if (is_cgroup_event(event))
4468                 dec = true;
4469         if (has_branch_stack(event))
4470                 dec = true;
4471         if (event->attr.ksymbol)
4472                 atomic_dec(&nr_ksymbol_events);
4473         if (event->attr.bpf_event)
4474                 atomic_dec(&nr_bpf_events);
4475
4476         if (dec) {
4477                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4478                         schedule_delayed_work(&perf_sched_work, HZ);
4479         }
4480
4481         unaccount_event_cpu(event, event->cpu);
4482
4483         unaccount_pmu_sb_event(event);
4484 }
4485
4486 static void perf_sched_delayed(struct work_struct *work)
4487 {
4488         mutex_lock(&perf_sched_mutex);
4489         if (atomic_dec_and_test(&perf_sched_count))
4490                 static_branch_disable(&perf_sched_events);
4491         mutex_unlock(&perf_sched_mutex);
4492 }
4493
4494 /*
4495  * The following implement mutual exclusion of events on "exclusive" pmus
4496  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4497  * at a time, so we disallow creating events that might conflict, namely:
4498  *
4499  *  1) cpu-wide events in the presence of per-task events,
4500  *  2) per-task events in the presence of cpu-wide events,
4501  *  3) two matching events on the same context.
4502  *
4503  * The former two cases are handled in the allocation path (perf_event_alloc(),
4504  * _free_event()), the latter -- before the first perf_install_in_context().
4505  */
4506 static int exclusive_event_init(struct perf_event *event)
4507 {
4508         struct pmu *pmu = event->pmu;
4509
4510         if (!is_exclusive_pmu(pmu))
4511                 return 0;
4512
4513         /*
4514          * Prevent co-existence of per-task and cpu-wide events on the
4515          * same exclusive pmu.
4516          *
4517          * Negative pmu::exclusive_cnt means there are cpu-wide
4518          * events on this "exclusive" pmu, positive means there are
4519          * per-task events.
4520          *
4521          * Since this is called in perf_event_alloc() path, event::ctx
4522          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4523          * to mean "per-task event", because unlike other attach states it
4524          * never gets cleared.
4525          */
4526         if (event->attach_state & PERF_ATTACH_TASK) {
4527                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4528                         return -EBUSY;
4529         } else {
4530                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4531                         return -EBUSY;
4532         }
4533
4534         return 0;
4535 }
4536
4537 static void exclusive_event_destroy(struct perf_event *event)
4538 {
4539         struct pmu *pmu = event->pmu;
4540
4541         if (!is_exclusive_pmu(pmu))
4542                 return;
4543
4544         /* see comment in exclusive_event_init() */
4545         if (event->attach_state & PERF_ATTACH_TASK)
4546                 atomic_dec(&pmu->exclusive_cnt);
4547         else
4548                 atomic_inc(&pmu->exclusive_cnt);
4549 }
4550
4551 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4552 {
4553         if ((e1->pmu == e2->pmu) &&
4554             (e1->cpu == e2->cpu ||
4555              e1->cpu == -1 ||
4556              e2->cpu == -1))
4557                 return true;
4558         return false;
4559 }
4560
4561 static bool exclusive_event_installable(struct perf_event *event,
4562                                         struct perf_event_context *ctx)
4563 {
4564         struct perf_event *iter_event;
4565         struct pmu *pmu = event->pmu;
4566
4567         lockdep_assert_held(&ctx->mutex);
4568
4569         if (!is_exclusive_pmu(pmu))
4570                 return true;
4571
4572         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4573                 if (exclusive_event_match(iter_event, event))
4574                         return false;
4575         }
4576
4577         return true;
4578 }
4579
4580 static void perf_addr_filters_splice(struct perf_event *event,
4581                                        struct list_head *head);
4582
4583 static void _free_event(struct perf_event *event)
4584 {
4585         irq_work_sync(&event->pending);
4586
4587         unaccount_event(event);
4588
4589         security_perf_event_free(event);
4590
4591         if (event->rb) {
4592                 /*
4593                  * Can happen when we close an event with re-directed output.
4594                  *
4595                  * Since we have a 0 refcount, perf_mmap_close() will skip
4596                  * over us; possibly making our ring_buffer_put() the last.
4597                  */
4598                 mutex_lock(&event->mmap_mutex);
4599                 ring_buffer_attach(event, NULL);
4600                 mutex_unlock(&event->mmap_mutex);
4601         }
4602
4603         if (is_cgroup_event(event))
4604                 perf_detach_cgroup(event);
4605
4606         if (!event->parent) {
4607                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4608                         put_callchain_buffers();
4609         }
4610
4611         perf_event_free_bpf_prog(event);
4612         perf_addr_filters_splice(event, NULL);
4613         kfree(event->addr_filter_ranges);
4614
4615         if (event->destroy)
4616                 event->destroy(event);
4617
4618         /*
4619          * Must be after ->destroy(), due to uprobe_perf_close() using
4620          * hw.target.
4621          */
4622         if (event->hw.target)
4623                 put_task_struct(event->hw.target);
4624
4625         /*
4626          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4627          * all task references must be cleaned up.
4628          */
4629         if (event->ctx)
4630                 put_ctx(event->ctx);
4631
4632         exclusive_event_destroy(event);
4633         module_put(event->pmu->module);
4634
4635         call_rcu(&event->rcu_head, free_event_rcu);
4636 }
4637
4638 /*
4639  * Used to free events which have a known refcount of 1, such as in error paths
4640  * where the event isn't exposed yet and inherited events.
4641  */
4642 static void free_event(struct perf_event *event)
4643 {
4644         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4645                                 "unexpected event refcount: %ld; ptr=%p\n",
4646                                 atomic_long_read(&event->refcount), event)) {
4647                 /* leak to avoid use-after-free */
4648                 return;
4649         }
4650
4651         _free_event(event);
4652 }
4653
4654 /*
4655  * Remove user event from the owner task.
4656  */
4657 static void perf_remove_from_owner(struct perf_event *event)
4658 {
4659         struct task_struct *owner;
4660
4661         rcu_read_lock();
4662         /*
4663          * Matches the smp_store_release() in perf_event_exit_task(). If we
4664          * observe !owner it means the list deletion is complete and we can
4665          * indeed free this event, otherwise we need to serialize on
4666          * owner->perf_event_mutex.
4667          */
4668         owner = READ_ONCE(event->owner);
4669         if (owner) {
4670                 /*
4671                  * Since delayed_put_task_struct() also drops the last
4672                  * task reference we can safely take a new reference
4673                  * while holding the rcu_read_lock().
4674                  */
4675                 get_task_struct(owner);
4676         }
4677         rcu_read_unlock();
4678
4679         if (owner) {
4680                 /*
4681                  * If we're here through perf_event_exit_task() we're already
4682                  * holding ctx->mutex which would be an inversion wrt. the
4683                  * normal lock order.
4684                  *
4685                  * However we can safely take this lock because its the child
4686                  * ctx->mutex.
4687                  */
4688                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4689
4690                 /*
4691                  * We have to re-check the event->owner field, if it is cleared
4692                  * we raced with perf_event_exit_task(), acquiring the mutex
4693                  * ensured they're done, and we can proceed with freeing the
4694                  * event.
4695                  */
4696                 if (event->owner) {
4697                         list_del_init(&event->owner_entry);
4698                         smp_store_release(&event->owner, NULL);
4699                 }
4700                 mutex_unlock(&owner->perf_event_mutex);
4701                 put_task_struct(owner);
4702         }
4703 }
4704
4705 static void put_event(struct perf_event *event)
4706 {
4707         if (!atomic_long_dec_and_test(&event->refcount))
4708                 return;
4709
4710         _free_event(event);
4711 }
4712
4713 /*
4714  * Kill an event dead; while event:refcount will preserve the event
4715  * object, it will not preserve its functionality. Once the last 'user'
4716  * gives up the object, we'll destroy the thing.
4717  */
4718 int perf_event_release_kernel(struct perf_event *event)
4719 {
4720         struct perf_event_context *ctx = event->ctx;
4721         struct perf_event *child, *tmp;
4722         LIST_HEAD(free_list);
4723
4724         /*
4725          * If we got here through err_file: fput(event_file); we will not have
4726          * attached to a context yet.
4727          */
4728         if (!ctx) {
4729                 WARN_ON_ONCE(event->attach_state &
4730                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4731                 goto no_ctx;
4732         }
4733
4734         if (!is_kernel_event(event))
4735                 perf_remove_from_owner(event);
4736
4737         ctx = perf_event_ctx_lock(event);
4738         WARN_ON_ONCE(ctx->parent_ctx);
4739         perf_remove_from_context(event, DETACH_GROUP);
4740
4741         raw_spin_lock_irq(&ctx->lock);
4742         /*
4743          * Mark this event as STATE_DEAD, there is no external reference to it
4744          * anymore.
4745          *
4746          * Anybody acquiring event->child_mutex after the below loop _must_
4747          * also see this, most importantly inherit_event() which will avoid
4748          * placing more children on the list.
4749          *
4750          * Thus this guarantees that we will in fact observe and kill _ALL_
4751          * child events.
4752          */
4753         event->state = PERF_EVENT_STATE_DEAD;
4754         raw_spin_unlock_irq(&ctx->lock);
4755
4756         perf_event_ctx_unlock(event, ctx);
4757
4758 again:
4759         mutex_lock(&event->child_mutex);
4760         list_for_each_entry(child, &event->child_list, child_list) {
4761
4762                 /*
4763                  * Cannot change, child events are not migrated, see the
4764                  * comment with perf_event_ctx_lock_nested().
4765                  */
4766                 ctx = READ_ONCE(child->ctx);
4767                 /*
4768                  * Since child_mutex nests inside ctx::mutex, we must jump
4769                  * through hoops. We start by grabbing a reference on the ctx.
4770                  *
4771                  * Since the event cannot get freed while we hold the
4772                  * child_mutex, the context must also exist and have a !0
4773                  * reference count.
4774                  */
4775                 get_ctx(ctx);
4776
4777                 /*
4778                  * Now that we have a ctx ref, we can drop child_mutex, and
4779                  * acquire ctx::mutex without fear of it going away. Then we
4780                  * can re-acquire child_mutex.
4781                  */
4782                 mutex_unlock(&event->child_mutex);
4783                 mutex_lock(&ctx->mutex);
4784                 mutex_lock(&event->child_mutex);
4785
4786                 /*
4787                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4788                  * state, if child is still the first entry, it didn't get freed
4789                  * and we can continue doing so.
4790                  */
4791                 tmp = list_first_entry_or_null(&event->child_list,
4792                                                struct perf_event, child_list);
4793                 if (tmp == child) {
4794                         perf_remove_from_context(child, DETACH_GROUP);
4795                         list_move(&child->child_list, &free_list);
4796                         /*
4797                          * This matches the refcount bump in inherit_event();
4798                          * this can't be the last reference.
4799                          */
4800                         put_event(event);
4801                 }
4802
4803                 mutex_unlock(&event->child_mutex);
4804                 mutex_unlock(&ctx->mutex);
4805                 put_ctx(ctx);
4806                 goto again;
4807         }
4808         mutex_unlock(&event->child_mutex);
4809
4810         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4811                 void *var = &child->ctx->refcount;
4812
4813                 list_del(&child->child_list);
4814                 free_event(child);
4815
4816                 /*
4817                  * Wake any perf_event_free_task() waiting for this event to be
4818                  * freed.
4819                  */
4820                 smp_mb(); /* pairs with wait_var_event() */
4821                 wake_up_var(var);
4822         }
4823
4824 no_ctx:
4825         put_event(event); /* Must be the 'last' reference */
4826         return 0;
4827 }
4828 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4829
4830 /*
4831  * Called when the last reference to the file is gone.
4832  */
4833 static int perf_release(struct inode *inode, struct file *file)
4834 {
4835         perf_event_release_kernel(file->private_data);
4836         return 0;
4837 }
4838
4839 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4840 {
4841         struct perf_event *child;
4842         u64 total = 0;
4843
4844         *enabled = 0;
4845         *running = 0;
4846
4847         mutex_lock(&event->child_mutex);
4848
4849         (void)perf_event_read(event, false);
4850         total += perf_event_count(event);
4851
4852         *enabled += event->total_time_enabled +
4853                         atomic64_read(&event->child_total_time_enabled);
4854         *running += event->total_time_running +
4855                         atomic64_read(&event->child_total_time_running);
4856
4857         list_for_each_entry(child, &event->child_list, child_list) {
4858                 (void)perf_event_read(child, false);
4859                 total += perf_event_count(child);
4860                 *enabled += child->total_time_enabled;
4861                 *running += child->total_time_running;
4862         }
4863         mutex_unlock(&event->child_mutex);
4864
4865         return total;
4866 }
4867
4868 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4869 {
4870         struct perf_event_context *ctx;
4871         u64 count;
4872
4873         ctx = perf_event_ctx_lock(event);
4874         count = __perf_event_read_value(event, enabled, running);
4875         perf_event_ctx_unlock(event, ctx);
4876
4877         return count;
4878 }
4879 EXPORT_SYMBOL_GPL(perf_event_read_value);
4880
4881 static int __perf_read_group_add(struct perf_event *leader,
4882                                         u64 read_format, u64 *values)
4883 {
4884         struct perf_event_context *ctx = leader->ctx;
4885         struct perf_event *sub;
4886         unsigned long flags;
4887         int n = 1; /* skip @nr */
4888         int ret;
4889
4890         ret = perf_event_read(leader, true);
4891         if (ret)
4892                 return ret;
4893
4894         raw_spin_lock_irqsave(&ctx->lock, flags);
4895
4896         /*
4897          * Since we co-schedule groups, {enabled,running} times of siblings
4898          * will be identical to those of the leader, so we only publish one
4899          * set.
4900          */
4901         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4902                 values[n++] += leader->total_time_enabled +
4903                         atomic64_read(&leader->child_total_time_enabled);
4904         }
4905
4906         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4907                 values[n++] += leader->total_time_running +
4908                         atomic64_read(&leader->child_total_time_running);
4909         }
4910
4911         /*
4912          * Write {count,id} tuples for every sibling.
4913          */
4914         values[n++] += perf_event_count(leader);
4915         if (read_format & PERF_FORMAT_ID)
4916                 values[n++] = primary_event_id(leader);
4917
4918         for_each_sibling_event(sub, leader) {
4919                 values[n++] += perf_event_count(sub);
4920                 if (read_format & PERF_FORMAT_ID)
4921                         values[n++] = primary_event_id(sub);
4922         }
4923
4924         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4925         return 0;
4926 }
4927
4928 static int perf_read_group(struct perf_event *event,
4929                                    u64 read_format, char __user *buf)
4930 {
4931         struct perf_event *leader = event->group_leader, *child;
4932         struct perf_event_context *ctx = leader->ctx;
4933         int ret;
4934         u64 *values;
4935
4936         lockdep_assert_held(&ctx->mutex);
4937
4938         values = kzalloc(event->read_size, GFP_KERNEL);
4939         if (!values)
4940                 return -ENOMEM;
4941
4942         values[0] = 1 + leader->nr_siblings;
4943
4944         /*
4945          * By locking the child_mutex of the leader we effectively
4946          * lock the child list of all siblings.. XXX explain how.
4947          */
4948         mutex_lock(&leader->child_mutex);
4949
4950         ret = __perf_read_group_add(leader, read_format, values);
4951         if (ret)
4952                 goto unlock;
4953
4954         list_for_each_entry(child, &leader->child_list, child_list) {
4955                 ret = __perf_read_group_add(child, read_format, values);
4956                 if (ret)
4957                         goto unlock;
4958         }
4959
4960         mutex_unlock(&leader->child_mutex);
4961
4962         ret = event->read_size;
4963         if (copy_to_user(buf, values, event->read_size))
4964                 ret = -EFAULT;
4965         goto out;
4966
4967 unlock:
4968         mutex_unlock(&leader->child_mutex);
4969 out:
4970         kfree(values);
4971         return ret;
4972 }
4973
4974 static int perf_read_one(struct perf_event *event,
4975                                  u64 read_format, char __user *buf)
4976 {
4977         u64 enabled, running;
4978         u64 values[4];
4979         int n = 0;
4980
4981         values[n++] = __perf_event_read_value(event, &enabled, &running);
4982         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4983                 values[n++] = enabled;
4984         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4985                 values[n++] = running;
4986         if (read_format & PERF_FORMAT_ID)
4987                 values[n++] = primary_event_id(event);
4988
4989         if (copy_to_user(buf, values, n * sizeof(u64)))
4990                 return -EFAULT;
4991
4992         return n * sizeof(u64);
4993 }
4994
4995 static bool is_event_hup(struct perf_event *event)
4996 {
4997         bool no_children;
4998
4999         if (event->state > PERF_EVENT_STATE_EXIT)
5000                 return false;
5001
5002         mutex_lock(&event->child_mutex);
5003         no_children = list_empty(&event->child_list);
5004         mutex_unlock(&event->child_mutex);
5005         return no_children;
5006 }
5007
5008 /*
5009  * Read the performance event - simple non blocking version for now
5010  */
5011 static ssize_t
5012 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5013 {
5014         u64 read_format = event->attr.read_format;
5015         int ret;
5016
5017         /*
5018          * Return end-of-file for a read on an event that is in
5019          * error state (i.e. because it was pinned but it couldn't be
5020          * scheduled on to the CPU at some point).
5021          */
5022         if (event->state == PERF_EVENT_STATE_ERROR)
5023                 return 0;
5024
5025         if (count < event->read_size)
5026                 return -ENOSPC;
5027
5028         WARN_ON_ONCE(event->ctx->parent_ctx);
5029         if (read_format & PERF_FORMAT_GROUP)
5030                 ret = perf_read_group(event, read_format, buf);
5031         else
5032                 ret = perf_read_one(event, read_format, buf);
5033
5034         return ret;
5035 }
5036
5037 static ssize_t
5038 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5039 {
5040         struct perf_event *event = file->private_data;
5041         struct perf_event_context *ctx;
5042         int ret;
5043
5044         ret = security_perf_event_read(event);
5045         if (ret)
5046                 return ret;
5047
5048         ctx = perf_event_ctx_lock(event);
5049         ret = __perf_read(event, buf, count);
5050         perf_event_ctx_unlock(event, ctx);
5051
5052         return ret;
5053 }
5054
5055 static __poll_t perf_poll(struct file *file, poll_table *wait)
5056 {
5057         struct perf_event *event = file->private_data;
5058         struct perf_buffer *rb;
5059         __poll_t events = EPOLLHUP;
5060
5061         poll_wait(file, &event->waitq, wait);
5062
5063         if (is_event_hup(event))
5064                 return events;
5065
5066         /*
5067          * Pin the event->rb by taking event->mmap_mutex; otherwise
5068          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5069          */
5070         mutex_lock(&event->mmap_mutex);
5071         rb = event->rb;
5072         if (rb)
5073                 events = atomic_xchg(&rb->poll, 0);
5074         mutex_unlock(&event->mmap_mutex);
5075         return events;
5076 }
5077
5078 static void _perf_event_reset(struct perf_event *event)
5079 {
5080         (void)perf_event_read(event, false);
5081         local64_set(&event->count, 0);
5082         perf_event_update_userpage(event);
5083 }
5084
5085 /* Assume it's not an event with inherit set. */
5086 u64 perf_event_pause(struct perf_event *event, bool reset)
5087 {
5088         struct perf_event_context *ctx;
5089         u64 count;
5090
5091         ctx = perf_event_ctx_lock(event);
5092         WARN_ON_ONCE(event->attr.inherit);
5093         _perf_event_disable(event);
5094         count = local64_read(&event->count);
5095         if (reset)
5096                 local64_set(&event->count, 0);
5097         perf_event_ctx_unlock(event, ctx);
5098
5099         return count;
5100 }
5101 EXPORT_SYMBOL_GPL(perf_event_pause);
5102
5103 /*
5104  * Holding the top-level event's child_mutex means that any
5105  * descendant process that has inherited this event will block
5106  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5107  * task existence requirements of perf_event_enable/disable.
5108  */
5109 static void perf_event_for_each_child(struct perf_event *event,
5110                                         void (*func)(struct perf_event *))
5111 {
5112         struct perf_event *child;
5113
5114         WARN_ON_ONCE(event->ctx->parent_ctx);
5115
5116         mutex_lock(&event->child_mutex);
5117         func(event);
5118         list_for_each_entry(child, &event->child_list, child_list)
5119                 func(child);
5120         mutex_unlock(&event->child_mutex);
5121 }
5122
5123 static void perf_event_for_each(struct perf_event *event,
5124                                   void (*func)(struct perf_event *))
5125 {
5126         struct perf_event_context *ctx = event->ctx;
5127         struct perf_event *sibling;
5128
5129         lockdep_assert_held(&ctx->mutex);
5130
5131         event = event->group_leader;
5132
5133         perf_event_for_each_child(event, func);
5134         for_each_sibling_event(sibling, event)
5135                 perf_event_for_each_child(sibling, func);
5136 }
5137
5138 static void __perf_event_period(struct perf_event *event,
5139                                 struct perf_cpu_context *cpuctx,
5140                                 struct perf_event_context *ctx,
5141                                 void *info)
5142 {
5143         u64 value = *((u64 *)info);
5144         bool active;
5145
5146         if (event->attr.freq) {
5147                 event->attr.sample_freq = value;
5148         } else {
5149                 event->attr.sample_period = value;
5150                 event->hw.sample_period = value;
5151         }
5152
5153         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5154         if (active) {
5155                 perf_pmu_disable(ctx->pmu);
5156                 /*
5157                  * We could be throttled; unthrottle now to avoid the tick
5158                  * trying to unthrottle while we already re-started the event.
5159                  */
5160                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5161                         event->hw.interrupts = 0;
5162                         perf_log_throttle(event, 1);
5163                 }
5164                 event->pmu->stop(event, PERF_EF_UPDATE);
5165         }
5166
5167         local64_set(&event->hw.period_left, 0);
5168
5169         if (active) {
5170                 event->pmu->start(event, PERF_EF_RELOAD);
5171                 perf_pmu_enable(ctx->pmu);
5172         }
5173 }
5174
5175 static int perf_event_check_period(struct perf_event *event, u64 value)
5176 {
5177         return event->pmu->check_period(event, value);
5178 }
5179
5180 static int _perf_event_period(struct perf_event *event, u64 value)
5181 {
5182         if (!is_sampling_event(event))
5183                 return -EINVAL;
5184
5185         if (!value)
5186                 return -EINVAL;
5187
5188         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5189                 return -EINVAL;
5190
5191         if (perf_event_check_period(event, value))
5192                 return -EINVAL;
5193
5194         if (!event->attr.freq && (value & (1ULL << 63)))
5195                 return -EINVAL;
5196
5197         event_function_call(event, __perf_event_period, &value);
5198
5199         return 0;
5200 }
5201
5202 int perf_event_period(struct perf_event *event, u64 value)
5203 {
5204         struct perf_event_context *ctx;
5205         int ret;
5206
5207         ctx = perf_event_ctx_lock(event);
5208         ret = _perf_event_period(event, value);
5209         perf_event_ctx_unlock(event, ctx);
5210
5211         return ret;
5212 }
5213 EXPORT_SYMBOL_GPL(perf_event_period);
5214
5215 static const struct file_operations perf_fops;
5216
5217 static inline int perf_fget_light(int fd, struct fd *p)
5218 {
5219         struct fd f = fdget(fd);
5220         if (!f.file)
5221                 return -EBADF;
5222
5223         if (f.file->f_op != &perf_fops) {
5224                 fdput(f);
5225                 return -EBADF;
5226         }
5227         *p = f;
5228         return 0;
5229 }
5230
5231 static int perf_event_set_output(struct perf_event *event,
5232                                  struct perf_event *output_event);
5233 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5234 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5235 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5236                           struct perf_event_attr *attr);
5237
5238 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5239 {
5240         void (*func)(struct perf_event *);
5241         u32 flags = arg;
5242
5243         switch (cmd) {
5244         case PERF_EVENT_IOC_ENABLE:
5245                 func = _perf_event_enable;
5246                 break;
5247         case PERF_EVENT_IOC_DISABLE:
5248                 func = _perf_event_disable;
5249                 break;
5250         case PERF_EVENT_IOC_RESET:
5251                 func = _perf_event_reset;
5252                 break;
5253
5254         case PERF_EVENT_IOC_REFRESH:
5255                 return _perf_event_refresh(event, arg);
5256
5257         case PERF_EVENT_IOC_PERIOD:
5258         {
5259                 u64 value;
5260
5261                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5262                         return -EFAULT;
5263
5264                 return _perf_event_period(event, value);
5265         }
5266         case PERF_EVENT_IOC_ID:
5267         {
5268                 u64 id = primary_event_id(event);
5269
5270                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5271                         return -EFAULT;
5272                 return 0;
5273         }
5274
5275         case PERF_EVENT_IOC_SET_OUTPUT:
5276         {
5277                 int ret;
5278                 if (arg != -1) {
5279                         struct perf_event *output_event;
5280                         struct fd output;
5281                         ret = perf_fget_light(arg, &output);
5282                         if (ret)
5283                                 return ret;
5284                         output_event = output.file->private_data;
5285                         ret = perf_event_set_output(event, output_event);
5286                         fdput(output);
5287                 } else {
5288                         ret = perf_event_set_output(event, NULL);
5289                 }
5290                 return ret;
5291         }
5292
5293         case PERF_EVENT_IOC_SET_FILTER:
5294                 return perf_event_set_filter(event, (void __user *)arg);
5295
5296         case PERF_EVENT_IOC_SET_BPF:
5297                 return perf_event_set_bpf_prog(event, arg);
5298
5299         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5300                 struct perf_buffer *rb;
5301
5302                 rcu_read_lock();
5303                 rb = rcu_dereference(event->rb);
5304                 if (!rb || !rb->nr_pages) {
5305                         rcu_read_unlock();
5306                         return -EINVAL;
5307                 }
5308                 rb_toggle_paused(rb, !!arg);
5309                 rcu_read_unlock();
5310                 return 0;
5311         }
5312
5313         case PERF_EVENT_IOC_QUERY_BPF:
5314                 return perf_event_query_prog_array(event, (void __user *)arg);
5315
5316         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5317                 struct perf_event_attr new_attr;
5318                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5319                                          &new_attr);
5320
5321                 if (err)
5322                         return err;
5323
5324                 return perf_event_modify_attr(event,  &new_attr);
5325         }
5326         default:
5327                 return -ENOTTY;
5328         }
5329
5330         if (flags & PERF_IOC_FLAG_GROUP)
5331                 perf_event_for_each(event, func);
5332         else
5333                 perf_event_for_each_child(event, func);
5334
5335         return 0;
5336 }
5337
5338 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5339 {
5340         struct perf_event *event = file->private_data;
5341         struct perf_event_context *ctx;
5342         long ret;
5343
5344         /* Treat ioctl like writes as it is likely a mutating operation. */
5345         ret = security_perf_event_write(event);
5346         if (ret)
5347                 return ret;
5348
5349         ctx = perf_event_ctx_lock(event);
5350         ret = _perf_ioctl(event, cmd, arg);
5351         perf_event_ctx_unlock(event, ctx);
5352
5353         return ret;
5354 }
5355
5356 #ifdef CONFIG_COMPAT
5357 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5358                                 unsigned long arg)
5359 {
5360         switch (_IOC_NR(cmd)) {
5361         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5362         case _IOC_NR(PERF_EVENT_IOC_ID):
5363         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5364         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5365                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5366                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5367                         cmd &= ~IOCSIZE_MASK;
5368                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5369                 }
5370                 break;
5371         }
5372         return perf_ioctl(file, cmd, arg);
5373 }
5374 #else
5375 # define perf_compat_ioctl NULL
5376 #endif
5377
5378 int perf_event_task_enable(void)
5379 {
5380         struct perf_event_context *ctx;
5381         struct perf_event *event;
5382
5383         mutex_lock(&current->perf_event_mutex);
5384         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5385                 ctx = perf_event_ctx_lock(event);
5386                 perf_event_for_each_child(event, _perf_event_enable);
5387                 perf_event_ctx_unlock(event, ctx);
5388         }
5389         mutex_unlock(&current->perf_event_mutex);
5390
5391         return 0;
5392 }
5393
5394 int perf_event_task_disable(void)
5395 {
5396         struct perf_event_context *ctx;
5397         struct perf_event *event;
5398
5399         mutex_lock(&current->perf_event_mutex);
5400         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5401                 ctx = perf_event_ctx_lock(event);
5402                 perf_event_for_each_child(event, _perf_event_disable);
5403                 perf_event_ctx_unlock(event, ctx);
5404         }
5405         mutex_unlock(&current->perf_event_mutex);
5406
5407         return 0;
5408 }
5409
5410 static int perf_event_index(struct perf_event *event)
5411 {
5412         if (event->hw.state & PERF_HES_STOPPED)
5413                 return 0;
5414
5415         if (event->state != PERF_EVENT_STATE_ACTIVE)
5416                 return 0;
5417
5418         return event->pmu->event_idx(event);
5419 }
5420
5421 static void calc_timer_values(struct perf_event *event,
5422                                 u64 *now,
5423                                 u64 *enabled,
5424                                 u64 *running)
5425 {
5426         u64 ctx_time;
5427
5428         *now = perf_clock();
5429         ctx_time = event->shadow_ctx_time + *now;
5430         __perf_update_times(event, ctx_time, enabled, running);
5431 }
5432
5433 static void perf_event_init_userpage(struct perf_event *event)
5434 {
5435         struct perf_event_mmap_page *userpg;
5436         struct perf_buffer *rb;
5437
5438         rcu_read_lock();
5439         rb = rcu_dereference(event->rb);
5440         if (!rb)
5441                 goto unlock;
5442
5443         userpg = rb->user_page;
5444
5445         /* Allow new userspace to detect that bit 0 is deprecated */
5446         userpg->cap_bit0_is_deprecated = 1;
5447         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5448         userpg->data_offset = PAGE_SIZE;
5449         userpg->data_size = perf_data_size(rb);
5450
5451 unlock:
5452         rcu_read_unlock();
5453 }
5454
5455 void __weak arch_perf_update_userpage(
5456         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5457 {
5458 }
5459
5460 /*
5461  * Callers need to ensure there can be no nesting of this function, otherwise
5462  * the seqlock logic goes bad. We can not serialize this because the arch
5463  * code calls this from NMI context.
5464  */
5465 void perf_event_update_userpage(struct perf_event *event)
5466 {
5467         struct perf_event_mmap_page *userpg;
5468         struct perf_buffer *rb;
5469         u64 enabled, running, now;
5470
5471         rcu_read_lock();
5472         rb = rcu_dereference(event->rb);
5473         if (!rb)
5474                 goto unlock;
5475
5476         /*
5477          * compute total_time_enabled, total_time_running
5478          * based on snapshot values taken when the event
5479          * was last scheduled in.
5480          *
5481          * we cannot simply called update_context_time()
5482          * because of locking issue as we can be called in
5483          * NMI context
5484          */
5485         calc_timer_values(event, &now, &enabled, &running);
5486
5487         userpg = rb->user_page;
5488         /*
5489          * Disable preemption to guarantee consistent time stamps are stored to
5490          * the user page.
5491          */
5492         preempt_disable();
5493         ++userpg->lock;
5494         barrier();
5495         userpg->index = perf_event_index(event);
5496         userpg->offset = perf_event_count(event);
5497         if (userpg->index)
5498                 userpg->offset -= local64_read(&event->hw.prev_count);
5499
5500         userpg->time_enabled = enabled +
5501                         atomic64_read(&event->child_total_time_enabled);
5502
5503         userpg->time_running = running +
5504                         atomic64_read(&event->child_total_time_running);
5505
5506         arch_perf_update_userpage(event, userpg, now);
5507
5508         barrier();
5509         ++userpg->lock;
5510         preempt_enable();
5511 unlock:
5512         rcu_read_unlock();
5513 }
5514 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5515
5516 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5517 {
5518         struct perf_event *event = vmf->vma->vm_file->private_data;
5519         struct perf_buffer *rb;
5520         vm_fault_t ret = VM_FAULT_SIGBUS;
5521
5522         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5523                 if (vmf->pgoff == 0)
5524                         ret = 0;
5525                 return ret;
5526         }
5527
5528         rcu_read_lock();
5529         rb = rcu_dereference(event->rb);
5530         if (!rb)
5531                 goto unlock;
5532
5533         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5534                 goto unlock;
5535
5536         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5537         if (!vmf->page)
5538                 goto unlock;
5539
5540         get_page(vmf->page);
5541         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5542         vmf->page->index   = vmf->pgoff;
5543
5544         ret = 0;
5545 unlock:
5546         rcu_read_unlock();
5547
5548         return ret;
5549 }
5550
5551 static void ring_buffer_attach(struct perf_event *event,
5552                                struct perf_buffer *rb)
5553 {
5554         struct perf_buffer *old_rb = NULL;
5555         unsigned long flags;
5556
5557         if (event->rb) {
5558                 /*
5559                  * Should be impossible, we set this when removing
5560                  * event->rb_entry and wait/clear when adding event->rb_entry.
5561                  */
5562                 WARN_ON_ONCE(event->rcu_pending);
5563
5564                 old_rb = event->rb;
5565                 spin_lock_irqsave(&old_rb->event_lock, flags);
5566                 list_del_rcu(&event->rb_entry);
5567                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5568
5569                 event->rcu_batches = get_state_synchronize_rcu();
5570                 event->rcu_pending = 1;
5571         }
5572
5573         if (rb) {
5574                 if (event->rcu_pending) {
5575                         cond_synchronize_rcu(event->rcu_batches);
5576                         event->rcu_pending = 0;
5577                 }
5578
5579                 spin_lock_irqsave(&rb->event_lock, flags);
5580                 list_add_rcu(&event->rb_entry, &rb->event_list);
5581                 spin_unlock_irqrestore(&rb->event_lock, flags);
5582         }
5583
5584         /*
5585          * Avoid racing with perf_mmap_close(AUX): stop the event
5586          * before swizzling the event::rb pointer; if it's getting
5587          * unmapped, its aux_mmap_count will be 0 and it won't
5588          * restart. See the comment in __perf_pmu_output_stop().
5589          *
5590          * Data will inevitably be lost when set_output is done in
5591          * mid-air, but then again, whoever does it like this is
5592          * not in for the data anyway.
5593          */
5594         if (has_aux(event))
5595                 perf_event_stop(event, 0);
5596
5597         rcu_assign_pointer(event->rb, rb);
5598
5599         if (old_rb) {
5600                 ring_buffer_put(old_rb);
5601                 /*
5602                  * Since we detached before setting the new rb, so that we
5603                  * could attach the new rb, we could have missed a wakeup.
5604                  * Provide it now.
5605                  */
5606                 wake_up_all(&event->waitq);
5607         }
5608 }
5609
5610 static void ring_buffer_wakeup(struct perf_event *event)
5611 {
5612         struct perf_buffer *rb;
5613
5614         rcu_read_lock();
5615         rb = rcu_dereference(event->rb);
5616         if (rb) {
5617                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5618                         wake_up_all(&event->waitq);
5619         }
5620         rcu_read_unlock();
5621 }
5622
5623 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5624 {
5625         struct perf_buffer *rb;
5626
5627         rcu_read_lock();
5628         rb = rcu_dereference(event->rb);
5629         if (rb) {
5630                 if (!refcount_inc_not_zero(&rb->refcount))
5631                         rb = NULL;
5632         }
5633         rcu_read_unlock();
5634
5635         return rb;
5636 }
5637
5638 void ring_buffer_put(struct perf_buffer *rb)
5639 {
5640         if (!refcount_dec_and_test(&rb->refcount))
5641                 return;
5642
5643         WARN_ON_ONCE(!list_empty(&rb->event_list));
5644
5645         call_rcu(&rb->rcu_head, rb_free_rcu);
5646 }
5647
5648 static void perf_mmap_open(struct vm_area_struct *vma)
5649 {
5650         struct perf_event *event = vma->vm_file->private_data;
5651
5652         atomic_inc(&event->mmap_count);
5653         atomic_inc(&event->rb->mmap_count);
5654
5655         if (vma->vm_pgoff)
5656                 atomic_inc(&event->rb->aux_mmap_count);
5657
5658         if (event->pmu->event_mapped)
5659                 event->pmu->event_mapped(event, vma->vm_mm);
5660 }
5661
5662 static void perf_pmu_output_stop(struct perf_event *event);
5663
5664 /*
5665  * A buffer can be mmap()ed multiple times; either directly through the same
5666  * event, or through other events by use of perf_event_set_output().
5667  *
5668  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5669  * the buffer here, where we still have a VM context. This means we need
5670  * to detach all events redirecting to us.
5671  */
5672 static void perf_mmap_close(struct vm_area_struct *vma)
5673 {
5674         struct perf_event *event = vma->vm_file->private_data;
5675
5676         struct perf_buffer *rb = ring_buffer_get(event);
5677         struct user_struct *mmap_user = rb->mmap_user;
5678         int mmap_locked = rb->mmap_locked;
5679         unsigned long size = perf_data_size(rb);
5680
5681         if (event->pmu->event_unmapped)
5682                 event->pmu->event_unmapped(event, vma->vm_mm);
5683
5684         /*
5685          * rb->aux_mmap_count will always drop before rb->mmap_count and
5686          * event->mmap_count, so it is ok to use event->mmap_mutex to
5687          * serialize with perf_mmap here.
5688          */
5689         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5690             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5691                 /*
5692                  * Stop all AUX events that are writing to this buffer,
5693                  * so that we can free its AUX pages and corresponding PMU
5694                  * data. Note that after rb::aux_mmap_count dropped to zero,
5695                  * they won't start any more (see perf_aux_output_begin()).
5696                  */
5697                 perf_pmu_output_stop(event);
5698
5699                 /* now it's safe to free the pages */
5700                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5701                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5702
5703                 /* this has to be the last one */
5704                 rb_free_aux(rb);
5705                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5706
5707                 mutex_unlock(&event->mmap_mutex);
5708         }
5709
5710         atomic_dec(&rb->mmap_count);
5711
5712         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5713                 goto out_put;
5714
5715         ring_buffer_attach(event, NULL);
5716         mutex_unlock(&event->mmap_mutex);
5717
5718         /* If there's still other mmap()s of this buffer, we're done. */
5719         if (atomic_read(&rb->mmap_count))
5720                 goto out_put;
5721
5722         /*
5723          * No other mmap()s, detach from all other events that might redirect
5724          * into the now unreachable buffer. Somewhat complicated by the
5725          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5726          */
5727 again:
5728         rcu_read_lock();
5729         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5730                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5731                         /*
5732                          * This event is en-route to free_event() which will
5733                          * detach it and remove it from the list.
5734                          */
5735                         continue;
5736                 }
5737                 rcu_read_unlock();
5738
5739                 mutex_lock(&event->mmap_mutex);
5740                 /*
5741                  * Check we didn't race with perf_event_set_output() which can
5742                  * swizzle the rb from under us while we were waiting to
5743                  * acquire mmap_mutex.
5744                  *
5745                  * If we find a different rb; ignore this event, a next
5746                  * iteration will no longer find it on the list. We have to
5747                  * still restart the iteration to make sure we're not now
5748                  * iterating the wrong list.
5749                  */
5750                 if (event->rb == rb)
5751                         ring_buffer_attach(event, NULL);
5752
5753                 mutex_unlock(&event->mmap_mutex);
5754                 put_event(event);
5755
5756                 /*
5757                  * Restart the iteration; either we're on the wrong list or
5758                  * destroyed its integrity by doing a deletion.
5759                  */
5760                 goto again;
5761         }
5762         rcu_read_unlock();
5763
5764         /*
5765          * It could be there's still a few 0-ref events on the list; they'll
5766          * get cleaned up by free_event() -- they'll also still have their
5767          * ref on the rb and will free it whenever they are done with it.
5768          *
5769          * Aside from that, this buffer is 'fully' detached and unmapped,
5770          * undo the VM accounting.
5771          */
5772
5773         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5774                         &mmap_user->locked_vm);
5775         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5776         free_uid(mmap_user);
5777
5778 out_put:
5779         ring_buffer_put(rb); /* could be last */
5780 }
5781
5782 static const struct vm_operations_struct perf_mmap_vmops = {
5783         .open           = perf_mmap_open,
5784         .close          = perf_mmap_close, /* non mergeable */
5785         .fault          = perf_mmap_fault,
5786         .page_mkwrite   = perf_mmap_fault,
5787 };
5788
5789 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5790 {
5791         struct perf_event *event = file->private_data;
5792         unsigned long user_locked, user_lock_limit;
5793         struct user_struct *user = current_user();
5794         struct perf_buffer *rb = NULL;
5795         unsigned long locked, lock_limit;
5796         unsigned long vma_size;
5797         unsigned long nr_pages;
5798         long user_extra = 0, extra = 0;
5799         int ret = 0, flags = 0;
5800
5801         /*
5802          * Don't allow mmap() of inherited per-task counters. This would
5803          * create a performance issue due to all children writing to the
5804          * same rb.
5805          */
5806         if (event->cpu == -1 && event->attr.inherit)
5807                 return -EINVAL;
5808
5809         if (!(vma->vm_flags & VM_SHARED))
5810                 return -EINVAL;
5811
5812         ret = security_perf_event_read(event);
5813         if (ret)
5814                 return ret;
5815
5816         vma_size = vma->vm_end - vma->vm_start;
5817
5818         if (vma->vm_pgoff == 0) {
5819                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5820         } else {
5821                 /*
5822                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5823                  * mapped, all subsequent mappings should have the same size
5824                  * and offset. Must be above the normal perf buffer.
5825                  */
5826                 u64 aux_offset, aux_size;
5827
5828                 if (!event->rb)
5829                         return -EINVAL;
5830
5831                 nr_pages = vma_size / PAGE_SIZE;
5832
5833                 mutex_lock(&event->mmap_mutex);
5834                 ret = -EINVAL;
5835
5836                 rb = event->rb;
5837                 if (!rb)
5838                         goto aux_unlock;
5839
5840                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5841                 aux_size = READ_ONCE(rb->user_page->aux_size);
5842
5843                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5844                         goto aux_unlock;
5845
5846                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5847                         goto aux_unlock;
5848
5849                 /* already mapped with a different offset */
5850                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5851                         goto aux_unlock;
5852
5853                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5854                         goto aux_unlock;
5855
5856                 /* already mapped with a different size */
5857                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5858                         goto aux_unlock;
5859
5860                 if (!is_power_of_2(nr_pages))
5861                         goto aux_unlock;
5862
5863                 if (!atomic_inc_not_zero(&rb->mmap_count))
5864                         goto aux_unlock;
5865
5866                 if (rb_has_aux(rb)) {
5867                         atomic_inc(&rb->aux_mmap_count);
5868                         ret = 0;
5869                         goto unlock;
5870                 }
5871
5872                 atomic_set(&rb->aux_mmap_count, 1);
5873                 user_extra = nr_pages;
5874
5875                 goto accounting;
5876         }
5877
5878         /*
5879          * If we have rb pages ensure they're a power-of-two number, so we
5880          * can do bitmasks instead of modulo.
5881          */
5882         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5883                 return -EINVAL;
5884
5885         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5886                 return -EINVAL;
5887
5888         WARN_ON_ONCE(event->ctx->parent_ctx);
5889 again:
5890         mutex_lock(&event->mmap_mutex);
5891         if (event->rb) {
5892                 if (event->rb->nr_pages != nr_pages) {
5893                         ret = -EINVAL;
5894                         goto unlock;
5895                 }
5896
5897                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5898                         /*
5899                          * Raced against perf_mmap_close() through
5900                          * perf_event_set_output(). Try again, hope for better
5901                          * luck.
5902                          */
5903                         mutex_unlock(&event->mmap_mutex);
5904                         goto again;
5905                 }
5906
5907                 goto unlock;
5908         }
5909
5910         user_extra = nr_pages + 1;
5911
5912 accounting:
5913         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5914
5915         /*
5916          * Increase the limit linearly with more CPUs:
5917          */
5918         user_lock_limit *= num_online_cpus();
5919
5920         user_locked = atomic_long_read(&user->locked_vm);
5921
5922         /*
5923          * sysctl_perf_event_mlock may have changed, so that
5924          *     user->locked_vm > user_lock_limit
5925          */
5926         if (user_locked > user_lock_limit)
5927                 user_locked = user_lock_limit;
5928         user_locked += user_extra;
5929
5930         if (user_locked > user_lock_limit) {
5931                 /*
5932                  * charge locked_vm until it hits user_lock_limit;
5933                  * charge the rest from pinned_vm
5934                  */
5935                 extra = user_locked - user_lock_limit;
5936                 user_extra -= extra;
5937         }
5938
5939         lock_limit = rlimit(RLIMIT_MEMLOCK);
5940         lock_limit >>= PAGE_SHIFT;
5941         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
5942
5943         if ((locked > lock_limit) && perf_is_paranoid() &&
5944                 !capable(CAP_IPC_LOCK)) {
5945                 ret = -EPERM;
5946                 goto unlock;
5947         }
5948
5949         WARN_ON(!rb && event->rb);
5950
5951         if (vma->vm_flags & VM_WRITE)
5952                 flags |= RING_BUFFER_WRITABLE;
5953
5954         if (!rb) {
5955                 rb = rb_alloc(nr_pages,
5956                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5957                               event->cpu, flags);
5958
5959                 if (!rb) {
5960                         ret = -ENOMEM;
5961                         goto unlock;
5962                 }
5963
5964                 atomic_set(&rb->mmap_count, 1);
5965                 rb->mmap_user = get_current_user();
5966                 rb->mmap_locked = extra;
5967
5968                 ring_buffer_attach(event, rb);
5969
5970                 perf_event_init_userpage(event);
5971                 perf_event_update_userpage(event);
5972         } else {
5973                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5974                                    event->attr.aux_watermark, flags);
5975                 if (!ret)
5976                         rb->aux_mmap_locked = extra;
5977         }
5978
5979 unlock:
5980         if (!ret) {
5981                 atomic_long_add(user_extra, &user->locked_vm);
5982                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
5983
5984                 atomic_inc(&event->mmap_count);
5985         } else if (rb) {
5986                 atomic_dec(&rb->mmap_count);
5987         }
5988 aux_unlock:
5989         mutex_unlock(&event->mmap_mutex);
5990
5991         /*
5992          * Since pinned accounting is per vm we cannot allow fork() to copy our
5993          * vma.
5994          */
5995         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5996         vma->vm_ops = &perf_mmap_vmops;
5997
5998         if (event->pmu->event_mapped)
5999                 event->pmu->event_mapped(event, vma->vm_mm);
6000
6001         return ret;
6002 }
6003
6004 static int perf_fasync(int fd, struct file *filp, int on)
6005 {
6006         struct inode *inode = file_inode(filp);
6007         struct perf_event *event = filp->private_data;
6008         int retval;
6009
6010         inode_lock(inode);
6011         retval = fasync_helper(fd, filp, on, &event->fasync);
6012         inode_unlock(inode);
6013
6014         if (retval < 0)
6015                 return retval;
6016
6017         return 0;
6018 }
6019
6020 static const struct file_operations perf_fops = {
6021         .llseek                 = no_llseek,
6022         .release                = perf_release,
6023         .read                   = perf_read,
6024         .poll                   = perf_poll,
6025         .unlocked_ioctl         = perf_ioctl,
6026         .compat_ioctl           = perf_compat_ioctl,
6027         .mmap                   = perf_mmap,
6028         .fasync                 = perf_fasync,
6029 };
6030
6031 /*
6032  * Perf event wakeup
6033  *
6034  * If there's data, ensure we set the poll() state and publish everything
6035  * to user-space before waking everybody up.
6036  */
6037
6038 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6039 {
6040         /* only the parent has fasync state */
6041         if (event->parent)
6042                 event = event->parent;
6043         return &event->fasync;
6044 }
6045
6046 void perf_event_wakeup(struct perf_event *event)
6047 {
6048         ring_buffer_wakeup(event);
6049
6050         if (event->pending_kill) {
6051                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6052                 event->pending_kill = 0;
6053         }
6054 }
6055
6056 static void perf_pending_event_disable(struct perf_event *event)
6057 {
6058         int cpu = READ_ONCE(event->pending_disable);
6059
6060         if (cpu < 0)
6061                 return;
6062
6063         if (cpu == smp_processor_id()) {
6064                 WRITE_ONCE(event->pending_disable, -1);
6065                 perf_event_disable_local(event);
6066                 return;
6067         }
6068
6069         /*
6070          *  CPU-A                       CPU-B
6071          *
6072          *  perf_event_disable_inatomic()
6073          *    @pending_disable = CPU-A;
6074          *    irq_work_queue();
6075          *
6076          *  sched-out
6077          *    @pending_disable = -1;
6078          *
6079          *                              sched-in
6080          *                              perf_event_disable_inatomic()
6081          *                                @pending_disable = CPU-B;
6082          *                                irq_work_queue(); // FAILS
6083          *
6084          *  irq_work_run()
6085          *    perf_pending_event()
6086          *
6087          * But the event runs on CPU-B and wants disabling there.
6088          */
6089         irq_work_queue_on(&event->pending, cpu);
6090 }
6091
6092 static void perf_pending_event(struct irq_work *entry)
6093 {
6094         struct perf_event *event = container_of(entry, struct perf_event, pending);
6095         int rctx;
6096
6097         rctx = perf_swevent_get_recursion_context();
6098         /*
6099          * If we 'fail' here, that's OK, it means recursion is already disabled
6100          * and we won't recurse 'further'.
6101          */
6102
6103         perf_pending_event_disable(event);
6104
6105         if (event->pending_wakeup) {
6106                 event->pending_wakeup = 0;
6107                 perf_event_wakeup(event);
6108         }
6109
6110         if (rctx >= 0)
6111                 perf_swevent_put_recursion_context(rctx);
6112 }
6113
6114 /*
6115  * We assume there is only KVM supporting the callbacks.
6116  * Later on, we might change it to a list if there is
6117  * another virtualization implementation supporting the callbacks.
6118  */
6119 struct perf_guest_info_callbacks *perf_guest_cbs;
6120
6121 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6122 {
6123         perf_guest_cbs = cbs;
6124         return 0;
6125 }
6126 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6127
6128 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6129 {
6130         perf_guest_cbs = NULL;
6131         return 0;
6132 }
6133 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6134
6135 static void
6136 perf_output_sample_regs(struct perf_output_handle *handle,
6137                         struct pt_regs *regs, u64 mask)
6138 {
6139         int bit;
6140         DECLARE_BITMAP(_mask, 64);
6141
6142         bitmap_from_u64(_mask, mask);
6143         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6144                 u64 val;
6145
6146                 val = perf_reg_value(regs, bit);
6147                 perf_output_put(handle, val);
6148         }
6149 }
6150
6151 static void perf_sample_regs_user(struct perf_regs *regs_user,
6152                                   struct pt_regs *regs,
6153                                   struct pt_regs *regs_user_copy)
6154 {
6155         if (user_mode(regs)) {
6156                 regs_user->abi = perf_reg_abi(current);
6157                 regs_user->regs = regs;
6158         } else if (!(current->flags & PF_KTHREAD)) {
6159                 perf_get_regs_user(regs_user, regs, regs_user_copy);
6160         } else {
6161                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6162                 regs_user->regs = NULL;
6163         }
6164 }
6165
6166 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6167                                   struct pt_regs *regs)
6168 {
6169         regs_intr->regs = regs;
6170         regs_intr->abi  = perf_reg_abi(current);
6171 }
6172
6173
6174 /*
6175  * Get remaining task size from user stack pointer.
6176  *
6177  * It'd be better to take stack vma map and limit this more
6178  * precisely, but there's no way to get it safely under interrupt,
6179  * so using TASK_SIZE as limit.
6180  */
6181 static u64 perf_ustack_task_size(struct pt_regs *regs)
6182 {
6183         unsigned long addr = perf_user_stack_pointer(regs);
6184
6185         if (!addr || addr >= TASK_SIZE)
6186                 return 0;
6187
6188         return TASK_SIZE - addr;
6189 }
6190
6191 static u16
6192 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6193                         struct pt_regs *regs)
6194 {
6195         u64 task_size;
6196
6197         /* No regs, no stack pointer, no dump. */
6198         if (!regs)
6199                 return 0;
6200
6201         /*
6202          * Check if we fit in with the requested stack size into the:
6203          * - TASK_SIZE
6204          *   If we don't, we limit the size to the TASK_SIZE.
6205          *
6206          * - remaining sample size
6207          *   If we don't, we customize the stack size to
6208          *   fit in to the remaining sample size.
6209          */
6210
6211         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6212         stack_size = min(stack_size, (u16) task_size);
6213
6214         /* Current header size plus static size and dynamic size. */
6215         header_size += 2 * sizeof(u64);
6216
6217         /* Do we fit in with the current stack dump size? */
6218         if ((u16) (header_size + stack_size) < header_size) {
6219                 /*
6220                  * If we overflow the maximum size for the sample,
6221                  * we customize the stack dump size to fit in.
6222                  */
6223                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6224                 stack_size = round_up(stack_size, sizeof(u64));
6225         }
6226
6227         return stack_size;
6228 }
6229
6230 static void
6231 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6232                           struct pt_regs *regs)
6233 {
6234         /* Case of a kernel thread, nothing to dump */
6235         if (!regs) {
6236                 u64 size = 0;
6237                 perf_output_put(handle, size);
6238         } else {
6239                 unsigned long sp;
6240                 unsigned int rem;
6241                 u64 dyn_size;
6242                 mm_segment_t fs;
6243
6244                 /*
6245                  * We dump:
6246                  * static size
6247                  *   - the size requested by user or the best one we can fit
6248                  *     in to the sample max size
6249                  * data
6250                  *   - user stack dump data
6251                  * dynamic size
6252                  *   - the actual dumped size
6253                  */
6254
6255                 /* Static size. */
6256                 perf_output_put(handle, dump_size);
6257
6258                 /* Data. */
6259                 sp = perf_user_stack_pointer(regs);
6260                 fs = get_fs();
6261                 set_fs(USER_DS);
6262                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6263                 set_fs(fs);
6264                 dyn_size = dump_size - rem;
6265
6266                 perf_output_skip(handle, rem);
6267
6268                 /* Dynamic size. */
6269                 perf_output_put(handle, dyn_size);
6270         }
6271 }
6272
6273 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6274                                           struct perf_sample_data *data,
6275                                           size_t size)
6276 {
6277         struct perf_event *sampler = event->aux_event;
6278         struct perf_buffer *rb;
6279
6280         data->aux_size = 0;
6281
6282         if (!sampler)
6283                 goto out;
6284
6285         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6286                 goto out;
6287
6288         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6289                 goto out;
6290
6291         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6292         if (!rb)
6293                 goto out;
6294
6295         /*
6296          * If this is an NMI hit inside sampling code, don't take
6297          * the sample. See also perf_aux_sample_output().
6298          */
6299         if (READ_ONCE(rb->aux_in_sampling)) {
6300                 data->aux_size = 0;
6301         } else {
6302                 size = min_t(size_t, size, perf_aux_size(rb));
6303                 data->aux_size = ALIGN(size, sizeof(u64));
6304         }
6305         ring_buffer_put(rb);
6306
6307 out:
6308         return data->aux_size;
6309 }
6310
6311 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6312                            struct perf_event *event,
6313                            struct perf_output_handle *handle,
6314                            unsigned long size)
6315 {
6316         unsigned long flags;
6317         long ret;
6318
6319         /*
6320          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6321          * paths. If we start calling them in NMI context, they may race with
6322          * the IRQ ones, that is, for example, re-starting an event that's just
6323          * been stopped, which is why we're using a separate callback that
6324          * doesn't change the event state.
6325          *
6326          * IRQs need to be disabled to prevent IPIs from racing with us.
6327          */
6328         local_irq_save(flags);
6329         /*
6330          * Guard against NMI hits inside the critical section;
6331          * see also perf_prepare_sample_aux().
6332          */
6333         WRITE_ONCE(rb->aux_in_sampling, 1);
6334         barrier();
6335
6336         ret = event->pmu->snapshot_aux(event, handle, size);
6337
6338         barrier();
6339         WRITE_ONCE(rb->aux_in_sampling, 0);
6340         local_irq_restore(flags);
6341
6342         return ret;
6343 }
6344
6345 static void perf_aux_sample_output(struct perf_event *event,
6346                                    struct perf_output_handle *handle,
6347                                    struct perf_sample_data *data)
6348 {
6349         struct perf_event *sampler = event->aux_event;
6350         struct perf_buffer *rb;
6351         unsigned long pad;
6352         long size;
6353
6354         if (WARN_ON_ONCE(!sampler || !data->aux_size))
6355                 return;
6356
6357         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6358         if (!rb)
6359                 return;
6360
6361         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6362
6363         /*
6364          * An error here means that perf_output_copy() failed (returned a
6365          * non-zero surplus that it didn't copy), which in its current
6366          * enlightened implementation is not possible. If that changes, we'd
6367          * like to know.
6368          */
6369         if (WARN_ON_ONCE(size < 0))
6370                 goto out_put;
6371
6372         /*
6373          * The pad comes from ALIGN()ing data->aux_size up to u64 in
6374          * perf_prepare_sample_aux(), so should not be more than that.
6375          */
6376         pad = data->aux_size - size;
6377         if (WARN_ON_ONCE(pad >= sizeof(u64)))
6378                 pad = 8;
6379
6380         if (pad) {
6381                 u64 zero = 0;
6382                 perf_output_copy(handle, &zero, pad);
6383         }
6384
6385 out_put:
6386         ring_buffer_put(rb);
6387 }
6388
6389 static void __perf_event_header__init_id(struct perf_event_header *header,
6390                                          struct perf_sample_data *data,
6391                                          struct perf_event *event)
6392 {
6393         u64 sample_type = event->attr.sample_type;
6394
6395         data->type = sample_type;
6396         header->size += event->id_header_size;
6397
6398         if (sample_type & PERF_SAMPLE_TID) {
6399                 /* namespace issues */
6400                 data->tid_entry.pid = perf_event_pid(event, current);
6401                 data->tid_entry.tid = perf_event_tid(event, current);
6402         }
6403
6404         if (sample_type & PERF_SAMPLE_TIME)
6405                 data->time = perf_event_clock(event);
6406
6407         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6408                 data->id = primary_event_id(event);
6409
6410         if (sample_type & PERF_SAMPLE_STREAM_ID)
6411                 data->stream_id = event->id;
6412
6413         if (sample_type & PERF_SAMPLE_CPU) {
6414                 data->cpu_entry.cpu      = raw_smp_processor_id();
6415                 data->cpu_entry.reserved = 0;
6416         }
6417 }
6418
6419 void perf_event_header__init_id(struct perf_event_header *header,
6420                                 struct perf_sample_data *data,
6421                                 struct perf_event *event)
6422 {
6423         if (event->attr.sample_id_all)
6424                 __perf_event_header__init_id(header, data, event);
6425 }
6426
6427 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6428                                            struct perf_sample_data *data)
6429 {
6430         u64 sample_type = data->type;
6431
6432         if (sample_type & PERF_SAMPLE_TID)
6433                 perf_output_put(handle, data->tid_entry);
6434
6435         if (sample_type & PERF_SAMPLE_TIME)
6436                 perf_output_put(handle, data->time);
6437
6438         if (sample_type & PERF_SAMPLE_ID)
6439                 perf_output_put(handle, data->id);
6440
6441         if (sample_type & PERF_SAMPLE_STREAM_ID)
6442                 perf_output_put(handle, data->stream_id);
6443
6444         if (sample_type & PERF_SAMPLE_CPU)
6445                 perf_output_put(handle, data->cpu_entry);
6446
6447         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6448                 perf_output_put(handle, data->id);
6449 }
6450
6451 void perf_event__output_id_sample(struct perf_event *event,
6452                                   struct perf_output_handle *handle,
6453                                   struct perf_sample_data *sample)
6454 {
6455         if (event->attr.sample_id_all)
6456                 __perf_event__output_id_sample(handle, sample);
6457 }
6458
6459 static void perf_output_read_one(struct perf_output_handle *handle,
6460                                  struct perf_event *event,
6461                                  u64 enabled, u64 running)
6462 {
6463         u64 read_format = event->attr.read_format;
6464         u64 values[4];
6465         int n = 0;
6466
6467         values[n++] = perf_event_count(event);
6468         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6469                 values[n++] = enabled +
6470                         atomic64_read(&event->child_total_time_enabled);
6471         }
6472         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6473                 values[n++] = running +
6474                         atomic64_read(&event->child_total_time_running);
6475         }
6476         if (read_format & PERF_FORMAT_ID)
6477                 values[n++] = primary_event_id(event);
6478
6479         __output_copy(handle, values, n * sizeof(u64));
6480 }
6481
6482 static void perf_output_read_group(struct perf_output_handle *handle,
6483                             struct perf_event *event,
6484                             u64 enabled, u64 running)
6485 {
6486         struct perf_event *leader = event->group_leader, *sub;
6487         u64 read_format = event->attr.read_format;
6488         u64 values[5];
6489         int n = 0;
6490
6491         values[n++] = 1 + leader->nr_siblings;
6492
6493         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6494                 values[n++] = enabled;
6495
6496         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6497                 values[n++] = running;
6498
6499         if ((leader != event) &&
6500             (leader->state == PERF_EVENT_STATE_ACTIVE))
6501                 leader->pmu->read(leader);
6502
6503         values[n++] = perf_event_count(leader);
6504         if (read_format & PERF_FORMAT_ID)
6505                 values[n++] = primary_event_id(leader);
6506
6507         __output_copy(handle, values, n * sizeof(u64));
6508
6509         for_each_sibling_event(sub, leader) {
6510                 n = 0;
6511
6512                 if ((sub != event) &&
6513                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6514                         sub->pmu->read(sub);
6515
6516                 values[n++] = perf_event_count(sub);
6517                 if (read_format & PERF_FORMAT_ID)
6518                         values[n++] = primary_event_id(sub);
6519
6520                 __output_copy(handle, values, n * sizeof(u64));
6521         }
6522 }
6523
6524 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6525                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6526
6527 /*
6528  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6529  *
6530  * The problem is that its both hard and excessively expensive to iterate the
6531  * child list, not to mention that its impossible to IPI the children running
6532  * on another CPU, from interrupt/NMI context.
6533  */
6534 static void perf_output_read(struct perf_output_handle *handle,
6535                              struct perf_event *event)
6536 {
6537         u64 enabled = 0, running = 0, now;
6538         u64 read_format = event->attr.read_format;
6539
6540         /*
6541          * compute total_time_enabled, total_time_running
6542          * based on snapshot values taken when the event
6543          * was last scheduled in.
6544          *
6545          * we cannot simply called update_context_time()
6546          * because of locking issue as we are called in
6547          * NMI context
6548          */
6549         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6550                 calc_timer_values(event, &now, &enabled, &running);
6551
6552         if (event->attr.read_format & PERF_FORMAT_GROUP)
6553                 perf_output_read_group(handle, event, enabled, running);
6554         else
6555                 perf_output_read_one(handle, event, enabled, running);
6556 }
6557
6558 void perf_output_sample(struct perf_output_handle *handle,
6559                         struct perf_event_header *header,
6560                         struct perf_sample_data *data,
6561                         struct perf_event *event)
6562 {
6563         u64 sample_type = data->type;
6564
6565         perf_output_put(handle, *header);
6566
6567         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6568                 perf_output_put(handle, data->id);
6569
6570         if (sample_type & PERF_SAMPLE_IP)
6571                 perf_output_put(handle, data->ip);
6572
6573         if (sample_type & PERF_SAMPLE_TID)
6574                 perf_output_put(handle, data->tid_entry);
6575
6576         if (sample_type & PERF_SAMPLE_TIME)
6577                 perf_output_put(handle, data->time);
6578
6579         if (sample_type & PERF_SAMPLE_ADDR)
6580                 perf_output_put(handle, data->addr);
6581
6582         if (sample_type & PERF_SAMPLE_ID)
6583                 perf_output_put(handle, data->id);
6584
6585         if (sample_type & PERF_SAMPLE_STREAM_ID)
6586                 perf_output_put(handle, data->stream_id);
6587
6588         if (sample_type & PERF_SAMPLE_CPU)
6589                 perf_output_put(handle, data->cpu_entry);
6590
6591         if (sample_type & PERF_SAMPLE_PERIOD)
6592                 perf_output_put(handle, data->period);
6593
6594         if (sample_type & PERF_SAMPLE_READ)
6595                 perf_output_read(handle, event);
6596
6597         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6598                 int size = 1;
6599
6600                 size += data->callchain->nr;
6601                 size *= sizeof(u64);
6602                 __output_copy(handle, data->callchain, size);
6603         }
6604
6605         if (sample_type & PERF_SAMPLE_RAW) {
6606                 struct perf_raw_record *raw = data->raw;
6607
6608                 if (raw) {
6609                         struct perf_raw_frag *frag = &raw->frag;
6610
6611                         perf_output_put(handle, raw->size);
6612                         do {
6613                                 if (frag->copy) {
6614                                         __output_custom(handle, frag->copy,
6615                                                         frag->data, frag->size);
6616                                 } else {
6617                                         __output_copy(handle, frag->data,
6618                                                       frag->size);
6619                                 }
6620                                 if (perf_raw_frag_last(frag))
6621                                         break;
6622                                 frag = frag->next;
6623                         } while (1);
6624                         if (frag->pad)
6625                                 __output_skip(handle, NULL, frag->pad);
6626                 } else {
6627                         struct {
6628                                 u32     size;
6629                                 u32     data;
6630                         } raw = {
6631                                 .size = sizeof(u32),
6632                                 .data = 0,
6633                         };
6634                         perf_output_put(handle, raw);
6635                 }
6636         }
6637
6638         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6639                 if (data->br_stack) {
6640                         size_t size;
6641
6642                         size = data->br_stack->nr
6643                              * sizeof(struct perf_branch_entry);
6644
6645                         perf_output_put(handle, data->br_stack->nr);
6646                         perf_output_copy(handle, data->br_stack->entries, size);
6647                 } else {
6648                         /*
6649                          * we always store at least the value of nr
6650                          */
6651                         u64 nr = 0;
6652                         perf_output_put(handle, nr);
6653                 }
6654         }
6655
6656         if (sample_type & PERF_SAMPLE_REGS_USER) {
6657                 u64 abi = data->regs_user.abi;
6658
6659                 /*
6660                  * If there are no regs to dump, notice it through
6661                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6662                  */
6663                 perf_output_put(handle, abi);
6664
6665                 if (abi) {
6666                         u64 mask = event->attr.sample_regs_user;
6667                         perf_output_sample_regs(handle,
6668                                                 data->regs_user.regs,
6669                                                 mask);
6670                 }
6671         }
6672
6673         if (sample_type & PERF_SAMPLE_STACK_USER) {
6674                 perf_output_sample_ustack(handle,
6675                                           data->stack_user_size,
6676                                           data->regs_user.regs);
6677         }
6678
6679         if (sample_type & PERF_SAMPLE_WEIGHT)
6680                 perf_output_put(handle, data->weight);
6681
6682         if (sample_type & PERF_SAMPLE_DATA_SRC)
6683                 perf_output_put(handle, data->data_src.val);
6684
6685         if (sample_type & PERF_SAMPLE_TRANSACTION)
6686                 perf_output_put(handle, data->txn);
6687
6688         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6689                 u64 abi = data->regs_intr.abi;
6690                 /*
6691                  * If there are no regs to dump, notice it through
6692                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6693                  */
6694                 perf_output_put(handle, abi);
6695
6696                 if (abi) {
6697                         u64 mask = event->attr.sample_regs_intr;
6698
6699                         perf_output_sample_regs(handle,
6700                                                 data->regs_intr.regs,
6701                                                 mask);
6702                 }
6703         }
6704
6705         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6706                 perf_output_put(handle, data->phys_addr);
6707
6708         if (sample_type & PERF_SAMPLE_AUX) {
6709                 perf_output_put(handle, data->aux_size);
6710
6711                 if (data->aux_size)
6712                         perf_aux_sample_output(event, handle, data);
6713         }
6714
6715         if (!event->attr.watermark) {
6716                 int wakeup_events = event->attr.wakeup_events;
6717
6718                 if (wakeup_events) {
6719                         struct perf_buffer *rb = handle->rb;
6720                         int events = local_inc_return(&rb->events);
6721
6722                         if (events >= wakeup_events) {
6723                                 local_sub(wakeup_events, &rb->events);
6724                                 local_inc(&rb->wakeup);
6725                         }
6726                 }
6727         }
6728 }
6729
6730 static u64 perf_virt_to_phys(u64 virt)
6731 {
6732         u64 phys_addr = 0;
6733         struct page *p = NULL;
6734
6735         if (!virt)
6736                 return 0;
6737
6738         if (virt >= TASK_SIZE) {
6739                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6740                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6741                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6742                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6743         } else {
6744                 /*
6745                  * Walking the pages tables for user address.
6746                  * Interrupts are disabled, so it prevents any tear down
6747                  * of the page tables.
6748                  * Try IRQ-safe __get_user_pages_fast first.
6749                  * If failed, leave phys_addr as 0.
6750                  */
6751                 if ((current->mm != NULL) &&
6752                     (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6753                         phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6754
6755                 if (p)
6756                         put_page(p);
6757         }
6758
6759         return phys_addr;
6760 }
6761
6762 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6763
6764 struct perf_callchain_entry *
6765 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6766 {
6767         bool kernel = !event->attr.exclude_callchain_kernel;
6768         bool user   = !event->attr.exclude_callchain_user;
6769         /* Disallow cross-task user callchains. */
6770         bool crosstask = event->ctx->task && event->ctx->task != current;
6771         const u32 max_stack = event->attr.sample_max_stack;
6772         struct perf_callchain_entry *callchain;
6773
6774         if (!kernel && !user)
6775                 return &__empty_callchain;
6776
6777         callchain = get_perf_callchain(regs, 0, kernel, user,
6778                                        max_stack, crosstask, true);
6779         return callchain ?: &__empty_callchain;
6780 }
6781
6782 void perf_prepare_sample(struct perf_event_header *header,
6783                          struct perf_sample_data *data,
6784                          struct perf_event *event,
6785                          struct pt_regs *regs)
6786 {
6787         u64 sample_type = event->attr.sample_type;
6788
6789         header->type = PERF_RECORD_SAMPLE;
6790         header->size = sizeof(*header) + event->header_size;
6791
6792         header->misc = 0;
6793         header->misc |= perf_misc_flags(regs);
6794
6795         __perf_event_header__init_id(header, data, event);
6796
6797         if (sample_type & PERF_SAMPLE_IP)
6798                 data->ip = perf_instruction_pointer(regs);
6799
6800         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6801                 int size = 1;
6802
6803                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6804                         data->callchain = perf_callchain(event, regs);
6805
6806                 size += data->callchain->nr;
6807
6808                 header->size += size * sizeof(u64);
6809         }
6810
6811         if (sample_type & PERF_SAMPLE_RAW) {
6812                 struct perf_raw_record *raw = data->raw;
6813                 int size;
6814
6815                 if (raw) {
6816                         struct perf_raw_frag *frag = &raw->frag;
6817                         u32 sum = 0;
6818
6819                         do {
6820                                 sum += frag->size;
6821                                 if (perf_raw_frag_last(frag))
6822                                         break;
6823                                 frag = frag->next;
6824                         } while (1);
6825
6826                         size = round_up(sum + sizeof(u32), sizeof(u64));
6827                         raw->size = size - sizeof(u32);
6828                         frag->pad = raw->size - sum;
6829                 } else {
6830                         size = sizeof(u64);
6831                 }
6832
6833                 header->size += size;
6834         }
6835
6836         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6837                 int size = sizeof(u64); /* nr */
6838                 if (data->br_stack) {
6839                         size += data->br_stack->nr
6840                               * sizeof(struct perf_branch_entry);
6841                 }
6842                 header->size += size;
6843         }
6844
6845         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6846                 perf_sample_regs_user(&data->regs_user, regs,
6847                                       &data->regs_user_copy);
6848
6849         if (sample_type & PERF_SAMPLE_REGS_USER) {
6850                 /* regs dump ABI info */
6851                 int size = sizeof(u64);
6852
6853                 if (data->regs_user.regs) {
6854                         u64 mask = event->attr.sample_regs_user;
6855                         size += hweight64(mask) * sizeof(u64);
6856                 }
6857
6858                 header->size += size;
6859         }
6860
6861         if (sample_type & PERF_SAMPLE_STACK_USER) {
6862                 /*
6863                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
6864                  * processed as the last one or have additional check added
6865                  * in case new sample type is added, because we could eat
6866                  * up the rest of the sample size.
6867                  */
6868                 u16 stack_size = event->attr.sample_stack_user;
6869                 u16 size = sizeof(u64);
6870
6871                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6872                                                      data->regs_user.regs);
6873
6874                 /*
6875                  * If there is something to dump, add space for the dump
6876                  * itself and for the field that tells the dynamic size,
6877                  * which is how many have been actually dumped.
6878                  */
6879                 if (stack_size)
6880                         size += sizeof(u64) + stack_size;
6881
6882                 data->stack_user_size = stack_size;
6883                 header->size += size;
6884         }
6885
6886         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6887                 /* regs dump ABI info */
6888                 int size = sizeof(u64);
6889
6890                 perf_sample_regs_intr(&data->regs_intr, regs);
6891
6892                 if (data->regs_intr.regs) {
6893                         u64 mask = event->attr.sample_regs_intr;
6894
6895                         size += hweight64(mask) * sizeof(u64);
6896                 }
6897
6898                 header->size += size;
6899         }
6900
6901         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6902                 data->phys_addr = perf_virt_to_phys(data->addr);
6903
6904         if (sample_type & PERF_SAMPLE_AUX) {
6905                 u64 size;
6906
6907                 header->size += sizeof(u64); /* size */
6908
6909                 /*
6910                  * Given the 16bit nature of header::size, an AUX sample can
6911                  * easily overflow it, what with all the preceding sample bits.
6912                  * Make sure this doesn't happen by using up to U16_MAX bytes
6913                  * per sample in total (rounded down to 8 byte boundary).
6914                  */
6915                 size = min_t(size_t, U16_MAX - header->size,
6916                              event->attr.aux_sample_size);
6917                 size = rounddown(size, 8);
6918                 size = perf_prepare_sample_aux(event, data, size);
6919
6920                 WARN_ON_ONCE(size + header->size > U16_MAX);
6921                 header->size += size;
6922         }
6923         /*
6924          * If you're adding more sample types here, you likely need to do
6925          * something about the overflowing header::size, like repurpose the
6926          * lowest 3 bits of size, which should be always zero at the moment.
6927          * This raises a more important question, do we really need 512k sized
6928          * samples and why, so good argumentation is in order for whatever you
6929          * do here next.
6930          */
6931         WARN_ON_ONCE(header->size & 7);
6932 }
6933
6934 static __always_inline int
6935 __perf_event_output(struct perf_event *event,
6936                     struct perf_sample_data *data,
6937                     struct pt_regs *regs,
6938                     int (*output_begin)(struct perf_output_handle *,
6939                                         struct perf_event *,
6940                                         unsigned int))
6941 {
6942         struct perf_output_handle handle;
6943         struct perf_event_header header;
6944         int err;
6945
6946         /* protect the callchain buffers */
6947         rcu_read_lock();
6948
6949         perf_prepare_sample(&header, data, event, regs);
6950
6951         err = output_begin(&handle, event, header.size);
6952         if (err)
6953                 goto exit;
6954
6955         perf_output_sample(&handle, &header, data, event);
6956
6957         perf_output_end(&handle);
6958
6959 exit:
6960         rcu_read_unlock();
6961         return err;
6962 }
6963
6964 void
6965 perf_event_output_forward(struct perf_event *event,
6966                          struct perf_sample_data *data,
6967                          struct pt_regs *regs)
6968 {
6969         __perf_event_output(event, data, regs, perf_output_begin_forward);
6970 }
6971
6972 void
6973 perf_event_output_backward(struct perf_event *event,
6974                            struct perf_sample_data *data,
6975                            struct pt_regs *regs)
6976 {
6977         __perf_event_output(event, data, regs, perf_output_begin_backward);
6978 }
6979
6980 int
6981 perf_event_output(struct perf_event *event,
6982                   struct perf_sample_data *data,
6983                   struct pt_regs *regs)
6984 {
6985         return __perf_event_output(event, data, regs, perf_output_begin);
6986 }
6987
6988 /*
6989  * read event_id
6990  */
6991
6992 struct perf_read_event {
6993         struct perf_event_header        header;
6994
6995         u32                             pid;
6996         u32                             tid;
6997 };
6998
6999 static void
7000 perf_event_read_event(struct perf_event *event,
7001                         struct task_struct *task)
7002 {
7003         struct perf_output_handle handle;
7004         struct perf_sample_data sample;
7005         struct perf_read_event read_event = {
7006                 .header = {
7007                         .type = PERF_RECORD_READ,
7008                         .misc = 0,
7009                         .size = sizeof(read_event) + event->read_size,
7010                 },
7011                 .pid = perf_event_pid(event, task),
7012                 .tid = perf_event_tid(event, task),
7013         };
7014         int ret;
7015
7016         perf_event_header__init_id(&read_event.header, &sample, event);
7017         ret = perf_output_begin(&handle, event, read_event.header.size);
7018         if (ret)
7019                 return;
7020
7021         perf_output_put(&handle, read_event);
7022         perf_output_read(&handle, event);
7023         perf_event__output_id_sample(event, &handle, &sample);
7024
7025         perf_output_end(&handle);
7026 }
7027
7028 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7029
7030 static void
7031 perf_iterate_ctx(struct perf_event_context *ctx,
7032                    perf_iterate_f output,
7033                    void *data, bool all)
7034 {
7035         struct perf_event *event;
7036
7037         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7038                 if (!all) {
7039                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7040                                 continue;
7041                         if (!event_filter_match(event))
7042                                 continue;
7043                 }
7044
7045                 output(event, data);
7046         }
7047 }
7048
7049 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7050 {
7051         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7052         struct perf_event *event;
7053
7054         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7055                 /*
7056                  * Skip events that are not fully formed yet; ensure that
7057                  * if we observe event->ctx, both event and ctx will be
7058                  * complete enough. See perf_install_in_context().
7059                  */
7060                 if (!smp_load_acquire(&event->ctx))
7061                         continue;
7062
7063                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7064                         continue;
7065                 if (!event_filter_match(event))
7066                         continue;
7067                 output(event, data);
7068         }
7069 }
7070
7071 /*
7072  * Iterate all events that need to receive side-band events.
7073  *
7074  * For new callers; ensure that account_pmu_sb_event() includes
7075  * your event, otherwise it might not get delivered.
7076  */
7077 static void
7078 perf_iterate_sb(perf_iterate_f output, void *data,
7079                struct perf_event_context *task_ctx)
7080 {
7081         struct perf_event_context *ctx;
7082         int ctxn;
7083
7084         rcu_read_lock();
7085         preempt_disable();
7086
7087         /*
7088          * If we have task_ctx != NULL we only notify the task context itself.
7089          * The task_ctx is set only for EXIT events before releasing task
7090          * context.
7091          */
7092         if (task_ctx) {
7093                 perf_iterate_ctx(task_ctx, output, data, false);
7094                 goto done;
7095         }
7096
7097         perf_iterate_sb_cpu(output, data);
7098
7099         for_each_task_context_nr(ctxn) {
7100                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7101                 if (ctx)
7102                         perf_iterate_ctx(ctx, output, data, false);
7103         }
7104 done:
7105         preempt_enable();
7106         rcu_read_unlock();
7107 }
7108
7109 /*
7110  * Clear all file-based filters at exec, they'll have to be
7111  * re-instated when/if these objects are mmapped again.
7112  */
7113 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7114 {
7115         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7116         struct perf_addr_filter *filter;
7117         unsigned int restart = 0, count = 0;
7118         unsigned long flags;
7119
7120         if (!has_addr_filter(event))
7121                 return;
7122
7123         raw_spin_lock_irqsave(&ifh->lock, flags);
7124         list_for_each_entry(filter, &ifh->list, entry) {
7125                 if (filter->path.dentry) {
7126                         event->addr_filter_ranges[count].start = 0;
7127                         event->addr_filter_ranges[count].size = 0;
7128                         restart++;
7129                 }
7130
7131                 count++;
7132         }
7133
7134         if (restart)
7135                 event->addr_filters_gen++;
7136         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7137
7138         if (restart)
7139                 perf_event_stop(event, 1);
7140 }
7141
7142 void perf_event_exec(void)
7143 {
7144         struct perf_event_context *ctx;
7145         int ctxn;
7146
7147         rcu_read_lock();
7148         for_each_task_context_nr(ctxn) {
7149                 ctx = current->perf_event_ctxp[ctxn];
7150                 if (!ctx)
7151                         continue;
7152
7153                 perf_event_enable_on_exec(ctxn);
7154
7155                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7156                                    true);
7157         }
7158         rcu_read_unlock();
7159 }
7160
7161 struct remote_output {
7162         struct perf_buffer      *rb;
7163         int                     err;
7164 };
7165
7166 static void __perf_event_output_stop(struct perf_event *event, void *data)
7167 {
7168         struct perf_event *parent = event->parent;
7169         struct remote_output *ro = data;
7170         struct perf_buffer *rb = ro->rb;
7171         struct stop_event_data sd = {
7172                 .event  = event,
7173         };
7174
7175         if (!has_aux(event))
7176                 return;
7177
7178         if (!parent)
7179                 parent = event;
7180
7181         /*
7182          * In case of inheritance, it will be the parent that links to the
7183          * ring-buffer, but it will be the child that's actually using it.
7184          *
7185          * We are using event::rb to determine if the event should be stopped,
7186          * however this may race with ring_buffer_attach() (through set_output),
7187          * which will make us skip the event that actually needs to be stopped.
7188          * So ring_buffer_attach() has to stop an aux event before re-assigning
7189          * its rb pointer.
7190          */
7191         if (rcu_dereference(parent->rb) == rb)
7192                 ro->err = __perf_event_stop(&sd);
7193 }
7194
7195 static int __perf_pmu_output_stop(void *info)
7196 {
7197         struct perf_event *event = info;
7198         struct pmu *pmu = event->ctx->pmu;
7199         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7200         struct remote_output ro = {
7201                 .rb     = event->rb,
7202         };
7203
7204         rcu_read_lock();
7205         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7206         if (cpuctx->task_ctx)
7207                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7208                                    &ro, false);
7209         rcu_read_unlock();
7210
7211         return ro.err;
7212 }
7213
7214 static void perf_pmu_output_stop(struct perf_event *event)
7215 {
7216         struct perf_event *iter;
7217         int err, cpu;
7218
7219 restart:
7220         rcu_read_lock();
7221         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7222                 /*
7223                  * For per-CPU events, we need to make sure that neither they
7224                  * nor their children are running; for cpu==-1 events it's
7225                  * sufficient to stop the event itself if it's active, since
7226                  * it can't have children.
7227                  */
7228                 cpu = iter->cpu;
7229                 if (cpu == -1)
7230                         cpu = READ_ONCE(iter->oncpu);
7231
7232                 if (cpu == -1)
7233                         continue;
7234
7235                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7236                 if (err == -EAGAIN) {
7237                         rcu_read_unlock();
7238                         goto restart;
7239                 }
7240         }
7241         rcu_read_unlock();
7242 }
7243
7244 /*
7245  * task tracking -- fork/exit
7246  *
7247  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7248  */
7249
7250 struct perf_task_event {
7251         struct task_struct              *task;
7252         struct perf_event_context       *task_ctx;
7253
7254         struct {
7255                 struct perf_event_header        header;
7256
7257                 u32                             pid;
7258                 u32                             ppid;
7259                 u32                             tid;
7260                 u32                             ptid;
7261                 u64                             time;
7262         } event_id;
7263 };
7264
7265 static int perf_event_task_match(struct perf_event *event)
7266 {
7267         return event->attr.comm  || event->attr.mmap ||
7268                event->attr.mmap2 || event->attr.mmap_data ||
7269                event->attr.task;
7270 }
7271
7272 static void perf_event_task_output(struct perf_event *event,
7273                                    void *data)
7274 {
7275         struct perf_task_event *task_event = data;
7276         struct perf_output_handle handle;
7277         struct perf_sample_data sample;
7278         struct task_struct *task = task_event->task;
7279         int ret, size = task_event->event_id.header.size;
7280
7281         if (!perf_event_task_match(event))
7282                 return;
7283
7284         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7285
7286         ret = perf_output_begin(&handle, event,
7287                                 task_event->event_id.header.size);
7288         if (ret)
7289                 goto out;
7290
7291         task_event->event_id.pid = perf_event_pid(event, task);
7292         task_event->event_id.ppid = perf_event_pid(event, current);
7293
7294         task_event->event_id.tid = perf_event_tid(event, task);
7295         task_event->event_id.ptid = perf_event_tid(event, current);
7296
7297         task_event->event_id.time = perf_event_clock(event);
7298
7299         perf_output_put(&handle, task_event->event_id);
7300
7301         perf_event__output_id_sample(event, &handle, &sample);
7302
7303         perf_output_end(&handle);
7304 out:
7305         task_event->event_id.header.size = size;
7306 }
7307
7308 static void perf_event_task(struct task_struct *task,
7309                               struct perf_event_context *task_ctx,
7310                               int new)
7311 {
7312         struct perf_task_event task_event;
7313
7314         if (!atomic_read(&nr_comm_events) &&
7315             !atomic_read(&nr_mmap_events) &&
7316             !atomic_read(&nr_task_events))
7317                 return;
7318
7319         task_event = (struct perf_task_event){
7320                 .task     = task,
7321                 .task_ctx = task_ctx,
7322                 .event_id    = {
7323                         .header = {
7324                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7325                                 .misc = 0,
7326                                 .size = sizeof(task_event.event_id),
7327                         },
7328                         /* .pid  */
7329                         /* .ppid */
7330                         /* .tid  */
7331                         /* .ptid */
7332                         /* .time */
7333                 },
7334         };
7335
7336         perf_iterate_sb(perf_event_task_output,
7337                        &task_event,
7338                        task_ctx);
7339 }
7340
7341 void perf_event_fork(struct task_struct *task)
7342 {
7343         perf_event_task(task, NULL, 1);
7344         perf_event_namespaces(task);
7345 }
7346
7347 /*
7348  * comm tracking
7349  */
7350
7351 struct perf_comm_event {
7352         struct task_struct      *task;
7353         char                    *comm;
7354         int                     comm_size;
7355
7356         struct {
7357                 struct perf_event_header        header;
7358
7359                 u32                             pid;
7360                 u32                             tid;
7361         } event_id;
7362 };
7363
7364 static int perf_event_comm_match(struct perf_event *event)
7365 {
7366         return event->attr.comm;
7367 }
7368
7369 static void perf_event_comm_output(struct perf_event *event,
7370                                    void *data)
7371 {
7372         struct perf_comm_event *comm_event = data;
7373         struct perf_output_handle handle;
7374         struct perf_sample_data sample;
7375         int size = comm_event->event_id.header.size;
7376         int ret;
7377
7378         if (!perf_event_comm_match(event))
7379                 return;
7380
7381         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7382         ret = perf_output_begin(&handle, event,
7383                                 comm_event->event_id.header.size);
7384
7385         if (ret)
7386                 goto out;
7387
7388         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7389         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7390
7391         perf_output_put(&handle, comm_event->event_id);
7392         __output_copy(&handle, comm_event->comm,
7393                                    comm_event->comm_size);
7394
7395         perf_event__output_id_sample(event, &handle, &sample);
7396
7397         perf_output_end(&handle);
7398 out:
7399         comm_event->event_id.header.size = size;
7400 }
7401
7402 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7403 {
7404         char comm[TASK_COMM_LEN];
7405         unsigned int size;
7406
7407         memset(comm, 0, sizeof(comm));
7408         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7409         size = ALIGN(strlen(comm)+1, sizeof(u64));
7410
7411         comm_event->comm = comm;
7412         comm_event->comm_size = size;
7413
7414         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7415
7416         perf_iterate_sb(perf_event_comm_output,
7417                        comm_event,
7418                        NULL);
7419 }
7420
7421 void perf_event_comm(struct task_struct *task, bool exec)
7422 {
7423         struct perf_comm_event comm_event;
7424
7425         if (!atomic_read(&nr_comm_events))
7426                 return;
7427
7428         comm_event = (struct perf_comm_event){
7429                 .task   = task,
7430                 /* .comm      */
7431                 /* .comm_size */
7432                 .event_id  = {
7433                         .header = {
7434                                 .type = PERF_RECORD_COMM,
7435                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7436                                 /* .size */
7437                         },
7438                         /* .pid */
7439                         /* .tid */
7440                 },
7441         };
7442
7443         perf_event_comm_event(&comm_event);
7444 }
7445
7446 /*
7447  * namespaces tracking
7448  */
7449
7450 struct perf_namespaces_event {
7451         struct task_struct              *task;
7452
7453         struct {
7454                 struct perf_event_header        header;
7455
7456                 u32                             pid;
7457                 u32                             tid;
7458                 u64                             nr_namespaces;
7459                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7460         } event_id;
7461 };
7462
7463 static int perf_event_namespaces_match(struct perf_event *event)
7464 {
7465         return event->attr.namespaces;
7466 }
7467
7468 static void perf_event_namespaces_output(struct perf_event *event,
7469                                          void *data)
7470 {
7471         struct perf_namespaces_event *namespaces_event = data;
7472         struct perf_output_handle handle;
7473         struct perf_sample_data sample;
7474         u16 header_size = namespaces_event->event_id.header.size;
7475         int ret;
7476
7477         if (!perf_event_namespaces_match(event))
7478                 return;
7479
7480         perf_event_header__init_id(&namespaces_event->event_id.header,
7481                                    &sample, event);
7482         ret = perf_output_begin(&handle, event,
7483                                 namespaces_event->event_id.header.size);
7484         if (ret)
7485                 goto out;
7486
7487         namespaces_event->event_id.pid = perf_event_pid(event,
7488                                                         namespaces_event->task);
7489         namespaces_event->event_id.tid = perf_event_tid(event,
7490                                                         namespaces_event->task);
7491
7492         perf_output_put(&handle, namespaces_event->event_id);
7493
7494         perf_event__output_id_sample(event, &handle, &sample);
7495
7496         perf_output_end(&handle);
7497 out:
7498         namespaces_event->event_id.header.size = header_size;
7499 }
7500
7501 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7502                                    struct task_struct *task,
7503                                    const struct proc_ns_operations *ns_ops)
7504 {
7505         struct path ns_path;
7506         struct inode *ns_inode;
7507         int error;
7508
7509         error = ns_get_path(&ns_path, task, ns_ops);
7510         if (!error) {
7511                 ns_inode = ns_path.dentry->d_inode;
7512                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7513                 ns_link_info->ino = ns_inode->i_ino;
7514                 path_put(&ns_path);
7515         }
7516 }
7517
7518 void perf_event_namespaces(struct task_struct *task)
7519 {
7520         struct perf_namespaces_event namespaces_event;
7521         struct perf_ns_link_info *ns_link_info;
7522
7523         if (!atomic_read(&nr_namespaces_events))
7524                 return;
7525
7526         namespaces_event = (struct perf_namespaces_event){
7527                 .task   = task,
7528                 .event_id  = {
7529                         .header = {
7530                                 .type = PERF_RECORD_NAMESPACES,
7531                                 .misc = 0,
7532                                 .size = sizeof(namespaces_event.event_id),
7533                         },
7534                         /* .pid */
7535                         /* .tid */
7536                         .nr_namespaces = NR_NAMESPACES,
7537                         /* .link_info[NR_NAMESPACES] */
7538                 },
7539         };
7540
7541         ns_link_info = namespaces_event.event_id.link_info;
7542
7543         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7544                                task, &mntns_operations);
7545
7546 #ifdef CONFIG_USER_NS
7547         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7548                                task, &userns_operations);
7549 #endif
7550 #ifdef CONFIG_NET_NS
7551         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7552                                task, &netns_operations);
7553 #endif
7554 #ifdef CONFIG_UTS_NS
7555         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7556                                task, &utsns_operations);
7557 #endif
7558 #ifdef CONFIG_IPC_NS
7559         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7560                                task, &ipcns_operations);
7561 #endif
7562 #ifdef CONFIG_PID_NS
7563         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7564                                task, &pidns_operations);
7565 #endif
7566 #ifdef CONFIG_CGROUPS
7567         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7568                                task, &cgroupns_operations);
7569 #endif
7570
7571         perf_iterate_sb(perf_event_namespaces_output,
7572                         &namespaces_event,
7573                         NULL);
7574 }
7575
7576 /*
7577  * mmap tracking
7578  */
7579
7580 struct perf_mmap_event {
7581         struct vm_area_struct   *vma;
7582
7583         const char              *file_name;
7584         int                     file_size;
7585         int                     maj, min;
7586         u64                     ino;
7587         u64                     ino_generation;
7588         u32                     prot, flags;
7589
7590         struct {
7591                 struct perf_event_header        header;
7592
7593                 u32                             pid;
7594                 u32                             tid;
7595                 u64                             start;
7596                 u64                             len;
7597                 u64                             pgoff;
7598         } event_id;
7599 };
7600
7601 static int perf_event_mmap_match(struct perf_event *event,
7602                                  void *data)
7603 {
7604         struct perf_mmap_event *mmap_event = data;
7605         struct vm_area_struct *vma = mmap_event->vma;
7606         int executable = vma->vm_flags & VM_EXEC;
7607
7608         return (!executable && event->attr.mmap_data) ||
7609                (executable && (event->attr.mmap || event->attr.mmap2));
7610 }
7611
7612 static void perf_event_mmap_output(struct perf_event *event,
7613                                    void *data)
7614 {
7615         struct perf_mmap_event *mmap_event = data;
7616         struct perf_output_handle handle;
7617         struct perf_sample_data sample;
7618         int size = mmap_event->event_id.header.size;
7619         u32 type = mmap_event->event_id.header.type;
7620         int ret;
7621
7622         if (!perf_event_mmap_match(event, data))
7623                 return;
7624
7625         if (event->attr.mmap2) {
7626                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7627                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7628                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7629                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7630                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7631                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7632                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7633         }
7634
7635         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7636         ret = perf_output_begin(&handle, event,
7637                                 mmap_event->event_id.header.size);
7638         if (ret)
7639                 goto out;
7640
7641         mmap_event->event_id.pid = perf_event_pid(event, current);
7642         mmap_event->event_id.tid = perf_event_tid(event, current);
7643
7644         perf_output_put(&handle, mmap_event->event_id);
7645
7646         if (event->attr.mmap2) {
7647                 perf_output_put(&handle, mmap_event->maj);
7648                 perf_output_put(&handle, mmap_event->min);
7649                 perf_output_put(&handle, mmap_event->ino);
7650                 perf_output_put(&handle, mmap_event->ino_generation);
7651                 perf_output_put(&handle, mmap_event->prot);
7652                 perf_output_put(&handle, mmap_event->flags);
7653         }
7654
7655         __output_copy(&handle, mmap_event->file_name,
7656                                    mmap_event->file_size);
7657
7658         perf_event__output_id_sample(event, &handle, &sample);
7659
7660         perf_output_end(&handle);
7661 out:
7662         mmap_event->event_id.header.size = size;
7663         mmap_event->event_id.header.type = type;
7664 }
7665
7666 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7667 {
7668         struct vm_area_struct *vma = mmap_event->vma;
7669         struct file *file = vma->vm_file;
7670         int maj = 0, min = 0;
7671         u64 ino = 0, gen = 0;
7672         u32 prot = 0, flags = 0;
7673         unsigned int size;
7674         char tmp[16];
7675         char *buf = NULL;
7676         char *name;
7677
7678         if (vma->vm_flags & VM_READ)
7679                 prot |= PROT_READ;
7680         if (vma->vm_flags & VM_WRITE)
7681                 prot |= PROT_WRITE;
7682         if (vma->vm_flags & VM_EXEC)
7683                 prot |= PROT_EXEC;
7684
7685         if (vma->vm_flags & VM_MAYSHARE)
7686                 flags = MAP_SHARED;
7687         else
7688                 flags = MAP_PRIVATE;
7689
7690         if (vma->vm_flags & VM_DENYWRITE)
7691                 flags |= MAP_DENYWRITE;
7692         if (vma->vm_flags & VM_MAYEXEC)
7693                 flags |= MAP_EXECUTABLE;
7694         if (vma->vm_flags & VM_LOCKED)
7695                 flags |= MAP_LOCKED;
7696         if (vma->vm_flags & VM_HUGETLB)
7697                 flags |= MAP_HUGETLB;
7698
7699         if (file) {
7700                 struct inode *inode;
7701                 dev_t dev;
7702
7703                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7704                 if (!buf) {
7705                         name = "//enomem";
7706                         goto cpy_name;
7707                 }
7708                 /*
7709                  * d_path() works from the end of the rb backwards, so we
7710                  * need to add enough zero bytes after the string to handle
7711                  * the 64bit alignment we do later.
7712                  */
7713                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7714                 if (IS_ERR(name)) {
7715                         name = "//toolong";
7716                         goto cpy_name;
7717                 }
7718                 inode = file_inode(vma->vm_file);
7719                 dev = inode->i_sb->s_dev;
7720                 ino = inode->i_ino;
7721                 gen = inode->i_generation;
7722                 maj = MAJOR(dev);
7723                 min = MINOR(dev);
7724
7725                 goto got_name;
7726         } else {
7727                 if (vma->vm_ops && vma->vm_ops->name) {
7728                         name = (char *) vma->vm_ops->name(vma);
7729                         if (name)
7730                                 goto cpy_name;
7731                 }
7732
7733                 name = (char *)arch_vma_name(vma);
7734                 if (name)
7735                         goto cpy_name;
7736
7737                 if (vma->vm_start <= vma->vm_mm->start_brk &&
7738                                 vma->vm_end >= vma->vm_mm->brk) {
7739                         name = "[heap]";
7740                         goto cpy_name;
7741                 }
7742                 if (vma->vm_start <= vma->vm_mm->start_stack &&
7743                                 vma->vm_end >= vma->vm_mm->start_stack) {
7744                         name = "[stack]";
7745                         goto cpy_name;
7746                 }
7747
7748                 name = "//anon";
7749                 goto cpy_name;
7750         }
7751
7752 cpy_name:
7753         strlcpy(tmp, name, sizeof(tmp));
7754         name = tmp;
7755 got_name:
7756         /*
7757          * Since our buffer works in 8 byte units we need to align our string
7758          * size to a multiple of 8. However, we must guarantee the tail end is
7759          * zero'd out to avoid leaking random bits to userspace.
7760          */
7761         size = strlen(name)+1;
7762         while (!IS_ALIGNED(size, sizeof(u64)))
7763                 name[size++] = '\0';
7764
7765         mmap_event->file_name = name;
7766         mmap_event->file_size = size;
7767         mmap_event->maj = maj;
7768         mmap_event->min = min;
7769         mmap_event->ino = ino;
7770         mmap_event->ino_generation = gen;
7771         mmap_event->prot = prot;
7772         mmap_event->flags = flags;
7773
7774         if (!(vma->vm_flags & VM_EXEC))
7775                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7776
7777         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7778
7779         perf_iterate_sb(perf_event_mmap_output,
7780                        mmap_event,
7781                        NULL);
7782
7783         kfree(buf);
7784 }
7785
7786 /*
7787  * Check whether inode and address range match filter criteria.
7788  */
7789 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7790                                      struct file *file, unsigned long offset,
7791                                      unsigned long size)
7792 {
7793         /* d_inode(NULL) won't be equal to any mapped user-space file */
7794         if (!filter->path.dentry)
7795                 return false;
7796
7797         if (d_inode(filter->path.dentry) != file_inode(file))
7798                 return false;
7799
7800         if (filter->offset > offset + size)
7801                 return false;
7802
7803         if (filter->offset + filter->size < offset)
7804                 return false;
7805
7806         return true;
7807 }
7808
7809 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7810                                         struct vm_area_struct *vma,
7811                                         struct perf_addr_filter_range *fr)
7812 {
7813         unsigned long vma_size = vma->vm_end - vma->vm_start;
7814         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7815         struct file *file = vma->vm_file;
7816
7817         if (!perf_addr_filter_match(filter, file, off, vma_size))
7818                 return false;
7819
7820         if (filter->offset < off) {
7821                 fr->start = vma->vm_start;
7822                 fr->size = min(vma_size, filter->size - (off - filter->offset));
7823         } else {
7824                 fr->start = vma->vm_start + filter->offset - off;
7825                 fr->size = min(vma->vm_end - fr->start, filter->size);
7826         }
7827
7828         return true;
7829 }
7830
7831 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7832 {
7833         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7834         struct vm_area_struct *vma = data;
7835         struct perf_addr_filter *filter;
7836         unsigned int restart = 0, count = 0;
7837         unsigned long flags;
7838
7839         if (!has_addr_filter(event))
7840                 return;
7841
7842         if (!vma->vm_file)
7843                 return;
7844
7845         raw_spin_lock_irqsave(&ifh->lock, flags);
7846         list_for_each_entry(filter, &ifh->list, entry) {
7847                 if (perf_addr_filter_vma_adjust(filter, vma,
7848                                                 &event->addr_filter_ranges[count]))
7849                         restart++;
7850
7851                 count++;
7852         }
7853
7854         if (restart)
7855                 event->addr_filters_gen++;
7856         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7857
7858         if (restart)
7859                 perf_event_stop(event, 1);
7860 }
7861
7862 /*
7863  * Adjust all task's events' filters to the new vma
7864  */
7865 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7866 {
7867         struct perf_event_context *ctx;
7868         int ctxn;
7869
7870         /*
7871          * Data tracing isn't supported yet and as such there is no need
7872          * to keep track of anything that isn't related to executable code:
7873          */
7874         if (!(vma->vm_flags & VM_EXEC))
7875                 return;
7876
7877         rcu_read_lock();
7878         for_each_task_context_nr(ctxn) {
7879                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7880                 if (!ctx)
7881                         continue;
7882
7883                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7884         }
7885         rcu_read_unlock();
7886 }
7887
7888 void perf_event_mmap(struct vm_area_struct *vma)
7889 {
7890         struct perf_mmap_event mmap_event;
7891
7892         if (!atomic_read(&nr_mmap_events))
7893                 return;
7894
7895         mmap_event = (struct perf_mmap_event){
7896                 .vma    = vma,
7897                 /* .file_name */
7898                 /* .file_size */
7899                 .event_id  = {
7900                         .header = {
7901                                 .type = PERF_RECORD_MMAP,
7902                                 .misc = PERF_RECORD_MISC_USER,
7903                                 /* .size */
7904                         },
7905                         /* .pid */
7906                         /* .tid */
7907                         .start  = vma->vm_start,
7908                         .len    = vma->vm_end - vma->vm_start,
7909                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7910                 },
7911                 /* .maj (attr_mmap2 only) */
7912                 /* .min (attr_mmap2 only) */
7913                 /* .ino (attr_mmap2 only) */
7914                 /* .ino_generation (attr_mmap2 only) */
7915                 /* .prot (attr_mmap2 only) */
7916                 /* .flags (attr_mmap2 only) */
7917         };
7918
7919         perf_addr_filters_adjust(vma);
7920         perf_event_mmap_event(&mmap_event);
7921 }
7922
7923 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7924                           unsigned long size, u64 flags)
7925 {
7926         struct perf_output_handle handle;
7927         struct perf_sample_data sample;
7928         struct perf_aux_event {
7929                 struct perf_event_header        header;
7930                 u64                             offset;
7931                 u64                             size;
7932                 u64                             flags;
7933         } rec = {
7934                 .header = {
7935                         .type = PERF_RECORD_AUX,
7936                         .misc = 0,
7937                         .size = sizeof(rec),
7938                 },
7939                 .offset         = head,
7940                 .size           = size,
7941                 .flags          = flags,
7942         };
7943         int ret;
7944
7945         perf_event_header__init_id(&rec.header, &sample, event);
7946         ret = perf_output_begin(&handle, event, rec.header.size);
7947
7948         if (ret)
7949                 return;
7950
7951         perf_output_put(&handle, rec);
7952         perf_event__output_id_sample(event, &handle, &sample);
7953
7954         perf_output_end(&handle);
7955 }
7956
7957 /*
7958  * Lost/dropped samples logging
7959  */
7960 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7961 {
7962         struct perf_output_handle handle;
7963         struct perf_sample_data sample;
7964         int ret;
7965
7966         struct {
7967                 struct perf_event_header        header;
7968                 u64                             lost;
7969         } lost_samples_event = {
7970                 .header = {
7971                         .type = PERF_RECORD_LOST_SAMPLES,
7972                         .misc = 0,
7973                         .size = sizeof(lost_samples_event),
7974                 },
7975                 .lost           = lost,
7976         };
7977
7978         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7979
7980         ret = perf_output_begin(&handle, event,
7981                                 lost_samples_event.header.size);
7982         if (ret)
7983                 return;
7984
7985         perf_output_put(&handle, lost_samples_event);
7986         perf_event__output_id_sample(event, &handle, &sample);
7987         perf_output_end(&handle);
7988 }
7989
7990 /*
7991  * context_switch tracking
7992  */
7993
7994 struct perf_switch_event {
7995         struct task_struct      *task;
7996         struct task_struct      *next_prev;
7997
7998         struct {
7999                 struct perf_event_header        header;
8000                 u32                             next_prev_pid;
8001                 u32                             next_prev_tid;
8002         } event_id;
8003 };
8004
8005 static int perf_event_switch_match(struct perf_event *event)
8006 {
8007         return event->attr.context_switch;
8008 }
8009
8010 static void perf_event_switch_output(struct perf_event *event, void *data)
8011 {
8012         struct perf_switch_event *se = data;
8013         struct perf_output_handle handle;
8014         struct perf_sample_data sample;
8015         int ret;
8016
8017         if (!perf_event_switch_match(event))
8018                 return;
8019
8020         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8021         if (event->ctx->task) {
8022                 se->event_id.header.type = PERF_RECORD_SWITCH;
8023                 se->event_id.header.size = sizeof(se->event_id.header);
8024         } else {
8025                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8026                 se->event_id.header.size = sizeof(se->event_id);
8027                 se->event_id.next_prev_pid =
8028                                         perf_event_pid(event, se->next_prev);
8029                 se->event_id.next_prev_tid =
8030                                         perf_event_tid(event, se->next_prev);
8031         }
8032
8033         perf_event_header__init_id(&se->event_id.header, &sample, event);
8034
8035         ret = perf_output_begin(&handle, event, se->event_id.header.size);
8036         if (ret)
8037                 return;
8038
8039         if (event->ctx->task)
8040                 perf_output_put(&handle, se->event_id.header);
8041         else
8042                 perf_output_put(&handle, se->event_id);
8043
8044         perf_event__output_id_sample(event, &handle, &sample);
8045
8046         perf_output_end(&handle);
8047 }
8048
8049 static void perf_event_switch(struct task_struct *task,
8050                               struct task_struct *next_prev, bool sched_in)
8051 {
8052         struct perf_switch_event switch_event;
8053
8054         /* N.B. caller checks nr_switch_events != 0 */
8055
8056         switch_event = (struct perf_switch_event){
8057                 .task           = task,
8058                 .next_prev      = next_prev,
8059                 .event_id       = {
8060                         .header = {
8061                                 /* .type */
8062                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8063                                 /* .size */
8064                         },
8065                         /* .next_prev_pid */
8066                         /* .next_prev_tid */
8067                 },
8068         };
8069
8070         if (!sched_in && task->state == TASK_RUNNING)
8071                 switch_event.event_id.header.misc |=
8072                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8073
8074         perf_iterate_sb(perf_event_switch_output,
8075                        &switch_event,
8076                        NULL);
8077 }
8078
8079 /*
8080  * IRQ throttle logging
8081  */
8082
8083 static void perf_log_throttle(struct perf_event *event, int enable)
8084 {
8085         struct perf_output_handle handle;
8086         struct perf_sample_data sample;
8087         int ret;
8088
8089         struct {
8090                 struct perf_event_header        header;
8091                 u64                             time;
8092                 u64                             id;
8093                 u64                             stream_id;
8094         } throttle_event = {
8095                 .header = {
8096                         .type = PERF_RECORD_THROTTLE,
8097                         .misc = 0,
8098                         .size = sizeof(throttle_event),
8099                 },
8100                 .time           = perf_event_clock(event),
8101                 .id             = primary_event_id(event),
8102                 .stream_id      = event->id,
8103         };
8104
8105         if (enable)
8106                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8107
8108         perf_event_header__init_id(&throttle_event.header, &sample, event);
8109
8110         ret = perf_output_begin(&handle, event,
8111                                 throttle_event.header.size);
8112         if (ret)
8113                 return;
8114
8115         perf_output_put(&handle, throttle_event);
8116         perf_event__output_id_sample(event, &handle, &sample);
8117         perf_output_end(&handle);
8118 }
8119
8120 /*
8121  * ksymbol register/unregister tracking
8122  */
8123
8124 struct perf_ksymbol_event {
8125         const char      *name;
8126         int             name_len;
8127         struct {
8128                 struct perf_event_header        header;
8129                 u64                             addr;
8130                 u32                             len;
8131                 u16                             ksym_type;
8132                 u16                             flags;
8133         } event_id;
8134 };
8135
8136 static int perf_event_ksymbol_match(struct perf_event *event)
8137 {
8138         return event->attr.ksymbol;
8139 }
8140
8141 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8142 {
8143         struct perf_ksymbol_event *ksymbol_event = data;
8144         struct perf_output_handle handle;
8145         struct perf_sample_data sample;
8146         int ret;
8147
8148         if (!perf_event_ksymbol_match(event))
8149                 return;
8150
8151         perf_event_header__init_id(&ksymbol_event->event_id.header,
8152                                    &sample, event);
8153         ret = perf_output_begin(&handle, event,
8154                                 ksymbol_event->event_id.header.size);
8155         if (ret)
8156                 return;
8157
8158         perf_output_put(&handle, ksymbol_event->event_id);
8159         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8160         perf_event__output_id_sample(event, &handle, &sample);
8161
8162         perf_output_end(&handle);
8163 }
8164
8165 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8166                         const char *sym)
8167 {
8168         struct perf_ksymbol_event ksymbol_event;
8169         char name[KSYM_NAME_LEN];
8170         u16 flags = 0;
8171         int name_len;
8172
8173         if (!atomic_read(&nr_ksymbol_events))
8174                 return;
8175
8176         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8177             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8178                 goto err;
8179
8180         strlcpy(name, sym, KSYM_NAME_LEN);
8181         name_len = strlen(name) + 1;
8182         while (!IS_ALIGNED(name_len, sizeof(u64)))
8183                 name[name_len++] = '\0';
8184         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8185
8186         if (unregister)
8187                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8188
8189         ksymbol_event = (struct perf_ksymbol_event){
8190                 .name = name,
8191                 .name_len = name_len,
8192                 .event_id = {
8193                         .header = {
8194                                 .type = PERF_RECORD_KSYMBOL,
8195                                 .size = sizeof(ksymbol_event.event_id) +
8196                                         name_len,
8197                         },
8198                         .addr = addr,
8199                         .len = len,
8200                         .ksym_type = ksym_type,
8201                         .flags = flags,
8202                 },
8203         };
8204
8205         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8206         return;
8207 err:
8208         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8209 }
8210
8211 /*
8212  * bpf program load/unload tracking
8213  */
8214
8215 struct perf_bpf_event {
8216         struct bpf_prog *prog;
8217         struct {
8218                 struct perf_event_header        header;
8219                 u16                             type;
8220                 u16                             flags;
8221                 u32                             id;
8222                 u8                              tag[BPF_TAG_SIZE];
8223         } event_id;
8224 };
8225
8226 static int perf_event_bpf_match(struct perf_event *event)
8227 {
8228         return event->attr.bpf_event;
8229 }
8230
8231 static void perf_event_bpf_output(struct perf_event *event, void *data)
8232 {
8233         struct perf_bpf_event *bpf_event = data;
8234         struct perf_output_handle handle;
8235         struct perf_sample_data sample;
8236         int ret;
8237
8238         if (!perf_event_bpf_match(event))
8239                 return;
8240
8241         perf_event_header__init_id(&bpf_event->event_id.header,
8242                                    &sample, event);
8243         ret = perf_output_begin(&handle, event,
8244                                 bpf_event->event_id.header.size);
8245         if (ret)
8246                 return;
8247
8248         perf_output_put(&handle, bpf_event->event_id);
8249         perf_event__output_id_sample(event, &handle, &sample);
8250
8251         perf_output_end(&handle);
8252 }
8253
8254 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8255                                          enum perf_bpf_event_type type)
8256 {
8257         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8258         char sym[KSYM_NAME_LEN];
8259         int i;
8260
8261         if (prog->aux->func_cnt == 0) {
8262                 bpf_get_prog_name(prog, sym);
8263                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8264                                    (u64)(unsigned long)prog->bpf_func,
8265                                    prog->jited_len, unregister, sym);
8266         } else {
8267                 for (i = 0; i < prog->aux->func_cnt; i++) {
8268                         struct bpf_prog *subprog = prog->aux->func[i];
8269
8270                         bpf_get_prog_name(subprog, sym);
8271                         perf_event_ksymbol(
8272                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
8273                                 (u64)(unsigned long)subprog->bpf_func,
8274                                 subprog->jited_len, unregister, sym);
8275                 }
8276         }
8277 }
8278
8279 void perf_event_bpf_event(struct bpf_prog *prog,
8280                           enum perf_bpf_event_type type,
8281                           u16 flags)
8282 {
8283         struct perf_bpf_event bpf_event;
8284
8285         if (type <= PERF_BPF_EVENT_UNKNOWN ||
8286             type >= PERF_BPF_EVENT_MAX)
8287                 return;
8288
8289         switch (type) {
8290         case PERF_BPF_EVENT_PROG_LOAD:
8291         case PERF_BPF_EVENT_PROG_UNLOAD:
8292                 if (atomic_read(&nr_ksymbol_events))
8293                         perf_event_bpf_emit_ksymbols(prog, type);
8294                 break;
8295         default:
8296                 break;
8297         }
8298
8299         if (!atomic_read(&nr_bpf_events))
8300                 return;
8301
8302         bpf_event = (struct perf_bpf_event){
8303                 .prog = prog,
8304                 .event_id = {
8305                         .header = {
8306                                 .type = PERF_RECORD_BPF_EVENT,
8307                                 .size = sizeof(bpf_event.event_id),
8308                         },
8309                         .type = type,
8310                         .flags = flags,
8311                         .id = prog->aux->id,
8312                 },
8313         };
8314
8315         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8316
8317         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8318         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8319 }
8320
8321 void perf_event_itrace_started(struct perf_event *event)
8322 {
8323         event->attach_state |= PERF_ATTACH_ITRACE;
8324 }
8325
8326 static void perf_log_itrace_start(struct perf_event *event)
8327 {
8328         struct perf_output_handle handle;
8329         struct perf_sample_data sample;
8330         struct perf_aux_event {
8331                 struct perf_event_header        header;
8332                 u32                             pid;
8333                 u32                             tid;
8334         } rec;
8335         int ret;
8336
8337         if (event->parent)
8338                 event = event->parent;
8339
8340         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8341             event->attach_state & PERF_ATTACH_ITRACE)
8342                 return;
8343
8344         rec.header.type = PERF_RECORD_ITRACE_START;
8345         rec.header.misc = 0;
8346         rec.header.size = sizeof(rec);
8347         rec.pid = perf_event_pid(event, current);
8348         rec.tid = perf_event_tid(event, current);
8349
8350         perf_event_header__init_id(&rec.header, &sample, event);
8351         ret = perf_output_begin(&handle, event, rec.header.size);
8352
8353         if (ret)
8354                 return;
8355
8356         perf_output_put(&handle, rec);
8357         perf_event__output_id_sample(event, &handle, &sample);
8358
8359         perf_output_end(&handle);
8360 }
8361
8362 static int
8363 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8364 {
8365         struct hw_perf_event *hwc = &event->hw;
8366         int ret = 0;
8367         u64 seq;
8368
8369         seq = __this_cpu_read(perf_throttled_seq);
8370         if (seq != hwc->interrupts_seq) {
8371                 hwc->interrupts_seq = seq;
8372                 hwc->interrupts = 1;
8373         } else {
8374                 hwc->interrupts++;
8375                 if (unlikely(throttle
8376                              && hwc->interrupts >= max_samples_per_tick)) {
8377                         __this_cpu_inc(perf_throttled_count);
8378                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8379                         hwc->interrupts = MAX_INTERRUPTS;
8380                         perf_log_throttle(event, 0);
8381                         ret = 1;
8382                 }
8383         }
8384
8385         if (event->attr.freq) {
8386                 u64 now = perf_clock();
8387                 s64 delta = now - hwc->freq_time_stamp;
8388
8389                 hwc->freq_time_stamp = now;
8390
8391                 if (delta > 0 && delta < 2*TICK_NSEC)
8392                         perf_adjust_period(event, delta, hwc->last_period, true);
8393         }
8394
8395         return ret;
8396 }
8397
8398 int perf_event_account_interrupt(struct perf_event *event)
8399 {
8400         return __perf_event_account_interrupt(event, 1);
8401 }
8402
8403 /*
8404  * Generic event overflow handling, sampling.
8405  */
8406
8407 static int __perf_event_overflow(struct perf_event *event,
8408                                    int throttle, struct perf_sample_data *data,
8409                                    struct pt_regs *regs)
8410 {
8411         int events = atomic_read(&event->event_limit);
8412         int ret = 0;
8413
8414         /*
8415          * Non-sampling counters might still use the PMI to fold short
8416          * hardware counters, ignore those.
8417          */
8418         if (unlikely(!is_sampling_event(event)))
8419                 return 0;
8420
8421         ret = __perf_event_account_interrupt(event, throttle);
8422
8423         /*
8424          * XXX event_limit might not quite work as expected on inherited
8425          * events
8426          */
8427
8428         event->pending_kill = POLL_IN;
8429         if (events && atomic_dec_and_test(&event->event_limit)) {
8430                 ret = 1;
8431                 event->pending_kill = POLL_HUP;
8432
8433                 perf_event_disable_inatomic(event);
8434         }
8435
8436         READ_ONCE(event->overflow_handler)(event, data, regs);
8437
8438         if (*perf_event_fasync(event) && event->pending_kill) {
8439                 event->pending_wakeup = 1;
8440                 irq_work_queue(&event->pending);
8441         }
8442
8443         return ret;
8444 }
8445
8446 int perf_event_overflow(struct perf_event *event,
8447                           struct perf_sample_data *data,
8448                           struct pt_regs *regs)
8449 {
8450         return __perf_event_overflow(event, 1, data, regs);
8451 }
8452
8453 /*
8454  * Generic software event infrastructure
8455  */
8456
8457 struct swevent_htable {
8458         struct swevent_hlist            *swevent_hlist;
8459         struct mutex                    hlist_mutex;
8460         int                             hlist_refcount;
8461
8462         /* Recursion avoidance in each contexts */
8463         int                             recursion[PERF_NR_CONTEXTS];
8464 };
8465
8466 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8467
8468 /*
8469  * We directly increment event->count and keep a second value in
8470  * event->hw.period_left to count intervals. This period event
8471  * is kept in the range [-sample_period, 0] so that we can use the
8472  * sign as trigger.
8473  */
8474
8475 u64 perf_swevent_set_period(struct perf_event *event)
8476 {
8477         struct hw_perf_event *hwc = &event->hw;
8478         u64 period = hwc->last_period;
8479         u64 nr, offset;
8480         s64 old, val;
8481
8482         hwc->last_period = hwc->sample_period;
8483
8484 again:
8485         old = val = local64_read(&hwc->period_left);
8486         if (val < 0)
8487                 return 0;
8488
8489         nr = div64_u64(period + val, period);
8490         offset = nr * period;
8491         val -= offset;
8492         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8493                 goto again;
8494
8495         return nr;
8496 }
8497
8498 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8499                                     struct perf_sample_data *data,
8500                                     struct pt_regs *regs)
8501 {
8502         struct hw_perf_event *hwc = &event->hw;
8503         int throttle = 0;
8504
8505         if (!overflow)
8506                 overflow = perf_swevent_set_period(event);
8507
8508         if (hwc->interrupts == MAX_INTERRUPTS)
8509                 return;
8510
8511         for (; overflow; overflow--) {
8512                 if (__perf_event_overflow(event, throttle,
8513                                             data, regs)) {
8514                         /*
8515                          * We inhibit the overflow from happening when
8516                          * hwc->interrupts == MAX_INTERRUPTS.
8517                          */
8518                         break;
8519                 }
8520                 throttle = 1;
8521         }
8522 }
8523
8524 static void perf_swevent_event(struct perf_event *event, u64 nr,
8525                                struct perf_sample_data *data,
8526                                struct pt_regs *regs)
8527 {
8528         struct hw_perf_event *hwc = &event->hw;
8529
8530         local64_add(nr, &event->count);
8531
8532         if (!regs)
8533                 return;
8534
8535         if (!is_sampling_event(event))
8536                 return;
8537
8538         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8539                 data->period = nr;
8540                 return perf_swevent_overflow(event, 1, data, regs);
8541         } else
8542                 data->period = event->hw.last_period;
8543
8544         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8545                 return perf_swevent_overflow(event, 1, data, regs);
8546
8547         if (local64_add_negative(nr, &hwc->period_left))
8548                 return;
8549
8550         perf_swevent_overflow(event, 0, data, regs);
8551 }
8552
8553 static int perf_exclude_event(struct perf_event *event,
8554                               struct pt_regs *regs)
8555 {
8556         if (event->hw.state & PERF_HES_STOPPED)
8557                 return 1;
8558
8559         if (regs) {
8560                 if (event->attr.exclude_user && user_mode(regs))
8561                         return 1;
8562
8563                 if (event->attr.exclude_kernel && !user_mode(regs))
8564                         return 1;
8565         }
8566
8567         return 0;
8568 }
8569
8570 static int perf_swevent_match(struct perf_event *event,
8571                                 enum perf_type_id type,
8572                                 u32 event_id,
8573                                 struct perf_sample_data *data,
8574                                 struct pt_regs *regs)
8575 {
8576         if (event->attr.type != type)
8577                 return 0;
8578
8579         if (event->attr.config != event_id)
8580                 return 0;
8581
8582         if (perf_exclude_event(event, regs))
8583                 return 0;
8584
8585         return 1;
8586 }
8587
8588 static inline u64 swevent_hash(u64 type, u32 event_id)
8589 {
8590         u64 val = event_id | (type << 32);
8591
8592         return hash_64(val, SWEVENT_HLIST_BITS);
8593 }
8594
8595 static inline struct hlist_head *
8596 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8597 {
8598         u64 hash = swevent_hash(type, event_id);
8599
8600         return &hlist->heads[hash];
8601 }
8602
8603 /* For the read side: events when they trigger */
8604 static inline struct hlist_head *
8605 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8606 {
8607         struct swevent_hlist *hlist;
8608
8609         hlist = rcu_dereference(swhash->swevent_hlist);
8610         if (!hlist)
8611                 return NULL;
8612
8613         return __find_swevent_head(hlist, type, event_id);
8614 }
8615
8616 /* For the event head insertion and removal in the hlist */
8617 static inline struct hlist_head *
8618 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8619 {
8620         struct swevent_hlist *hlist;
8621         u32 event_id = event->attr.config;
8622         u64 type = event->attr.type;
8623
8624         /*
8625          * Event scheduling is always serialized against hlist allocation
8626          * and release. Which makes the protected version suitable here.
8627          * The context lock guarantees that.
8628          */
8629         hlist = rcu_dereference_protected(swhash->swevent_hlist,
8630                                           lockdep_is_held(&event->ctx->lock));
8631         if (!hlist)
8632                 return NULL;
8633
8634         return __find_swevent_head(hlist, type, event_id);
8635 }
8636
8637 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8638                                     u64 nr,
8639                                     struct perf_sample_data *data,
8640                                     struct pt_regs *regs)
8641 {
8642         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8643         struct perf_event *event;
8644         struct hlist_head *head;
8645
8646         rcu_read_lock();
8647         head = find_swevent_head_rcu(swhash, type, event_id);
8648         if (!head)
8649                 goto end;
8650
8651         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8652                 if (perf_swevent_match(event, type, event_id, data, regs))
8653                         perf_swevent_event(event, nr, data, regs);
8654         }
8655 end:
8656         rcu_read_unlock();
8657 }
8658
8659 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8660
8661 int perf_swevent_get_recursion_context(void)
8662 {
8663         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8664
8665         return get_recursion_context(swhash->recursion);
8666 }
8667 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8668
8669 void perf_swevent_put_recursion_context(int rctx)
8670 {
8671         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8672
8673         put_recursion_context(swhash->recursion, rctx);
8674 }
8675
8676 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8677 {
8678         struct perf_sample_data data;
8679
8680         if (WARN_ON_ONCE(!regs))
8681                 return;
8682
8683         perf_sample_data_init(&data, addr, 0);
8684         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8685 }
8686
8687 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8688 {
8689         int rctx;
8690
8691         preempt_disable_notrace();
8692         rctx = perf_swevent_get_recursion_context();
8693         if (unlikely(rctx < 0))
8694                 goto fail;
8695
8696         ___perf_sw_event(event_id, nr, regs, addr);
8697
8698         perf_swevent_put_recursion_context(rctx);
8699 fail:
8700         preempt_enable_notrace();
8701 }
8702
8703 static void perf_swevent_read(struct perf_event *event)
8704 {
8705 }
8706
8707 static int perf_swevent_add(struct perf_event *event, int flags)
8708 {
8709         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8710         struct hw_perf_event *hwc = &event->hw;
8711         struct hlist_head *head;
8712
8713         if (is_sampling_event(event)) {
8714                 hwc->last_period = hwc->sample_period;
8715                 perf_swevent_set_period(event);
8716         }
8717
8718         hwc->state = !(flags & PERF_EF_START);
8719
8720         head = find_swevent_head(swhash, event);
8721         if (WARN_ON_ONCE(!head))
8722                 return -EINVAL;
8723
8724         hlist_add_head_rcu(&event->hlist_entry, head);
8725         perf_event_update_userpage(event);
8726
8727         return 0;
8728 }
8729
8730 static void perf_swevent_del(struct perf_event *event, int flags)
8731 {
8732         hlist_del_rcu(&event->hlist_entry);
8733 }
8734
8735 static void perf_swevent_start(struct perf_event *event, int flags)
8736 {
8737         event->hw.state = 0;
8738 }
8739
8740 static void perf_swevent_stop(struct perf_event *event, int flags)
8741 {
8742         event->hw.state = PERF_HES_STOPPED;
8743 }
8744
8745 /* Deref the hlist from the update side */
8746 static inline struct swevent_hlist *
8747 swevent_hlist_deref(struct swevent_htable *swhash)
8748 {
8749         return rcu_dereference_protected(swhash->swevent_hlist,
8750                                          lockdep_is_held(&swhash->hlist_mutex));
8751 }
8752
8753 static void swevent_hlist_release(struct swevent_htable *swhash)
8754 {
8755         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8756
8757         if (!hlist)
8758                 return;
8759
8760         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8761         kfree_rcu(hlist, rcu_head);
8762 }
8763
8764 static void swevent_hlist_put_cpu(int cpu)
8765 {
8766         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8767
8768         mutex_lock(&swhash->hlist_mutex);
8769
8770         if (!--swhash->hlist_refcount)
8771                 swevent_hlist_release(swhash);
8772
8773         mutex_unlock(&swhash->hlist_mutex);
8774 }
8775
8776 static void swevent_hlist_put(void)
8777 {
8778         int cpu;
8779
8780         for_each_possible_cpu(cpu)
8781                 swevent_hlist_put_cpu(cpu);
8782 }
8783
8784 static int swevent_hlist_get_cpu(int cpu)
8785 {
8786         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8787         int err = 0;
8788
8789         mutex_lock(&swhash->hlist_mutex);
8790         if (!swevent_hlist_deref(swhash) &&
8791             cpumask_test_cpu(cpu, perf_online_mask)) {
8792                 struct swevent_hlist *hlist;
8793
8794                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8795                 if (!hlist) {
8796                         err = -ENOMEM;
8797                         goto exit;
8798                 }
8799                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8800         }
8801         swhash->hlist_refcount++;
8802 exit:
8803         mutex_unlock(&swhash->hlist_mutex);
8804
8805         return err;
8806 }
8807
8808 static int swevent_hlist_get(void)
8809 {
8810         int err, cpu, failed_cpu;
8811
8812         mutex_lock(&pmus_lock);
8813         for_each_possible_cpu(cpu) {
8814                 err = swevent_hlist_get_cpu(cpu);
8815                 if (err) {
8816                         failed_cpu = cpu;
8817                         goto fail;
8818                 }
8819         }
8820         mutex_unlock(&pmus_lock);
8821         return 0;
8822 fail:
8823         for_each_possible_cpu(cpu) {
8824                 if (cpu == failed_cpu)
8825                         break;
8826                 swevent_hlist_put_cpu(cpu);
8827         }
8828         mutex_unlock(&pmus_lock);
8829         return err;
8830 }
8831
8832 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8833
8834 static void sw_perf_event_destroy(struct perf_event *event)
8835 {
8836         u64 event_id = event->attr.config;
8837
8838         WARN_ON(event->parent);
8839
8840         static_key_slow_dec(&perf_swevent_enabled[event_id]);
8841         swevent_hlist_put();
8842 }
8843
8844 static int perf_swevent_init(struct perf_event *event)
8845 {
8846         u64 event_id = event->attr.config;
8847
8848         if (event->attr.type != PERF_TYPE_SOFTWARE)
8849                 return -ENOENT;
8850
8851         /*
8852          * no branch sampling for software events
8853          */
8854         if (has_branch_stack(event))
8855                 return -EOPNOTSUPP;
8856
8857         switch (event_id) {
8858         case PERF_COUNT_SW_CPU_CLOCK:
8859         case PERF_COUNT_SW_TASK_CLOCK:
8860                 return -ENOENT;
8861
8862         default:
8863                 break;
8864         }
8865
8866         if (event_id >= PERF_COUNT_SW_MAX)
8867                 return -ENOENT;
8868
8869         if (!event->parent) {
8870                 int err;
8871
8872                 err = swevent_hlist_get();
8873                 if (err)
8874                         return err;
8875
8876                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8877                 event->destroy = sw_perf_event_destroy;
8878         }
8879
8880         return 0;
8881 }
8882
8883 static struct pmu perf_swevent = {
8884         .task_ctx_nr    = perf_sw_context,
8885
8886         .capabilities   = PERF_PMU_CAP_NO_NMI,
8887
8888         .event_init     = perf_swevent_init,
8889         .add            = perf_swevent_add,
8890         .del            = perf_swevent_del,
8891         .start          = perf_swevent_start,
8892         .stop           = perf_swevent_stop,
8893         .read           = perf_swevent_read,
8894 };
8895
8896 #ifdef CONFIG_EVENT_TRACING
8897
8898 static int perf_tp_filter_match(struct perf_event *event,
8899                                 struct perf_sample_data *data)
8900 {
8901         void *record = data->raw->frag.data;
8902
8903         /* only top level events have filters set */
8904         if (event->parent)
8905                 event = event->parent;
8906
8907         if (likely(!event->filter) || filter_match_preds(event->filter, record))
8908                 return 1;
8909         return 0;
8910 }
8911
8912 static int perf_tp_event_match(struct perf_event *event,
8913                                 struct perf_sample_data *data,
8914                                 struct pt_regs *regs)
8915 {
8916         if (event->hw.state & PERF_HES_STOPPED)
8917                 return 0;
8918         /*
8919          * If exclude_kernel, only trace user-space tracepoints (uprobes)
8920          */
8921         if (event->attr.exclude_kernel && !user_mode(regs))
8922                 return 0;
8923
8924         if (!perf_tp_filter_match(event, data))
8925                 return 0;
8926
8927         return 1;
8928 }
8929
8930 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8931                                struct trace_event_call *call, u64 count,
8932                                struct pt_regs *regs, struct hlist_head *head,
8933                                struct task_struct *task)
8934 {
8935         if (bpf_prog_array_valid(call)) {
8936                 *(struct pt_regs **)raw_data = regs;
8937                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8938                         perf_swevent_put_recursion_context(rctx);
8939                         return;
8940                 }
8941         }
8942         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8943                       rctx, task);
8944 }
8945 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8946
8947 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8948                    struct pt_regs *regs, struct hlist_head *head, int rctx,
8949                    struct task_struct *task)
8950 {
8951         struct perf_sample_data data;
8952         struct perf_event *event;
8953
8954         struct perf_raw_record raw = {
8955                 .frag = {
8956                         .size = entry_size,
8957                         .data = record,
8958                 },
8959         };
8960
8961         perf_sample_data_init(&data, 0, 0);
8962         data.raw = &raw;
8963
8964         perf_trace_buf_update(record, event_type);
8965
8966         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8967                 if (perf_tp_event_match(event, &data, regs))
8968                         perf_swevent_event(event, count, &data, regs);
8969         }
8970
8971         /*
8972          * If we got specified a target task, also iterate its context and
8973          * deliver this event there too.
8974          */
8975         if (task && task != current) {
8976                 struct perf_event_context *ctx;
8977                 struct trace_entry *entry = record;
8978
8979                 rcu_read_lock();
8980                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8981                 if (!ctx)
8982                         goto unlock;
8983
8984                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8985                         if (event->cpu != smp_processor_id())
8986                                 continue;
8987                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8988                                 continue;
8989                         if (event->attr.config != entry->type)
8990                                 continue;
8991                         if (perf_tp_event_match(event, &data, regs))
8992                                 perf_swevent_event(event, count, &data, regs);
8993                 }
8994 unlock:
8995                 rcu_read_unlock();
8996         }
8997
8998         perf_swevent_put_recursion_context(rctx);
8999 }
9000 EXPORT_SYMBOL_GPL(perf_tp_event);
9001
9002 static void tp_perf_event_destroy(struct perf_event *event)
9003 {
9004         perf_trace_destroy(event);
9005 }
9006
9007 static int perf_tp_event_init(struct perf_event *event)
9008 {
9009         int err;
9010
9011         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9012                 return -ENOENT;
9013
9014         /*
9015          * no branch sampling for tracepoint events
9016          */
9017         if (has_branch_stack(event))
9018                 return -EOPNOTSUPP;
9019
9020         err = perf_trace_init(event);
9021         if (err)
9022                 return err;
9023
9024         event->destroy = tp_perf_event_destroy;
9025
9026         return 0;
9027 }
9028
9029 static struct pmu perf_tracepoint = {
9030         .task_ctx_nr    = perf_sw_context,
9031
9032         .event_init     = perf_tp_event_init,
9033         .add            = perf_trace_add,
9034         .del            = perf_trace_del,
9035         .start          = perf_swevent_start,
9036         .stop           = perf_swevent_stop,
9037         .read           = perf_swevent_read,
9038 };
9039
9040 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9041 /*
9042  * Flags in config, used by dynamic PMU kprobe and uprobe
9043  * The flags should match following PMU_FORMAT_ATTR().
9044  *
9045  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9046  *                               if not set, create kprobe/uprobe
9047  *
9048  * The following values specify a reference counter (or semaphore in the
9049  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9050  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9051  *
9052  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9053  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9054  */
9055 enum perf_probe_config {
9056         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9057         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9058         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9059 };
9060
9061 PMU_FORMAT_ATTR(retprobe, "config:0");
9062 #endif
9063
9064 #ifdef CONFIG_KPROBE_EVENTS
9065 static struct attribute *kprobe_attrs[] = {
9066         &format_attr_retprobe.attr,
9067         NULL,
9068 };
9069
9070 static struct attribute_group kprobe_format_group = {
9071         .name = "format",
9072         .attrs = kprobe_attrs,
9073 };
9074
9075 static const struct attribute_group *kprobe_attr_groups[] = {
9076         &kprobe_format_group,
9077         NULL,
9078 };
9079
9080 static int perf_kprobe_event_init(struct perf_event *event);
9081 static struct pmu perf_kprobe = {
9082         .task_ctx_nr    = perf_sw_context,
9083         .event_init     = perf_kprobe_event_init,
9084         .add            = perf_trace_add,
9085         .del            = perf_trace_del,
9086         .start          = perf_swevent_start,
9087         .stop           = perf_swevent_stop,
9088         .read           = perf_swevent_read,
9089         .attr_groups    = kprobe_attr_groups,
9090 };
9091
9092 static int perf_kprobe_event_init(struct perf_event *event)
9093 {
9094         int err;
9095         bool is_retprobe;
9096
9097         if (event->attr.type != perf_kprobe.type)
9098                 return -ENOENT;
9099
9100         if (!capable(CAP_SYS_ADMIN))
9101                 return -EACCES;
9102
9103         /*
9104          * no branch sampling for probe events
9105          */
9106         if (has_branch_stack(event))
9107                 return -EOPNOTSUPP;
9108
9109         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9110         err = perf_kprobe_init(event, is_retprobe);
9111         if (err)
9112                 return err;
9113
9114         event->destroy = perf_kprobe_destroy;
9115
9116         return 0;
9117 }
9118 #endif /* CONFIG_KPROBE_EVENTS */
9119
9120 #ifdef CONFIG_UPROBE_EVENTS
9121 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9122
9123 static struct attribute *uprobe_attrs[] = {
9124         &format_attr_retprobe.attr,
9125         &format_attr_ref_ctr_offset.attr,
9126         NULL,
9127 };
9128
9129 static struct attribute_group uprobe_format_group = {
9130         .name = "format",
9131         .attrs = uprobe_attrs,
9132 };
9133
9134 static const struct attribute_group *uprobe_attr_groups[] = {
9135         &uprobe_format_group,
9136         NULL,
9137 };
9138
9139 static int perf_uprobe_event_init(struct perf_event *event);
9140 static struct pmu perf_uprobe = {
9141         .task_ctx_nr    = perf_sw_context,
9142         .event_init     = perf_uprobe_event_init,
9143         .add            = perf_trace_add,
9144         .del            = perf_trace_del,
9145         .start          = perf_swevent_start,
9146         .stop           = perf_swevent_stop,
9147         .read           = perf_swevent_read,
9148         .attr_groups    = uprobe_attr_groups,
9149 };
9150
9151 static int perf_uprobe_event_init(struct perf_event *event)
9152 {
9153         int err;
9154         unsigned long ref_ctr_offset;
9155         bool is_retprobe;
9156
9157         if (event->attr.type != perf_uprobe.type)
9158                 return -ENOENT;
9159
9160         if (!capable(CAP_SYS_ADMIN))
9161                 return -EACCES;
9162
9163         /*
9164          * no branch sampling for probe events
9165          */
9166         if (has_branch_stack(event))
9167                 return -EOPNOTSUPP;
9168
9169         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9170         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9171         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9172         if (err)
9173                 return err;
9174
9175         event->destroy = perf_uprobe_destroy;
9176
9177         return 0;
9178 }
9179 #endif /* CONFIG_UPROBE_EVENTS */
9180
9181 static inline void perf_tp_register(void)
9182 {
9183         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9184 #ifdef CONFIG_KPROBE_EVENTS
9185         perf_pmu_register(&perf_kprobe, "kprobe", -1);
9186 #endif
9187 #ifdef CONFIG_UPROBE_EVENTS
9188         perf_pmu_register(&perf_uprobe, "uprobe", -1);
9189 #endif
9190 }
9191
9192 static void perf_event_free_filter(struct perf_event *event)
9193 {
9194         ftrace_profile_free_filter(event);
9195 }
9196
9197 #ifdef CONFIG_BPF_SYSCALL
9198 static void bpf_overflow_handler(struct perf_event *event,
9199                                  struct perf_sample_data *data,
9200                                  struct pt_regs *regs)
9201 {
9202         struct bpf_perf_event_data_kern ctx = {
9203                 .data = data,
9204                 .event = event,
9205         };
9206         int ret = 0;
9207
9208         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9209         preempt_disable();
9210         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9211                 goto out;
9212         rcu_read_lock();
9213         ret = BPF_PROG_RUN(event->prog, &ctx);
9214         rcu_read_unlock();
9215 out:
9216         __this_cpu_dec(bpf_prog_active);
9217         preempt_enable();
9218         if (!ret)
9219                 return;
9220
9221         event->orig_overflow_handler(event, data, regs);
9222 }
9223
9224 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9225 {
9226         struct bpf_prog *prog;
9227
9228         if (event->overflow_handler_context)
9229                 /* hw breakpoint or kernel counter */
9230                 return -EINVAL;
9231
9232         if (event->prog)
9233                 return -EEXIST;
9234
9235         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9236         if (IS_ERR(prog))
9237                 return PTR_ERR(prog);
9238
9239         event->prog = prog;
9240         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9241         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9242         return 0;
9243 }
9244
9245 static void perf_event_free_bpf_handler(struct perf_event *event)
9246 {
9247         struct bpf_prog *prog = event->prog;
9248
9249         if (!prog)
9250                 return;
9251
9252         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9253         event->prog = NULL;
9254         bpf_prog_put(prog);
9255 }
9256 #else
9257 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9258 {
9259         return -EOPNOTSUPP;
9260 }
9261 static void perf_event_free_bpf_handler(struct perf_event *event)
9262 {
9263 }
9264 #endif
9265
9266 /*
9267  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9268  * with perf_event_open()
9269  */
9270 static inline bool perf_event_is_tracing(struct perf_event *event)
9271 {
9272         if (event->pmu == &perf_tracepoint)
9273                 return true;
9274 #ifdef CONFIG_KPROBE_EVENTS
9275         if (event->pmu == &perf_kprobe)
9276                 return true;
9277 #endif
9278 #ifdef CONFIG_UPROBE_EVENTS
9279         if (event->pmu == &perf_uprobe)
9280                 return true;
9281 #endif
9282         return false;
9283 }
9284
9285 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9286 {
9287         bool is_kprobe, is_tracepoint, is_syscall_tp;
9288         struct bpf_prog *prog;
9289         int ret;
9290
9291         if (!perf_event_is_tracing(event))
9292                 return perf_event_set_bpf_handler(event, prog_fd);
9293
9294         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9295         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9296         is_syscall_tp = is_syscall_trace_event(event->tp_event);
9297         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9298                 /* bpf programs can only be attached to u/kprobe or tracepoint */
9299                 return -EINVAL;
9300
9301         prog = bpf_prog_get(prog_fd);
9302         if (IS_ERR(prog))
9303                 return PTR_ERR(prog);
9304
9305         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9306             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9307             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9308                 /* valid fd, but invalid bpf program type */
9309                 bpf_prog_put(prog);
9310                 return -EINVAL;
9311         }
9312
9313         /* Kprobe override only works for kprobes, not uprobes. */
9314         if (prog->kprobe_override &&
9315             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9316                 bpf_prog_put(prog);
9317                 return -EINVAL;
9318         }
9319
9320         if (is_tracepoint || is_syscall_tp) {
9321                 int off = trace_event_get_offsets(event->tp_event);
9322
9323                 if (prog->aux->max_ctx_offset > off) {
9324                         bpf_prog_put(prog);
9325                         return -EACCES;
9326                 }
9327         }
9328
9329         ret = perf_event_attach_bpf_prog(event, prog);
9330         if (ret)
9331                 bpf_prog_put(prog);
9332         return ret;
9333 }
9334
9335 static void perf_event_free_bpf_prog(struct perf_event *event)
9336 {
9337         if (!perf_event_is_tracing(event)) {
9338                 perf_event_free_bpf_handler(event);
9339                 return;
9340         }
9341         perf_event_detach_bpf_prog(event);
9342 }
9343
9344 #else
9345
9346 static inline void perf_tp_register(void)
9347 {
9348 }
9349
9350 static void perf_event_free_filter(struct perf_event *event)
9351 {
9352 }
9353
9354 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9355 {
9356         return -ENOENT;
9357 }
9358
9359 static void perf_event_free_bpf_prog(struct perf_event *event)
9360 {
9361 }
9362 #endif /* CONFIG_EVENT_TRACING */
9363
9364 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9365 void perf_bp_event(struct perf_event *bp, void *data)
9366 {
9367         struct perf_sample_data sample;
9368         struct pt_regs *regs = data;
9369
9370         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9371
9372         if (!bp->hw.state && !perf_exclude_event(bp, regs))
9373                 perf_swevent_event(bp, 1, &sample, regs);
9374 }
9375 #endif
9376
9377 /*
9378  * Allocate a new address filter
9379  */
9380 static struct perf_addr_filter *
9381 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9382 {
9383         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9384         struct perf_addr_filter *filter;
9385
9386         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9387         if (!filter)
9388                 return NULL;
9389
9390         INIT_LIST_HEAD(&filter->entry);
9391         list_add_tail(&filter->entry, filters);
9392
9393         return filter;
9394 }
9395
9396 static void free_filters_list(struct list_head *filters)
9397 {
9398         struct perf_addr_filter *filter, *iter;
9399
9400         list_for_each_entry_safe(filter, iter, filters, entry) {
9401                 path_put(&filter->path);
9402                 list_del(&filter->entry);
9403                 kfree(filter);
9404         }
9405 }
9406
9407 /*
9408  * Free existing address filters and optionally install new ones
9409  */
9410 static void perf_addr_filters_splice(struct perf_event *event,
9411                                      struct list_head *head)
9412 {
9413         unsigned long flags;
9414         LIST_HEAD(list);
9415
9416         if (!has_addr_filter(event))
9417                 return;
9418
9419         /* don't bother with children, they don't have their own filters */
9420         if (event->parent)
9421                 return;
9422
9423         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9424
9425         list_splice_init(&event->addr_filters.list, &list);
9426         if (head)
9427                 list_splice(head, &event->addr_filters.list);
9428
9429         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9430
9431         free_filters_list(&list);
9432 }
9433
9434 /*
9435  * Scan through mm's vmas and see if one of them matches the
9436  * @filter; if so, adjust filter's address range.
9437  * Called with mm::mmap_sem down for reading.
9438  */
9439 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9440                                    struct mm_struct *mm,
9441                                    struct perf_addr_filter_range *fr)
9442 {
9443         struct vm_area_struct *vma;
9444
9445         for (vma = mm->mmap; vma; vma = vma->vm_next) {
9446                 if (!vma->vm_file)
9447                         continue;
9448
9449                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9450                         return;
9451         }
9452 }
9453
9454 /*
9455  * Update event's address range filters based on the
9456  * task's existing mappings, if any.
9457  */
9458 static void perf_event_addr_filters_apply(struct perf_event *event)
9459 {
9460         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9461         struct task_struct *task = READ_ONCE(event->ctx->task);
9462         struct perf_addr_filter *filter;
9463         struct mm_struct *mm = NULL;
9464         unsigned int count = 0;
9465         unsigned long flags;
9466
9467         /*
9468          * We may observe TASK_TOMBSTONE, which means that the event tear-down
9469          * will stop on the parent's child_mutex that our caller is also holding
9470          */
9471         if (task == TASK_TOMBSTONE)
9472                 return;
9473
9474         if (ifh->nr_file_filters) {
9475                 mm = get_task_mm(event->ctx->task);
9476                 if (!mm)
9477                         goto restart;
9478
9479                 down_read(&mm->mmap_sem);
9480         }
9481
9482         raw_spin_lock_irqsave(&ifh->lock, flags);
9483         list_for_each_entry(filter, &ifh->list, entry) {
9484                 if (filter->path.dentry) {
9485                         /*
9486                          * Adjust base offset if the filter is associated to a
9487                          * binary that needs to be mapped:
9488                          */
9489                         event->addr_filter_ranges[count].start = 0;
9490                         event->addr_filter_ranges[count].size = 0;
9491
9492                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9493                 } else {
9494                         event->addr_filter_ranges[count].start = filter->offset;
9495                         event->addr_filter_ranges[count].size  = filter->size;
9496                 }
9497
9498                 count++;
9499         }
9500
9501         event->addr_filters_gen++;
9502         raw_spin_unlock_irqrestore(&ifh->lock, flags);
9503
9504         if (ifh->nr_file_filters) {
9505                 up_read(&mm->mmap_sem);
9506
9507                 mmput(mm);
9508         }
9509
9510 restart:
9511         perf_event_stop(event, 1);
9512 }
9513
9514 /*
9515  * Address range filtering: limiting the data to certain
9516  * instruction address ranges. Filters are ioctl()ed to us from
9517  * userspace as ascii strings.
9518  *
9519  * Filter string format:
9520  *
9521  * ACTION RANGE_SPEC
9522  * where ACTION is one of the
9523  *  * "filter": limit the trace to this region
9524  *  * "start": start tracing from this address
9525  *  * "stop": stop tracing at this address/region;
9526  * RANGE_SPEC is
9527  *  * for kernel addresses: <start address>[/<size>]
9528  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9529  *
9530  * if <size> is not specified or is zero, the range is treated as a single
9531  * address; not valid for ACTION=="filter".
9532  */
9533 enum {
9534         IF_ACT_NONE = -1,
9535         IF_ACT_FILTER,
9536         IF_ACT_START,
9537         IF_ACT_STOP,
9538         IF_SRC_FILE,
9539         IF_SRC_KERNEL,
9540         IF_SRC_FILEADDR,
9541         IF_SRC_KERNELADDR,
9542 };
9543
9544 enum {
9545         IF_STATE_ACTION = 0,
9546         IF_STATE_SOURCE,
9547         IF_STATE_END,
9548 };
9549
9550 static const match_table_t if_tokens = {
9551         { IF_ACT_FILTER,        "filter" },
9552         { IF_ACT_START,         "start" },
9553         { IF_ACT_STOP,          "stop" },
9554         { IF_SRC_FILE,          "%u/%u@%s" },
9555         { IF_SRC_KERNEL,        "%u/%u" },
9556         { IF_SRC_FILEADDR,      "%u@%s" },
9557         { IF_SRC_KERNELADDR,    "%u" },
9558         { IF_ACT_NONE,          NULL },
9559 };
9560
9561 /*
9562  * Address filter string parser
9563  */
9564 static int
9565 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9566                              struct list_head *filters)
9567 {
9568         struct perf_addr_filter *filter = NULL;
9569         char *start, *orig, *filename = NULL;
9570         substring_t args[MAX_OPT_ARGS];
9571         int state = IF_STATE_ACTION, token;
9572         unsigned int kernel = 0;
9573         int ret = -EINVAL;
9574
9575         orig = fstr = kstrdup(fstr, GFP_KERNEL);
9576         if (!fstr)
9577                 return -ENOMEM;
9578
9579         while ((start = strsep(&fstr, " ,\n")) != NULL) {
9580                 static const enum perf_addr_filter_action_t actions[] = {
9581                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9582                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
9583                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
9584                 };
9585                 ret = -EINVAL;
9586
9587                 if (!*start)
9588                         continue;
9589
9590                 /* filter definition begins */
9591                 if (state == IF_STATE_ACTION) {
9592                         filter = perf_addr_filter_new(event, filters);
9593                         if (!filter)
9594                                 goto fail;
9595                 }
9596
9597                 token = match_token(start, if_tokens, args);
9598                 switch (token) {
9599                 case IF_ACT_FILTER:
9600                 case IF_ACT_START:
9601                 case IF_ACT_STOP:
9602                         if (state != IF_STATE_ACTION)
9603                                 goto fail;
9604
9605                         filter->action = actions[token];
9606                         state = IF_STATE_SOURCE;
9607                         break;
9608
9609                 case IF_SRC_KERNELADDR:
9610                 case IF_SRC_KERNEL:
9611                         kernel = 1;
9612                         /* fall through */
9613
9614                 case IF_SRC_FILEADDR:
9615                 case IF_SRC_FILE:
9616                         if (state != IF_STATE_SOURCE)
9617                                 goto fail;
9618
9619                         *args[0].to = 0;
9620                         ret = kstrtoul(args[0].from, 0, &filter->offset);
9621                         if (ret)
9622                                 goto fail;
9623
9624                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9625                                 *args[1].to = 0;
9626                                 ret = kstrtoul(args[1].from, 0, &filter->size);
9627                                 if (ret)
9628                                         goto fail;
9629                         }
9630
9631                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9632                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
9633
9634                                 filename = match_strdup(&args[fpos]);
9635                                 if (!filename) {
9636                                         ret = -ENOMEM;
9637                                         goto fail;
9638                                 }
9639                         }
9640
9641                         state = IF_STATE_END;
9642                         break;
9643
9644                 default:
9645                         goto fail;
9646                 }
9647
9648                 /*
9649                  * Filter definition is fully parsed, validate and install it.
9650                  * Make sure that it doesn't contradict itself or the event's
9651                  * attribute.
9652                  */
9653                 if (state == IF_STATE_END) {
9654                         ret = -EINVAL;
9655                         if (kernel && event->attr.exclude_kernel)
9656                                 goto fail;
9657
9658                         /*
9659                          * ACTION "filter" must have a non-zero length region
9660                          * specified.
9661                          */
9662                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9663                             !filter->size)
9664                                 goto fail;
9665
9666                         if (!kernel) {
9667                                 if (!filename)
9668                                         goto fail;
9669
9670                                 /*
9671                                  * For now, we only support file-based filters
9672                                  * in per-task events; doing so for CPU-wide
9673                                  * events requires additional context switching
9674                                  * trickery, since same object code will be
9675                                  * mapped at different virtual addresses in
9676                                  * different processes.
9677                                  */
9678                                 ret = -EOPNOTSUPP;
9679                                 if (!event->ctx->task)
9680                                         goto fail_free_name;
9681
9682                                 /* look up the path and grab its inode */
9683                                 ret = kern_path(filename, LOOKUP_FOLLOW,
9684                                                 &filter->path);
9685                                 if (ret)
9686                                         goto fail_free_name;
9687
9688                                 kfree(filename);
9689                                 filename = NULL;
9690
9691                                 ret = -EINVAL;
9692                                 if (!filter->path.dentry ||
9693                                     !S_ISREG(d_inode(filter->path.dentry)
9694                                              ->i_mode))
9695                                         goto fail;
9696
9697                                 event->addr_filters.nr_file_filters++;
9698                         }
9699
9700                         /* ready to consume more filters */
9701                         state = IF_STATE_ACTION;
9702                         filter = NULL;
9703                 }
9704         }
9705
9706         if (state != IF_STATE_ACTION)
9707                 goto fail;
9708
9709         kfree(orig);
9710
9711         return 0;
9712
9713 fail_free_name:
9714         kfree(filename);
9715 fail:
9716         free_filters_list(filters);
9717         kfree(orig);
9718
9719         return ret;
9720 }
9721
9722 static int
9723 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9724 {
9725         LIST_HEAD(filters);
9726         int ret;
9727
9728         /*
9729          * Since this is called in perf_ioctl() path, we're already holding
9730          * ctx::mutex.
9731          */
9732         lockdep_assert_held(&event->ctx->mutex);
9733
9734         if (WARN_ON_ONCE(event->parent))
9735                 return -EINVAL;
9736
9737         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9738         if (ret)
9739                 goto fail_clear_files;
9740
9741         ret = event->pmu->addr_filters_validate(&filters);
9742         if (ret)
9743                 goto fail_free_filters;
9744
9745         /* remove existing filters, if any */
9746         perf_addr_filters_splice(event, &filters);
9747
9748         /* install new filters */
9749         perf_event_for_each_child(event, perf_event_addr_filters_apply);
9750
9751         return ret;
9752
9753 fail_free_filters:
9754         free_filters_list(&filters);
9755
9756 fail_clear_files:
9757         event->addr_filters.nr_file_filters = 0;
9758
9759         return ret;
9760 }
9761
9762 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9763 {
9764         int ret = -EINVAL;
9765         char *filter_str;
9766
9767         filter_str = strndup_user(arg, PAGE_SIZE);
9768         if (IS_ERR(filter_str))
9769                 return PTR_ERR(filter_str);
9770
9771 #ifdef CONFIG_EVENT_TRACING
9772         if (perf_event_is_tracing(event)) {
9773                 struct perf_event_context *ctx = event->ctx;
9774
9775                 /*
9776                  * Beware, here be dragons!!
9777                  *
9778                  * the tracepoint muck will deadlock against ctx->mutex, but
9779                  * the tracepoint stuff does not actually need it. So
9780                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9781                  * already have a reference on ctx.
9782                  *
9783                  * This can result in event getting moved to a different ctx,
9784                  * but that does not affect the tracepoint state.
9785                  */
9786                 mutex_unlock(&ctx->mutex);
9787                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9788                 mutex_lock(&ctx->mutex);
9789         } else
9790 #endif
9791         if (has_addr_filter(event))
9792                 ret = perf_event_set_addr_filter(event, filter_str);
9793
9794         kfree(filter_str);
9795         return ret;
9796 }
9797
9798 /*
9799  * hrtimer based swevent callback
9800  */
9801
9802 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9803 {
9804         enum hrtimer_restart ret = HRTIMER_RESTART;
9805         struct perf_sample_data data;
9806         struct pt_regs *regs;
9807         struct perf_event *event;
9808         u64 period;
9809
9810         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9811
9812         if (event->state != PERF_EVENT_STATE_ACTIVE)
9813                 return HRTIMER_NORESTART;
9814
9815         event->pmu->read(event);
9816
9817         perf_sample_data_init(&data, 0, event->hw.last_period);
9818         regs = get_irq_regs();
9819
9820         if (regs && !perf_exclude_event(event, regs)) {
9821                 if (!(event->attr.exclude_idle && is_idle_task(current)))
9822                         if (__perf_event_overflow(event, 1, &data, regs))
9823                                 ret = HRTIMER_NORESTART;
9824         }
9825
9826         period = max_t(u64, 10000, event->hw.sample_period);
9827         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9828
9829         return ret;
9830 }
9831
9832 static void perf_swevent_start_hrtimer(struct perf_event *event)
9833 {
9834         struct hw_perf_event *hwc = &event->hw;
9835         s64 period;
9836
9837         if (!is_sampling_event(event))
9838                 return;
9839
9840         period = local64_read(&hwc->period_left);
9841         if (period) {
9842                 if (period < 0)
9843                         period = 10000;
9844
9845                 local64_set(&hwc->period_left, 0);
9846         } else {
9847                 period = max_t(u64, 10000, hwc->sample_period);
9848         }
9849         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9850                       HRTIMER_MODE_REL_PINNED_HARD);
9851 }
9852
9853 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9854 {
9855         struct hw_perf_event *hwc = &event->hw;
9856
9857         if (is_sampling_event(event)) {
9858                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9859                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9860
9861                 hrtimer_cancel(&hwc->hrtimer);
9862         }
9863 }
9864
9865 static void perf_swevent_init_hrtimer(struct perf_event *event)
9866 {
9867         struct hw_perf_event *hwc = &event->hw;
9868
9869         if (!is_sampling_event(event))
9870                 return;
9871
9872         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
9873         hwc->hrtimer.function = perf_swevent_hrtimer;
9874
9875         /*
9876          * Since hrtimers have a fixed rate, we can do a static freq->period
9877          * mapping and avoid the whole period adjust feedback stuff.
9878          */
9879         if (event->attr.freq) {
9880                 long freq = event->attr.sample_freq;
9881
9882                 event->attr.sample_period = NSEC_PER_SEC / freq;
9883                 hwc->sample_period = event->attr.sample_period;
9884                 local64_set(&hwc->period_left, hwc->sample_period);
9885                 hwc->last_period = hwc->sample_period;
9886                 event->attr.freq = 0;
9887         }
9888 }
9889
9890 /*
9891  * Software event: cpu wall time clock
9892  */
9893
9894 static void cpu_clock_event_update(struct perf_event *event)
9895 {
9896         s64 prev;
9897         u64 now;
9898
9899         now = local_clock();
9900         prev = local64_xchg(&event->hw.prev_count, now);
9901         local64_add(now - prev, &event->count);
9902 }
9903
9904 static void cpu_clock_event_start(struct perf_event *event, int flags)
9905 {
9906         local64_set(&event->hw.prev_count, local_clock());
9907         perf_swevent_start_hrtimer(event);
9908 }
9909
9910 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9911 {
9912         perf_swevent_cancel_hrtimer(event);
9913         cpu_clock_event_update(event);
9914 }
9915
9916 static int cpu_clock_event_add(struct perf_event *event, int flags)
9917 {
9918         if (flags & PERF_EF_START)
9919                 cpu_clock_event_start(event, flags);
9920         perf_event_update_userpage(event);
9921
9922         return 0;
9923 }
9924
9925 static void cpu_clock_event_del(struct perf_event *event, int flags)
9926 {
9927         cpu_clock_event_stop(event, flags);
9928 }
9929
9930 static void cpu_clock_event_read(struct perf_event *event)
9931 {
9932         cpu_clock_event_update(event);
9933 }
9934
9935 static int cpu_clock_event_init(struct perf_event *event)
9936 {
9937         if (event->attr.type != PERF_TYPE_SOFTWARE)
9938                 return -ENOENT;
9939
9940         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9941                 return -ENOENT;
9942
9943         /*
9944          * no branch sampling for software events
9945          */
9946         if (has_branch_stack(event))
9947                 return -EOPNOTSUPP;
9948
9949         perf_swevent_init_hrtimer(event);
9950
9951         return 0;
9952 }
9953
9954 static struct pmu perf_cpu_clock = {
9955         .task_ctx_nr    = perf_sw_context,
9956
9957         .capabilities   = PERF_PMU_CAP_NO_NMI,
9958
9959         .event_init     = cpu_clock_event_init,
9960         .add            = cpu_clock_event_add,
9961         .del            = cpu_clock_event_del,
9962         .start          = cpu_clock_event_start,
9963         .stop           = cpu_clock_event_stop,
9964         .read           = cpu_clock_event_read,
9965 };
9966
9967 /*
9968  * Software event: task time clock
9969  */
9970
9971 static void task_clock_event_update(struct perf_event *event, u64 now)
9972 {
9973         u64 prev;
9974         s64 delta;
9975
9976         prev = local64_xchg(&event->hw.prev_count, now);
9977         delta = now - prev;
9978         local64_add(delta, &event->count);
9979 }
9980
9981 static void task_clock_event_start(struct perf_event *event, int flags)
9982 {
9983         local64_set(&event->hw.prev_count, event->ctx->time);
9984         perf_swevent_start_hrtimer(event);
9985 }
9986
9987 static void task_clock_event_stop(struct perf_event *event, int flags)
9988 {
9989         perf_swevent_cancel_hrtimer(event);
9990         task_clock_event_update(event, event->ctx->time);
9991 }
9992
9993 static int task_clock_event_add(struct perf_event *event, int flags)
9994 {
9995         if (flags & PERF_EF_START)
9996                 task_clock_event_start(event, flags);
9997         perf_event_update_userpage(event);
9998
9999         return 0;
10000 }
10001
10002 static void task_clock_event_del(struct perf_event *event, int flags)
10003 {
10004         task_clock_event_stop(event, PERF_EF_UPDATE);
10005 }
10006
10007 static void task_clock_event_read(struct perf_event *event)
10008 {
10009         u64 now = perf_clock();
10010         u64 delta = now - event->ctx->timestamp;
10011         u64 time = event->ctx->time + delta;
10012
10013         task_clock_event_update(event, time);
10014 }
10015
10016 static int task_clock_event_init(struct perf_event *event)
10017 {
10018         if (event->attr.type != PERF_TYPE_SOFTWARE)
10019                 return -ENOENT;
10020
10021         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10022                 return -ENOENT;
10023
10024         /*
10025          * no branch sampling for software events
10026          */
10027         if (has_branch_stack(event))
10028                 return -EOPNOTSUPP;
10029
10030         perf_swevent_init_hrtimer(event);
10031
10032         return 0;
10033 }
10034
10035 static struct pmu perf_task_clock = {
10036         .task_ctx_nr    = perf_sw_context,
10037
10038         .capabilities   = PERF_PMU_CAP_NO_NMI,
10039
10040         .event_init     = task_clock_event_init,
10041         .add            = task_clock_event_add,
10042         .del            = task_clock_event_del,
10043         .start          = task_clock_event_start,
10044         .stop           = task_clock_event_stop,
10045         .read           = task_clock_event_read,
10046 };
10047
10048 static void perf_pmu_nop_void(struct pmu *pmu)
10049 {
10050 }
10051
10052 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10053 {
10054 }
10055
10056 static int perf_pmu_nop_int(struct pmu *pmu)
10057 {
10058         return 0;
10059 }
10060
10061 static int perf_event_nop_int(struct perf_event *event, u64 value)
10062 {
10063         return 0;
10064 }
10065
10066 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10067
10068 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10069 {
10070         __this_cpu_write(nop_txn_flags, flags);
10071
10072         if (flags & ~PERF_PMU_TXN_ADD)
10073                 return;
10074
10075         perf_pmu_disable(pmu);
10076 }
10077
10078 static int perf_pmu_commit_txn(struct pmu *pmu)
10079 {
10080         unsigned int flags = __this_cpu_read(nop_txn_flags);
10081
10082         __this_cpu_write(nop_txn_flags, 0);
10083
10084         if (flags & ~PERF_PMU_TXN_ADD)
10085                 return 0;
10086
10087         perf_pmu_enable(pmu);
10088         return 0;
10089 }
10090
10091 static void perf_pmu_cancel_txn(struct pmu *pmu)
10092 {
10093         unsigned int flags =  __this_cpu_read(nop_txn_flags);
10094
10095         __this_cpu_write(nop_txn_flags, 0);
10096
10097         if (flags & ~PERF_PMU_TXN_ADD)
10098                 return;
10099
10100         perf_pmu_enable(pmu);
10101 }
10102
10103 static int perf_event_idx_default(struct perf_event *event)
10104 {
10105         return 0;
10106 }
10107
10108 /*
10109  * Ensures all contexts with the same task_ctx_nr have the same
10110  * pmu_cpu_context too.
10111  */
10112 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10113 {
10114         struct pmu *pmu;
10115
10116         if (ctxn < 0)
10117                 return NULL;
10118
10119         list_for_each_entry(pmu, &pmus, entry) {
10120                 if (pmu->task_ctx_nr == ctxn)
10121                         return pmu->pmu_cpu_context;
10122         }
10123
10124         return NULL;
10125 }
10126
10127 static void free_pmu_context(struct pmu *pmu)
10128 {
10129         /*
10130          * Static contexts such as perf_sw_context have a global lifetime
10131          * and may be shared between different PMUs. Avoid freeing them
10132          * when a single PMU is going away.
10133          */
10134         if (pmu->task_ctx_nr > perf_invalid_context)
10135                 return;
10136
10137         free_percpu(pmu->pmu_cpu_context);
10138 }
10139
10140 /*
10141  * Let userspace know that this PMU supports address range filtering:
10142  */
10143 static ssize_t nr_addr_filters_show(struct device *dev,
10144                                     struct device_attribute *attr,
10145                                     char *page)
10146 {
10147         struct pmu *pmu = dev_get_drvdata(dev);
10148
10149         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10150 }
10151 DEVICE_ATTR_RO(nr_addr_filters);
10152
10153 static struct idr pmu_idr;
10154
10155 static ssize_t
10156 type_show(struct device *dev, struct device_attribute *attr, char *page)
10157 {
10158         struct pmu *pmu = dev_get_drvdata(dev);
10159
10160         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10161 }
10162 static DEVICE_ATTR_RO(type);
10163
10164 static ssize_t
10165 perf_event_mux_interval_ms_show(struct device *dev,
10166                                 struct device_attribute *attr,
10167                                 char *page)
10168 {
10169         struct pmu *pmu = dev_get_drvdata(dev);
10170
10171         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10172 }
10173
10174 static DEFINE_MUTEX(mux_interval_mutex);
10175
10176 static ssize_t
10177 perf_event_mux_interval_ms_store(struct device *dev,
10178                                  struct device_attribute *attr,
10179                                  const char *buf, size_t count)
10180 {
10181         struct pmu *pmu = dev_get_drvdata(dev);
10182         int timer, cpu, ret;
10183
10184         ret = kstrtoint(buf, 0, &timer);
10185         if (ret)
10186                 return ret;
10187
10188         if (timer < 1)
10189                 return -EINVAL;
10190
10191         /* same value, noting to do */
10192         if (timer == pmu->hrtimer_interval_ms)
10193                 return count;
10194
10195         mutex_lock(&mux_interval_mutex);
10196         pmu->hrtimer_interval_ms = timer;
10197
10198         /* update all cpuctx for this PMU */
10199         cpus_read_lock();
10200         for_each_online_cpu(cpu) {
10201                 struct perf_cpu_context *cpuctx;
10202                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10203                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10204
10205                 cpu_function_call(cpu,
10206                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10207         }
10208         cpus_read_unlock();
10209         mutex_unlock(&mux_interval_mutex);
10210
10211         return count;
10212 }
10213 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10214
10215 static struct attribute *pmu_dev_attrs[] = {
10216         &dev_attr_type.attr,
10217         &dev_attr_perf_event_mux_interval_ms.attr,
10218         NULL,
10219 };
10220 ATTRIBUTE_GROUPS(pmu_dev);
10221
10222 static int pmu_bus_running;
10223 static struct bus_type pmu_bus = {
10224         .name           = "event_source",
10225         .dev_groups     = pmu_dev_groups,
10226 };
10227
10228 static void pmu_dev_release(struct device *dev)
10229 {
10230         kfree(dev);
10231 }
10232
10233 static int pmu_dev_alloc(struct pmu *pmu)
10234 {
10235         int ret = -ENOMEM;
10236
10237         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10238         if (!pmu->dev)
10239                 goto out;
10240
10241         pmu->dev->groups = pmu->attr_groups;
10242         device_initialize(pmu->dev);
10243         ret = dev_set_name(pmu->dev, "%s", pmu->name);
10244         if (ret)
10245                 goto free_dev;
10246
10247         dev_set_drvdata(pmu->dev, pmu);
10248         pmu->dev->bus = &pmu_bus;
10249         pmu->dev->release = pmu_dev_release;
10250         ret = device_add(pmu->dev);
10251         if (ret)
10252                 goto free_dev;
10253
10254         /* For PMUs with address filters, throw in an extra attribute: */
10255         if (pmu->nr_addr_filters)
10256                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10257
10258         if (ret)
10259                 goto del_dev;
10260
10261         if (pmu->attr_update)
10262                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10263
10264         if (ret)
10265                 goto del_dev;
10266
10267 out:
10268         return ret;
10269
10270 del_dev:
10271         device_del(pmu->dev);
10272
10273 free_dev:
10274         put_device(pmu->dev);
10275         goto out;
10276 }
10277
10278 static struct lock_class_key cpuctx_mutex;
10279 static struct lock_class_key cpuctx_lock;
10280
10281 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10282 {
10283         int cpu, ret, max = PERF_TYPE_MAX;
10284
10285         mutex_lock(&pmus_lock);
10286         ret = -ENOMEM;
10287         pmu->pmu_disable_count = alloc_percpu(int);
10288         if (!pmu->pmu_disable_count)
10289                 goto unlock;
10290
10291         pmu->type = -1;
10292         if (!name)
10293                 goto skip_type;
10294         pmu->name = name;
10295
10296         if (type != PERF_TYPE_SOFTWARE) {
10297                 if (type >= 0)
10298                         max = type;
10299
10300                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10301                 if (ret < 0)
10302                         goto free_pdc;
10303
10304                 WARN_ON(type >= 0 && ret != type);
10305
10306                 type = ret;
10307         }
10308         pmu->type = type;
10309
10310         if (pmu_bus_running) {
10311                 ret = pmu_dev_alloc(pmu);
10312                 if (ret)
10313                         goto free_idr;
10314         }
10315
10316 skip_type:
10317         if (pmu->task_ctx_nr == perf_hw_context) {
10318                 static int hw_context_taken = 0;
10319
10320                 /*
10321                  * Other than systems with heterogeneous CPUs, it never makes
10322                  * sense for two PMUs to share perf_hw_context. PMUs which are
10323                  * uncore must use perf_invalid_context.
10324                  */
10325                 if (WARN_ON_ONCE(hw_context_taken &&
10326                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10327                         pmu->task_ctx_nr = perf_invalid_context;
10328
10329                 hw_context_taken = 1;
10330         }
10331
10332         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10333         if (pmu->pmu_cpu_context)
10334                 goto got_cpu_context;
10335
10336         ret = -ENOMEM;
10337         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10338         if (!pmu->pmu_cpu_context)
10339                 goto free_dev;
10340
10341         for_each_possible_cpu(cpu) {
10342                 struct perf_cpu_context *cpuctx;
10343
10344                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10345                 __perf_event_init_context(&cpuctx->ctx);
10346                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10347                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10348                 cpuctx->ctx.pmu = pmu;
10349                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10350
10351                 __perf_mux_hrtimer_init(cpuctx, cpu);
10352         }
10353
10354 got_cpu_context:
10355         if (!pmu->start_txn) {
10356                 if (pmu->pmu_enable) {
10357                         /*
10358                          * If we have pmu_enable/pmu_disable calls, install
10359                          * transaction stubs that use that to try and batch
10360                          * hardware accesses.
10361                          */
10362                         pmu->start_txn  = perf_pmu_start_txn;
10363                         pmu->commit_txn = perf_pmu_commit_txn;
10364                         pmu->cancel_txn = perf_pmu_cancel_txn;
10365                 } else {
10366                         pmu->start_txn  = perf_pmu_nop_txn;
10367                         pmu->commit_txn = perf_pmu_nop_int;
10368                         pmu->cancel_txn = perf_pmu_nop_void;
10369                 }
10370         }
10371
10372         if (!pmu->pmu_enable) {
10373                 pmu->pmu_enable  = perf_pmu_nop_void;
10374                 pmu->pmu_disable = perf_pmu_nop_void;
10375         }
10376
10377         if (!pmu->check_period)
10378                 pmu->check_period = perf_event_nop_int;
10379
10380         if (!pmu->event_idx)
10381                 pmu->event_idx = perf_event_idx_default;
10382
10383         /*
10384          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10385          * since these cannot be in the IDR. This way the linear search
10386          * is fast, provided a valid software event is provided.
10387          */
10388         if (type == PERF_TYPE_SOFTWARE || !name)
10389                 list_add_rcu(&pmu->entry, &pmus);
10390         else
10391                 list_add_tail_rcu(&pmu->entry, &pmus);
10392
10393         atomic_set(&pmu->exclusive_cnt, 0);
10394         ret = 0;
10395 unlock:
10396         mutex_unlock(&pmus_lock);
10397
10398         return ret;
10399
10400 free_dev:
10401         device_del(pmu->dev);
10402         put_device(pmu->dev);
10403
10404 free_idr:
10405         if (pmu->type != PERF_TYPE_SOFTWARE)
10406                 idr_remove(&pmu_idr, pmu->type);
10407
10408 free_pdc:
10409         free_percpu(pmu->pmu_disable_count);
10410         goto unlock;
10411 }
10412 EXPORT_SYMBOL_GPL(perf_pmu_register);
10413
10414 void perf_pmu_unregister(struct pmu *pmu)
10415 {
10416         mutex_lock(&pmus_lock);
10417         list_del_rcu(&pmu->entry);
10418
10419         /*
10420          * We dereference the pmu list under both SRCU and regular RCU, so
10421          * synchronize against both of those.
10422          */
10423         synchronize_srcu(&pmus_srcu);
10424         synchronize_rcu();
10425
10426         free_percpu(pmu->pmu_disable_count);
10427         if (pmu->type != PERF_TYPE_SOFTWARE)
10428                 idr_remove(&pmu_idr, pmu->type);
10429         if (pmu_bus_running) {
10430                 if (pmu->nr_addr_filters)
10431                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10432                 device_del(pmu->dev);
10433                 put_device(pmu->dev);
10434         }
10435         free_pmu_context(pmu);
10436         mutex_unlock(&pmus_lock);
10437 }
10438 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10439
10440 static inline bool has_extended_regs(struct perf_event *event)
10441 {
10442         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10443                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10444 }
10445
10446 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10447 {
10448         struct perf_event_context *ctx = NULL;
10449         int ret;
10450
10451         if (!try_module_get(pmu->module))
10452                 return -ENODEV;
10453
10454         /*
10455          * A number of pmu->event_init() methods iterate the sibling_list to,
10456          * for example, validate if the group fits on the PMU. Therefore,
10457          * if this is a sibling event, acquire the ctx->mutex to protect
10458          * the sibling_list.
10459          */
10460         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10461                 /*
10462                  * This ctx->mutex can nest when we're called through
10463                  * inheritance. See the perf_event_ctx_lock_nested() comment.
10464                  */
10465                 ctx = perf_event_ctx_lock_nested(event->group_leader,
10466                                                  SINGLE_DEPTH_NESTING);
10467                 BUG_ON(!ctx);
10468         }
10469
10470         event->pmu = pmu;
10471         ret = pmu->event_init(event);
10472
10473         if (ctx)
10474                 perf_event_ctx_unlock(event->group_leader, ctx);
10475
10476         if (!ret) {
10477                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10478                     has_extended_regs(event))
10479                         ret = -EOPNOTSUPP;
10480
10481                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10482                     event_has_any_exclude_flag(event))
10483                         ret = -EINVAL;
10484
10485                 if (ret && event->destroy)
10486                         event->destroy(event);
10487         }
10488
10489         if (ret)
10490                 module_put(pmu->module);
10491
10492         return ret;
10493 }
10494
10495 static struct pmu *perf_init_event(struct perf_event *event)
10496 {
10497         int idx, type, ret;
10498         struct pmu *pmu;
10499
10500         idx = srcu_read_lock(&pmus_srcu);
10501
10502         /* Try parent's PMU first: */
10503         if (event->parent && event->parent->pmu) {
10504                 pmu = event->parent->pmu;
10505                 ret = perf_try_init_event(pmu, event);
10506                 if (!ret)
10507                         goto unlock;
10508         }
10509
10510         /*
10511          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10512          * are often aliases for PERF_TYPE_RAW.
10513          */
10514         type = event->attr.type;
10515         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
10516                 type = PERF_TYPE_RAW;
10517
10518 again:
10519         rcu_read_lock();
10520         pmu = idr_find(&pmu_idr, type);
10521         rcu_read_unlock();
10522         if (pmu) {
10523                 ret = perf_try_init_event(pmu, event);
10524                 if (ret == -ENOENT && event->attr.type != type) {
10525                         type = event->attr.type;
10526                         goto again;
10527                 }
10528
10529                 if (ret)
10530                         pmu = ERR_PTR(ret);
10531
10532                 goto unlock;
10533         }
10534
10535         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
10536                 ret = perf_try_init_event(pmu, event);
10537                 if (!ret)
10538                         goto unlock;
10539
10540                 if (ret != -ENOENT) {
10541                         pmu = ERR_PTR(ret);
10542                         goto unlock;
10543                 }
10544         }
10545         pmu = ERR_PTR(-ENOENT);
10546 unlock:
10547         srcu_read_unlock(&pmus_srcu, idx);
10548
10549         return pmu;
10550 }
10551
10552 static void attach_sb_event(struct perf_event *event)
10553 {
10554         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10555
10556         raw_spin_lock(&pel->lock);
10557         list_add_rcu(&event->sb_list, &pel->list);
10558         raw_spin_unlock(&pel->lock);
10559 }
10560
10561 /*
10562  * We keep a list of all !task (and therefore per-cpu) events
10563  * that need to receive side-band records.
10564  *
10565  * This avoids having to scan all the various PMU per-cpu contexts
10566  * looking for them.
10567  */
10568 static void account_pmu_sb_event(struct perf_event *event)
10569 {
10570         if (is_sb_event(event))
10571                 attach_sb_event(event);
10572 }
10573
10574 static void account_event_cpu(struct perf_event *event, int cpu)
10575 {
10576         if (event->parent)
10577                 return;
10578
10579         if (is_cgroup_event(event))
10580                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10581 }
10582
10583 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10584 static void account_freq_event_nohz(void)
10585 {
10586 #ifdef CONFIG_NO_HZ_FULL
10587         /* Lock so we don't race with concurrent unaccount */
10588         spin_lock(&nr_freq_lock);
10589         if (atomic_inc_return(&nr_freq_events) == 1)
10590                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10591         spin_unlock(&nr_freq_lock);
10592 #endif
10593 }
10594
10595 static void account_freq_event(void)
10596 {
10597         if (tick_nohz_full_enabled())
10598                 account_freq_event_nohz();
10599         else
10600                 atomic_inc(&nr_freq_events);
10601 }
10602
10603
10604 static void account_event(struct perf_event *event)
10605 {
10606         bool inc = false;
10607
10608         if (event->parent)
10609                 return;
10610
10611         if (event->attach_state & PERF_ATTACH_TASK)
10612                 inc = true;
10613         if (event->attr.mmap || event->attr.mmap_data)
10614                 atomic_inc(&nr_mmap_events);
10615         if (event->attr.comm)
10616                 atomic_inc(&nr_comm_events);
10617         if (event->attr.namespaces)
10618                 atomic_inc(&nr_namespaces_events);
10619         if (event->attr.task)
10620                 atomic_inc(&nr_task_events);
10621         if (event->attr.freq)
10622                 account_freq_event();
10623         if (event->attr.context_switch) {
10624                 atomic_inc(&nr_switch_events);
10625                 inc = true;
10626         }
10627         if (has_branch_stack(event))
10628                 inc = true;
10629         if (is_cgroup_event(event))
10630                 inc = true;
10631         if (event->attr.ksymbol)
10632                 atomic_inc(&nr_ksymbol_events);
10633         if (event->attr.bpf_event)
10634                 atomic_inc(&nr_bpf_events);
10635
10636         if (inc) {
10637                 /*
10638                  * We need the mutex here because static_branch_enable()
10639                  * must complete *before* the perf_sched_count increment
10640                  * becomes visible.
10641                  */
10642                 if (atomic_inc_not_zero(&perf_sched_count))
10643                         goto enabled;
10644
10645                 mutex_lock(&perf_sched_mutex);
10646                 if (!atomic_read(&perf_sched_count)) {
10647                         static_branch_enable(&perf_sched_events);
10648                         /*
10649                          * Guarantee that all CPUs observe they key change and
10650                          * call the perf scheduling hooks before proceeding to
10651                          * install events that need them.
10652                          */
10653                         synchronize_rcu();
10654                 }
10655                 /*
10656                  * Now that we have waited for the sync_sched(), allow further
10657                  * increments to by-pass the mutex.
10658                  */
10659                 atomic_inc(&perf_sched_count);
10660                 mutex_unlock(&perf_sched_mutex);
10661         }
10662 enabled:
10663
10664         account_event_cpu(event, event->cpu);
10665
10666         account_pmu_sb_event(event);
10667 }
10668
10669 /*
10670  * Allocate and initialize an event structure
10671  */
10672 static struct perf_event *
10673 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10674                  struct task_struct *task,
10675                  struct perf_event *group_leader,
10676                  struct perf_event *parent_event,
10677                  perf_overflow_handler_t overflow_handler,
10678                  void *context, int cgroup_fd)
10679 {
10680         struct pmu *pmu;
10681         struct perf_event *event;
10682         struct hw_perf_event *hwc;
10683         long err = -EINVAL;
10684
10685         if ((unsigned)cpu >= nr_cpu_ids) {
10686                 if (!task || cpu != -1)
10687                         return ERR_PTR(-EINVAL);
10688         }
10689
10690         event = kzalloc(sizeof(*event), GFP_KERNEL);
10691         if (!event)
10692                 return ERR_PTR(-ENOMEM);
10693
10694         /*
10695          * Single events are their own group leaders, with an
10696          * empty sibling list:
10697          */
10698         if (!group_leader)
10699                 group_leader = event;
10700
10701         mutex_init(&event->child_mutex);
10702         INIT_LIST_HEAD(&event->child_list);
10703
10704         INIT_LIST_HEAD(&event->event_entry);
10705         INIT_LIST_HEAD(&event->sibling_list);
10706         INIT_LIST_HEAD(&event->active_list);
10707         init_event_group(event);
10708         INIT_LIST_HEAD(&event->rb_entry);
10709         INIT_LIST_HEAD(&event->active_entry);
10710         INIT_LIST_HEAD(&event->addr_filters.list);
10711         INIT_HLIST_NODE(&event->hlist_entry);
10712
10713
10714         init_waitqueue_head(&event->waitq);
10715         event->pending_disable = -1;
10716         init_irq_work(&event->pending, perf_pending_event);
10717
10718         mutex_init(&event->mmap_mutex);
10719         raw_spin_lock_init(&event->addr_filters.lock);
10720
10721         atomic_long_set(&event->refcount, 1);
10722         event->cpu              = cpu;
10723         event->attr             = *attr;
10724         event->group_leader     = group_leader;
10725         event->pmu              = NULL;
10726         event->oncpu            = -1;
10727
10728         event->parent           = parent_event;
10729
10730         event->ns               = get_pid_ns(task_active_pid_ns(current));
10731         event->id               = atomic64_inc_return(&perf_event_id);
10732
10733         event->state            = PERF_EVENT_STATE_INACTIVE;
10734
10735         if (task) {
10736                 event->attach_state = PERF_ATTACH_TASK;
10737                 /*
10738                  * XXX pmu::event_init needs to know what task to account to
10739                  * and we cannot use the ctx information because we need the
10740                  * pmu before we get a ctx.
10741                  */
10742                 event->hw.target = get_task_struct(task);
10743         }
10744
10745         event->clock = &local_clock;
10746         if (parent_event)
10747                 event->clock = parent_event->clock;
10748
10749         if (!overflow_handler && parent_event) {
10750                 overflow_handler = parent_event->overflow_handler;
10751                 context = parent_event->overflow_handler_context;
10752 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10753                 if (overflow_handler == bpf_overflow_handler) {
10754                         struct bpf_prog *prog = parent_event->prog;
10755
10756                         bpf_prog_inc(prog);
10757                         event->prog = prog;
10758                         event->orig_overflow_handler =
10759                                 parent_event->orig_overflow_handler;
10760                 }
10761 #endif
10762         }
10763
10764         if (overflow_handler) {
10765                 event->overflow_handler = overflow_handler;
10766                 event->overflow_handler_context = context;
10767         } else if (is_write_backward(event)){
10768                 event->overflow_handler = perf_event_output_backward;
10769                 event->overflow_handler_context = NULL;
10770         } else {
10771                 event->overflow_handler = perf_event_output_forward;
10772                 event->overflow_handler_context = NULL;
10773         }
10774
10775         perf_event__state_init(event);
10776
10777         pmu = NULL;
10778
10779         hwc = &event->hw;
10780         hwc->sample_period = attr->sample_period;
10781         if (attr->freq && attr->sample_freq)
10782                 hwc->sample_period = 1;
10783         hwc->last_period = hwc->sample_period;
10784
10785         local64_set(&hwc->period_left, hwc->sample_period);
10786
10787         /*
10788          * We currently do not support PERF_SAMPLE_READ on inherited events.
10789          * See perf_output_read().
10790          */
10791         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10792                 goto err_ns;
10793
10794         if (!has_branch_stack(event))
10795                 event->attr.branch_sample_type = 0;
10796
10797         if (cgroup_fd != -1) {
10798                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10799                 if (err)
10800                         goto err_ns;
10801         }
10802
10803         pmu = perf_init_event(event);
10804         if (IS_ERR(pmu)) {
10805                 err = PTR_ERR(pmu);
10806                 goto err_ns;
10807         }
10808
10809         /*
10810          * Disallow uncore-cgroup events, they don't make sense as the cgroup will
10811          * be different on other CPUs in the uncore mask.
10812          */
10813         if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
10814                 err = -EINVAL;
10815                 goto err_pmu;
10816         }
10817
10818         if (event->attr.aux_output &&
10819             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
10820                 err = -EOPNOTSUPP;
10821                 goto err_pmu;
10822         }
10823
10824         err = exclusive_event_init(event);
10825         if (err)
10826                 goto err_pmu;
10827
10828         if (has_addr_filter(event)) {
10829                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10830                                                     sizeof(struct perf_addr_filter_range),
10831                                                     GFP_KERNEL);
10832                 if (!event->addr_filter_ranges) {
10833                         err = -ENOMEM;
10834                         goto err_per_task;
10835                 }
10836
10837                 /*
10838                  * Clone the parent's vma offsets: they are valid until exec()
10839                  * even if the mm is not shared with the parent.
10840                  */
10841                 if (event->parent) {
10842                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10843
10844                         raw_spin_lock_irq(&ifh->lock);
10845                         memcpy(event->addr_filter_ranges,
10846                                event->parent->addr_filter_ranges,
10847                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10848                         raw_spin_unlock_irq(&ifh->lock);
10849                 }
10850
10851                 /* force hw sync on the address filters */
10852                 event->addr_filters_gen = 1;
10853         }
10854
10855         if (!event->parent) {
10856                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10857                         err = get_callchain_buffers(attr->sample_max_stack);
10858                         if (err)
10859                                 goto err_addr_filters;
10860                 }
10861         }
10862
10863         err = security_perf_event_alloc(event);
10864         if (err)
10865                 goto err_callchain_buffer;
10866
10867         /* symmetric to unaccount_event() in _free_event() */
10868         account_event(event);
10869
10870         return event;
10871
10872 err_callchain_buffer:
10873         if (!event->parent) {
10874                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
10875                         put_callchain_buffers();
10876         }
10877 err_addr_filters:
10878         kfree(event->addr_filter_ranges);
10879
10880 err_per_task:
10881         exclusive_event_destroy(event);
10882
10883 err_pmu:
10884         if (event->destroy)
10885                 event->destroy(event);
10886         module_put(pmu->module);
10887 err_ns:
10888         if (is_cgroup_event(event))
10889                 perf_detach_cgroup(event);
10890         if (event->ns)
10891                 put_pid_ns(event->ns);
10892         if (event->hw.target)
10893                 put_task_struct(event->hw.target);
10894         kfree(event);
10895
10896         return ERR_PTR(err);
10897 }
10898
10899 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10900                           struct perf_event_attr *attr)
10901 {
10902         u32 size;
10903         int ret;
10904
10905         /* Zero the full structure, so that a short copy will be nice. */
10906         memset(attr, 0, sizeof(*attr));
10907
10908         ret = get_user(size, &uattr->size);
10909         if (ret)
10910                 return ret;
10911
10912         /* ABI compatibility quirk: */
10913         if (!size)
10914                 size = PERF_ATTR_SIZE_VER0;
10915         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
10916                 goto err_size;
10917
10918         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
10919         if (ret) {
10920                 if (ret == -E2BIG)
10921                         goto err_size;
10922                 return ret;
10923         }
10924
10925         attr->size = size;
10926
10927         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
10928                 return -EINVAL;
10929
10930         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10931                 return -EINVAL;
10932
10933         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10934                 return -EINVAL;
10935
10936         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10937                 u64 mask = attr->branch_sample_type;
10938
10939                 /* only using defined bits */
10940                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10941                         return -EINVAL;
10942
10943                 /* at least one branch bit must be set */
10944                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10945                         return -EINVAL;
10946
10947                 /* propagate priv level, when not set for branch */
10948                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10949
10950                         /* exclude_kernel checked on syscall entry */
10951                         if (!attr->exclude_kernel)
10952                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10953
10954                         if (!attr->exclude_user)
10955                                 mask |= PERF_SAMPLE_BRANCH_USER;
10956
10957                         if (!attr->exclude_hv)
10958                                 mask |= PERF_SAMPLE_BRANCH_HV;
10959                         /*
10960                          * adjust user setting (for HW filter setup)
10961                          */
10962                         attr->branch_sample_type = mask;
10963                 }
10964                 /* privileged levels capture (kernel, hv): check permissions */
10965                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
10966                         ret = perf_allow_kernel(attr);
10967                         if (ret)
10968                                 return ret;
10969                 }
10970         }
10971
10972         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10973                 ret = perf_reg_validate(attr->sample_regs_user);
10974                 if (ret)
10975                         return ret;
10976         }
10977
10978         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10979                 if (!arch_perf_have_user_stack_dump())
10980                         return -ENOSYS;
10981
10982                 /*
10983                  * We have __u32 type for the size, but so far
10984                  * we can only use __u16 as maximum due to the
10985                  * __u16 sample size limit.
10986                  */
10987                 if (attr->sample_stack_user >= USHRT_MAX)
10988                         return -EINVAL;
10989                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10990                         return -EINVAL;
10991         }
10992
10993         if (!attr->sample_max_stack)
10994                 attr->sample_max_stack = sysctl_perf_event_max_stack;
10995
10996         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10997                 ret = perf_reg_validate(attr->sample_regs_intr);
10998 out:
10999         return ret;
11000
11001 err_size:
11002         put_user(sizeof(*attr), &uattr->size);
11003         ret = -E2BIG;
11004         goto out;
11005 }
11006
11007 static int
11008 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11009 {
11010         struct perf_buffer *rb = NULL;
11011         int ret = -EINVAL;
11012
11013         if (!output_event)
11014                 goto set;
11015
11016         /* don't allow circular references */
11017         if (event == output_event)
11018                 goto out;
11019
11020         /*
11021          * Don't allow cross-cpu buffers
11022          */
11023         if (output_event->cpu != event->cpu)
11024                 goto out;
11025
11026         /*
11027          * If its not a per-cpu rb, it must be the same task.
11028          */
11029         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11030                 goto out;
11031
11032         /*
11033          * Mixing clocks in the same buffer is trouble you don't need.
11034          */
11035         if (output_event->clock != event->clock)
11036                 goto out;
11037
11038         /*
11039          * Either writing ring buffer from beginning or from end.
11040          * Mixing is not allowed.
11041          */
11042         if (is_write_backward(output_event) != is_write_backward(event))
11043                 goto out;
11044
11045         /*
11046          * If both events generate aux data, they must be on the same PMU
11047          */
11048         if (has_aux(event) && has_aux(output_event) &&
11049             event->pmu != output_event->pmu)
11050                 goto out;
11051
11052 set:
11053         mutex_lock(&event->mmap_mutex);
11054         /* Can't redirect output if we've got an active mmap() */
11055         if (atomic_read(&event->mmap_count))
11056                 goto unlock;
11057
11058         if (output_event) {
11059                 /* get the rb we want to redirect to */
11060                 rb = ring_buffer_get(output_event);
11061                 if (!rb)
11062                         goto unlock;
11063         }
11064
11065         ring_buffer_attach(event, rb);
11066
11067         ret = 0;
11068 unlock:
11069         mutex_unlock(&event->mmap_mutex);
11070
11071 out:
11072         return ret;
11073 }
11074
11075 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11076 {
11077         if (b < a)
11078                 swap(a, b);
11079
11080         mutex_lock(a);
11081         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11082 }
11083
11084 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11085 {
11086         bool nmi_safe = false;
11087
11088         switch (clk_id) {
11089         case CLOCK_MONOTONIC:
11090                 event->clock = &ktime_get_mono_fast_ns;
11091                 nmi_safe = true;
11092                 break;
11093
11094         case CLOCK_MONOTONIC_RAW:
11095                 event->clock = &ktime_get_raw_fast_ns;
11096                 nmi_safe = true;
11097                 break;
11098
11099         case CLOCK_REALTIME:
11100                 event->clock = &ktime_get_real_ns;
11101                 break;
11102
11103         case CLOCK_BOOTTIME:
11104                 event->clock = &ktime_get_boottime_ns;
11105                 break;
11106
11107         case CLOCK_TAI:
11108                 event->clock = &ktime_get_clocktai_ns;
11109                 break;
11110
11111         default:
11112                 return -EINVAL;
11113         }
11114
11115         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11116                 return -EINVAL;
11117
11118         return 0;
11119 }
11120
11121 /*
11122  * Variation on perf_event_ctx_lock_nested(), except we take two context
11123  * mutexes.
11124  */
11125 static struct perf_event_context *
11126 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11127                              struct perf_event_context *ctx)
11128 {
11129         struct perf_event_context *gctx;
11130
11131 again:
11132         rcu_read_lock();
11133         gctx = READ_ONCE(group_leader->ctx);
11134         if (!refcount_inc_not_zero(&gctx->refcount)) {
11135                 rcu_read_unlock();
11136                 goto again;
11137         }
11138         rcu_read_unlock();
11139
11140         mutex_lock_double(&gctx->mutex, &ctx->mutex);
11141
11142         if (group_leader->ctx != gctx) {
11143                 mutex_unlock(&ctx->mutex);
11144                 mutex_unlock(&gctx->mutex);
11145                 put_ctx(gctx);
11146                 goto again;
11147         }
11148
11149         return gctx;
11150 }
11151
11152 /**
11153  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11154  *
11155  * @attr_uptr:  event_id type attributes for monitoring/sampling
11156  * @pid:                target pid
11157  * @cpu:                target cpu
11158  * @group_fd:           group leader event fd
11159  */
11160 SYSCALL_DEFINE5(perf_event_open,
11161                 struct perf_event_attr __user *, attr_uptr,
11162                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11163 {
11164         struct perf_event *group_leader = NULL, *output_event = NULL;
11165         struct perf_event *event, *sibling;
11166         struct perf_event_attr attr;
11167         struct perf_event_context *ctx, *uninitialized_var(gctx);
11168         struct file *event_file = NULL;
11169         struct fd group = {NULL, 0};
11170         struct task_struct *task = NULL;
11171         struct pmu *pmu;
11172         int event_fd;
11173         int move_group = 0;
11174         int err;
11175         int f_flags = O_RDWR;
11176         int cgroup_fd = -1;
11177
11178         /* for future expandability... */
11179         if (flags & ~PERF_FLAG_ALL)
11180                 return -EINVAL;
11181
11182         /* Do we allow access to perf_event_open(2) ? */
11183         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11184         if (err)
11185                 return err;
11186
11187         err = perf_copy_attr(attr_uptr, &attr);
11188         if (err)
11189                 return err;
11190
11191         if (!attr.exclude_kernel) {
11192                 err = perf_allow_kernel(&attr);
11193                 if (err)
11194                         return err;
11195         }
11196
11197         if (attr.namespaces) {
11198                 if (!capable(CAP_SYS_ADMIN))
11199                         return -EACCES;
11200         }
11201
11202         if (attr.freq) {
11203                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
11204                         return -EINVAL;
11205         } else {
11206                 if (attr.sample_period & (1ULL << 63))
11207                         return -EINVAL;
11208         }
11209
11210         /* Only privileged users can get physical addresses */
11211         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11212                 err = perf_allow_kernel(&attr);
11213                 if (err)
11214                         return err;
11215         }
11216
11217         err = security_locked_down(LOCKDOWN_PERF);
11218         if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11219                 /* REGS_INTR can leak data, lockdown must prevent this */
11220                 return err;
11221
11222         err = 0;
11223
11224         /*
11225          * In cgroup mode, the pid argument is used to pass the fd
11226          * opened to the cgroup directory in cgroupfs. The cpu argument
11227          * designates the cpu on which to monitor threads from that
11228          * cgroup.
11229          */
11230         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11231                 return -EINVAL;
11232
11233         if (flags & PERF_FLAG_FD_CLOEXEC)
11234                 f_flags |= O_CLOEXEC;
11235
11236         event_fd = get_unused_fd_flags(f_flags);
11237         if (event_fd < 0)
11238                 return event_fd;
11239
11240         if (group_fd != -1) {
11241                 err = perf_fget_light(group_fd, &group);
11242                 if (err)
11243                         goto err_fd;
11244                 group_leader = group.file->private_data;
11245                 if (flags & PERF_FLAG_FD_OUTPUT)
11246                         output_event = group_leader;
11247                 if (flags & PERF_FLAG_FD_NO_GROUP)
11248                         group_leader = NULL;
11249         }
11250
11251         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11252                 task = find_lively_task_by_vpid(pid);
11253                 if (IS_ERR(task)) {
11254                         err = PTR_ERR(task);
11255                         goto err_group_fd;
11256                 }
11257         }
11258
11259         if (task && group_leader &&
11260             group_leader->attr.inherit != attr.inherit) {
11261                 err = -EINVAL;
11262                 goto err_task;
11263         }
11264
11265         if (task) {
11266                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
11267                 if (err)
11268                         goto err_task;
11269
11270                 /*
11271                  * Reuse ptrace permission checks for now.
11272                  *
11273                  * We must hold cred_guard_mutex across this and any potential
11274                  * perf_install_in_context() call for this new event to
11275                  * serialize against exec() altering our credentials (and the
11276                  * perf_event_exit_task() that could imply).
11277                  */
11278                 err = -EACCES;
11279                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11280                         goto err_cred;
11281         }
11282
11283         if (flags & PERF_FLAG_PID_CGROUP)
11284                 cgroup_fd = pid;
11285
11286         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11287                                  NULL, NULL, cgroup_fd);
11288         if (IS_ERR(event)) {
11289                 err = PTR_ERR(event);
11290                 goto err_cred;
11291         }
11292
11293         if (is_sampling_event(event)) {
11294                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11295                         err = -EOPNOTSUPP;
11296                         goto err_alloc;
11297                 }
11298         }
11299
11300         /*
11301          * Special case software events and allow them to be part of
11302          * any hardware group.
11303          */
11304         pmu = event->pmu;
11305
11306         if (attr.use_clockid) {
11307                 err = perf_event_set_clock(event, attr.clockid);
11308                 if (err)
11309                         goto err_alloc;
11310         }
11311
11312         if (pmu->task_ctx_nr == perf_sw_context)
11313                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11314
11315         if (group_leader) {
11316                 if (is_software_event(event) &&
11317                     !in_software_context(group_leader)) {
11318                         /*
11319                          * If the event is a sw event, but the group_leader
11320                          * is on hw context.
11321                          *
11322                          * Allow the addition of software events to hw
11323                          * groups, this is safe because software events
11324                          * never fail to schedule.
11325                          */
11326                         pmu = group_leader->ctx->pmu;
11327                 } else if (!is_software_event(event) &&
11328                            is_software_event(group_leader) &&
11329                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11330                         /*
11331                          * In case the group is a pure software group, and we
11332                          * try to add a hardware event, move the whole group to
11333                          * the hardware context.
11334                          */
11335                         move_group = 1;
11336                 }
11337         }
11338
11339         /*
11340          * Get the target context (task or percpu):
11341          */
11342         ctx = find_get_context(pmu, task, event);
11343         if (IS_ERR(ctx)) {
11344                 err = PTR_ERR(ctx);
11345                 goto err_alloc;
11346         }
11347
11348         /*
11349          * Look up the group leader (we will attach this event to it):
11350          */
11351         if (group_leader) {
11352                 err = -EINVAL;
11353
11354                 /*
11355                  * Do not allow a recursive hierarchy (this new sibling
11356                  * becoming part of another group-sibling):
11357                  */
11358                 if (group_leader->group_leader != group_leader)
11359                         goto err_context;
11360
11361                 /* All events in a group should have the same clock */
11362                 if (group_leader->clock != event->clock)
11363                         goto err_context;
11364
11365                 /*
11366                  * Make sure we're both events for the same CPU;
11367                  * grouping events for different CPUs is broken; since
11368                  * you can never concurrently schedule them anyhow.
11369                  */
11370                 if (group_leader->cpu != event->cpu)
11371                         goto err_context;
11372
11373                 /*
11374                  * Make sure we're both on the same task, or both
11375                  * per-CPU events.
11376                  */
11377                 if (group_leader->ctx->task != ctx->task)
11378                         goto err_context;
11379
11380                 /*
11381                  * Do not allow to attach to a group in a different task
11382                  * or CPU context. If we're moving SW events, we'll fix
11383                  * this up later, so allow that.
11384                  */
11385                 if (!move_group && group_leader->ctx != ctx)
11386                         goto err_context;
11387
11388                 /*
11389                  * Only a group leader can be exclusive or pinned
11390                  */
11391                 if (attr.exclusive || attr.pinned)
11392                         goto err_context;
11393         }
11394
11395         if (output_event) {
11396                 err = perf_event_set_output(event, output_event);
11397                 if (err)
11398                         goto err_context;
11399         }
11400
11401         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11402                                         f_flags);
11403         if (IS_ERR(event_file)) {
11404                 err = PTR_ERR(event_file);
11405                 event_file = NULL;
11406                 goto err_context;
11407         }
11408
11409         if (move_group) {
11410                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11411
11412                 if (gctx->task == TASK_TOMBSTONE) {
11413                         err = -ESRCH;
11414                         goto err_locked;
11415                 }
11416
11417                 /*
11418                  * Check if we raced against another sys_perf_event_open() call
11419                  * moving the software group underneath us.
11420                  */
11421                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11422                         /*
11423                          * If someone moved the group out from under us, check
11424                          * if this new event wound up on the same ctx, if so
11425                          * its the regular !move_group case, otherwise fail.
11426                          */
11427                         if (gctx != ctx) {
11428                                 err = -EINVAL;
11429                                 goto err_locked;
11430                         } else {
11431                                 perf_event_ctx_unlock(group_leader, gctx);
11432                                 move_group = 0;
11433                         }
11434                 }
11435
11436                 /*
11437                  * Failure to create exclusive events returns -EBUSY.
11438                  */
11439                 err = -EBUSY;
11440                 if (!exclusive_event_installable(group_leader, ctx))
11441                         goto err_locked;
11442
11443                 for_each_sibling_event(sibling, group_leader) {
11444                         if (!exclusive_event_installable(sibling, ctx))
11445                                 goto err_locked;
11446                 }
11447         } else {
11448                 mutex_lock(&ctx->mutex);
11449         }
11450
11451         if (ctx->task == TASK_TOMBSTONE) {
11452                 err = -ESRCH;
11453                 goto err_locked;
11454         }
11455
11456         if (!perf_event_validate_size(event)) {
11457                 err = -E2BIG;
11458                 goto err_locked;
11459         }
11460
11461         if (!task) {
11462                 /*
11463                  * Check if the @cpu we're creating an event for is online.
11464                  *
11465                  * We use the perf_cpu_context::ctx::mutex to serialize against
11466                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11467                  */
11468                 struct perf_cpu_context *cpuctx =
11469                         container_of(ctx, struct perf_cpu_context, ctx);
11470
11471                 if (!cpuctx->online) {
11472                         err = -ENODEV;
11473                         goto err_locked;
11474                 }
11475         }
11476
11477         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
11478                 err = -EINVAL;
11479                 goto err_locked;
11480         }
11481
11482         /*
11483          * Must be under the same ctx::mutex as perf_install_in_context(),
11484          * because we need to serialize with concurrent event creation.
11485          */
11486         if (!exclusive_event_installable(event, ctx)) {
11487                 err = -EBUSY;
11488                 goto err_locked;
11489         }
11490
11491         WARN_ON_ONCE(ctx->parent_ctx);
11492
11493         /*
11494          * This is the point on no return; we cannot fail hereafter. This is
11495          * where we start modifying current state.
11496          */
11497
11498         if (move_group) {
11499                 /*
11500                  * See perf_event_ctx_lock() for comments on the details
11501                  * of swizzling perf_event::ctx.
11502                  */
11503                 perf_remove_from_context(group_leader, 0);
11504                 put_ctx(gctx);
11505
11506                 for_each_sibling_event(sibling, group_leader) {
11507                         perf_remove_from_context(sibling, 0);
11508                         put_ctx(gctx);
11509                 }
11510
11511                 /*
11512                  * Wait for everybody to stop referencing the events through
11513                  * the old lists, before installing it on new lists.
11514                  */
11515                 synchronize_rcu();
11516
11517                 /*
11518                  * Install the group siblings before the group leader.
11519                  *
11520                  * Because a group leader will try and install the entire group
11521                  * (through the sibling list, which is still in-tact), we can
11522                  * end up with siblings installed in the wrong context.
11523                  *
11524                  * By installing siblings first we NO-OP because they're not
11525                  * reachable through the group lists.
11526                  */
11527                 for_each_sibling_event(sibling, group_leader) {
11528                         perf_event__state_init(sibling);
11529                         perf_install_in_context(ctx, sibling, sibling->cpu);
11530                         get_ctx(ctx);
11531                 }
11532
11533                 /*
11534                  * Removing from the context ends up with disabled
11535                  * event. What we want here is event in the initial
11536                  * startup state, ready to be add into new context.
11537                  */
11538                 perf_event__state_init(group_leader);
11539                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11540                 get_ctx(ctx);
11541         }
11542
11543         /*
11544          * Precalculate sample_data sizes; do while holding ctx::mutex such
11545          * that we're serialized against further additions and before
11546          * perf_install_in_context() which is the point the event is active and
11547          * can use these values.
11548          */
11549         perf_event__header_size(event);
11550         perf_event__id_header_size(event);
11551
11552         event->owner = current;
11553
11554         perf_install_in_context(ctx, event, event->cpu);
11555         perf_unpin_context(ctx);
11556
11557         if (move_group)
11558                 perf_event_ctx_unlock(group_leader, gctx);
11559         mutex_unlock(&ctx->mutex);
11560
11561         if (task) {
11562                 mutex_unlock(&task->signal->cred_guard_mutex);
11563                 put_task_struct(task);
11564         }
11565
11566         mutex_lock(&current->perf_event_mutex);
11567         list_add_tail(&event->owner_entry, &current->perf_event_list);
11568         mutex_unlock(&current->perf_event_mutex);
11569
11570         /*
11571          * Drop the reference on the group_event after placing the
11572          * new event on the sibling_list. This ensures destruction
11573          * of the group leader will find the pointer to itself in
11574          * perf_group_detach().
11575          */
11576         fdput(group);
11577         fd_install(event_fd, event_file);
11578         return event_fd;
11579
11580 err_locked:
11581         if (move_group)
11582                 perf_event_ctx_unlock(group_leader, gctx);
11583         mutex_unlock(&ctx->mutex);
11584 /* err_file: */
11585         fput(event_file);
11586 err_context:
11587         perf_unpin_context(ctx);
11588         put_ctx(ctx);
11589 err_alloc:
11590         /*
11591          * If event_file is set, the fput() above will have called ->release()
11592          * and that will take care of freeing the event.
11593          */
11594         if (!event_file)
11595                 free_event(event);
11596 err_cred:
11597         if (task)
11598                 mutex_unlock(&task->signal->cred_guard_mutex);
11599 err_task:
11600         if (task)
11601                 put_task_struct(task);
11602 err_group_fd:
11603         fdput(group);
11604 err_fd:
11605         put_unused_fd(event_fd);
11606         return err;
11607 }
11608
11609 /**
11610  * perf_event_create_kernel_counter
11611  *
11612  * @attr: attributes of the counter to create
11613  * @cpu: cpu in which the counter is bound
11614  * @task: task to profile (NULL for percpu)
11615  */
11616 struct perf_event *
11617 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11618                                  struct task_struct *task,
11619                                  perf_overflow_handler_t overflow_handler,
11620                                  void *context)
11621 {
11622         struct perf_event_context *ctx;
11623         struct perf_event *event;
11624         int err;
11625
11626         /*
11627          * Grouping is not supported for kernel events, neither is 'AUX',
11628          * make sure the caller's intentions are adjusted.
11629          */
11630         if (attr->aux_output)
11631                 return ERR_PTR(-EINVAL);
11632
11633         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11634                                  overflow_handler, context, -1);
11635         if (IS_ERR(event)) {
11636                 err = PTR_ERR(event);
11637                 goto err;
11638         }
11639
11640         /* Mark owner so we could distinguish it from user events. */
11641         event->owner = TASK_TOMBSTONE;
11642
11643         /*
11644          * Get the target context (task or percpu):
11645          */
11646         ctx = find_get_context(event->pmu, task, event);
11647         if (IS_ERR(ctx)) {
11648                 err = PTR_ERR(ctx);
11649                 goto err_free;
11650         }
11651
11652         WARN_ON_ONCE(ctx->parent_ctx);
11653         mutex_lock(&ctx->mutex);
11654         if (ctx->task == TASK_TOMBSTONE) {
11655                 err = -ESRCH;
11656                 goto err_unlock;
11657         }
11658
11659         if (!task) {
11660                 /*
11661                  * Check if the @cpu we're creating an event for is online.
11662                  *
11663                  * We use the perf_cpu_context::ctx::mutex to serialize against
11664                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11665                  */
11666                 struct perf_cpu_context *cpuctx =
11667                         container_of(ctx, struct perf_cpu_context, ctx);
11668                 if (!cpuctx->online) {
11669                         err = -ENODEV;
11670                         goto err_unlock;
11671                 }
11672         }
11673
11674         if (!exclusive_event_installable(event, ctx)) {
11675                 err = -EBUSY;
11676                 goto err_unlock;
11677         }
11678
11679         perf_install_in_context(ctx, event, event->cpu);
11680         perf_unpin_context(ctx);
11681         mutex_unlock(&ctx->mutex);
11682
11683         return event;
11684
11685 err_unlock:
11686         mutex_unlock(&ctx->mutex);
11687         perf_unpin_context(ctx);
11688         put_ctx(ctx);
11689 err_free:
11690         free_event(event);
11691 err:
11692         return ERR_PTR(err);
11693 }
11694 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11695
11696 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11697 {
11698         struct perf_event_context *src_ctx;
11699         struct perf_event_context *dst_ctx;
11700         struct perf_event *event, *tmp;
11701         LIST_HEAD(events);
11702
11703         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11704         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11705
11706         /*
11707          * See perf_event_ctx_lock() for comments on the details
11708          * of swizzling perf_event::ctx.
11709          */
11710         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11711         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11712                                  event_entry) {
11713                 perf_remove_from_context(event, 0);
11714                 unaccount_event_cpu(event, src_cpu);
11715                 put_ctx(src_ctx);
11716                 list_add(&event->migrate_entry, &events);
11717         }
11718
11719         /*
11720          * Wait for the events to quiesce before re-instating them.
11721          */
11722         synchronize_rcu();
11723
11724         /*
11725          * Re-instate events in 2 passes.
11726          *
11727          * Skip over group leaders and only install siblings on this first
11728          * pass, siblings will not get enabled without a leader, however a
11729          * leader will enable its siblings, even if those are still on the old
11730          * context.
11731          */
11732         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11733                 if (event->group_leader == event)
11734                         continue;
11735
11736                 list_del(&event->migrate_entry);
11737                 if (event->state >= PERF_EVENT_STATE_OFF)
11738                         event->state = PERF_EVENT_STATE_INACTIVE;
11739                 account_event_cpu(event, dst_cpu);
11740                 perf_install_in_context(dst_ctx, event, dst_cpu);
11741                 get_ctx(dst_ctx);
11742         }
11743
11744         /*
11745          * Once all the siblings are setup properly, install the group leaders
11746          * to make it go.
11747          */
11748         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11749                 list_del(&event->migrate_entry);
11750                 if (event->state >= PERF_EVENT_STATE_OFF)
11751                         event->state = PERF_EVENT_STATE_INACTIVE;
11752                 account_event_cpu(event, dst_cpu);
11753                 perf_install_in_context(dst_ctx, event, dst_cpu);
11754                 get_ctx(dst_ctx);
11755         }
11756         mutex_unlock(&dst_ctx->mutex);
11757         mutex_unlock(&src_ctx->mutex);
11758 }
11759 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11760
11761 static void sync_child_event(struct perf_event *child_event,
11762                                struct task_struct *child)
11763 {
11764         struct perf_event *parent_event = child_event->parent;
11765         u64 child_val;
11766
11767         if (child_event->attr.inherit_stat)
11768                 perf_event_read_event(child_event, child);
11769
11770         child_val = perf_event_count(child_event);
11771
11772         /*
11773          * Add back the child's count to the parent's count:
11774          */
11775         atomic64_add(child_val, &parent_event->child_count);
11776         atomic64_add(child_event->total_time_enabled,
11777                      &parent_event->child_total_time_enabled);
11778         atomic64_add(child_event->total_time_running,
11779                      &parent_event->child_total_time_running);
11780 }
11781
11782 static void
11783 perf_event_exit_event(struct perf_event *child_event,
11784                       struct perf_event_context *child_ctx,
11785                       struct task_struct *child)
11786 {
11787         struct perf_event *parent_event = child_event->parent;
11788
11789         /*
11790          * Do not destroy the 'original' grouping; because of the context
11791          * switch optimization the original events could've ended up in a
11792          * random child task.
11793          *
11794          * If we were to destroy the original group, all group related
11795          * operations would cease to function properly after this random
11796          * child dies.
11797          *
11798          * Do destroy all inherited groups, we don't care about those
11799          * and being thorough is better.
11800          */
11801         raw_spin_lock_irq(&child_ctx->lock);
11802         WARN_ON_ONCE(child_ctx->is_active);
11803
11804         if (parent_event)
11805                 perf_group_detach(child_event);
11806         list_del_event(child_event, child_ctx);
11807         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11808         raw_spin_unlock_irq(&child_ctx->lock);
11809
11810         /*
11811          * Parent events are governed by their filedesc, retain them.
11812          */
11813         if (!parent_event) {
11814                 perf_event_wakeup(child_event);
11815                 return;
11816         }
11817         /*
11818          * Child events can be cleaned up.
11819          */
11820
11821         sync_child_event(child_event, child);
11822
11823         /*
11824          * Remove this event from the parent's list
11825          */
11826         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11827         mutex_lock(&parent_event->child_mutex);
11828         list_del_init(&child_event->child_list);
11829         mutex_unlock(&parent_event->child_mutex);
11830
11831         /*
11832          * Kick perf_poll() for is_event_hup().
11833          */
11834         perf_event_wakeup(parent_event);
11835         free_event(child_event);
11836         put_event(parent_event);
11837 }
11838
11839 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11840 {
11841         struct perf_event_context *child_ctx, *clone_ctx = NULL;
11842         struct perf_event *child_event, *next;
11843
11844         WARN_ON_ONCE(child != current);
11845
11846         child_ctx = perf_pin_task_context(child, ctxn);
11847         if (!child_ctx)
11848                 return;
11849
11850         /*
11851          * In order to reduce the amount of tricky in ctx tear-down, we hold
11852          * ctx::mutex over the entire thing. This serializes against almost
11853          * everything that wants to access the ctx.
11854          *
11855          * The exception is sys_perf_event_open() /
11856          * perf_event_create_kernel_count() which does find_get_context()
11857          * without ctx::mutex (it cannot because of the move_group double mutex
11858          * lock thing). See the comments in perf_install_in_context().
11859          */
11860         mutex_lock(&child_ctx->mutex);
11861
11862         /*
11863          * In a single ctx::lock section, de-schedule the events and detach the
11864          * context from the task such that we cannot ever get it scheduled back
11865          * in.
11866          */
11867         raw_spin_lock_irq(&child_ctx->lock);
11868         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11869
11870         /*
11871          * Now that the context is inactive, destroy the task <-> ctx relation
11872          * and mark the context dead.
11873          */
11874         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11875         put_ctx(child_ctx); /* cannot be last */
11876         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11877         put_task_struct(current); /* cannot be last */
11878
11879         clone_ctx = unclone_ctx(child_ctx);
11880         raw_spin_unlock_irq(&child_ctx->lock);
11881
11882         if (clone_ctx)
11883                 put_ctx(clone_ctx);
11884
11885         /*
11886          * Report the task dead after unscheduling the events so that we
11887          * won't get any samples after PERF_RECORD_EXIT. We can however still
11888          * get a few PERF_RECORD_READ events.
11889          */
11890         perf_event_task(child, child_ctx, 0);
11891
11892         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11893                 perf_event_exit_event(child_event, child_ctx, child);
11894
11895         mutex_unlock(&child_ctx->mutex);
11896
11897         put_ctx(child_ctx);
11898 }
11899
11900 /*
11901  * When a child task exits, feed back event values to parent events.
11902  *
11903  * Can be called with cred_guard_mutex held when called from
11904  * install_exec_creds().
11905  */
11906 void perf_event_exit_task(struct task_struct *child)
11907 {
11908         struct perf_event *event, *tmp;
11909         int ctxn;
11910
11911         mutex_lock(&child->perf_event_mutex);
11912         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11913                                  owner_entry) {
11914                 list_del_init(&event->owner_entry);
11915
11916                 /*
11917                  * Ensure the list deletion is visible before we clear
11918                  * the owner, closes a race against perf_release() where
11919                  * we need to serialize on the owner->perf_event_mutex.
11920                  */
11921                 smp_store_release(&event->owner, NULL);
11922         }
11923         mutex_unlock(&child->perf_event_mutex);
11924
11925         for_each_task_context_nr(ctxn)
11926                 perf_event_exit_task_context(child, ctxn);
11927
11928         /*
11929          * The perf_event_exit_task_context calls perf_event_task
11930          * with child's task_ctx, which generates EXIT events for
11931          * child contexts and sets child->perf_event_ctxp[] to NULL.
11932          * At this point we need to send EXIT events to cpu contexts.
11933          */
11934         perf_event_task(child, NULL, 0);
11935 }
11936
11937 static void perf_free_event(struct perf_event *event,
11938                             struct perf_event_context *ctx)
11939 {
11940         struct perf_event *parent = event->parent;
11941
11942         if (WARN_ON_ONCE(!parent))
11943                 return;
11944
11945         mutex_lock(&parent->child_mutex);
11946         list_del_init(&event->child_list);
11947         mutex_unlock(&parent->child_mutex);
11948
11949         put_event(parent);
11950
11951         raw_spin_lock_irq(&ctx->lock);
11952         perf_group_detach(event);
11953         list_del_event(event, ctx);
11954         raw_spin_unlock_irq(&ctx->lock);
11955         free_event(event);
11956 }
11957
11958 /*
11959  * Free a context as created by inheritance by perf_event_init_task() below,
11960  * used by fork() in case of fail.
11961  *
11962  * Even though the task has never lived, the context and events have been
11963  * exposed through the child_list, so we must take care tearing it all down.
11964  */
11965 void perf_event_free_task(struct task_struct *task)
11966 {
11967         struct perf_event_context *ctx;
11968         struct perf_event *event, *tmp;
11969         int ctxn;
11970
11971         for_each_task_context_nr(ctxn) {
11972                 ctx = task->perf_event_ctxp[ctxn];
11973                 if (!ctx)
11974                         continue;
11975
11976                 mutex_lock(&ctx->mutex);
11977                 raw_spin_lock_irq(&ctx->lock);
11978                 /*
11979                  * Destroy the task <-> ctx relation and mark the context dead.
11980                  *
11981                  * This is important because even though the task hasn't been
11982                  * exposed yet the context has been (through child_list).
11983                  */
11984                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11985                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11986                 put_task_struct(task); /* cannot be last */
11987                 raw_spin_unlock_irq(&ctx->lock);
11988
11989                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11990                         perf_free_event(event, ctx);
11991
11992                 mutex_unlock(&ctx->mutex);
11993
11994                 /*
11995                  * perf_event_release_kernel() could've stolen some of our
11996                  * child events and still have them on its free_list. In that
11997                  * case we must wait for these events to have been freed (in
11998                  * particular all their references to this task must've been
11999                  * dropped).
12000                  *
12001                  * Without this copy_process() will unconditionally free this
12002                  * task (irrespective of its reference count) and
12003                  * _free_event()'s put_task_struct(event->hw.target) will be a
12004                  * use-after-free.
12005                  *
12006                  * Wait for all events to drop their context reference.
12007                  */
12008                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12009                 put_ctx(ctx); /* must be last */
12010         }
12011 }
12012
12013 void perf_event_delayed_put(struct task_struct *task)
12014 {
12015         int ctxn;
12016
12017         for_each_task_context_nr(ctxn)
12018                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12019 }
12020
12021 struct file *perf_event_get(unsigned int fd)
12022 {
12023         struct file *file = fget(fd);
12024         if (!file)
12025                 return ERR_PTR(-EBADF);
12026
12027         if (file->f_op != &perf_fops) {
12028                 fput(file);
12029                 return ERR_PTR(-EBADF);
12030         }
12031
12032         return file;
12033 }
12034
12035 const struct perf_event *perf_get_event(struct file *file)
12036 {
12037         if (file->f_op != &perf_fops)
12038                 return ERR_PTR(-EINVAL);
12039
12040         return file->private_data;
12041 }
12042
12043 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12044 {
12045         if (!event)
12046                 return ERR_PTR(-EINVAL);
12047
12048         return &event->attr;
12049 }
12050
12051 /*
12052  * Inherit an event from parent task to child task.
12053  *
12054  * Returns:
12055  *  - valid pointer on success
12056  *  - NULL for orphaned events
12057  *  - IS_ERR() on error
12058  */
12059 static struct perf_event *
12060 inherit_event(struct perf_event *parent_event,
12061               struct task_struct *parent,
12062               struct perf_event_context *parent_ctx,
12063               struct task_struct *child,
12064               struct perf_event *group_leader,
12065               struct perf_event_context *child_ctx)
12066 {
12067         enum perf_event_state parent_state = parent_event->state;
12068         struct perf_event *child_event;
12069         unsigned long flags;
12070
12071         /*
12072          * Instead of creating recursive hierarchies of events,
12073          * we link inherited events back to the original parent,
12074          * which has a filp for sure, which we use as the reference
12075          * count:
12076          */
12077         if (parent_event->parent)
12078                 parent_event = parent_event->parent;
12079
12080         child_event = perf_event_alloc(&parent_event->attr,
12081                                            parent_event->cpu,
12082                                            child,
12083                                            group_leader, parent_event,
12084                                            NULL, NULL, -1);
12085         if (IS_ERR(child_event))
12086                 return child_event;
12087
12088
12089         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12090             !child_ctx->task_ctx_data) {
12091                 struct pmu *pmu = child_event->pmu;
12092
12093                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
12094                                                    GFP_KERNEL);
12095                 if (!child_ctx->task_ctx_data) {
12096                         free_event(child_event);
12097                         return ERR_PTR(-ENOMEM);
12098                 }
12099         }
12100
12101         /*
12102          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12103          * must be under the same lock in order to serialize against
12104          * perf_event_release_kernel(), such that either we must observe
12105          * is_orphaned_event() or they will observe us on the child_list.
12106          */
12107         mutex_lock(&parent_event->child_mutex);
12108         if (is_orphaned_event(parent_event) ||
12109             !atomic_long_inc_not_zero(&parent_event->refcount)) {
12110                 mutex_unlock(&parent_event->child_mutex);
12111                 /* task_ctx_data is freed with child_ctx */
12112                 free_event(child_event);
12113                 return NULL;
12114         }
12115
12116         get_ctx(child_ctx);
12117
12118         /*
12119          * Make the child state follow the state of the parent event,
12120          * not its attr.disabled bit.  We hold the parent's mutex,
12121          * so we won't race with perf_event_{en, dis}able_family.
12122          */
12123         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12124                 child_event->state = PERF_EVENT_STATE_INACTIVE;
12125         else
12126                 child_event->state = PERF_EVENT_STATE_OFF;
12127
12128         if (parent_event->attr.freq) {
12129                 u64 sample_period = parent_event->hw.sample_period;
12130                 struct hw_perf_event *hwc = &child_event->hw;
12131
12132                 hwc->sample_period = sample_period;
12133                 hwc->last_period   = sample_period;
12134
12135                 local64_set(&hwc->period_left, sample_period);
12136         }
12137
12138         child_event->ctx = child_ctx;
12139         child_event->overflow_handler = parent_event->overflow_handler;
12140         child_event->overflow_handler_context
12141                 = parent_event->overflow_handler_context;
12142
12143         /*
12144          * Precalculate sample_data sizes
12145          */
12146         perf_event__header_size(child_event);
12147         perf_event__id_header_size(child_event);
12148
12149         /*
12150          * Link it up in the child's context:
12151          */
12152         raw_spin_lock_irqsave(&child_ctx->lock, flags);
12153         add_event_to_ctx(child_event, child_ctx);
12154         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12155
12156         /*
12157          * Link this into the parent event's child list
12158          */
12159         list_add_tail(&child_event->child_list, &parent_event->child_list);
12160         mutex_unlock(&parent_event->child_mutex);
12161
12162         return child_event;
12163 }
12164
12165 /*
12166  * Inherits an event group.
12167  *
12168  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12169  * This matches with perf_event_release_kernel() removing all child events.
12170  *
12171  * Returns:
12172  *  - 0 on success
12173  *  - <0 on error
12174  */
12175 static int inherit_group(struct perf_event *parent_event,
12176               struct task_struct *parent,
12177               struct perf_event_context *parent_ctx,
12178               struct task_struct *child,
12179               struct perf_event_context *child_ctx)
12180 {
12181         struct perf_event *leader;
12182         struct perf_event *sub;
12183         struct perf_event *child_ctr;
12184
12185         leader = inherit_event(parent_event, parent, parent_ctx,
12186                                  child, NULL, child_ctx);
12187         if (IS_ERR(leader))
12188                 return PTR_ERR(leader);
12189         /*
12190          * @leader can be NULL here because of is_orphaned_event(). In this
12191          * case inherit_event() will create individual events, similar to what
12192          * perf_group_detach() would do anyway.
12193          */
12194         for_each_sibling_event(sub, parent_event) {
12195                 child_ctr = inherit_event(sub, parent, parent_ctx,
12196                                             child, leader, child_ctx);
12197                 if (IS_ERR(child_ctr))
12198                         return PTR_ERR(child_ctr);
12199
12200                 if (sub->aux_event == parent_event && child_ctr &&
12201                     !perf_get_aux_event(child_ctr, leader))
12202                         return -EINVAL;
12203         }
12204         return 0;
12205 }
12206
12207 /*
12208  * Creates the child task context and tries to inherit the event-group.
12209  *
12210  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12211  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12212  * consistent with perf_event_release_kernel() removing all child events.
12213  *
12214  * Returns:
12215  *  - 0 on success
12216  *  - <0 on error
12217  */
12218 static int
12219 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12220                    struct perf_event_context *parent_ctx,
12221                    struct task_struct *child, int ctxn,
12222                    int *inherited_all)
12223 {
12224         int ret;
12225         struct perf_event_context *child_ctx;
12226
12227         if (!event->attr.inherit) {
12228                 *inherited_all = 0;
12229                 return 0;
12230         }
12231
12232         child_ctx = child->perf_event_ctxp[ctxn];
12233         if (!child_ctx) {
12234                 /*
12235                  * This is executed from the parent task context, so
12236                  * inherit events that have been marked for cloning.
12237                  * First allocate and initialize a context for the
12238                  * child.
12239                  */
12240                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12241                 if (!child_ctx)
12242                         return -ENOMEM;
12243
12244                 child->perf_event_ctxp[ctxn] = child_ctx;
12245         }
12246
12247         ret = inherit_group(event, parent, parent_ctx,
12248                             child, child_ctx);
12249
12250         if (ret)
12251                 *inherited_all = 0;
12252
12253         return ret;
12254 }
12255
12256 /*
12257  * Initialize the perf_event context in task_struct
12258  */
12259 static int perf_event_init_context(struct task_struct *child, int ctxn)
12260 {
12261         struct perf_event_context *child_ctx, *parent_ctx;
12262         struct perf_event_context *cloned_ctx;
12263         struct perf_event *event;
12264         struct task_struct *parent = current;
12265         int inherited_all = 1;
12266         unsigned long flags;
12267         int ret = 0;
12268
12269         if (likely(!parent->perf_event_ctxp[ctxn]))
12270                 return 0;
12271
12272         /*
12273          * If the parent's context is a clone, pin it so it won't get
12274          * swapped under us.
12275          */
12276         parent_ctx = perf_pin_task_context(parent, ctxn);
12277         if (!parent_ctx)
12278                 return 0;
12279
12280         /*
12281          * No need to check if parent_ctx != NULL here; since we saw
12282          * it non-NULL earlier, the only reason for it to become NULL
12283          * is if we exit, and since we're currently in the middle of
12284          * a fork we can't be exiting at the same time.
12285          */
12286
12287         /*
12288          * Lock the parent list. No need to lock the child - not PID
12289          * hashed yet and not running, so nobody can access it.
12290          */
12291         mutex_lock(&parent_ctx->mutex);
12292
12293         /*
12294          * We dont have to disable NMIs - we are only looking at
12295          * the list, not manipulating it:
12296          */
12297         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12298                 ret = inherit_task_group(event, parent, parent_ctx,
12299                                          child, ctxn, &inherited_all);
12300                 if (ret)
12301                         goto out_unlock;
12302         }
12303
12304         /*
12305          * We can't hold ctx->lock when iterating the ->flexible_group list due
12306          * to allocations, but we need to prevent rotation because
12307          * rotate_ctx() will change the list from interrupt context.
12308          */
12309         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12310         parent_ctx->rotate_disable = 1;
12311         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12312
12313         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12314                 ret = inherit_task_group(event, parent, parent_ctx,
12315                                          child, ctxn, &inherited_all);
12316                 if (ret)
12317                         goto out_unlock;
12318         }
12319
12320         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12321         parent_ctx->rotate_disable = 0;
12322
12323         child_ctx = child->perf_event_ctxp[ctxn];
12324
12325         if (child_ctx && inherited_all) {
12326                 /*
12327                  * Mark the child context as a clone of the parent
12328                  * context, or of whatever the parent is a clone of.
12329                  *
12330                  * Note that if the parent is a clone, the holding of
12331                  * parent_ctx->lock avoids it from being uncloned.
12332                  */
12333                 cloned_ctx = parent_ctx->parent_ctx;
12334                 if (cloned_ctx) {
12335                         child_ctx->parent_ctx = cloned_ctx;
12336                         child_ctx->parent_gen = parent_ctx->parent_gen;
12337                 } else {
12338                         child_ctx->parent_ctx = parent_ctx;
12339                         child_ctx->parent_gen = parent_ctx->generation;
12340                 }
12341                 get_ctx(child_ctx->parent_ctx);
12342         }
12343
12344         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12345 out_unlock:
12346         mutex_unlock(&parent_ctx->mutex);
12347
12348         perf_unpin_context(parent_ctx);
12349         put_ctx(parent_ctx);
12350
12351         return ret;
12352 }
12353
12354 /*
12355  * Initialize the perf_event context in task_struct
12356  */
12357 int perf_event_init_task(struct task_struct *child)
12358 {
12359         int ctxn, ret;
12360
12361         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12362         mutex_init(&child->perf_event_mutex);
12363         INIT_LIST_HEAD(&child->perf_event_list);
12364
12365         for_each_task_context_nr(ctxn) {
12366                 ret = perf_event_init_context(child, ctxn);
12367                 if (ret) {
12368                         perf_event_free_task(child);
12369                         return ret;
12370                 }
12371         }
12372
12373         return 0;
12374 }
12375
12376 static void __init perf_event_init_all_cpus(void)
12377 {
12378         struct swevent_htable *swhash;
12379         int cpu;
12380
12381         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12382
12383         for_each_possible_cpu(cpu) {
12384                 swhash = &per_cpu(swevent_htable, cpu);
12385                 mutex_init(&swhash->hlist_mutex);
12386                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12387
12388                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12389                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12390
12391 #ifdef CONFIG_CGROUP_PERF
12392                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12393 #endif
12394                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12395         }
12396 }
12397
12398 static void perf_swevent_init_cpu(unsigned int cpu)
12399 {
12400         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12401
12402         mutex_lock(&swhash->hlist_mutex);
12403         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12404                 struct swevent_hlist *hlist;
12405
12406                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12407                 WARN_ON(!hlist);
12408                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
12409         }
12410         mutex_unlock(&swhash->hlist_mutex);
12411 }
12412
12413 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12414 static void __perf_event_exit_context(void *__info)
12415 {
12416         struct perf_event_context *ctx = __info;
12417         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12418         struct perf_event *event;
12419
12420         raw_spin_lock(&ctx->lock);
12421         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12422         list_for_each_entry(event, &ctx->event_list, event_entry)
12423                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12424         raw_spin_unlock(&ctx->lock);
12425 }
12426
12427 static void perf_event_exit_cpu_context(int cpu)
12428 {
12429         struct perf_cpu_context *cpuctx;
12430         struct perf_event_context *ctx;
12431         struct pmu *pmu;
12432
12433         mutex_lock(&pmus_lock);
12434         list_for_each_entry(pmu, &pmus, entry) {
12435                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12436                 ctx = &cpuctx->ctx;
12437
12438                 mutex_lock(&ctx->mutex);
12439                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12440                 cpuctx->online = 0;
12441                 mutex_unlock(&ctx->mutex);
12442         }
12443         cpumask_clear_cpu(cpu, perf_online_mask);
12444         mutex_unlock(&pmus_lock);
12445 }
12446 #else
12447
12448 static void perf_event_exit_cpu_context(int cpu) { }
12449
12450 #endif
12451
12452 int perf_event_init_cpu(unsigned int cpu)
12453 {
12454         struct perf_cpu_context *cpuctx;
12455         struct perf_event_context *ctx;
12456         struct pmu *pmu;
12457
12458         perf_swevent_init_cpu(cpu);
12459
12460         mutex_lock(&pmus_lock);
12461         cpumask_set_cpu(cpu, perf_online_mask);
12462         list_for_each_entry(pmu, &pmus, entry) {
12463                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12464                 ctx = &cpuctx->ctx;
12465
12466                 mutex_lock(&ctx->mutex);
12467                 cpuctx->online = 1;
12468                 mutex_unlock(&ctx->mutex);
12469         }
12470         mutex_unlock(&pmus_lock);
12471
12472         return 0;
12473 }
12474
12475 int perf_event_exit_cpu(unsigned int cpu)
12476 {
12477         perf_event_exit_cpu_context(cpu);
12478         return 0;
12479 }
12480
12481 static int
12482 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12483 {
12484         int cpu;
12485
12486         for_each_online_cpu(cpu)
12487                 perf_event_exit_cpu(cpu);
12488
12489         return NOTIFY_OK;
12490 }
12491
12492 /*
12493  * Run the perf reboot notifier at the very last possible moment so that
12494  * the generic watchdog code runs as long as possible.
12495  */
12496 static struct notifier_block perf_reboot_notifier = {
12497         .notifier_call = perf_reboot,
12498         .priority = INT_MIN,
12499 };
12500
12501 void __init perf_event_init(void)
12502 {
12503         int ret;
12504
12505         idr_init(&pmu_idr);
12506
12507         perf_event_init_all_cpus();
12508         init_srcu_struct(&pmus_srcu);
12509         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12510         perf_pmu_register(&perf_cpu_clock, NULL, -1);
12511         perf_pmu_register(&perf_task_clock, NULL, -1);
12512         perf_tp_register();
12513         perf_event_init_cpu(smp_processor_id());
12514         register_reboot_notifier(&perf_reboot_notifier);
12515
12516         ret = init_hw_breakpoint();
12517         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12518
12519         /*
12520          * Build time assertion that we keep the data_head at the intended
12521          * location.  IOW, validation we got the __reserved[] size right.
12522          */
12523         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12524                      != 1024);
12525 }
12526
12527 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12528                               char *page)
12529 {
12530         struct perf_pmu_events_attr *pmu_attr =
12531                 container_of(attr, struct perf_pmu_events_attr, attr);
12532
12533         if (pmu_attr->event_str)
12534                 return sprintf(page, "%s\n", pmu_attr->event_str);
12535
12536         return 0;
12537 }
12538 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12539
12540 static int __init perf_event_sysfs_init(void)
12541 {
12542         struct pmu *pmu;
12543         int ret;
12544
12545         mutex_lock(&pmus_lock);
12546
12547         ret = bus_register(&pmu_bus);
12548         if (ret)
12549                 goto unlock;
12550
12551         list_for_each_entry(pmu, &pmus, entry) {
12552                 if (!pmu->name || pmu->type < 0)
12553                         continue;
12554
12555                 ret = pmu_dev_alloc(pmu);
12556                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12557         }
12558         pmu_bus_running = 1;
12559         ret = 0;
12560
12561 unlock:
12562         mutex_unlock(&pmus_lock);
12563
12564         return ret;
12565 }
12566 device_initcall(perf_event_sysfs_init);
12567
12568 #ifdef CONFIG_CGROUP_PERF
12569 static struct cgroup_subsys_state *
12570 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12571 {
12572         struct perf_cgroup *jc;
12573
12574         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12575         if (!jc)
12576                 return ERR_PTR(-ENOMEM);
12577
12578         jc->info = alloc_percpu(struct perf_cgroup_info);
12579         if (!jc->info) {
12580                 kfree(jc);
12581                 return ERR_PTR(-ENOMEM);
12582         }
12583
12584         return &jc->css;
12585 }
12586
12587 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12588 {
12589         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12590
12591         free_percpu(jc->info);
12592         kfree(jc);
12593 }
12594
12595 static int __perf_cgroup_move(void *info)
12596 {
12597         struct task_struct *task = info;
12598         rcu_read_lock();
12599         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12600         rcu_read_unlock();
12601         return 0;
12602 }
12603
12604 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12605 {
12606         struct task_struct *task;
12607         struct cgroup_subsys_state *css;
12608
12609         cgroup_taskset_for_each(task, css, tset)
12610                 task_function_call(task, __perf_cgroup_move, task);
12611 }
12612
12613 struct cgroup_subsys perf_event_cgrp_subsys = {
12614         .css_alloc      = perf_cgroup_css_alloc,
12615         .css_free       = perf_cgroup_css_free,
12616         .attach         = perf_cgroup_attach,
12617         /*
12618          * Implicitly enable on dfl hierarchy so that perf events can
12619          * always be filtered by cgroup2 path as long as perf_event
12620          * controller is not mounted on a legacy hierarchy.
12621          */
12622         .implicit_on_dfl = true,
12623         .threaded       = true,
12624 };
12625 #endif /* CONFIG_CGROUP_PERF */