]> asedeno.scripts.mit.edu Git - linux.git/blob - kernel/events/core.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49
50 #include "internal.h"
51
52 #include <asm/irq_regs.h>
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57         struct task_struct      *p;
58         remote_function_f       func;
59         void                    *info;
60         int                     ret;
61 };
62
63 static void remote_function(void *data)
64 {
65         struct remote_function_call *tfc = data;
66         struct task_struct *p = tfc->p;
67
68         if (p) {
69                 /* -EAGAIN */
70                 if (task_cpu(p) != smp_processor_id())
71                         return;
72
73                 /*
74                  * Now that we're on right CPU with IRQs disabled, we can test
75                  * if we hit the right task without races.
76                  */
77
78                 tfc->ret = -ESRCH; /* No such (running) process */
79                 if (p != current)
80                         return;
81         }
82
83         tfc->ret = tfc->func(tfc->info);
84 }
85
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:          the task to evaluate
89  * @func:       the function to be called
90  * @info:       the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *          -ESRCH  - when the process isn't running
97  *          -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102         struct remote_function_call data = {
103                 .p      = p,
104                 .func   = func,
105                 .info   = info,
106                 .ret    = -EAGAIN,
107         };
108         int ret;
109
110         do {
111                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112                 if (!ret)
113                         ret = data.ret;
114         } while (ret == -EAGAIN);
115
116         return ret;
117 }
118
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:       the function to be called
122  * @info:       the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130         struct remote_function_call data = {
131                 .p      = NULL,
132                 .func   = func,
133                 .info   = info,
134                 .ret    = -ENXIO, /* No such CPU */
135         };
136
137         smp_call_function_single(cpu, remote_function, &data, 1);
138
139         return data.ret;
140 }
141
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149                           struct perf_event_context *ctx)
150 {
151         raw_spin_lock(&cpuctx->ctx.lock);
152         if (ctx)
153                 raw_spin_lock(&ctx->lock);
154 }
155
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157                             struct perf_event_context *ctx)
158 {
159         if (ctx)
160                 raw_spin_unlock(&ctx->lock);
161         raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163
164 #define TASK_TOMBSTONE ((void *)-1L)
165
166 static bool is_kernel_event(struct perf_event *event)
167 {
168         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191                         struct perf_event_context *, void *);
192
193 struct event_function_struct {
194         struct perf_event *event;
195         event_f func;
196         void *data;
197 };
198
199 static int event_function(void *info)
200 {
201         struct event_function_struct *efs = info;
202         struct perf_event *event = efs->event;
203         struct perf_event_context *ctx = event->ctx;
204         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205         struct perf_event_context *task_ctx = cpuctx->task_ctx;
206         int ret = 0;
207
208         WARN_ON_ONCE(!irqs_disabled());
209
210         perf_ctx_lock(cpuctx, task_ctx);
211         /*
212          * Since we do the IPI call without holding ctx->lock things can have
213          * changed, double check we hit the task we set out to hit.
214          */
215         if (ctx->task) {
216                 if (ctx->task != current) {
217                         ret = -ESRCH;
218                         goto unlock;
219                 }
220
221                 /*
222                  * We only use event_function_call() on established contexts,
223                  * and event_function() is only ever called when active (or
224                  * rather, we'll have bailed in task_function_call() or the
225                  * above ctx->task != current test), therefore we must have
226                  * ctx->is_active here.
227                  */
228                 WARN_ON_ONCE(!ctx->is_active);
229                 /*
230                  * And since we have ctx->is_active, cpuctx->task_ctx must
231                  * match.
232                  */
233                 WARN_ON_ONCE(task_ctx != ctx);
234         } else {
235                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236         }
237
238         efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240         perf_ctx_unlock(cpuctx, task_ctx);
241
242         return ret;
243 }
244
245 static void event_function_call(struct perf_event *event, event_f func, void *data)
246 {
247         struct perf_event_context *ctx = event->ctx;
248         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249         struct event_function_struct efs = {
250                 .event = event,
251                 .func = func,
252                 .data = data,
253         };
254
255         if (!event->parent) {
256                 /*
257                  * If this is a !child event, we must hold ctx::mutex to
258                  * stabilize the the event->ctx relation. See
259                  * perf_event_ctx_lock().
260                  */
261                 lockdep_assert_held(&ctx->mutex);
262         }
263
264         if (!task) {
265                 cpu_function_call(event->cpu, event_function, &efs);
266                 return;
267         }
268
269         if (task == TASK_TOMBSTONE)
270                 return;
271
272 again:
273         if (!task_function_call(task, event_function, &efs))
274                 return;
275
276         raw_spin_lock_irq(&ctx->lock);
277         /*
278          * Reload the task pointer, it might have been changed by
279          * a concurrent perf_event_context_sched_out().
280          */
281         task = ctx->task;
282         if (task == TASK_TOMBSTONE) {
283                 raw_spin_unlock_irq(&ctx->lock);
284                 return;
285         }
286         if (ctx->is_active) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 goto again;
289         }
290         func(event, NULL, ctx, data);
291         raw_spin_unlock_irq(&ctx->lock);
292 }
293
294 /*
295  * Similar to event_function_call() + event_function(), but hard assumes IRQs
296  * are already disabled and we're on the right CPU.
297  */
298 static void event_function_local(struct perf_event *event, event_f func, void *data)
299 {
300         struct perf_event_context *ctx = event->ctx;
301         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302         struct task_struct *task = READ_ONCE(ctx->task);
303         struct perf_event_context *task_ctx = NULL;
304
305         WARN_ON_ONCE(!irqs_disabled());
306
307         if (task) {
308                 if (task == TASK_TOMBSTONE)
309                         return;
310
311                 task_ctx = ctx;
312         }
313
314         perf_ctx_lock(cpuctx, task_ctx);
315
316         task = ctx->task;
317         if (task == TASK_TOMBSTONE)
318                 goto unlock;
319
320         if (task) {
321                 /*
322                  * We must be either inactive or active and the right task,
323                  * otherwise we're screwed, since we cannot IPI to somewhere
324                  * else.
325                  */
326                 if (ctx->is_active) {
327                         if (WARN_ON_ONCE(task != current))
328                                 goto unlock;
329
330                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331                                 goto unlock;
332                 }
333         } else {
334                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
335         }
336
337         func(event, cpuctx, ctx, data);
338 unlock:
339         perf_ctx_unlock(cpuctx, task_ctx);
340 }
341
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343                        PERF_FLAG_FD_OUTPUT  |\
344                        PERF_FLAG_PID_CGROUP |\
345                        PERF_FLAG_FD_CLOEXEC)
346
347 /*
348  * branch priv levels that need permission checks
349  */
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351         (PERF_SAMPLE_BRANCH_KERNEL |\
352          PERF_SAMPLE_BRANCH_HV)
353
354 enum event_type_t {
355         EVENT_FLEXIBLE = 0x1,
356         EVENT_PINNED = 0x2,
357         EVENT_TIME = 0x4,
358         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359 };
360
361 /*
362  * perf_sched_events : >0 events exist
363  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364  */
365
366 static void perf_sched_delayed(struct work_struct *work);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369 static DEFINE_MUTEX(perf_sched_mutex);
370 static atomic_t perf_sched_count;
371
372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
375
376 static atomic_t nr_mmap_events __read_mostly;
377 static atomic_t nr_comm_events __read_mostly;
378 static atomic_t nr_task_events __read_mostly;
379 static atomic_t nr_freq_events __read_mostly;
380 static atomic_t nr_switch_events __read_mostly;
381
382 static LIST_HEAD(pmus);
383 static DEFINE_MUTEX(pmus_lock);
384 static struct srcu_struct pmus_srcu;
385
386 /*
387  * perf event paranoia level:
388  *  -1 - not paranoid at all
389  *   0 - disallow raw tracepoint access for unpriv
390  *   1 - disallow cpu events for unpriv
391  *   2 - disallow kernel profiling for unpriv
392  */
393 int sysctl_perf_event_paranoid __read_mostly = 2;
394
395 /* Minimum for 512 kiB + 1 user control page */
396 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
397
398 /*
399  * max perf event sample rate
400  */
401 #define DEFAULT_MAX_SAMPLE_RATE         100000
402 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
404
405 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
406
407 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
409
410 static int perf_sample_allowed_ns __read_mostly =
411         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
412
413 static void update_perf_cpu_limits(void)
414 {
415         u64 tmp = perf_sample_period_ns;
416
417         tmp *= sysctl_perf_cpu_time_max_percent;
418         tmp = div_u64(tmp, 100);
419         if (!tmp)
420                 tmp = 1;
421
422         WRITE_ONCE(perf_sample_allowed_ns, tmp);
423 }
424
425 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
426
427 int perf_proc_update_handler(struct ctl_table *table, int write,
428                 void __user *buffer, size_t *lenp,
429                 loff_t *ppos)
430 {
431         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
432
433         if (ret || !write)
434                 return ret;
435
436         /*
437          * If throttling is disabled don't allow the write:
438          */
439         if (sysctl_perf_cpu_time_max_percent == 100 ||
440             sysctl_perf_cpu_time_max_percent == 0)
441                 return -EINVAL;
442
443         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
444         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445         update_perf_cpu_limits();
446
447         return 0;
448 }
449
450 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
451
452 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453                                 void __user *buffer, size_t *lenp,
454                                 loff_t *ppos)
455 {
456         int ret = proc_dointvec(table, write, buffer, lenp, ppos);
457
458         if (ret || !write)
459                 return ret;
460
461         if (sysctl_perf_cpu_time_max_percent == 100 ||
462             sysctl_perf_cpu_time_max_percent == 0) {
463                 printk(KERN_WARNING
464                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465                 WRITE_ONCE(perf_sample_allowed_ns, 0);
466         } else {
467                 update_perf_cpu_limits();
468         }
469
470         return 0;
471 }
472
473 /*
474  * perf samples are done in some very critical code paths (NMIs).
475  * If they take too much CPU time, the system can lock up and not
476  * get any real work done.  This will drop the sample rate when
477  * we detect that events are taking too long.
478  */
479 #define NR_ACCUMULATED_SAMPLES 128
480 static DEFINE_PER_CPU(u64, running_sample_length);
481
482 static u64 __report_avg;
483 static u64 __report_allowed;
484
485 static void perf_duration_warn(struct irq_work *w)
486 {
487         printk_ratelimited(KERN_INFO
488                 "perf: interrupt took too long (%lld > %lld), lowering "
489                 "kernel.perf_event_max_sample_rate to %d\n",
490                 __report_avg, __report_allowed,
491                 sysctl_perf_event_sample_rate);
492 }
493
494 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
495
496 void perf_sample_event_took(u64 sample_len_ns)
497 {
498         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499         u64 running_len;
500         u64 avg_len;
501         u32 max;
502
503         if (max_len == 0)
504                 return;
505
506         /* Decay the counter by 1 average sample. */
507         running_len = __this_cpu_read(running_sample_length);
508         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509         running_len += sample_len_ns;
510         __this_cpu_write(running_sample_length, running_len);
511
512         /*
513          * Note: this will be biased artifically low until we have
514          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
515          * from having to maintain a count.
516          */
517         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518         if (avg_len <= max_len)
519                 return;
520
521         __report_avg = avg_len;
522         __report_allowed = max_len;
523
524         /*
525          * Compute a throttle threshold 25% below the current duration.
526          */
527         avg_len += avg_len / 4;
528         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529         if (avg_len < max)
530                 max /= (u32)avg_len;
531         else
532                 max = 1;
533
534         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535         WRITE_ONCE(max_samples_per_tick, max);
536
537         sysctl_perf_event_sample_rate = max * HZ;
538         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
539
540         if (!irq_work_queue(&perf_duration_work)) {
541                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
542                              "kernel.perf_event_max_sample_rate to %d\n",
543                              __report_avg, __report_allowed,
544                              sysctl_perf_event_sample_rate);
545         }
546 }
547
548 static atomic64_t perf_event_id;
549
550 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551                               enum event_type_t event_type);
552
553 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
554                              enum event_type_t event_type,
555                              struct task_struct *task);
556
557 static void update_context_time(struct perf_event_context *ctx);
558 static u64 perf_event_time(struct perf_event *event);
559
560 void __weak perf_event_print_debug(void)        { }
561
562 extern __weak const char *perf_pmu_name(void)
563 {
564         return "pmu";
565 }
566
567 static inline u64 perf_clock(void)
568 {
569         return local_clock();
570 }
571
572 static inline u64 perf_event_clock(struct perf_event *event)
573 {
574         return event->clock();
575 }
576
577 #ifdef CONFIG_CGROUP_PERF
578
579 static inline bool
580 perf_cgroup_match(struct perf_event *event)
581 {
582         struct perf_event_context *ctx = event->ctx;
583         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
584
585         /* @event doesn't care about cgroup */
586         if (!event->cgrp)
587                 return true;
588
589         /* wants specific cgroup scope but @cpuctx isn't associated with any */
590         if (!cpuctx->cgrp)
591                 return false;
592
593         /*
594          * Cgroup scoping is recursive.  An event enabled for a cgroup is
595          * also enabled for all its descendant cgroups.  If @cpuctx's
596          * cgroup is a descendant of @event's (the test covers identity
597          * case), it's a match.
598          */
599         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600                                     event->cgrp->css.cgroup);
601 }
602
603 static inline void perf_detach_cgroup(struct perf_event *event)
604 {
605         css_put(&event->cgrp->css);
606         event->cgrp = NULL;
607 }
608
609 static inline int is_cgroup_event(struct perf_event *event)
610 {
611         return event->cgrp != NULL;
612 }
613
614 static inline u64 perf_cgroup_event_time(struct perf_event *event)
615 {
616         struct perf_cgroup_info *t;
617
618         t = per_cpu_ptr(event->cgrp->info, event->cpu);
619         return t->time;
620 }
621
622 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
623 {
624         struct perf_cgroup_info *info;
625         u64 now;
626
627         now = perf_clock();
628
629         info = this_cpu_ptr(cgrp->info);
630
631         info->time += now - info->timestamp;
632         info->timestamp = now;
633 }
634
635 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
636 {
637         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638         if (cgrp_out)
639                 __update_cgrp_time(cgrp_out);
640 }
641
642 static inline void update_cgrp_time_from_event(struct perf_event *event)
643 {
644         struct perf_cgroup *cgrp;
645
646         /*
647          * ensure we access cgroup data only when needed and
648          * when we know the cgroup is pinned (css_get)
649          */
650         if (!is_cgroup_event(event))
651                 return;
652
653         cgrp = perf_cgroup_from_task(current, event->ctx);
654         /*
655          * Do not update time when cgroup is not active
656          */
657         if (cgrp == event->cgrp)
658                 __update_cgrp_time(event->cgrp);
659 }
660
661 static inline void
662 perf_cgroup_set_timestamp(struct task_struct *task,
663                           struct perf_event_context *ctx)
664 {
665         struct perf_cgroup *cgrp;
666         struct perf_cgroup_info *info;
667
668         /*
669          * ctx->lock held by caller
670          * ensure we do not access cgroup data
671          * unless we have the cgroup pinned (css_get)
672          */
673         if (!task || !ctx->nr_cgroups)
674                 return;
675
676         cgrp = perf_cgroup_from_task(task, ctx);
677         info = this_cpu_ptr(cgrp->info);
678         info->timestamp = ctx->timestamp;
679 }
680
681 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
682 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
683
684 /*
685  * reschedule events based on the cgroup constraint of task.
686  *
687  * mode SWOUT : schedule out everything
688  * mode SWIN : schedule in based on cgroup for next
689  */
690 static void perf_cgroup_switch(struct task_struct *task, int mode)
691 {
692         struct perf_cpu_context *cpuctx;
693         struct pmu *pmu;
694         unsigned long flags;
695
696         /*
697          * disable interrupts to avoid geting nr_cgroup
698          * changes via __perf_event_disable(). Also
699          * avoids preemption.
700          */
701         local_irq_save(flags);
702
703         /*
704          * we reschedule only in the presence of cgroup
705          * constrained events.
706          */
707
708         list_for_each_entry_rcu(pmu, &pmus, entry) {
709                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710                 if (cpuctx->unique_pmu != pmu)
711                         continue; /* ensure we process each cpuctx once */
712
713                 /*
714                  * perf_cgroup_events says at least one
715                  * context on this CPU has cgroup events.
716                  *
717                  * ctx->nr_cgroups reports the number of cgroup
718                  * events for a context.
719                  */
720                 if (cpuctx->ctx.nr_cgroups > 0) {
721                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722                         perf_pmu_disable(cpuctx->ctx.pmu);
723
724                         if (mode & PERF_CGROUP_SWOUT) {
725                                 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726                                 /*
727                                  * must not be done before ctxswout due
728                                  * to event_filter_match() in event_sched_out()
729                                  */
730                                 cpuctx->cgrp = NULL;
731                         }
732
733                         if (mode & PERF_CGROUP_SWIN) {
734                                 WARN_ON_ONCE(cpuctx->cgrp);
735                                 /*
736                                  * set cgrp before ctxsw in to allow
737                                  * event_filter_match() to not have to pass
738                                  * task around
739                                  * we pass the cpuctx->ctx to perf_cgroup_from_task()
740                                  * because cgorup events are only per-cpu
741                                  */
742                                 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
743                                 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
744                         }
745                         perf_pmu_enable(cpuctx->ctx.pmu);
746                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
747                 }
748         }
749
750         local_irq_restore(flags);
751 }
752
753 static inline void perf_cgroup_sched_out(struct task_struct *task,
754                                          struct task_struct *next)
755 {
756         struct perf_cgroup *cgrp1;
757         struct perf_cgroup *cgrp2 = NULL;
758
759         rcu_read_lock();
760         /*
761          * we come here when we know perf_cgroup_events > 0
762          * we do not need to pass the ctx here because we know
763          * we are holding the rcu lock
764          */
765         cgrp1 = perf_cgroup_from_task(task, NULL);
766         cgrp2 = perf_cgroup_from_task(next, NULL);
767
768         /*
769          * only schedule out current cgroup events if we know
770          * that we are switching to a different cgroup. Otherwise,
771          * do no touch the cgroup events.
772          */
773         if (cgrp1 != cgrp2)
774                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
775
776         rcu_read_unlock();
777 }
778
779 static inline void perf_cgroup_sched_in(struct task_struct *prev,
780                                         struct task_struct *task)
781 {
782         struct perf_cgroup *cgrp1;
783         struct perf_cgroup *cgrp2 = NULL;
784
785         rcu_read_lock();
786         /*
787          * we come here when we know perf_cgroup_events > 0
788          * we do not need to pass the ctx here because we know
789          * we are holding the rcu lock
790          */
791         cgrp1 = perf_cgroup_from_task(task, NULL);
792         cgrp2 = perf_cgroup_from_task(prev, NULL);
793
794         /*
795          * only need to schedule in cgroup events if we are changing
796          * cgroup during ctxsw. Cgroup events were not scheduled
797          * out of ctxsw out if that was not the case.
798          */
799         if (cgrp1 != cgrp2)
800                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
801
802         rcu_read_unlock();
803 }
804
805 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806                                       struct perf_event_attr *attr,
807                                       struct perf_event *group_leader)
808 {
809         struct perf_cgroup *cgrp;
810         struct cgroup_subsys_state *css;
811         struct fd f = fdget(fd);
812         int ret = 0;
813
814         if (!f.file)
815                 return -EBADF;
816
817         css = css_tryget_online_from_dir(f.file->f_path.dentry,
818                                          &perf_event_cgrp_subsys);
819         if (IS_ERR(css)) {
820                 ret = PTR_ERR(css);
821                 goto out;
822         }
823
824         cgrp = container_of(css, struct perf_cgroup, css);
825         event->cgrp = cgrp;
826
827         /*
828          * all events in a group must monitor
829          * the same cgroup because a task belongs
830          * to only one perf cgroup at a time
831          */
832         if (group_leader && group_leader->cgrp != cgrp) {
833                 perf_detach_cgroup(event);
834                 ret = -EINVAL;
835         }
836 out:
837         fdput(f);
838         return ret;
839 }
840
841 static inline void
842 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843 {
844         struct perf_cgroup_info *t;
845         t = per_cpu_ptr(event->cgrp->info, event->cpu);
846         event->shadow_ctx_time = now - t->timestamp;
847 }
848
849 static inline void
850 perf_cgroup_defer_enabled(struct perf_event *event)
851 {
852         /*
853          * when the current task's perf cgroup does not match
854          * the event's, we need to remember to call the
855          * perf_mark_enable() function the first time a task with
856          * a matching perf cgroup is scheduled in.
857          */
858         if (is_cgroup_event(event) && !perf_cgroup_match(event))
859                 event->cgrp_defer_enabled = 1;
860 }
861
862 static inline void
863 perf_cgroup_mark_enabled(struct perf_event *event,
864                          struct perf_event_context *ctx)
865 {
866         struct perf_event *sub;
867         u64 tstamp = perf_event_time(event);
868
869         if (!event->cgrp_defer_enabled)
870                 return;
871
872         event->cgrp_defer_enabled = 0;
873
874         event->tstamp_enabled = tstamp - event->total_time_enabled;
875         list_for_each_entry(sub, &event->sibling_list, group_entry) {
876                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878                         sub->cgrp_defer_enabled = 0;
879                 }
880         }
881 }
882
883 /*
884  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885  * cleared when last cgroup event is removed.
886  */
887 static inline void
888 list_update_cgroup_event(struct perf_event *event,
889                          struct perf_event_context *ctx, bool add)
890 {
891         struct perf_cpu_context *cpuctx;
892
893         if (!is_cgroup_event(event))
894                 return;
895
896         if (add && ctx->nr_cgroups++)
897                 return;
898         else if (!add && --ctx->nr_cgroups)
899                 return;
900         /*
901          * Because cgroup events are always per-cpu events,
902          * this will always be called from the right CPU.
903          */
904         cpuctx = __get_cpu_context(ctx);
905
906         /*
907          * cpuctx->cgrp is NULL until a cgroup event is sched in or
908          * ctx->nr_cgroup == 0 .
909          */
910         if (add && perf_cgroup_from_task(current, ctx) == event->cgrp)
911                 cpuctx->cgrp = event->cgrp;
912         else if (!add)
913                 cpuctx->cgrp = NULL;
914 }
915
916 #else /* !CONFIG_CGROUP_PERF */
917
918 static inline bool
919 perf_cgroup_match(struct perf_event *event)
920 {
921         return true;
922 }
923
924 static inline void perf_detach_cgroup(struct perf_event *event)
925 {}
926
927 static inline int is_cgroup_event(struct perf_event *event)
928 {
929         return 0;
930 }
931
932 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
933 {
934         return 0;
935 }
936
937 static inline void update_cgrp_time_from_event(struct perf_event *event)
938 {
939 }
940
941 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
942 {
943 }
944
945 static inline void perf_cgroup_sched_out(struct task_struct *task,
946                                          struct task_struct *next)
947 {
948 }
949
950 static inline void perf_cgroup_sched_in(struct task_struct *prev,
951                                         struct task_struct *task)
952 {
953 }
954
955 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
956                                       struct perf_event_attr *attr,
957                                       struct perf_event *group_leader)
958 {
959         return -EINVAL;
960 }
961
962 static inline void
963 perf_cgroup_set_timestamp(struct task_struct *task,
964                           struct perf_event_context *ctx)
965 {
966 }
967
968 void
969 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
970 {
971 }
972
973 static inline void
974 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
975 {
976 }
977
978 static inline u64 perf_cgroup_event_time(struct perf_event *event)
979 {
980         return 0;
981 }
982
983 static inline void
984 perf_cgroup_defer_enabled(struct perf_event *event)
985 {
986 }
987
988 static inline void
989 perf_cgroup_mark_enabled(struct perf_event *event,
990                          struct perf_event_context *ctx)
991 {
992 }
993
994 static inline void
995 list_update_cgroup_event(struct perf_event *event,
996                          struct perf_event_context *ctx, bool add)
997 {
998 }
999
1000 #endif
1001
1002 /*
1003  * set default to be dependent on timer tick just
1004  * like original code
1005  */
1006 #define PERF_CPU_HRTIMER (1000 / HZ)
1007 /*
1008  * function must be called with interrupts disbled
1009  */
1010 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1011 {
1012         struct perf_cpu_context *cpuctx;
1013         int rotations = 0;
1014
1015         WARN_ON(!irqs_disabled());
1016
1017         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1018         rotations = perf_rotate_context(cpuctx);
1019
1020         raw_spin_lock(&cpuctx->hrtimer_lock);
1021         if (rotations)
1022                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1023         else
1024                 cpuctx->hrtimer_active = 0;
1025         raw_spin_unlock(&cpuctx->hrtimer_lock);
1026
1027         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1028 }
1029
1030 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1031 {
1032         struct hrtimer *timer = &cpuctx->hrtimer;
1033         struct pmu *pmu = cpuctx->ctx.pmu;
1034         u64 interval;
1035
1036         /* no multiplexing needed for SW PMU */
1037         if (pmu->task_ctx_nr == perf_sw_context)
1038                 return;
1039
1040         /*
1041          * check default is sane, if not set then force to
1042          * default interval (1/tick)
1043          */
1044         interval = pmu->hrtimer_interval_ms;
1045         if (interval < 1)
1046                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1047
1048         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1049
1050         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1051         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1052         timer->function = perf_mux_hrtimer_handler;
1053 }
1054
1055 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1056 {
1057         struct hrtimer *timer = &cpuctx->hrtimer;
1058         struct pmu *pmu = cpuctx->ctx.pmu;
1059         unsigned long flags;
1060
1061         /* not for SW PMU */
1062         if (pmu->task_ctx_nr == perf_sw_context)
1063                 return 0;
1064
1065         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1066         if (!cpuctx->hrtimer_active) {
1067                 cpuctx->hrtimer_active = 1;
1068                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1069                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1070         }
1071         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1072
1073         return 0;
1074 }
1075
1076 void perf_pmu_disable(struct pmu *pmu)
1077 {
1078         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1079         if (!(*count)++)
1080                 pmu->pmu_disable(pmu);
1081 }
1082
1083 void perf_pmu_enable(struct pmu *pmu)
1084 {
1085         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1086         if (!--(*count))
1087                 pmu->pmu_enable(pmu);
1088 }
1089
1090 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1091
1092 /*
1093  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1094  * perf_event_task_tick() are fully serialized because they're strictly cpu
1095  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1096  * disabled, while perf_event_task_tick is called from IRQ context.
1097  */
1098 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1099 {
1100         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1101
1102         WARN_ON(!irqs_disabled());
1103
1104         WARN_ON(!list_empty(&ctx->active_ctx_list));
1105
1106         list_add(&ctx->active_ctx_list, head);
1107 }
1108
1109 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1110 {
1111         WARN_ON(!irqs_disabled());
1112
1113         WARN_ON(list_empty(&ctx->active_ctx_list));
1114
1115         list_del_init(&ctx->active_ctx_list);
1116 }
1117
1118 static void get_ctx(struct perf_event_context *ctx)
1119 {
1120         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1121 }
1122
1123 static void free_ctx(struct rcu_head *head)
1124 {
1125         struct perf_event_context *ctx;
1126
1127         ctx = container_of(head, struct perf_event_context, rcu_head);
1128         kfree(ctx->task_ctx_data);
1129         kfree(ctx);
1130 }
1131
1132 static void put_ctx(struct perf_event_context *ctx)
1133 {
1134         if (atomic_dec_and_test(&ctx->refcount)) {
1135                 if (ctx->parent_ctx)
1136                         put_ctx(ctx->parent_ctx);
1137                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1138                         put_task_struct(ctx->task);
1139                 call_rcu(&ctx->rcu_head, free_ctx);
1140         }
1141 }
1142
1143 /*
1144  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1145  * perf_pmu_migrate_context() we need some magic.
1146  *
1147  * Those places that change perf_event::ctx will hold both
1148  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1149  *
1150  * Lock ordering is by mutex address. There are two other sites where
1151  * perf_event_context::mutex nests and those are:
1152  *
1153  *  - perf_event_exit_task_context()    [ child , 0 ]
1154  *      perf_event_exit_event()
1155  *        put_event()                   [ parent, 1 ]
1156  *
1157  *  - perf_event_init_context()         [ parent, 0 ]
1158  *      inherit_task_group()
1159  *        inherit_group()
1160  *          inherit_event()
1161  *            perf_event_alloc()
1162  *              perf_init_event()
1163  *                perf_try_init_event() [ child , 1 ]
1164  *
1165  * While it appears there is an obvious deadlock here -- the parent and child
1166  * nesting levels are inverted between the two. This is in fact safe because
1167  * life-time rules separate them. That is an exiting task cannot fork, and a
1168  * spawning task cannot (yet) exit.
1169  *
1170  * But remember that that these are parent<->child context relations, and
1171  * migration does not affect children, therefore these two orderings should not
1172  * interact.
1173  *
1174  * The change in perf_event::ctx does not affect children (as claimed above)
1175  * because the sys_perf_event_open() case will install a new event and break
1176  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1177  * concerned with cpuctx and that doesn't have children.
1178  *
1179  * The places that change perf_event::ctx will issue:
1180  *
1181  *   perf_remove_from_context();
1182  *   synchronize_rcu();
1183  *   perf_install_in_context();
1184  *
1185  * to affect the change. The remove_from_context() + synchronize_rcu() should
1186  * quiesce the event, after which we can install it in the new location. This
1187  * means that only external vectors (perf_fops, prctl) can perturb the event
1188  * while in transit. Therefore all such accessors should also acquire
1189  * perf_event_context::mutex to serialize against this.
1190  *
1191  * However; because event->ctx can change while we're waiting to acquire
1192  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1193  * function.
1194  *
1195  * Lock order:
1196  *    cred_guard_mutex
1197  *      task_struct::perf_event_mutex
1198  *        perf_event_context::mutex
1199  *          perf_event::child_mutex;
1200  *            perf_event_context::lock
1201  *          perf_event::mmap_mutex
1202  *          mmap_sem
1203  */
1204 static struct perf_event_context *
1205 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1206 {
1207         struct perf_event_context *ctx;
1208
1209 again:
1210         rcu_read_lock();
1211         ctx = ACCESS_ONCE(event->ctx);
1212         if (!atomic_inc_not_zero(&ctx->refcount)) {
1213                 rcu_read_unlock();
1214                 goto again;
1215         }
1216         rcu_read_unlock();
1217
1218         mutex_lock_nested(&ctx->mutex, nesting);
1219         if (event->ctx != ctx) {
1220                 mutex_unlock(&ctx->mutex);
1221                 put_ctx(ctx);
1222                 goto again;
1223         }
1224
1225         return ctx;
1226 }
1227
1228 static inline struct perf_event_context *
1229 perf_event_ctx_lock(struct perf_event *event)
1230 {
1231         return perf_event_ctx_lock_nested(event, 0);
1232 }
1233
1234 static void perf_event_ctx_unlock(struct perf_event *event,
1235                                   struct perf_event_context *ctx)
1236 {
1237         mutex_unlock(&ctx->mutex);
1238         put_ctx(ctx);
1239 }
1240
1241 /*
1242  * This must be done under the ctx->lock, such as to serialize against
1243  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1244  * calling scheduler related locks and ctx->lock nests inside those.
1245  */
1246 static __must_check struct perf_event_context *
1247 unclone_ctx(struct perf_event_context *ctx)
1248 {
1249         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1250
1251         lockdep_assert_held(&ctx->lock);
1252
1253         if (parent_ctx)
1254                 ctx->parent_ctx = NULL;
1255         ctx->generation++;
1256
1257         return parent_ctx;
1258 }
1259
1260 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1261 {
1262         /*
1263          * only top level events have the pid namespace they were created in
1264          */
1265         if (event->parent)
1266                 event = event->parent;
1267
1268         return task_tgid_nr_ns(p, event->ns);
1269 }
1270
1271 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1272 {
1273         /*
1274          * only top level events have the pid namespace they were created in
1275          */
1276         if (event->parent)
1277                 event = event->parent;
1278
1279         return task_pid_nr_ns(p, event->ns);
1280 }
1281
1282 /*
1283  * If we inherit events we want to return the parent event id
1284  * to userspace.
1285  */
1286 static u64 primary_event_id(struct perf_event *event)
1287 {
1288         u64 id = event->id;
1289
1290         if (event->parent)
1291                 id = event->parent->id;
1292
1293         return id;
1294 }
1295
1296 /*
1297  * Get the perf_event_context for a task and lock it.
1298  *
1299  * This has to cope with with the fact that until it is locked,
1300  * the context could get moved to another task.
1301  */
1302 static struct perf_event_context *
1303 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1304 {
1305         struct perf_event_context *ctx;
1306
1307 retry:
1308         /*
1309          * One of the few rules of preemptible RCU is that one cannot do
1310          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1311          * part of the read side critical section was irqs-enabled -- see
1312          * rcu_read_unlock_special().
1313          *
1314          * Since ctx->lock nests under rq->lock we must ensure the entire read
1315          * side critical section has interrupts disabled.
1316          */
1317         local_irq_save(*flags);
1318         rcu_read_lock();
1319         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1320         if (ctx) {
1321                 /*
1322                  * If this context is a clone of another, it might
1323                  * get swapped for another underneath us by
1324                  * perf_event_task_sched_out, though the
1325                  * rcu_read_lock() protects us from any context
1326                  * getting freed.  Lock the context and check if it
1327                  * got swapped before we could get the lock, and retry
1328                  * if so.  If we locked the right context, then it
1329                  * can't get swapped on us any more.
1330                  */
1331                 raw_spin_lock(&ctx->lock);
1332                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1333                         raw_spin_unlock(&ctx->lock);
1334                         rcu_read_unlock();
1335                         local_irq_restore(*flags);
1336                         goto retry;
1337                 }
1338
1339                 if (ctx->task == TASK_TOMBSTONE ||
1340                     !atomic_inc_not_zero(&ctx->refcount)) {
1341                         raw_spin_unlock(&ctx->lock);
1342                         ctx = NULL;
1343                 } else {
1344                         WARN_ON_ONCE(ctx->task != task);
1345                 }
1346         }
1347         rcu_read_unlock();
1348         if (!ctx)
1349                 local_irq_restore(*flags);
1350         return ctx;
1351 }
1352
1353 /*
1354  * Get the context for a task and increment its pin_count so it
1355  * can't get swapped to another task.  This also increments its
1356  * reference count so that the context can't get freed.
1357  */
1358 static struct perf_event_context *
1359 perf_pin_task_context(struct task_struct *task, int ctxn)
1360 {
1361         struct perf_event_context *ctx;
1362         unsigned long flags;
1363
1364         ctx = perf_lock_task_context(task, ctxn, &flags);
1365         if (ctx) {
1366                 ++ctx->pin_count;
1367                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1368         }
1369         return ctx;
1370 }
1371
1372 static void perf_unpin_context(struct perf_event_context *ctx)
1373 {
1374         unsigned long flags;
1375
1376         raw_spin_lock_irqsave(&ctx->lock, flags);
1377         --ctx->pin_count;
1378         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1379 }
1380
1381 /*
1382  * Update the record of the current time in a context.
1383  */
1384 static void update_context_time(struct perf_event_context *ctx)
1385 {
1386         u64 now = perf_clock();
1387
1388         ctx->time += now - ctx->timestamp;
1389         ctx->timestamp = now;
1390 }
1391
1392 static u64 perf_event_time(struct perf_event *event)
1393 {
1394         struct perf_event_context *ctx = event->ctx;
1395
1396         if (is_cgroup_event(event))
1397                 return perf_cgroup_event_time(event);
1398
1399         return ctx ? ctx->time : 0;
1400 }
1401
1402 /*
1403  * Update the total_time_enabled and total_time_running fields for a event.
1404  */
1405 static void update_event_times(struct perf_event *event)
1406 {
1407         struct perf_event_context *ctx = event->ctx;
1408         u64 run_end;
1409
1410         lockdep_assert_held(&ctx->lock);
1411
1412         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1413             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1414                 return;
1415
1416         /*
1417          * in cgroup mode, time_enabled represents
1418          * the time the event was enabled AND active
1419          * tasks were in the monitored cgroup. This is
1420          * independent of the activity of the context as
1421          * there may be a mix of cgroup and non-cgroup events.
1422          *
1423          * That is why we treat cgroup events differently
1424          * here.
1425          */
1426         if (is_cgroup_event(event))
1427                 run_end = perf_cgroup_event_time(event);
1428         else if (ctx->is_active)
1429                 run_end = ctx->time;
1430         else
1431                 run_end = event->tstamp_stopped;
1432
1433         event->total_time_enabled = run_end - event->tstamp_enabled;
1434
1435         if (event->state == PERF_EVENT_STATE_INACTIVE)
1436                 run_end = event->tstamp_stopped;
1437         else
1438                 run_end = perf_event_time(event);
1439
1440         event->total_time_running = run_end - event->tstamp_running;
1441
1442 }
1443
1444 /*
1445  * Update total_time_enabled and total_time_running for all events in a group.
1446  */
1447 static void update_group_times(struct perf_event *leader)
1448 {
1449         struct perf_event *event;
1450
1451         update_event_times(leader);
1452         list_for_each_entry(event, &leader->sibling_list, group_entry)
1453                 update_event_times(event);
1454 }
1455
1456 static struct list_head *
1457 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1458 {
1459         if (event->attr.pinned)
1460                 return &ctx->pinned_groups;
1461         else
1462                 return &ctx->flexible_groups;
1463 }
1464
1465 /*
1466  * Add a event from the lists for its context.
1467  * Must be called with ctx->mutex and ctx->lock held.
1468  */
1469 static void
1470 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1471 {
1472         lockdep_assert_held(&ctx->lock);
1473
1474         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1475         event->attach_state |= PERF_ATTACH_CONTEXT;
1476
1477         /*
1478          * If we're a stand alone event or group leader, we go to the context
1479          * list, group events are kept attached to the group so that
1480          * perf_group_detach can, at all times, locate all siblings.
1481          */
1482         if (event->group_leader == event) {
1483                 struct list_head *list;
1484
1485                 event->group_caps = event->event_caps;
1486
1487                 list = ctx_group_list(event, ctx);
1488                 list_add_tail(&event->group_entry, list);
1489         }
1490
1491         list_update_cgroup_event(event, ctx, true);
1492
1493         list_add_rcu(&event->event_entry, &ctx->event_list);
1494         ctx->nr_events++;
1495         if (event->attr.inherit_stat)
1496                 ctx->nr_stat++;
1497
1498         ctx->generation++;
1499 }
1500
1501 /*
1502  * Initialize event state based on the perf_event_attr::disabled.
1503  */
1504 static inline void perf_event__state_init(struct perf_event *event)
1505 {
1506         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1507                                               PERF_EVENT_STATE_INACTIVE;
1508 }
1509
1510 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1511 {
1512         int entry = sizeof(u64); /* value */
1513         int size = 0;
1514         int nr = 1;
1515
1516         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1517                 size += sizeof(u64);
1518
1519         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1520                 size += sizeof(u64);
1521
1522         if (event->attr.read_format & PERF_FORMAT_ID)
1523                 entry += sizeof(u64);
1524
1525         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1526                 nr += nr_siblings;
1527                 size += sizeof(u64);
1528         }
1529
1530         size += entry * nr;
1531         event->read_size = size;
1532 }
1533
1534 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1535 {
1536         struct perf_sample_data *data;
1537         u16 size = 0;
1538
1539         if (sample_type & PERF_SAMPLE_IP)
1540                 size += sizeof(data->ip);
1541
1542         if (sample_type & PERF_SAMPLE_ADDR)
1543                 size += sizeof(data->addr);
1544
1545         if (sample_type & PERF_SAMPLE_PERIOD)
1546                 size += sizeof(data->period);
1547
1548         if (sample_type & PERF_SAMPLE_WEIGHT)
1549                 size += sizeof(data->weight);
1550
1551         if (sample_type & PERF_SAMPLE_READ)
1552                 size += event->read_size;
1553
1554         if (sample_type & PERF_SAMPLE_DATA_SRC)
1555                 size += sizeof(data->data_src.val);
1556
1557         if (sample_type & PERF_SAMPLE_TRANSACTION)
1558                 size += sizeof(data->txn);
1559
1560         event->header_size = size;
1561 }
1562
1563 /*
1564  * Called at perf_event creation and when events are attached/detached from a
1565  * group.
1566  */
1567 static void perf_event__header_size(struct perf_event *event)
1568 {
1569         __perf_event_read_size(event,
1570                                event->group_leader->nr_siblings);
1571         __perf_event_header_size(event, event->attr.sample_type);
1572 }
1573
1574 static void perf_event__id_header_size(struct perf_event *event)
1575 {
1576         struct perf_sample_data *data;
1577         u64 sample_type = event->attr.sample_type;
1578         u16 size = 0;
1579
1580         if (sample_type & PERF_SAMPLE_TID)
1581                 size += sizeof(data->tid_entry);
1582
1583         if (sample_type & PERF_SAMPLE_TIME)
1584                 size += sizeof(data->time);
1585
1586         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1587                 size += sizeof(data->id);
1588
1589         if (sample_type & PERF_SAMPLE_ID)
1590                 size += sizeof(data->id);
1591
1592         if (sample_type & PERF_SAMPLE_STREAM_ID)
1593                 size += sizeof(data->stream_id);
1594
1595         if (sample_type & PERF_SAMPLE_CPU)
1596                 size += sizeof(data->cpu_entry);
1597
1598         event->id_header_size = size;
1599 }
1600
1601 static bool perf_event_validate_size(struct perf_event *event)
1602 {
1603         /*
1604          * The values computed here will be over-written when we actually
1605          * attach the event.
1606          */
1607         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1608         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1609         perf_event__id_header_size(event);
1610
1611         /*
1612          * Sum the lot; should not exceed the 64k limit we have on records.
1613          * Conservative limit to allow for callchains and other variable fields.
1614          */
1615         if (event->read_size + event->header_size +
1616             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1617                 return false;
1618
1619         return true;
1620 }
1621
1622 static void perf_group_attach(struct perf_event *event)
1623 {
1624         struct perf_event *group_leader = event->group_leader, *pos;
1625
1626         lockdep_assert_held(&event->ctx->lock);
1627
1628         /*
1629          * We can have double attach due to group movement in perf_event_open.
1630          */
1631         if (event->attach_state & PERF_ATTACH_GROUP)
1632                 return;
1633
1634         event->attach_state |= PERF_ATTACH_GROUP;
1635
1636         if (group_leader == event)
1637                 return;
1638
1639         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1640
1641         group_leader->group_caps &= event->event_caps;
1642
1643         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1644         group_leader->nr_siblings++;
1645
1646         perf_event__header_size(group_leader);
1647
1648         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1649                 perf_event__header_size(pos);
1650 }
1651
1652 /*
1653  * Remove a event from the lists for its context.
1654  * Must be called with ctx->mutex and ctx->lock held.
1655  */
1656 static void
1657 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1658 {
1659         WARN_ON_ONCE(event->ctx != ctx);
1660         lockdep_assert_held(&ctx->lock);
1661
1662         /*
1663          * We can have double detach due to exit/hot-unplug + close.
1664          */
1665         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1666                 return;
1667
1668         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1669
1670         list_update_cgroup_event(event, ctx, false);
1671
1672         ctx->nr_events--;
1673         if (event->attr.inherit_stat)
1674                 ctx->nr_stat--;
1675
1676         list_del_rcu(&event->event_entry);
1677
1678         if (event->group_leader == event)
1679                 list_del_init(&event->group_entry);
1680
1681         update_group_times(event);
1682
1683         /*
1684          * If event was in error state, then keep it
1685          * that way, otherwise bogus counts will be
1686          * returned on read(). The only way to get out
1687          * of error state is by explicit re-enabling
1688          * of the event
1689          */
1690         if (event->state > PERF_EVENT_STATE_OFF)
1691                 event->state = PERF_EVENT_STATE_OFF;
1692
1693         ctx->generation++;
1694 }
1695
1696 static void perf_group_detach(struct perf_event *event)
1697 {
1698         struct perf_event *sibling, *tmp;
1699         struct list_head *list = NULL;
1700
1701         lockdep_assert_held(&event->ctx->lock);
1702
1703         /*
1704          * We can have double detach due to exit/hot-unplug + close.
1705          */
1706         if (!(event->attach_state & PERF_ATTACH_GROUP))
1707                 return;
1708
1709         event->attach_state &= ~PERF_ATTACH_GROUP;
1710
1711         /*
1712          * If this is a sibling, remove it from its group.
1713          */
1714         if (event->group_leader != event) {
1715                 list_del_init(&event->group_entry);
1716                 event->group_leader->nr_siblings--;
1717                 goto out;
1718         }
1719
1720         if (!list_empty(&event->group_entry))
1721                 list = &event->group_entry;
1722
1723         /*
1724          * If this was a group event with sibling events then
1725          * upgrade the siblings to singleton events by adding them
1726          * to whatever list we are on.
1727          */
1728         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1729                 if (list)
1730                         list_move_tail(&sibling->group_entry, list);
1731                 sibling->group_leader = sibling;
1732
1733                 /* Inherit group flags from the previous leader */
1734                 sibling->group_caps = event->group_caps;
1735
1736                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1737         }
1738
1739 out:
1740         perf_event__header_size(event->group_leader);
1741
1742         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1743                 perf_event__header_size(tmp);
1744 }
1745
1746 static bool is_orphaned_event(struct perf_event *event)
1747 {
1748         return event->state == PERF_EVENT_STATE_DEAD;
1749 }
1750
1751 static inline int __pmu_filter_match(struct perf_event *event)
1752 {
1753         struct pmu *pmu = event->pmu;
1754         return pmu->filter_match ? pmu->filter_match(event) : 1;
1755 }
1756
1757 /*
1758  * Check whether we should attempt to schedule an event group based on
1759  * PMU-specific filtering. An event group can consist of HW and SW events,
1760  * potentially with a SW leader, so we must check all the filters, to
1761  * determine whether a group is schedulable:
1762  */
1763 static inline int pmu_filter_match(struct perf_event *event)
1764 {
1765         struct perf_event *child;
1766
1767         if (!__pmu_filter_match(event))
1768                 return 0;
1769
1770         list_for_each_entry(child, &event->sibling_list, group_entry) {
1771                 if (!__pmu_filter_match(child))
1772                         return 0;
1773         }
1774
1775         return 1;
1776 }
1777
1778 static inline int
1779 event_filter_match(struct perf_event *event)
1780 {
1781         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1782                perf_cgroup_match(event) && pmu_filter_match(event);
1783 }
1784
1785 static void
1786 event_sched_out(struct perf_event *event,
1787                   struct perf_cpu_context *cpuctx,
1788                   struct perf_event_context *ctx)
1789 {
1790         u64 tstamp = perf_event_time(event);
1791         u64 delta;
1792
1793         WARN_ON_ONCE(event->ctx != ctx);
1794         lockdep_assert_held(&ctx->lock);
1795
1796         /*
1797          * An event which could not be activated because of
1798          * filter mismatch still needs to have its timings
1799          * maintained, otherwise bogus information is return
1800          * via read() for time_enabled, time_running:
1801          */
1802         if (event->state == PERF_EVENT_STATE_INACTIVE &&
1803             !event_filter_match(event)) {
1804                 delta = tstamp - event->tstamp_stopped;
1805                 event->tstamp_running += delta;
1806                 event->tstamp_stopped = tstamp;
1807         }
1808
1809         if (event->state != PERF_EVENT_STATE_ACTIVE)
1810                 return;
1811
1812         perf_pmu_disable(event->pmu);
1813
1814         event->tstamp_stopped = tstamp;
1815         event->pmu->del(event, 0);
1816         event->oncpu = -1;
1817         event->state = PERF_EVENT_STATE_INACTIVE;
1818         if (event->pending_disable) {
1819                 event->pending_disable = 0;
1820                 event->state = PERF_EVENT_STATE_OFF;
1821         }
1822
1823         if (!is_software_event(event))
1824                 cpuctx->active_oncpu--;
1825         if (!--ctx->nr_active)
1826                 perf_event_ctx_deactivate(ctx);
1827         if (event->attr.freq && event->attr.sample_freq)
1828                 ctx->nr_freq--;
1829         if (event->attr.exclusive || !cpuctx->active_oncpu)
1830                 cpuctx->exclusive = 0;
1831
1832         perf_pmu_enable(event->pmu);
1833 }
1834
1835 static void
1836 group_sched_out(struct perf_event *group_event,
1837                 struct perf_cpu_context *cpuctx,
1838                 struct perf_event_context *ctx)
1839 {
1840         struct perf_event *event;
1841         int state = group_event->state;
1842
1843         perf_pmu_disable(ctx->pmu);
1844
1845         event_sched_out(group_event, cpuctx, ctx);
1846
1847         /*
1848          * Schedule out siblings (if any):
1849          */
1850         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1851                 event_sched_out(event, cpuctx, ctx);
1852
1853         perf_pmu_enable(ctx->pmu);
1854
1855         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1856                 cpuctx->exclusive = 0;
1857 }
1858
1859 #define DETACH_GROUP    0x01UL
1860
1861 /*
1862  * Cross CPU call to remove a performance event
1863  *
1864  * We disable the event on the hardware level first. After that we
1865  * remove it from the context list.
1866  */
1867 static void
1868 __perf_remove_from_context(struct perf_event *event,
1869                            struct perf_cpu_context *cpuctx,
1870                            struct perf_event_context *ctx,
1871                            void *info)
1872 {
1873         unsigned long flags = (unsigned long)info;
1874
1875         event_sched_out(event, cpuctx, ctx);
1876         if (flags & DETACH_GROUP)
1877                 perf_group_detach(event);
1878         list_del_event(event, ctx);
1879
1880         if (!ctx->nr_events && ctx->is_active) {
1881                 ctx->is_active = 0;
1882                 if (ctx->task) {
1883                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1884                         cpuctx->task_ctx = NULL;
1885                 }
1886         }
1887 }
1888
1889 /*
1890  * Remove the event from a task's (or a CPU's) list of events.
1891  *
1892  * If event->ctx is a cloned context, callers must make sure that
1893  * every task struct that event->ctx->task could possibly point to
1894  * remains valid.  This is OK when called from perf_release since
1895  * that only calls us on the top-level context, which can't be a clone.
1896  * When called from perf_event_exit_task, it's OK because the
1897  * context has been detached from its task.
1898  */
1899 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1900 {
1901         struct perf_event_context *ctx = event->ctx;
1902
1903         lockdep_assert_held(&ctx->mutex);
1904
1905         event_function_call(event, __perf_remove_from_context, (void *)flags);
1906
1907         /*
1908          * The above event_function_call() can NO-OP when it hits
1909          * TASK_TOMBSTONE. In that case we must already have been detached
1910          * from the context (by perf_event_exit_event()) but the grouping
1911          * might still be in-tact.
1912          */
1913         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1914         if ((flags & DETACH_GROUP) &&
1915             (event->attach_state & PERF_ATTACH_GROUP)) {
1916                 /*
1917                  * Since in that case we cannot possibly be scheduled, simply
1918                  * detach now.
1919                  */
1920                 raw_spin_lock_irq(&ctx->lock);
1921                 perf_group_detach(event);
1922                 raw_spin_unlock_irq(&ctx->lock);
1923         }
1924 }
1925
1926 /*
1927  * Cross CPU call to disable a performance event
1928  */
1929 static void __perf_event_disable(struct perf_event *event,
1930                                  struct perf_cpu_context *cpuctx,
1931                                  struct perf_event_context *ctx,
1932                                  void *info)
1933 {
1934         if (event->state < PERF_EVENT_STATE_INACTIVE)
1935                 return;
1936
1937         update_context_time(ctx);
1938         update_cgrp_time_from_event(event);
1939         update_group_times(event);
1940         if (event == event->group_leader)
1941                 group_sched_out(event, cpuctx, ctx);
1942         else
1943                 event_sched_out(event, cpuctx, ctx);
1944         event->state = PERF_EVENT_STATE_OFF;
1945 }
1946
1947 /*
1948  * Disable a event.
1949  *
1950  * If event->ctx is a cloned context, callers must make sure that
1951  * every task struct that event->ctx->task could possibly point to
1952  * remains valid.  This condition is satisifed when called through
1953  * perf_event_for_each_child or perf_event_for_each because they
1954  * hold the top-level event's child_mutex, so any descendant that
1955  * goes to exit will block in perf_event_exit_event().
1956  *
1957  * When called from perf_pending_event it's OK because event->ctx
1958  * is the current context on this CPU and preemption is disabled,
1959  * hence we can't get into perf_event_task_sched_out for this context.
1960  */
1961 static void _perf_event_disable(struct perf_event *event)
1962 {
1963         struct perf_event_context *ctx = event->ctx;
1964
1965         raw_spin_lock_irq(&ctx->lock);
1966         if (event->state <= PERF_EVENT_STATE_OFF) {
1967                 raw_spin_unlock_irq(&ctx->lock);
1968                 return;
1969         }
1970         raw_spin_unlock_irq(&ctx->lock);
1971
1972         event_function_call(event, __perf_event_disable, NULL);
1973 }
1974
1975 void perf_event_disable_local(struct perf_event *event)
1976 {
1977         event_function_local(event, __perf_event_disable, NULL);
1978 }
1979
1980 /*
1981  * Strictly speaking kernel users cannot create groups and therefore this
1982  * interface does not need the perf_event_ctx_lock() magic.
1983  */
1984 void perf_event_disable(struct perf_event *event)
1985 {
1986         struct perf_event_context *ctx;
1987
1988         ctx = perf_event_ctx_lock(event);
1989         _perf_event_disable(event);
1990         perf_event_ctx_unlock(event, ctx);
1991 }
1992 EXPORT_SYMBOL_GPL(perf_event_disable);
1993
1994 void perf_event_disable_inatomic(struct perf_event *event)
1995 {
1996         event->pending_disable = 1;
1997         irq_work_queue(&event->pending);
1998 }
1999
2000 static void perf_set_shadow_time(struct perf_event *event,
2001                                  struct perf_event_context *ctx,
2002                                  u64 tstamp)
2003 {
2004         /*
2005          * use the correct time source for the time snapshot
2006          *
2007          * We could get by without this by leveraging the
2008          * fact that to get to this function, the caller
2009          * has most likely already called update_context_time()
2010          * and update_cgrp_time_xx() and thus both timestamp
2011          * are identical (or very close). Given that tstamp is,
2012          * already adjusted for cgroup, we could say that:
2013          *    tstamp - ctx->timestamp
2014          * is equivalent to
2015          *    tstamp - cgrp->timestamp.
2016          *
2017          * Then, in perf_output_read(), the calculation would
2018          * work with no changes because:
2019          * - event is guaranteed scheduled in
2020          * - no scheduled out in between
2021          * - thus the timestamp would be the same
2022          *
2023          * But this is a bit hairy.
2024          *
2025          * So instead, we have an explicit cgroup call to remain
2026          * within the time time source all along. We believe it
2027          * is cleaner and simpler to understand.
2028          */
2029         if (is_cgroup_event(event))
2030                 perf_cgroup_set_shadow_time(event, tstamp);
2031         else
2032                 event->shadow_ctx_time = tstamp - ctx->timestamp;
2033 }
2034
2035 #define MAX_INTERRUPTS (~0ULL)
2036
2037 static void perf_log_throttle(struct perf_event *event, int enable);
2038 static void perf_log_itrace_start(struct perf_event *event);
2039
2040 static int
2041 event_sched_in(struct perf_event *event,
2042                  struct perf_cpu_context *cpuctx,
2043                  struct perf_event_context *ctx)
2044 {
2045         u64 tstamp = perf_event_time(event);
2046         int ret = 0;
2047
2048         lockdep_assert_held(&ctx->lock);
2049
2050         if (event->state <= PERF_EVENT_STATE_OFF)
2051                 return 0;
2052
2053         WRITE_ONCE(event->oncpu, smp_processor_id());
2054         /*
2055          * Order event::oncpu write to happen before the ACTIVE state
2056          * is visible.
2057          */
2058         smp_wmb();
2059         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2060
2061         /*
2062          * Unthrottle events, since we scheduled we might have missed several
2063          * ticks already, also for a heavily scheduling task there is little
2064          * guarantee it'll get a tick in a timely manner.
2065          */
2066         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2067                 perf_log_throttle(event, 1);
2068                 event->hw.interrupts = 0;
2069         }
2070
2071         /*
2072          * The new state must be visible before we turn it on in the hardware:
2073          */
2074         smp_wmb();
2075
2076         perf_pmu_disable(event->pmu);
2077
2078         perf_set_shadow_time(event, ctx, tstamp);
2079
2080         perf_log_itrace_start(event);
2081
2082         if (event->pmu->add(event, PERF_EF_START)) {
2083                 event->state = PERF_EVENT_STATE_INACTIVE;
2084                 event->oncpu = -1;
2085                 ret = -EAGAIN;
2086                 goto out;
2087         }
2088
2089         event->tstamp_running += tstamp - event->tstamp_stopped;
2090
2091         if (!is_software_event(event))
2092                 cpuctx->active_oncpu++;
2093         if (!ctx->nr_active++)
2094                 perf_event_ctx_activate(ctx);
2095         if (event->attr.freq && event->attr.sample_freq)
2096                 ctx->nr_freq++;
2097
2098         if (event->attr.exclusive)
2099                 cpuctx->exclusive = 1;
2100
2101 out:
2102         perf_pmu_enable(event->pmu);
2103
2104         return ret;
2105 }
2106
2107 static int
2108 group_sched_in(struct perf_event *group_event,
2109                struct perf_cpu_context *cpuctx,
2110                struct perf_event_context *ctx)
2111 {
2112         struct perf_event *event, *partial_group = NULL;
2113         struct pmu *pmu = ctx->pmu;
2114         u64 now = ctx->time;
2115         bool simulate = false;
2116
2117         if (group_event->state == PERF_EVENT_STATE_OFF)
2118                 return 0;
2119
2120         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2121
2122         if (event_sched_in(group_event, cpuctx, ctx)) {
2123                 pmu->cancel_txn(pmu);
2124                 perf_mux_hrtimer_restart(cpuctx);
2125                 return -EAGAIN;
2126         }
2127
2128         /*
2129          * Schedule in siblings as one group (if any):
2130          */
2131         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2132                 if (event_sched_in(event, cpuctx, ctx)) {
2133                         partial_group = event;
2134                         goto group_error;
2135                 }
2136         }
2137
2138         if (!pmu->commit_txn(pmu))
2139                 return 0;
2140
2141 group_error:
2142         /*
2143          * Groups can be scheduled in as one unit only, so undo any
2144          * partial group before returning:
2145          * The events up to the failed event are scheduled out normally,
2146          * tstamp_stopped will be updated.
2147          *
2148          * The failed events and the remaining siblings need to have
2149          * their timings updated as if they had gone thru event_sched_in()
2150          * and event_sched_out(). This is required to get consistent timings
2151          * across the group. This also takes care of the case where the group
2152          * could never be scheduled by ensuring tstamp_stopped is set to mark
2153          * the time the event was actually stopped, such that time delta
2154          * calculation in update_event_times() is correct.
2155          */
2156         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2157                 if (event == partial_group)
2158                         simulate = true;
2159
2160                 if (simulate) {
2161                         event->tstamp_running += now - event->tstamp_stopped;
2162                         event->tstamp_stopped = now;
2163                 } else {
2164                         event_sched_out(event, cpuctx, ctx);
2165                 }
2166         }
2167         event_sched_out(group_event, cpuctx, ctx);
2168
2169         pmu->cancel_txn(pmu);
2170
2171         perf_mux_hrtimer_restart(cpuctx);
2172
2173         return -EAGAIN;
2174 }
2175
2176 /*
2177  * Work out whether we can put this event group on the CPU now.
2178  */
2179 static int group_can_go_on(struct perf_event *event,
2180                            struct perf_cpu_context *cpuctx,
2181                            int can_add_hw)
2182 {
2183         /*
2184          * Groups consisting entirely of software events can always go on.
2185          */
2186         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2187                 return 1;
2188         /*
2189          * If an exclusive group is already on, no other hardware
2190          * events can go on.
2191          */
2192         if (cpuctx->exclusive)
2193                 return 0;
2194         /*
2195          * If this group is exclusive and there are already
2196          * events on the CPU, it can't go on.
2197          */
2198         if (event->attr.exclusive && cpuctx->active_oncpu)
2199                 return 0;
2200         /*
2201          * Otherwise, try to add it if all previous groups were able
2202          * to go on.
2203          */
2204         return can_add_hw;
2205 }
2206
2207 static void add_event_to_ctx(struct perf_event *event,
2208                                struct perf_event_context *ctx)
2209 {
2210         u64 tstamp = perf_event_time(event);
2211
2212         list_add_event(event, ctx);
2213         perf_group_attach(event);
2214         event->tstamp_enabled = tstamp;
2215         event->tstamp_running = tstamp;
2216         event->tstamp_stopped = tstamp;
2217 }
2218
2219 static void ctx_sched_out(struct perf_event_context *ctx,
2220                           struct perf_cpu_context *cpuctx,
2221                           enum event_type_t event_type);
2222 static void
2223 ctx_sched_in(struct perf_event_context *ctx,
2224              struct perf_cpu_context *cpuctx,
2225              enum event_type_t event_type,
2226              struct task_struct *task);
2227
2228 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2229                                struct perf_event_context *ctx)
2230 {
2231         if (!cpuctx->task_ctx)
2232                 return;
2233
2234         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2235                 return;
2236
2237         ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2238 }
2239
2240 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2241                                 struct perf_event_context *ctx,
2242                                 struct task_struct *task)
2243 {
2244         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2245         if (ctx)
2246                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2247         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2248         if (ctx)
2249                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2250 }
2251
2252 static void ctx_resched(struct perf_cpu_context *cpuctx,
2253                         struct perf_event_context *task_ctx)
2254 {
2255         perf_pmu_disable(cpuctx->ctx.pmu);
2256         if (task_ctx)
2257                 task_ctx_sched_out(cpuctx, task_ctx);
2258         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2259         perf_event_sched_in(cpuctx, task_ctx, current);
2260         perf_pmu_enable(cpuctx->ctx.pmu);
2261 }
2262
2263 /*
2264  * Cross CPU call to install and enable a performance event
2265  *
2266  * Very similar to remote_function() + event_function() but cannot assume that
2267  * things like ctx->is_active and cpuctx->task_ctx are set.
2268  */
2269 static int  __perf_install_in_context(void *info)
2270 {
2271         struct perf_event *event = info;
2272         struct perf_event_context *ctx = event->ctx;
2273         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2274         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2275         bool reprogram = true;
2276         int ret = 0;
2277
2278         raw_spin_lock(&cpuctx->ctx.lock);
2279         if (ctx->task) {
2280                 raw_spin_lock(&ctx->lock);
2281                 task_ctx = ctx;
2282
2283                 reprogram = (ctx->task == current);
2284
2285                 /*
2286                  * If the task is running, it must be running on this CPU,
2287                  * otherwise we cannot reprogram things.
2288                  *
2289                  * If its not running, we don't care, ctx->lock will
2290                  * serialize against it becoming runnable.
2291                  */
2292                 if (task_curr(ctx->task) && !reprogram) {
2293                         ret = -ESRCH;
2294                         goto unlock;
2295                 }
2296
2297                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2298         } else if (task_ctx) {
2299                 raw_spin_lock(&task_ctx->lock);
2300         }
2301
2302         if (reprogram) {
2303                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2304                 add_event_to_ctx(event, ctx);
2305                 ctx_resched(cpuctx, task_ctx);
2306         } else {
2307                 add_event_to_ctx(event, ctx);
2308         }
2309
2310 unlock:
2311         perf_ctx_unlock(cpuctx, task_ctx);
2312
2313         return ret;
2314 }
2315
2316 /*
2317  * Attach a performance event to a context.
2318  *
2319  * Very similar to event_function_call, see comment there.
2320  */
2321 static void
2322 perf_install_in_context(struct perf_event_context *ctx,
2323                         struct perf_event *event,
2324                         int cpu)
2325 {
2326         struct task_struct *task = READ_ONCE(ctx->task);
2327
2328         lockdep_assert_held(&ctx->mutex);
2329
2330         if (event->cpu != -1)
2331                 event->cpu = cpu;
2332
2333         /*
2334          * Ensures that if we can observe event->ctx, both the event and ctx
2335          * will be 'complete'. See perf_iterate_sb_cpu().
2336          */
2337         smp_store_release(&event->ctx, ctx);
2338
2339         if (!task) {
2340                 cpu_function_call(cpu, __perf_install_in_context, event);
2341                 return;
2342         }
2343
2344         /*
2345          * Should not happen, we validate the ctx is still alive before calling.
2346          */
2347         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2348                 return;
2349
2350         /*
2351          * Installing events is tricky because we cannot rely on ctx->is_active
2352          * to be set in case this is the nr_events 0 -> 1 transition.
2353          *
2354          * Instead we use task_curr(), which tells us if the task is running.
2355          * However, since we use task_curr() outside of rq::lock, we can race
2356          * against the actual state. This means the result can be wrong.
2357          *
2358          * If we get a false positive, we retry, this is harmless.
2359          *
2360          * If we get a false negative, things are complicated. If we are after
2361          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2362          * value must be correct. If we're before, it doesn't matter since
2363          * perf_event_context_sched_in() will program the counter.
2364          *
2365          * However, this hinges on the remote context switch having observed
2366          * our task->perf_event_ctxp[] store, such that it will in fact take
2367          * ctx::lock in perf_event_context_sched_in().
2368          *
2369          * We do this by task_function_call(), if the IPI fails to hit the task
2370          * we know any future context switch of task must see the
2371          * perf_event_ctpx[] store.
2372          */
2373
2374         /*
2375          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2376          * task_cpu() load, such that if the IPI then does not find the task
2377          * running, a future context switch of that task must observe the
2378          * store.
2379          */
2380         smp_mb();
2381 again:
2382         if (!task_function_call(task, __perf_install_in_context, event))
2383                 return;
2384
2385         raw_spin_lock_irq(&ctx->lock);
2386         task = ctx->task;
2387         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2388                 /*
2389                  * Cannot happen because we already checked above (which also
2390                  * cannot happen), and we hold ctx->mutex, which serializes us
2391                  * against perf_event_exit_task_context().
2392                  */
2393                 raw_spin_unlock_irq(&ctx->lock);
2394                 return;
2395         }
2396         /*
2397          * If the task is not running, ctx->lock will avoid it becoming so,
2398          * thus we can safely install the event.
2399          */
2400         if (task_curr(task)) {
2401                 raw_spin_unlock_irq(&ctx->lock);
2402                 goto again;
2403         }
2404         add_event_to_ctx(event, ctx);
2405         raw_spin_unlock_irq(&ctx->lock);
2406 }
2407
2408 /*
2409  * Put a event into inactive state and update time fields.
2410  * Enabling the leader of a group effectively enables all
2411  * the group members that aren't explicitly disabled, so we
2412  * have to update their ->tstamp_enabled also.
2413  * Note: this works for group members as well as group leaders
2414  * since the non-leader members' sibling_lists will be empty.
2415  */
2416 static void __perf_event_mark_enabled(struct perf_event *event)
2417 {
2418         struct perf_event *sub;
2419         u64 tstamp = perf_event_time(event);
2420
2421         event->state = PERF_EVENT_STATE_INACTIVE;
2422         event->tstamp_enabled = tstamp - event->total_time_enabled;
2423         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2424                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2425                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2426         }
2427 }
2428
2429 /*
2430  * Cross CPU call to enable a performance event
2431  */
2432 static void __perf_event_enable(struct perf_event *event,
2433                                 struct perf_cpu_context *cpuctx,
2434                                 struct perf_event_context *ctx,
2435                                 void *info)
2436 {
2437         struct perf_event *leader = event->group_leader;
2438         struct perf_event_context *task_ctx;
2439
2440         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2441             event->state <= PERF_EVENT_STATE_ERROR)
2442                 return;
2443
2444         if (ctx->is_active)
2445                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2446
2447         __perf_event_mark_enabled(event);
2448
2449         if (!ctx->is_active)
2450                 return;
2451
2452         if (!event_filter_match(event)) {
2453                 if (is_cgroup_event(event))
2454                         perf_cgroup_defer_enabled(event);
2455                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2456                 return;
2457         }
2458
2459         /*
2460          * If the event is in a group and isn't the group leader,
2461          * then don't put it on unless the group is on.
2462          */
2463         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2464                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2465                 return;
2466         }
2467
2468         task_ctx = cpuctx->task_ctx;
2469         if (ctx->task)
2470                 WARN_ON_ONCE(task_ctx != ctx);
2471
2472         ctx_resched(cpuctx, task_ctx);
2473 }
2474
2475 /*
2476  * Enable a event.
2477  *
2478  * If event->ctx is a cloned context, callers must make sure that
2479  * every task struct that event->ctx->task could possibly point to
2480  * remains valid.  This condition is satisfied when called through
2481  * perf_event_for_each_child or perf_event_for_each as described
2482  * for perf_event_disable.
2483  */
2484 static void _perf_event_enable(struct perf_event *event)
2485 {
2486         struct perf_event_context *ctx = event->ctx;
2487
2488         raw_spin_lock_irq(&ctx->lock);
2489         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2490             event->state <  PERF_EVENT_STATE_ERROR) {
2491                 raw_spin_unlock_irq(&ctx->lock);
2492                 return;
2493         }
2494
2495         /*
2496          * If the event is in error state, clear that first.
2497          *
2498          * That way, if we see the event in error state below, we know that it
2499          * has gone back into error state, as distinct from the task having
2500          * been scheduled away before the cross-call arrived.
2501          */
2502         if (event->state == PERF_EVENT_STATE_ERROR)
2503                 event->state = PERF_EVENT_STATE_OFF;
2504         raw_spin_unlock_irq(&ctx->lock);
2505
2506         event_function_call(event, __perf_event_enable, NULL);
2507 }
2508
2509 /*
2510  * See perf_event_disable();
2511  */
2512 void perf_event_enable(struct perf_event *event)
2513 {
2514         struct perf_event_context *ctx;
2515
2516         ctx = perf_event_ctx_lock(event);
2517         _perf_event_enable(event);
2518         perf_event_ctx_unlock(event, ctx);
2519 }
2520 EXPORT_SYMBOL_GPL(perf_event_enable);
2521
2522 struct stop_event_data {
2523         struct perf_event       *event;
2524         unsigned int            restart;
2525 };
2526
2527 static int __perf_event_stop(void *info)
2528 {
2529         struct stop_event_data *sd = info;
2530         struct perf_event *event = sd->event;
2531
2532         /* if it's already INACTIVE, do nothing */
2533         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2534                 return 0;
2535
2536         /* matches smp_wmb() in event_sched_in() */
2537         smp_rmb();
2538
2539         /*
2540          * There is a window with interrupts enabled before we get here,
2541          * so we need to check again lest we try to stop another CPU's event.
2542          */
2543         if (READ_ONCE(event->oncpu) != smp_processor_id())
2544                 return -EAGAIN;
2545
2546         event->pmu->stop(event, PERF_EF_UPDATE);
2547
2548         /*
2549          * May race with the actual stop (through perf_pmu_output_stop()),
2550          * but it is only used for events with AUX ring buffer, and such
2551          * events will refuse to restart because of rb::aux_mmap_count==0,
2552          * see comments in perf_aux_output_begin().
2553          *
2554          * Since this is happening on a event-local CPU, no trace is lost
2555          * while restarting.
2556          */
2557         if (sd->restart)
2558                 event->pmu->start(event, 0);
2559
2560         return 0;
2561 }
2562
2563 static int perf_event_stop(struct perf_event *event, int restart)
2564 {
2565         struct stop_event_data sd = {
2566                 .event          = event,
2567                 .restart        = restart,
2568         };
2569         int ret = 0;
2570
2571         do {
2572                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2573                         return 0;
2574
2575                 /* matches smp_wmb() in event_sched_in() */
2576                 smp_rmb();
2577
2578                 /*
2579                  * We only want to restart ACTIVE events, so if the event goes
2580                  * inactive here (event->oncpu==-1), there's nothing more to do;
2581                  * fall through with ret==-ENXIO.
2582                  */
2583                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2584                                         __perf_event_stop, &sd);
2585         } while (ret == -EAGAIN);
2586
2587         return ret;
2588 }
2589
2590 /*
2591  * In order to contain the amount of racy and tricky in the address filter
2592  * configuration management, it is a two part process:
2593  *
2594  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2595  *      we update the addresses of corresponding vmas in
2596  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2597  * (p2) when an event is scheduled in (pmu::add), it calls
2598  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2599  *      if the generation has changed since the previous call.
2600  *
2601  * If (p1) happens while the event is active, we restart it to force (p2).
2602  *
2603  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2604  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2605  *     ioctl;
2606  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2607  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2608  *     for reading;
2609  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2610  *     of exec.
2611  */
2612 void perf_event_addr_filters_sync(struct perf_event *event)
2613 {
2614         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2615
2616         if (!has_addr_filter(event))
2617                 return;
2618
2619         raw_spin_lock(&ifh->lock);
2620         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2621                 event->pmu->addr_filters_sync(event);
2622                 event->hw.addr_filters_gen = event->addr_filters_gen;
2623         }
2624         raw_spin_unlock(&ifh->lock);
2625 }
2626 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2627
2628 static int _perf_event_refresh(struct perf_event *event, int refresh)
2629 {
2630         /*
2631          * not supported on inherited events
2632          */
2633         if (event->attr.inherit || !is_sampling_event(event))
2634                 return -EINVAL;
2635
2636         atomic_add(refresh, &event->event_limit);
2637         _perf_event_enable(event);
2638
2639         return 0;
2640 }
2641
2642 /*
2643  * See perf_event_disable()
2644  */
2645 int perf_event_refresh(struct perf_event *event, int refresh)
2646 {
2647         struct perf_event_context *ctx;
2648         int ret;
2649
2650         ctx = perf_event_ctx_lock(event);
2651         ret = _perf_event_refresh(event, refresh);
2652         perf_event_ctx_unlock(event, ctx);
2653
2654         return ret;
2655 }
2656 EXPORT_SYMBOL_GPL(perf_event_refresh);
2657
2658 static void ctx_sched_out(struct perf_event_context *ctx,
2659                           struct perf_cpu_context *cpuctx,
2660                           enum event_type_t event_type)
2661 {
2662         int is_active = ctx->is_active;
2663         struct perf_event *event;
2664
2665         lockdep_assert_held(&ctx->lock);
2666
2667         if (likely(!ctx->nr_events)) {
2668                 /*
2669                  * See __perf_remove_from_context().
2670                  */
2671                 WARN_ON_ONCE(ctx->is_active);
2672                 if (ctx->task)
2673                         WARN_ON_ONCE(cpuctx->task_ctx);
2674                 return;
2675         }
2676
2677         ctx->is_active &= ~event_type;
2678         if (!(ctx->is_active & EVENT_ALL))
2679                 ctx->is_active = 0;
2680
2681         if (ctx->task) {
2682                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2683                 if (!ctx->is_active)
2684                         cpuctx->task_ctx = NULL;
2685         }
2686
2687         /*
2688          * Always update time if it was set; not only when it changes.
2689          * Otherwise we can 'forget' to update time for any but the last
2690          * context we sched out. For example:
2691          *
2692          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2693          *   ctx_sched_out(.event_type = EVENT_PINNED)
2694          *
2695          * would only update time for the pinned events.
2696          */
2697         if (is_active & EVENT_TIME) {
2698                 /* update (and stop) ctx time */
2699                 update_context_time(ctx);
2700                 update_cgrp_time_from_cpuctx(cpuctx);
2701         }
2702
2703         is_active ^= ctx->is_active; /* changed bits */
2704
2705         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2706                 return;
2707
2708         perf_pmu_disable(ctx->pmu);
2709         if (is_active & EVENT_PINNED) {
2710                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2711                         group_sched_out(event, cpuctx, ctx);
2712         }
2713
2714         if (is_active & EVENT_FLEXIBLE) {
2715                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2716                         group_sched_out(event, cpuctx, ctx);
2717         }
2718         perf_pmu_enable(ctx->pmu);
2719 }
2720
2721 /*
2722  * Test whether two contexts are equivalent, i.e. whether they have both been
2723  * cloned from the same version of the same context.
2724  *
2725  * Equivalence is measured using a generation number in the context that is
2726  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2727  * and list_del_event().
2728  */
2729 static int context_equiv(struct perf_event_context *ctx1,
2730                          struct perf_event_context *ctx2)
2731 {
2732         lockdep_assert_held(&ctx1->lock);
2733         lockdep_assert_held(&ctx2->lock);
2734
2735         /* Pinning disables the swap optimization */
2736         if (ctx1->pin_count || ctx2->pin_count)
2737                 return 0;
2738
2739         /* If ctx1 is the parent of ctx2 */
2740         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2741                 return 1;
2742
2743         /* If ctx2 is the parent of ctx1 */
2744         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2745                 return 1;
2746
2747         /*
2748          * If ctx1 and ctx2 have the same parent; we flatten the parent
2749          * hierarchy, see perf_event_init_context().
2750          */
2751         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2752                         ctx1->parent_gen == ctx2->parent_gen)
2753                 return 1;
2754
2755         /* Unmatched */
2756         return 0;
2757 }
2758
2759 static void __perf_event_sync_stat(struct perf_event *event,
2760                                      struct perf_event *next_event)
2761 {
2762         u64 value;
2763
2764         if (!event->attr.inherit_stat)
2765                 return;
2766
2767         /*
2768          * Update the event value, we cannot use perf_event_read()
2769          * because we're in the middle of a context switch and have IRQs
2770          * disabled, which upsets smp_call_function_single(), however
2771          * we know the event must be on the current CPU, therefore we
2772          * don't need to use it.
2773          */
2774         switch (event->state) {
2775         case PERF_EVENT_STATE_ACTIVE:
2776                 event->pmu->read(event);
2777                 /* fall-through */
2778
2779         case PERF_EVENT_STATE_INACTIVE:
2780                 update_event_times(event);
2781                 break;
2782
2783         default:
2784                 break;
2785         }
2786
2787         /*
2788          * In order to keep per-task stats reliable we need to flip the event
2789          * values when we flip the contexts.
2790          */
2791         value = local64_read(&next_event->count);
2792         value = local64_xchg(&event->count, value);
2793         local64_set(&next_event->count, value);
2794
2795         swap(event->total_time_enabled, next_event->total_time_enabled);
2796         swap(event->total_time_running, next_event->total_time_running);
2797
2798         /*
2799          * Since we swizzled the values, update the user visible data too.
2800          */
2801         perf_event_update_userpage(event);
2802         perf_event_update_userpage(next_event);
2803 }
2804
2805 static void perf_event_sync_stat(struct perf_event_context *ctx,
2806                                    struct perf_event_context *next_ctx)
2807 {
2808         struct perf_event *event, *next_event;
2809
2810         if (!ctx->nr_stat)
2811                 return;
2812
2813         update_context_time(ctx);
2814
2815         event = list_first_entry(&ctx->event_list,
2816                                    struct perf_event, event_entry);
2817
2818         next_event = list_first_entry(&next_ctx->event_list,
2819                                         struct perf_event, event_entry);
2820
2821         while (&event->event_entry != &ctx->event_list &&
2822                &next_event->event_entry != &next_ctx->event_list) {
2823
2824                 __perf_event_sync_stat(event, next_event);
2825
2826                 event = list_next_entry(event, event_entry);
2827                 next_event = list_next_entry(next_event, event_entry);
2828         }
2829 }
2830
2831 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2832                                          struct task_struct *next)
2833 {
2834         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2835         struct perf_event_context *next_ctx;
2836         struct perf_event_context *parent, *next_parent;
2837         struct perf_cpu_context *cpuctx;
2838         int do_switch = 1;
2839
2840         if (likely(!ctx))
2841                 return;
2842
2843         cpuctx = __get_cpu_context(ctx);
2844         if (!cpuctx->task_ctx)
2845                 return;
2846
2847         rcu_read_lock();
2848         next_ctx = next->perf_event_ctxp[ctxn];
2849         if (!next_ctx)
2850                 goto unlock;
2851
2852         parent = rcu_dereference(ctx->parent_ctx);
2853         next_parent = rcu_dereference(next_ctx->parent_ctx);
2854
2855         /* If neither context have a parent context; they cannot be clones. */
2856         if (!parent && !next_parent)
2857                 goto unlock;
2858
2859         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2860                 /*
2861                  * Looks like the two contexts are clones, so we might be
2862                  * able to optimize the context switch.  We lock both
2863                  * contexts and check that they are clones under the
2864                  * lock (including re-checking that neither has been
2865                  * uncloned in the meantime).  It doesn't matter which
2866                  * order we take the locks because no other cpu could
2867                  * be trying to lock both of these tasks.
2868                  */
2869                 raw_spin_lock(&ctx->lock);
2870                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2871                 if (context_equiv(ctx, next_ctx)) {
2872                         WRITE_ONCE(ctx->task, next);
2873                         WRITE_ONCE(next_ctx->task, task);
2874
2875                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2876
2877                         /*
2878                          * RCU_INIT_POINTER here is safe because we've not
2879                          * modified the ctx and the above modification of
2880                          * ctx->task and ctx->task_ctx_data are immaterial
2881                          * since those values are always verified under
2882                          * ctx->lock which we're now holding.
2883                          */
2884                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2885                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2886
2887                         do_switch = 0;
2888
2889                         perf_event_sync_stat(ctx, next_ctx);
2890                 }
2891                 raw_spin_unlock(&next_ctx->lock);
2892                 raw_spin_unlock(&ctx->lock);
2893         }
2894 unlock:
2895         rcu_read_unlock();
2896
2897         if (do_switch) {
2898                 raw_spin_lock(&ctx->lock);
2899                 task_ctx_sched_out(cpuctx, ctx);
2900                 raw_spin_unlock(&ctx->lock);
2901         }
2902 }
2903
2904 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2905
2906 void perf_sched_cb_dec(struct pmu *pmu)
2907 {
2908         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2909
2910         this_cpu_dec(perf_sched_cb_usages);
2911
2912         if (!--cpuctx->sched_cb_usage)
2913                 list_del(&cpuctx->sched_cb_entry);
2914 }
2915
2916
2917 void perf_sched_cb_inc(struct pmu *pmu)
2918 {
2919         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2920
2921         if (!cpuctx->sched_cb_usage++)
2922                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2923
2924         this_cpu_inc(perf_sched_cb_usages);
2925 }
2926
2927 /*
2928  * This function provides the context switch callback to the lower code
2929  * layer. It is invoked ONLY when the context switch callback is enabled.
2930  *
2931  * This callback is relevant even to per-cpu events; for example multi event
2932  * PEBS requires this to provide PID/TID information. This requires we flush
2933  * all queued PEBS records before we context switch to a new task.
2934  */
2935 static void perf_pmu_sched_task(struct task_struct *prev,
2936                                 struct task_struct *next,
2937                                 bool sched_in)
2938 {
2939         struct perf_cpu_context *cpuctx;
2940         struct pmu *pmu;
2941
2942         if (prev == next)
2943                 return;
2944
2945         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2946                 pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */
2947
2948                 if (WARN_ON_ONCE(!pmu->sched_task))
2949                         continue;
2950
2951                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2952                 perf_pmu_disable(pmu);
2953
2954                 pmu->sched_task(cpuctx->task_ctx, sched_in);
2955
2956                 perf_pmu_enable(pmu);
2957                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2958         }
2959 }
2960
2961 static void perf_event_switch(struct task_struct *task,
2962                               struct task_struct *next_prev, bool sched_in);
2963
2964 #define for_each_task_context_nr(ctxn)                                  \
2965         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2966
2967 /*
2968  * Called from scheduler to remove the events of the current task,
2969  * with interrupts disabled.
2970  *
2971  * We stop each event and update the event value in event->count.
2972  *
2973  * This does not protect us against NMI, but disable()
2974  * sets the disabled bit in the control field of event _before_
2975  * accessing the event control register. If a NMI hits, then it will
2976  * not restart the event.
2977  */
2978 void __perf_event_task_sched_out(struct task_struct *task,
2979                                  struct task_struct *next)
2980 {
2981         int ctxn;
2982
2983         if (__this_cpu_read(perf_sched_cb_usages))
2984                 perf_pmu_sched_task(task, next, false);
2985
2986         if (atomic_read(&nr_switch_events))
2987                 perf_event_switch(task, next, false);
2988
2989         for_each_task_context_nr(ctxn)
2990                 perf_event_context_sched_out(task, ctxn, next);
2991
2992         /*
2993          * if cgroup events exist on this CPU, then we need
2994          * to check if we have to switch out PMU state.
2995          * cgroup event are system-wide mode only
2996          */
2997         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2998                 perf_cgroup_sched_out(task, next);
2999 }
3000
3001 /*
3002  * Called with IRQs disabled
3003  */
3004 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3005                               enum event_type_t event_type)
3006 {
3007         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3008 }
3009
3010 static void
3011 ctx_pinned_sched_in(struct perf_event_context *ctx,
3012                     struct perf_cpu_context *cpuctx)
3013 {
3014         struct perf_event *event;
3015
3016         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3017                 if (event->state <= PERF_EVENT_STATE_OFF)
3018                         continue;
3019                 if (!event_filter_match(event))
3020                         continue;
3021
3022                 /* may need to reset tstamp_enabled */
3023                 if (is_cgroup_event(event))
3024                         perf_cgroup_mark_enabled(event, ctx);
3025
3026                 if (group_can_go_on(event, cpuctx, 1))
3027                         group_sched_in(event, cpuctx, ctx);
3028
3029                 /*
3030                  * If this pinned group hasn't been scheduled,
3031                  * put it in error state.
3032                  */
3033                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3034                         update_group_times(event);
3035                         event->state = PERF_EVENT_STATE_ERROR;
3036                 }
3037         }
3038 }
3039
3040 static void
3041 ctx_flexible_sched_in(struct perf_event_context *ctx,
3042                       struct perf_cpu_context *cpuctx)
3043 {
3044         struct perf_event *event;
3045         int can_add_hw = 1;
3046
3047         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3048                 /* Ignore events in OFF or ERROR state */
3049                 if (event->state <= PERF_EVENT_STATE_OFF)
3050                         continue;
3051                 /*
3052                  * Listen to the 'cpu' scheduling filter constraint
3053                  * of events:
3054                  */
3055                 if (!event_filter_match(event))
3056                         continue;
3057
3058                 /* may need to reset tstamp_enabled */
3059                 if (is_cgroup_event(event))
3060                         perf_cgroup_mark_enabled(event, ctx);
3061
3062                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3063                         if (group_sched_in(event, cpuctx, ctx))
3064                                 can_add_hw = 0;
3065                 }
3066         }
3067 }
3068
3069 static void
3070 ctx_sched_in(struct perf_event_context *ctx,
3071              struct perf_cpu_context *cpuctx,
3072              enum event_type_t event_type,
3073              struct task_struct *task)
3074 {
3075         int is_active = ctx->is_active;
3076         u64 now;
3077
3078         lockdep_assert_held(&ctx->lock);
3079
3080         if (likely(!ctx->nr_events))
3081                 return;
3082
3083         ctx->is_active |= (event_type | EVENT_TIME);
3084         if (ctx->task) {
3085                 if (!is_active)
3086                         cpuctx->task_ctx = ctx;
3087                 else
3088                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3089         }
3090
3091         is_active ^= ctx->is_active; /* changed bits */
3092
3093         if (is_active & EVENT_TIME) {
3094                 /* start ctx time */
3095                 now = perf_clock();
3096                 ctx->timestamp = now;
3097                 perf_cgroup_set_timestamp(task, ctx);
3098         }
3099
3100         /*
3101          * First go through the list and put on any pinned groups
3102          * in order to give them the best chance of going on.
3103          */
3104         if (is_active & EVENT_PINNED)
3105                 ctx_pinned_sched_in(ctx, cpuctx);
3106
3107         /* Then walk through the lower prio flexible groups */
3108         if (is_active & EVENT_FLEXIBLE)
3109                 ctx_flexible_sched_in(ctx, cpuctx);
3110 }
3111
3112 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3113                              enum event_type_t event_type,
3114                              struct task_struct *task)
3115 {
3116         struct perf_event_context *ctx = &cpuctx->ctx;
3117
3118         ctx_sched_in(ctx, cpuctx, event_type, task);
3119 }
3120
3121 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3122                                         struct task_struct *task)
3123 {
3124         struct perf_cpu_context *cpuctx;
3125
3126         cpuctx = __get_cpu_context(ctx);
3127         if (cpuctx->task_ctx == ctx)
3128                 return;
3129
3130         perf_ctx_lock(cpuctx, ctx);
3131         perf_pmu_disable(ctx->pmu);
3132         /*
3133          * We want to keep the following priority order:
3134          * cpu pinned (that don't need to move), task pinned,
3135          * cpu flexible, task flexible.
3136          */
3137         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3138         perf_event_sched_in(cpuctx, ctx, task);
3139         perf_pmu_enable(ctx->pmu);
3140         perf_ctx_unlock(cpuctx, ctx);
3141 }
3142
3143 /*
3144  * Called from scheduler to add the events of the current task
3145  * with interrupts disabled.
3146  *
3147  * We restore the event value and then enable it.
3148  *
3149  * This does not protect us against NMI, but enable()
3150  * sets the enabled bit in the control field of event _before_
3151  * accessing the event control register. If a NMI hits, then it will
3152  * keep the event running.
3153  */
3154 void __perf_event_task_sched_in(struct task_struct *prev,
3155                                 struct task_struct *task)
3156 {
3157         struct perf_event_context *ctx;
3158         int ctxn;
3159
3160         /*
3161          * If cgroup events exist on this CPU, then we need to check if we have
3162          * to switch in PMU state; cgroup event are system-wide mode only.
3163          *
3164          * Since cgroup events are CPU events, we must schedule these in before
3165          * we schedule in the task events.
3166          */
3167         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3168                 perf_cgroup_sched_in(prev, task);
3169
3170         for_each_task_context_nr(ctxn) {
3171                 ctx = task->perf_event_ctxp[ctxn];
3172                 if (likely(!ctx))
3173                         continue;
3174
3175                 perf_event_context_sched_in(ctx, task);
3176         }
3177
3178         if (atomic_read(&nr_switch_events))
3179                 perf_event_switch(task, prev, true);
3180
3181         if (__this_cpu_read(perf_sched_cb_usages))
3182                 perf_pmu_sched_task(prev, task, true);
3183 }
3184
3185 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3186 {
3187         u64 frequency = event->attr.sample_freq;
3188         u64 sec = NSEC_PER_SEC;
3189         u64 divisor, dividend;
3190
3191         int count_fls, nsec_fls, frequency_fls, sec_fls;
3192
3193         count_fls = fls64(count);
3194         nsec_fls = fls64(nsec);
3195         frequency_fls = fls64(frequency);
3196         sec_fls = 30;
3197
3198         /*
3199          * We got @count in @nsec, with a target of sample_freq HZ
3200          * the target period becomes:
3201          *
3202          *             @count * 10^9
3203          * period = -------------------
3204          *          @nsec * sample_freq
3205          *
3206          */
3207
3208         /*
3209          * Reduce accuracy by one bit such that @a and @b converge
3210          * to a similar magnitude.
3211          */
3212 #define REDUCE_FLS(a, b)                \
3213 do {                                    \
3214         if (a##_fls > b##_fls) {        \
3215                 a >>= 1;                \
3216                 a##_fls--;              \
3217         } else {                        \
3218                 b >>= 1;                \
3219                 b##_fls--;              \
3220         }                               \
3221 } while (0)
3222
3223         /*
3224          * Reduce accuracy until either term fits in a u64, then proceed with
3225          * the other, so that finally we can do a u64/u64 division.
3226          */
3227         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3228                 REDUCE_FLS(nsec, frequency);
3229                 REDUCE_FLS(sec, count);
3230         }
3231
3232         if (count_fls + sec_fls > 64) {
3233                 divisor = nsec * frequency;
3234
3235                 while (count_fls + sec_fls > 64) {
3236                         REDUCE_FLS(count, sec);
3237                         divisor >>= 1;
3238                 }
3239
3240                 dividend = count * sec;
3241         } else {
3242                 dividend = count * sec;
3243
3244                 while (nsec_fls + frequency_fls > 64) {
3245                         REDUCE_FLS(nsec, frequency);
3246                         dividend >>= 1;
3247                 }
3248
3249                 divisor = nsec * frequency;
3250         }
3251
3252         if (!divisor)
3253                 return dividend;
3254
3255         return div64_u64(dividend, divisor);
3256 }
3257
3258 static DEFINE_PER_CPU(int, perf_throttled_count);
3259 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3260
3261 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3262 {
3263         struct hw_perf_event *hwc = &event->hw;
3264         s64 period, sample_period;
3265         s64 delta;
3266
3267         period = perf_calculate_period(event, nsec, count);
3268
3269         delta = (s64)(period - hwc->sample_period);
3270         delta = (delta + 7) / 8; /* low pass filter */
3271
3272         sample_period = hwc->sample_period + delta;
3273
3274         if (!sample_period)
3275                 sample_period = 1;
3276
3277         hwc->sample_period = sample_period;
3278
3279         if (local64_read(&hwc->period_left) > 8*sample_period) {
3280                 if (disable)
3281                         event->pmu->stop(event, PERF_EF_UPDATE);
3282
3283                 local64_set(&hwc->period_left, 0);
3284
3285                 if (disable)
3286                         event->pmu->start(event, PERF_EF_RELOAD);
3287         }
3288 }
3289
3290 /*
3291  * combine freq adjustment with unthrottling to avoid two passes over the
3292  * events. At the same time, make sure, having freq events does not change
3293  * the rate of unthrottling as that would introduce bias.
3294  */
3295 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3296                                            int needs_unthr)
3297 {
3298         struct perf_event *event;
3299         struct hw_perf_event *hwc;
3300         u64 now, period = TICK_NSEC;
3301         s64 delta;
3302
3303         /*
3304          * only need to iterate over all events iff:
3305          * - context have events in frequency mode (needs freq adjust)
3306          * - there are events to unthrottle on this cpu
3307          */
3308         if (!(ctx->nr_freq || needs_unthr))
3309                 return;
3310
3311         raw_spin_lock(&ctx->lock);
3312         perf_pmu_disable(ctx->pmu);
3313
3314         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3315                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3316                         continue;
3317
3318                 if (!event_filter_match(event))
3319                         continue;
3320
3321                 perf_pmu_disable(event->pmu);
3322
3323                 hwc = &event->hw;
3324
3325                 if (hwc->interrupts == MAX_INTERRUPTS) {
3326                         hwc->interrupts = 0;
3327                         perf_log_throttle(event, 1);
3328                         event->pmu->start(event, 0);
3329                 }
3330
3331                 if (!event->attr.freq || !event->attr.sample_freq)
3332                         goto next;
3333
3334                 /*
3335                  * stop the event and update event->count
3336                  */
3337                 event->pmu->stop(event, PERF_EF_UPDATE);
3338
3339                 now = local64_read(&event->count);
3340                 delta = now - hwc->freq_count_stamp;
3341                 hwc->freq_count_stamp = now;
3342
3343                 /*
3344                  * restart the event
3345                  * reload only if value has changed
3346                  * we have stopped the event so tell that
3347                  * to perf_adjust_period() to avoid stopping it
3348                  * twice.
3349                  */
3350                 if (delta > 0)
3351                         perf_adjust_period(event, period, delta, false);
3352
3353                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3354         next:
3355                 perf_pmu_enable(event->pmu);
3356         }
3357
3358         perf_pmu_enable(ctx->pmu);
3359         raw_spin_unlock(&ctx->lock);
3360 }
3361
3362 /*
3363  * Round-robin a context's events:
3364  */
3365 static void rotate_ctx(struct perf_event_context *ctx)
3366 {
3367         /*
3368          * Rotate the first entry last of non-pinned groups. Rotation might be
3369          * disabled by the inheritance code.
3370          */
3371         if (!ctx->rotate_disable)
3372                 list_rotate_left(&ctx->flexible_groups);
3373 }
3374
3375 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3376 {
3377         struct perf_event_context *ctx = NULL;
3378         int rotate = 0;
3379
3380         if (cpuctx->ctx.nr_events) {
3381                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3382                         rotate = 1;
3383         }
3384
3385         ctx = cpuctx->task_ctx;
3386         if (ctx && ctx->nr_events) {
3387                 if (ctx->nr_events != ctx->nr_active)
3388                         rotate = 1;
3389         }
3390
3391         if (!rotate)
3392                 goto done;
3393
3394         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3395         perf_pmu_disable(cpuctx->ctx.pmu);
3396
3397         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3398         if (ctx)
3399                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3400
3401         rotate_ctx(&cpuctx->ctx);
3402         if (ctx)
3403                 rotate_ctx(ctx);
3404
3405         perf_event_sched_in(cpuctx, ctx, current);
3406
3407         perf_pmu_enable(cpuctx->ctx.pmu);
3408         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3409 done:
3410
3411         return rotate;
3412 }
3413
3414 void perf_event_task_tick(void)
3415 {
3416         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3417         struct perf_event_context *ctx, *tmp;
3418         int throttled;
3419
3420         WARN_ON(!irqs_disabled());
3421
3422         __this_cpu_inc(perf_throttled_seq);
3423         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3424         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3425
3426         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3427                 perf_adjust_freq_unthr_context(ctx, throttled);
3428 }
3429
3430 static int event_enable_on_exec(struct perf_event *event,
3431                                 struct perf_event_context *ctx)
3432 {
3433         if (!event->attr.enable_on_exec)
3434                 return 0;
3435
3436         event->attr.enable_on_exec = 0;
3437         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3438                 return 0;
3439
3440         __perf_event_mark_enabled(event);
3441
3442         return 1;
3443 }
3444
3445 /*
3446  * Enable all of a task's events that have been marked enable-on-exec.
3447  * This expects task == current.
3448  */
3449 static void perf_event_enable_on_exec(int ctxn)
3450 {
3451         struct perf_event_context *ctx, *clone_ctx = NULL;
3452         struct perf_cpu_context *cpuctx;
3453         struct perf_event *event;
3454         unsigned long flags;
3455         int enabled = 0;
3456
3457         local_irq_save(flags);
3458         ctx = current->perf_event_ctxp[ctxn];
3459         if (!ctx || !ctx->nr_events)
3460                 goto out;
3461
3462         cpuctx = __get_cpu_context(ctx);
3463         perf_ctx_lock(cpuctx, ctx);
3464         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3465         list_for_each_entry(event, &ctx->event_list, event_entry)
3466                 enabled |= event_enable_on_exec(event, ctx);
3467
3468         /*
3469          * Unclone and reschedule this context if we enabled any event.
3470          */
3471         if (enabled) {
3472                 clone_ctx = unclone_ctx(ctx);
3473                 ctx_resched(cpuctx, ctx);
3474         }
3475         perf_ctx_unlock(cpuctx, ctx);
3476
3477 out:
3478         local_irq_restore(flags);
3479
3480         if (clone_ctx)
3481                 put_ctx(clone_ctx);
3482 }
3483
3484 struct perf_read_data {
3485         struct perf_event *event;
3486         bool group;
3487         int ret;
3488 };
3489
3490 static int find_cpu_to_read(struct perf_event *event, int local_cpu)
3491 {
3492         int event_cpu = event->oncpu;
3493         u16 local_pkg, event_pkg;
3494
3495         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3496                 event_pkg =  topology_physical_package_id(event_cpu);
3497                 local_pkg =  topology_physical_package_id(local_cpu);
3498
3499                 if (event_pkg == local_pkg)
3500                         return local_cpu;
3501         }
3502
3503         return event_cpu;
3504 }
3505
3506 /*
3507  * Cross CPU call to read the hardware event
3508  */
3509 static void __perf_event_read(void *info)
3510 {
3511         struct perf_read_data *data = info;
3512         struct perf_event *sub, *event = data->event;
3513         struct perf_event_context *ctx = event->ctx;
3514         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3515         struct pmu *pmu = event->pmu;
3516
3517         /*
3518          * If this is a task context, we need to check whether it is
3519          * the current task context of this cpu.  If not it has been
3520          * scheduled out before the smp call arrived.  In that case
3521          * event->count would have been updated to a recent sample
3522          * when the event was scheduled out.
3523          */
3524         if (ctx->task && cpuctx->task_ctx != ctx)
3525                 return;
3526
3527         raw_spin_lock(&ctx->lock);
3528         if (ctx->is_active) {
3529                 update_context_time(ctx);
3530                 update_cgrp_time_from_event(event);
3531         }
3532
3533         update_event_times(event);
3534         if (event->state != PERF_EVENT_STATE_ACTIVE)
3535                 goto unlock;
3536
3537         if (!data->group) {
3538                 pmu->read(event);
3539                 data->ret = 0;
3540                 goto unlock;
3541         }
3542
3543         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3544
3545         pmu->read(event);
3546
3547         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3548                 update_event_times(sub);
3549                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3550                         /*
3551                          * Use sibling's PMU rather than @event's since
3552                          * sibling could be on different (eg: software) PMU.
3553                          */
3554                         sub->pmu->read(sub);
3555                 }
3556         }
3557
3558         data->ret = pmu->commit_txn(pmu);
3559
3560 unlock:
3561         raw_spin_unlock(&ctx->lock);
3562 }
3563
3564 static inline u64 perf_event_count(struct perf_event *event)
3565 {
3566         if (event->pmu->count)
3567                 return event->pmu->count(event);
3568
3569         return __perf_event_count(event);
3570 }
3571
3572 /*
3573  * NMI-safe method to read a local event, that is an event that
3574  * is:
3575  *   - either for the current task, or for this CPU
3576  *   - does not have inherit set, for inherited task events
3577  *     will not be local and we cannot read them atomically
3578  *   - must not have a pmu::count method
3579  */
3580 u64 perf_event_read_local(struct perf_event *event)
3581 {
3582         unsigned long flags;
3583         u64 val;
3584
3585         /*
3586          * Disabling interrupts avoids all counter scheduling (context
3587          * switches, timer based rotation and IPIs).
3588          */
3589         local_irq_save(flags);
3590
3591         /* If this is a per-task event, it must be for current */
3592         WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3593                      event->hw.target != current);
3594
3595         /* If this is a per-CPU event, it must be for this CPU */
3596         WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3597                      event->cpu != smp_processor_id());
3598
3599         /*
3600          * It must not be an event with inherit set, we cannot read
3601          * all child counters from atomic context.
3602          */
3603         WARN_ON_ONCE(event->attr.inherit);
3604
3605         /*
3606          * It must not have a pmu::count method, those are not
3607          * NMI safe.
3608          */
3609         WARN_ON_ONCE(event->pmu->count);
3610
3611         /*
3612          * If the event is currently on this CPU, its either a per-task event,
3613          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3614          * oncpu == -1).
3615          */
3616         if (event->oncpu == smp_processor_id())
3617                 event->pmu->read(event);
3618
3619         val = local64_read(&event->count);
3620         local_irq_restore(flags);
3621
3622         return val;
3623 }
3624
3625 static int perf_event_read(struct perf_event *event, bool group)
3626 {
3627         int ret = 0, cpu_to_read, local_cpu;
3628
3629         /*
3630          * If event is enabled and currently active on a CPU, update the
3631          * value in the event structure:
3632          */
3633         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3634                 struct perf_read_data data = {
3635                         .event = event,
3636                         .group = group,
3637                         .ret = 0,
3638                 };
3639
3640                 local_cpu = get_cpu();
3641                 cpu_to_read = find_cpu_to_read(event, local_cpu);
3642                 put_cpu();
3643
3644                 /*
3645                  * Purposely ignore the smp_call_function_single() return
3646                  * value.
3647                  *
3648                  * If event->oncpu isn't a valid CPU it means the event got
3649                  * scheduled out and that will have updated the event count.
3650                  *
3651                  * Therefore, either way, we'll have an up-to-date event count
3652                  * after this.
3653                  */
3654                 (void)smp_call_function_single(cpu_to_read, __perf_event_read, &data, 1);
3655                 ret = data.ret;
3656         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3657                 struct perf_event_context *ctx = event->ctx;
3658                 unsigned long flags;
3659
3660                 raw_spin_lock_irqsave(&ctx->lock, flags);
3661                 /*
3662                  * may read while context is not active
3663                  * (e.g., thread is blocked), in that case
3664                  * we cannot update context time
3665                  */
3666                 if (ctx->is_active) {
3667                         update_context_time(ctx);
3668                         update_cgrp_time_from_event(event);
3669                 }
3670                 if (group)
3671                         update_group_times(event);
3672                 else
3673                         update_event_times(event);
3674                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3675         }
3676
3677         return ret;
3678 }
3679
3680 /*
3681  * Initialize the perf_event context in a task_struct:
3682  */
3683 static void __perf_event_init_context(struct perf_event_context *ctx)
3684 {
3685         raw_spin_lock_init(&ctx->lock);
3686         mutex_init(&ctx->mutex);
3687         INIT_LIST_HEAD(&ctx->active_ctx_list);
3688         INIT_LIST_HEAD(&ctx->pinned_groups);
3689         INIT_LIST_HEAD(&ctx->flexible_groups);
3690         INIT_LIST_HEAD(&ctx->event_list);
3691         atomic_set(&ctx->refcount, 1);
3692 }
3693
3694 static struct perf_event_context *
3695 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3696 {
3697         struct perf_event_context *ctx;
3698
3699         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3700         if (!ctx)
3701                 return NULL;
3702
3703         __perf_event_init_context(ctx);
3704         if (task) {
3705                 ctx->task = task;
3706                 get_task_struct(task);
3707         }
3708         ctx->pmu = pmu;
3709
3710         return ctx;
3711 }
3712
3713 static struct task_struct *
3714 find_lively_task_by_vpid(pid_t vpid)
3715 {
3716         struct task_struct *task;
3717
3718         rcu_read_lock();
3719         if (!vpid)
3720                 task = current;
3721         else
3722                 task = find_task_by_vpid(vpid);
3723         if (task)
3724                 get_task_struct(task);
3725         rcu_read_unlock();
3726
3727         if (!task)
3728                 return ERR_PTR(-ESRCH);
3729
3730         return task;
3731 }
3732
3733 /*
3734  * Returns a matching context with refcount and pincount.
3735  */
3736 static struct perf_event_context *
3737 find_get_context(struct pmu *pmu, struct task_struct *task,
3738                 struct perf_event *event)
3739 {
3740         struct perf_event_context *ctx, *clone_ctx = NULL;
3741         struct perf_cpu_context *cpuctx;
3742         void *task_ctx_data = NULL;
3743         unsigned long flags;
3744         int ctxn, err;
3745         int cpu = event->cpu;
3746
3747         if (!task) {
3748                 /* Must be root to operate on a CPU event: */
3749                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3750                         return ERR_PTR(-EACCES);
3751
3752                 /*
3753                  * We could be clever and allow to attach a event to an
3754                  * offline CPU and activate it when the CPU comes up, but
3755                  * that's for later.
3756                  */
3757                 if (!cpu_online(cpu))
3758                         return ERR_PTR(-ENODEV);
3759
3760                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3761                 ctx = &cpuctx->ctx;
3762                 get_ctx(ctx);
3763                 ++ctx->pin_count;
3764
3765                 return ctx;
3766         }
3767
3768         err = -EINVAL;
3769         ctxn = pmu->task_ctx_nr;
3770         if (ctxn < 0)
3771                 goto errout;
3772
3773         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3774                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3775                 if (!task_ctx_data) {
3776                         err = -ENOMEM;
3777                         goto errout;
3778                 }
3779         }
3780
3781 retry:
3782         ctx = perf_lock_task_context(task, ctxn, &flags);
3783         if (ctx) {
3784                 clone_ctx = unclone_ctx(ctx);
3785                 ++ctx->pin_count;
3786
3787                 if (task_ctx_data && !ctx->task_ctx_data) {
3788                         ctx->task_ctx_data = task_ctx_data;
3789                         task_ctx_data = NULL;
3790                 }
3791                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3792
3793                 if (clone_ctx)
3794                         put_ctx(clone_ctx);
3795         } else {
3796                 ctx = alloc_perf_context(pmu, task);
3797                 err = -ENOMEM;
3798                 if (!ctx)
3799                         goto errout;
3800
3801                 if (task_ctx_data) {
3802                         ctx->task_ctx_data = task_ctx_data;
3803                         task_ctx_data = NULL;
3804                 }
3805
3806                 err = 0;
3807                 mutex_lock(&task->perf_event_mutex);
3808                 /*
3809                  * If it has already passed perf_event_exit_task().
3810                  * we must see PF_EXITING, it takes this mutex too.
3811                  */
3812                 if (task->flags & PF_EXITING)
3813                         err = -ESRCH;
3814                 else if (task->perf_event_ctxp[ctxn])
3815                         err = -EAGAIN;
3816                 else {
3817                         get_ctx(ctx);
3818                         ++ctx->pin_count;
3819                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3820                 }
3821                 mutex_unlock(&task->perf_event_mutex);
3822
3823                 if (unlikely(err)) {
3824                         put_ctx(ctx);
3825
3826                         if (err == -EAGAIN)
3827                                 goto retry;
3828                         goto errout;
3829                 }
3830         }
3831
3832         kfree(task_ctx_data);
3833         return ctx;
3834
3835 errout:
3836         kfree(task_ctx_data);
3837         return ERR_PTR(err);
3838 }
3839
3840 static void perf_event_free_filter(struct perf_event *event);
3841 static void perf_event_free_bpf_prog(struct perf_event *event);
3842
3843 static void free_event_rcu(struct rcu_head *head)
3844 {
3845         struct perf_event *event;
3846
3847         event = container_of(head, struct perf_event, rcu_head);
3848         if (event->ns)
3849                 put_pid_ns(event->ns);
3850         perf_event_free_filter(event);
3851         kfree(event);
3852 }
3853
3854 static void ring_buffer_attach(struct perf_event *event,
3855                                struct ring_buffer *rb);
3856
3857 static void detach_sb_event(struct perf_event *event)
3858 {
3859         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3860
3861         raw_spin_lock(&pel->lock);
3862         list_del_rcu(&event->sb_list);
3863         raw_spin_unlock(&pel->lock);
3864 }
3865
3866 static bool is_sb_event(struct perf_event *event)
3867 {
3868         struct perf_event_attr *attr = &event->attr;
3869
3870         if (event->parent)
3871                 return false;
3872
3873         if (event->attach_state & PERF_ATTACH_TASK)
3874                 return false;
3875
3876         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3877             attr->comm || attr->comm_exec ||
3878             attr->task ||
3879             attr->context_switch)
3880                 return true;
3881         return false;
3882 }
3883
3884 static void unaccount_pmu_sb_event(struct perf_event *event)
3885 {
3886         if (is_sb_event(event))
3887                 detach_sb_event(event);
3888 }
3889
3890 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3891 {
3892         if (event->parent)
3893                 return;
3894
3895         if (is_cgroup_event(event))
3896                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3897 }
3898
3899 #ifdef CONFIG_NO_HZ_FULL
3900 static DEFINE_SPINLOCK(nr_freq_lock);
3901 #endif
3902
3903 static void unaccount_freq_event_nohz(void)
3904 {
3905 #ifdef CONFIG_NO_HZ_FULL
3906         spin_lock(&nr_freq_lock);
3907         if (atomic_dec_and_test(&nr_freq_events))
3908                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3909         spin_unlock(&nr_freq_lock);
3910 #endif
3911 }
3912
3913 static void unaccount_freq_event(void)
3914 {
3915         if (tick_nohz_full_enabled())
3916                 unaccount_freq_event_nohz();
3917         else
3918                 atomic_dec(&nr_freq_events);
3919 }
3920
3921 static void unaccount_event(struct perf_event *event)
3922 {
3923         bool dec = false;
3924
3925         if (event->parent)
3926                 return;
3927
3928         if (event->attach_state & PERF_ATTACH_TASK)
3929                 dec = true;
3930         if (event->attr.mmap || event->attr.mmap_data)
3931                 atomic_dec(&nr_mmap_events);
3932         if (event->attr.comm)
3933                 atomic_dec(&nr_comm_events);
3934         if (event->attr.task)
3935                 atomic_dec(&nr_task_events);
3936         if (event->attr.freq)
3937                 unaccount_freq_event();
3938         if (event->attr.context_switch) {
3939                 dec = true;
3940                 atomic_dec(&nr_switch_events);
3941         }
3942         if (is_cgroup_event(event))
3943                 dec = true;
3944         if (has_branch_stack(event))
3945                 dec = true;
3946
3947         if (dec) {
3948                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3949                         schedule_delayed_work(&perf_sched_work, HZ);
3950         }
3951
3952         unaccount_event_cpu(event, event->cpu);
3953
3954         unaccount_pmu_sb_event(event);
3955 }
3956
3957 static void perf_sched_delayed(struct work_struct *work)
3958 {
3959         mutex_lock(&perf_sched_mutex);
3960         if (atomic_dec_and_test(&perf_sched_count))
3961                 static_branch_disable(&perf_sched_events);
3962         mutex_unlock(&perf_sched_mutex);
3963 }
3964
3965 /*
3966  * The following implement mutual exclusion of events on "exclusive" pmus
3967  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3968  * at a time, so we disallow creating events that might conflict, namely:
3969  *
3970  *  1) cpu-wide events in the presence of per-task events,
3971  *  2) per-task events in the presence of cpu-wide events,
3972  *  3) two matching events on the same context.
3973  *
3974  * The former two cases are handled in the allocation path (perf_event_alloc(),
3975  * _free_event()), the latter -- before the first perf_install_in_context().
3976  */
3977 static int exclusive_event_init(struct perf_event *event)
3978 {
3979         struct pmu *pmu = event->pmu;
3980
3981         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3982                 return 0;
3983
3984         /*
3985          * Prevent co-existence of per-task and cpu-wide events on the
3986          * same exclusive pmu.
3987          *
3988          * Negative pmu::exclusive_cnt means there are cpu-wide
3989          * events on this "exclusive" pmu, positive means there are
3990          * per-task events.
3991          *
3992          * Since this is called in perf_event_alloc() path, event::ctx
3993          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3994          * to mean "per-task event", because unlike other attach states it
3995          * never gets cleared.
3996          */
3997         if (event->attach_state & PERF_ATTACH_TASK) {
3998                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3999                         return -EBUSY;
4000         } else {
4001                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4002                         return -EBUSY;
4003         }
4004
4005         return 0;
4006 }
4007
4008 static void exclusive_event_destroy(struct perf_event *event)
4009 {
4010         struct pmu *pmu = event->pmu;
4011
4012         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4013                 return;
4014
4015         /* see comment in exclusive_event_init() */
4016         if (event->attach_state & PERF_ATTACH_TASK)
4017                 atomic_dec(&pmu->exclusive_cnt);
4018         else
4019                 atomic_inc(&pmu->exclusive_cnt);
4020 }
4021
4022 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4023 {
4024         if ((e1->pmu == e2->pmu) &&
4025             (e1->cpu == e2->cpu ||
4026              e1->cpu == -1 ||
4027              e2->cpu == -1))
4028                 return true;
4029         return false;
4030 }
4031
4032 /* Called under the same ctx::mutex as perf_install_in_context() */
4033 static bool exclusive_event_installable(struct perf_event *event,
4034                                         struct perf_event_context *ctx)
4035 {
4036         struct perf_event *iter_event;
4037         struct pmu *pmu = event->pmu;
4038
4039         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4040                 return true;
4041
4042         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4043                 if (exclusive_event_match(iter_event, event))
4044                         return false;
4045         }
4046
4047         return true;
4048 }
4049
4050 static void perf_addr_filters_splice(struct perf_event *event,
4051                                        struct list_head *head);
4052
4053 static void _free_event(struct perf_event *event)
4054 {
4055         irq_work_sync(&event->pending);
4056
4057         unaccount_event(event);
4058
4059         if (event->rb) {
4060                 /*
4061                  * Can happen when we close an event with re-directed output.
4062                  *
4063                  * Since we have a 0 refcount, perf_mmap_close() will skip
4064                  * over us; possibly making our ring_buffer_put() the last.
4065                  */
4066                 mutex_lock(&event->mmap_mutex);
4067                 ring_buffer_attach(event, NULL);
4068                 mutex_unlock(&event->mmap_mutex);
4069         }
4070
4071         if (is_cgroup_event(event))
4072                 perf_detach_cgroup(event);
4073
4074         if (!event->parent) {
4075                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4076                         put_callchain_buffers();
4077         }
4078
4079         perf_event_free_bpf_prog(event);
4080         perf_addr_filters_splice(event, NULL);
4081         kfree(event->addr_filters_offs);
4082
4083         if (event->destroy)
4084                 event->destroy(event);
4085
4086         if (event->ctx)
4087                 put_ctx(event->ctx);
4088
4089         exclusive_event_destroy(event);
4090         module_put(event->pmu->module);
4091
4092         call_rcu(&event->rcu_head, free_event_rcu);
4093 }
4094
4095 /*
4096  * Used to free events which have a known refcount of 1, such as in error paths
4097  * where the event isn't exposed yet and inherited events.
4098  */
4099 static void free_event(struct perf_event *event)
4100 {
4101         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4102                                 "unexpected event refcount: %ld; ptr=%p\n",
4103                                 atomic_long_read(&event->refcount), event)) {
4104                 /* leak to avoid use-after-free */
4105                 return;
4106         }
4107
4108         _free_event(event);
4109 }
4110
4111 /*
4112  * Remove user event from the owner task.
4113  */
4114 static void perf_remove_from_owner(struct perf_event *event)
4115 {
4116         struct task_struct *owner;
4117
4118         rcu_read_lock();
4119         /*
4120          * Matches the smp_store_release() in perf_event_exit_task(). If we
4121          * observe !owner it means the list deletion is complete and we can
4122          * indeed free this event, otherwise we need to serialize on
4123          * owner->perf_event_mutex.
4124          */
4125         owner = lockless_dereference(event->owner);
4126         if (owner) {
4127                 /*
4128                  * Since delayed_put_task_struct() also drops the last
4129                  * task reference we can safely take a new reference
4130                  * while holding the rcu_read_lock().
4131                  */
4132                 get_task_struct(owner);
4133         }
4134         rcu_read_unlock();
4135
4136         if (owner) {
4137                 /*
4138                  * If we're here through perf_event_exit_task() we're already
4139                  * holding ctx->mutex which would be an inversion wrt. the
4140                  * normal lock order.
4141                  *
4142                  * However we can safely take this lock because its the child
4143                  * ctx->mutex.
4144                  */
4145                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4146
4147                 /*
4148                  * We have to re-check the event->owner field, if it is cleared
4149                  * we raced with perf_event_exit_task(), acquiring the mutex
4150                  * ensured they're done, and we can proceed with freeing the
4151                  * event.
4152                  */
4153                 if (event->owner) {
4154                         list_del_init(&event->owner_entry);
4155                         smp_store_release(&event->owner, NULL);
4156                 }
4157                 mutex_unlock(&owner->perf_event_mutex);
4158                 put_task_struct(owner);
4159         }
4160 }
4161
4162 static void put_event(struct perf_event *event)
4163 {
4164         if (!atomic_long_dec_and_test(&event->refcount))
4165                 return;
4166
4167         _free_event(event);
4168 }
4169
4170 /*
4171  * Kill an event dead; while event:refcount will preserve the event
4172  * object, it will not preserve its functionality. Once the last 'user'
4173  * gives up the object, we'll destroy the thing.
4174  */
4175 int perf_event_release_kernel(struct perf_event *event)
4176 {
4177         struct perf_event_context *ctx = event->ctx;
4178         struct perf_event *child, *tmp;
4179
4180         /*
4181          * If we got here through err_file: fput(event_file); we will not have
4182          * attached to a context yet.
4183          */
4184         if (!ctx) {
4185                 WARN_ON_ONCE(event->attach_state &
4186                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4187                 goto no_ctx;
4188         }
4189
4190         if (!is_kernel_event(event))
4191                 perf_remove_from_owner(event);
4192
4193         ctx = perf_event_ctx_lock(event);
4194         WARN_ON_ONCE(ctx->parent_ctx);
4195         perf_remove_from_context(event, DETACH_GROUP);
4196
4197         raw_spin_lock_irq(&ctx->lock);
4198         /*
4199          * Mark this even as STATE_DEAD, there is no external reference to it
4200          * anymore.
4201          *
4202          * Anybody acquiring event->child_mutex after the below loop _must_
4203          * also see this, most importantly inherit_event() which will avoid
4204          * placing more children on the list.
4205          *
4206          * Thus this guarantees that we will in fact observe and kill _ALL_
4207          * child events.
4208          */
4209         event->state = PERF_EVENT_STATE_DEAD;
4210         raw_spin_unlock_irq(&ctx->lock);
4211
4212         perf_event_ctx_unlock(event, ctx);
4213
4214 again:
4215         mutex_lock(&event->child_mutex);
4216         list_for_each_entry(child, &event->child_list, child_list) {
4217
4218                 /*
4219                  * Cannot change, child events are not migrated, see the
4220                  * comment with perf_event_ctx_lock_nested().
4221                  */
4222                 ctx = lockless_dereference(child->ctx);
4223                 /*
4224                  * Since child_mutex nests inside ctx::mutex, we must jump
4225                  * through hoops. We start by grabbing a reference on the ctx.
4226                  *
4227                  * Since the event cannot get freed while we hold the
4228                  * child_mutex, the context must also exist and have a !0
4229                  * reference count.
4230                  */
4231                 get_ctx(ctx);
4232
4233                 /*
4234                  * Now that we have a ctx ref, we can drop child_mutex, and
4235                  * acquire ctx::mutex without fear of it going away. Then we
4236                  * can re-acquire child_mutex.
4237                  */
4238                 mutex_unlock(&event->child_mutex);
4239                 mutex_lock(&ctx->mutex);
4240                 mutex_lock(&event->child_mutex);
4241
4242                 /*
4243                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4244                  * state, if child is still the first entry, it didn't get freed
4245                  * and we can continue doing so.
4246                  */
4247                 tmp = list_first_entry_or_null(&event->child_list,
4248                                                struct perf_event, child_list);
4249                 if (tmp == child) {
4250                         perf_remove_from_context(child, DETACH_GROUP);
4251                         list_del(&child->child_list);
4252                         free_event(child);
4253                         /*
4254                          * This matches the refcount bump in inherit_event();
4255                          * this can't be the last reference.
4256                          */
4257                         put_event(event);
4258                 }
4259
4260                 mutex_unlock(&event->child_mutex);
4261                 mutex_unlock(&ctx->mutex);
4262                 put_ctx(ctx);
4263                 goto again;
4264         }
4265         mutex_unlock(&event->child_mutex);
4266
4267 no_ctx:
4268         put_event(event); /* Must be the 'last' reference */
4269         return 0;
4270 }
4271 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4272
4273 /*
4274  * Called when the last reference to the file is gone.
4275  */
4276 static int perf_release(struct inode *inode, struct file *file)
4277 {
4278         perf_event_release_kernel(file->private_data);
4279         return 0;
4280 }
4281
4282 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4283 {
4284         struct perf_event *child;
4285         u64 total = 0;
4286
4287         *enabled = 0;
4288         *running = 0;
4289
4290         mutex_lock(&event->child_mutex);
4291
4292         (void)perf_event_read(event, false);
4293         total += perf_event_count(event);
4294
4295         *enabled += event->total_time_enabled +
4296                         atomic64_read(&event->child_total_time_enabled);
4297         *running += event->total_time_running +
4298                         atomic64_read(&event->child_total_time_running);
4299
4300         list_for_each_entry(child, &event->child_list, child_list) {
4301                 (void)perf_event_read(child, false);
4302                 total += perf_event_count(child);
4303                 *enabled += child->total_time_enabled;
4304                 *running += child->total_time_running;
4305         }
4306         mutex_unlock(&event->child_mutex);
4307
4308         return total;
4309 }
4310 EXPORT_SYMBOL_GPL(perf_event_read_value);
4311
4312 static int __perf_read_group_add(struct perf_event *leader,
4313                                         u64 read_format, u64 *values)
4314 {
4315         struct perf_event *sub;
4316         int n = 1; /* skip @nr */
4317         int ret;
4318
4319         ret = perf_event_read(leader, true);
4320         if (ret)
4321                 return ret;
4322
4323         /*
4324          * Since we co-schedule groups, {enabled,running} times of siblings
4325          * will be identical to those of the leader, so we only publish one
4326          * set.
4327          */
4328         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4329                 values[n++] += leader->total_time_enabled +
4330                         atomic64_read(&leader->child_total_time_enabled);
4331         }
4332
4333         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4334                 values[n++] += leader->total_time_running +
4335                         atomic64_read(&leader->child_total_time_running);
4336         }
4337
4338         /*
4339          * Write {count,id} tuples for every sibling.
4340          */
4341         values[n++] += perf_event_count(leader);
4342         if (read_format & PERF_FORMAT_ID)
4343                 values[n++] = primary_event_id(leader);
4344
4345         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4346                 values[n++] += perf_event_count(sub);
4347                 if (read_format & PERF_FORMAT_ID)
4348                         values[n++] = primary_event_id(sub);
4349         }
4350
4351         return 0;
4352 }
4353
4354 static int perf_read_group(struct perf_event *event,
4355                                    u64 read_format, char __user *buf)
4356 {
4357         struct perf_event *leader = event->group_leader, *child;
4358         struct perf_event_context *ctx = leader->ctx;
4359         int ret;
4360         u64 *values;
4361
4362         lockdep_assert_held(&ctx->mutex);
4363
4364         values = kzalloc(event->read_size, GFP_KERNEL);
4365         if (!values)
4366                 return -ENOMEM;
4367
4368         values[0] = 1 + leader->nr_siblings;
4369
4370         /*
4371          * By locking the child_mutex of the leader we effectively
4372          * lock the child list of all siblings.. XXX explain how.
4373          */
4374         mutex_lock(&leader->child_mutex);
4375
4376         ret = __perf_read_group_add(leader, read_format, values);
4377         if (ret)
4378                 goto unlock;
4379
4380         list_for_each_entry(child, &leader->child_list, child_list) {
4381                 ret = __perf_read_group_add(child, read_format, values);
4382                 if (ret)
4383                         goto unlock;
4384         }
4385
4386         mutex_unlock(&leader->child_mutex);
4387
4388         ret = event->read_size;
4389         if (copy_to_user(buf, values, event->read_size))
4390                 ret = -EFAULT;
4391         goto out;
4392
4393 unlock:
4394         mutex_unlock(&leader->child_mutex);
4395 out:
4396         kfree(values);
4397         return ret;
4398 }
4399
4400 static int perf_read_one(struct perf_event *event,
4401                                  u64 read_format, char __user *buf)
4402 {
4403         u64 enabled, running;
4404         u64 values[4];
4405         int n = 0;
4406
4407         values[n++] = perf_event_read_value(event, &enabled, &running);
4408         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4409                 values[n++] = enabled;
4410         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4411                 values[n++] = running;
4412         if (read_format & PERF_FORMAT_ID)
4413                 values[n++] = primary_event_id(event);
4414
4415         if (copy_to_user(buf, values, n * sizeof(u64)))
4416                 return -EFAULT;
4417
4418         return n * sizeof(u64);
4419 }
4420
4421 static bool is_event_hup(struct perf_event *event)
4422 {
4423         bool no_children;
4424
4425         if (event->state > PERF_EVENT_STATE_EXIT)
4426                 return false;
4427
4428         mutex_lock(&event->child_mutex);
4429         no_children = list_empty(&event->child_list);
4430         mutex_unlock(&event->child_mutex);
4431         return no_children;
4432 }
4433
4434 /*
4435  * Read the performance event - simple non blocking version for now
4436  */
4437 static ssize_t
4438 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4439 {
4440         u64 read_format = event->attr.read_format;
4441         int ret;
4442
4443         /*
4444          * Return end-of-file for a read on a event that is in
4445          * error state (i.e. because it was pinned but it couldn't be
4446          * scheduled on to the CPU at some point).
4447          */
4448         if (event->state == PERF_EVENT_STATE_ERROR)
4449                 return 0;
4450
4451         if (count < event->read_size)
4452                 return -ENOSPC;
4453
4454         WARN_ON_ONCE(event->ctx->parent_ctx);
4455         if (read_format & PERF_FORMAT_GROUP)
4456                 ret = perf_read_group(event, read_format, buf);
4457         else
4458                 ret = perf_read_one(event, read_format, buf);
4459
4460         return ret;
4461 }
4462
4463 static ssize_t
4464 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4465 {
4466         struct perf_event *event = file->private_data;
4467         struct perf_event_context *ctx;
4468         int ret;
4469
4470         ctx = perf_event_ctx_lock(event);
4471         ret = __perf_read(event, buf, count);
4472         perf_event_ctx_unlock(event, ctx);
4473
4474         return ret;
4475 }
4476
4477 static unsigned int perf_poll(struct file *file, poll_table *wait)
4478 {
4479         struct perf_event *event = file->private_data;
4480         struct ring_buffer *rb;
4481         unsigned int events = POLLHUP;
4482
4483         poll_wait(file, &event->waitq, wait);
4484
4485         if (is_event_hup(event))
4486                 return events;
4487
4488         /*
4489          * Pin the event->rb by taking event->mmap_mutex; otherwise
4490          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4491          */
4492         mutex_lock(&event->mmap_mutex);
4493         rb = event->rb;
4494         if (rb)
4495                 events = atomic_xchg(&rb->poll, 0);
4496         mutex_unlock(&event->mmap_mutex);
4497         return events;
4498 }
4499
4500 static void _perf_event_reset(struct perf_event *event)
4501 {
4502         (void)perf_event_read(event, false);
4503         local64_set(&event->count, 0);
4504         perf_event_update_userpage(event);
4505 }
4506
4507 /*
4508  * Holding the top-level event's child_mutex means that any
4509  * descendant process that has inherited this event will block
4510  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4511  * task existence requirements of perf_event_enable/disable.
4512  */
4513 static void perf_event_for_each_child(struct perf_event *event,
4514                                         void (*func)(struct perf_event *))
4515 {
4516         struct perf_event *child;
4517
4518         WARN_ON_ONCE(event->ctx->parent_ctx);
4519
4520         mutex_lock(&event->child_mutex);
4521         func(event);
4522         list_for_each_entry(child, &event->child_list, child_list)
4523                 func(child);
4524         mutex_unlock(&event->child_mutex);
4525 }
4526
4527 static void perf_event_for_each(struct perf_event *event,
4528                                   void (*func)(struct perf_event *))
4529 {
4530         struct perf_event_context *ctx = event->ctx;
4531         struct perf_event *sibling;
4532
4533         lockdep_assert_held(&ctx->mutex);
4534
4535         event = event->group_leader;
4536
4537         perf_event_for_each_child(event, func);
4538         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4539                 perf_event_for_each_child(sibling, func);
4540 }
4541
4542 static void __perf_event_period(struct perf_event *event,
4543                                 struct perf_cpu_context *cpuctx,
4544                                 struct perf_event_context *ctx,
4545                                 void *info)
4546 {
4547         u64 value = *((u64 *)info);
4548         bool active;
4549
4550         if (event->attr.freq) {
4551                 event->attr.sample_freq = value;
4552         } else {
4553                 event->attr.sample_period = value;
4554                 event->hw.sample_period = value;
4555         }
4556
4557         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4558         if (active) {
4559                 perf_pmu_disable(ctx->pmu);
4560                 /*
4561                  * We could be throttled; unthrottle now to avoid the tick
4562                  * trying to unthrottle while we already re-started the event.
4563                  */
4564                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4565                         event->hw.interrupts = 0;
4566                         perf_log_throttle(event, 1);
4567                 }
4568                 event->pmu->stop(event, PERF_EF_UPDATE);
4569         }
4570
4571         local64_set(&event->hw.period_left, 0);
4572
4573         if (active) {
4574                 event->pmu->start(event, PERF_EF_RELOAD);
4575                 perf_pmu_enable(ctx->pmu);
4576         }
4577 }
4578
4579 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4580 {
4581         u64 value;
4582
4583         if (!is_sampling_event(event))
4584                 return -EINVAL;
4585
4586         if (copy_from_user(&value, arg, sizeof(value)))
4587                 return -EFAULT;
4588
4589         if (!value)
4590                 return -EINVAL;
4591
4592         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4593                 return -EINVAL;
4594
4595         event_function_call(event, __perf_event_period, &value);
4596
4597         return 0;
4598 }
4599
4600 static const struct file_operations perf_fops;
4601
4602 static inline int perf_fget_light(int fd, struct fd *p)
4603 {
4604         struct fd f = fdget(fd);
4605         if (!f.file)
4606                 return -EBADF;
4607
4608         if (f.file->f_op != &perf_fops) {
4609                 fdput(f);
4610                 return -EBADF;
4611         }
4612         *p = f;
4613         return 0;
4614 }
4615
4616 static int perf_event_set_output(struct perf_event *event,
4617                                  struct perf_event *output_event);
4618 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4619 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4620
4621 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4622 {
4623         void (*func)(struct perf_event *);
4624         u32 flags = arg;
4625
4626         switch (cmd) {
4627         case PERF_EVENT_IOC_ENABLE:
4628                 func = _perf_event_enable;
4629                 break;
4630         case PERF_EVENT_IOC_DISABLE:
4631                 func = _perf_event_disable;
4632                 break;
4633         case PERF_EVENT_IOC_RESET:
4634                 func = _perf_event_reset;
4635                 break;
4636
4637         case PERF_EVENT_IOC_REFRESH:
4638                 return _perf_event_refresh(event, arg);
4639
4640         case PERF_EVENT_IOC_PERIOD:
4641                 return perf_event_period(event, (u64 __user *)arg);
4642
4643         case PERF_EVENT_IOC_ID:
4644         {
4645                 u64 id = primary_event_id(event);
4646
4647                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4648                         return -EFAULT;
4649                 return 0;
4650         }
4651
4652         case PERF_EVENT_IOC_SET_OUTPUT:
4653         {
4654                 int ret;
4655                 if (arg != -1) {
4656                         struct perf_event *output_event;
4657                         struct fd output;
4658                         ret = perf_fget_light(arg, &output);
4659                         if (ret)
4660                                 return ret;
4661                         output_event = output.file->private_data;
4662                         ret = perf_event_set_output(event, output_event);
4663                         fdput(output);
4664                 } else {
4665                         ret = perf_event_set_output(event, NULL);
4666                 }
4667                 return ret;
4668         }
4669
4670         case PERF_EVENT_IOC_SET_FILTER:
4671                 return perf_event_set_filter(event, (void __user *)arg);
4672
4673         case PERF_EVENT_IOC_SET_BPF:
4674                 return perf_event_set_bpf_prog(event, arg);
4675
4676         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4677                 struct ring_buffer *rb;
4678
4679                 rcu_read_lock();
4680                 rb = rcu_dereference(event->rb);
4681                 if (!rb || !rb->nr_pages) {
4682                         rcu_read_unlock();
4683                         return -EINVAL;
4684                 }
4685                 rb_toggle_paused(rb, !!arg);
4686                 rcu_read_unlock();
4687                 return 0;
4688         }
4689         default:
4690                 return -ENOTTY;
4691         }
4692
4693         if (flags & PERF_IOC_FLAG_GROUP)
4694                 perf_event_for_each(event, func);
4695         else
4696                 perf_event_for_each_child(event, func);
4697
4698         return 0;
4699 }
4700
4701 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4702 {
4703         struct perf_event *event = file->private_data;
4704         struct perf_event_context *ctx;
4705         long ret;
4706
4707         ctx = perf_event_ctx_lock(event);
4708         ret = _perf_ioctl(event, cmd, arg);
4709         perf_event_ctx_unlock(event, ctx);
4710
4711         return ret;
4712 }
4713
4714 #ifdef CONFIG_COMPAT
4715 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4716                                 unsigned long arg)
4717 {
4718         switch (_IOC_NR(cmd)) {
4719         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4720         case _IOC_NR(PERF_EVENT_IOC_ID):
4721                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4722                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4723                         cmd &= ~IOCSIZE_MASK;
4724                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4725                 }
4726                 break;
4727         }
4728         return perf_ioctl(file, cmd, arg);
4729 }
4730 #else
4731 # define perf_compat_ioctl NULL
4732 #endif
4733
4734 int perf_event_task_enable(void)
4735 {
4736         struct perf_event_context *ctx;
4737         struct perf_event *event;
4738
4739         mutex_lock(&current->perf_event_mutex);
4740         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4741                 ctx = perf_event_ctx_lock(event);
4742                 perf_event_for_each_child(event, _perf_event_enable);
4743                 perf_event_ctx_unlock(event, ctx);
4744         }
4745         mutex_unlock(&current->perf_event_mutex);
4746
4747         return 0;
4748 }
4749
4750 int perf_event_task_disable(void)
4751 {
4752         struct perf_event_context *ctx;
4753         struct perf_event *event;
4754
4755         mutex_lock(&current->perf_event_mutex);
4756         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4757                 ctx = perf_event_ctx_lock(event);
4758                 perf_event_for_each_child(event, _perf_event_disable);
4759                 perf_event_ctx_unlock(event, ctx);
4760         }
4761         mutex_unlock(&current->perf_event_mutex);
4762
4763         return 0;
4764 }
4765
4766 static int perf_event_index(struct perf_event *event)
4767 {
4768         if (event->hw.state & PERF_HES_STOPPED)
4769                 return 0;
4770
4771         if (event->state != PERF_EVENT_STATE_ACTIVE)
4772                 return 0;
4773
4774         return event->pmu->event_idx(event);
4775 }
4776
4777 static void calc_timer_values(struct perf_event *event,
4778                                 u64 *now,
4779                                 u64 *enabled,
4780                                 u64 *running)
4781 {
4782         u64 ctx_time;
4783
4784         *now = perf_clock();
4785         ctx_time = event->shadow_ctx_time + *now;
4786         *enabled = ctx_time - event->tstamp_enabled;
4787         *running = ctx_time - event->tstamp_running;
4788 }
4789
4790 static void perf_event_init_userpage(struct perf_event *event)
4791 {
4792         struct perf_event_mmap_page *userpg;
4793         struct ring_buffer *rb;
4794
4795         rcu_read_lock();
4796         rb = rcu_dereference(event->rb);
4797         if (!rb)
4798                 goto unlock;
4799
4800         userpg = rb->user_page;
4801
4802         /* Allow new userspace to detect that bit 0 is deprecated */
4803         userpg->cap_bit0_is_deprecated = 1;
4804         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4805         userpg->data_offset = PAGE_SIZE;
4806         userpg->data_size = perf_data_size(rb);
4807
4808 unlock:
4809         rcu_read_unlock();
4810 }
4811
4812 void __weak arch_perf_update_userpage(
4813         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4814 {
4815 }
4816
4817 /*
4818  * Callers need to ensure there can be no nesting of this function, otherwise
4819  * the seqlock logic goes bad. We can not serialize this because the arch
4820  * code calls this from NMI context.
4821  */
4822 void perf_event_update_userpage(struct perf_event *event)
4823 {
4824         struct perf_event_mmap_page *userpg;
4825         struct ring_buffer *rb;
4826         u64 enabled, running, now;
4827
4828         rcu_read_lock();
4829         rb = rcu_dereference(event->rb);
4830         if (!rb)
4831                 goto unlock;
4832
4833         /*
4834          * compute total_time_enabled, total_time_running
4835          * based on snapshot values taken when the event
4836          * was last scheduled in.
4837          *
4838          * we cannot simply called update_context_time()
4839          * because of locking issue as we can be called in
4840          * NMI context
4841          */
4842         calc_timer_values(event, &now, &enabled, &running);
4843
4844         userpg = rb->user_page;
4845         /*
4846          * Disable preemption so as to not let the corresponding user-space
4847          * spin too long if we get preempted.
4848          */
4849         preempt_disable();
4850         ++userpg->lock;
4851         barrier();
4852         userpg->index = perf_event_index(event);
4853         userpg->offset = perf_event_count(event);
4854         if (userpg->index)
4855                 userpg->offset -= local64_read(&event->hw.prev_count);
4856
4857         userpg->time_enabled = enabled +
4858                         atomic64_read(&event->child_total_time_enabled);
4859
4860         userpg->time_running = running +
4861                         atomic64_read(&event->child_total_time_running);
4862
4863         arch_perf_update_userpage(event, userpg, now);
4864
4865         barrier();
4866         ++userpg->lock;
4867         preempt_enable();
4868 unlock:
4869         rcu_read_unlock();
4870 }
4871
4872 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4873 {
4874         struct perf_event *event = vma->vm_file->private_data;
4875         struct ring_buffer *rb;
4876         int ret = VM_FAULT_SIGBUS;
4877
4878         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4879                 if (vmf->pgoff == 0)
4880                         ret = 0;
4881                 return ret;
4882         }
4883
4884         rcu_read_lock();
4885         rb = rcu_dereference(event->rb);
4886         if (!rb)
4887                 goto unlock;
4888
4889         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4890                 goto unlock;
4891
4892         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4893         if (!vmf->page)
4894                 goto unlock;
4895
4896         get_page(vmf->page);
4897         vmf->page->mapping = vma->vm_file->f_mapping;
4898         vmf->page->index   = vmf->pgoff;
4899
4900         ret = 0;
4901 unlock:
4902         rcu_read_unlock();
4903
4904         return ret;
4905 }
4906
4907 static void ring_buffer_attach(struct perf_event *event,
4908                                struct ring_buffer *rb)
4909 {
4910         struct ring_buffer *old_rb = NULL;
4911         unsigned long flags;
4912
4913         if (event->rb) {
4914                 /*
4915                  * Should be impossible, we set this when removing
4916                  * event->rb_entry and wait/clear when adding event->rb_entry.
4917                  */
4918                 WARN_ON_ONCE(event->rcu_pending);
4919
4920                 old_rb = event->rb;
4921                 spin_lock_irqsave(&old_rb->event_lock, flags);
4922                 list_del_rcu(&event->rb_entry);
4923                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4924
4925                 event->rcu_batches = get_state_synchronize_rcu();
4926                 event->rcu_pending = 1;
4927         }
4928
4929         if (rb) {
4930                 if (event->rcu_pending) {
4931                         cond_synchronize_rcu(event->rcu_batches);
4932                         event->rcu_pending = 0;
4933                 }
4934
4935                 spin_lock_irqsave(&rb->event_lock, flags);
4936                 list_add_rcu(&event->rb_entry, &rb->event_list);
4937                 spin_unlock_irqrestore(&rb->event_lock, flags);
4938         }
4939
4940         /*
4941          * Avoid racing with perf_mmap_close(AUX): stop the event
4942          * before swizzling the event::rb pointer; if it's getting
4943          * unmapped, its aux_mmap_count will be 0 and it won't
4944          * restart. See the comment in __perf_pmu_output_stop().
4945          *
4946          * Data will inevitably be lost when set_output is done in
4947          * mid-air, but then again, whoever does it like this is
4948          * not in for the data anyway.
4949          */
4950         if (has_aux(event))
4951                 perf_event_stop(event, 0);
4952
4953         rcu_assign_pointer(event->rb, rb);
4954
4955         if (old_rb) {
4956                 ring_buffer_put(old_rb);
4957                 /*
4958                  * Since we detached before setting the new rb, so that we
4959                  * could attach the new rb, we could have missed a wakeup.
4960                  * Provide it now.
4961                  */
4962                 wake_up_all(&event->waitq);
4963         }
4964 }
4965
4966 static void ring_buffer_wakeup(struct perf_event *event)
4967 {
4968         struct ring_buffer *rb;
4969
4970         rcu_read_lock();
4971         rb = rcu_dereference(event->rb);
4972         if (rb) {
4973                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4974                         wake_up_all(&event->waitq);
4975         }
4976         rcu_read_unlock();
4977 }
4978
4979 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4980 {
4981         struct ring_buffer *rb;
4982
4983         rcu_read_lock();
4984         rb = rcu_dereference(event->rb);
4985         if (rb) {
4986                 if (!atomic_inc_not_zero(&rb->refcount))
4987                         rb = NULL;
4988         }
4989         rcu_read_unlock();
4990
4991         return rb;
4992 }
4993
4994 void ring_buffer_put(struct ring_buffer *rb)
4995 {
4996         if (!atomic_dec_and_test(&rb->refcount))
4997                 return;
4998
4999         WARN_ON_ONCE(!list_empty(&rb->event_list));
5000
5001         call_rcu(&rb->rcu_head, rb_free_rcu);
5002 }
5003
5004 static void perf_mmap_open(struct vm_area_struct *vma)
5005 {
5006         struct perf_event *event = vma->vm_file->private_data;
5007
5008         atomic_inc(&event->mmap_count);
5009         atomic_inc(&event->rb->mmap_count);
5010
5011         if (vma->vm_pgoff)
5012                 atomic_inc(&event->rb->aux_mmap_count);
5013
5014         if (event->pmu->event_mapped)
5015                 event->pmu->event_mapped(event);
5016 }
5017
5018 static void perf_pmu_output_stop(struct perf_event *event);
5019
5020 /*
5021  * A buffer can be mmap()ed multiple times; either directly through the same
5022  * event, or through other events by use of perf_event_set_output().
5023  *
5024  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5025  * the buffer here, where we still have a VM context. This means we need
5026  * to detach all events redirecting to us.
5027  */
5028 static void perf_mmap_close(struct vm_area_struct *vma)
5029 {
5030         struct perf_event *event = vma->vm_file->private_data;
5031
5032         struct ring_buffer *rb = ring_buffer_get(event);
5033         struct user_struct *mmap_user = rb->mmap_user;
5034         int mmap_locked = rb->mmap_locked;
5035         unsigned long size = perf_data_size(rb);
5036
5037         if (event->pmu->event_unmapped)
5038                 event->pmu->event_unmapped(event);
5039
5040         /*
5041          * rb->aux_mmap_count will always drop before rb->mmap_count and
5042          * event->mmap_count, so it is ok to use event->mmap_mutex to
5043          * serialize with perf_mmap here.
5044          */
5045         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5046             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5047                 /*
5048                  * Stop all AUX events that are writing to this buffer,
5049                  * so that we can free its AUX pages and corresponding PMU
5050                  * data. Note that after rb::aux_mmap_count dropped to zero,
5051                  * they won't start any more (see perf_aux_output_begin()).
5052                  */
5053                 perf_pmu_output_stop(event);
5054
5055                 /* now it's safe to free the pages */
5056                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5057                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5058
5059                 /* this has to be the last one */
5060                 rb_free_aux(rb);
5061                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5062
5063                 mutex_unlock(&event->mmap_mutex);
5064         }
5065
5066         atomic_dec(&rb->mmap_count);
5067
5068         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5069                 goto out_put;
5070
5071         ring_buffer_attach(event, NULL);
5072         mutex_unlock(&event->mmap_mutex);
5073
5074         /* If there's still other mmap()s of this buffer, we're done. */
5075         if (atomic_read(&rb->mmap_count))
5076                 goto out_put;
5077
5078         /*
5079          * No other mmap()s, detach from all other events that might redirect
5080          * into the now unreachable buffer. Somewhat complicated by the
5081          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5082          */
5083 again:
5084         rcu_read_lock();
5085         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5086                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5087                         /*
5088                          * This event is en-route to free_event() which will
5089                          * detach it and remove it from the list.
5090                          */
5091                         continue;
5092                 }
5093                 rcu_read_unlock();
5094
5095                 mutex_lock(&event->mmap_mutex);
5096                 /*
5097                  * Check we didn't race with perf_event_set_output() which can
5098                  * swizzle the rb from under us while we were waiting to
5099                  * acquire mmap_mutex.
5100                  *
5101                  * If we find a different rb; ignore this event, a next
5102                  * iteration will no longer find it on the list. We have to
5103                  * still restart the iteration to make sure we're not now
5104                  * iterating the wrong list.
5105                  */
5106                 if (event->rb == rb)
5107                         ring_buffer_attach(event, NULL);
5108
5109                 mutex_unlock(&event->mmap_mutex);
5110                 put_event(event);
5111
5112                 /*
5113                  * Restart the iteration; either we're on the wrong list or
5114                  * destroyed its integrity by doing a deletion.
5115                  */
5116                 goto again;
5117         }
5118         rcu_read_unlock();
5119
5120         /*
5121          * It could be there's still a few 0-ref events on the list; they'll
5122          * get cleaned up by free_event() -- they'll also still have their
5123          * ref on the rb and will free it whenever they are done with it.
5124          *
5125          * Aside from that, this buffer is 'fully' detached and unmapped,
5126          * undo the VM accounting.
5127          */
5128
5129         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5130         vma->vm_mm->pinned_vm -= mmap_locked;
5131         free_uid(mmap_user);
5132
5133 out_put:
5134         ring_buffer_put(rb); /* could be last */
5135 }
5136
5137 static const struct vm_operations_struct perf_mmap_vmops = {
5138         .open           = perf_mmap_open,
5139         .close          = perf_mmap_close, /* non mergable */
5140         .fault          = perf_mmap_fault,
5141         .page_mkwrite   = perf_mmap_fault,
5142 };
5143
5144 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5145 {
5146         struct perf_event *event = file->private_data;
5147         unsigned long user_locked, user_lock_limit;
5148         struct user_struct *user = current_user();
5149         unsigned long locked, lock_limit;
5150         struct ring_buffer *rb = NULL;
5151         unsigned long vma_size;
5152         unsigned long nr_pages;
5153         long user_extra = 0, extra = 0;
5154         int ret = 0, flags = 0;
5155
5156         /*
5157          * Don't allow mmap() of inherited per-task counters. This would
5158          * create a performance issue due to all children writing to the
5159          * same rb.
5160          */
5161         if (event->cpu == -1 && event->attr.inherit)
5162                 return -EINVAL;
5163
5164         if (!(vma->vm_flags & VM_SHARED))
5165                 return -EINVAL;
5166
5167         vma_size = vma->vm_end - vma->vm_start;
5168
5169         if (vma->vm_pgoff == 0) {
5170                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5171         } else {
5172                 /*
5173                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5174                  * mapped, all subsequent mappings should have the same size
5175                  * and offset. Must be above the normal perf buffer.
5176                  */
5177                 u64 aux_offset, aux_size;
5178
5179                 if (!event->rb)
5180                         return -EINVAL;
5181
5182                 nr_pages = vma_size / PAGE_SIZE;
5183
5184                 mutex_lock(&event->mmap_mutex);
5185                 ret = -EINVAL;
5186
5187                 rb = event->rb;
5188                 if (!rb)
5189                         goto aux_unlock;
5190
5191                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5192                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5193
5194                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5195                         goto aux_unlock;
5196
5197                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5198                         goto aux_unlock;
5199
5200                 /* already mapped with a different offset */
5201                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5202                         goto aux_unlock;
5203
5204                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5205                         goto aux_unlock;
5206
5207                 /* already mapped with a different size */
5208                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5209                         goto aux_unlock;
5210
5211                 if (!is_power_of_2(nr_pages))
5212                         goto aux_unlock;
5213
5214                 if (!atomic_inc_not_zero(&rb->mmap_count))
5215                         goto aux_unlock;
5216
5217                 if (rb_has_aux(rb)) {
5218                         atomic_inc(&rb->aux_mmap_count);
5219                         ret = 0;
5220                         goto unlock;
5221                 }
5222
5223                 atomic_set(&rb->aux_mmap_count, 1);
5224                 user_extra = nr_pages;
5225
5226                 goto accounting;
5227         }
5228
5229         /*
5230          * If we have rb pages ensure they're a power-of-two number, so we
5231          * can do bitmasks instead of modulo.
5232          */
5233         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5234                 return -EINVAL;
5235
5236         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5237                 return -EINVAL;
5238
5239         WARN_ON_ONCE(event->ctx->parent_ctx);
5240 again:
5241         mutex_lock(&event->mmap_mutex);
5242         if (event->rb) {
5243                 if (event->rb->nr_pages != nr_pages) {
5244                         ret = -EINVAL;
5245                         goto unlock;
5246                 }
5247
5248                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5249                         /*
5250                          * Raced against perf_mmap_close() through
5251                          * perf_event_set_output(). Try again, hope for better
5252                          * luck.
5253                          */
5254                         mutex_unlock(&event->mmap_mutex);
5255                         goto again;
5256                 }
5257
5258                 goto unlock;
5259         }
5260
5261         user_extra = nr_pages + 1;
5262
5263 accounting:
5264         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5265
5266         /*
5267          * Increase the limit linearly with more CPUs:
5268          */
5269         user_lock_limit *= num_online_cpus();
5270
5271         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5272
5273         if (user_locked > user_lock_limit)
5274                 extra = user_locked - user_lock_limit;
5275
5276         lock_limit = rlimit(RLIMIT_MEMLOCK);
5277         lock_limit >>= PAGE_SHIFT;
5278         locked = vma->vm_mm->pinned_vm + extra;
5279
5280         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5281                 !capable(CAP_IPC_LOCK)) {
5282                 ret = -EPERM;
5283                 goto unlock;
5284         }
5285
5286         WARN_ON(!rb && event->rb);
5287
5288         if (vma->vm_flags & VM_WRITE)
5289                 flags |= RING_BUFFER_WRITABLE;
5290
5291         if (!rb) {
5292                 rb = rb_alloc(nr_pages,
5293                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5294                               event->cpu, flags);
5295
5296                 if (!rb) {
5297                         ret = -ENOMEM;
5298                         goto unlock;
5299                 }
5300
5301                 atomic_set(&rb->mmap_count, 1);
5302                 rb->mmap_user = get_current_user();
5303                 rb->mmap_locked = extra;
5304
5305                 ring_buffer_attach(event, rb);
5306
5307                 perf_event_init_userpage(event);
5308                 perf_event_update_userpage(event);
5309         } else {
5310                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5311                                    event->attr.aux_watermark, flags);
5312                 if (!ret)
5313                         rb->aux_mmap_locked = extra;
5314         }
5315
5316 unlock:
5317         if (!ret) {
5318                 atomic_long_add(user_extra, &user->locked_vm);
5319                 vma->vm_mm->pinned_vm += extra;
5320
5321                 atomic_inc(&event->mmap_count);
5322         } else if (rb) {
5323                 atomic_dec(&rb->mmap_count);
5324         }
5325 aux_unlock:
5326         mutex_unlock(&event->mmap_mutex);
5327
5328         /*
5329          * Since pinned accounting is per vm we cannot allow fork() to copy our
5330          * vma.
5331          */
5332         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5333         vma->vm_ops = &perf_mmap_vmops;
5334
5335         if (event->pmu->event_mapped)
5336                 event->pmu->event_mapped(event);
5337
5338         return ret;
5339 }
5340
5341 static int perf_fasync(int fd, struct file *filp, int on)
5342 {
5343         struct inode *inode = file_inode(filp);
5344         struct perf_event *event = filp->private_data;
5345         int retval;
5346
5347         inode_lock(inode);
5348         retval = fasync_helper(fd, filp, on, &event->fasync);
5349         inode_unlock(inode);
5350
5351         if (retval < 0)
5352                 return retval;
5353
5354         return 0;
5355 }
5356
5357 static const struct file_operations perf_fops = {
5358         .llseek                 = no_llseek,
5359         .release                = perf_release,
5360         .read                   = perf_read,
5361         .poll                   = perf_poll,
5362         .unlocked_ioctl         = perf_ioctl,
5363         .compat_ioctl           = perf_compat_ioctl,
5364         .mmap                   = perf_mmap,
5365         .fasync                 = perf_fasync,
5366 };
5367
5368 /*
5369  * Perf event wakeup
5370  *
5371  * If there's data, ensure we set the poll() state and publish everything
5372  * to user-space before waking everybody up.
5373  */
5374
5375 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5376 {
5377         /* only the parent has fasync state */
5378         if (event->parent)
5379                 event = event->parent;
5380         return &event->fasync;
5381 }
5382
5383 void perf_event_wakeup(struct perf_event *event)
5384 {
5385         ring_buffer_wakeup(event);
5386
5387         if (event->pending_kill) {
5388                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5389                 event->pending_kill = 0;
5390         }
5391 }
5392
5393 static void perf_pending_event(struct irq_work *entry)
5394 {
5395         struct perf_event *event = container_of(entry,
5396                         struct perf_event, pending);
5397         int rctx;
5398
5399         rctx = perf_swevent_get_recursion_context();
5400         /*
5401          * If we 'fail' here, that's OK, it means recursion is already disabled
5402          * and we won't recurse 'further'.
5403          */
5404
5405         if (event->pending_disable) {
5406                 event->pending_disable = 0;
5407                 perf_event_disable_local(event);
5408         }
5409
5410         if (event->pending_wakeup) {
5411                 event->pending_wakeup = 0;
5412                 perf_event_wakeup(event);
5413         }
5414
5415         if (rctx >= 0)
5416                 perf_swevent_put_recursion_context(rctx);
5417 }
5418
5419 /*
5420  * We assume there is only KVM supporting the callbacks.
5421  * Later on, we might change it to a list if there is
5422  * another virtualization implementation supporting the callbacks.
5423  */
5424 struct perf_guest_info_callbacks *perf_guest_cbs;
5425
5426 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5427 {
5428         perf_guest_cbs = cbs;
5429         return 0;
5430 }
5431 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5432
5433 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5434 {
5435         perf_guest_cbs = NULL;
5436         return 0;
5437 }
5438 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5439
5440 static void
5441 perf_output_sample_regs(struct perf_output_handle *handle,
5442                         struct pt_regs *regs, u64 mask)
5443 {
5444         int bit;
5445         DECLARE_BITMAP(_mask, 64);
5446
5447         bitmap_from_u64(_mask, mask);
5448         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5449                 u64 val;
5450
5451                 val = perf_reg_value(regs, bit);
5452                 perf_output_put(handle, val);
5453         }
5454 }
5455
5456 static void perf_sample_regs_user(struct perf_regs *regs_user,
5457                                   struct pt_regs *regs,
5458                                   struct pt_regs *regs_user_copy)
5459 {
5460         if (user_mode(regs)) {
5461                 regs_user->abi = perf_reg_abi(current);
5462                 regs_user->regs = regs;
5463         } else if (current->mm) {
5464                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5465         } else {
5466                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5467                 regs_user->regs = NULL;
5468         }
5469 }
5470
5471 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5472                                   struct pt_regs *regs)
5473 {
5474         regs_intr->regs = regs;
5475         regs_intr->abi  = perf_reg_abi(current);
5476 }
5477
5478
5479 /*
5480  * Get remaining task size from user stack pointer.
5481  *
5482  * It'd be better to take stack vma map and limit this more
5483  * precisly, but there's no way to get it safely under interrupt,
5484  * so using TASK_SIZE as limit.
5485  */
5486 static u64 perf_ustack_task_size(struct pt_regs *regs)
5487 {
5488         unsigned long addr = perf_user_stack_pointer(regs);
5489
5490         if (!addr || addr >= TASK_SIZE)
5491                 return 0;
5492
5493         return TASK_SIZE - addr;
5494 }
5495
5496 static u16
5497 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5498                         struct pt_regs *regs)
5499 {
5500         u64 task_size;
5501
5502         /* No regs, no stack pointer, no dump. */
5503         if (!regs)
5504                 return 0;
5505
5506         /*
5507          * Check if we fit in with the requested stack size into the:
5508          * - TASK_SIZE
5509          *   If we don't, we limit the size to the TASK_SIZE.
5510          *
5511          * - remaining sample size
5512          *   If we don't, we customize the stack size to
5513          *   fit in to the remaining sample size.
5514          */
5515
5516         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5517         stack_size = min(stack_size, (u16) task_size);
5518
5519         /* Current header size plus static size and dynamic size. */
5520         header_size += 2 * sizeof(u64);
5521
5522         /* Do we fit in with the current stack dump size? */
5523         if ((u16) (header_size + stack_size) < header_size) {
5524                 /*
5525                  * If we overflow the maximum size for the sample,
5526                  * we customize the stack dump size to fit in.
5527                  */
5528                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5529                 stack_size = round_up(stack_size, sizeof(u64));
5530         }
5531
5532         return stack_size;
5533 }
5534
5535 static void
5536 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5537                           struct pt_regs *regs)
5538 {
5539         /* Case of a kernel thread, nothing to dump */
5540         if (!regs) {
5541                 u64 size = 0;
5542                 perf_output_put(handle, size);
5543         } else {
5544                 unsigned long sp;
5545                 unsigned int rem;
5546                 u64 dyn_size;
5547
5548                 /*
5549                  * We dump:
5550                  * static size
5551                  *   - the size requested by user or the best one we can fit
5552                  *     in to the sample max size
5553                  * data
5554                  *   - user stack dump data
5555                  * dynamic size
5556                  *   - the actual dumped size
5557                  */
5558
5559                 /* Static size. */
5560                 perf_output_put(handle, dump_size);
5561
5562                 /* Data. */
5563                 sp = perf_user_stack_pointer(regs);
5564                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5565                 dyn_size = dump_size - rem;
5566
5567                 perf_output_skip(handle, rem);
5568
5569                 /* Dynamic size. */
5570                 perf_output_put(handle, dyn_size);
5571         }
5572 }
5573
5574 static void __perf_event_header__init_id(struct perf_event_header *header,
5575                                          struct perf_sample_data *data,
5576                                          struct perf_event *event)
5577 {
5578         u64 sample_type = event->attr.sample_type;
5579
5580         data->type = sample_type;
5581         header->size += event->id_header_size;
5582
5583         if (sample_type & PERF_SAMPLE_TID) {
5584                 /* namespace issues */
5585                 data->tid_entry.pid = perf_event_pid(event, current);
5586                 data->tid_entry.tid = perf_event_tid(event, current);
5587         }
5588
5589         if (sample_type & PERF_SAMPLE_TIME)
5590                 data->time = perf_event_clock(event);
5591
5592         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5593                 data->id = primary_event_id(event);
5594
5595         if (sample_type & PERF_SAMPLE_STREAM_ID)
5596                 data->stream_id = event->id;
5597
5598         if (sample_type & PERF_SAMPLE_CPU) {
5599                 data->cpu_entry.cpu      = raw_smp_processor_id();
5600                 data->cpu_entry.reserved = 0;
5601         }
5602 }
5603
5604 void perf_event_header__init_id(struct perf_event_header *header,
5605                                 struct perf_sample_data *data,
5606                                 struct perf_event *event)
5607 {
5608         if (event->attr.sample_id_all)
5609                 __perf_event_header__init_id(header, data, event);
5610 }
5611
5612 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5613                                            struct perf_sample_data *data)
5614 {
5615         u64 sample_type = data->type;
5616
5617         if (sample_type & PERF_SAMPLE_TID)
5618                 perf_output_put(handle, data->tid_entry);
5619
5620         if (sample_type & PERF_SAMPLE_TIME)
5621                 perf_output_put(handle, data->time);
5622
5623         if (sample_type & PERF_SAMPLE_ID)
5624                 perf_output_put(handle, data->id);
5625
5626         if (sample_type & PERF_SAMPLE_STREAM_ID)
5627                 perf_output_put(handle, data->stream_id);
5628
5629         if (sample_type & PERF_SAMPLE_CPU)
5630                 perf_output_put(handle, data->cpu_entry);
5631
5632         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5633                 perf_output_put(handle, data->id);
5634 }
5635
5636 void perf_event__output_id_sample(struct perf_event *event,
5637                                   struct perf_output_handle *handle,
5638                                   struct perf_sample_data *sample)
5639 {
5640         if (event->attr.sample_id_all)
5641                 __perf_event__output_id_sample(handle, sample);
5642 }
5643
5644 static void perf_output_read_one(struct perf_output_handle *handle,
5645                                  struct perf_event *event,
5646                                  u64 enabled, u64 running)
5647 {
5648         u64 read_format = event->attr.read_format;
5649         u64 values[4];
5650         int n = 0;
5651
5652         values[n++] = perf_event_count(event);
5653         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5654                 values[n++] = enabled +
5655                         atomic64_read(&event->child_total_time_enabled);
5656         }
5657         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5658                 values[n++] = running +
5659                         atomic64_read(&event->child_total_time_running);
5660         }
5661         if (read_format & PERF_FORMAT_ID)
5662                 values[n++] = primary_event_id(event);
5663
5664         __output_copy(handle, values, n * sizeof(u64));
5665 }
5666
5667 /*
5668  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5669  */
5670 static void perf_output_read_group(struct perf_output_handle *handle,
5671                             struct perf_event *event,
5672                             u64 enabled, u64 running)
5673 {
5674         struct perf_event *leader = event->group_leader, *sub;
5675         u64 read_format = event->attr.read_format;
5676         u64 values[5];
5677         int n = 0;
5678
5679         values[n++] = 1 + leader->nr_siblings;
5680
5681         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5682                 values[n++] = enabled;
5683
5684         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5685                 values[n++] = running;
5686
5687         if (leader != event)
5688                 leader->pmu->read(leader);
5689
5690         values[n++] = perf_event_count(leader);
5691         if (read_format & PERF_FORMAT_ID)
5692                 values[n++] = primary_event_id(leader);
5693
5694         __output_copy(handle, values, n * sizeof(u64));
5695
5696         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5697                 n = 0;
5698
5699                 if ((sub != event) &&
5700                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5701                         sub->pmu->read(sub);
5702
5703                 values[n++] = perf_event_count(sub);
5704                 if (read_format & PERF_FORMAT_ID)
5705                         values[n++] = primary_event_id(sub);
5706
5707                 __output_copy(handle, values, n * sizeof(u64));
5708         }
5709 }
5710
5711 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5712                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5713
5714 static void perf_output_read(struct perf_output_handle *handle,
5715                              struct perf_event *event)
5716 {
5717         u64 enabled = 0, running = 0, now;
5718         u64 read_format = event->attr.read_format;
5719
5720         /*
5721          * compute total_time_enabled, total_time_running
5722          * based on snapshot values taken when the event
5723          * was last scheduled in.
5724          *
5725          * we cannot simply called update_context_time()
5726          * because of locking issue as we are called in
5727          * NMI context
5728          */
5729         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5730                 calc_timer_values(event, &now, &enabled, &running);
5731
5732         if (event->attr.read_format & PERF_FORMAT_GROUP)
5733                 perf_output_read_group(handle, event, enabled, running);
5734         else
5735                 perf_output_read_one(handle, event, enabled, running);
5736 }
5737
5738 void perf_output_sample(struct perf_output_handle *handle,
5739                         struct perf_event_header *header,
5740                         struct perf_sample_data *data,
5741                         struct perf_event *event)
5742 {
5743         u64 sample_type = data->type;
5744
5745         perf_output_put(handle, *header);
5746
5747         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5748                 perf_output_put(handle, data->id);
5749
5750         if (sample_type & PERF_SAMPLE_IP)
5751                 perf_output_put(handle, data->ip);
5752
5753         if (sample_type & PERF_SAMPLE_TID)
5754                 perf_output_put(handle, data->tid_entry);
5755
5756         if (sample_type & PERF_SAMPLE_TIME)
5757                 perf_output_put(handle, data->time);
5758
5759         if (sample_type & PERF_SAMPLE_ADDR)
5760                 perf_output_put(handle, data->addr);
5761
5762         if (sample_type & PERF_SAMPLE_ID)
5763                 perf_output_put(handle, data->id);
5764
5765         if (sample_type & PERF_SAMPLE_STREAM_ID)
5766                 perf_output_put(handle, data->stream_id);
5767
5768         if (sample_type & PERF_SAMPLE_CPU)
5769                 perf_output_put(handle, data->cpu_entry);
5770
5771         if (sample_type & PERF_SAMPLE_PERIOD)
5772                 perf_output_put(handle, data->period);
5773
5774         if (sample_type & PERF_SAMPLE_READ)
5775                 perf_output_read(handle, event);
5776
5777         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5778                 if (data->callchain) {
5779                         int size = 1;
5780
5781                         if (data->callchain)
5782                                 size += data->callchain->nr;
5783
5784                         size *= sizeof(u64);
5785
5786                         __output_copy(handle, data->callchain, size);
5787                 } else {
5788                         u64 nr = 0;
5789                         perf_output_put(handle, nr);
5790                 }
5791         }
5792
5793         if (sample_type & PERF_SAMPLE_RAW) {
5794                 struct perf_raw_record *raw = data->raw;
5795
5796                 if (raw) {
5797                         struct perf_raw_frag *frag = &raw->frag;
5798
5799                         perf_output_put(handle, raw->size);
5800                         do {
5801                                 if (frag->copy) {
5802                                         __output_custom(handle, frag->copy,
5803                                                         frag->data, frag->size);
5804                                 } else {
5805                                         __output_copy(handle, frag->data,
5806                                                       frag->size);
5807                                 }
5808                                 if (perf_raw_frag_last(frag))
5809                                         break;
5810                                 frag = frag->next;
5811                         } while (1);
5812                         if (frag->pad)
5813                                 __output_skip(handle, NULL, frag->pad);
5814                 } else {
5815                         struct {
5816                                 u32     size;
5817                                 u32     data;
5818                         } raw = {
5819                                 .size = sizeof(u32),
5820                                 .data = 0,
5821                         };
5822                         perf_output_put(handle, raw);
5823                 }
5824         }
5825
5826         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5827                 if (data->br_stack) {
5828                         size_t size;
5829
5830                         size = data->br_stack->nr
5831                              * sizeof(struct perf_branch_entry);
5832
5833                         perf_output_put(handle, data->br_stack->nr);
5834                         perf_output_copy(handle, data->br_stack->entries, size);
5835                 } else {
5836                         /*
5837                          * we always store at least the value of nr
5838                          */
5839                         u64 nr = 0;
5840                         perf_output_put(handle, nr);
5841                 }
5842         }
5843
5844         if (sample_type & PERF_SAMPLE_REGS_USER) {
5845                 u64 abi = data->regs_user.abi;
5846
5847                 /*
5848                  * If there are no regs to dump, notice it through
5849                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5850                  */
5851                 perf_output_put(handle, abi);
5852
5853                 if (abi) {
5854                         u64 mask = event->attr.sample_regs_user;
5855                         perf_output_sample_regs(handle,
5856                                                 data->regs_user.regs,
5857                                                 mask);
5858                 }
5859         }
5860
5861         if (sample_type & PERF_SAMPLE_STACK_USER) {
5862                 perf_output_sample_ustack(handle,
5863                                           data->stack_user_size,
5864                                           data->regs_user.regs);
5865         }
5866
5867         if (sample_type & PERF_SAMPLE_WEIGHT)
5868                 perf_output_put(handle, data->weight);
5869
5870         if (sample_type & PERF_SAMPLE_DATA_SRC)
5871                 perf_output_put(handle, data->data_src.val);
5872
5873         if (sample_type & PERF_SAMPLE_TRANSACTION)
5874                 perf_output_put(handle, data->txn);
5875
5876         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5877                 u64 abi = data->regs_intr.abi;
5878                 /*
5879                  * If there are no regs to dump, notice it through
5880                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5881                  */
5882                 perf_output_put(handle, abi);
5883
5884                 if (abi) {
5885                         u64 mask = event->attr.sample_regs_intr;
5886
5887                         perf_output_sample_regs(handle,
5888                                                 data->regs_intr.regs,
5889                                                 mask);
5890                 }
5891         }
5892
5893         if (!event->attr.watermark) {
5894                 int wakeup_events = event->attr.wakeup_events;
5895
5896                 if (wakeup_events) {
5897                         struct ring_buffer *rb = handle->rb;
5898                         int events = local_inc_return(&rb->events);
5899
5900                         if (events >= wakeup_events) {
5901                                 local_sub(wakeup_events, &rb->events);
5902                                 local_inc(&rb->wakeup);
5903                         }
5904                 }
5905         }
5906 }
5907
5908 void perf_prepare_sample(struct perf_event_header *header,
5909                          struct perf_sample_data *data,
5910                          struct perf_event *event,
5911                          struct pt_regs *regs)
5912 {
5913         u64 sample_type = event->attr.sample_type;
5914
5915         header->type = PERF_RECORD_SAMPLE;
5916         header->size = sizeof(*header) + event->header_size;
5917
5918         header->misc = 0;
5919         header->misc |= perf_misc_flags(regs);
5920
5921         __perf_event_header__init_id(header, data, event);
5922
5923         if (sample_type & PERF_SAMPLE_IP)
5924                 data->ip = perf_instruction_pointer(regs);
5925
5926         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5927                 int size = 1;
5928
5929                 data->callchain = perf_callchain(event, regs);
5930
5931                 if (data->callchain)
5932                         size += data->callchain->nr;
5933
5934                 header->size += size * sizeof(u64);
5935         }
5936
5937         if (sample_type & PERF_SAMPLE_RAW) {
5938                 struct perf_raw_record *raw = data->raw;
5939                 int size;
5940
5941                 if (raw) {
5942                         struct perf_raw_frag *frag = &raw->frag;
5943                         u32 sum = 0;
5944
5945                         do {
5946                                 sum += frag->size;
5947                                 if (perf_raw_frag_last(frag))
5948                                         break;
5949                                 frag = frag->next;
5950                         } while (1);
5951
5952                         size = round_up(sum + sizeof(u32), sizeof(u64));
5953                         raw->size = size - sizeof(u32);
5954                         frag->pad = raw->size - sum;
5955                 } else {
5956                         size = sizeof(u64);
5957                 }
5958
5959                 header->size += size;
5960         }
5961
5962         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5963                 int size = sizeof(u64); /* nr */
5964                 if (data->br_stack) {
5965                         size += data->br_stack->nr
5966                               * sizeof(struct perf_branch_entry);
5967                 }
5968                 header->size += size;
5969         }
5970
5971         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5972                 perf_sample_regs_user(&data->regs_user, regs,
5973                                       &data->regs_user_copy);
5974
5975         if (sample_type & PERF_SAMPLE_REGS_USER) {
5976                 /* regs dump ABI info */
5977                 int size = sizeof(u64);
5978
5979                 if (data->regs_user.regs) {
5980                         u64 mask = event->attr.sample_regs_user;
5981                         size += hweight64(mask) * sizeof(u64);
5982                 }
5983
5984                 header->size += size;
5985         }
5986
5987         if (sample_type & PERF_SAMPLE_STACK_USER) {
5988                 /*
5989                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5990                  * processed as the last one or have additional check added
5991                  * in case new sample type is added, because we could eat
5992                  * up the rest of the sample size.
5993                  */
5994                 u16 stack_size = event->attr.sample_stack_user;
5995                 u16 size = sizeof(u64);
5996
5997                 stack_size = perf_sample_ustack_size(stack_size, header->size,
5998                                                      data->regs_user.regs);
5999
6000                 /*
6001                  * If there is something to dump, add space for the dump
6002                  * itself and for the field that tells the dynamic size,
6003                  * which is how many have been actually dumped.
6004                  */
6005                 if (stack_size)
6006                         size += sizeof(u64) + stack_size;
6007
6008                 data->stack_user_size = stack_size;
6009                 header->size += size;
6010         }
6011
6012         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6013                 /* regs dump ABI info */
6014                 int size = sizeof(u64);
6015
6016                 perf_sample_regs_intr(&data->regs_intr, regs);
6017
6018                 if (data->regs_intr.regs) {
6019                         u64 mask = event->attr.sample_regs_intr;
6020
6021                         size += hweight64(mask) * sizeof(u64);
6022                 }
6023
6024                 header->size += size;
6025         }
6026 }
6027
6028 static void __always_inline
6029 __perf_event_output(struct perf_event *event,
6030                     struct perf_sample_data *data,
6031                     struct pt_regs *regs,
6032                     int (*output_begin)(struct perf_output_handle *,
6033                                         struct perf_event *,
6034                                         unsigned int))
6035 {
6036         struct perf_output_handle handle;
6037         struct perf_event_header header;
6038
6039         /* protect the callchain buffers */
6040         rcu_read_lock();
6041
6042         perf_prepare_sample(&header, data, event, regs);
6043
6044         if (output_begin(&handle, event, header.size))
6045                 goto exit;
6046
6047         perf_output_sample(&handle, &header, data, event);
6048
6049         perf_output_end(&handle);
6050
6051 exit:
6052         rcu_read_unlock();
6053 }
6054
6055 void
6056 perf_event_output_forward(struct perf_event *event,
6057                          struct perf_sample_data *data,
6058                          struct pt_regs *regs)
6059 {
6060         __perf_event_output(event, data, regs, perf_output_begin_forward);
6061 }
6062
6063 void
6064 perf_event_output_backward(struct perf_event *event,
6065                            struct perf_sample_data *data,
6066                            struct pt_regs *regs)
6067 {
6068         __perf_event_output(event, data, regs, perf_output_begin_backward);
6069 }
6070
6071 void
6072 perf_event_output(struct perf_event *event,
6073                   struct perf_sample_data *data,
6074                   struct pt_regs *regs)
6075 {
6076         __perf_event_output(event, data, regs, perf_output_begin);
6077 }
6078
6079 /*
6080  * read event_id
6081  */
6082
6083 struct perf_read_event {
6084         struct perf_event_header        header;
6085
6086         u32                             pid;
6087         u32                             tid;
6088 };
6089
6090 static void
6091 perf_event_read_event(struct perf_event *event,
6092                         struct task_struct *task)
6093 {
6094         struct perf_output_handle handle;
6095         struct perf_sample_data sample;
6096         struct perf_read_event read_event = {
6097                 .header = {
6098                         .type = PERF_RECORD_READ,
6099                         .misc = 0,
6100                         .size = sizeof(read_event) + event->read_size,
6101                 },
6102                 .pid = perf_event_pid(event, task),
6103                 .tid = perf_event_tid(event, task),
6104         };
6105         int ret;
6106
6107         perf_event_header__init_id(&read_event.header, &sample, event);
6108         ret = perf_output_begin(&handle, event, read_event.header.size);
6109         if (ret)
6110                 return;
6111
6112         perf_output_put(&handle, read_event);
6113         perf_output_read(&handle, event);
6114         perf_event__output_id_sample(event, &handle, &sample);
6115
6116         perf_output_end(&handle);
6117 }
6118
6119 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6120
6121 static void
6122 perf_iterate_ctx(struct perf_event_context *ctx,
6123                    perf_iterate_f output,
6124                    void *data, bool all)
6125 {
6126         struct perf_event *event;
6127
6128         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6129                 if (!all) {
6130                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6131                                 continue;
6132                         if (!event_filter_match(event))
6133                                 continue;
6134                 }
6135
6136                 output(event, data);
6137         }
6138 }
6139
6140 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6141 {
6142         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6143         struct perf_event *event;
6144
6145         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6146                 /*
6147                  * Skip events that are not fully formed yet; ensure that
6148                  * if we observe event->ctx, both event and ctx will be
6149                  * complete enough. See perf_install_in_context().
6150                  */
6151                 if (!smp_load_acquire(&event->ctx))
6152                         continue;
6153
6154                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6155                         continue;
6156                 if (!event_filter_match(event))
6157                         continue;
6158                 output(event, data);
6159         }
6160 }
6161
6162 /*
6163  * Iterate all events that need to receive side-band events.
6164  *
6165  * For new callers; ensure that account_pmu_sb_event() includes
6166  * your event, otherwise it might not get delivered.
6167  */
6168 static void
6169 perf_iterate_sb(perf_iterate_f output, void *data,
6170                struct perf_event_context *task_ctx)
6171 {
6172         struct perf_event_context *ctx;
6173         int ctxn;
6174
6175         rcu_read_lock();
6176         preempt_disable();
6177
6178         /*
6179          * If we have task_ctx != NULL we only notify the task context itself.
6180          * The task_ctx is set only for EXIT events before releasing task
6181          * context.
6182          */
6183         if (task_ctx) {
6184                 perf_iterate_ctx(task_ctx, output, data, false);
6185                 goto done;
6186         }
6187
6188         perf_iterate_sb_cpu(output, data);
6189
6190         for_each_task_context_nr(ctxn) {
6191                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6192                 if (ctx)
6193                         perf_iterate_ctx(ctx, output, data, false);
6194         }
6195 done:
6196         preempt_enable();
6197         rcu_read_unlock();
6198 }
6199
6200 /*
6201  * Clear all file-based filters at exec, they'll have to be
6202  * re-instated when/if these objects are mmapped again.
6203  */
6204 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6205 {
6206         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6207         struct perf_addr_filter *filter;
6208         unsigned int restart = 0, count = 0;
6209         unsigned long flags;
6210
6211         if (!has_addr_filter(event))
6212                 return;
6213
6214         raw_spin_lock_irqsave(&ifh->lock, flags);
6215         list_for_each_entry(filter, &ifh->list, entry) {
6216                 if (filter->inode) {
6217                         event->addr_filters_offs[count] = 0;
6218                         restart++;
6219                 }
6220
6221                 count++;
6222         }
6223
6224         if (restart)
6225                 event->addr_filters_gen++;
6226         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6227
6228         if (restart)
6229                 perf_event_stop(event, 1);
6230 }
6231
6232 void perf_event_exec(void)
6233 {
6234         struct perf_event_context *ctx;
6235         int ctxn;
6236
6237         rcu_read_lock();
6238         for_each_task_context_nr(ctxn) {
6239                 ctx = current->perf_event_ctxp[ctxn];
6240                 if (!ctx)
6241                         continue;
6242
6243                 perf_event_enable_on_exec(ctxn);
6244
6245                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6246                                    true);
6247         }
6248         rcu_read_unlock();
6249 }
6250
6251 struct remote_output {
6252         struct ring_buffer      *rb;
6253         int                     err;
6254 };
6255
6256 static void __perf_event_output_stop(struct perf_event *event, void *data)
6257 {
6258         struct perf_event *parent = event->parent;
6259         struct remote_output *ro = data;
6260         struct ring_buffer *rb = ro->rb;
6261         struct stop_event_data sd = {
6262                 .event  = event,
6263         };
6264
6265         if (!has_aux(event))
6266                 return;
6267
6268         if (!parent)
6269                 parent = event;
6270
6271         /*
6272          * In case of inheritance, it will be the parent that links to the
6273          * ring-buffer, but it will be the child that's actually using it.
6274          *
6275          * We are using event::rb to determine if the event should be stopped,
6276          * however this may race with ring_buffer_attach() (through set_output),
6277          * which will make us skip the event that actually needs to be stopped.
6278          * So ring_buffer_attach() has to stop an aux event before re-assigning
6279          * its rb pointer.
6280          */
6281         if (rcu_dereference(parent->rb) == rb)
6282                 ro->err = __perf_event_stop(&sd);
6283 }
6284
6285 static int __perf_pmu_output_stop(void *info)
6286 {
6287         struct perf_event *event = info;
6288         struct pmu *pmu = event->pmu;
6289         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6290         struct remote_output ro = {
6291                 .rb     = event->rb,
6292         };
6293
6294         rcu_read_lock();
6295         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6296         if (cpuctx->task_ctx)
6297                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6298                                    &ro, false);
6299         rcu_read_unlock();
6300
6301         return ro.err;
6302 }
6303
6304 static void perf_pmu_output_stop(struct perf_event *event)
6305 {
6306         struct perf_event *iter;
6307         int err, cpu;
6308
6309 restart:
6310         rcu_read_lock();
6311         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6312                 /*
6313                  * For per-CPU events, we need to make sure that neither they
6314                  * nor their children are running; for cpu==-1 events it's
6315                  * sufficient to stop the event itself if it's active, since
6316                  * it can't have children.
6317                  */
6318                 cpu = iter->cpu;
6319                 if (cpu == -1)
6320                         cpu = READ_ONCE(iter->oncpu);
6321
6322                 if (cpu == -1)
6323                         continue;
6324
6325                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6326                 if (err == -EAGAIN) {
6327                         rcu_read_unlock();
6328                         goto restart;
6329                 }
6330         }
6331         rcu_read_unlock();
6332 }
6333
6334 /*
6335  * task tracking -- fork/exit
6336  *
6337  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6338  */
6339
6340 struct perf_task_event {
6341         struct task_struct              *task;
6342         struct perf_event_context       *task_ctx;
6343
6344         struct {
6345                 struct perf_event_header        header;
6346
6347                 u32                             pid;
6348                 u32                             ppid;
6349                 u32                             tid;
6350                 u32                             ptid;
6351                 u64                             time;
6352         } event_id;
6353 };
6354
6355 static int perf_event_task_match(struct perf_event *event)
6356 {
6357         return event->attr.comm  || event->attr.mmap ||
6358                event->attr.mmap2 || event->attr.mmap_data ||
6359                event->attr.task;
6360 }
6361
6362 static void perf_event_task_output(struct perf_event *event,
6363                                    void *data)
6364 {
6365         struct perf_task_event *task_event = data;
6366         struct perf_output_handle handle;
6367         struct perf_sample_data sample;
6368         struct task_struct *task = task_event->task;
6369         int ret, size = task_event->event_id.header.size;
6370
6371         if (!perf_event_task_match(event))
6372                 return;
6373
6374         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6375
6376         ret = perf_output_begin(&handle, event,
6377                                 task_event->event_id.header.size);
6378         if (ret)
6379                 goto out;
6380
6381         task_event->event_id.pid = perf_event_pid(event, task);
6382         task_event->event_id.ppid = perf_event_pid(event, current);
6383
6384         task_event->event_id.tid = perf_event_tid(event, task);
6385         task_event->event_id.ptid = perf_event_tid(event, current);
6386
6387         task_event->event_id.time = perf_event_clock(event);
6388
6389         perf_output_put(&handle, task_event->event_id);
6390
6391         perf_event__output_id_sample(event, &handle, &sample);
6392
6393         perf_output_end(&handle);
6394 out:
6395         task_event->event_id.header.size = size;
6396 }
6397
6398 static void perf_event_task(struct task_struct *task,
6399                               struct perf_event_context *task_ctx,
6400                               int new)
6401 {
6402         struct perf_task_event task_event;
6403
6404         if (!atomic_read(&nr_comm_events) &&
6405             !atomic_read(&nr_mmap_events) &&
6406             !atomic_read(&nr_task_events))
6407                 return;
6408
6409         task_event = (struct perf_task_event){
6410                 .task     = task,
6411                 .task_ctx = task_ctx,
6412                 .event_id    = {
6413                         .header = {
6414                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6415                                 .misc = 0,
6416                                 .size = sizeof(task_event.event_id),
6417                         },
6418                         /* .pid  */
6419                         /* .ppid */
6420                         /* .tid  */
6421                         /* .ptid */
6422                         /* .time */
6423                 },
6424         };
6425
6426         perf_iterate_sb(perf_event_task_output,
6427                        &task_event,
6428                        task_ctx);
6429 }
6430
6431 void perf_event_fork(struct task_struct *task)
6432 {
6433         perf_event_task(task, NULL, 1);
6434 }
6435
6436 /*
6437  * comm tracking
6438  */
6439
6440 struct perf_comm_event {
6441         struct task_struct      *task;
6442         char                    *comm;
6443         int                     comm_size;
6444
6445         struct {
6446                 struct perf_event_header        header;
6447
6448                 u32                             pid;
6449                 u32                             tid;
6450         } event_id;
6451 };
6452
6453 static int perf_event_comm_match(struct perf_event *event)
6454 {
6455         return event->attr.comm;
6456 }
6457
6458 static void perf_event_comm_output(struct perf_event *event,
6459                                    void *data)
6460 {
6461         struct perf_comm_event *comm_event = data;
6462         struct perf_output_handle handle;
6463         struct perf_sample_data sample;
6464         int size = comm_event->event_id.header.size;
6465         int ret;
6466
6467         if (!perf_event_comm_match(event))
6468                 return;
6469
6470         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6471         ret = perf_output_begin(&handle, event,
6472                                 comm_event->event_id.header.size);
6473
6474         if (ret)
6475                 goto out;
6476
6477         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6478         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6479
6480         perf_output_put(&handle, comm_event->event_id);
6481         __output_copy(&handle, comm_event->comm,
6482                                    comm_event->comm_size);
6483
6484         perf_event__output_id_sample(event, &handle, &sample);
6485
6486         perf_output_end(&handle);
6487 out:
6488         comm_event->event_id.header.size = size;
6489 }
6490
6491 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6492 {
6493         char comm[TASK_COMM_LEN];
6494         unsigned int size;
6495
6496         memset(comm, 0, sizeof(comm));
6497         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6498         size = ALIGN(strlen(comm)+1, sizeof(u64));
6499
6500         comm_event->comm = comm;
6501         comm_event->comm_size = size;
6502
6503         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6504
6505         perf_iterate_sb(perf_event_comm_output,
6506                        comm_event,
6507                        NULL);
6508 }
6509
6510 void perf_event_comm(struct task_struct *task, bool exec)
6511 {
6512         struct perf_comm_event comm_event;
6513
6514         if (!atomic_read(&nr_comm_events))
6515                 return;
6516
6517         comm_event = (struct perf_comm_event){
6518                 .task   = task,
6519                 /* .comm      */
6520                 /* .comm_size */
6521                 .event_id  = {
6522                         .header = {
6523                                 .type = PERF_RECORD_COMM,
6524                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6525                                 /* .size */
6526                         },
6527                         /* .pid */
6528                         /* .tid */
6529                 },
6530         };
6531
6532         perf_event_comm_event(&comm_event);
6533 }
6534
6535 /*
6536  * mmap tracking
6537  */
6538
6539 struct perf_mmap_event {
6540         struct vm_area_struct   *vma;
6541
6542         const char              *file_name;
6543         int                     file_size;
6544         int                     maj, min;
6545         u64                     ino;
6546         u64                     ino_generation;
6547         u32                     prot, flags;
6548
6549         struct {
6550                 struct perf_event_header        header;
6551
6552                 u32                             pid;
6553                 u32                             tid;
6554                 u64                             start;
6555                 u64                             len;
6556                 u64                             pgoff;
6557         } event_id;
6558 };
6559
6560 static int perf_event_mmap_match(struct perf_event *event,
6561                                  void *data)
6562 {
6563         struct perf_mmap_event *mmap_event = data;
6564         struct vm_area_struct *vma = mmap_event->vma;
6565         int executable = vma->vm_flags & VM_EXEC;
6566
6567         return (!executable && event->attr.mmap_data) ||
6568                (executable && (event->attr.mmap || event->attr.mmap2));
6569 }
6570
6571 static void perf_event_mmap_output(struct perf_event *event,
6572                                    void *data)
6573 {
6574         struct perf_mmap_event *mmap_event = data;
6575         struct perf_output_handle handle;
6576         struct perf_sample_data sample;
6577         int size = mmap_event->event_id.header.size;
6578         int ret;
6579
6580         if (!perf_event_mmap_match(event, data))
6581                 return;
6582
6583         if (event->attr.mmap2) {
6584                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6585                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6586                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6587                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6588                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6589                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6590                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6591         }
6592
6593         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6594         ret = perf_output_begin(&handle, event,
6595                                 mmap_event->event_id.header.size);
6596         if (ret)
6597                 goto out;
6598
6599         mmap_event->event_id.pid = perf_event_pid(event, current);
6600         mmap_event->event_id.tid = perf_event_tid(event, current);
6601
6602         perf_output_put(&handle, mmap_event->event_id);
6603
6604         if (event->attr.mmap2) {
6605                 perf_output_put(&handle, mmap_event->maj);
6606                 perf_output_put(&handle, mmap_event->min);
6607                 perf_output_put(&handle, mmap_event->ino);
6608                 perf_output_put(&handle, mmap_event->ino_generation);
6609                 perf_output_put(&handle, mmap_event->prot);
6610                 perf_output_put(&handle, mmap_event->flags);
6611         }
6612
6613         __output_copy(&handle, mmap_event->file_name,
6614                                    mmap_event->file_size);
6615
6616         perf_event__output_id_sample(event, &handle, &sample);
6617
6618         perf_output_end(&handle);
6619 out:
6620         mmap_event->event_id.header.size = size;
6621 }
6622
6623 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6624 {
6625         struct vm_area_struct *vma = mmap_event->vma;
6626         struct file *file = vma->vm_file;
6627         int maj = 0, min = 0;
6628         u64 ino = 0, gen = 0;
6629         u32 prot = 0, flags = 0;
6630         unsigned int size;
6631         char tmp[16];
6632         char *buf = NULL;
6633         char *name;
6634
6635         if (vma->vm_flags & VM_READ)
6636                 prot |= PROT_READ;
6637         if (vma->vm_flags & VM_WRITE)
6638                 prot |= PROT_WRITE;
6639         if (vma->vm_flags & VM_EXEC)
6640                 prot |= PROT_EXEC;
6641
6642         if (vma->vm_flags & VM_MAYSHARE)
6643                 flags = MAP_SHARED;
6644         else
6645                 flags = MAP_PRIVATE;
6646
6647         if (vma->vm_flags & VM_DENYWRITE)
6648                 flags |= MAP_DENYWRITE;
6649         if (vma->vm_flags & VM_MAYEXEC)
6650                 flags |= MAP_EXECUTABLE;
6651         if (vma->vm_flags & VM_LOCKED)
6652                 flags |= MAP_LOCKED;
6653         if (vma->vm_flags & VM_HUGETLB)
6654                 flags |= MAP_HUGETLB;
6655
6656         if (file) {
6657                 struct inode *inode;
6658                 dev_t dev;
6659
6660                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6661                 if (!buf) {
6662                         name = "//enomem";
6663                         goto cpy_name;
6664                 }
6665                 /*
6666                  * d_path() works from the end of the rb backwards, so we
6667                  * need to add enough zero bytes after the string to handle
6668                  * the 64bit alignment we do later.
6669                  */
6670                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6671                 if (IS_ERR(name)) {
6672                         name = "//toolong";
6673                         goto cpy_name;
6674                 }
6675                 inode = file_inode(vma->vm_file);
6676                 dev = inode->i_sb->s_dev;
6677                 ino = inode->i_ino;
6678                 gen = inode->i_generation;
6679                 maj = MAJOR(dev);
6680                 min = MINOR(dev);
6681
6682                 goto got_name;
6683         } else {
6684                 if (vma->vm_ops && vma->vm_ops->name) {
6685                         name = (char *) vma->vm_ops->name(vma);
6686                         if (name)
6687                                 goto cpy_name;
6688                 }
6689
6690                 name = (char *)arch_vma_name(vma);
6691                 if (name)
6692                         goto cpy_name;
6693
6694                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6695                                 vma->vm_end >= vma->vm_mm->brk) {
6696                         name = "[heap]";
6697                         goto cpy_name;
6698                 }
6699                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6700                                 vma->vm_end >= vma->vm_mm->start_stack) {
6701                         name = "[stack]";
6702                         goto cpy_name;
6703                 }
6704
6705                 name = "//anon";
6706                 goto cpy_name;
6707         }
6708
6709 cpy_name:
6710         strlcpy(tmp, name, sizeof(tmp));
6711         name = tmp;
6712 got_name:
6713         /*
6714          * Since our buffer works in 8 byte units we need to align our string
6715          * size to a multiple of 8. However, we must guarantee the tail end is
6716          * zero'd out to avoid leaking random bits to userspace.
6717          */
6718         size = strlen(name)+1;
6719         while (!IS_ALIGNED(size, sizeof(u64)))
6720                 name[size++] = '\0';
6721
6722         mmap_event->file_name = name;
6723         mmap_event->file_size = size;
6724         mmap_event->maj = maj;
6725         mmap_event->min = min;
6726         mmap_event->ino = ino;
6727         mmap_event->ino_generation = gen;
6728         mmap_event->prot = prot;
6729         mmap_event->flags = flags;
6730
6731         if (!(vma->vm_flags & VM_EXEC))
6732                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6733
6734         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6735
6736         perf_iterate_sb(perf_event_mmap_output,
6737                        mmap_event,
6738                        NULL);
6739
6740         kfree(buf);
6741 }
6742
6743 /*
6744  * Check whether inode and address range match filter criteria.
6745  */
6746 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6747                                      struct file *file, unsigned long offset,
6748                                      unsigned long size)
6749 {
6750         if (filter->inode != file_inode(file))
6751                 return false;
6752
6753         if (filter->offset > offset + size)
6754                 return false;
6755
6756         if (filter->offset + filter->size < offset)
6757                 return false;
6758
6759         return true;
6760 }
6761
6762 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6763 {
6764         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6765         struct vm_area_struct *vma = data;
6766         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6767         struct file *file = vma->vm_file;
6768         struct perf_addr_filter *filter;
6769         unsigned int restart = 0, count = 0;
6770
6771         if (!has_addr_filter(event))
6772                 return;
6773
6774         if (!file)
6775                 return;
6776
6777         raw_spin_lock_irqsave(&ifh->lock, flags);
6778         list_for_each_entry(filter, &ifh->list, entry) {
6779                 if (perf_addr_filter_match(filter, file, off,
6780                                              vma->vm_end - vma->vm_start)) {
6781                         event->addr_filters_offs[count] = vma->vm_start;
6782                         restart++;
6783                 }
6784
6785                 count++;
6786         }
6787
6788         if (restart)
6789                 event->addr_filters_gen++;
6790         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6791
6792         if (restart)
6793                 perf_event_stop(event, 1);
6794 }
6795
6796 /*
6797  * Adjust all task's events' filters to the new vma
6798  */
6799 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6800 {
6801         struct perf_event_context *ctx;
6802         int ctxn;
6803
6804         /*
6805          * Data tracing isn't supported yet and as such there is no need
6806          * to keep track of anything that isn't related to executable code:
6807          */
6808         if (!(vma->vm_flags & VM_EXEC))
6809                 return;
6810
6811         rcu_read_lock();
6812         for_each_task_context_nr(ctxn) {
6813                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6814                 if (!ctx)
6815                         continue;
6816
6817                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6818         }
6819         rcu_read_unlock();
6820 }
6821
6822 void perf_event_mmap(struct vm_area_struct *vma)
6823 {
6824         struct perf_mmap_event mmap_event;
6825
6826         if (!atomic_read(&nr_mmap_events))
6827                 return;
6828
6829         mmap_event = (struct perf_mmap_event){
6830                 .vma    = vma,
6831                 /* .file_name */
6832                 /* .file_size */
6833                 .event_id  = {
6834                         .header = {
6835                                 .type = PERF_RECORD_MMAP,
6836                                 .misc = PERF_RECORD_MISC_USER,
6837                                 /* .size */
6838                         },
6839                         /* .pid */
6840                         /* .tid */
6841                         .start  = vma->vm_start,
6842                         .len    = vma->vm_end - vma->vm_start,
6843                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6844                 },
6845                 /* .maj (attr_mmap2 only) */
6846                 /* .min (attr_mmap2 only) */
6847                 /* .ino (attr_mmap2 only) */
6848                 /* .ino_generation (attr_mmap2 only) */
6849                 /* .prot (attr_mmap2 only) */
6850                 /* .flags (attr_mmap2 only) */
6851         };
6852
6853         perf_addr_filters_adjust(vma);
6854         perf_event_mmap_event(&mmap_event);
6855 }
6856
6857 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6858                           unsigned long size, u64 flags)
6859 {
6860         struct perf_output_handle handle;
6861         struct perf_sample_data sample;
6862         struct perf_aux_event {
6863                 struct perf_event_header        header;
6864                 u64                             offset;
6865                 u64                             size;
6866                 u64                             flags;
6867         } rec = {
6868                 .header = {
6869                         .type = PERF_RECORD_AUX,
6870                         .misc = 0,
6871                         .size = sizeof(rec),
6872                 },
6873                 .offset         = head,
6874                 .size           = size,
6875                 .flags          = flags,
6876         };
6877         int ret;
6878
6879         perf_event_header__init_id(&rec.header, &sample, event);
6880         ret = perf_output_begin(&handle, event, rec.header.size);
6881
6882         if (ret)
6883                 return;
6884
6885         perf_output_put(&handle, rec);
6886         perf_event__output_id_sample(event, &handle, &sample);
6887
6888         perf_output_end(&handle);
6889 }
6890
6891 /*
6892  * Lost/dropped samples logging
6893  */
6894 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6895 {
6896         struct perf_output_handle handle;
6897         struct perf_sample_data sample;
6898         int ret;
6899
6900         struct {
6901                 struct perf_event_header        header;
6902                 u64                             lost;
6903         } lost_samples_event = {
6904                 .header = {
6905                         .type = PERF_RECORD_LOST_SAMPLES,
6906                         .misc = 0,
6907                         .size = sizeof(lost_samples_event),
6908                 },
6909                 .lost           = lost,
6910         };
6911
6912         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6913
6914         ret = perf_output_begin(&handle, event,
6915                                 lost_samples_event.header.size);
6916         if (ret)
6917                 return;
6918
6919         perf_output_put(&handle, lost_samples_event);
6920         perf_event__output_id_sample(event, &handle, &sample);
6921         perf_output_end(&handle);
6922 }
6923
6924 /*
6925  * context_switch tracking
6926  */
6927
6928 struct perf_switch_event {
6929         struct task_struct      *task;
6930         struct task_struct      *next_prev;
6931
6932         struct {
6933                 struct perf_event_header        header;
6934                 u32                             next_prev_pid;
6935                 u32                             next_prev_tid;
6936         } event_id;
6937 };
6938
6939 static int perf_event_switch_match(struct perf_event *event)
6940 {
6941         return event->attr.context_switch;
6942 }
6943
6944 static void perf_event_switch_output(struct perf_event *event, void *data)
6945 {
6946         struct perf_switch_event *se = data;
6947         struct perf_output_handle handle;
6948         struct perf_sample_data sample;
6949         int ret;
6950
6951         if (!perf_event_switch_match(event))
6952                 return;
6953
6954         /* Only CPU-wide events are allowed to see next/prev pid/tid */
6955         if (event->ctx->task) {
6956                 se->event_id.header.type = PERF_RECORD_SWITCH;
6957                 se->event_id.header.size = sizeof(se->event_id.header);
6958         } else {
6959                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6960                 se->event_id.header.size = sizeof(se->event_id);
6961                 se->event_id.next_prev_pid =
6962                                         perf_event_pid(event, se->next_prev);
6963                 se->event_id.next_prev_tid =
6964                                         perf_event_tid(event, se->next_prev);
6965         }
6966
6967         perf_event_header__init_id(&se->event_id.header, &sample, event);
6968
6969         ret = perf_output_begin(&handle, event, se->event_id.header.size);
6970         if (ret)
6971                 return;
6972
6973         if (event->ctx->task)
6974                 perf_output_put(&handle, se->event_id.header);
6975         else
6976                 perf_output_put(&handle, se->event_id);
6977
6978         perf_event__output_id_sample(event, &handle, &sample);
6979
6980         perf_output_end(&handle);
6981 }
6982
6983 static void perf_event_switch(struct task_struct *task,
6984                               struct task_struct *next_prev, bool sched_in)
6985 {
6986         struct perf_switch_event switch_event;
6987
6988         /* N.B. caller checks nr_switch_events != 0 */
6989
6990         switch_event = (struct perf_switch_event){
6991                 .task           = task,
6992                 .next_prev      = next_prev,
6993                 .event_id       = {
6994                         .header = {
6995                                 /* .type */
6996                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6997                                 /* .size */
6998                         },
6999                         /* .next_prev_pid */
7000                         /* .next_prev_tid */
7001                 },
7002         };
7003
7004         perf_iterate_sb(perf_event_switch_output,
7005                        &switch_event,
7006                        NULL);
7007 }
7008
7009 /*
7010  * IRQ throttle logging
7011  */
7012
7013 static void perf_log_throttle(struct perf_event *event, int enable)
7014 {
7015         struct perf_output_handle handle;
7016         struct perf_sample_data sample;
7017         int ret;
7018
7019         struct {
7020                 struct perf_event_header        header;
7021                 u64                             time;
7022                 u64                             id;
7023                 u64                             stream_id;
7024         } throttle_event = {
7025                 .header = {
7026                         .type = PERF_RECORD_THROTTLE,
7027                         .misc = 0,
7028                         .size = sizeof(throttle_event),
7029                 },
7030                 .time           = perf_event_clock(event),
7031                 .id             = primary_event_id(event),
7032                 .stream_id      = event->id,
7033         };
7034
7035         if (enable)
7036                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7037
7038         perf_event_header__init_id(&throttle_event.header, &sample, event);
7039
7040         ret = perf_output_begin(&handle, event,
7041                                 throttle_event.header.size);
7042         if (ret)
7043                 return;
7044
7045         perf_output_put(&handle, throttle_event);
7046         perf_event__output_id_sample(event, &handle, &sample);
7047         perf_output_end(&handle);
7048 }
7049
7050 static void perf_log_itrace_start(struct perf_event *event)
7051 {
7052         struct perf_output_handle handle;
7053         struct perf_sample_data sample;
7054         struct perf_aux_event {
7055                 struct perf_event_header        header;
7056                 u32                             pid;
7057                 u32                             tid;
7058         } rec;
7059         int ret;
7060
7061         if (event->parent)
7062                 event = event->parent;
7063
7064         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7065             event->hw.itrace_started)
7066                 return;
7067
7068         rec.header.type = PERF_RECORD_ITRACE_START;
7069         rec.header.misc = 0;
7070         rec.header.size = sizeof(rec);
7071         rec.pid = perf_event_pid(event, current);
7072         rec.tid = perf_event_tid(event, current);
7073
7074         perf_event_header__init_id(&rec.header, &sample, event);
7075         ret = perf_output_begin(&handle, event, rec.header.size);
7076
7077         if (ret)
7078                 return;
7079
7080         perf_output_put(&handle, rec);
7081         perf_event__output_id_sample(event, &handle, &sample);
7082
7083         perf_output_end(&handle);
7084 }
7085
7086 static int
7087 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7088 {
7089         struct hw_perf_event *hwc = &event->hw;
7090         int ret = 0;
7091         u64 seq;
7092
7093         seq = __this_cpu_read(perf_throttled_seq);
7094         if (seq != hwc->interrupts_seq) {
7095                 hwc->interrupts_seq = seq;
7096                 hwc->interrupts = 1;
7097         } else {
7098                 hwc->interrupts++;
7099                 if (unlikely(throttle
7100                              && hwc->interrupts >= max_samples_per_tick)) {
7101                         __this_cpu_inc(perf_throttled_count);
7102                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7103                         hwc->interrupts = MAX_INTERRUPTS;
7104                         perf_log_throttle(event, 0);
7105                         ret = 1;
7106                 }
7107         }
7108
7109         if (event->attr.freq) {
7110                 u64 now = perf_clock();
7111                 s64 delta = now - hwc->freq_time_stamp;
7112
7113                 hwc->freq_time_stamp = now;
7114
7115                 if (delta > 0 && delta < 2*TICK_NSEC)
7116                         perf_adjust_period(event, delta, hwc->last_period, true);
7117         }
7118
7119         return ret;
7120 }
7121
7122 int perf_event_account_interrupt(struct perf_event *event)
7123 {
7124         return __perf_event_account_interrupt(event, 1);
7125 }
7126
7127 /*
7128  * Generic event overflow handling, sampling.
7129  */
7130
7131 static int __perf_event_overflow(struct perf_event *event,
7132                                    int throttle, struct perf_sample_data *data,
7133                                    struct pt_regs *regs)
7134 {
7135         int events = atomic_read(&event->event_limit);
7136         int ret = 0;
7137
7138         /*
7139          * Non-sampling counters might still use the PMI to fold short
7140          * hardware counters, ignore those.
7141          */
7142         if (unlikely(!is_sampling_event(event)))
7143                 return 0;
7144
7145         ret = __perf_event_account_interrupt(event, throttle);
7146
7147         /*
7148          * XXX event_limit might not quite work as expected on inherited
7149          * events
7150          */
7151
7152         event->pending_kill = POLL_IN;
7153         if (events && atomic_dec_and_test(&event->event_limit)) {
7154                 ret = 1;
7155                 event->pending_kill = POLL_HUP;
7156
7157                 perf_event_disable_inatomic(event);
7158         }
7159
7160         READ_ONCE(event->overflow_handler)(event, data, regs);
7161
7162         if (*perf_event_fasync(event) && event->pending_kill) {
7163                 event->pending_wakeup = 1;
7164                 irq_work_queue(&event->pending);
7165         }
7166
7167         return ret;
7168 }
7169
7170 int perf_event_overflow(struct perf_event *event,
7171                           struct perf_sample_data *data,
7172                           struct pt_regs *regs)
7173 {
7174         return __perf_event_overflow(event, 1, data, regs);
7175 }
7176
7177 /*
7178  * Generic software event infrastructure
7179  */
7180
7181 struct swevent_htable {
7182         struct swevent_hlist            *swevent_hlist;
7183         struct mutex                    hlist_mutex;
7184         int                             hlist_refcount;
7185
7186         /* Recursion avoidance in each contexts */
7187         int                             recursion[PERF_NR_CONTEXTS];
7188 };
7189
7190 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7191
7192 /*
7193  * We directly increment event->count and keep a second value in
7194  * event->hw.period_left to count intervals. This period event
7195  * is kept in the range [-sample_period, 0] so that we can use the
7196  * sign as trigger.
7197  */
7198
7199 u64 perf_swevent_set_period(struct perf_event *event)
7200 {
7201         struct hw_perf_event *hwc = &event->hw;
7202         u64 period = hwc->last_period;
7203         u64 nr, offset;
7204         s64 old, val;
7205
7206         hwc->last_period = hwc->sample_period;
7207
7208 again:
7209         old = val = local64_read(&hwc->period_left);
7210         if (val < 0)
7211                 return 0;
7212
7213         nr = div64_u64(period + val, period);
7214         offset = nr * period;
7215         val -= offset;
7216         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7217                 goto again;
7218
7219         return nr;
7220 }
7221
7222 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7223                                     struct perf_sample_data *data,
7224                                     struct pt_regs *regs)
7225 {
7226         struct hw_perf_event *hwc = &event->hw;
7227         int throttle = 0;
7228
7229         if (!overflow)
7230                 overflow = perf_swevent_set_period(event);
7231
7232         if (hwc->interrupts == MAX_INTERRUPTS)
7233                 return;
7234
7235         for (; overflow; overflow--) {
7236                 if (__perf_event_overflow(event, throttle,
7237                                             data, regs)) {
7238                         /*
7239                          * We inhibit the overflow from happening when
7240                          * hwc->interrupts == MAX_INTERRUPTS.
7241                          */
7242                         break;
7243                 }
7244                 throttle = 1;
7245         }
7246 }
7247
7248 static void perf_swevent_event(struct perf_event *event, u64 nr,
7249                                struct perf_sample_data *data,
7250                                struct pt_regs *regs)
7251 {
7252         struct hw_perf_event *hwc = &event->hw;
7253
7254         local64_add(nr, &event->count);
7255
7256         if (!regs)
7257                 return;
7258
7259         if (!is_sampling_event(event))
7260                 return;
7261
7262         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7263                 data->period = nr;
7264                 return perf_swevent_overflow(event, 1, data, regs);
7265         } else
7266                 data->period = event->hw.last_period;
7267
7268         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7269                 return perf_swevent_overflow(event, 1, data, regs);
7270
7271         if (local64_add_negative(nr, &hwc->period_left))
7272                 return;
7273
7274         perf_swevent_overflow(event, 0, data, regs);
7275 }
7276
7277 static int perf_exclude_event(struct perf_event *event,
7278                               struct pt_regs *regs)
7279 {
7280         if (event->hw.state & PERF_HES_STOPPED)
7281                 return 1;
7282
7283         if (regs) {
7284                 if (event->attr.exclude_user && user_mode(regs))
7285                         return 1;
7286
7287                 if (event->attr.exclude_kernel && !user_mode(regs))
7288                         return 1;
7289         }
7290
7291         return 0;
7292 }
7293
7294 static int perf_swevent_match(struct perf_event *event,
7295                                 enum perf_type_id type,
7296                                 u32 event_id,
7297                                 struct perf_sample_data *data,
7298                                 struct pt_regs *regs)
7299 {
7300         if (event->attr.type != type)
7301                 return 0;
7302
7303         if (event->attr.config != event_id)
7304                 return 0;
7305
7306         if (perf_exclude_event(event, regs))
7307                 return 0;
7308
7309         return 1;
7310 }
7311
7312 static inline u64 swevent_hash(u64 type, u32 event_id)
7313 {
7314         u64 val = event_id | (type << 32);
7315
7316         return hash_64(val, SWEVENT_HLIST_BITS);
7317 }
7318
7319 static inline struct hlist_head *
7320 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7321 {
7322         u64 hash = swevent_hash(type, event_id);
7323
7324         return &hlist->heads[hash];
7325 }
7326
7327 /* For the read side: events when they trigger */
7328 static inline struct hlist_head *
7329 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7330 {
7331         struct swevent_hlist *hlist;
7332
7333         hlist = rcu_dereference(swhash->swevent_hlist);
7334         if (!hlist)
7335                 return NULL;
7336
7337         return __find_swevent_head(hlist, type, event_id);
7338 }
7339
7340 /* For the event head insertion and removal in the hlist */
7341 static inline struct hlist_head *
7342 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7343 {
7344         struct swevent_hlist *hlist;
7345         u32 event_id = event->attr.config;
7346         u64 type = event->attr.type;
7347
7348         /*
7349          * Event scheduling is always serialized against hlist allocation
7350          * and release. Which makes the protected version suitable here.
7351          * The context lock guarantees that.
7352          */
7353         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7354                                           lockdep_is_held(&event->ctx->lock));
7355         if (!hlist)
7356                 return NULL;
7357
7358         return __find_swevent_head(hlist, type, event_id);
7359 }
7360
7361 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7362                                     u64 nr,
7363                                     struct perf_sample_data *data,
7364                                     struct pt_regs *regs)
7365 {
7366         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7367         struct perf_event *event;
7368         struct hlist_head *head;
7369
7370         rcu_read_lock();
7371         head = find_swevent_head_rcu(swhash, type, event_id);
7372         if (!head)
7373                 goto end;
7374
7375         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7376                 if (perf_swevent_match(event, type, event_id, data, regs))
7377                         perf_swevent_event(event, nr, data, regs);
7378         }
7379 end:
7380         rcu_read_unlock();
7381 }
7382
7383 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7384
7385 int perf_swevent_get_recursion_context(void)
7386 {
7387         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7388
7389         return get_recursion_context(swhash->recursion);
7390 }
7391 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7392
7393 void perf_swevent_put_recursion_context(int rctx)
7394 {
7395         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7396
7397         put_recursion_context(swhash->recursion, rctx);
7398 }
7399
7400 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7401 {
7402         struct perf_sample_data data;
7403
7404         if (WARN_ON_ONCE(!regs))
7405                 return;
7406
7407         perf_sample_data_init(&data, addr, 0);
7408         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7409 }
7410
7411 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7412 {
7413         int rctx;
7414
7415         preempt_disable_notrace();
7416         rctx = perf_swevent_get_recursion_context();
7417         if (unlikely(rctx < 0))
7418                 goto fail;
7419
7420         ___perf_sw_event(event_id, nr, regs, addr);
7421
7422         perf_swevent_put_recursion_context(rctx);
7423 fail:
7424         preempt_enable_notrace();
7425 }
7426
7427 static void perf_swevent_read(struct perf_event *event)
7428 {
7429 }
7430
7431 static int perf_swevent_add(struct perf_event *event, int flags)
7432 {
7433         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7434         struct hw_perf_event *hwc = &event->hw;
7435         struct hlist_head *head;
7436
7437         if (is_sampling_event(event)) {
7438                 hwc->last_period = hwc->sample_period;
7439                 perf_swevent_set_period(event);
7440         }
7441
7442         hwc->state = !(flags & PERF_EF_START);
7443
7444         head = find_swevent_head(swhash, event);
7445         if (WARN_ON_ONCE(!head))
7446                 return -EINVAL;
7447
7448         hlist_add_head_rcu(&event->hlist_entry, head);
7449         perf_event_update_userpage(event);
7450
7451         return 0;
7452 }
7453
7454 static void perf_swevent_del(struct perf_event *event, int flags)
7455 {
7456         hlist_del_rcu(&event->hlist_entry);
7457 }
7458
7459 static void perf_swevent_start(struct perf_event *event, int flags)
7460 {
7461         event->hw.state = 0;
7462 }
7463
7464 static void perf_swevent_stop(struct perf_event *event, int flags)
7465 {
7466         event->hw.state = PERF_HES_STOPPED;
7467 }
7468
7469 /* Deref the hlist from the update side */
7470 static inline struct swevent_hlist *
7471 swevent_hlist_deref(struct swevent_htable *swhash)
7472 {
7473         return rcu_dereference_protected(swhash->swevent_hlist,
7474                                          lockdep_is_held(&swhash->hlist_mutex));
7475 }
7476
7477 static void swevent_hlist_release(struct swevent_htable *swhash)
7478 {
7479         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7480
7481         if (!hlist)
7482                 return;
7483
7484         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7485         kfree_rcu(hlist, rcu_head);
7486 }
7487
7488 static void swevent_hlist_put_cpu(int cpu)
7489 {
7490         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7491
7492         mutex_lock(&swhash->hlist_mutex);
7493
7494         if (!--swhash->hlist_refcount)
7495                 swevent_hlist_release(swhash);
7496
7497         mutex_unlock(&swhash->hlist_mutex);
7498 }
7499
7500 static void swevent_hlist_put(void)
7501 {
7502         int cpu;
7503
7504         for_each_possible_cpu(cpu)
7505                 swevent_hlist_put_cpu(cpu);
7506 }
7507
7508 static int swevent_hlist_get_cpu(int cpu)
7509 {
7510         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7511         int err = 0;
7512
7513         mutex_lock(&swhash->hlist_mutex);
7514         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7515                 struct swevent_hlist *hlist;
7516
7517                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7518                 if (!hlist) {
7519                         err = -ENOMEM;
7520                         goto exit;
7521                 }
7522                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7523         }
7524         swhash->hlist_refcount++;
7525 exit:
7526         mutex_unlock(&swhash->hlist_mutex);
7527
7528         return err;
7529 }
7530
7531 static int swevent_hlist_get(void)
7532 {
7533         int err, cpu, failed_cpu;
7534
7535         get_online_cpus();
7536         for_each_possible_cpu(cpu) {
7537                 err = swevent_hlist_get_cpu(cpu);
7538                 if (err) {
7539                         failed_cpu = cpu;
7540                         goto fail;
7541                 }
7542         }
7543         put_online_cpus();
7544
7545         return 0;
7546 fail:
7547         for_each_possible_cpu(cpu) {
7548                 if (cpu == failed_cpu)
7549                         break;
7550                 swevent_hlist_put_cpu(cpu);
7551         }
7552
7553         put_online_cpus();
7554         return err;
7555 }
7556
7557 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7558
7559 static void sw_perf_event_destroy(struct perf_event *event)
7560 {
7561         u64 event_id = event->attr.config;
7562
7563         WARN_ON(event->parent);
7564
7565         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7566         swevent_hlist_put();
7567 }
7568
7569 static int perf_swevent_init(struct perf_event *event)
7570 {
7571         u64 event_id = event->attr.config;
7572
7573         if (event->attr.type != PERF_TYPE_SOFTWARE)
7574                 return -ENOENT;
7575
7576         /*
7577          * no branch sampling for software events
7578          */
7579         if (has_branch_stack(event))
7580                 return -EOPNOTSUPP;
7581
7582         switch (event_id) {
7583         case PERF_COUNT_SW_CPU_CLOCK:
7584         case PERF_COUNT_SW_TASK_CLOCK:
7585                 return -ENOENT;
7586
7587         default:
7588                 break;
7589         }
7590
7591         if (event_id >= PERF_COUNT_SW_MAX)
7592                 return -ENOENT;
7593
7594         if (!event->parent) {
7595                 int err;
7596
7597                 err = swevent_hlist_get();
7598                 if (err)
7599                         return err;
7600
7601                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7602                 event->destroy = sw_perf_event_destroy;
7603         }
7604
7605         return 0;
7606 }
7607
7608 static struct pmu perf_swevent = {
7609         .task_ctx_nr    = perf_sw_context,
7610
7611         .capabilities   = PERF_PMU_CAP_NO_NMI,
7612
7613         .event_init     = perf_swevent_init,
7614         .add            = perf_swevent_add,
7615         .del            = perf_swevent_del,
7616         .start          = perf_swevent_start,
7617         .stop           = perf_swevent_stop,
7618         .read           = perf_swevent_read,
7619 };
7620
7621 #ifdef CONFIG_EVENT_TRACING
7622
7623 static int perf_tp_filter_match(struct perf_event *event,
7624                                 struct perf_sample_data *data)
7625 {
7626         void *record = data->raw->frag.data;
7627
7628         /* only top level events have filters set */
7629         if (event->parent)
7630                 event = event->parent;
7631
7632         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7633                 return 1;
7634         return 0;
7635 }
7636
7637 static int perf_tp_event_match(struct perf_event *event,
7638                                 struct perf_sample_data *data,
7639                                 struct pt_regs *regs)
7640 {
7641         if (event->hw.state & PERF_HES_STOPPED)
7642                 return 0;
7643         /*
7644          * All tracepoints are from kernel-space.
7645          */
7646         if (event->attr.exclude_kernel)
7647                 return 0;
7648
7649         if (!perf_tp_filter_match(event, data))
7650                 return 0;
7651
7652         return 1;
7653 }
7654
7655 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7656                                struct trace_event_call *call, u64 count,
7657                                struct pt_regs *regs, struct hlist_head *head,
7658                                struct task_struct *task)
7659 {
7660         struct bpf_prog *prog = call->prog;
7661
7662         if (prog) {
7663                 *(struct pt_regs **)raw_data = regs;
7664                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7665                         perf_swevent_put_recursion_context(rctx);
7666                         return;
7667                 }
7668         }
7669         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7670                       rctx, task);
7671 }
7672 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7673
7674 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7675                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7676                    struct task_struct *task)
7677 {
7678         struct perf_sample_data data;
7679         struct perf_event *event;
7680
7681         struct perf_raw_record raw = {
7682                 .frag = {
7683                         .size = entry_size,
7684                         .data = record,
7685                 },
7686         };
7687
7688         perf_sample_data_init(&data, 0, 0);
7689         data.raw = &raw;
7690
7691         perf_trace_buf_update(record, event_type);
7692
7693         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7694                 if (perf_tp_event_match(event, &data, regs))
7695                         perf_swevent_event(event, count, &data, regs);
7696         }
7697
7698         /*
7699          * If we got specified a target task, also iterate its context and
7700          * deliver this event there too.
7701          */
7702         if (task && task != current) {
7703                 struct perf_event_context *ctx;
7704                 struct trace_entry *entry = record;
7705
7706                 rcu_read_lock();
7707                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7708                 if (!ctx)
7709                         goto unlock;
7710
7711                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7712                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7713                                 continue;
7714                         if (event->attr.config != entry->type)
7715                                 continue;
7716                         if (perf_tp_event_match(event, &data, regs))
7717                                 perf_swevent_event(event, count, &data, regs);
7718                 }
7719 unlock:
7720                 rcu_read_unlock();
7721         }
7722
7723         perf_swevent_put_recursion_context(rctx);
7724 }
7725 EXPORT_SYMBOL_GPL(perf_tp_event);
7726
7727 static void tp_perf_event_destroy(struct perf_event *event)
7728 {
7729         perf_trace_destroy(event);
7730 }
7731
7732 static int perf_tp_event_init(struct perf_event *event)
7733 {
7734         int err;
7735
7736         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7737                 return -ENOENT;
7738
7739         /*
7740          * no branch sampling for tracepoint events
7741          */
7742         if (has_branch_stack(event))
7743                 return -EOPNOTSUPP;
7744
7745         err = perf_trace_init(event);
7746         if (err)
7747                 return err;
7748
7749         event->destroy = tp_perf_event_destroy;
7750
7751         return 0;
7752 }
7753
7754 static struct pmu perf_tracepoint = {
7755         .task_ctx_nr    = perf_sw_context,
7756
7757         .event_init     = perf_tp_event_init,
7758         .add            = perf_trace_add,
7759         .del            = perf_trace_del,
7760         .start          = perf_swevent_start,
7761         .stop           = perf_swevent_stop,
7762         .read           = perf_swevent_read,
7763 };
7764
7765 static inline void perf_tp_register(void)
7766 {
7767         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7768 }
7769
7770 static void perf_event_free_filter(struct perf_event *event)
7771 {
7772         ftrace_profile_free_filter(event);
7773 }
7774
7775 #ifdef CONFIG_BPF_SYSCALL
7776 static void bpf_overflow_handler(struct perf_event *event,
7777                                  struct perf_sample_data *data,
7778                                  struct pt_regs *regs)
7779 {
7780         struct bpf_perf_event_data_kern ctx = {
7781                 .data = data,
7782                 .regs = regs,
7783         };
7784         int ret = 0;
7785
7786         preempt_disable();
7787         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7788                 goto out;
7789         rcu_read_lock();
7790         ret = BPF_PROG_RUN(event->prog, &ctx);
7791         rcu_read_unlock();
7792 out:
7793         __this_cpu_dec(bpf_prog_active);
7794         preempt_enable();
7795         if (!ret)
7796                 return;
7797
7798         event->orig_overflow_handler(event, data, regs);
7799 }
7800
7801 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7802 {
7803         struct bpf_prog *prog;
7804
7805         if (event->overflow_handler_context)
7806                 /* hw breakpoint or kernel counter */
7807                 return -EINVAL;
7808
7809         if (event->prog)
7810                 return -EEXIST;
7811
7812         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7813         if (IS_ERR(prog))
7814                 return PTR_ERR(prog);
7815
7816         event->prog = prog;
7817         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7818         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7819         return 0;
7820 }
7821
7822 static void perf_event_free_bpf_handler(struct perf_event *event)
7823 {
7824         struct bpf_prog *prog = event->prog;
7825
7826         if (!prog)
7827                 return;
7828
7829         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7830         event->prog = NULL;
7831         bpf_prog_put(prog);
7832 }
7833 #else
7834 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7835 {
7836         return -EOPNOTSUPP;
7837 }
7838 static void perf_event_free_bpf_handler(struct perf_event *event)
7839 {
7840 }
7841 #endif
7842
7843 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7844 {
7845         bool is_kprobe, is_tracepoint;
7846         struct bpf_prog *prog;
7847
7848         if (event->attr.type == PERF_TYPE_HARDWARE ||
7849             event->attr.type == PERF_TYPE_SOFTWARE)
7850                 return perf_event_set_bpf_handler(event, prog_fd);
7851
7852         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7853                 return -EINVAL;
7854
7855         if (event->tp_event->prog)
7856                 return -EEXIST;
7857
7858         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7859         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7860         if (!is_kprobe && !is_tracepoint)
7861                 /* bpf programs can only be attached to u/kprobe or tracepoint */
7862                 return -EINVAL;
7863
7864         prog = bpf_prog_get(prog_fd);
7865         if (IS_ERR(prog))
7866                 return PTR_ERR(prog);
7867
7868         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7869             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7870                 /* valid fd, but invalid bpf program type */
7871                 bpf_prog_put(prog);
7872                 return -EINVAL;
7873         }
7874
7875         if (is_tracepoint) {
7876                 int off = trace_event_get_offsets(event->tp_event);
7877
7878                 if (prog->aux->max_ctx_offset > off) {
7879                         bpf_prog_put(prog);
7880                         return -EACCES;
7881                 }
7882         }
7883         event->tp_event->prog = prog;
7884
7885         return 0;
7886 }
7887
7888 static void perf_event_free_bpf_prog(struct perf_event *event)
7889 {
7890         struct bpf_prog *prog;
7891
7892         perf_event_free_bpf_handler(event);
7893
7894         if (!event->tp_event)
7895                 return;
7896
7897         prog = event->tp_event->prog;
7898         if (prog) {
7899                 event->tp_event->prog = NULL;
7900                 bpf_prog_put(prog);
7901         }
7902 }
7903
7904 #else
7905
7906 static inline void perf_tp_register(void)
7907 {
7908 }
7909
7910 static void perf_event_free_filter(struct perf_event *event)
7911 {
7912 }
7913
7914 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7915 {
7916         return -ENOENT;
7917 }
7918
7919 static void perf_event_free_bpf_prog(struct perf_event *event)
7920 {
7921 }
7922 #endif /* CONFIG_EVENT_TRACING */
7923
7924 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7925 void perf_bp_event(struct perf_event *bp, void *data)
7926 {
7927         struct perf_sample_data sample;
7928         struct pt_regs *regs = data;
7929
7930         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7931
7932         if (!bp->hw.state && !perf_exclude_event(bp, regs))
7933                 perf_swevent_event(bp, 1, &sample, regs);
7934 }
7935 #endif
7936
7937 /*
7938  * Allocate a new address filter
7939  */
7940 static struct perf_addr_filter *
7941 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7942 {
7943         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7944         struct perf_addr_filter *filter;
7945
7946         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7947         if (!filter)
7948                 return NULL;
7949
7950         INIT_LIST_HEAD(&filter->entry);
7951         list_add_tail(&filter->entry, filters);
7952
7953         return filter;
7954 }
7955
7956 static void free_filters_list(struct list_head *filters)
7957 {
7958         struct perf_addr_filter *filter, *iter;
7959
7960         list_for_each_entry_safe(filter, iter, filters, entry) {
7961                 if (filter->inode)
7962                         iput(filter->inode);
7963                 list_del(&filter->entry);
7964                 kfree(filter);
7965         }
7966 }
7967
7968 /*
7969  * Free existing address filters and optionally install new ones
7970  */
7971 static void perf_addr_filters_splice(struct perf_event *event,
7972                                      struct list_head *head)
7973 {
7974         unsigned long flags;
7975         LIST_HEAD(list);
7976
7977         if (!has_addr_filter(event))
7978                 return;
7979
7980         /* don't bother with children, they don't have their own filters */
7981         if (event->parent)
7982                 return;
7983
7984         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7985
7986         list_splice_init(&event->addr_filters.list, &list);
7987         if (head)
7988                 list_splice(head, &event->addr_filters.list);
7989
7990         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7991
7992         free_filters_list(&list);
7993 }
7994
7995 /*
7996  * Scan through mm's vmas and see if one of them matches the
7997  * @filter; if so, adjust filter's address range.
7998  * Called with mm::mmap_sem down for reading.
7999  */
8000 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8001                                             struct mm_struct *mm)
8002 {
8003         struct vm_area_struct *vma;
8004
8005         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8006                 struct file *file = vma->vm_file;
8007                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8008                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8009
8010                 if (!file)
8011                         continue;
8012
8013                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8014                         continue;
8015
8016                 return vma->vm_start;
8017         }
8018
8019         return 0;
8020 }
8021
8022 /*
8023  * Update event's address range filters based on the
8024  * task's existing mappings, if any.
8025  */
8026 static void perf_event_addr_filters_apply(struct perf_event *event)
8027 {
8028         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8029         struct task_struct *task = READ_ONCE(event->ctx->task);
8030         struct perf_addr_filter *filter;
8031         struct mm_struct *mm = NULL;
8032         unsigned int count = 0;
8033         unsigned long flags;
8034
8035         /*
8036          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8037          * will stop on the parent's child_mutex that our caller is also holding
8038          */
8039         if (task == TASK_TOMBSTONE)
8040                 return;
8041
8042         mm = get_task_mm(event->ctx->task);
8043         if (!mm)
8044                 goto restart;
8045
8046         down_read(&mm->mmap_sem);
8047
8048         raw_spin_lock_irqsave(&ifh->lock, flags);
8049         list_for_each_entry(filter, &ifh->list, entry) {
8050                 event->addr_filters_offs[count] = 0;
8051
8052                 /*
8053                  * Adjust base offset if the filter is associated to a binary
8054                  * that needs to be mapped:
8055                  */
8056                 if (filter->inode)
8057                         event->addr_filters_offs[count] =
8058                                 perf_addr_filter_apply(filter, mm);
8059
8060                 count++;
8061         }
8062
8063         event->addr_filters_gen++;
8064         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8065
8066         up_read(&mm->mmap_sem);
8067
8068         mmput(mm);
8069
8070 restart:
8071         perf_event_stop(event, 1);
8072 }
8073
8074 /*
8075  * Address range filtering: limiting the data to certain
8076  * instruction address ranges. Filters are ioctl()ed to us from
8077  * userspace as ascii strings.
8078  *
8079  * Filter string format:
8080  *
8081  * ACTION RANGE_SPEC
8082  * where ACTION is one of the
8083  *  * "filter": limit the trace to this region
8084  *  * "start": start tracing from this address
8085  *  * "stop": stop tracing at this address/region;
8086  * RANGE_SPEC is
8087  *  * for kernel addresses: <start address>[/<size>]
8088  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8089  *
8090  * if <size> is not specified, the range is treated as a single address.
8091  */
8092 enum {
8093         IF_ACT_NONE = -1,
8094         IF_ACT_FILTER,
8095         IF_ACT_START,
8096         IF_ACT_STOP,
8097         IF_SRC_FILE,
8098         IF_SRC_KERNEL,
8099         IF_SRC_FILEADDR,
8100         IF_SRC_KERNELADDR,
8101 };
8102
8103 enum {
8104         IF_STATE_ACTION = 0,
8105         IF_STATE_SOURCE,
8106         IF_STATE_END,
8107 };
8108
8109 static const match_table_t if_tokens = {
8110         { IF_ACT_FILTER,        "filter" },
8111         { IF_ACT_START,         "start" },
8112         { IF_ACT_STOP,          "stop" },
8113         { IF_SRC_FILE,          "%u/%u@%s" },
8114         { IF_SRC_KERNEL,        "%u/%u" },
8115         { IF_SRC_FILEADDR,      "%u@%s" },
8116         { IF_SRC_KERNELADDR,    "%u" },
8117         { IF_ACT_NONE,          NULL },
8118 };
8119
8120 /*
8121  * Address filter string parser
8122  */
8123 static int
8124 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8125                              struct list_head *filters)
8126 {
8127         struct perf_addr_filter *filter = NULL;
8128         char *start, *orig, *filename = NULL;
8129         struct path path;
8130         substring_t args[MAX_OPT_ARGS];
8131         int state = IF_STATE_ACTION, token;
8132         unsigned int kernel = 0;
8133         int ret = -EINVAL;
8134
8135         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8136         if (!fstr)
8137                 return -ENOMEM;
8138
8139         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8140                 ret = -EINVAL;
8141
8142                 if (!*start)
8143                         continue;
8144
8145                 /* filter definition begins */
8146                 if (state == IF_STATE_ACTION) {
8147                         filter = perf_addr_filter_new(event, filters);
8148                         if (!filter)
8149                                 goto fail;
8150                 }
8151
8152                 token = match_token(start, if_tokens, args);
8153                 switch (token) {
8154                 case IF_ACT_FILTER:
8155                 case IF_ACT_START:
8156                         filter->filter = 1;
8157
8158                 case IF_ACT_STOP:
8159                         if (state != IF_STATE_ACTION)
8160                                 goto fail;
8161
8162                         state = IF_STATE_SOURCE;
8163                         break;
8164
8165                 case IF_SRC_KERNELADDR:
8166                 case IF_SRC_KERNEL:
8167                         kernel = 1;
8168
8169                 case IF_SRC_FILEADDR:
8170                 case IF_SRC_FILE:
8171                         if (state != IF_STATE_SOURCE)
8172                                 goto fail;
8173
8174                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8175                                 filter->range = 1;
8176
8177                         *args[0].to = 0;
8178                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8179                         if (ret)
8180                                 goto fail;
8181
8182                         if (filter->range) {
8183                                 *args[1].to = 0;
8184                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8185                                 if (ret)
8186                                         goto fail;
8187                         }
8188
8189                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8190                                 int fpos = filter->range ? 2 : 1;
8191
8192                                 filename = match_strdup(&args[fpos]);
8193                                 if (!filename) {
8194                                         ret = -ENOMEM;
8195                                         goto fail;
8196                                 }
8197                         }
8198
8199                         state = IF_STATE_END;
8200                         break;
8201
8202                 default:
8203                         goto fail;
8204                 }
8205
8206                 /*
8207                  * Filter definition is fully parsed, validate and install it.
8208                  * Make sure that it doesn't contradict itself or the event's
8209                  * attribute.
8210                  */
8211                 if (state == IF_STATE_END) {
8212                         if (kernel && event->attr.exclude_kernel)
8213                                 goto fail;
8214
8215                         if (!kernel) {
8216                                 if (!filename)
8217                                         goto fail;
8218
8219                                 /* look up the path and grab its inode */
8220                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8221                                 if (ret)
8222                                         goto fail_free_name;
8223
8224                                 filter->inode = igrab(d_inode(path.dentry));
8225                                 path_put(&path);
8226                                 kfree(filename);
8227                                 filename = NULL;
8228
8229                                 ret = -EINVAL;
8230                                 if (!filter->inode ||
8231                                     !S_ISREG(filter->inode->i_mode))
8232                                         /* free_filters_list() will iput() */
8233                                         goto fail;
8234                         }
8235
8236                         /* ready to consume more filters */
8237                         state = IF_STATE_ACTION;
8238                         filter = NULL;
8239                 }
8240         }
8241
8242         if (state != IF_STATE_ACTION)
8243                 goto fail;
8244
8245         kfree(orig);
8246
8247         return 0;
8248
8249 fail_free_name:
8250         kfree(filename);
8251 fail:
8252         free_filters_list(filters);
8253         kfree(orig);
8254
8255         return ret;
8256 }
8257
8258 static int
8259 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8260 {
8261         LIST_HEAD(filters);
8262         int ret;
8263
8264         /*
8265          * Since this is called in perf_ioctl() path, we're already holding
8266          * ctx::mutex.
8267          */
8268         lockdep_assert_held(&event->ctx->mutex);
8269
8270         if (WARN_ON_ONCE(event->parent))
8271                 return -EINVAL;
8272
8273         /*
8274          * For now, we only support filtering in per-task events; doing so
8275          * for CPU-wide events requires additional context switching trickery,
8276          * since same object code will be mapped at different virtual
8277          * addresses in different processes.
8278          */
8279         if (!event->ctx->task)
8280                 return -EOPNOTSUPP;
8281
8282         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8283         if (ret)
8284                 return ret;
8285
8286         ret = event->pmu->addr_filters_validate(&filters);
8287         if (ret) {
8288                 free_filters_list(&filters);
8289                 return ret;
8290         }
8291
8292         /* remove existing filters, if any */
8293         perf_addr_filters_splice(event, &filters);
8294
8295         /* install new filters */
8296         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8297
8298         return ret;
8299 }
8300
8301 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8302 {
8303         char *filter_str;
8304         int ret = -EINVAL;
8305
8306         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8307             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8308             !has_addr_filter(event))
8309                 return -EINVAL;
8310
8311         filter_str = strndup_user(arg, PAGE_SIZE);
8312         if (IS_ERR(filter_str))
8313                 return PTR_ERR(filter_str);
8314
8315         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8316             event->attr.type == PERF_TYPE_TRACEPOINT)
8317                 ret = ftrace_profile_set_filter(event, event->attr.config,
8318                                                 filter_str);
8319         else if (has_addr_filter(event))
8320                 ret = perf_event_set_addr_filter(event, filter_str);
8321
8322         kfree(filter_str);
8323         return ret;
8324 }
8325
8326 /*
8327  * hrtimer based swevent callback
8328  */
8329
8330 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8331 {
8332         enum hrtimer_restart ret = HRTIMER_RESTART;
8333         struct perf_sample_data data;
8334         struct pt_regs *regs;
8335         struct perf_event *event;
8336         u64 period;
8337
8338         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8339
8340         if (event->state != PERF_EVENT_STATE_ACTIVE)
8341                 return HRTIMER_NORESTART;
8342
8343         event->pmu->read(event);
8344
8345         perf_sample_data_init(&data, 0, event->hw.last_period);
8346         regs = get_irq_regs();
8347
8348         if (regs && !perf_exclude_event(event, regs)) {
8349                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8350                         if (__perf_event_overflow(event, 1, &data, regs))
8351                                 ret = HRTIMER_NORESTART;
8352         }
8353
8354         period = max_t(u64, 10000, event->hw.sample_period);
8355         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8356
8357         return ret;
8358 }
8359
8360 static void perf_swevent_start_hrtimer(struct perf_event *event)
8361 {
8362         struct hw_perf_event *hwc = &event->hw;
8363         s64 period;
8364
8365         if (!is_sampling_event(event))
8366                 return;
8367
8368         period = local64_read(&hwc->period_left);
8369         if (period) {
8370                 if (period < 0)
8371                         period = 10000;
8372
8373                 local64_set(&hwc->period_left, 0);
8374         } else {
8375                 period = max_t(u64, 10000, hwc->sample_period);
8376         }
8377         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8378                       HRTIMER_MODE_REL_PINNED);
8379 }
8380
8381 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8382 {
8383         struct hw_perf_event *hwc = &event->hw;
8384
8385         if (is_sampling_event(event)) {
8386                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8387                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8388
8389                 hrtimer_cancel(&hwc->hrtimer);
8390         }
8391 }
8392
8393 static void perf_swevent_init_hrtimer(struct perf_event *event)
8394 {
8395         struct hw_perf_event *hwc = &event->hw;
8396
8397         if (!is_sampling_event(event))
8398                 return;
8399
8400         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8401         hwc->hrtimer.function = perf_swevent_hrtimer;
8402
8403         /*
8404          * Since hrtimers have a fixed rate, we can do a static freq->period
8405          * mapping and avoid the whole period adjust feedback stuff.
8406          */
8407         if (event->attr.freq) {
8408                 long freq = event->attr.sample_freq;
8409
8410                 event->attr.sample_period = NSEC_PER_SEC / freq;
8411                 hwc->sample_period = event->attr.sample_period;
8412                 local64_set(&hwc->period_left, hwc->sample_period);
8413                 hwc->last_period = hwc->sample_period;
8414                 event->attr.freq = 0;
8415         }
8416 }
8417
8418 /*
8419  * Software event: cpu wall time clock
8420  */
8421
8422 static void cpu_clock_event_update(struct perf_event *event)
8423 {
8424         s64 prev;
8425         u64 now;
8426
8427         now = local_clock();
8428         prev = local64_xchg(&event->hw.prev_count, now);
8429         local64_add(now - prev, &event->count);
8430 }
8431
8432 static void cpu_clock_event_start(struct perf_event *event, int flags)
8433 {
8434         local64_set(&event->hw.prev_count, local_clock());
8435         perf_swevent_start_hrtimer(event);
8436 }
8437
8438 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8439 {
8440         perf_swevent_cancel_hrtimer(event);
8441         cpu_clock_event_update(event);
8442 }
8443
8444 static int cpu_clock_event_add(struct perf_event *event, int flags)
8445 {
8446         if (flags & PERF_EF_START)
8447                 cpu_clock_event_start(event, flags);
8448         perf_event_update_userpage(event);
8449
8450         return 0;
8451 }
8452
8453 static void cpu_clock_event_del(struct perf_event *event, int flags)
8454 {
8455         cpu_clock_event_stop(event, flags);
8456 }
8457
8458 static void cpu_clock_event_read(struct perf_event *event)
8459 {
8460         cpu_clock_event_update(event);
8461 }
8462
8463 static int cpu_clock_event_init(struct perf_event *event)
8464 {
8465         if (event->attr.type != PERF_TYPE_SOFTWARE)
8466                 return -ENOENT;
8467
8468         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8469                 return -ENOENT;
8470
8471         /*
8472          * no branch sampling for software events
8473          */
8474         if (has_branch_stack(event))
8475                 return -EOPNOTSUPP;
8476
8477         perf_swevent_init_hrtimer(event);
8478
8479         return 0;
8480 }
8481
8482 static struct pmu perf_cpu_clock = {
8483         .task_ctx_nr    = perf_sw_context,
8484
8485         .capabilities   = PERF_PMU_CAP_NO_NMI,
8486
8487         .event_init     = cpu_clock_event_init,
8488         .add            = cpu_clock_event_add,
8489         .del            = cpu_clock_event_del,
8490         .start          = cpu_clock_event_start,
8491         .stop           = cpu_clock_event_stop,
8492         .read           = cpu_clock_event_read,
8493 };
8494
8495 /*
8496  * Software event: task time clock
8497  */
8498
8499 static void task_clock_event_update(struct perf_event *event, u64 now)
8500 {
8501         u64 prev;
8502         s64 delta;
8503
8504         prev = local64_xchg(&event->hw.prev_count, now);
8505         delta = now - prev;
8506         local64_add(delta, &event->count);
8507 }
8508
8509 static void task_clock_event_start(struct perf_event *event, int flags)
8510 {
8511         local64_set(&event->hw.prev_count, event->ctx->time);
8512         perf_swevent_start_hrtimer(event);
8513 }
8514
8515 static void task_clock_event_stop(struct perf_event *event, int flags)
8516 {
8517         perf_swevent_cancel_hrtimer(event);
8518         task_clock_event_update(event, event->ctx->time);
8519 }
8520
8521 static int task_clock_event_add(struct perf_event *event, int flags)
8522 {
8523         if (flags & PERF_EF_START)
8524                 task_clock_event_start(event, flags);
8525         perf_event_update_userpage(event);
8526
8527         return 0;
8528 }
8529
8530 static void task_clock_event_del(struct perf_event *event, int flags)
8531 {
8532         task_clock_event_stop(event, PERF_EF_UPDATE);
8533 }
8534
8535 static void task_clock_event_read(struct perf_event *event)
8536 {
8537         u64 now = perf_clock();
8538         u64 delta = now - event->ctx->timestamp;
8539         u64 time = event->ctx->time + delta;
8540
8541         task_clock_event_update(event, time);
8542 }
8543
8544 static int task_clock_event_init(struct perf_event *event)
8545 {
8546         if (event->attr.type != PERF_TYPE_SOFTWARE)
8547                 return -ENOENT;
8548
8549         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8550                 return -ENOENT;
8551
8552         /*
8553          * no branch sampling for software events
8554          */
8555         if (has_branch_stack(event))
8556                 return -EOPNOTSUPP;
8557
8558         perf_swevent_init_hrtimer(event);
8559
8560         return 0;
8561 }
8562
8563 static struct pmu perf_task_clock = {
8564         .task_ctx_nr    = perf_sw_context,
8565
8566         .capabilities   = PERF_PMU_CAP_NO_NMI,
8567
8568         .event_init     = task_clock_event_init,
8569         .add            = task_clock_event_add,
8570         .del            = task_clock_event_del,
8571         .start          = task_clock_event_start,
8572         .stop           = task_clock_event_stop,
8573         .read           = task_clock_event_read,
8574 };
8575
8576 static void perf_pmu_nop_void(struct pmu *pmu)
8577 {
8578 }
8579
8580 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8581 {
8582 }
8583
8584 static int perf_pmu_nop_int(struct pmu *pmu)
8585 {
8586         return 0;
8587 }
8588
8589 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8590
8591 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8592 {
8593         __this_cpu_write(nop_txn_flags, flags);
8594
8595         if (flags & ~PERF_PMU_TXN_ADD)
8596                 return;
8597
8598         perf_pmu_disable(pmu);
8599 }
8600
8601 static int perf_pmu_commit_txn(struct pmu *pmu)
8602 {
8603         unsigned int flags = __this_cpu_read(nop_txn_flags);
8604
8605         __this_cpu_write(nop_txn_flags, 0);
8606
8607         if (flags & ~PERF_PMU_TXN_ADD)
8608                 return 0;
8609
8610         perf_pmu_enable(pmu);
8611         return 0;
8612 }
8613
8614 static void perf_pmu_cancel_txn(struct pmu *pmu)
8615 {
8616         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8617
8618         __this_cpu_write(nop_txn_flags, 0);
8619
8620         if (flags & ~PERF_PMU_TXN_ADD)
8621                 return;
8622
8623         perf_pmu_enable(pmu);
8624 }
8625
8626 static int perf_event_idx_default(struct perf_event *event)
8627 {
8628         return 0;
8629 }
8630
8631 /*
8632  * Ensures all contexts with the same task_ctx_nr have the same
8633  * pmu_cpu_context too.
8634  */
8635 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8636 {
8637         struct pmu *pmu;
8638
8639         if (ctxn < 0)
8640                 return NULL;
8641
8642         list_for_each_entry(pmu, &pmus, entry) {
8643                 if (pmu->task_ctx_nr == ctxn)
8644                         return pmu->pmu_cpu_context;
8645         }
8646
8647         return NULL;
8648 }
8649
8650 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8651 {
8652         int cpu;
8653
8654         for_each_possible_cpu(cpu) {
8655                 struct perf_cpu_context *cpuctx;
8656
8657                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8658
8659                 if (cpuctx->unique_pmu == old_pmu)
8660                         cpuctx->unique_pmu = pmu;
8661         }
8662 }
8663
8664 static void free_pmu_context(struct pmu *pmu)
8665 {
8666         struct pmu *i;
8667
8668         mutex_lock(&pmus_lock);
8669         /*
8670          * Like a real lame refcount.
8671          */
8672         list_for_each_entry(i, &pmus, entry) {
8673                 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8674                         update_pmu_context(i, pmu);
8675                         goto out;
8676                 }
8677         }
8678
8679         free_percpu(pmu->pmu_cpu_context);
8680 out:
8681         mutex_unlock(&pmus_lock);
8682 }
8683
8684 /*
8685  * Let userspace know that this PMU supports address range filtering:
8686  */
8687 static ssize_t nr_addr_filters_show(struct device *dev,
8688                                     struct device_attribute *attr,
8689                                     char *page)
8690 {
8691         struct pmu *pmu = dev_get_drvdata(dev);
8692
8693         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8694 }
8695 DEVICE_ATTR_RO(nr_addr_filters);
8696
8697 static struct idr pmu_idr;
8698
8699 static ssize_t
8700 type_show(struct device *dev, struct device_attribute *attr, char *page)
8701 {
8702         struct pmu *pmu = dev_get_drvdata(dev);
8703
8704         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8705 }
8706 static DEVICE_ATTR_RO(type);
8707
8708 static ssize_t
8709 perf_event_mux_interval_ms_show(struct device *dev,
8710                                 struct device_attribute *attr,
8711                                 char *page)
8712 {
8713         struct pmu *pmu = dev_get_drvdata(dev);
8714
8715         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8716 }
8717
8718 static DEFINE_MUTEX(mux_interval_mutex);
8719
8720 static ssize_t
8721 perf_event_mux_interval_ms_store(struct device *dev,
8722                                  struct device_attribute *attr,
8723                                  const char *buf, size_t count)
8724 {
8725         struct pmu *pmu = dev_get_drvdata(dev);
8726         int timer, cpu, ret;
8727
8728         ret = kstrtoint(buf, 0, &timer);
8729         if (ret)
8730                 return ret;
8731
8732         if (timer < 1)
8733                 return -EINVAL;
8734
8735         /* same value, noting to do */
8736         if (timer == pmu->hrtimer_interval_ms)
8737                 return count;
8738
8739         mutex_lock(&mux_interval_mutex);
8740         pmu->hrtimer_interval_ms = timer;
8741
8742         /* update all cpuctx for this PMU */
8743         get_online_cpus();
8744         for_each_online_cpu(cpu) {
8745                 struct perf_cpu_context *cpuctx;
8746                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8747                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8748
8749                 cpu_function_call(cpu,
8750                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8751         }
8752         put_online_cpus();
8753         mutex_unlock(&mux_interval_mutex);
8754
8755         return count;
8756 }
8757 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8758
8759 static struct attribute *pmu_dev_attrs[] = {
8760         &dev_attr_type.attr,
8761         &dev_attr_perf_event_mux_interval_ms.attr,
8762         NULL,
8763 };
8764 ATTRIBUTE_GROUPS(pmu_dev);
8765
8766 static int pmu_bus_running;
8767 static struct bus_type pmu_bus = {
8768         .name           = "event_source",
8769         .dev_groups     = pmu_dev_groups,
8770 };
8771
8772 static void pmu_dev_release(struct device *dev)
8773 {
8774         kfree(dev);
8775 }
8776
8777 static int pmu_dev_alloc(struct pmu *pmu)
8778 {
8779         int ret = -ENOMEM;
8780
8781         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8782         if (!pmu->dev)
8783                 goto out;
8784
8785         pmu->dev->groups = pmu->attr_groups;
8786         device_initialize(pmu->dev);
8787         ret = dev_set_name(pmu->dev, "%s", pmu->name);
8788         if (ret)
8789                 goto free_dev;
8790
8791         dev_set_drvdata(pmu->dev, pmu);
8792         pmu->dev->bus = &pmu_bus;
8793         pmu->dev->release = pmu_dev_release;
8794         ret = device_add(pmu->dev);
8795         if (ret)
8796                 goto free_dev;
8797
8798         /* For PMUs with address filters, throw in an extra attribute: */
8799         if (pmu->nr_addr_filters)
8800                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8801
8802         if (ret)
8803                 goto del_dev;
8804
8805 out:
8806         return ret;
8807
8808 del_dev:
8809         device_del(pmu->dev);
8810
8811 free_dev:
8812         put_device(pmu->dev);
8813         goto out;
8814 }
8815
8816 static struct lock_class_key cpuctx_mutex;
8817 static struct lock_class_key cpuctx_lock;
8818
8819 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8820 {
8821         int cpu, ret;
8822
8823         mutex_lock(&pmus_lock);
8824         ret = -ENOMEM;
8825         pmu->pmu_disable_count = alloc_percpu(int);
8826         if (!pmu->pmu_disable_count)
8827                 goto unlock;
8828
8829         pmu->type = -1;
8830         if (!name)
8831                 goto skip_type;
8832         pmu->name = name;
8833
8834         if (type < 0) {
8835                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8836                 if (type < 0) {
8837                         ret = type;
8838                         goto free_pdc;
8839                 }
8840         }
8841         pmu->type = type;
8842
8843         if (pmu_bus_running) {
8844                 ret = pmu_dev_alloc(pmu);
8845                 if (ret)
8846                         goto free_idr;
8847         }
8848
8849 skip_type:
8850         if (pmu->task_ctx_nr == perf_hw_context) {
8851                 static int hw_context_taken = 0;
8852
8853                 /*
8854                  * Other than systems with heterogeneous CPUs, it never makes
8855                  * sense for two PMUs to share perf_hw_context. PMUs which are
8856                  * uncore must use perf_invalid_context.
8857                  */
8858                 if (WARN_ON_ONCE(hw_context_taken &&
8859                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8860                         pmu->task_ctx_nr = perf_invalid_context;
8861
8862                 hw_context_taken = 1;
8863         }
8864
8865         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8866         if (pmu->pmu_cpu_context)
8867                 goto got_cpu_context;
8868
8869         ret = -ENOMEM;
8870         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8871         if (!pmu->pmu_cpu_context)
8872                 goto free_dev;
8873
8874         for_each_possible_cpu(cpu) {
8875                 struct perf_cpu_context *cpuctx;
8876
8877                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8878                 __perf_event_init_context(&cpuctx->ctx);
8879                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8880                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8881                 cpuctx->ctx.pmu = pmu;
8882
8883                 __perf_mux_hrtimer_init(cpuctx, cpu);
8884
8885                 cpuctx->unique_pmu = pmu;
8886         }
8887
8888 got_cpu_context:
8889         if (!pmu->start_txn) {
8890                 if (pmu->pmu_enable) {
8891                         /*
8892                          * If we have pmu_enable/pmu_disable calls, install
8893                          * transaction stubs that use that to try and batch
8894                          * hardware accesses.
8895                          */
8896                         pmu->start_txn  = perf_pmu_start_txn;
8897                         pmu->commit_txn = perf_pmu_commit_txn;
8898                         pmu->cancel_txn = perf_pmu_cancel_txn;
8899                 } else {
8900                         pmu->start_txn  = perf_pmu_nop_txn;
8901                         pmu->commit_txn = perf_pmu_nop_int;
8902                         pmu->cancel_txn = perf_pmu_nop_void;
8903                 }
8904         }
8905
8906         if (!pmu->pmu_enable) {
8907                 pmu->pmu_enable  = perf_pmu_nop_void;
8908                 pmu->pmu_disable = perf_pmu_nop_void;
8909         }
8910
8911         if (!pmu->event_idx)
8912                 pmu->event_idx = perf_event_idx_default;
8913
8914         list_add_rcu(&pmu->entry, &pmus);
8915         atomic_set(&pmu->exclusive_cnt, 0);
8916         ret = 0;
8917 unlock:
8918         mutex_unlock(&pmus_lock);
8919
8920         return ret;
8921
8922 free_dev:
8923         device_del(pmu->dev);
8924         put_device(pmu->dev);
8925
8926 free_idr:
8927         if (pmu->type >= PERF_TYPE_MAX)
8928                 idr_remove(&pmu_idr, pmu->type);
8929
8930 free_pdc:
8931         free_percpu(pmu->pmu_disable_count);
8932         goto unlock;
8933 }
8934 EXPORT_SYMBOL_GPL(perf_pmu_register);
8935
8936 void perf_pmu_unregister(struct pmu *pmu)
8937 {
8938         int remove_device;
8939
8940         mutex_lock(&pmus_lock);
8941         remove_device = pmu_bus_running;
8942         list_del_rcu(&pmu->entry);
8943         mutex_unlock(&pmus_lock);
8944
8945         /*
8946          * We dereference the pmu list under both SRCU and regular RCU, so
8947          * synchronize against both of those.
8948          */
8949         synchronize_srcu(&pmus_srcu);
8950         synchronize_rcu();
8951
8952         free_percpu(pmu->pmu_disable_count);
8953         if (pmu->type >= PERF_TYPE_MAX)
8954                 idr_remove(&pmu_idr, pmu->type);
8955         if (remove_device) {
8956                 if (pmu->nr_addr_filters)
8957                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8958                 device_del(pmu->dev);
8959                 put_device(pmu->dev);
8960         }
8961         free_pmu_context(pmu);
8962 }
8963 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8964
8965 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8966 {
8967         struct perf_event_context *ctx = NULL;
8968         int ret;
8969
8970         if (!try_module_get(pmu->module))
8971                 return -ENODEV;
8972
8973         if (event->group_leader != event) {
8974                 /*
8975                  * This ctx->mutex can nest when we're called through
8976                  * inheritance. See the perf_event_ctx_lock_nested() comment.
8977                  */
8978                 ctx = perf_event_ctx_lock_nested(event->group_leader,
8979                                                  SINGLE_DEPTH_NESTING);
8980                 BUG_ON(!ctx);
8981         }
8982
8983         event->pmu = pmu;
8984         ret = pmu->event_init(event);
8985
8986         if (ctx)
8987                 perf_event_ctx_unlock(event->group_leader, ctx);
8988
8989         if (ret)
8990                 module_put(pmu->module);
8991
8992         return ret;
8993 }
8994
8995 static struct pmu *perf_init_event(struct perf_event *event)
8996 {
8997         struct pmu *pmu = NULL;
8998         int idx;
8999         int ret;
9000
9001         idx = srcu_read_lock(&pmus_srcu);
9002
9003         rcu_read_lock();
9004         pmu = idr_find(&pmu_idr, event->attr.type);
9005         rcu_read_unlock();
9006         if (pmu) {
9007                 ret = perf_try_init_event(pmu, event);
9008                 if (ret)
9009                         pmu = ERR_PTR(ret);
9010                 goto unlock;
9011         }
9012
9013         list_for_each_entry_rcu(pmu, &pmus, entry) {
9014                 ret = perf_try_init_event(pmu, event);
9015                 if (!ret)
9016                         goto unlock;
9017
9018                 if (ret != -ENOENT) {
9019                         pmu = ERR_PTR(ret);
9020                         goto unlock;
9021                 }
9022         }
9023         pmu = ERR_PTR(-ENOENT);
9024 unlock:
9025         srcu_read_unlock(&pmus_srcu, idx);
9026
9027         return pmu;
9028 }
9029
9030 static void attach_sb_event(struct perf_event *event)
9031 {
9032         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9033
9034         raw_spin_lock(&pel->lock);
9035         list_add_rcu(&event->sb_list, &pel->list);
9036         raw_spin_unlock(&pel->lock);
9037 }
9038
9039 /*
9040  * We keep a list of all !task (and therefore per-cpu) events
9041  * that need to receive side-band records.
9042  *
9043  * This avoids having to scan all the various PMU per-cpu contexts
9044  * looking for them.
9045  */
9046 static void account_pmu_sb_event(struct perf_event *event)
9047 {
9048         if (is_sb_event(event))
9049                 attach_sb_event(event);
9050 }
9051
9052 static void account_event_cpu(struct perf_event *event, int cpu)
9053 {
9054         if (event->parent)
9055                 return;
9056
9057         if (is_cgroup_event(event))
9058                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9059 }
9060
9061 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9062 static void account_freq_event_nohz(void)
9063 {
9064 #ifdef CONFIG_NO_HZ_FULL
9065         /* Lock so we don't race with concurrent unaccount */
9066         spin_lock(&nr_freq_lock);
9067         if (atomic_inc_return(&nr_freq_events) == 1)
9068                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9069         spin_unlock(&nr_freq_lock);
9070 #endif
9071 }
9072
9073 static void account_freq_event(void)
9074 {
9075         if (tick_nohz_full_enabled())
9076                 account_freq_event_nohz();
9077         else
9078                 atomic_inc(&nr_freq_events);
9079 }
9080
9081
9082 static void account_event(struct perf_event *event)
9083 {
9084         bool inc = false;
9085
9086         if (event->parent)
9087                 return;
9088
9089         if (event->attach_state & PERF_ATTACH_TASK)
9090                 inc = true;
9091         if (event->attr.mmap || event->attr.mmap_data)
9092                 atomic_inc(&nr_mmap_events);
9093         if (event->attr.comm)
9094                 atomic_inc(&nr_comm_events);
9095         if (event->attr.task)
9096                 atomic_inc(&nr_task_events);
9097         if (event->attr.freq)
9098                 account_freq_event();
9099         if (event->attr.context_switch) {
9100                 atomic_inc(&nr_switch_events);
9101                 inc = true;
9102         }
9103         if (has_branch_stack(event))
9104                 inc = true;
9105         if (is_cgroup_event(event))
9106                 inc = true;
9107
9108         if (inc) {
9109                 if (atomic_inc_not_zero(&perf_sched_count))
9110                         goto enabled;
9111
9112                 mutex_lock(&perf_sched_mutex);
9113                 if (!atomic_read(&perf_sched_count)) {
9114                         static_branch_enable(&perf_sched_events);
9115                         /*
9116                          * Guarantee that all CPUs observe they key change and
9117                          * call the perf scheduling hooks before proceeding to
9118                          * install events that need them.
9119                          */
9120                         synchronize_sched();
9121                 }
9122                 /*
9123                  * Now that we have waited for the sync_sched(), allow further
9124                  * increments to by-pass the mutex.
9125                  */
9126                 atomic_inc(&perf_sched_count);
9127                 mutex_unlock(&perf_sched_mutex);
9128         }
9129 enabled:
9130
9131         account_event_cpu(event, event->cpu);
9132
9133         account_pmu_sb_event(event);
9134 }
9135
9136 /*
9137  * Allocate and initialize a event structure
9138  */
9139 static struct perf_event *
9140 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9141                  struct task_struct *task,
9142                  struct perf_event *group_leader,
9143                  struct perf_event *parent_event,
9144                  perf_overflow_handler_t overflow_handler,
9145                  void *context, int cgroup_fd)
9146 {
9147         struct pmu *pmu;
9148         struct perf_event *event;
9149         struct hw_perf_event *hwc;
9150         long err = -EINVAL;
9151
9152         if ((unsigned)cpu >= nr_cpu_ids) {
9153                 if (!task || cpu != -1)
9154                         return ERR_PTR(-EINVAL);
9155         }
9156
9157         event = kzalloc(sizeof(*event), GFP_KERNEL);
9158         if (!event)
9159                 return ERR_PTR(-ENOMEM);
9160
9161         /*
9162          * Single events are their own group leaders, with an
9163          * empty sibling list:
9164          */
9165         if (!group_leader)
9166                 group_leader = event;
9167
9168         mutex_init(&event->child_mutex);
9169         INIT_LIST_HEAD(&event->child_list);
9170
9171         INIT_LIST_HEAD(&event->group_entry);
9172         INIT_LIST_HEAD(&event->event_entry);
9173         INIT_LIST_HEAD(&event->sibling_list);
9174         INIT_LIST_HEAD(&event->rb_entry);
9175         INIT_LIST_HEAD(&event->active_entry);
9176         INIT_LIST_HEAD(&event->addr_filters.list);
9177         INIT_HLIST_NODE(&event->hlist_entry);
9178
9179
9180         init_waitqueue_head(&event->waitq);
9181         init_irq_work(&event->pending, perf_pending_event);
9182
9183         mutex_init(&event->mmap_mutex);
9184         raw_spin_lock_init(&event->addr_filters.lock);
9185
9186         atomic_long_set(&event->refcount, 1);
9187         event->cpu              = cpu;
9188         event->attr             = *attr;
9189         event->group_leader     = group_leader;
9190         event->pmu              = NULL;
9191         event->oncpu            = -1;
9192
9193         event->parent           = parent_event;
9194
9195         event->ns               = get_pid_ns(task_active_pid_ns(current));
9196         event->id               = atomic64_inc_return(&perf_event_id);
9197
9198         event->state            = PERF_EVENT_STATE_INACTIVE;
9199
9200         if (task) {
9201                 event->attach_state = PERF_ATTACH_TASK;
9202                 /*
9203                  * XXX pmu::event_init needs to know what task to account to
9204                  * and we cannot use the ctx information because we need the
9205                  * pmu before we get a ctx.
9206                  */
9207                 event->hw.target = task;
9208         }
9209
9210         event->clock = &local_clock;
9211         if (parent_event)
9212                 event->clock = parent_event->clock;
9213
9214         if (!overflow_handler && parent_event) {
9215                 overflow_handler = parent_event->overflow_handler;
9216                 context = parent_event->overflow_handler_context;
9217 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9218                 if (overflow_handler == bpf_overflow_handler) {
9219                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9220
9221                         if (IS_ERR(prog)) {
9222                                 err = PTR_ERR(prog);
9223                                 goto err_ns;
9224                         }
9225                         event->prog = prog;
9226                         event->orig_overflow_handler =
9227                                 parent_event->orig_overflow_handler;
9228                 }
9229 #endif
9230         }
9231
9232         if (overflow_handler) {
9233                 event->overflow_handler = overflow_handler;
9234                 event->overflow_handler_context = context;
9235         } else if (is_write_backward(event)){
9236                 event->overflow_handler = perf_event_output_backward;
9237                 event->overflow_handler_context = NULL;
9238         } else {
9239                 event->overflow_handler = perf_event_output_forward;
9240                 event->overflow_handler_context = NULL;
9241         }
9242
9243         perf_event__state_init(event);
9244
9245         pmu = NULL;
9246
9247         hwc = &event->hw;
9248         hwc->sample_period = attr->sample_period;
9249         if (attr->freq && attr->sample_freq)
9250                 hwc->sample_period = 1;
9251         hwc->last_period = hwc->sample_period;
9252
9253         local64_set(&hwc->period_left, hwc->sample_period);
9254
9255         /*
9256          * we currently do not support PERF_FORMAT_GROUP on inherited events
9257          */
9258         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
9259                 goto err_ns;
9260
9261         if (!has_branch_stack(event))
9262                 event->attr.branch_sample_type = 0;
9263
9264         if (cgroup_fd != -1) {
9265                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9266                 if (err)
9267                         goto err_ns;
9268         }
9269
9270         pmu = perf_init_event(event);
9271         if (!pmu)
9272                 goto err_ns;
9273         else if (IS_ERR(pmu)) {
9274                 err = PTR_ERR(pmu);
9275                 goto err_ns;
9276         }
9277
9278         err = exclusive_event_init(event);
9279         if (err)
9280                 goto err_pmu;
9281
9282         if (has_addr_filter(event)) {
9283                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9284                                                    sizeof(unsigned long),
9285                                                    GFP_KERNEL);
9286                 if (!event->addr_filters_offs)
9287                         goto err_per_task;
9288
9289                 /* force hw sync on the address filters */
9290                 event->addr_filters_gen = 1;
9291         }
9292
9293         if (!event->parent) {
9294                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9295                         err = get_callchain_buffers(attr->sample_max_stack);
9296                         if (err)
9297                                 goto err_addr_filters;
9298                 }
9299         }
9300
9301         /* symmetric to unaccount_event() in _free_event() */
9302         account_event(event);
9303
9304         return event;
9305
9306 err_addr_filters:
9307         kfree(event->addr_filters_offs);
9308
9309 err_per_task:
9310         exclusive_event_destroy(event);
9311
9312 err_pmu:
9313         if (event->destroy)
9314                 event->destroy(event);
9315         module_put(pmu->module);
9316 err_ns:
9317         if (is_cgroup_event(event))
9318                 perf_detach_cgroup(event);
9319         if (event->ns)
9320                 put_pid_ns(event->ns);
9321         kfree(event);
9322
9323         return ERR_PTR(err);
9324 }
9325
9326 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9327                           struct perf_event_attr *attr)
9328 {
9329         u32 size;
9330         int ret;
9331
9332         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9333                 return -EFAULT;
9334
9335         /*
9336          * zero the full structure, so that a short copy will be nice.
9337          */
9338         memset(attr, 0, sizeof(*attr));
9339
9340         ret = get_user(size, &uattr->size);
9341         if (ret)
9342                 return ret;
9343
9344         if (size > PAGE_SIZE)   /* silly large */
9345                 goto err_size;
9346
9347         if (!size)              /* abi compat */
9348                 size = PERF_ATTR_SIZE_VER0;
9349
9350         if (size < PERF_ATTR_SIZE_VER0)
9351                 goto err_size;
9352
9353         /*
9354          * If we're handed a bigger struct than we know of,
9355          * ensure all the unknown bits are 0 - i.e. new
9356          * user-space does not rely on any kernel feature
9357          * extensions we dont know about yet.
9358          */
9359         if (size > sizeof(*attr)) {
9360                 unsigned char __user *addr;
9361                 unsigned char __user *end;
9362                 unsigned char val;
9363
9364                 addr = (void __user *)uattr + sizeof(*attr);
9365                 end  = (void __user *)uattr + size;
9366
9367                 for (; addr < end; addr++) {
9368                         ret = get_user(val, addr);
9369                         if (ret)
9370                                 return ret;
9371                         if (val)
9372                                 goto err_size;
9373                 }
9374                 size = sizeof(*attr);
9375         }
9376
9377         ret = copy_from_user(attr, uattr, size);
9378         if (ret)
9379                 return -EFAULT;
9380
9381         if (attr->__reserved_1)
9382                 return -EINVAL;
9383
9384         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9385                 return -EINVAL;
9386
9387         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9388                 return -EINVAL;
9389
9390         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9391                 u64 mask = attr->branch_sample_type;
9392
9393                 /* only using defined bits */
9394                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9395                         return -EINVAL;
9396
9397                 /* at least one branch bit must be set */
9398                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9399                         return -EINVAL;
9400
9401                 /* propagate priv level, when not set for branch */
9402                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9403
9404                         /* exclude_kernel checked on syscall entry */
9405                         if (!attr->exclude_kernel)
9406                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9407
9408                         if (!attr->exclude_user)
9409                                 mask |= PERF_SAMPLE_BRANCH_USER;
9410
9411                         if (!attr->exclude_hv)
9412                                 mask |= PERF_SAMPLE_BRANCH_HV;
9413                         /*
9414                          * adjust user setting (for HW filter setup)
9415                          */
9416                         attr->branch_sample_type = mask;
9417                 }
9418                 /* privileged levels capture (kernel, hv): check permissions */
9419                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9420                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9421                         return -EACCES;
9422         }
9423
9424         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9425                 ret = perf_reg_validate(attr->sample_regs_user);
9426                 if (ret)
9427                         return ret;
9428         }
9429
9430         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9431                 if (!arch_perf_have_user_stack_dump())
9432                         return -ENOSYS;
9433
9434                 /*
9435                  * We have __u32 type for the size, but so far
9436                  * we can only use __u16 as maximum due to the
9437                  * __u16 sample size limit.
9438                  */
9439                 if (attr->sample_stack_user >= USHRT_MAX)
9440                         ret = -EINVAL;
9441                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9442                         ret = -EINVAL;
9443         }
9444
9445         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9446                 ret = perf_reg_validate(attr->sample_regs_intr);
9447 out:
9448         return ret;
9449
9450 err_size:
9451         put_user(sizeof(*attr), &uattr->size);
9452         ret = -E2BIG;
9453         goto out;
9454 }
9455
9456 static int
9457 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9458 {
9459         struct ring_buffer *rb = NULL;
9460         int ret = -EINVAL;
9461
9462         if (!output_event)
9463                 goto set;
9464
9465         /* don't allow circular references */
9466         if (event == output_event)
9467                 goto out;
9468
9469         /*
9470          * Don't allow cross-cpu buffers
9471          */
9472         if (output_event->cpu != event->cpu)
9473                 goto out;
9474
9475         /*
9476          * If its not a per-cpu rb, it must be the same task.
9477          */
9478         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9479                 goto out;
9480
9481         /*
9482          * Mixing clocks in the same buffer is trouble you don't need.
9483          */
9484         if (output_event->clock != event->clock)
9485                 goto out;
9486
9487         /*
9488          * Either writing ring buffer from beginning or from end.
9489          * Mixing is not allowed.
9490          */
9491         if (is_write_backward(output_event) != is_write_backward(event))
9492                 goto out;
9493
9494         /*
9495          * If both events generate aux data, they must be on the same PMU
9496          */
9497         if (has_aux(event) && has_aux(output_event) &&
9498             event->pmu != output_event->pmu)
9499                 goto out;
9500
9501 set:
9502         mutex_lock(&event->mmap_mutex);
9503         /* Can't redirect output if we've got an active mmap() */
9504         if (atomic_read(&event->mmap_count))
9505                 goto unlock;
9506
9507         if (output_event) {
9508                 /* get the rb we want to redirect to */
9509                 rb = ring_buffer_get(output_event);
9510                 if (!rb)
9511                         goto unlock;
9512         }
9513
9514         ring_buffer_attach(event, rb);
9515
9516         ret = 0;
9517 unlock:
9518         mutex_unlock(&event->mmap_mutex);
9519
9520 out:
9521         return ret;
9522 }
9523
9524 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9525 {
9526         if (b < a)
9527                 swap(a, b);
9528
9529         mutex_lock(a);
9530         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9531 }
9532
9533 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9534 {
9535         bool nmi_safe = false;
9536
9537         switch (clk_id) {
9538         case CLOCK_MONOTONIC:
9539                 event->clock = &ktime_get_mono_fast_ns;
9540                 nmi_safe = true;
9541                 break;
9542
9543         case CLOCK_MONOTONIC_RAW:
9544                 event->clock = &ktime_get_raw_fast_ns;
9545                 nmi_safe = true;
9546                 break;
9547
9548         case CLOCK_REALTIME:
9549                 event->clock = &ktime_get_real_ns;
9550                 break;
9551
9552         case CLOCK_BOOTTIME:
9553                 event->clock = &ktime_get_boot_ns;
9554                 break;
9555
9556         case CLOCK_TAI:
9557                 event->clock = &ktime_get_tai_ns;
9558                 break;
9559
9560         default:
9561                 return -EINVAL;
9562         }
9563
9564         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9565                 return -EINVAL;
9566
9567         return 0;
9568 }
9569
9570 /*
9571  * Variation on perf_event_ctx_lock_nested(), except we take two context
9572  * mutexes.
9573  */
9574 static struct perf_event_context *
9575 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9576                              struct perf_event_context *ctx)
9577 {
9578         struct perf_event_context *gctx;
9579
9580 again:
9581         rcu_read_lock();
9582         gctx = READ_ONCE(group_leader->ctx);
9583         if (!atomic_inc_not_zero(&gctx->refcount)) {
9584                 rcu_read_unlock();
9585                 goto again;
9586         }
9587         rcu_read_unlock();
9588
9589         mutex_lock_double(&gctx->mutex, &ctx->mutex);
9590
9591         if (group_leader->ctx != gctx) {
9592                 mutex_unlock(&ctx->mutex);
9593                 mutex_unlock(&gctx->mutex);
9594                 put_ctx(gctx);
9595                 goto again;
9596         }
9597
9598         return gctx;
9599 }
9600
9601 /**
9602  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9603  *
9604  * @attr_uptr:  event_id type attributes for monitoring/sampling
9605  * @pid:                target pid
9606  * @cpu:                target cpu
9607  * @group_fd:           group leader event fd
9608  */
9609 SYSCALL_DEFINE5(perf_event_open,
9610                 struct perf_event_attr __user *, attr_uptr,
9611                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9612 {
9613         struct perf_event *group_leader = NULL, *output_event = NULL;
9614         struct perf_event *event, *sibling;
9615         struct perf_event_attr attr;
9616         struct perf_event_context *ctx, *uninitialized_var(gctx);
9617         struct file *event_file = NULL;
9618         struct fd group = {NULL, 0};
9619         struct task_struct *task = NULL;
9620         struct pmu *pmu;
9621         int event_fd;
9622         int move_group = 0;
9623         int err;
9624         int f_flags = O_RDWR;
9625         int cgroup_fd = -1;
9626
9627         /* for future expandability... */
9628         if (flags & ~PERF_FLAG_ALL)
9629                 return -EINVAL;
9630
9631         err = perf_copy_attr(attr_uptr, &attr);
9632         if (err)
9633                 return err;
9634
9635         if (!attr.exclude_kernel) {
9636                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9637                         return -EACCES;
9638         }
9639
9640         if (attr.freq) {
9641                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9642                         return -EINVAL;
9643         } else {
9644                 if (attr.sample_period & (1ULL << 63))
9645                         return -EINVAL;
9646         }
9647
9648         if (!attr.sample_max_stack)
9649                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9650
9651         /*
9652          * In cgroup mode, the pid argument is used to pass the fd
9653          * opened to the cgroup directory in cgroupfs. The cpu argument
9654          * designates the cpu on which to monitor threads from that
9655          * cgroup.
9656          */
9657         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9658                 return -EINVAL;
9659
9660         if (flags & PERF_FLAG_FD_CLOEXEC)
9661                 f_flags |= O_CLOEXEC;
9662
9663         event_fd = get_unused_fd_flags(f_flags);
9664         if (event_fd < 0)
9665                 return event_fd;
9666
9667         if (group_fd != -1) {
9668                 err = perf_fget_light(group_fd, &group);
9669                 if (err)
9670                         goto err_fd;
9671                 group_leader = group.file->private_data;
9672                 if (flags & PERF_FLAG_FD_OUTPUT)
9673                         output_event = group_leader;
9674                 if (flags & PERF_FLAG_FD_NO_GROUP)
9675                         group_leader = NULL;
9676         }
9677
9678         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9679                 task = find_lively_task_by_vpid(pid);
9680                 if (IS_ERR(task)) {
9681                         err = PTR_ERR(task);
9682                         goto err_group_fd;
9683                 }
9684         }
9685
9686         if (task && group_leader &&
9687             group_leader->attr.inherit != attr.inherit) {
9688                 err = -EINVAL;
9689                 goto err_task;
9690         }
9691
9692         get_online_cpus();
9693
9694         if (task) {
9695                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9696                 if (err)
9697                         goto err_cpus;
9698
9699                 /*
9700                  * Reuse ptrace permission checks for now.
9701                  *
9702                  * We must hold cred_guard_mutex across this and any potential
9703                  * perf_install_in_context() call for this new event to
9704                  * serialize against exec() altering our credentials (and the
9705                  * perf_event_exit_task() that could imply).
9706                  */
9707                 err = -EACCES;
9708                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9709                         goto err_cred;
9710         }
9711
9712         if (flags & PERF_FLAG_PID_CGROUP)
9713                 cgroup_fd = pid;
9714
9715         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9716                                  NULL, NULL, cgroup_fd);
9717         if (IS_ERR(event)) {
9718                 err = PTR_ERR(event);
9719                 goto err_cred;
9720         }
9721
9722         if (is_sampling_event(event)) {
9723                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9724                         err = -EOPNOTSUPP;
9725                         goto err_alloc;
9726                 }
9727         }
9728
9729         /*
9730          * Special case software events and allow them to be part of
9731          * any hardware group.
9732          */
9733         pmu = event->pmu;
9734
9735         if (attr.use_clockid) {
9736                 err = perf_event_set_clock(event, attr.clockid);
9737                 if (err)
9738                         goto err_alloc;
9739         }
9740
9741         if (pmu->task_ctx_nr == perf_sw_context)
9742                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9743
9744         if (group_leader &&
9745             (is_software_event(event) != is_software_event(group_leader))) {
9746                 if (is_software_event(event)) {
9747                         /*
9748                          * If event and group_leader are not both a software
9749                          * event, and event is, then group leader is not.
9750                          *
9751                          * Allow the addition of software events to !software
9752                          * groups, this is safe because software events never
9753                          * fail to schedule.
9754                          */
9755                         pmu = group_leader->pmu;
9756                 } else if (is_software_event(group_leader) &&
9757                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9758                         /*
9759                          * In case the group is a pure software group, and we
9760                          * try to add a hardware event, move the whole group to
9761                          * the hardware context.
9762                          */
9763                         move_group = 1;
9764                 }
9765         }
9766
9767         /*
9768          * Get the target context (task or percpu):
9769          */
9770         ctx = find_get_context(pmu, task, event);
9771         if (IS_ERR(ctx)) {
9772                 err = PTR_ERR(ctx);
9773                 goto err_alloc;
9774         }
9775
9776         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9777                 err = -EBUSY;
9778                 goto err_context;
9779         }
9780
9781         /*
9782          * Look up the group leader (we will attach this event to it):
9783          */
9784         if (group_leader) {
9785                 err = -EINVAL;
9786
9787                 /*
9788                  * Do not allow a recursive hierarchy (this new sibling
9789                  * becoming part of another group-sibling):
9790                  */
9791                 if (group_leader->group_leader != group_leader)
9792                         goto err_context;
9793
9794                 /* All events in a group should have the same clock */
9795                 if (group_leader->clock != event->clock)
9796                         goto err_context;
9797
9798                 /*
9799                  * Do not allow to attach to a group in a different
9800                  * task or CPU context:
9801                  */
9802                 if (move_group) {
9803                         /*
9804                          * Make sure we're both on the same task, or both
9805                          * per-cpu events.
9806                          */
9807                         if (group_leader->ctx->task != ctx->task)
9808                                 goto err_context;
9809
9810                         /*
9811                          * Make sure we're both events for the same CPU;
9812                          * grouping events for different CPUs is broken; since
9813                          * you can never concurrently schedule them anyhow.
9814                          */
9815                         if (group_leader->cpu != event->cpu)
9816                                 goto err_context;
9817                 } else {
9818                         if (group_leader->ctx != ctx)
9819                                 goto err_context;
9820                 }
9821
9822                 /*
9823                  * Only a group leader can be exclusive or pinned
9824                  */
9825                 if (attr.exclusive || attr.pinned)
9826                         goto err_context;
9827         }
9828
9829         if (output_event) {
9830                 err = perf_event_set_output(event, output_event);
9831                 if (err)
9832                         goto err_context;
9833         }
9834
9835         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9836                                         f_flags);
9837         if (IS_ERR(event_file)) {
9838                 err = PTR_ERR(event_file);
9839                 event_file = NULL;
9840                 goto err_context;
9841         }
9842
9843         if (move_group) {
9844                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
9845
9846                 if (gctx->task == TASK_TOMBSTONE) {
9847                         err = -ESRCH;
9848                         goto err_locked;
9849                 }
9850
9851                 /*
9852                  * Check if we raced against another sys_perf_event_open() call
9853                  * moving the software group underneath us.
9854                  */
9855                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9856                         /*
9857                          * If someone moved the group out from under us, check
9858                          * if this new event wound up on the same ctx, if so
9859                          * its the regular !move_group case, otherwise fail.
9860                          */
9861                         if (gctx != ctx) {
9862                                 err = -EINVAL;
9863                                 goto err_locked;
9864                         } else {
9865                                 perf_event_ctx_unlock(group_leader, gctx);
9866                                 move_group = 0;
9867                         }
9868                 }
9869         } else {
9870                 mutex_lock(&ctx->mutex);
9871         }
9872
9873         if (ctx->task == TASK_TOMBSTONE) {
9874                 err = -ESRCH;
9875                 goto err_locked;
9876         }
9877
9878         if (!perf_event_validate_size(event)) {
9879                 err = -E2BIG;
9880                 goto err_locked;
9881         }
9882
9883         /*
9884          * Must be under the same ctx::mutex as perf_install_in_context(),
9885          * because we need to serialize with concurrent event creation.
9886          */
9887         if (!exclusive_event_installable(event, ctx)) {
9888                 /* exclusive and group stuff are assumed mutually exclusive */
9889                 WARN_ON_ONCE(move_group);
9890
9891                 err = -EBUSY;
9892                 goto err_locked;
9893         }
9894
9895         WARN_ON_ONCE(ctx->parent_ctx);
9896
9897         /*
9898          * This is the point on no return; we cannot fail hereafter. This is
9899          * where we start modifying current state.
9900          */
9901
9902         if (move_group) {
9903                 /*
9904                  * See perf_event_ctx_lock() for comments on the details
9905                  * of swizzling perf_event::ctx.
9906                  */
9907                 perf_remove_from_context(group_leader, 0);
9908
9909                 list_for_each_entry(sibling, &group_leader->sibling_list,
9910                                     group_entry) {
9911                         perf_remove_from_context(sibling, 0);
9912                         put_ctx(gctx);
9913                 }
9914
9915                 /*
9916                  * Wait for everybody to stop referencing the events through
9917                  * the old lists, before installing it on new lists.
9918                  */
9919                 synchronize_rcu();
9920
9921                 /*
9922                  * Install the group siblings before the group leader.
9923                  *
9924                  * Because a group leader will try and install the entire group
9925                  * (through the sibling list, which is still in-tact), we can
9926                  * end up with siblings installed in the wrong context.
9927                  *
9928                  * By installing siblings first we NO-OP because they're not
9929                  * reachable through the group lists.
9930                  */
9931                 list_for_each_entry(sibling, &group_leader->sibling_list,
9932                                     group_entry) {
9933                         perf_event__state_init(sibling);
9934                         perf_install_in_context(ctx, sibling, sibling->cpu);
9935                         get_ctx(ctx);
9936                 }
9937
9938                 /*
9939                  * Removing from the context ends up with disabled
9940                  * event. What we want here is event in the initial
9941                  * startup state, ready to be add into new context.
9942                  */
9943                 perf_event__state_init(group_leader);
9944                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9945                 get_ctx(ctx);
9946
9947                 /*
9948                  * Now that all events are installed in @ctx, nothing
9949                  * references @gctx anymore, so drop the last reference we have
9950                  * on it.
9951                  */
9952                 put_ctx(gctx);
9953         }
9954
9955         /*
9956          * Precalculate sample_data sizes; do while holding ctx::mutex such
9957          * that we're serialized against further additions and before
9958          * perf_install_in_context() which is the point the event is active and
9959          * can use these values.
9960          */
9961         perf_event__header_size(event);
9962         perf_event__id_header_size(event);
9963
9964         event->owner = current;
9965
9966         perf_install_in_context(ctx, event, event->cpu);
9967         perf_unpin_context(ctx);
9968
9969         if (move_group)
9970                 perf_event_ctx_unlock(group_leader, gctx);
9971         mutex_unlock(&ctx->mutex);
9972
9973         if (task) {
9974                 mutex_unlock(&task->signal->cred_guard_mutex);
9975                 put_task_struct(task);
9976         }
9977
9978         put_online_cpus();
9979
9980         mutex_lock(&current->perf_event_mutex);
9981         list_add_tail(&event->owner_entry, &current->perf_event_list);
9982         mutex_unlock(&current->perf_event_mutex);
9983
9984         /*
9985          * Drop the reference on the group_event after placing the
9986          * new event on the sibling_list. This ensures destruction
9987          * of the group leader will find the pointer to itself in
9988          * perf_group_detach().
9989          */
9990         fdput(group);
9991         fd_install(event_fd, event_file);
9992         return event_fd;
9993
9994 err_locked:
9995         if (move_group)
9996                 perf_event_ctx_unlock(group_leader, gctx);
9997         mutex_unlock(&ctx->mutex);
9998 /* err_file: */
9999         fput(event_file);
10000 err_context:
10001         perf_unpin_context(ctx);
10002         put_ctx(ctx);
10003 err_alloc:
10004         /*
10005          * If event_file is set, the fput() above will have called ->release()
10006          * and that will take care of freeing the event.
10007          */
10008         if (!event_file)
10009                 free_event(event);
10010 err_cred:
10011         if (task)
10012                 mutex_unlock(&task->signal->cred_guard_mutex);
10013 err_cpus:
10014         put_online_cpus();
10015 err_task:
10016         if (task)
10017                 put_task_struct(task);
10018 err_group_fd:
10019         fdput(group);
10020 err_fd:
10021         put_unused_fd(event_fd);
10022         return err;
10023 }
10024
10025 /**
10026  * perf_event_create_kernel_counter
10027  *
10028  * @attr: attributes of the counter to create
10029  * @cpu: cpu in which the counter is bound
10030  * @task: task to profile (NULL for percpu)
10031  */
10032 struct perf_event *
10033 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10034                                  struct task_struct *task,
10035                                  perf_overflow_handler_t overflow_handler,
10036                                  void *context)
10037 {
10038         struct perf_event_context *ctx;
10039         struct perf_event *event;
10040         int err;
10041
10042         /*
10043          * Get the target context (task or percpu):
10044          */
10045
10046         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10047                                  overflow_handler, context, -1);
10048         if (IS_ERR(event)) {
10049                 err = PTR_ERR(event);
10050                 goto err;
10051         }
10052
10053         /* Mark owner so we could distinguish it from user events. */
10054         event->owner = TASK_TOMBSTONE;
10055
10056         ctx = find_get_context(event->pmu, task, event);
10057         if (IS_ERR(ctx)) {
10058                 err = PTR_ERR(ctx);
10059                 goto err_free;
10060         }
10061
10062         WARN_ON_ONCE(ctx->parent_ctx);
10063         mutex_lock(&ctx->mutex);
10064         if (ctx->task == TASK_TOMBSTONE) {
10065                 err = -ESRCH;
10066                 goto err_unlock;
10067         }
10068
10069         if (!exclusive_event_installable(event, ctx)) {
10070                 err = -EBUSY;
10071                 goto err_unlock;
10072         }
10073
10074         perf_install_in_context(ctx, event, cpu);
10075         perf_unpin_context(ctx);
10076         mutex_unlock(&ctx->mutex);
10077
10078         return event;
10079
10080 err_unlock:
10081         mutex_unlock(&ctx->mutex);
10082         perf_unpin_context(ctx);
10083         put_ctx(ctx);
10084 err_free:
10085         free_event(event);
10086 err:
10087         return ERR_PTR(err);
10088 }
10089 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10090
10091 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10092 {
10093         struct perf_event_context *src_ctx;
10094         struct perf_event_context *dst_ctx;
10095         struct perf_event *event, *tmp;
10096         LIST_HEAD(events);
10097
10098         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10099         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10100
10101         /*
10102          * See perf_event_ctx_lock() for comments on the details
10103          * of swizzling perf_event::ctx.
10104          */
10105         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10106         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10107                                  event_entry) {
10108                 perf_remove_from_context(event, 0);
10109                 unaccount_event_cpu(event, src_cpu);
10110                 put_ctx(src_ctx);
10111                 list_add(&event->migrate_entry, &events);
10112         }
10113
10114         /*
10115          * Wait for the events to quiesce before re-instating them.
10116          */
10117         synchronize_rcu();
10118
10119         /*
10120          * Re-instate events in 2 passes.
10121          *
10122          * Skip over group leaders and only install siblings on this first
10123          * pass, siblings will not get enabled without a leader, however a
10124          * leader will enable its siblings, even if those are still on the old
10125          * context.
10126          */
10127         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10128                 if (event->group_leader == event)
10129                         continue;
10130
10131                 list_del(&event->migrate_entry);
10132                 if (event->state >= PERF_EVENT_STATE_OFF)
10133                         event->state = PERF_EVENT_STATE_INACTIVE;
10134                 account_event_cpu(event, dst_cpu);
10135                 perf_install_in_context(dst_ctx, event, dst_cpu);
10136                 get_ctx(dst_ctx);
10137         }
10138
10139         /*
10140          * Once all the siblings are setup properly, install the group leaders
10141          * to make it go.
10142          */
10143         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10144                 list_del(&event->migrate_entry);
10145                 if (event->state >= PERF_EVENT_STATE_OFF)
10146                         event->state = PERF_EVENT_STATE_INACTIVE;
10147                 account_event_cpu(event, dst_cpu);
10148                 perf_install_in_context(dst_ctx, event, dst_cpu);
10149                 get_ctx(dst_ctx);
10150         }
10151         mutex_unlock(&dst_ctx->mutex);
10152         mutex_unlock(&src_ctx->mutex);
10153 }
10154 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10155
10156 static void sync_child_event(struct perf_event *child_event,
10157                                struct task_struct *child)
10158 {
10159         struct perf_event *parent_event = child_event->parent;
10160         u64 child_val;
10161
10162         if (child_event->attr.inherit_stat)
10163                 perf_event_read_event(child_event, child);
10164
10165         child_val = perf_event_count(child_event);
10166
10167         /*
10168          * Add back the child's count to the parent's count:
10169          */
10170         atomic64_add(child_val, &parent_event->child_count);
10171         atomic64_add(child_event->total_time_enabled,
10172                      &parent_event->child_total_time_enabled);
10173         atomic64_add(child_event->total_time_running,
10174                      &parent_event->child_total_time_running);
10175 }
10176
10177 static void
10178 perf_event_exit_event(struct perf_event *child_event,
10179                       struct perf_event_context *child_ctx,
10180                       struct task_struct *child)
10181 {
10182         struct perf_event *parent_event = child_event->parent;
10183
10184         /*
10185          * Do not destroy the 'original' grouping; because of the context
10186          * switch optimization the original events could've ended up in a
10187          * random child task.
10188          *
10189          * If we were to destroy the original group, all group related
10190          * operations would cease to function properly after this random
10191          * child dies.
10192          *
10193          * Do destroy all inherited groups, we don't care about those
10194          * and being thorough is better.
10195          */
10196         raw_spin_lock_irq(&child_ctx->lock);
10197         WARN_ON_ONCE(child_ctx->is_active);
10198
10199         if (parent_event)
10200                 perf_group_detach(child_event);
10201         list_del_event(child_event, child_ctx);
10202         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10203         raw_spin_unlock_irq(&child_ctx->lock);
10204
10205         /*
10206          * Parent events are governed by their filedesc, retain them.
10207          */
10208         if (!parent_event) {
10209                 perf_event_wakeup(child_event);
10210                 return;
10211         }
10212         /*
10213          * Child events can be cleaned up.
10214          */
10215
10216         sync_child_event(child_event, child);
10217
10218         /*
10219          * Remove this event from the parent's list
10220          */
10221         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10222         mutex_lock(&parent_event->child_mutex);
10223         list_del_init(&child_event->child_list);
10224         mutex_unlock(&parent_event->child_mutex);
10225
10226         /*
10227          * Kick perf_poll() for is_event_hup().
10228          */
10229         perf_event_wakeup(parent_event);
10230         free_event(child_event);
10231         put_event(parent_event);
10232 }
10233
10234 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10235 {
10236         struct perf_event_context *child_ctx, *clone_ctx = NULL;
10237         struct perf_event *child_event, *next;
10238
10239         WARN_ON_ONCE(child != current);
10240
10241         child_ctx = perf_pin_task_context(child, ctxn);
10242         if (!child_ctx)
10243                 return;
10244
10245         /*
10246          * In order to reduce the amount of tricky in ctx tear-down, we hold
10247          * ctx::mutex over the entire thing. This serializes against almost
10248          * everything that wants to access the ctx.
10249          *
10250          * The exception is sys_perf_event_open() /
10251          * perf_event_create_kernel_count() which does find_get_context()
10252          * without ctx::mutex (it cannot because of the move_group double mutex
10253          * lock thing). See the comments in perf_install_in_context().
10254          */
10255         mutex_lock(&child_ctx->mutex);
10256
10257         /*
10258          * In a single ctx::lock section, de-schedule the events and detach the
10259          * context from the task such that we cannot ever get it scheduled back
10260          * in.
10261          */
10262         raw_spin_lock_irq(&child_ctx->lock);
10263         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10264
10265         /*
10266          * Now that the context is inactive, destroy the task <-> ctx relation
10267          * and mark the context dead.
10268          */
10269         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10270         put_ctx(child_ctx); /* cannot be last */
10271         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10272         put_task_struct(current); /* cannot be last */
10273
10274         clone_ctx = unclone_ctx(child_ctx);
10275         raw_spin_unlock_irq(&child_ctx->lock);
10276
10277         if (clone_ctx)
10278                 put_ctx(clone_ctx);
10279
10280         /*
10281          * Report the task dead after unscheduling the events so that we
10282          * won't get any samples after PERF_RECORD_EXIT. We can however still
10283          * get a few PERF_RECORD_READ events.
10284          */
10285         perf_event_task(child, child_ctx, 0);
10286
10287         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10288                 perf_event_exit_event(child_event, child_ctx, child);
10289
10290         mutex_unlock(&child_ctx->mutex);
10291
10292         put_ctx(child_ctx);
10293 }
10294
10295 /*
10296  * When a child task exits, feed back event values to parent events.
10297  *
10298  * Can be called with cred_guard_mutex held when called from
10299  * install_exec_creds().
10300  */
10301 void perf_event_exit_task(struct task_struct *child)
10302 {
10303         struct perf_event *event, *tmp;
10304         int ctxn;
10305
10306         mutex_lock(&child->perf_event_mutex);
10307         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10308                                  owner_entry) {
10309                 list_del_init(&event->owner_entry);
10310
10311                 /*
10312                  * Ensure the list deletion is visible before we clear
10313                  * the owner, closes a race against perf_release() where
10314                  * we need to serialize on the owner->perf_event_mutex.
10315                  */
10316                 smp_store_release(&event->owner, NULL);
10317         }
10318         mutex_unlock(&child->perf_event_mutex);
10319
10320         for_each_task_context_nr(ctxn)
10321                 perf_event_exit_task_context(child, ctxn);
10322
10323         /*
10324          * The perf_event_exit_task_context calls perf_event_task
10325          * with child's task_ctx, which generates EXIT events for
10326          * child contexts and sets child->perf_event_ctxp[] to NULL.
10327          * At this point we need to send EXIT events to cpu contexts.
10328          */
10329         perf_event_task(child, NULL, 0);
10330 }
10331
10332 static void perf_free_event(struct perf_event *event,
10333                             struct perf_event_context *ctx)
10334 {
10335         struct perf_event *parent = event->parent;
10336
10337         if (WARN_ON_ONCE(!parent))
10338                 return;
10339
10340         mutex_lock(&parent->child_mutex);
10341         list_del_init(&event->child_list);
10342         mutex_unlock(&parent->child_mutex);
10343
10344         put_event(parent);
10345
10346         raw_spin_lock_irq(&ctx->lock);
10347         perf_group_detach(event);
10348         list_del_event(event, ctx);
10349         raw_spin_unlock_irq(&ctx->lock);
10350         free_event(event);
10351 }
10352
10353 /*
10354  * Free an unexposed, unused context as created by inheritance by
10355  * perf_event_init_task below, used by fork() in case of fail.
10356  *
10357  * Not all locks are strictly required, but take them anyway to be nice and
10358  * help out with the lockdep assertions.
10359  */
10360 void perf_event_free_task(struct task_struct *task)
10361 {
10362         struct perf_event_context *ctx;
10363         struct perf_event *event, *tmp;
10364         int ctxn;
10365
10366         for_each_task_context_nr(ctxn) {
10367                 ctx = task->perf_event_ctxp[ctxn];
10368                 if (!ctx)
10369                         continue;
10370
10371                 mutex_lock(&ctx->mutex);
10372 again:
10373                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10374                                 group_entry)
10375                         perf_free_event(event, ctx);
10376
10377                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10378                                 group_entry)
10379                         perf_free_event(event, ctx);
10380
10381                 if (!list_empty(&ctx->pinned_groups) ||
10382                                 !list_empty(&ctx->flexible_groups))
10383                         goto again;
10384
10385                 mutex_unlock(&ctx->mutex);
10386
10387                 put_ctx(ctx);
10388         }
10389 }
10390
10391 void perf_event_delayed_put(struct task_struct *task)
10392 {
10393         int ctxn;
10394
10395         for_each_task_context_nr(ctxn)
10396                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10397 }
10398
10399 struct file *perf_event_get(unsigned int fd)
10400 {
10401         struct file *file;
10402
10403         file = fget_raw(fd);
10404         if (!file)
10405                 return ERR_PTR(-EBADF);
10406
10407         if (file->f_op != &perf_fops) {
10408                 fput(file);
10409                 return ERR_PTR(-EBADF);
10410         }
10411
10412         return file;
10413 }
10414
10415 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10416 {
10417         if (!event)
10418                 return ERR_PTR(-EINVAL);
10419
10420         return &event->attr;
10421 }
10422
10423 /*
10424  * inherit a event from parent task to child task:
10425  */
10426 static struct perf_event *
10427 inherit_event(struct perf_event *parent_event,
10428               struct task_struct *parent,
10429               struct perf_event_context *parent_ctx,
10430               struct task_struct *child,
10431               struct perf_event *group_leader,
10432               struct perf_event_context *child_ctx)
10433 {
10434         enum perf_event_active_state parent_state = parent_event->state;
10435         struct perf_event *child_event;
10436         unsigned long flags;
10437
10438         /*
10439          * Instead of creating recursive hierarchies of events,
10440          * we link inherited events back to the original parent,
10441          * which has a filp for sure, which we use as the reference
10442          * count:
10443          */
10444         if (parent_event->parent)
10445                 parent_event = parent_event->parent;
10446
10447         child_event = perf_event_alloc(&parent_event->attr,
10448                                            parent_event->cpu,
10449                                            child,
10450                                            group_leader, parent_event,
10451                                            NULL, NULL, -1);
10452         if (IS_ERR(child_event))
10453                 return child_event;
10454
10455         /*
10456          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10457          * must be under the same lock in order to serialize against
10458          * perf_event_release_kernel(), such that either we must observe
10459          * is_orphaned_event() or they will observe us on the child_list.
10460          */
10461         mutex_lock(&parent_event->child_mutex);
10462         if (is_orphaned_event(parent_event) ||
10463             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10464                 mutex_unlock(&parent_event->child_mutex);
10465                 free_event(child_event);
10466                 return NULL;
10467         }
10468
10469         get_ctx(child_ctx);
10470
10471         /*
10472          * Make the child state follow the state of the parent event,
10473          * not its attr.disabled bit.  We hold the parent's mutex,
10474          * so we won't race with perf_event_{en, dis}able_family.
10475          */
10476         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10477                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10478         else
10479                 child_event->state = PERF_EVENT_STATE_OFF;
10480
10481         if (parent_event->attr.freq) {
10482                 u64 sample_period = parent_event->hw.sample_period;
10483                 struct hw_perf_event *hwc = &child_event->hw;
10484
10485                 hwc->sample_period = sample_period;
10486                 hwc->last_period   = sample_period;
10487
10488                 local64_set(&hwc->period_left, sample_period);
10489         }
10490
10491         child_event->ctx = child_ctx;
10492         child_event->overflow_handler = parent_event->overflow_handler;
10493         child_event->overflow_handler_context
10494                 = parent_event->overflow_handler_context;
10495
10496         /*
10497          * Precalculate sample_data sizes
10498          */
10499         perf_event__header_size(child_event);
10500         perf_event__id_header_size(child_event);
10501
10502         /*
10503          * Link it up in the child's context:
10504          */
10505         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10506         add_event_to_ctx(child_event, child_ctx);
10507         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10508
10509         /*
10510          * Link this into the parent event's child list
10511          */
10512         list_add_tail(&child_event->child_list, &parent_event->child_list);
10513         mutex_unlock(&parent_event->child_mutex);
10514
10515         return child_event;
10516 }
10517
10518 static int inherit_group(struct perf_event *parent_event,
10519               struct task_struct *parent,
10520               struct perf_event_context *parent_ctx,
10521               struct task_struct *child,
10522               struct perf_event_context *child_ctx)
10523 {
10524         struct perf_event *leader;
10525         struct perf_event *sub;
10526         struct perf_event *child_ctr;
10527
10528         leader = inherit_event(parent_event, parent, parent_ctx,
10529                                  child, NULL, child_ctx);
10530         if (IS_ERR(leader))
10531                 return PTR_ERR(leader);
10532         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10533                 child_ctr = inherit_event(sub, parent, parent_ctx,
10534                                             child, leader, child_ctx);
10535                 if (IS_ERR(child_ctr))
10536                         return PTR_ERR(child_ctr);
10537         }
10538         return 0;
10539 }
10540
10541 static int
10542 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10543                    struct perf_event_context *parent_ctx,
10544                    struct task_struct *child, int ctxn,
10545                    int *inherited_all)
10546 {
10547         int ret;
10548         struct perf_event_context *child_ctx;
10549
10550         if (!event->attr.inherit) {
10551                 *inherited_all = 0;
10552                 return 0;
10553         }
10554
10555         child_ctx = child->perf_event_ctxp[ctxn];
10556         if (!child_ctx) {
10557                 /*
10558                  * This is executed from the parent task context, so
10559                  * inherit events that have been marked for cloning.
10560                  * First allocate and initialize a context for the
10561                  * child.
10562                  */
10563
10564                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10565                 if (!child_ctx)
10566                         return -ENOMEM;
10567
10568                 child->perf_event_ctxp[ctxn] = child_ctx;
10569         }
10570
10571         ret = inherit_group(event, parent, parent_ctx,
10572                             child, child_ctx);
10573
10574         if (ret)
10575                 *inherited_all = 0;
10576
10577         return ret;
10578 }
10579
10580 /*
10581  * Initialize the perf_event context in task_struct
10582  */
10583 static int perf_event_init_context(struct task_struct *child, int ctxn)
10584 {
10585         struct perf_event_context *child_ctx, *parent_ctx;
10586         struct perf_event_context *cloned_ctx;
10587         struct perf_event *event;
10588         struct task_struct *parent = current;
10589         int inherited_all = 1;
10590         unsigned long flags;
10591         int ret = 0;
10592
10593         if (likely(!parent->perf_event_ctxp[ctxn]))
10594                 return 0;
10595
10596         /*
10597          * If the parent's context is a clone, pin it so it won't get
10598          * swapped under us.
10599          */
10600         parent_ctx = perf_pin_task_context(parent, ctxn);
10601         if (!parent_ctx)
10602                 return 0;
10603
10604         /*
10605          * No need to check if parent_ctx != NULL here; since we saw
10606          * it non-NULL earlier, the only reason for it to become NULL
10607          * is if we exit, and since we're currently in the middle of
10608          * a fork we can't be exiting at the same time.
10609          */
10610
10611         /*
10612          * Lock the parent list. No need to lock the child - not PID
10613          * hashed yet and not running, so nobody can access it.
10614          */
10615         mutex_lock(&parent_ctx->mutex);
10616
10617         /*
10618          * We dont have to disable NMIs - we are only looking at
10619          * the list, not manipulating it:
10620          */
10621         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10622                 ret = inherit_task_group(event, parent, parent_ctx,
10623                                          child, ctxn, &inherited_all);
10624                 if (ret)
10625                         break;
10626         }
10627
10628         /*
10629          * We can't hold ctx->lock when iterating the ->flexible_group list due
10630          * to allocations, but we need to prevent rotation because
10631          * rotate_ctx() will change the list from interrupt context.
10632          */
10633         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10634         parent_ctx->rotate_disable = 1;
10635         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10636
10637         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10638                 ret = inherit_task_group(event, parent, parent_ctx,
10639                                          child, ctxn, &inherited_all);
10640                 if (ret)
10641                         break;
10642         }
10643
10644         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10645         parent_ctx->rotate_disable = 0;
10646
10647         child_ctx = child->perf_event_ctxp[ctxn];
10648
10649         if (child_ctx && inherited_all) {
10650                 /*
10651                  * Mark the child context as a clone of the parent
10652                  * context, or of whatever the parent is a clone of.
10653                  *
10654                  * Note that if the parent is a clone, the holding of
10655                  * parent_ctx->lock avoids it from being uncloned.
10656                  */
10657                 cloned_ctx = parent_ctx->parent_ctx;
10658                 if (cloned_ctx) {
10659                         child_ctx->parent_ctx = cloned_ctx;
10660                         child_ctx->parent_gen = parent_ctx->parent_gen;
10661                 } else {
10662                         child_ctx->parent_ctx = parent_ctx;
10663                         child_ctx->parent_gen = parent_ctx->generation;
10664                 }
10665                 get_ctx(child_ctx->parent_ctx);
10666         }
10667
10668         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10669         mutex_unlock(&parent_ctx->mutex);
10670
10671         perf_unpin_context(parent_ctx);
10672         put_ctx(parent_ctx);
10673
10674         return ret;
10675 }
10676
10677 /*
10678  * Initialize the perf_event context in task_struct
10679  */
10680 int perf_event_init_task(struct task_struct *child)
10681 {
10682         int ctxn, ret;
10683
10684         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10685         mutex_init(&child->perf_event_mutex);
10686         INIT_LIST_HEAD(&child->perf_event_list);
10687
10688         for_each_task_context_nr(ctxn) {
10689                 ret = perf_event_init_context(child, ctxn);
10690                 if (ret) {
10691                         perf_event_free_task(child);
10692                         return ret;
10693                 }
10694         }
10695
10696         return 0;
10697 }
10698
10699 static void __init perf_event_init_all_cpus(void)
10700 {
10701         struct swevent_htable *swhash;
10702         int cpu;
10703
10704         for_each_possible_cpu(cpu) {
10705                 swhash = &per_cpu(swevent_htable, cpu);
10706                 mutex_init(&swhash->hlist_mutex);
10707                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10708
10709                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10710                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10711
10712                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10713         }
10714 }
10715
10716 int perf_event_init_cpu(unsigned int cpu)
10717 {
10718         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10719
10720         mutex_lock(&swhash->hlist_mutex);
10721         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10722                 struct swevent_hlist *hlist;
10723
10724                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10725                 WARN_ON(!hlist);
10726                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10727         }
10728         mutex_unlock(&swhash->hlist_mutex);
10729         return 0;
10730 }
10731
10732 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10733 static void __perf_event_exit_context(void *__info)
10734 {
10735         struct perf_event_context *ctx = __info;
10736         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10737         struct perf_event *event;
10738
10739         raw_spin_lock(&ctx->lock);
10740         list_for_each_entry(event, &ctx->event_list, event_entry)
10741                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10742         raw_spin_unlock(&ctx->lock);
10743 }
10744
10745 static void perf_event_exit_cpu_context(int cpu)
10746 {
10747         struct perf_event_context *ctx;
10748         struct pmu *pmu;
10749         int idx;
10750
10751         idx = srcu_read_lock(&pmus_srcu);
10752         list_for_each_entry_rcu(pmu, &pmus, entry) {
10753                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10754
10755                 mutex_lock(&ctx->mutex);
10756                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10757                 mutex_unlock(&ctx->mutex);
10758         }
10759         srcu_read_unlock(&pmus_srcu, idx);
10760 }
10761 #else
10762
10763 static void perf_event_exit_cpu_context(int cpu) { }
10764
10765 #endif
10766
10767 int perf_event_exit_cpu(unsigned int cpu)
10768 {
10769         perf_event_exit_cpu_context(cpu);
10770         return 0;
10771 }
10772
10773 static int
10774 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10775 {
10776         int cpu;
10777
10778         for_each_online_cpu(cpu)
10779                 perf_event_exit_cpu(cpu);
10780
10781         return NOTIFY_OK;
10782 }
10783
10784 /*
10785  * Run the perf reboot notifier at the very last possible moment so that
10786  * the generic watchdog code runs as long as possible.
10787  */
10788 static struct notifier_block perf_reboot_notifier = {
10789         .notifier_call = perf_reboot,
10790         .priority = INT_MIN,
10791 };
10792
10793 void __init perf_event_init(void)
10794 {
10795         int ret;
10796
10797         idr_init(&pmu_idr);
10798
10799         perf_event_init_all_cpus();
10800         init_srcu_struct(&pmus_srcu);
10801         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10802         perf_pmu_register(&perf_cpu_clock, NULL, -1);
10803         perf_pmu_register(&perf_task_clock, NULL, -1);
10804         perf_tp_register();
10805         perf_event_init_cpu(smp_processor_id());
10806         register_reboot_notifier(&perf_reboot_notifier);
10807
10808         ret = init_hw_breakpoint();
10809         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10810
10811         /*
10812          * Build time assertion that we keep the data_head at the intended
10813          * location.  IOW, validation we got the __reserved[] size right.
10814          */
10815         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10816                      != 1024);
10817 }
10818
10819 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10820                               char *page)
10821 {
10822         struct perf_pmu_events_attr *pmu_attr =
10823                 container_of(attr, struct perf_pmu_events_attr, attr);
10824
10825         if (pmu_attr->event_str)
10826                 return sprintf(page, "%s\n", pmu_attr->event_str);
10827
10828         return 0;
10829 }
10830 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10831
10832 static int __init perf_event_sysfs_init(void)
10833 {
10834         struct pmu *pmu;
10835         int ret;
10836
10837         mutex_lock(&pmus_lock);
10838
10839         ret = bus_register(&pmu_bus);
10840         if (ret)
10841                 goto unlock;
10842
10843         list_for_each_entry(pmu, &pmus, entry) {
10844                 if (!pmu->name || pmu->type < 0)
10845                         continue;
10846
10847                 ret = pmu_dev_alloc(pmu);
10848                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10849         }
10850         pmu_bus_running = 1;
10851         ret = 0;
10852
10853 unlock:
10854         mutex_unlock(&pmus_lock);
10855
10856         return ret;
10857 }
10858 device_initcall(perf_event_sysfs_init);
10859
10860 #ifdef CONFIG_CGROUP_PERF
10861 static struct cgroup_subsys_state *
10862 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10863 {
10864         struct perf_cgroup *jc;
10865
10866         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10867         if (!jc)
10868                 return ERR_PTR(-ENOMEM);
10869
10870         jc->info = alloc_percpu(struct perf_cgroup_info);
10871         if (!jc->info) {
10872                 kfree(jc);
10873                 return ERR_PTR(-ENOMEM);
10874         }
10875
10876         return &jc->css;
10877 }
10878
10879 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10880 {
10881         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10882
10883         free_percpu(jc->info);
10884         kfree(jc);
10885 }
10886
10887 static int __perf_cgroup_move(void *info)
10888 {
10889         struct task_struct *task = info;
10890         rcu_read_lock();
10891         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10892         rcu_read_unlock();
10893         return 0;
10894 }
10895
10896 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10897 {
10898         struct task_struct *task;
10899         struct cgroup_subsys_state *css;
10900
10901         cgroup_taskset_for_each(task, css, tset)
10902                 task_function_call(task, __perf_cgroup_move, task);
10903 }
10904
10905 struct cgroup_subsys perf_event_cgrp_subsys = {
10906         .css_alloc      = perf_cgroup_css_alloc,
10907         .css_free       = perf_cgroup_css_free,
10908         .attach         = perf_cgroup_attach,
10909 };
10910 #endif /* CONFIG_CGROUP_PERF */