]> asedeno.scripts.mit.edu Git - linux.git/blob - kernel/futex.c
sched/wake_q: Reduce reference counting for special users
[linux.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/compat.h>
48 #include <linux/slab.h>
49 #include <linux/poll.h>
50 #include <linux/fs.h>
51 #include <linux/file.h>
52 #include <linux/jhash.h>
53 #include <linux/init.h>
54 #include <linux/futex.h>
55 #include <linux/mount.h>
56 #include <linux/pagemap.h>
57 #include <linux/syscalls.h>
58 #include <linux/signal.h>
59 #include <linux/export.h>
60 #include <linux/magic.h>
61 #include <linux/pid.h>
62 #include <linux/nsproxy.h>
63 #include <linux/ptrace.h>
64 #include <linux/sched/rt.h>
65 #include <linux/sched/wake_q.h>
66 #include <linux/sched/mm.h>
67 #include <linux/hugetlb.h>
68 #include <linux/freezer.h>
69 #include <linux/memblock.h>
70 #include <linux/fault-inject.h>
71
72 #include <asm/futex.h>
73
74 #include "locking/rtmutex_common.h"
75
76 /*
77  * READ this before attempting to hack on futexes!
78  *
79  * Basic futex operation and ordering guarantees
80  * =============================================
81  *
82  * The waiter reads the futex value in user space and calls
83  * futex_wait(). This function computes the hash bucket and acquires
84  * the hash bucket lock. After that it reads the futex user space value
85  * again and verifies that the data has not changed. If it has not changed
86  * it enqueues itself into the hash bucket, releases the hash bucket lock
87  * and schedules.
88  *
89  * The waker side modifies the user space value of the futex and calls
90  * futex_wake(). This function computes the hash bucket and acquires the
91  * hash bucket lock. Then it looks for waiters on that futex in the hash
92  * bucket and wakes them.
93  *
94  * In futex wake up scenarios where no tasks are blocked on a futex, taking
95  * the hb spinlock can be avoided and simply return. In order for this
96  * optimization to work, ordering guarantees must exist so that the waiter
97  * being added to the list is acknowledged when the list is concurrently being
98  * checked by the waker, avoiding scenarios like the following:
99  *
100  * CPU 0                               CPU 1
101  * val = *futex;
102  * sys_futex(WAIT, futex, val);
103  *   futex_wait(futex, val);
104  *   uval = *futex;
105  *                                     *futex = newval;
106  *                                     sys_futex(WAKE, futex);
107  *                                       futex_wake(futex);
108  *                                       if (queue_empty())
109  *                                         return;
110  *   if (uval == val)
111  *      lock(hash_bucket(futex));
112  *      queue();
113  *     unlock(hash_bucket(futex));
114  *     schedule();
115  *
116  * This would cause the waiter on CPU 0 to wait forever because it
117  * missed the transition of the user space value from val to newval
118  * and the waker did not find the waiter in the hash bucket queue.
119  *
120  * The correct serialization ensures that a waiter either observes
121  * the changed user space value before blocking or is woken by a
122  * concurrent waker:
123  *
124  * CPU 0                                 CPU 1
125  * val = *futex;
126  * sys_futex(WAIT, futex, val);
127  *   futex_wait(futex, val);
128  *
129  *   waiters++; (a)
130  *   smp_mb(); (A) <-- paired with -.
131  *                                  |
132  *   lock(hash_bucket(futex));      |
133  *                                  |
134  *   uval = *futex;                 |
135  *                                  |        *futex = newval;
136  *                                  |        sys_futex(WAKE, futex);
137  *                                  |          futex_wake(futex);
138  *                                  |
139  *                                  `--------> smp_mb(); (B)
140  *   if (uval == val)
141  *     queue();
142  *     unlock(hash_bucket(futex));
143  *     schedule();                         if (waiters)
144  *                                           lock(hash_bucket(futex));
145  *   else                                    wake_waiters(futex);
146  *     waiters--; (b)                        unlock(hash_bucket(futex));
147  *
148  * Where (A) orders the waiters increment and the futex value read through
149  * atomic operations (see hb_waiters_inc) and where (B) orders the write
150  * to futex and the waiters read -- this is done by the barriers for both
151  * shared and private futexes in get_futex_key_refs().
152  *
153  * This yields the following case (where X:=waiters, Y:=futex):
154  *
155  *      X = Y = 0
156  *
157  *      w[X]=1          w[Y]=1
158  *      MB              MB
159  *      r[Y]=y          r[X]=x
160  *
161  * Which guarantees that x==0 && y==0 is impossible; which translates back into
162  * the guarantee that we cannot both miss the futex variable change and the
163  * enqueue.
164  *
165  * Note that a new waiter is accounted for in (a) even when it is possible that
166  * the wait call can return error, in which case we backtrack from it in (b).
167  * Refer to the comment in queue_lock().
168  *
169  * Similarly, in order to account for waiters being requeued on another
170  * address we always increment the waiters for the destination bucket before
171  * acquiring the lock. It then decrements them again  after releasing it -
172  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
173  * will do the additional required waiter count housekeeping. This is done for
174  * double_lock_hb() and double_unlock_hb(), respectively.
175  */
176
177 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
178 #define futex_cmpxchg_enabled 1
179 #else
180 static int  __read_mostly futex_cmpxchg_enabled;
181 #endif
182
183 /*
184  * Futex flags used to encode options to functions and preserve them across
185  * restarts.
186  */
187 #ifdef CONFIG_MMU
188 # define FLAGS_SHARED           0x01
189 #else
190 /*
191  * NOMMU does not have per process address space. Let the compiler optimize
192  * code away.
193  */
194 # define FLAGS_SHARED           0x00
195 #endif
196 #define FLAGS_CLOCKRT           0x02
197 #define FLAGS_HAS_TIMEOUT       0x04
198
199 /*
200  * Priority Inheritance state:
201  */
202 struct futex_pi_state {
203         /*
204          * list of 'owned' pi_state instances - these have to be
205          * cleaned up in do_exit() if the task exits prematurely:
206          */
207         struct list_head list;
208
209         /*
210          * The PI object:
211          */
212         struct rt_mutex pi_mutex;
213
214         struct task_struct *owner;
215         atomic_t refcount;
216
217         union futex_key key;
218 } __randomize_layout;
219
220 /**
221  * struct futex_q - The hashed futex queue entry, one per waiting task
222  * @list:               priority-sorted list of tasks waiting on this futex
223  * @task:               the task waiting on the futex
224  * @lock_ptr:           the hash bucket lock
225  * @key:                the key the futex is hashed on
226  * @pi_state:           optional priority inheritance state
227  * @rt_waiter:          rt_waiter storage for use with requeue_pi
228  * @requeue_pi_key:     the requeue_pi target futex key
229  * @bitset:             bitset for the optional bitmasked wakeup
230  *
231  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
232  * we can wake only the relevant ones (hashed queues may be shared).
233  *
234  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
235  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
236  * The order of wakeup is always to make the first condition true, then
237  * the second.
238  *
239  * PI futexes are typically woken before they are removed from the hash list via
240  * the rt_mutex code. See unqueue_me_pi().
241  */
242 struct futex_q {
243         struct plist_node list;
244
245         struct task_struct *task;
246         spinlock_t *lock_ptr;
247         union futex_key key;
248         struct futex_pi_state *pi_state;
249         struct rt_mutex_waiter *rt_waiter;
250         union futex_key *requeue_pi_key;
251         u32 bitset;
252 } __randomize_layout;
253
254 static const struct futex_q futex_q_init = {
255         /* list gets initialized in queue_me()*/
256         .key = FUTEX_KEY_INIT,
257         .bitset = FUTEX_BITSET_MATCH_ANY
258 };
259
260 /*
261  * Hash buckets are shared by all the futex_keys that hash to the same
262  * location.  Each key may have multiple futex_q structures, one for each task
263  * waiting on a futex.
264  */
265 struct futex_hash_bucket {
266         atomic_t waiters;
267         spinlock_t lock;
268         struct plist_head chain;
269 } ____cacheline_aligned_in_smp;
270
271 /*
272  * The base of the bucket array and its size are always used together
273  * (after initialization only in hash_futex()), so ensure that they
274  * reside in the same cacheline.
275  */
276 static struct {
277         struct futex_hash_bucket *queues;
278         unsigned long            hashsize;
279 } __futex_data __read_mostly __aligned(2*sizeof(long));
280 #define futex_queues   (__futex_data.queues)
281 #define futex_hashsize (__futex_data.hashsize)
282
283
284 /*
285  * Fault injections for futexes.
286  */
287 #ifdef CONFIG_FAIL_FUTEX
288
289 static struct {
290         struct fault_attr attr;
291
292         bool ignore_private;
293 } fail_futex = {
294         .attr = FAULT_ATTR_INITIALIZER,
295         .ignore_private = false,
296 };
297
298 static int __init setup_fail_futex(char *str)
299 {
300         return setup_fault_attr(&fail_futex.attr, str);
301 }
302 __setup("fail_futex=", setup_fail_futex);
303
304 static bool should_fail_futex(bool fshared)
305 {
306         if (fail_futex.ignore_private && !fshared)
307                 return false;
308
309         return should_fail(&fail_futex.attr, 1);
310 }
311
312 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
313
314 static int __init fail_futex_debugfs(void)
315 {
316         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
317         struct dentry *dir;
318
319         dir = fault_create_debugfs_attr("fail_futex", NULL,
320                                         &fail_futex.attr);
321         if (IS_ERR(dir))
322                 return PTR_ERR(dir);
323
324         debugfs_create_bool("ignore-private", mode, dir,
325                             &fail_futex.ignore_private);
326         return 0;
327 }
328
329 late_initcall(fail_futex_debugfs);
330
331 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
332
333 #else
334 static inline bool should_fail_futex(bool fshared)
335 {
336         return false;
337 }
338 #endif /* CONFIG_FAIL_FUTEX */
339
340 static inline void futex_get_mm(union futex_key *key)
341 {
342         mmgrab(key->private.mm);
343         /*
344          * Ensure futex_get_mm() implies a full barrier such that
345          * get_futex_key() implies a full barrier. This is relied upon
346          * as smp_mb(); (B), see the ordering comment above.
347          */
348         smp_mb__after_atomic();
349 }
350
351 /*
352  * Reflects a new waiter being added to the waitqueue.
353  */
354 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
355 {
356 #ifdef CONFIG_SMP
357         atomic_inc(&hb->waiters);
358         /*
359          * Full barrier (A), see the ordering comment above.
360          */
361         smp_mb__after_atomic();
362 #endif
363 }
364
365 /*
366  * Reflects a waiter being removed from the waitqueue by wakeup
367  * paths.
368  */
369 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
370 {
371 #ifdef CONFIG_SMP
372         atomic_dec(&hb->waiters);
373 #endif
374 }
375
376 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
377 {
378 #ifdef CONFIG_SMP
379         return atomic_read(&hb->waiters);
380 #else
381         return 1;
382 #endif
383 }
384
385 /**
386  * hash_futex - Return the hash bucket in the global hash
387  * @key:        Pointer to the futex key for which the hash is calculated
388  *
389  * We hash on the keys returned from get_futex_key (see below) and return the
390  * corresponding hash bucket in the global hash.
391  */
392 static struct futex_hash_bucket *hash_futex(union futex_key *key)
393 {
394         u32 hash = jhash2((u32*)&key->both.word,
395                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
396                           key->both.offset);
397         return &futex_queues[hash & (futex_hashsize - 1)];
398 }
399
400
401 /**
402  * match_futex - Check whether two futex keys are equal
403  * @key1:       Pointer to key1
404  * @key2:       Pointer to key2
405  *
406  * Return 1 if two futex_keys are equal, 0 otherwise.
407  */
408 static inline int match_futex(union futex_key *key1, union futex_key *key2)
409 {
410         return (key1 && key2
411                 && key1->both.word == key2->both.word
412                 && key1->both.ptr == key2->both.ptr
413                 && key1->both.offset == key2->both.offset);
414 }
415
416 /*
417  * Take a reference to the resource addressed by a key.
418  * Can be called while holding spinlocks.
419  *
420  */
421 static void get_futex_key_refs(union futex_key *key)
422 {
423         if (!key->both.ptr)
424                 return;
425
426         /*
427          * On MMU less systems futexes are always "private" as there is no per
428          * process address space. We need the smp wmb nevertheless - yes,
429          * arch/blackfin has MMU less SMP ...
430          */
431         if (!IS_ENABLED(CONFIG_MMU)) {
432                 smp_mb(); /* explicit smp_mb(); (B) */
433                 return;
434         }
435
436         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
437         case FUT_OFF_INODE:
438                 ihold(key->shared.inode); /* implies smp_mb(); (B) */
439                 break;
440         case FUT_OFF_MMSHARED:
441                 futex_get_mm(key); /* implies smp_mb(); (B) */
442                 break;
443         default:
444                 /*
445                  * Private futexes do not hold reference on an inode or
446                  * mm, therefore the only purpose of calling get_futex_key_refs
447                  * is because we need the barrier for the lockless waiter check.
448                  */
449                 smp_mb(); /* explicit smp_mb(); (B) */
450         }
451 }
452
453 /*
454  * Drop a reference to the resource addressed by a key.
455  * The hash bucket spinlock must not be held. This is
456  * a no-op for private futexes, see comment in the get
457  * counterpart.
458  */
459 static void drop_futex_key_refs(union futex_key *key)
460 {
461         if (!key->both.ptr) {
462                 /* If we're here then we tried to put a key we failed to get */
463                 WARN_ON_ONCE(1);
464                 return;
465         }
466
467         if (!IS_ENABLED(CONFIG_MMU))
468                 return;
469
470         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
471         case FUT_OFF_INODE:
472                 iput(key->shared.inode);
473                 break;
474         case FUT_OFF_MMSHARED:
475                 mmdrop(key->private.mm);
476                 break;
477         }
478 }
479
480 enum futex_access {
481         FUTEX_READ,
482         FUTEX_WRITE
483 };
484
485 /**
486  * get_futex_key() - Get parameters which are the keys for a futex
487  * @uaddr:      virtual address of the futex
488  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
489  * @key:        address where result is stored.
490  * @rw:         mapping needs to be read/write (values: FUTEX_READ,
491  *              FUTEX_WRITE)
492  *
493  * Return: a negative error code or 0
494  *
495  * The key words are stored in @key on success.
496  *
497  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
498  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
499  * We can usually work out the index without swapping in the page.
500  *
501  * lock_page() might sleep, the caller should not hold a spinlock.
502  */
503 static int
504 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
505 {
506         unsigned long address = (unsigned long)uaddr;
507         struct mm_struct *mm = current->mm;
508         struct page *page, *tail;
509         struct address_space *mapping;
510         int err, ro = 0;
511
512         /*
513          * The futex address must be "naturally" aligned.
514          */
515         key->both.offset = address % PAGE_SIZE;
516         if (unlikely((address % sizeof(u32)) != 0))
517                 return -EINVAL;
518         address -= key->both.offset;
519
520         if (unlikely(!access_ok(uaddr, sizeof(u32))))
521                 return -EFAULT;
522
523         if (unlikely(should_fail_futex(fshared)))
524                 return -EFAULT;
525
526         /*
527          * PROCESS_PRIVATE futexes are fast.
528          * As the mm cannot disappear under us and the 'key' only needs
529          * virtual address, we dont even have to find the underlying vma.
530          * Note : We do have to check 'uaddr' is a valid user address,
531          *        but access_ok() should be faster than find_vma()
532          */
533         if (!fshared) {
534                 key->private.mm = mm;
535                 key->private.address = address;
536                 get_futex_key_refs(key);  /* implies smp_mb(); (B) */
537                 return 0;
538         }
539
540 again:
541         /* Ignore any VERIFY_READ mapping (futex common case) */
542         if (unlikely(should_fail_futex(fshared)))
543                 return -EFAULT;
544
545         err = get_user_pages_fast(address, 1, 1, &page);
546         /*
547          * If write access is not required (eg. FUTEX_WAIT), try
548          * and get read-only access.
549          */
550         if (err == -EFAULT && rw == FUTEX_READ) {
551                 err = get_user_pages_fast(address, 1, 0, &page);
552                 ro = 1;
553         }
554         if (err < 0)
555                 return err;
556         else
557                 err = 0;
558
559         /*
560          * The treatment of mapping from this point on is critical. The page
561          * lock protects many things but in this context the page lock
562          * stabilizes mapping, prevents inode freeing in the shared
563          * file-backed region case and guards against movement to swap cache.
564          *
565          * Strictly speaking the page lock is not needed in all cases being
566          * considered here and page lock forces unnecessarily serialization
567          * From this point on, mapping will be re-verified if necessary and
568          * page lock will be acquired only if it is unavoidable
569          *
570          * Mapping checks require the head page for any compound page so the
571          * head page and mapping is looked up now. For anonymous pages, it
572          * does not matter if the page splits in the future as the key is
573          * based on the address. For filesystem-backed pages, the tail is
574          * required as the index of the page determines the key. For
575          * base pages, there is no tail page and tail == page.
576          */
577         tail = page;
578         page = compound_head(page);
579         mapping = READ_ONCE(page->mapping);
580
581         /*
582          * If page->mapping is NULL, then it cannot be a PageAnon
583          * page; but it might be the ZERO_PAGE or in the gate area or
584          * in a special mapping (all cases which we are happy to fail);
585          * or it may have been a good file page when get_user_pages_fast
586          * found it, but truncated or holepunched or subjected to
587          * invalidate_complete_page2 before we got the page lock (also
588          * cases which we are happy to fail).  And we hold a reference,
589          * so refcount care in invalidate_complete_page's remove_mapping
590          * prevents drop_caches from setting mapping to NULL beneath us.
591          *
592          * The case we do have to guard against is when memory pressure made
593          * shmem_writepage move it from filecache to swapcache beneath us:
594          * an unlikely race, but we do need to retry for page->mapping.
595          */
596         if (unlikely(!mapping)) {
597                 int shmem_swizzled;
598
599                 /*
600                  * Page lock is required to identify which special case above
601                  * applies. If this is really a shmem page then the page lock
602                  * will prevent unexpected transitions.
603                  */
604                 lock_page(page);
605                 shmem_swizzled = PageSwapCache(page) || page->mapping;
606                 unlock_page(page);
607                 put_page(page);
608
609                 if (shmem_swizzled)
610                         goto again;
611
612                 return -EFAULT;
613         }
614
615         /*
616          * Private mappings are handled in a simple way.
617          *
618          * If the futex key is stored on an anonymous page, then the associated
619          * object is the mm which is implicitly pinned by the calling process.
620          *
621          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
622          * it's a read-only handle, it's expected that futexes attach to
623          * the object not the particular process.
624          */
625         if (PageAnon(page)) {
626                 /*
627                  * A RO anonymous page will never change and thus doesn't make
628                  * sense for futex operations.
629                  */
630                 if (unlikely(should_fail_futex(fshared)) || ro) {
631                         err = -EFAULT;
632                         goto out;
633                 }
634
635                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
636                 key->private.mm = mm;
637                 key->private.address = address;
638
639                 get_futex_key_refs(key); /* implies smp_mb(); (B) */
640
641         } else {
642                 struct inode *inode;
643
644                 /*
645                  * The associated futex object in this case is the inode and
646                  * the page->mapping must be traversed. Ordinarily this should
647                  * be stabilised under page lock but it's not strictly
648                  * necessary in this case as we just want to pin the inode, not
649                  * update the radix tree or anything like that.
650                  *
651                  * The RCU read lock is taken as the inode is finally freed
652                  * under RCU. If the mapping still matches expectations then the
653                  * mapping->host can be safely accessed as being a valid inode.
654                  */
655                 rcu_read_lock();
656
657                 if (READ_ONCE(page->mapping) != mapping) {
658                         rcu_read_unlock();
659                         put_page(page);
660
661                         goto again;
662                 }
663
664                 inode = READ_ONCE(mapping->host);
665                 if (!inode) {
666                         rcu_read_unlock();
667                         put_page(page);
668
669                         goto again;
670                 }
671
672                 /*
673                  * Take a reference unless it is about to be freed. Previously
674                  * this reference was taken by ihold under the page lock
675                  * pinning the inode in place so i_lock was unnecessary. The
676                  * only way for this check to fail is if the inode was
677                  * truncated in parallel which is almost certainly an
678                  * application bug. In such a case, just retry.
679                  *
680                  * We are not calling into get_futex_key_refs() in file-backed
681                  * cases, therefore a successful atomic_inc return below will
682                  * guarantee that get_futex_key() will still imply smp_mb(); (B).
683                  */
684                 if (!atomic_inc_not_zero(&inode->i_count)) {
685                         rcu_read_unlock();
686                         put_page(page);
687
688                         goto again;
689                 }
690
691                 /* Should be impossible but lets be paranoid for now */
692                 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
693                         err = -EFAULT;
694                         rcu_read_unlock();
695                         iput(inode);
696
697                         goto out;
698                 }
699
700                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
701                 key->shared.inode = inode;
702                 key->shared.pgoff = basepage_index(tail);
703                 rcu_read_unlock();
704         }
705
706 out:
707         put_page(page);
708         return err;
709 }
710
711 static inline void put_futex_key(union futex_key *key)
712 {
713         drop_futex_key_refs(key);
714 }
715
716 /**
717  * fault_in_user_writeable() - Fault in user address and verify RW access
718  * @uaddr:      pointer to faulting user space address
719  *
720  * Slow path to fixup the fault we just took in the atomic write
721  * access to @uaddr.
722  *
723  * We have no generic implementation of a non-destructive write to the
724  * user address. We know that we faulted in the atomic pagefault
725  * disabled section so we can as well avoid the #PF overhead by
726  * calling get_user_pages() right away.
727  */
728 static int fault_in_user_writeable(u32 __user *uaddr)
729 {
730         struct mm_struct *mm = current->mm;
731         int ret;
732
733         down_read(&mm->mmap_sem);
734         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
735                                FAULT_FLAG_WRITE, NULL);
736         up_read(&mm->mmap_sem);
737
738         return ret < 0 ? ret : 0;
739 }
740
741 /**
742  * futex_top_waiter() - Return the highest priority waiter on a futex
743  * @hb:         the hash bucket the futex_q's reside in
744  * @key:        the futex key (to distinguish it from other futex futex_q's)
745  *
746  * Must be called with the hb lock held.
747  */
748 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
749                                         union futex_key *key)
750 {
751         struct futex_q *this;
752
753         plist_for_each_entry(this, &hb->chain, list) {
754                 if (match_futex(&this->key, key))
755                         return this;
756         }
757         return NULL;
758 }
759
760 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
761                                       u32 uval, u32 newval)
762 {
763         int ret;
764
765         pagefault_disable();
766         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
767         pagefault_enable();
768
769         return ret;
770 }
771
772 static int get_futex_value_locked(u32 *dest, u32 __user *from)
773 {
774         int ret;
775
776         pagefault_disable();
777         ret = __get_user(*dest, from);
778         pagefault_enable();
779
780         return ret ? -EFAULT : 0;
781 }
782
783
784 /*
785  * PI code:
786  */
787 static int refill_pi_state_cache(void)
788 {
789         struct futex_pi_state *pi_state;
790
791         if (likely(current->pi_state_cache))
792                 return 0;
793
794         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
795
796         if (!pi_state)
797                 return -ENOMEM;
798
799         INIT_LIST_HEAD(&pi_state->list);
800         /* pi_mutex gets initialized later */
801         pi_state->owner = NULL;
802         atomic_set(&pi_state->refcount, 1);
803         pi_state->key = FUTEX_KEY_INIT;
804
805         current->pi_state_cache = pi_state;
806
807         return 0;
808 }
809
810 static struct futex_pi_state *alloc_pi_state(void)
811 {
812         struct futex_pi_state *pi_state = current->pi_state_cache;
813
814         WARN_ON(!pi_state);
815         current->pi_state_cache = NULL;
816
817         return pi_state;
818 }
819
820 static void get_pi_state(struct futex_pi_state *pi_state)
821 {
822         WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
823 }
824
825 /*
826  * Drops a reference to the pi_state object and frees or caches it
827  * when the last reference is gone.
828  */
829 static void put_pi_state(struct futex_pi_state *pi_state)
830 {
831         if (!pi_state)
832                 return;
833
834         if (!atomic_dec_and_test(&pi_state->refcount))
835                 return;
836
837         /*
838          * If pi_state->owner is NULL, the owner is most probably dying
839          * and has cleaned up the pi_state already
840          */
841         if (pi_state->owner) {
842                 struct task_struct *owner;
843
844                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
845                 owner = pi_state->owner;
846                 if (owner) {
847                         raw_spin_lock(&owner->pi_lock);
848                         list_del_init(&pi_state->list);
849                         raw_spin_unlock(&owner->pi_lock);
850                 }
851                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
852                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
853         }
854
855         if (current->pi_state_cache) {
856                 kfree(pi_state);
857         } else {
858                 /*
859                  * pi_state->list is already empty.
860                  * clear pi_state->owner.
861                  * refcount is at 0 - put it back to 1.
862                  */
863                 pi_state->owner = NULL;
864                 atomic_set(&pi_state->refcount, 1);
865                 current->pi_state_cache = pi_state;
866         }
867 }
868
869 #ifdef CONFIG_FUTEX_PI
870
871 /*
872  * This task is holding PI mutexes at exit time => bad.
873  * Kernel cleans up PI-state, but userspace is likely hosed.
874  * (Robust-futex cleanup is separate and might save the day for userspace.)
875  */
876 void exit_pi_state_list(struct task_struct *curr)
877 {
878         struct list_head *next, *head = &curr->pi_state_list;
879         struct futex_pi_state *pi_state;
880         struct futex_hash_bucket *hb;
881         union futex_key key = FUTEX_KEY_INIT;
882
883         if (!futex_cmpxchg_enabled)
884                 return;
885         /*
886          * We are a ZOMBIE and nobody can enqueue itself on
887          * pi_state_list anymore, but we have to be careful
888          * versus waiters unqueueing themselves:
889          */
890         raw_spin_lock_irq(&curr->pi_lock);
891         while (!list_empty(head)) {
892                 next = head->next;
893                 pi_state = list_entry(next, struct futex_pi_state, list);
894                 key = pi_state->key;
895                 hb = hash_futex(&key);
896
897                 /*
898                  * We can race against put_pi_state() removing itself from the
899                  * list (a waiter going away). put_pi_state() will first
900                  * decrement the reference count and then modify the list, so
901                  * its possible to see the list entry but fail this reference
902                  * acquire.
903                  *
904                  * In that case; drop the locks to let put_pi_state() make
905                  * progress and retry the loop.
906                  */
907                 if (!atomic_inc_not_zero(&pi_state->refcount)) {
908                         raw_spin_unlock_irq(&curr->pi_lock);
909                         cpu_relax();
910                         raw_spin_lock_irq(&curr->pi_lock);
911                         continue;
912                 }
913                 raw_spin_unlock_irq(&curr->pi_lock);
914
915                 spin_lock(&hb->lock);
916                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
917                 raw_spin_lock(&curr->pi_lock);
918                 /*
919                  * We dropped the pi-lock, so re-check whether this
920                  * task still owns the PI-state:
921                  */
922                 if (head->next != next) {
923                         /* retain curr->pi_lock for the loop invariant */
924                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
925                         spin_unlock(&hb->lock);
926                         put_pi_state(pi_state);
927                         continue;
928                 }
929
930                 WARN_ON(pi_state->owner != curr);
931                 WARN_ON(list_empty(&pi_state->list));
932                 list_del_init(&pi_state->list);
933                 pi_state->owner = NULL;
934
935                 raw_spin_unlock(&curr->pi_lock);
936                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
937                 spin_unlock(&hb->lock);
938
939                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
940                 put_pi_state(pi_state);
941
942                 raw_spin_lock_irq(&curr->pi_lock);
943         }
944         raw_spin_unlock_irq(&curr->pi_lock);
945 }
946
947 #endif
948
949 /*
950  * We need to check the following states:
951  *
952  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
953  *
954  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
955  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
956  *
957  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
958  *
959  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
960  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
961  *
962  * [6]  Found  | Found    | task      | 0         | 1      | Valid
963  *
964  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
965  *
966  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
967  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
968  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
969  *
970  * [1]  Indicates that the kernel can acquire the futex atomically. We
971  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
972  *
973  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
974  *      thread is found then it indicates that the owner TID has died.
975  *
976  * [3]  Invalid. The waiter is queued on a non PI futex
977  *
978  * [4]  Valid state after exit_robust_list(), which sets the user space
979  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
980  *
981  * [5]  The user space value got manipulated between exit_robust_list()
982  *      and exit_pi_state_list()
983  *
984  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
985  *      the pi_state but cannot access the user space value.
986  *
987  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
988  *
989  * [8]  Owner and user space value match
990  *
991  * [9]  There is no transient state which sets the user space TID to 0
992  *      except exit_robust_list(), but this is indicated by the
993  *      FUTEX_OWNER_DIED bit. See [4]
994  *
995  * [10] There is no transient state which leaves owner and user space
996  *      TID out of sync.
997  *
998  *
999  * Serialization and lifetime rules:
1000  *
1001  * hb->lock:
1002  *
1003  *      hb -> futex_q, relation
1004  *      futex_q -> pi_state, relation
1005  *
1006  *      (cannot be raw because hb can contain arbitrary amount
1007  *       of futex_q's)
1008  *
1009  * pi_mutex->wait_lock:
1010  *
1011  *      {uval, pi_state}
1012  *
1013  *      (and pi_mutex 'obviously')
1014  *
1015  * p->pi_lock:
1016  *
1017  *      p->pi_state_list -> pi_state->list, relation
1018  *
1019  * pi_state->refcount:
1020  *
1021  *      pi_state lifetime
1022  *
1023  *
1024  * Lock order:
1025  *
1026  *   hb->lock
1027  *     pi_mutex->wait_lock
1028  *       p->pi_lock
1029  *
1030  */
1031
1032 /*
1033  * Validate that the existing waiter has a pi_state and sanity check
1034  * the pi_state against the user space value. If correct, attach to
1035  * it.
1036  */
1037 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1038                               struct futex_pi_state *pi_state,
1039                               struct futex_pi_state **ps)
1040 {
1041         pid_t pid = uval & FUTEX_TID_MASK;
1042         u32 uval2;
1043         int ret;
1044
1045         /*
1046          * Userspace might have messed up non-PI and PI futexes [3]
1047          */
1048         if (unlikely(!pi_state))
1049                 return -EINVAL;
1050
1051         /*
1052          * We get here with hb->lock held, and having found a
1053          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1054          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1055          * which in turn means that futex_lock_pi() still has a reference on
1056          * our pi_state.
1057          *
1058          * The waiter holding a reference on @pi_state also protects against
1059          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1060          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1061          * free pi_state before we can take a reference ourselves.
1062          */
1063         WARN_ON(!atomic_read(&pi_state->refcount));
1064
1065         /*
1066          * Now that we have a pi_state, we can acquire wait_lock
1067          * and do the state validation.
1068          */
1069         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1070
1071         /*
1072          * Since {uval, pi_state} is serialized by wait_lock, and our current
1073          * uval was read without holding it, it can have changed. Verify it
1074          * still is what we expect it to be, otherwise retry the entire
1075          * operation.
1076          */
1077         if (get_futex_value_locked(&uval2, uaddr))
1078                 goto out_efault;
1079
1080         if (uval != uval2)
1081                 goto out_eagain;
1082
1083         /*
1084          * Handle the owner died case:
1085          */
1086         if (uval & FUTEX_OWNER_DIED) {
1087                 /*
1088                  * exit_pi_state_list sets owner to NULL and wakes the
1089                  * topmost waiter. The task which acquires the
1090                  * pi_state->rt_mutex will fixup owner.
1091                  */
1092                 if (!pi_state->owner) {
1093                         /*
1094                          * No pi state owner, but the user space TID
1095                          * is not 0. Inconsistent state. [5]
1096                          */
1097                         if (pid)
1098                                 goto out_einval;
1099                         /*
1100                          * Take a ref on the state and return success. [4]
1101                          */
1102                         goto out_attach;
1103                 }
1104
1105                 /*
1106                  * If TID is 0, then either the dying owner has not
1107                  * yet executed exit_pi_state_list() or some waiter
1108                  * acquired the rtmutex in the pi state, but did not
1109                  * yet fixup the TID in user space.
1110                  *
1111                  * Take a ref on the state and return success. [6]
1112                  */
1113                 if (!pid)
1114                         goto out_attach;
1115         } else {
1116                 /*
1117                  * If the owner died bit is not set, then the pi_state
1118                  * must have an owner. [7]
1119                  */
1120                 if (!pi_state->owner)
1121                         goto out_einval;
1122         }
1123
1124         /*
1125          * Bail out if user space manipulated the futex value. If pi
1126          * state exists then the owner TID must be the same as the
1127          * user space TID. [9/10]
1128          */
1129         if (pid != task_pid_vnr(pi_state->owner))
1130                 goto out_einval;
1131
1132 out_attach:
1133         get_pi_state(pi_state);
1134         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1135         *ps = pi_state;
1136         return 0;
1137
1138 out_einval:
1139         ret = -EINVAL;
1140         goto out_error;
1141
1142 out_eagain:
1143         ret = -EAGAIN;
1144         goto out_error;
1145
1146 out_efault:
1147         ret = -EFAULT;
1148         goto out_error;
1149
1150 out_error:
1151         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1152         return ret;
1153 }
1154
1155 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1156                             struct task_struct *tsk)
1157 {
1158         u32 uval2;
1159
1160         /*
1161          * If PF_EXITPIDONE is not yet set, then try again.
1162          */
1163         if (tsk && !(tsk->flags & PF_EXITPIDONE))
1164                 return -EAGAIN;
1165
1166         /*
1167          * Reread the user space value to handle the following situation:
1168          *
1169          * CPU0                         CPU1
1170          *
1171          * sys_exit()                   sys_futex()
1172          *  do_exit()                    futex_lock_pi()
1173          *                                futex_lock_pi_atomic()
1174          *   exit_signals(tsk)              No waiters:
1175          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1176          *  mm_release(tsk)                 Set waiter bit
1177          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1178          *      Set owner died              attach_to_pi_owner() {
1179          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1180          *   }                               if (!tsk->flags & PF_EXITING) {
1181          *  ...                                attach();
1182          *  tsk->flags |= PF_EXITPIDONE;     } else {
1183          *                                     if (!(tsk->flags & PF_EXITPIDONE))
1184          *                                       return -EAGAIN;
1185          *                                     return -ESRCH; <--- FAIL
1186          *                                   }
1187          *
1188          * Returning ESRCH unconditionally is wrong here because the
1189          * user space value has been changed by the exiting task.
1190          *
1191          * The same logic applies to the case where the exiting task is
1192          * already gone.
1193          */
1194         if (get_futex_value_locked(&uval2, uaddr))
1195                 return -EFAULT;
1196
1197         /* If the user space value has changed, try again. */
1198         if (uval2 != uval)
1199                 return -EAGAIN;
1200
1201         /*
1202          * The exiting task did not have a robust list, the robust list was
1203          * corrupted or the user space value in *uaddr is simply bogus.
1204          * Give up and tell user space.
1205          */
1206         return -ESRCH;
1207 }
1208
1209 /*
1210  * Lookup the task for the TID provided from user space and attach to
1211  * it after doing proper sanity checks.
1212  */
1213 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1214                               struct futex_pi_state **ps)
1215 {
1216         pid_t pid = uval & FUTEX_TID_MASK;
1217         struct futex_pi_state *pi_state;
1218         struct task_struct *p;
1219
1220         /*
1221          * We are the first waiter - try to look up the real owner and attach
1222          * the new pi_state to it, but bail out when TID = 0 [1]
1223          *
1224          * The !pid check is paranoid. None of the call sites should end up
1225          * with pid == 0, but better safe than sorry. Let the caller retry
1226          */
1227         if (!pid)
1228                 return -EAGAIN;
1229         p = find_get_task_by_vpid(pid);
1230         if (!p)
1231                 return handle_exit_race(uaddr, uval, NULL);
1232
1233         if (unlikely(p->flags & PF_KTHREAD)) {
1234                 put_task_struct(p);
1235                 return -EPERM;
1236         }
1237
1238         /*
1239          * We need to look at the task state flags to figure out,
1240          * whether the task is exiting. To protect against the do_exit
1241          * change of the task flags, we do this protected by
1242          * p->pi_lock:
1243          */
1244         raw_spin_lock_irq(&p->pi_lock);
1245         if (unlikely(p->flags & PF_EXITING)) {
1246                 /*
1247                  * The task is on the way out. When PF_EXITPIDONE is
1248                  * set, we know that the task has finished the
1249                  * cleanup:
1250                  */
1251                 int ret = handle_exit_race(uaddr, uval, p);
1252
1253                 raw_spin_unlock_irq(&p->pi_lock);
1254                 put_task_struct(p);
1255                 return ret;
1256         }
1257
1258         /*
1259          * No existing pi state. First waiter. [2]
1260          *
1261          * This creates pi_state, we have hb->lock held, this means nothing can
1262          * observe this state, wait_lock is irrelevant.
1263          */
1264         pi_state = alloc_pi_state();
1265
1266         /*
1267          * Initialize the pi_mutex in locked state and make @p
1268          * the owner of it:
1269          */
1270         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1271
1272         /* Store the key for possible exit cleanups: */
1273         pi_state->key = *key;
1274
1275         WARN_ON(!list_empty(&pi_state->list));
1276         list_add(&pi_state->list, &p->pi_state_list);
1277         /*
1278          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1279          * because there is no concurrency as the object is not published yet.
1280          */
1281         pi_state->owner = p;
1282         raw_spin_unlock_irq(&p->pi_lock);
1283
1284         put_task_struct(p);
1285
1286         *ps = pi_state;
1287
1288         return 0;
1289 }
1290
1291 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1292                            struct futex_hash_bucket *hb,
1293                            union futex_key *key, struct futex_pi_state **ps)
1294 {
1295         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1296
1297         /*
1298          * If there is a waiter on that futex, validate it and
1299          * attach to the pi_state when the validation succeeds.
1300          */
1301         if (top_waiter)
1302                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1303
1304         /*
1305          * We are the first waiter - try to look up the owner based on
1306          * @uval and attach to it.
1307          */
1308         return attach_to_pi_owner(uaddr, uval, key, ps);
1309 }
1310
1311 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1312 {
1313         u32 uninitialized_var(curval);
1314
1315         if (unlikely(should_fail_futex(true)))
1316                 return -EFAULT;
1317
1318         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1319                 return -EFAULT;
1320
1321         /* If user space value changed, let the caller retry */
1322         return curval != uval ? -EAGAIN : 0;
1323 }
1324
1325 /**
1326  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1327  * @uaddr:              the pi futex user address
1328  * @hb:                 the pi futex hash bucket
1329  * @key:                the futex key associated with uaddr and hb
1330  * @ps:                 the pi_state pointer where we store the result of the
1331  *                      lookup
1332  * @task:               the task to perform the atomic lock work for.  This will
1333  *                      be "current" except in the case of requeue pi.
1334  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1335  *
1336  * Return:
1337  *  -  0 - ready to wait;
1338  *  -  1 - acquired the lock;
1339  *  - <0 - error
1340  *
1341  * The hb->lock and futex_key refs shall be held by the caller.
1342  */
1343 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1344                                 union futex_key *key,
1345                                 struct futex_pi_state **ps,
1346                                 struct task_struct *task, int set_waiters)
1347 {
1348         u32 uval, newval, vpid = task_pid_vnr(task);
1349         struct futex_q *top_waiter;
1350         int ret;
1351
1352         /*
1353          * Read the user space value first so we can validate a few
1354          * things before proceeding further.
1355          */
1356         if (get_futex_value_locked(&uval, uaddr))
1357                 return -EFAULT;
1358
1359         if (unlikely(should_fail_futex(true)))
1360                 return -EFAULT;
1361
1362         /*
1363          * Detect deadlocks.
1364          */
1365         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1366                 return -EDEADLK;
1367
1368         if ((unlikely(should_fail_futex(true))))
1369                 return -EDEADLK;
1370
1371         /*
1372          * Lookup existing state first. If it exists, try to attach to
1373          * its pi_state.
1374          */
1375         top_waiter = futex_top_waiter(hb, key);
1376         if (top_waiter)
1377                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1378
1379         /*
1380          * No waiter and user TID is 0. We are here because the
1381          * waiters or the owner died bit is set or called from
1382          * requeue_cmp_pi or for whatever reason something took the
1383          * syscall.
1384          */
1385         if (!(uval & FUTEX_TID_MASK)) {
1386                 /*
1387                  * We take over the futex. No other waiters and the user space
1388                  * TID is 0. We preserve the owner died bit.
1389                  */
1390                 newval = uval & FUTEX_OWNER_DIED;
1391                 newval |= vpid;
1392
1393                 /* The futex requeue_pi code can enforce the waiters bit */
1394                 if (set_waiters)
1395                         newval |= FUTEX_WAITERS;
1396
1397                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1398                 /* If the take over worked, return 1 */
1399                 return ret < 0 ? ret : 1;
1400         }
1401
1402         /*
1403          * First waiter. Set the waiters bit before attaching ourself to
1404          * the owner. If owner tries to unlock, it will be forced into
1405          * the kernel and blocked on hb->lock.
1406          */
1407         newval = uval | FUTEX_WAITERS;
1408         ret = lock_pi_update_atomic(uaddr, uval, newval);
1409         if (ret)
1410                 return ret;
1411         /*
1412          * If the update of the user space value succeeded, we try to
1413          * attach to the owner. If that fails, no harm done, we only
1414          * set the FUTEX_WAITERS bit in the user space variable.
1415          */
1416         return attach_to_pi_owner(uaddr, newval, key, ps);
1417 }
1418
1419 /**
1420  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1421  * @q:  The futex_q to unqueue
1422  *
1423  * The q->lock_ptr must not be NULL and must be held by the caller.
1424  */
1425 static void __unqueue_futex(struct futex_q *q)
1426 {
1427         struct futex_hash_bucket *hb;
1428
1429         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1430                 return;
1431         lockdep_assert_held(q->lock_ptr);
1432
1433         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1434         plist_del(&q->list, &hb->chain);
1435         hb_waiters_dec(hb);
1436 }
1437
1438 /*
1439  * The hash bucket lock must be held when this is called.
1440  * Afterwards, the futex_q must not be accessed. Callers
1441  * must ensure to later call wake_up_q() for the actual
1442  * wakeups to occur.
1443  */
1444 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1445 {
1446         struct task_struct *p = q->task;
1447
1448         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1449                 return;
1450
1451         get_task_struct(p);
1452         __unqueue_futex(q);
1453         /*
1454          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1455          * is written, without taking any locks. This is possible in the event
1456          * of a spurious wakeup, for example. A memory barrier is required here
1457          * to prevent the following store to lock_ptr from getting ahead of the
1458          * plist_del in __unqueue_futex().
1459          */
1460         smp_store_release(&q->lock_ptr, NULL);
1461
1462         /*
1463          * Queue the task for later wakeup for after we've released
1464          * the hb->lock. wake_q_add() grabs reference to p.
1465          */
1466         wake_q_add_safe(wake_q, p);
1467 }
1468
1469 /*
1470  * Caller must hold a reference on @pi_state.
1471  */
1472 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1473 {
1474         u32 uninitialized_var(curval), newval;
1475         struct task_struct *new_owner;
1476         bool postunlock = false;
1477         DEFINE_WAKE_Q(wake_q);
1478         int ret = 0;
1479
1480         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1481         if (WARN_ON_ONCE(!new_owner)) {
1482                 /*
1483                  * As per the comment in futex_unlock_pi() this should not happen.
1484                  *
1485                  * When this happens, give up our locks and try again, giving
1486                  * the futex_lock_pi() instance time to complete, either by
1487                  * waiting on the rtmutex or removing itself from the futex
1488                  * queue.
1489                  */
1490                 ret = -EAGAIN;
1491                 goto out_unlock;
1492         }
1493
1494         /*
1495          * We pass it to the next owner. The WAITERS bit is always kept
1496          * enabled while there is PI state around. We cleanup the owner
1497          * died bit, because we are the owner.
1498          */
1499         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1500
1501         if (unlikely(should_fail_futex(true)))
1502                 ret = -EFAULT;
1503
1504         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1505                 ret = -EFAULT;
1506
1507         } else if (curval != uval) {
1508                 /*
1509                  * If a unconditional UNLOCK_PI operation (user space did not
1510                  * try the TID->0 transition) raced with a waiter setting the
1511                  * FUTEX_WAITERS flag between get_user() and locking the hash
1512                  * bucket lock, retry the operation.
1513                  */
1514                 if ((FUTEX_TID_MASK & curval) == uval)
1515                         ret = -EAGAIN;
1516                 else
1517                         ret = -EINVAL;
1518         }
1519
1520         if (ret)
1521                 goto out_unlock;
1522
1523         /*
1524          * This is a point of no return; once we modify the uval there is no
1525          * going back and subsequent operations must not fail.
1526          */
1527
1528         raw_spin_lock(&pi_state->owner->pi_lock);
1529         WARN_ON(list_empty(&pi_state->list));
1530         list_del_init(&pi_state->list);
1531         raw_spin_unlock(&pi_state->owner->pi_lock);
1532
1533         raw_spin_lock(&new_owner->pi_lock);
1534         WARN_ON(!list_empty(&pi_state->list));
1535         list_add(&pi_state->list, &new_owner->pi_state_list);
1536         pi_state->owner = new_owner;
1537         raw_spin_unlock(&new_owner->pi_lock);
1538
1539         postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1540
1541 out_unlock:
1542         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1543
1544         if (postunlock)
1545                 rt_mutex_postunlock(&wake_q);
1546
1547         return ret;
1548 }
1549
1550 /*
1551  * Express the locking dependencies for lockdep:
1552  */
1553 static inline void
1554 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1555 {
1556         if (hb1 <= hb2) {
1557                 spin_lock(&hb1->lock);
1558                 if (hb1 < hb2)
1559                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1560         } else { /* hb1 > hb2 */
1561                 spin_lock(&hb2->lock);
1562                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1563         }
1564 }
1565
1566 static inline void
1567 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1568 {
1569         spin_unlock(&hb1->lock);
1570         if (hb1 != hb2)
1571                 spin_unlock(&hb2->lock);
1572 }
1573
1574 /*
1575  * Wake up waiters matching bitset queued on this futex (uaddr).
1576  */
1577 static int
1578 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1579 {
1580         struct futex_hash_bucket *hb;
1581         struct futex_q *this, *next;
1582         union futex_key key = FUTEX_KEY_INIT;
1583         int ret;
1584         DEFINE_WAKE_Q(wake_q);
1585
1586         if (!bitset)
1587                 return -EINVAL;
1588
1589         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1590         if (unlikely(ret != 0))
1591                 goto out;
1592
1593         hb = hash_futex(&key);
1594
1595         /* Make sure we really have tasks to wakeup */
1596         if (!hb_waiters_pending(hb))
1597                 goto out_put_key;
1598
1599         spin_lock(&hb->lock);
1600
1601         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1602                 if (match_futex (&this->key, &key)) {
1603                         if (this->pi_state || this->rt_waiter) {
1604                                 ret = -EINVAL;
1605                                 break;
1606                         }
1607
1608                         /* Check if one of the bits is set in both bitsets */
1609                         if (!(this->bitset & bitset))
1610                                 continue;
1611
1612                         mark_wake_futex(&wake_q, this);
1613                         if (++ret >= nr_wake)
1614                                 break;
1615                 }
1616         }
1617
1618         spin_unlock(&hb->lock);
1619         wake_up_q(&wake_q);
1620 out_put_key:
1621         put_futex_key(&key);
1622 out:
1623         return ret;
1624 }
1625
1626 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1627 {
1628         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1629         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1630         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1631         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1632         int oldval, ret;
1633
1634         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1635                 if (oparg < 0 || oparg > 31) {
1636                         char comm[sizeof(current->comm)];
1637                         /*
1638                          * kill this print and return -EINVAL when userspace
1639                          * is sane again
1640                          */
1641                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1642                                         get_task_comm(comm, current), oparg);
1643                         oparg &= 31;
1644                 }
1645                 oparg = 1 << oparg;
1646         }
1647
1648         if (!access_ok(uaddr, sizeof(u32)))
1649                 return -EFAULT;
1650
1651         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1652         if (ret)
1653                 return ret;
1654
1655         switch (cmp) {
1656         case FUTEX_OP_CMP_EQ:
1657                 return oldval == cmparg;
1658         case FUTEX_OP_CMP_NE:
1659                 return oldval != cmparg;
1660         case FUTEX_OP_CMP_LT:
1661                 return oldval < cmparg;
1662         case FUTEX_OP_CMP_GE:
1663                 return oldval >= cmparg;
1664         case FUTEX_OP_CMP_LE:
1665                 return oldval <= cmparg;
1666         case FUTEX_OP_CMP_GT:
1667                 return oldval > cmparg;
1668         default:
1669                 return -ENOSYS;
1670         }
1671 }
1672
1673 /*
1674  * Wake up all waiters hashed on the physical page that is mapped
1675  * to this virtual address:
1676  */
1677 static int
1678 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1679               int nr_wake, int nr_wake2, int op)
1680 {
1681         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1682         struct futex_hash_bucket *hb1, *hb2;
1683         struct futex_q *this, *next;
1684         int ret, op_ret;
1685         DEFINE_WAKE_Q(wake_q);
1686
1687 retry:
1688         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1689         if (unlikely(ret != 0))
1690                 goto out;
1691         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1692         if (unlikely(ret != 0))
1693                 goto out_put_key1;
1694
1695         hb1 = hash_futex(&key1);
1696         hb2 = hash_futex(&key2);
1697
1698 retry_private:
1699         double_lock_hb(hb1, hb2);
1700         op_ret = futex_atomic_op_inuser(op, uaddr2);
1701         if (unlikely(op_ret < 0)) {
1702
1703                 double_unlock_hb(hb1, hb2);
1704
1705 #ifndef CONFIG_MMU
1706                 /*
1707                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1708                  * but we might get them from range checking
1709                  */
1710                 ret = op_ret;
1711                 goto out_put_keys;
1712 #endif
1713
1714                 if (unlikely(op_ret != -EFAULT)) {
1715                         ret = op_ret;
1716                         goto out_put_keys;
1717                 }
1718
1719                 ret = fault_in_user_writeable(uaddr2);
1720                 if (ret)
1721                         goto out_put_keys;
1722
1723                 if (!(flags & FLAGS_SHARED))
1724                         goto retry_private;
1725
1726                 put_futex_key(&key2);
1727                 put_futex_key(&key1);
1728                 goto retry;
1729         }
1730
1731         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1732                 if (match_futex (&this->key, &key1)) {
1733                         if (this->pi_state || this->rt_waiter) {
1734                                 ret = -EINVAL;
1735                                 goto out_unlock;
1736                         }
1737                         mark_wake_futex(&wake_q, this);
1738                         if (++ret >= nr_wake)
1739                                 break;
1740                 }
1741         }
1742
1743         if (op_ret > 0) {
1744                 op_ret = 0;
1745                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1746                         if (match_futex (&this->key, &key2)) {
1747                                 if (this->pi_state || this->rt_waiter) {
1748                                         ret = -EINVAL;
1749                                         goto out_unlock;
1750                                 }
1751                                 mark_wake_futex(&wake_q, this);
1752                                 if (++op_ret >= nr_wake2)
1753                                         break;
1754                         }
1755                 }
1756                 ret += op_ret;
1757         }
1758
1759 out_unlock:
1760         double_unlock_hb(hb1, hb2);
1761         wake_up_q(&wake_q);
1762 out_put_keys:
1763         put_futex_key(&key2);
1764 out_put_key1:
1765         put_futex_key(&key1);
1766 out:
1767         return ret;
1768 }
1769
1770 /**
1771  * requeue_futex() - Requeue a futex_q from one hb to another
1772  * @q:          the futex_q to requeue
1773  * @hb1:        the source hash_bucket
1774  * @hb2:        the target hash_bucket
1775  * @key2:       the new key for the requeued futex_q
1776  */
1777 static inline
1778 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1779                    struct futex_hash_bucket *hb2, union futex_key *key2)
1780 {
1781
1782         /*
1783          * If key1 and key2 hash to the same bucket, no need to
1784          * requeue.
1785          */
1786         if (likely(&hb1->chain != &hb2->chain)) {
1787                 plist_del(&q->list, &hb1->chain);
1788                 hb_waiters_dec(hb1);
1789                 hb_waiters_inc(hb2);
1790                 plist_add(&q->list, &hb2->chain);
1791                 q->lock_ptr = &hb2->lock;
1792         }
1793         get_futex_key_refs(key2);
1794         q->key = *key2;
1795 }
1796
1797 /**
1798  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1799  * @q:          the futex_q
1800  * @key:        the key of the requeue target futex
1801  * @hb:         the hash_bucket of the requeue target futex
1802  *
1803  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1804  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1805  * to the requeue target futex so the waiter can detect the wakeup on the right
1806  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1807  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1808  * to protect access to the pi_state to fixup the owner later.  Must be called
1809  * with both q->lock_ptr and hb->lock held.
1810  */
1811 static inline
1812 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1813                            struct futex_hash_bucket *hb)
1814 {
1815         get_futex_key_refs(key);
1816         q->key = *key;
1817
1818         __unqueue_futex(q);
1819
1820         WARN_ON(!q->rt_waiter);
1821         q->rt_waiter = NULL;
1822
1823         q->lock_ptr = &hb->lock;
1824
1825         wake_up_state(q->task, TASK_NORMAL);
1826 }
1827
1828 /**
1829  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1830  * @pifutex:            the user address of the to futex
1831  * @hb1:                the from futex hash bucket, must be locked by the caller
1832  * @hb2:                the to futex hash bucket, must be locked by the caller
1833  * @key1:               the from futex key
1834  * @key2:               the to futex key
1835  * @ps:                 address to store the pi_state pointer
1836  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1837  *
1838  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1839  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1840  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1841  * hb1 and hb2 must be held by the caller.
1842  *
1843  * Return:
1844  *  -  0 - failed to acquire the lock atomically;
1845  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1846  *  - <0 - error
1847  */
1848 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1849                                  struct futex_hash_bucket *hb1,
1850                                  struct futex_hash_bucket *hb2,
1851                                  union futex_key *key1, union futex_key *key2,
1852                                  struct futex_pi_state **ps, int set_waiters)
1853 {
1854         struct futex_q *top_waiter = NULL;
1855         u32 curval;
1856         int ret, vpid;
1857
1858         if (get_futex_value_locked(&curval, pifutex))
1859                 return -EFAULT;
1860
1861         if (unlikely(should_fail_futex(true)))
1862                 return -EFAULT;
1863
1864         /*
1865          * Find the top_waiter and determine if there are additional waiters.
1866          * If the caller intends to requeue more than 1 waiter to pifutex,
1867          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1868          * as we have means to handle the possible fault.  If not, don't set
1869          * the bit unecessarily as it will force the subsequent unlock to enter
1870          * the kernel.
1871          */
1872         top_waiter = futex_top_waiter(hb1, key1);
1873
1874         /* There are no waiters, nothing for us to do. */
1875         if (!top_waiter)
1876                 return 0;
1877
1878         /* Ensure we requeue to the expected futex. */
1879         if (!match_futex(top_waiter->requeue_pi_key, key2))
1880                 return -EINVAL;
1881
1882         /*
1883          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1884          * the contended case or if set_waiters is 1.  The pi_state is returned
1885          * in ps in contended cases.
1886          */
1887         vpid = task_pid_vnr(top_waiter->task);
1888         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1889                                    set_waiters);
1890         if (ret == 1) {
1891                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1892                 return vpid;
1893         }
1894         return ret;
1895 }
1896
1897 /**
1898  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1899  * @uaddr1:     source futex user address
1900  * @flags:      futex flags (FLAGS_SHARED, etc.)
1901  * @uaddr2:     target futex user address
1902  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1903  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1904  * @cmpval:     @uaddr1 expected value (or %NULL)
1905  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1906  *              pi futex (pi to pi requeue is not supported)
1907  *
1908  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1909  * uaddr2 atomically on behalf of the top waiter.
1910  *
1911  * Return:
1912  *  - >=0 - on success, the number of tasks requeued or woken;
1913  *  -  <0 - on error
1914  */
1915 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1916                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1917                          u32 *cmpval, int requeue_pi)
1918 {
1919         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1920         int drop_count = 0, task_count = 0, ret;
1921         struct futex_pi_state *pi_state = NULL;
1922         struct futex_hash_bucket *hb1, *hb2;
1923         struct futex_q *this, *next;
1924         DEFINE_WAKE_Q(wake_q);
1925
1926         if (nr_wake < 0 || nr_requeue < 0)
1927                 return -EINVAL;
1928
1929         /*
1930          * When PI not supported: return -ENOSYS if requeue_pi is true,
1931          * consequently the compiler knows requeue_pi is always false past
1932          * this point which will optimize away all the conditional code
1933          * further down.
1934          */
1935         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1936                 return -ENOSYS;
1937
1938         if (requeue_pi) {
1939                 /*
1940                  * Requeue PI only works on two distinct uaddrs. This
1941                  * check is only valid for private futexes. See below.
1942                  */
1943                 if (uaddr1 == uaddr2)
1944                         return -EINVAL;
1945
1946                 /*
1947                  * requeue_pi requires a pi_state, try to allocate it now
1948                  * without any locks in case it fails.
1949                  */
1950                 if (refill_pi_state_cache())
1951                         return -ENOMEM;
1952                 /*
1953                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1954                  * + nr_requeue, since it acquires the rt_mutex prior to
1955                  * returning to userspace, so as to not leave the rt_mutex with
1956                  * waiters and no owner.  However, second and third wake-ups
1957                  * cannot be predicted as they involve race conditions with the
1958                  * first wake and a fault while looking up the pi_state.  Both
1959                  * pthread_cond_signal() and pthread_cond_broadcast() should
1960                  * use nr_wake=1.
1961                  */
1962                 if (nr_wake != 1)
1963                         return -EINVAL;
1964         }
1965
1966 retry:
1967         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1968         if (unlikely(ret != 0))
1969                 goto out;
1970         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1971                             requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1972         if (unlikely(ret != 0))
1973                 goto out_put_key1;
1974
1975         /*
1976          * The check above which compares uaddrs is not sufficient for
1977          * shared futexes. We need to compare the keys:
1978          */
1979         if (requeue_pi && match_futex(&key1, &key2)) {
1980                 ret = -EINVAL;
1981                 goto out_put_keys;
1982         }
1983
1984         hb1 = hash_futex(&key1);
1985         hb2 = hash_futex(&key2);
1986
1987 retry_private:
1988         hb_waiters_inc(hb2);
1989         double_lock_hb(hb1, hb2);
1990
1991         if (likely(cmpval != NULL)) {
1992                 u32 curval;
1993
1994                 ret = get_futex_value_locked(&curval, uaddr1);
1995
1996                 if (unlikely(ret)) {
1997                         double_unlock_hb(hb1, hb2);
1998                         hb_waiters_dec(hb2);
1999
2000                         ret = get_user(curval, uaddr1);
2001                         if (ret)
2002                                 goto out_put_keys;
2003
2004                         if (!(flags & FLAGS_SHARED))
2005                                 goto retry_private;
2006
2007                         put_futex_key(&key2);
2008                         put_futex_key(&key1);
2009                         goto retry;
2010                 }
2011                 if (curval != *cmpval) {
2012                         ret = -EAGAIN;
2013                         goto out_unlock;
2014                 }
2015         }
2016
2017         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2018                 /*
2019                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2020                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2021                  * bit.  We force this here where we are able to easily handle
2022                  * faults rather in the requeue loop below.
2023                  */
2024                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2025                                                  &key2, &pi_state, nr_requeue);
2026
2027                 /*
2028                  * At this point the top_waiter has either taken uaddr2 or is
2029                  * waiting on it.  If the former, then the pi_state will not
2030                  * exist yet, look it up one more time to ensure we have a
2031                  * reference to it. If the lock was taken, ret contains the
2032                  * vpid of the top waiter task.
2033                  * If the lock was not taken, we have pi_state and an initial
2034                  * refcount on it. In case of an error we have nothing.
2035                  */
2036                 if (ret > 0) {
2037                         WARN_ON(pi_state);
2038                         drop_count++;
2039                         task_count++;
2040                         /*
2041                          * If we acquired the lock, then the user space value
2042                          * of uaddr2 should be vpid. It cannot be changed by
2043                          * the top waiter as it is blocked on hb2 lock if it
2044                          * tries to do so. If something fiddled with it behind
2045                          * our back the pi state lookup might unearth it. So
2046                          * we rather use the known value than rereading and
2047                          * handing potential crap to lookup_pi_state.
2048                          *
2049                          * If that call succeeds then we have pi_state and an
2050                          * initial refcount on it.
2051                          */
2052                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
2053                 }
2054
2055                 switch (ret) {
2056                 case 0:
2057                         /* We hold a reference on the pi state. */
2058                         break;
2059
2060                         /* If the above failed, then pi_state is NULL */
2061                 case -EFAULT:
2062                         double_unlock_hb(hb1, hb2);
2063                         hb_waiters_dec(hb2);
2064                         put_futex_key(&key2);
2065                         put_futex_key(&key1);
2066                         ret = fault_in_user_writeable(uaddr2);
2067                         if (!ret)
2068                                 goto retry;
2069                         goto out;
2070                 case -EAGAIN:
2071                         /*
2072                          * Two reasons for this:
2073                          * - Owner is exiting and we just wait for the
2074                          *   exit to complete.
2075                          * - The user space value changed.
2076                          */
2077                         double_unlock_hb(hb1, hb2);
2078                         hb_waiters_dec(hb2);
2079                         put_futex_key(&key2);
2080                         put_futex_key(&key1);
2081                         cond_resched();
2082                         goto retry;
2083                 default:
2084                         goto out_unlock;
2085                 }
2086         }
2087
2088         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2089                 if (task_count - nr_wake >= nr_requeue)
2090                         break;
2091
2092                 if (!match_futex(&this->key, &key1))
2093                         continue;
2094
2095                 /*
2096                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2097                  * be paired with each other and no other futex ops.
2098                  *
2099                  * We should never be requeueing a futex_q with a pi_state,
2100                  * which is awaiting a futex_unlock_pi().
2101                  */
2102                 if ((requeue_pi && !this->rt_waiter) ||
2103                     (!requeue_pi && this->rt_waiter) ||
2104                     this->pi_state) {
2105                         ret = -EINVAL;
2106                         break;
2107                 }
2108
2109                 /*
2110                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2111                  * lock, we already woke the top_waiter.  If not, it will be
2112                  * woken by futex_unlock_pi().
2113                  */
2114                 if (++task_count <= nr_wake && !requeue_pi) {
2115                         mark_wake_futex(&wake_q, this);
2116                         continue;
2117                 }
2118
2119                 /* Ensure we requeue to the expected futex for requeue_pi. */
2120                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2121                         ret = -EINVAL;
2122                         break;
2123                 }
2124
2125                 /*
2126                  * Requeue nr_requeue waiters and possibly one more in the case
2127                  * of requeue_pi if we couldn't acquire the lock atomically.
2128                  */
2129                 if (requeue_pi) {
2130                         /*
2131                          * Prepare the waiter to take the rt_mutex. Take a
2132                          * refcount on the pi_state and store the pointer in
2133                          * the futex_q object of the waiter.
2134                          */
2135                         get_pi_state(pi_state);
2136                         this->pi_state = pi_state;
2137                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2138                                                         this->rt_waiter,
2139                                                         this->task);
2140                         if (ret == 1) {
2141                                 /*
2142                                  * We got the lock. We do neither drop the
2143                                  * refcount on pi_state nor clear
2144                                  * this->pi_state because the waiter needs the
2145                                  * pi_state for cleaning up the user space
2146                                  * value. It will drop the refcount after
2147                                  * doing so.
2148                                  */
2149                                 requeue_pi_wake_futex(this, &key2, hb2);
2150                                 drop_count++;
2151                                 continue;
2152                         } else if (ret) {
2153                                 /*
2154                                  * rt_mutex_start_proxy_lock() detected a
2155                                  * potential deadlock when we tried to queue
2156                                  * that waiter. Drop the pi_state reference
2157                                  * which we took above and remove the pointer
2158                                  * to the state from the waiters futex_q
2159                                  * object.
2160                                  */
2161                                 this->pi_state = NULL;
2162                                 put_pi_state(pi_state);
2163                                 /*
2164                                  * We stop queueing more waiters and let user
2165                                  * space deal with the mess.
2166                                  */
2167                                 break;
2168                         }
2169                 }
2170                 requeue_futex(this, hb1, hb2, &key2);
2171                 drop_count++;
2172         }
2173
2174         /*
2175          * We took an extra initial reference to the pi_state either
2176          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2177          * need to drop it here again.
2178          */
2179         put_pi_state(pi_state);
2180
2181 out_unlock:
2182         double_unlock_hb(hb1, hb2);
2183         wake_up_q(&wake_q);
2184         hb_waiters_dec(hb2);
2185
2186         /*
2187          * drop_futex_key_refs() must be called outside the spinlocks. During
2188          * the requeue we moved futex_q's from the hash bucket at key1 to the
2189          * one at key2 and updated their key pointer.  We no longer need to
2190          * hold the references to key1.
2191          */
2192         while (--drop_count >= 0)
2193                 drop_futex_key_refs(&key1);
2194
2195 out_put_keys:
2196         put_futex_key(&key2);
2197 out_put_key1:
2198         put_futex_key(&key1);
2199 out:
2200         return ret ? ret : task_count;
2201 }
2202
2203 /* The key must be already stored in q->key. */
2204 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2205         __acquires(&hb->lock)
2206 {
2207         struct futex_hash_bucket *hb;
2208
2209         hb = hash_futex(&q->key);
2210
2211         /*
2212          * Increment the counter before taking the lock so that
2213          * a potential waker won't miss a to-be-slept task that is
2214          * waiting for the spinlock. This is safe as all queue_lock()
2215          * users end up calling queue_me(). Similarly, for housekeeping,
2216          * decrement the counter at queue_unlock() when some error has
2217          * occurred and we don't end up adding the task to the list.
2218          */
2219         hb_waiters_inc(hb);
2220
2221         q->lock_ptr = &hb->lock;
2222
2223         spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2224         return hb;
2225 }
2226
2227 static inline void
2228 queue_unlock(struct futex_hash_bucket *hb)
2229         __releases(&hb->lock)
2230 {
2231         spin_unlock(&hb->lock);
2232         hb_waiters_dec(hb);
2233 }
2234
2235 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2236 {
2237         int prio;
2238
2239         /*
2240          * The priority used to register this element is
2241          * - either the real thread-priority for the real-time threads
2242          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2243          * - or MAX_RT_PRIO for non-RT threads.
2244          * Thus, all RT-threads are woken first in priority order, and
2245          * the others are woken last, in FIFO order.
2246          */
2247         prio = min(current->normal_prio, MAX_RT_PRIO);
2248
2249         plist_node_init(&q->list, prio);
2250         plist_add(&q->list, &hb->chain);
2251         q->task = current;
2252 }
2253
2254 /**
2255  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2256  * @q:  The futex_q to enqueue
2257  * @hb: The destination hash bucket
2258  *
2259  * The hb->lock must be held by the caller, and is released here. A call to
2260  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2261  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2262  * or nothing if the unqueue is done as part of the wake process and the unqueue
2263  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2264  * an example).
2265  */
2266 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2267         __releases(&hb->lock)
2268 {
2269         __queue_me(q, hb);
2270         spin_unlock(&hb->lock);
2271 }
2272
2273 /**
2274  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2275  * @q:  The futex_q to unqueue
2276  *
2277  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2278  * be paired with exactly one earlier call to queue_me().
2279  *
2280  * Return:
2281  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2282  *  - 0 - if the futex_q was already removed by the waking thread
2283  */
2284 static int unqueue_me(struct futex_q *q)
2285 {
2286         spinlock_t *lock_ptr;
2287         int ret = 0;
2288
2289         /* In the common case we don't take the spinlock, which is nice. */
2290 retry:
2291         /*
2292          * q->lock_ptr can change between this read and the following spin_lock.
2293          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2294          * optimizing lock_ptr out of the logic below.
2295          */
2296         lock_ptr = READ_ONCE(q->lock_ptr);
2297         if (lock_ptr != NULL) {
2298                 spin_lock(lock_ptr);
2299                 /*
2300                  * q->lock_ptr can change between reading it and
2301                  * spin_lock(), causing us to take the wrong lock.  This
2302                  * corrects the race condition.
2303                  *
2304                  * Reasoning goes like this: if we have the wrong lock,
2305                  * q->lock_ptr must have changed (maybe several times)
2306                  * between reading it and the spin_lock().  It can
2307                  * change again after the spin_lock() but only if it was
2308                  * already changed before the spin_lock().  It cannot,
2309                  * however, change back to the original value.  Therefore
2310                  * we can detect whether we acquired the correct lock.
2311                  */
2312                 if (unlikely(lock_ptr != q->lock_ptr)) {
2313                         spin_unlock(lock_ptr);
2314                         goto retry;
2315                 }
2316                 __unqueue_futex(q);
2317
2318                 BUG_ON(q->pi_state);
2319
2320                 spin_unlock(lock_ptr);
2321                 ret = 1;
2322         }
2323
2324         drop_futex_key_refs(&q->key);
2325         return ret;
2326 }
2327
2328 /*
2329  * PI futexes can not be requeued and must remove themself from the
2330  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2331  * and dropped here.
2332  */
2333 static void unqueue_me_pi(struct futex_q *q)
2334         __releases(q->lock_ptr)
2335 {
2336         __unqueue_futex(q);
2337
2338         BUG_ON(!q->pi_state);
2339         put_pi_state(q->pi_state);
2340         q->pi_state = NULL;
2341
2342         spin_unlock(q->lock_ptr);
2343 }
2344
2345 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2346                                 struct task_struct *argowner)
2347 {
2348         struct futex_pi_state *pi_state = q->pi_state;
2349         u32 uval, uninitialized_var(curval), newval;
2350         struct task_struct *oldowner, *newowner;
2351         u32 newtid;
2352         int ret;
2353
2354         lockdep_assert_held(q->lock_ptr);
2355
2356         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2357
2358         oldowner = pi_state->owner;
2359
2360         /*
2361          * We are here because either:
2362          *
2363          *  - we stole the lock and pi_state->owner needs updating to reflect
2364          *    that (@argowner == current),
2365          *
2366          * or:
2367          *
2368          *  - someone stole our lock and we need to fix things to point to the
2369          *    new owner (@argowner == NULL).
2370          *
2371          * Either way, we have to replace the TID in the user space variable.
2372          * This must be atomic as we have to preserve the owner died bit here.
2373          *
2374          * Note: We write the user space value _before_ changing the pi_state
2375          * because we can fault here. Imagine swapped out pages or a fork
2376          * that marked all the anonymous memory readonly for cow.
2377          *
2378          * Modifying pi_state _before_ the user space value would leave the
2379          * pi_state in an inconsistent state when we fault here, because we
2380          * need to drop the locks to handle the fault. This might be observed
2381          * in the PID check in lookup_pi_state.
2382          */
2383 retry:
2384         if (!argowner) {
2385                 if (oldowner != current) {
2386                         /*
2387                          * We raced against a concurrent self; things are
2388                          * already fixed up. Nothing to do.
2389                          */
2390                         ret = 0;
2391                         goto out_unlock;
2392                 }
2393
2394                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2395                         /* We got the lock after all, nothing to fix. */
2396                         ret = 0;
2397                         goto out_unlock;
2398                 }
2399
2400                 /*
2401                  * Since we just failed the trylock; there must be an owner.
2402                  */
2403                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2404                 BUG_ON(!newowner);
2405         } else {
2406                 WARN_ON_ONCE(argowner != current);
2407                 if (oldowner == current) {
2408                         /*
2409                          * We raced against a concurrent self; things are
2410                          * already fixed up. Nothing to do.
2411                          */
2412                         ret = 0;
2413                         goto out_unlock;
2414                 }
2415                 newowner = argowner;
2416         }
2417
2418         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2419         /* Owner died? */
2420         if (!pi_state->owner)
2421                 newtid |= FUTEX_OWNER_DIED;
2422
2423         if (get_futex_value_locked(&uval, uaddr))
2424                 goto handle_fault;
2425
2426         for (;;) {
2427                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2428
2429                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2430                         goto handle_fault;
2431                 if (curval == uval)
2432                         break;
2433                 uval = curval;
2434         }
2435
2436         /*
2437          * We fixed up user space. Now we need to fix the pi_state
2438          * itself.
2439          */
2440         if (pi_state->owner != NULL) {
2441                 raw_spin_lock(&pi_state->owner->pi_lock);
2442                 WARN_ON(list_empty(&pi_state->list));
2443                 list_del_init(&pi_state->list);
2444                 raw_spin_unlock(&pi_state->owner->pi_lock);
2445         }
2446
2447         pi_state->owner = newowner;
2448
2449         raw_spin_lock(&newowner->pi_lock);
2450         WARN_ON(!list_empty(&pi_state->list));
2451         list_add(&pi_state->list, &newowner->pi_state_list);
2452         raw_spin_unlock(&newowner->pi_lock);
2453         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2454
2455         return 0;
2456
2457         /*
2458          * To handle the page fault we need to drop the locks here. That gives
2459          * the other task (either the highest priority waiter itself or the
2460          * task which stole the rtmutex) the chance to try the fixup of the
2461          * pi_state. So once we are back from handling the fault we need to
2462          * check the pi_state after reacquiring the locks and before trying to
2463          * do another fixup. When the fixup has been done already we simply
2464          * return.
2465          *
2466          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2467          * drop hb->lock since the caller owns the hb -> futex_q relation.
2468          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2469          */
2470 handle_fault:
2471         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2472         spin_unlock(q->lock_ptr);
2473
2474         ret = fault_in_user_writeable(uaddr);
2475
2476         spin_lock(q->lock_ptr);
2477         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2478
2479         /*
2480          * Check if someone else fixed it for us:
2481          */
2482         if (pi_state->owner != oldowner) {
2483                 ret = 0;
2484                 goto out_unlock;
2485         }
2486
2487         if (ret)
2488                 goto out_unlock;
2489
2490         goto retry;
2491
2492 out_unlock:
2493         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2494         return ret;
2495 }
2496
2497 static long futex_wait_restart(struct restart_block *restart);
2498
2499 /**
2500  * fixup_owner() - Post lock pi_state and corner case management
2501  * @uaddr:      user address of the futex
2502  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2503  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2504  *
2505  * After attempting to lock an rt_mutex, this function is called to cleanup
2506  * the pi_state owner as well as handle race conditions that may allow us to
2507  * acquire the lock. Must be called with the hb lock held.
2508  *
2509  * Return:
2510  *  -  1 - success, lock taken;
2511  *  -  0 - success, lock not taken;
2512  *  - <0 - on error (-EFAULT)
2513  */
2514 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2515 {
2516         int ret = 0;
2517
2518         if (locked) {
2519                 /*
2520                  * Got the lock. We might not be the anticipated owner if we
2521                  * did a lock-steal - fix up the PI-state in that case:
2522                  *
2523                  * Speculative pi_state->owner read (we don't hold wait_lock);
2524                  * since we own the lock pi_state->owner == current is the
2525                  * stable state, anything else needs more attention.
2526                  */
2527                 if (q->pi_state->owner != current)
2528                         ret = fixup_pi_state_owner(uaddr, q, current);
2529                 goto out;
2530         }
2531
2532         /*
2533          * If we didn't get the lock; check if anybody stole it from us. In
2534          * that case, we need to fix up the uval to point to them instead of
2535          * us, otherwise bad things happen. [10]
2536          *
2537          * Another speculative read; pi_state->owner == current is unstable
2538          * but needs our attention.
2539          */
2540         if (q->pi_state->owner == current) {
2541                 ret = fixup_pi_state_owner(uaddr, q, NULL);
2542                 goto out;
2543         }
2544
2545         /*
2546          * Paranoia check. If we did not take the lock, then we should not be
2547          * the owner of the rt_mutex.
2548          */
2549         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2550                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2551                                 "pi-state %p\n", ret,
2552                                 q->pi_state->pi_mutex.owner,
2553                                 q->pi_state->owner);
2554         }
2555
2556 out:
2557         return ret ? ret : locked;
2558 }
2559
2560 /**
2561  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2562  * @hb:         the futex hash bucket, must be locked by the caller
2563  * @q:          the futex_q to queue up on
2564  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2565  */
2566 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2567                                 struct hrtimer_sleeper *timeout)
2568 {
2569         /*
2570          * The task state is guaranteed to be set before another task can
2571          * wake it. set_current_state() is implemented using smp_store_mb() and
2572          * queue_me() calls spin_unlock() upon completion, both serializing
2573          * access to the hash list and forcing another memory barrier.
2574          */
2575         set_current_state(TASK_INTERRUPTIBLE);
2576         queue_me(q, hb);
2577
2578         /* Arm the timer */
2579         if (timeout)
2580                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2581
2582         /*
2583          * If we have been removed from the hash list, then another task
2584          * has tried to wake us, and we can skip the call to schedule().
2585          */
2586         if (likely(!plist_node_empty(&q->list))) {
2587                 /*
2588                  * If the timer has already expired, current will already be
2589                  * flagged for rescheduling. Only call schedule if there
2590                  * is no timeout, or if it has yet to expire.
2591                  */
2592                 if (!timeout || timeout->task)
2593                         freezable_schedule();
2594         }
2595         __set_current_state(TASK_RUNNING);
2596 }
2597
2598 /**
2599  * futex_wait_setup() - Prepare to wait on a futex
2600  * @uaddr:      the futex userspace address
2601  * @val:        the expected value
2602  * @flags:      futex flags (FLAGS_SHARED, etc.)
2603  * @q:          the associated futex_q
2604  * @hb:         storage for hash_bucket pointer to be returned to caller
2605  *
2606  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2607  * compare it with the expected value.  Handle atomic faults internally.
2608  * Return with the hb lock held and a q.key reference on success, and unlocked
2609  * with no q.key reference on failure.
2610  *
2611  * Return:
2612  *  -  0 - uaddr contains val and hb has been locked;
2613  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2614  */
2615 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2616                            struct futex_q *q, struct futex_hash_bucket **hb)
2617 {
2618         u32 uval;
2619         int ret;
2620
2621         /*
2622          * Access the page AFTER the hash-bucket is locked.
2623          * Order is important:
2624          *
2625          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2626          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2627          *
2628          * The basic logical guarantee of a futex is that it blocks ONLY
2629          * if cond(var) is known to be true at the time of blocking, for
2630          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2631          * would open a race condition where we could block indefinitely with
2632          * cond(var) false, which would violate the guarantee.
2633          *
2634          * On the other hand, we insert q and release the hash-bucket only
2635          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2636          * absorb a wakeup if *uaddr does not match the desired values
2637          * while the syscall executes.
2638          */
2639 retry:
2640         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2641         if (unlikely(ret != 0))
2642                 return ret;
2643
2644 retry_private:
2645         *hb = queue_lock(q);
2646
2647         ret = get_futex_value_locked(&uval, uaddr);
2648
2649         if (ret) {
2650                 queue_unlock(*hb);
2651
2652                 ret = get_user(uval, uaddr);
2653                 if (ret)
2654                         goto out;
2655
2656                 if (!(flags & FLAGS_SHARED))
2657                         goto retry_private;
2658
2659                 put_futex_key(&q->key);
2660                 goto retry;
2661         }
2662
2663         if (uval != val) {
2664                 queue_unlock(*hb);
2665                 ret = -EWOULDBLOCK;
2666         }
2667
2668 out:
2669         if (ret)
2670                 put_futex_key(&q->key);
2671         return ret;
2672 }
2673
2674 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2675                       ktime_t *abs_time, u32 bitset)
2676 {
2677         struct hrtimer_sleeper timeout, *to = NULL;
2678         struct restart_block *restart;
2679         struct futex_hash_bucket *hb;
2680         struct futex_q q = futex_q_init;
2681         int ret;
2682
2683         if (!bitset)
2684                 return -EINVAL;
2685         q.bitset = bitset;
2686
2687         if (abs_time) {
2688                 to = &timeout;
2689
2690                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2691                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2692                                       HRTIMER_MODE_ABS);
2693                 hrtimer_init_sleeper(to, current);
2694                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2695                                              current->timer_slack_ns);
2696         }
2697
2698 retry:
2699         /*
2700          * Prepare to wait on uaddr. On success, holds hb lock and increments
2701          * q.key refs.
2702          */
2703         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2704         if (ret)
2705                 goto out;
2706
2707         /* queue_me and wait for wakeup, timeout, or a signal. */
2708         futex_wait_queue_me(hb, &q, to);
2709
2710         /* If we were woken (and unqueued), we succeeded, whatever. */
2711         ret = 0;
2712         /* unqueue_me() drops q.key ref */
2713         if (!unqueue_me(&q))
2714                 goto out;
2715         ret = -ETIMEDOUT;
2716         if (to && !to->task)
2717                 goto out;
2718
2719         /*
2720          * We expect signal_pending(current), but we might be the
2721          * victim of a spurious wakeup as well.
2722          */
2723         if (!signal_pending(current))
2724                 goto retry;
2725
2726         ret = -ERESTARTSYS;
2727         if (!abs_time)
2728                 goto out;
2729
2730         restart = &current->restart_block;
2731         restart->fn = futex_wait_restart;
2732         restart->futex.uaddr = uaddr;
2733         restart->futex.val = val;
2734         restart->futex.time = *abs_time;
2735         restart->futex.bitset = bitset;
2736         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2737
2738         ret = -ERESTART_RESTARTBLOCK;
2739
2740 out:
2741         if (to) {
2742                 hrtimer_cancel(&to->timer);
2743                 destroy_hrtimer_on_stack(&to->timer);
2744         }
2745         return ret;
2746 }
2747
2748
2749 static long futex_wait_restart(struct restart_block *restart)
2750 {
2751         u32 __user *uaddr = restart->futex.uaddr;
2752         ktime_t t, *tp = NULL;
2753
2754         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2755                 t = restart->futex.time;
2756                 tp = &t;
2757         }
2758         restart->fn = do_no_restart_syscall;
2759
2760         return (long)futex_wait(uaddr, restart->futex.flags,
2761                                 restart->futex.val, tp, restart->futex.bitset);
2762 }
2763
2764
2765 /*
2766  * Userspace tried a 0 -> TID atomic transition of the futex value
2767  * and failed. The kernel side here does the whole locking operation:
2768  * if there are waiters then it will block as a consequence of relying
2769  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2770  * a 0 value of the futex too.).
2771  *
2772  * Also serves as futex trylock_pi()'ing, and due semantics.
2773  */
2774 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2775                          ktime_t *time, int trylock)
2776 {
2777         struct hrtimer_sleeper timeout, *to = NULL;
2778         struct futex_pi_state *pi_state = NULL;
2779         struct rt_mutex_waiter rt_waiter;
2780         struct futex_hash_bucket *hb;
2781         struct futex_q q = futex_q_init;
2782         int res, ret;
2783
2784         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2785                 return -ENOSYS;
2786
2787         if (refill_pi_state_cache())
2788                 return -ENOMEM;
2789
2790         if (time) {
2791                 to = &timeout;
2792                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2793                                       HRTIMER_MODE_ABS);
2794                 hrtimer_init_sleeper(to, current);
2795                 hrtimer_set_expires(&to->timer, *time);
2796         }
2797
2798 retry:
2799         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2800         if (unlikely(ret != 0))
2801                 goto out;
2802
2803 retry_private:
2804         hb = queue_lock(&q);
2805
2806         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2807         if (unlikely(ret)) {
2808                 /*
2809                  * Atomic work succeeded and we got the lock,
2810                  * or failed. Either way, we do _not_ block.
2811                  */
2812                 switch (ret) {
2813                 case 1:
2814                         /* We got the lock. */
2815                         ret = 0;
2816                         goto out_unlock_put_key;
2817                 case -EFAULT:
2818                         goto uaddr_faulted;
2819                 case -EAGAIN:
2820                         /*
2821                          * Two reasons for this:
2822                          * - Task is exiting and we just wait for the
2823                          *   exit to complete.
2824                          * - The user space value changed.
2825                          */
2826                         queue_unlock(hb);
2827                         put_futex_key(&q.key);
2828                         cond_resched();
2829                         goto retry;
2830                 default:
2831                         goto out_unlock_put_key;
2832                 }
2833         }
2834
2835         WARN_ON(!q.pi_state);
2836
2837         /*
2838          * Only actually queue now that the atomic ops are done:
2839          */
2840         __queue_me(&q, hb);
2841
2842         if (trylock) {
2843                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2844                 /* Fixup the trylock return value: */
2845                 ret = ret ? 0 : -EWOULDBLOCK;
2846                 goto no_block;
2847         }
2848
2849         rt_mutex_init_waiter(&rt_waiter);
2850
2851         /*
2852          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2853          * hold it while doing rt_mutex_start_proxy(), because then it will
2854          * include hb->lock in the blocking chain, even through we'll not in
2855          * fact hold it while blocking. This will lead it to report -EDEADLK
2856          * and BUG when futex_unlock_pi() interleaves with this.
2857          *
2858          * Therefore acquire wait_lock while holding hb->lock, but drop the
2859          * latter before calling rt_mutex_start_proxy_lock(). This still fully
2860          * serializes against futex_unlock_pi() as that does the exact same
2861          * lock handoff sequence.
2862          */
2863         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2864         spin_unlock(q.lock_ptr);
2865         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2866         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2867
2868         if (ret) {
2869                 if (ret == 1)
2870                         ret = 0;
2871
2872                 spin_lock(q.lock_ptr);
2873                 goto no_block;
2874         }
2875
2876
2877         if (unlikely(to))
2878                 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2879
2880         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2881
2882         spin_lock(q.lock_ptr);
2883         /*
2884          * If we failed to acquire the lock (signal/timeout), we must
2885          * first acquire the hb->lock before removing the lock from the
2886          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2887          * wait lists consistent.
2888          *
2889          * In particular; it is important that futex_unlock_pi() can not
2890          * observe this inconsistency.
2891          */
2892         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2893                 ret = 0;
2894
2895 no_block:
2896         /*
2897          * Fixup the pi_state owner and possibly acquire the lock if we
2898          * haven't already.
2899          */
2900         res = fixup_owner(uaddr, &q, !ret);
2901         /*
2902          * If fixup_owner() returned an error, proprogate that.  If it acquired
2903          * the lock, clear our -ETIMEDOUT or -EINTR.
2904          */
2905         if (res)
2906                 ret = (res < 0) ? res : 0;
2907
2908         /*
2909          * If fixup_owner() faulted and was unable to handle the fault, unlock
2910          * it and return the fault to userspace.
2911          */
2912         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2913                 pi_state = q.pi_state;
2914                 get_pi_state(pi_state);
2915         }
2916
2917         /* Unqueue and drop the lock */
2918         unqueue_me_pi(&q);
2919
2920         if (pi_state) {
2921                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2922                 put_pi_state(pi_state);
2923         }
2924
2925         goto out_put_key;
2926
2927 out_unlock_put_key:
2928         queue_unlock(hb);
2929
2930 out_put_key:
2931         put_futex_key(&q.key);
2932 out:
2933         if (to) {
2934                 hrtimer_cancel(&to->timer);
2935                 destroy_hrtimer_on_stack(&to->timer);
2936         }
2937         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2938
2939 uaddr_faulted:
2940         queue_unlock(hb);
2941
2942         ret = fault_in_user_writeable(uaddr);
2943         if (ret)
2944                 goto out_put_key;
2945
2946         if (!(flags & FLAGS_SHARED))
2947                 goto retry_private;
2948
2949         put_futex_key(&q.key);
2950         goto retry;
2951 }
2952
2953 /*
2954  * Userspace attempted a TID -> 0 atomic transition, and failed.
2955  * This is the in-kernel slowpath: we look up the PI state (if any),
2956  * and do the rt-mutex unlock.
2957  */
2958 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2959 {
2960         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2961         union futex_key key = FUTEX_KEY_INIT;
2962         struct futex_hash_bucket *hb;
2963         struct futex_q *top_waiter;
2964         int ret;
2965
2966         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2967                 return -ENOSYS;
2968
2969 retry:
2970         if (get_user(uval, uaddr))
2971                 return -EFAULT;
2972         /*
2973          * We release only a lock we actually own:
2974          */
2975         if ((uval & FUTEX_TID_MASK) != vpid)
2976                 return -EPERM;
2977
2978         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
2979         if (ret)
2980                 return ret;
2981
2982         hb = hash_futex(&key);
2983         spin_lock(&hb->lock);
2984
2985         /*
2986          * Check waiters first. We do not trust user space values at
2987          * all and we at least want to know if user space fiddled
2988          * with the futex value instead of blindly unlocking.
2989          */
2990         top_waiter = futex_top_waiter(hb, &key);
2991         if (top_waiter) {
2992                 struct futex_pi_state *pi_state = top_waiter->pi_state;
2993
2994                 ret = -EINVAL;
2995                 if (!pi_state)
2996                         goto out_unlock;
2997
2998                 /*
2999                  * If current does not own the pi_state then the futex is
3000                  * inconsistent and user space fiddled with the futex value.
3001                  */
3002                 if (pi_state->owner != current)
3003                         goto out_unlock;
3004
3005                 get_pi_state(pi_state);
3006                 /*
3007                  * By taking wait_lock while still holding hb->lock, we ensure
3008                  * there is no point where we hold neither; and therefore
3009                  * wake_futex_pi() must observe a state consistent with what we
3010                  * observed.
3011                  */
3012                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3013                 spin_unlock(&hb->lock);
3014
3015                 /* drops pi_state->pi_mutex.wait_lock */
3016                 ret = wake_futex_pi(uaddr, uval, pi_state);
3017
3018                 put_pi_state(pi_state);
3019
3020                 /*
3021                  * Success, we're done! No tricky corner cases.
3022                  */
3023                 if (!ret)
3024                         goto out_putkey;
3025                 /*
3026                  * The atomic access to the futex value generated a
3027                  * pagefault, so retry the user-access and the wakeup:
3028                  */
3029                 if (ret == -EFAULT)
3030                         goto pi_faulted;
3031                 /*
3032                  * A unconditional UNLOCK_PI op raced against a waiter
3033                  * setting the FUTEX_WAITERS bit. Try again.
3034                  */
3035                 if (ret == -EAGAIN) {
3036                         put_futex_key(&key);
3037                         goto retry;
3038                 }
3039                 /*
3040                  * wake_futex_pi has detected invalid state. Tell user
3041                  * space.
3042                  */
3043                 goto out_putkey;
3044         }
3045
3046         /*
3047          * We have no kernel internal state, i.e. no waiters in the
3048          * kernel. Waiters which are about to queue themselves are stuck
3049          * on hb->lock. So we can safely ignore them. We do neither
3050          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3051          * owner.
3052          */
3053         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
3054                 spin_unlock(&hb->lock);
3055                 goto pi_faulted;
3056         }
3057
3058         /*
3059          * If uval has changed, let user space handle it.
3060          */
3061         ret = (curval == uval) ? 0 : -EAGAIN;
3062
3063 out_unlock:
3064         spin_unlock(&hb->lock);
3065 out_putkey:
3066         put_futex_key(&key);
3067         return ret;
3068
3069 pi_faulted:
3070         put_futex_key(&key);
3071
3072         ret = fault_in_user_writeable(uaddr);
3073         if (!ret)
3074                 goto retry;
3075
3076         return ret;
3077 }
3078
3079 /**
3080  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3081  * @hb:         the hash_bucket futex_q was original enqueued on
3082  * @q:          the futex_q woken while waiting to be requeued
3083  * @key2:       the futex_key of the requeue target futex
3084  * @timeout:    the timeout associated with the wait (NULL if none)
3085  *
3086  * Detect if the task was woken on the initial futex as opposed to the requeue
3087  * target futex.  If so, determine if it was a timeout or a signal that caused
3088  * the wakeup and return the appropriate error code to the caller.  Must be
3089  * called with the hb lock held.
3090  *
3091  * Return:
3092  *  -  0 = no early wakeup detected;
3093  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3094  */
3095 static inline
3096 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3097                                    struct futex_q *q, union futex_key *key2,
3098                                    struct hrtimer_sleeper *timeout)
3099 {
3100         int ret = 0;
3101
3102         /*
3103          * With the hb lock held, we avoid races while we process the wakeup.
3104          * We only need to hold hb (and not hb2) to ensure atomicity as the
3105          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3106          * It can't be requeued from uaddr2 to something else since we don't
3107          * support a PI aware source futex for requeue.
3108          */
3109         if (!match_futex(&q->key, key2)) {
3110                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3111                 /*
3112                  * We were woken prior to requeue by a timeout or a signal.
3113                  * Unqueue the futex_q and determine which it was.
3114                  */
3115                 plist_del(&q->list, &hb->chain);
3116                 hb_waiters_dec(hb);
3117
3118                 /* Handle spurious wakeups gracefully */
3119                 ret = -EWOULDBLOCK;
3120                 if (timeout && !timeout->task)
3121                         ret = -ETIMEDOUT;
3122                 else if (signal_pending(current))
3123                         ret = -ERESTARTNOINTR;
3124         }
3125         return ret;
3126 }
3127
3128 /**
3129  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3130  * @uaddr:      the futex we initially wait on (non-pi)
3131  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3132  *              the same type, no requeueing from private to shared, etc.
3133  * @val:        the expected value of uaddr
3134  * @abs_time:   absolute timeout
3135  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3136  * @uaddr2:     the pi futex we will take prior to returning to user-space
3137  *
3138  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3139  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3140  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3141  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3142  * without one, the pi logic would not know which task to boost/deboost, if
3143  * there was a need to.
3144  *
3145  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3146  * via the following--
3147  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3148  * 2) wakeup on uaddr2 after a requeue
3149  * 3) signal
3150  * 4) timeout
3151  *
3152  * If 3, cleanup and return -ERESTARTNOINTR.
3153  *
3154  * If 2, we may then block on trying to take the rt_mutex and return via:
3155  * 5) successful lock
3156  * 6) signal
3157  * 7) timeout
3158  * 8) other lock acquisition failure
3159  *
3160  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3161  *
3162  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3163  *
3164  * Return:
3165  *  -  0 - On success;
3166  *  - <0 - On error
3167  */
3168 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3169                                  u32 val, ktime_t *abs_time, u32 bitset,
3170                                  u32 __user *uaddr2)
3171 {
3172         struct hrtimer_sleeper timeout, *to = NULL;
3173         struct futex_pi_state *pi_state = NULL;
3174         struct rt_mutex_waiter rt_waiter;
3175         struct futex_hash_bucket *hb;
3176         union futex_key key2 = FUTEX_KEY_INIT;
3177         struct futex_q q = futex_q_init;
3178         int res, ret;
3179
3180         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3181                 return -ENOSYS;
3182
3183         if (uaddr == uaddr2)
3184                 return -EINVAL;
3185
3186         if (!bitset)
3187                 return -EINVAL;
3188
3189         if (abs_time) {
3190                 to = &timeout;
3191                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3192                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
3193                                       HRTIMER_MODE_ABS);
3194                 hrtimer_init_sleeper(to, current);
3195                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3196                                              current->timer_slack_ns);
3197         }
3198
3199         /*
3200          * The waiter is allocated on our stack, manipulated by the requeue
3201          * code while we sleep on uaddr.
3202          */
3203         rt_mutex_init_waiter(&rt_waiter);
3204
3205         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3206         if (unlikely(ret != 0))
3207                 goto out;
3208
3209         q.bitset = bitset;
3210         q.rt_waiter = &rt_waiter;
3211         q.requeue_pi_key = &key2;
3212
3213         /*
3214          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3215          * count.
3216          */
3217         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3218         if (ret)
3219                 goto out_key2;
3220
3221         /*
3222          * The check above which compares uaddrs is not sufficient for
3223          * shared futexes. We need to compare the keys:
3224          */
3225         if (match_futex(&q.key, &key2)) {
3226                 queue_unlock(hb);
3227                 ret = -EINVAL;
3228                 goto out_put_keys;
3229         }
3230
3231         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3232         futex_wait_queue_me(hb, &q, to);
3233
3234         spin_lock(&hb->lock);
3235         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3236         spin_unlock(&hb->lock);
3237         if (ret)
3238                 goto out_put_keys;
3239
3240         /*
3241          * In order for us to be here, we know our q.key == key2, and since
3242          * we took the hb->lock above, we also know that futex_requeue() has
3243          * completed and we no longer have to concern ourselves with a wakeup
3244          * race with the atomic proxy lock acquisition by the requeue code. The
3245          * futex_requeue dropped our key1 reference and incremented our key2
3246          * reference count.
3247          */
3248
3249         /* Check if the requeue code acquired the second futex for us. */
3250         if (!q.rt_waiter) {
3251                 /*
3252                  * Got the lock. We might not be the anticipated owner if we
3253                  * did a lock-steal - fix up the PI-state in that case.
3254                  */
3255                 if (q.pi_state && (q.pi_state->owner != current)) {
3256                         spin_lock(q.lock_ptr);
3257                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3258                         if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3259                                 pi_state = q.pi_state;
3260                                 get_pi_state(pi_state);
3261                         }
3262                         /*
3263                          * Drop the reference to the pi state which
3264                          * the requeue_pi() code acquired for us.
3265                          */
3266                         put_pi_state(q.pi_state);
3267                         spin_unlock(q.lock_ptr);
3268                 }
3269         } else {
3270                 struct rt_mutex *pi_mutex;
3271
3272                 /*
3273                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3274                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3275                  * the pi_state.
3276                  */
3277                 WARN_ON(!q.pi_state);
3278                 pi_mutex = &q.pi_state->pi_mutex;
3279                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3280
3281                 spin_lock(q.lock_ptr);
3282                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3283                         ret = 0;
3284
3285                 debug_rt_mutex_free_waiter(&rt_waiter);
3286                 /*
3287                  * Fixup the pi_state owner and possibly acquire the lock if we
3288                  * haven't already.
3289                  */
3290                 res = fixup_owner(uaddr2, &q, !ret);
3291                 /*
3292                  * If fixup_owner() returned an error, proprogate that.  If it
3293                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3294                  */
3295                 if (res)
3296                         ret = (res < 0) ? res : 0;
3297
3298                 /*
3299                  * If fixup_pi_state_owner() faulted and was unable to handle
3300                  * the fault, unlock the rt_mutex and return the fault to
3301                  * userspace.
3302                  */
3303                 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3304                         pi_state = q.pi_state;
3305                         get_pi_state(pi_state);
3306                 }
3307
3308                 /* Unqueue and drop the lock. */
3309                 unqueue_me_pi(&q);
3310         }
3311
3312         if (pi_state) {
3313                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3314                 put_pi_state(pi_state);
3315         }
3316
3317         if (ret == -EINTR) {
3318                 /*
3319                  * We've already been requeued, but cannot restart by calling
3320                  * futex_lock_pi() directly. We could restart this syscall, but
3321                  * it would detect that the user space "val" changed and return
3322                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3323                  * -EWOULDBLOCK directly.
3324                  */
3325                 ret = -EWOULDBLOCK;
3326         }
3327
3328 out_put_keys:
3329         put_futex_key(&q.key);
3330 out_key2:
3331         put_futex_key(&key2);
3332
3333 out:
3334         if (to) {
3335                 hrtimer_cancel(&to->timer);
3336                 destroy_hrtimer_on_stack(&to->timer);
3337         }
3338         return ret;
3339 }
3340
3341 /*
3342  * Support for robust futexes: the kernel cleans up held futexes at
3343  * thread exit time.
3344  *
3345  * Implementation: user-space maintains a per-thread list of locks it
3346  * is holding. Upon do_exit(), the kernel carefully walks this list,
3347  * and marks all locks that are owned by this thread with the
3348  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3349  * always manipulated with the lock held, so the list is private and
3350  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3351  * field, to allow the kernel to clean up if the thread dies after
3352  * acquiring the lock, but just before it could have added itself to
3353  * the list. There can only be one such pending lock.
3354  */
3355
3356 /**
3357  * sys_set_robust_list() - Set the robust-futex list head of a task
3358  * @head:       pointer to the list-head
3359  * @len:        length of the list-head, as userspace expects
3360  */
3361 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3362                 size_t, len)
3363 {
3364         if (!futex_cmpxchg_enabled)
3365                 return -ENOSYS;
3366         /*
3367          * The kernel knows only one size for now:
3368          */
3369         if (unlikely(len != sizeof(*head)))
3370                 return -EINVAL;
3371
3372         current->robust_list = head;
3373
3374         return 0;
3375 }
3376
3377 /**
3378  * sys_get_robust_list() - Get the robust-futex list head of a task
3379  * @pid:        pid of the process [zero for current task]
3380  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3381  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3382  */
3383 SYSCALL_DEFINE3(get_robust_list, int, pid,
3384                 struct robust_list_head __user * __user *, head_ptr,
3385                 size_t __user *, len_ptr)
3386 {
3387         struct robust_list_head __user *head;
3388         unsigned long ret;
3389         struct task_struct *p;
3390
3391         if (!futex_cmpxchg_enabled)
3392                 return -ENOSYS;
3393
3394         rcu_read_lock();
3395
3396         ret = -ESRCH;
3397         if (!pid)
3398                 p = current;
3399         else {
3400                 p = find_task_by_vpid(pid);
3401                 if (!p)
3402                         goto err_unlock;
3403         }
3404
3405         ret = -EPERM;
3406         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3407                 goto err_unlock;
3408
3409         head = p->robust_list;
3410         rcu_read_unlock();
3411
3412         if (put_user(sizeof(*head), len_ptr))
3413                 return -EFAULT;
3414         return put_user(head, head_ptr);
3415
3416 err_unlock:
3417         rcu_read_unlock();
3418
3419         return ret;
3420 }
3421
3422 /*
3423  * Process a futex-list entry, check whether it's owned by the
3424  * dying task, and do notification if so:
3425  */
3426 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3427 {
3428         u32 uval, uninitialized_var(nval), mval;
3429
3430 retry:
3431         if (get_user(uval, uaddr))
3432                 return -1;
3433
3434         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3435                 /*
3436                  * Ok, this dying thread is truly holding a futex
3437                  * of interest. Set the OWNER_DIED bit atomically
3438                  * via cmpxchg, and if the value had FUTEX_WAITERS
3439                  * set, wake up a waiter (if any). (We have to do a
3440                  * futex_wake() even if OWNER_DIED is already set -
3441                  * to handle the rare but possible case of recursive
3442                  * thread-death.) The rest of the cleanup is done in
3443                  * userspace.
3444                  */
3445                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3446                 /*
3447                  * We are not holding a lock here, but we want to have
3448                  * the pagefault_disable/enable() protection because
3449                  * we want to handle the fault gracefully. If the
3450                  * access fails we try to fault in the futex with R/W
3451                  * verification via get_user_pages. get_user() above
3452                  * does not guarantee R/W access. If that fails we
3453                  * give up and leave the futex locked.
3454                  */
3455                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3456                         if (fault_in_user_writeable(uaddr))
3457                                 return -1;
3458                         goto retry;
3459                 }
3460                 if (nval != uval)
3461                         goto retry;
3462
3463                 /*
3464                  * Wake robust non-PI futexes here. The wakeup of
3465                  * PI futexes happens in exit_pi_state():
3466                  */
3467                 if (!pi && (uval & FUTEX_WAITERS))
3468                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3469         }
3470         return 0;
3471 }
3472
3473 /*
3474  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3475  */
3476 static inline int fetch_robust_entry(struct robust_list __user **entry,
3477                                      struct robust_list __user * __user *head,
3478                                      unsigned int *pi)
3479 {
3480         unsigned long uentry;
3481
3482         if (get_user(uentry, (unsigned long __user *)head))
3483                 return -EFAULT;
3484
3485         *entry = (void __user *)(uentry & ~1UL);
3486         *pi = uentry & 1;
3487
3488         return 0;
3489 }
3490
3491 /*
3492  * Walk curr->robust_list (very carefully, it's a userspace list!)
3493  * and mark any locks found there dead, and notify any waiters.
3494  *
3495  * We silently return on any sign of list-walking problem.
3496  */
3497 void exit_robust_list(struct task_struct *curr)
3498 {
3499         struct robust_list_head __user *head = curr->robust_list;
3500         struct robust_list __user *entry, *next_entry, *pending;
3501         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3502         unsigned int uninitialized_var(next_pi);
3503         unsigned long futex_offset;
3504         int rc;
3505
3506         if (!futex_cmpxchg_enabled)
3507                 return;
3508
3509         /*
3510          * Fetch the list head (which was registered earlier, via
3511          * sys_set_robust_list()):
3512          */
3513         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3514                 return;
3515         /*
3516          * Fetch the relative futex offset:
3517          */
3518         if (get_user(futex_offset, &head->futex_offset))
3519                 return;
3520         /*
3521          * Fetch any possibly pending lock-add first, and handle it
3522          * if it exists:
3523          */
3524         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3525                 return;
3526
3527         next_entry = NULL;      /* avoid warning with gcc */
3528         while (entry != &head->list) {
3529                 /*
3530                  * Fetch the next entry in the list before calling
3531                  * handle_futex_death:
3532                  */
3533                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3534                 /*
3535                  * A pending lock might already be on the list, so
3536                  * don't process it twice:
3537                  */
3538                 if (entry != pending)
3539                         if (handle_futex_death((void __user *)entry + futex_offset,
3540                                                 curr, pi))
3541                                 return;
3542                 if (rc)
3543                         return;
3544                 entry = next_entry;
3545                 pi = next_pi;
3546                 /*
3547                  * Avoid excessively long or circular lists:
3548                  */
3549                 if (!--limit)
3550                         break;
3551
3552                 cond_resched();
3553         }
3554
3555         if (pending)
3556                 handle_futex_death((void __user *)pending + futex_offset,
3557                                    curr, pip);
3558 }
3559
3560 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3561                 u32 __user *uaddr2, u32 val2, u32 val3)
3562 {
3563         int cmd = op & FUTEX_CMD_MASK;
3564         unsigned int flags = 0;
3565
3566         if (!(op & FUTEX_PRIVATE_FLAG))
3567                 flags |= FLAGS_SHARED;
3568
3569         if (op & FUTEX_CLOCK_REALTIME) {
3570                 flags |= FLAGS_CLOCKRT;
3571                 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3572                     cmd != FUTEX_WAIT_REQUEUE_PI)
3573                         return -ENOSYS;
3574         }
3575
3576         switch (cmd) {
3577         case FUTEX_LOCK_PI:
3578         case FUTEX_UNLOCK_PI:
3579         case FUTEX_TRYLOCK_PI:
3580         case FUTEX_WAIT_REQUEUE_PI:
3581         case FUTEX_CMP_REQUEUE_PI:
3582                 if (!futex_cmpxchg_enabled)
3583                         return -ENOSYS;
3584         }
3585
3586         switch (cmd) {
3587         case FUTEX_WAIT:
3588                 val3 = FUTEX_BITSET_MATCH_ANY;
3589                 /* fall through */
3590         case FUTEX_WAIT_BITSET:
3591                 return futex_wait(uaddr, flags, val, timeout, val3);
3592         case FUTEX_WAKE:
3593                 val3 = FUTEX_BITSET_MATCH_ANY;
3594                 /* fall through */
3595         case FUTEX_WAKE_BITSET:
3596                 return futex_wake(uaddr, flags, val, val3);
3597         case FUTEX_REQUEUE:
3598                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3599         case FUTEX_CMP_REQUEUE:
3600                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3601         case FUTEX_WAKE_OP:
3602                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3603         case FUTEX_LOCK_PI:
3604                 return futex_lock_pi(uaddr, flags, timeout, 0);
3605         case FUTEX_UNLOCK_PI:
3606                 return futex_unlock_pi(uaddr, flags);
3607         case FUTEX_TRYLOCK_PI:
3608                 return futex_lock_pi(uaddr, flags, NULL, 1);
3609         case FUTEX_WAIT_REQUEUE_PI:
3610                 val3 = FUTEX_BITSET_MATCH_ANY;
3611                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3612                                              uaddr2);
3613         case FUTEX_CMP_REQUEUE_PI:
3614                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3615         }
3616         return -ENOSYS;
3617 }
3618
3619
3620 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3621                 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3622                 u32, val3)
3623 {
3624         struct timespec64 ts;
3625         ktime_t t, *tp = NULL;
3626         u32 val2 = 0;
3627         int cmd = op & FUTEX_CMD_MASK;
3628
3629         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3630                       cmd == FUTEX_WAIT_BITSET ||
3631                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3632                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3633                         return -EFAULT;
3634                 if (get_timespec64(&ts, utime))
3635                         return -EFAULT;
3636                 if (!timespec64_valid(&ts))
3637                         return -EINVAL;
3638
3639                 t = timespec64_to_ktime(ts);
3640                 if (cmd == FUTEX_WAIT)
3641                         t = ktime_add_safe(ktime_get(), t);
3642                 tp = &t;
3643         }
3644         /*
3645          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3646          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3647          */
3648         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3649             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3650                 val2 = (u32) (unsigned long) utime;
3651
3652         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3653 }
3654
3655 #ifdef CONFIG_COMPAT
3656 /*
3657  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3658  */
3659 static inline int
3660 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3661                    compat_uptr_t __user *head, unsigned int *pi)
3662 {
3663         if (get_user(*uentry, head))
3664                 return -EFAULT;
3665
3666         *entry = compat_ptr((*uentry) & ~1);
3667         *pi = (unsigned int)(*uentry) & 1;
3668
3669         return 0;
3670 }
3671
3672 static void __user *futex_uaddr(struct robust_list __user *entry,
3673                                 compat_long_t futex_offset)
3674 {
3675         compat_uptr_t base = ptr_to_compat(entry);
3676         void __user *uaddr = compat_ptr(base + futex_offset);
3677
3678         return uaddr;
3679 }
3680
3681 /*
3682  * Walk curr->robust_list (very carefully, it's a userspace list!)
3683  * and mark any locks found there dead, and notify any waiters.
3684  *
3685  * We silently return on any sign of list-walking problem.
3686  */
3687 void compat_exit_robust_list(struct task_struct *curr)
3688 {
3689         struct compat_robust_list_head __user *head = curr->compat_robust_list;
3690         struct robust_list __user *entry, *next_entry, *pending;
3691         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3692         unsigned int uninitialized_var(next_pi);
3693         compat_uptr_t uentry, next_uentry, upending;
3694         compat_long_t futex_offset;
3695         int rc;
3696
3697         if (!futex_cmpxchg_enabled)
3698                 return;
3699
3700         /*
3701          * Fetch the list head (which was registered earlier, via
3702          * sys_set_robust_list()):
3703          */
3704         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3705                 return;
3706         /*
3707          * Fetch the relative futex offset:
3708          */
3709         if (get_user(futex_offset, &head->futex_offset))
3710                 return;
3711         /*
3712          * Fetch any possibly pending lock-add first, and handle it
3713          * if it exists:
3714          */
3715         if (compat_fetch_robust_entry(&upending, &pending,
3716                                &head->list_op_pending, &pip))
3717                 return;
3718
3719         next_entry = NULL;      /* avoid warning with gcc */
3720         while (entry != (struct robust_list __user *) &head->list) {
3721                 /*
3722                  * Fetch the next entry in the list before calling
3723                  * handle_futex_death:
3724                  */
3725                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3726                         (compat_uptr_t __user *)&entry->next, &next_pi);
3727                 /*
3728                  * A pending lock might already be on the list, so
3729                  * dont process it twice:
3730                  */
3731                 if (entry != pending) {
3732                         void __user *uaddr = futex_uaddr(entry, futex_offset);
3733
3734                         if (handle_futex_death(uaddr, curr, pi))
3735                                 return;
3736                 }
3737                 if (rc)
3738                         return;
3739                 uentry = next_uentry;
3740                 entry = next_entry;
3741                 pi = next_pi;
3742                 /*
3743                  * Avoid excessively long or circular lists:
3744                  */
3745                 if (!--limit)
3746                         break;
3747
3748                 cond_resched();
3749         }
3750         if (pending) {
3751                 void __user *uaddr = futex_uaddr(pending, futex_offset);
3752
3753                 handle_futex_death(uaddr, curr, pip);
3754         }
3755 }
3756
3757 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3758                 struct compat_robust_list_head __user *, head,
3759                 compat_size_t, len)
3760 {
3761         if (!futex_cmpxchg_enabled)
3762                 return -ENOSYS;
3763
3764         if (unlikely(len != sizeof(*head)))
3765                 return -EINVAL;
3766
3767         current->compat_robust_list = head;
3768
3769         return 0;
3770 }
3771
3772 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3773                         compat_uptr_t __user *, head_ptr,
3774                         compat_size_t __user *, len_ptr)
3775 {
3776         struct compat_robust_list_head __user *head;
3777         unsigned long ret;
3778         struct task_struct *p;
3779
3780         if (!futex_cmpxchg_enabled)
3781                 return -ENOSYS;
3782
3783         rcu_read_lock();
3784
3785         ret = -ESRCH;
3786         if (!pid)
3787                 p = current;
3788         else {
3789                 p = find_task_by_vpid(pid);
3790                 if (!p)
3791                         goto err_unlock;
3792         }
3793
3794         ret = -EPERM;
3795         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3796                 goto err_unlock;
3797
3798         head = p->compat_robust_list;
3799         rcu_read_unlock();
3800
3801         if (put_user(sizeof(*head), len_ptr))
3802                 return -EFAULT;
3803         return put_user(ptr_to_compat(head), head_ptr);
3804
3805 err_unlock:
3806         rcu_read_unlock();
3807
3808         return ret;
3809 }
3810 #endif /* CONFIG_COMPAT */
3811
3812 #ifdef CONFIG_COMPAT_32BIT_TIME
3813 COMPAT_SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3814                 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3815                 u32, val3)
3816 {
3817         struct timespec64 ts;
3818         ktime_t t, *tp = NULL;
3819         int val2 = 0;
3820         int cmd = op & FUTEX_CMD_MASK;
3821
3822         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3823                       cmd == FUTEX_WAIT_BITSET ||
3824                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3825                 if (get_old_timespec32(&ts, utime))
3826                         return -EFAULT;
3827                 if (!timespec64_valid(&ts))
3828                         return -EINVAL;
3829
3830                 t = timespec64_to_ktime(ts);
3831                 if (cmd == FUTEX_WAIT)
3832                         t = ktime_add_safe(ktime_get(), t);
3833                 tp = &t;
3834         }
3835         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3836             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3837                 val2 = (int) (unsigned long) utime;
3838
3839         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3840 }
3841 #endif /* CONFIG_COMPAT_32BIT_TIME */
3842
3843 static void __init futex_detect_cmpxchg(void)
3844 {
3845 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3846         u32 curval;
3847
3848         /*
3849          * This will fail and we want it. Some arch implementations do
3850          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3851          * functionality. We want to know that before we call in any
3852          * of the complex code paths. Also we want to prevent
3853          * registration of robust lists in that case. NULL is
3854          * guaranteed to fault and we get -EFAULT on functional
3855          * implementation, the non-functional ones will return
3856          * -ENOSYS.
3857          */
3858         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3859                 futex_cmpxchg_enabled = 1;
3860 #endif
3861 }
3862
3863 static int __init futex_init(void)
3864 {
3865         unsigned int futex_shift;
3866         unsigned long i;
3867
3868 #if CONFIG_BASE_SMALL
3869         futex_hashsize = 16;
3870 #else
3871         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3872 #endif
3873
3874         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3875                                                futex_hashsize, 0,
3876                                                futex_hashsize < 256 ? HASH_SMALL : 0,
3877                                                &futex_shift, NULL,
3878                                                futex_hashsize, futex_hashsize);
3879         futex_hashsize = 1UL << futex_shift;
3880
3881         futex_detect_cmpxchg();
3882
3883         for (i = 0; i < futex_hashsize; i++) {
3884                 atomic_set(&futex_queues[i].waiters, 0);
3885                 plist_head_init(&futex_queues[i].chain);
3886                 spin_lock_init(&futex_queues[i].lock);
3887         }
3888
3889         return 0;
3890 }
3891 core_initcall(futex_init);