]> asedeno.scripts.mit.edu Git - linux.git/blob - kernel/futex.c
futex: Move futex exit handling into futex code
[linux.git] / kernel / futex.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/slab.h>
36 #include <linux/poll.h>
37 #include <linux/fs.h>
38 #include <linux/file.h>
39 #include <linux/jhash.h>
40 #include <linux/init.h>
41 #include <linux/futex.h>
42 #include <linux/mount.h>
43 #include <linux/pagemap.h>
44 #include <linux/syscalls.h>
45 #include <linux/signal.h>
46 #include <linux/export.h>
47 #include <linux/magic.h>
48 #include <linux/pid.h>
49 #include <linux/nsproxy.h>
50 #include <linux/ptrace.h>
51 #include <linux/sched/rt.h>
52 #include <linux/sched/wake_q.h>
53 #include <linux/sched/mm.h>
54 #include <linux/hugetlb.h>
55 #include <linux/freezer.h>
56 #include <linux/memblock.h>
57 #include <linux/fault-inject.h>
58 #include <linux/refcount.h>
59
60 #include <asm/futex.h>
61
62 #include "locking/rtmutex_common.h"
63
64 /*
65  * READ this before attempting to hack on futexes!
66  *
67  * Basic futex operation and ordering guarantees
68  * =============================================
69  *
70  * The waiter reads the futex value in user space and calls
71  * futex_wait(). This function computes the hash bucket and acquires
72  * the hash bucket lock. After that it reads the futex user space value
73  * again and verifies that the data has not changed. If it has not changed
74  * it enqueues itself into the hash bucket, releases the hash bucket lock
75  * and schedules.
76  *
77  * The waker side modifies the user space value of the futex and calls
78  * futex_wake(). This function computes the hash bucket and acquires the
79  * hash bucket lock. Then it looks for waiters on that futex in the hash
80  * bucket and wakes them.
81  *
82  * In futex wake up scenarios where no tasks are blocked on a futex, taking
83  * the hb spinlock can be avoided and simply return. In order for this
84  * optimization to work, ordering guarantees must exist so that the waiter
85  * being added to the list is acknowledged when the list is concurrently being
86  * checked by the waker, avoiding scenarios like the following:
87  *
88  * CPU 0                               CPU 1
89  * val = *futex;
90  * sys_futex(WAIT, futex, val);
91  *   futex_wait(futex, val);
92  *   uval = *futex;
93  *                                     *futex = newval;
94  *                                     sys_futex(WAKE, futex);
95  *                                       futex_wake(futex);
96  *                                       if (queue_empty())
97  *                                         return;
98  *   if (uval == val)
99  *      lock(hash_bucket(futex));
100  *      queue();
101  *     unlock(hash_bucket(futex));
102  *     schedule();
103  *
104  * This would cause the waiter on CPU 0 to wait forever because it
105  * missed the transition of the user space value from val to newval
106  * and the waker did not find the waiter in the hash bucket queue.
107  *
108  * The correct serialization ensures that a waiter either observes
109  * the changed user space value before blocking or is woken by a
110  * concurrent waker:
111  *
112  * CPU 0                                 CPU 1
113  * val = *futex;
114  * sys_futex(WAIT, futex, val);
115  *   futex_wait(futex, val);
116  *
117  *   waiters++; (a)
118  *   smp_mb(); (A) <-- paired with -.
119  *                                  |
120  *   lock(hash_bucket(futex));      |
121  *                                  |
122  *   uval = *futex;                 |
123  *                                  |        *futex = newval;
124  *                                  |        sys_futex(WAKE, futex);
125  *                                  |          futex_wake(futex);
126  *                                  |
127  *                                  `--------> smp_mb(); (B)
128  *   if (uval == val)
129  *     queue();
130  *     unlock(hash_bucket(futex));
131  *     schedule();                         if (waiters)
132  *                                           lock(hash_bucket(futex));
133  *   else                                    wake_waiters(futex);
134  *     waiters--; (b)                        unlock(hash_bucket(futex));
135  *
136  * Where (A) orders the waiters increment and the futex value read through
137  * atomic operations (see hb_waiters_inc) and where (B) orders the write
138  * to futex and the waiters read -- this is done by the barriers for both
139  * shared and private futexes in get_futex_key_refs().
140  *
141  * This yields the following case (where X:=waiters, Y:=futex):
142  *
143  *      X = Y = 0
144  *
145  *      w[X]=1          w[Y]=1
146  *      MB              MB
147  *      r[Y]=y          r[X]=x
148  *
149  * Which guarantees that x==0 && y==0 is impossible; which translates back into
150  * the guarantee that we cannot both miss the futex variable change and the
151  * enqueue.
152  *
153  * Note that a new waiter is accounted for in (a) even when it is possible that
154  * the wait call can return error, in which case we backtrack from it in (b).
155  * Refer to the comment in queue_lock().
156  *
157  * Similarly, in order to account for waiters being requeued on another
158  * address we always increment the waiters for the destination bucket before
159  * acquiring the lock. It then decrements them again  after releasing it -
160  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
161  * will do the additional required waiter count housekeeping. This is done for
162  * double_lock_hb() and double_unlock_hb(), respectively.
163  */
164
165 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
166 #define futex_cmpxchg_enabled 1
167 #else
168 static int  __read_mostly futex_cmpxchg_enabled;
169 #endif
170
171 /*
172  * Futex flags used to encode options to functions and preserve them across
173  * restarts.
174  */
175 #ifdef CONFIG_MMU
176 # define FLAGS_SHARED           0x01
177 #else
178 /*
179  * NOMMU does not have per process address space. Let the compiler optimize
180  * code away.
181  */
182 # define FLAGS_SHARED           0x00
183 #endif
184 #define FLAGS_CLOCKRT           0x02
185 #define FLAGS_HAS_TIMEOUT       0x04
186
187 /*
188  * Priority Inheritance state:
189  */
190 struct futex_pi_state {
191         /*
192          * list of 'owned' pi_state instances - these have to be
193          * cleaned up in do_exit() if the task exits prematurely:
194          */
195         struct list_head list;
196
197         /*
198          * The PI object:
199          */
200         struct rt_mutex pi_mutex;
201
202         struct task_struct *owner;
203         refcount_t refcount;
204
205         union futex_key key;
206 } __randomize_layout;
207
208 /**
209  * struct futex_q - The hashed futex queue entry, one per waiting task
210  * @list:               priority-sorted list of tasks waiting on this futex
211  * @task:               the task waiting on the futex
212  * @lock_ptr:           the hash bucket lock
213  * @key:                the key the futex is hashed on
214  * @pi_state:           optional priority inheritance state
215  * @rt_waiter:          rt_waiter storage for use with requeue_pi
216  * @requeue_pi_key:     the requeue_pi target futex key
217  * @bitset:             bitset for the optional bitmasked wakeup
218  *
219  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
220  * we can wake only the relevant ones (hashed queues may be shared).
221  *
222  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
223  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
224  * The order of wakeup is always to make the first condition true, then
225  * the second.
226  *
227  * PI futexes are typically woken before they are removed from the hash list via
228  * the rt_mutex code. See unqueue_me_pi().
229  */
230 struct futex_q {
231         struct plist_node list;
232
233         struct task_struct *task;
234         spinlock_t *lock_ptr;
235         union futex_key key;
236         struct futex_pi_state *pi_state;
237         struct rt_mutex_waiter *rt_waiter;
238         union futex_key *requeue_pi_key;
239         u32 bitset;
240 } __randomize_layout;
241
242 static const struct futex_q futex_q_init = {
243         /* list gets initialized in queue_me()*/
244         .key = FUTEX_KEY_INIT,
245         .bitset = FUTEX_BITSET_MATCH_ANY
246 };
247
248 /*
249  * Hash buckets are shared by all the futex_keys that hash to the same
250  * location.  Each key may have multiple futex_q structures, one for each task
251  * waiting on a futex.
252  */
253 struct futex_hash_bucket {
254         atomic_t waiters;
255         spinlock_t lock;
256         struct plist_head chain;
257 } ____cacheline_aligned_in_smp;
258
259 /*
260  * The base of the bucket array and its size are always used together
261  * (after initialization only in hash_futex()), so ensure that they
262  * reside in the same cacheline.
263  */
264 static struct {
265         struct futex_hash_bucket *queues;
266         unsigned long            hashsize;
267 } __futex_data __read_mostly __aligned(2*sizeof(long));
268 #define futex_queues   (__futex_data.queues)
269 #define futex_hashsize (__futex_data.hashsize)
270
271
272 /*
273  * Fault injections for futexes.
274  */
275 #ifdef CONFIG_FAIL_FUTEX
276
277 static struct {
278         struct fault_attr attr;
279
280         bool ignore_private;
281 } fail_futex = {
282         .attr = FAULT_ATTR_INITIALIZER,
283         .ignore_private = false,
284 };
285
286 static int __init setup_fail_futex(char *str)
287 {
288         return setup_fault_attr(&fail_futex.attr, str);
289 }
290 __setup("fail_futex=", setup_fail_futex);
291
292 static bool should_fail_futex(bool fshared)
293 {
294         if (fail_futex.ignore_private && !fshared)
295                 return false;
296
297         return should_fail(&fail_futex.attr, 1);
298 }
299
300 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
301
302 static int __init fail_futex_debugfs(void)
303 {
304         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
305         struct dentry *dir;
306
307         dir = fault_create_debugfs_attr("fail_futex", NULL,
308                                         &fail_futex.attr);
309         if (IS_ERR(dir))
310                 return PTR_ERR(dir);
311
312         debugfs_create_bool("ignore-private", mode, dir,
313                             &fail_futex.ignore_private);
314         return 0;
315 }
316
317 late_initcall(fail_futex_debugfs);
318
319 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
320
321 #else
322 static inline bool should_fail_futex(bool fshared)
323 {
324         return false;
325 }
326 #endif /* CONFIG_FAIL_FUTEX */
327
328 #ifdef CONFIG_COMPAT
329 static void compat_exit_robust_list(struct task_struct *curr);
330 #else
331 static inline void compat_exit_robust_list(struct task_struct *curr) { }
332 #endif
333
334 static inline void futex_get_mm(union futex_key *key)
335 {
336         mmgrab(key->private.mm);
337         /*
338          * Ensure futex_get_mm() implies a full barrier such that
339          * get_futex_key() implies a full barrier. This is relied upon
340          * as smp_mb(); (B), see the ordering comment above.
341          */
342         smp_mb__after_atomic();
343 }
344
345 /*
346  * Reflects a new waiter being added to the waitqueue.
347  */
348 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
349 {
350 #ifdef CONFIG_SMP
351         atomic_inc(&hb->waiters);
352         /*
353          * Full barrier (A), see the ordering comment above.
354          */
355         smp_mb__after_atomic();
356 #endif
357 }
358
359 /*
360  * Reflects a waiter being removed from the waitqueue by wakeup
361  * paths.
362  */
363 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
364 {
365 #ifdef CONFIG_SMP
366         atomic_dec(&hb->waiters);
367 #endif
368 }
369
370 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373         return atomic_read(&hb->waiters);
374 #else
375         return 1;
376 #endif
377 }
378
379 /**
380  * hash_futex - Return the hash bucket in the global hash
381  * @key:        Pointer to the futex key for which the hash is calculated
382  *
383  * We hash on the keys returned from get_futex_key (see below) and return the
384  * corresponding hash bucket in the global hash.
385  */
386 static struct futex_hash_bucket *hash_futex(union futex_key *key)
387 {
388         u32 hash = jhash2((u32*)&key->both.word,
389                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
390                           key->both.offset);
391         return &futex_queues[hash & (futex_hashsize - 1)];
392 }
393
394
395 /**
396  * match_futex - Check whether two futex keys are equal
397  * @key1:       Pointer to key1
398  * @key2:       Pointer to key2
399  *
400  * Return 1 if two futex_keys are equal, 0 otherwise.
401  */
402 static inline int match_futex(union futex_key *key1, union futex_key *key2)
403 {
404         return (key1 && key2
405                 && key1->both.word == key2->both.word
406                 && key1->both.ptr == key2->both.ptr
407                 && key1->both.offset == key2->both.offset);
408 }
409
410 /*
411  * Take a reference to the resource addressed by a key.
412  * Can be called while holding spinlocks.
413  *
414  */
415 static void get_futex_key_refs(union futex_key *key)
416 {
417         if (!key->both.ptr)
418                 return;
419
420         /*
421          * On MMU less systems futexes are always "private" as there is no per
422          * process address space. We need the smp wmb nevertheless - yes,
423          * arch/blackfin has MMU less SMP ...
424          */
425         if (!IS_ENABLED(CONFIG_MMU)) {
426                 smp_mb(); /* explicit smp_mb(); (B) */
427                 return;
428         }
429
430         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
431         case FUT_OFF_INODE:
432                 ihold(key->shared.inode); /* implies smp_mb(); (B) */
433                 break;
434         case FUT_OFF_MMSHARED:
435                 futex_get_mm(key); /* implies smp_mb(); (B) */
436                 break;
437         default:
438                 /*
439                  * Private futexes do not hold reference on an inode or
440                  * mm, therefore the only purpose of calling get_futex_key_refs
441                  * is because we need the barrier for the lockless waiter check.
442                  */
443                 smp_mb(); /* explicit smp_mb(); (B) */
444         }
445 }
446
447 /*
448  * Drop a reference to the resource addressed by a key.
449  * The hash bucket spinlock must not be held. This is
450  * a no-op for private futexes, see comment in the get
451  * counterpart.
452  */
453 static void drop_futex_key_refs(union futex_key *key)
454 {
455         if (!key->both.ptr) {
456                 /* If we're here then we tried to put a key we failed to get */
457                 WARN_ON_ONCE(1);
458                 return;
459         }
460
461         if (!IS_ENABLED(CONFIG_MMU))
462                 return;
463
464         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
465         case FUT_OFF_INODE:
466                 iput(key->shared.inode);
467                 break;
468         case FUT_OFF_MMSHARED:
469                 mmdrop(key->private.mm);
470                 break;
471         }
472 }
473
474 enum futex_access {
475         FUTEX_READ,
476         FUTEX_WRITE
477 };
478
479 /**
480  * futex_setup_timer - set up the sleeping hrtimer.
481  * @time:       ptr to the given timeout value
482  * @timeout:    the hrtimer_sleeper structure to be set up
483  * @flags:      futex flags
484  * @range_ns:   optional range in ns
485  *
486  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
487  *         value given
488  */
489 static inline struct hrtimer_sleeper *
490 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
491                   int flags, u64 range_ns)
492 {
493         if (!time)
494                 return NULL;
495
496         hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
497                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
498                                       HRTIMER_MODE_ABS);
499         /*
500          * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
501          * effectively the same as calling hrtimer_set_expires().
502          */
503         hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
504
505         return timeout;
506 }
507
508 /**
509  * get_futex_key() - Get parameters which are the keys for a futex
510  * @uaddr:      virtual address of the futex
511  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
512  * @key:        address where result is stored.
513  * @rw:         mapping needs to be read/write (values: FUTEX_READ,
514  *              FUTEX_WRITE)
515  *
516  * Return: a negative error code or 0
517  *
518  * The key words are stored in @key on success.
519  *
520  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
521  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
522  * We can usually work out the index without swapping in the page.
523  *
524  * lock_page() might sleep, the caller should not hold a spinlock.
525  */
526 static int
527 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
528 {
529         unsigned long address = (unsigned long)uaddr;
530         struct mm_struct *mm = current->mm;
531         struct page *page, *tail;
532         struct address_space *mapping;
533         int err, ro = 0;
534
535         /*
536          * The futex address must be "naturally" aligned.
537          */
538         key->both.offset = address % PAGE_SIZE;
539         if (unlikely((address % sizeof(u32)) != 0))
540                 return -EINVAL;
541         address -= key->both.offset;
542
543         if (unlikely(!access_ok(uaddr, sizeof(u32))))
544                 return -EFAULT;
545
546         if (unlikely(should_fail_futex(fshared)))
547                 return -EFAULT;
548
549         /*
550          * PROCESS_PRIVATE futexes are fast.
551          * As the mm cannot disappear under us and the 'key' only needs
552          * virtual address, we dont even have to find the underlying vma.
553          * Note : We do have to check 'uaddr' is a valid user address,
554          *        but access_ok() should be faster than find_vma()
555          */
556         if (!fshared) {
557                 key->private.mm = mm;
558                 key->private.address = address;
559                 get_futex_key_refs(key);  /* implies smp_mb(); (B) */
560                 return 0;
561         }
562
563 again:
564         /* Ignore any VERIFY_READ mapping (futex common case) */
565         if (unlikely(should_fail_futex(fshared)))
566                 return -EFAULT;
567
568         err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
569         /*
570          * If write access is not required (eg. FUTEX_WAIT), try
571          * and get read-only access.
572          */
573         if (err == -EFAULT && rw == FUTEX_READ) {
574                 err = get_user_pages_fast(address, 1, 0, &page);
575                 ro = 1;
576         }
577         if (err < 0)
578                 return err;
579         else
580                 err = 0;
581
582         /*
583          * The treatment of mapping from this point on is critical. The page
584          * lock protects many things but in this context the page lock
585          * stabilizes mapping, prevents inode freeing in the shared
586          * file-backed region case and guards against movement to swap cache.
587          *
588          * Strictly speaking the page lock is not needed in all cases being
589          * considered here and page lock forces unnecessarily serialization
590          * From this point on, mapping will be re-verified if necessary and
591          * page lock will be acquired only if it is unavoidable
592          *
593          * Mapping checks require the head page for any compound page so the
594          * head page and mapping is looked up now. For anonymous pages, it
595          * does not matter if the page splits in the future as the key is
596          * based on the address. For filesystem-backed pages, the tail is
597          * required as the index of the page determines the key. For
598          * base pages, there is no tail page and tail == page.
599          */
600         tail = page;
601         page = compound_head(page);
602         mapping = READ_ONCE(page->mapping);
603
604         /*
605          * If page->mapping is NULL, then it cannot be a PageAnon
606          * page; but it might be the ZERO_PAGE or in the gate area or
607          * in a special mapping (all cases which we are happy to fail);
608          * or it may have been a good file page when get_user_pages_fast
609          * found it, but truncated or holepunched or subjected to
610          * invalidate_complete_page2 before we got the page lock (also
611          * cases which we are happy to fail).  And we hold a reference,
612          * so refcount care in invalidate_complete_page's remove_mapping
613          * prevents drop_caches from setting mapping to NULL beneath us.
614          *
615          * The case we do have to guard against is when memory pressure made
616          * shmem_writepage move it from filecache to swapcache beneath us:
617          * an unlikely race, but we do need to retry for page->mapping.
618          */
619         if (unlikely(!mapping)) {
620                 int shmem_swizzled;
621
622                 /*
623                  * Page lock is required to identify which special case above
624                  * applies. If this is really a shmem page then the page lock
625                  * will prevent unexpected transitions.
626                  */
627                 lock_page(page);
628                 shmem_swizzled = PageSwapCache(page) || page->mapping;
629                 unlock_page(page);
630                 put_page(page);
631
632                 if (shmem_swizzled)
633                         goto again;
634
635                 return -EFAULT;
636         }
637
638         /*
639          * Private mappings are handled in a simple way.
640          *
641          * If the futex key is stored on an anonymous page, then the associated
642          * object is the mm which is implicitly pinned by the calling process.
643          *
644          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
645          * it's a read-only handle, it's expected that futexes attach to
646          * the object not the particular process.
647          */
648         if (PageAnon(page)) {
649                 /*
650                  * A RO anonymous page will never change and thus doesn't make
651                  * sense for futex operations.
652                  */
653                 if (unlikely(should_fail_futex(fshared)) || ro) {
654                         err = -EFAULT;
655                         goto out;
656                 }
657
658                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
659                 key->private.mm = mm;
660                 key->private.address = address;
661
662                 get_futex_key_refs(key); /* implies smp_mb(); (B) */
663
664         } else {
665                 struct inode *inode;
666
667                 /*
668                  * The associated futex object in this case is the inode and
669                  * the page->mapping must be traversed. Ordinarily this should
670                  * be stabilised under page lock but it's not strictly
671                  * necessary in this case as we just want to pin the inode, not
672                  * update the radix tree or anything like that.
673                  *
674                  * The RCU read lock is taken as the inode is finally freed
675                  * under RCU. If the mapping still matches expectations then the
676                  * mapping->host can be safely accessed as being a valid inode.
677                  */
678                 rcu_read_lock();
679
680                 if (READ_ONCE(page->mapping) != mapping) {
681                         rcu_read_unlock();
682                         put_page(page);
683
684                         goto again;
685                 }
686
687                 inode = READ_ONCE(mapping->host);
688                 if (!inode) {
689                         rcu_read_unlock();
690                         put_page(page);
691
692                         goto again;
693                 }
694
695                 /*
696                  * Take a reference unless it is about to be freed. Previously
697                  * this reference was taken by ihold under the page lock
698                  * pinning the inode in place so i_lock was unnecessary. The
699                  * only way for this check to fail is if the inode was
700                  * truncated in parallel which is almost certainly an
701                  * application bug. In such a case, just retry.
702                  *
703                  * We are not calling into get_futex_key_refs() in file-backed
704                  * cases, therefore a successful atomic_inc return below will
705                  * guarantee that get_futex_key() will still imply smp_mb(); (B).
706                  */
707                 if (!atomic_inc_not_zero(&inode->i_count)) {
708                         rcu_read_unlock();
709                         put_page(page);
710
711                         goto again;
712                 }
713
714                 /* Should be impossible but lets be paranoid for now */
715                 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
716                         err = -EFAULT;
717                         rcu_read_unlock();
718                         iput(inode);
719
720                         goto out;
721                 }
722
723                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
724                 key->shared.inode = inode;
725                 key->shared.pgoff = basepage_index(tail);
726                 rcu_read_unlock();
727         }
728
729 out:
730         put_page(page);
731         return err;
732 }
733
734 static inline void put_futex_key(union futex_key *key)
735 {
736         drop_futex_key_refs(key);
737 }
738
739 /**
740  * fault_in_user_writeable() - Fault in user address and verify RW access
741  * @uaddr:      pointer to faulting user space address
742  *
743  * Slow path to fixup the fault we just took in the atomic write
744  * access to @uaddr.
745  *
746  * We have no generic implementation of a non-destructive write to the
747  * user address. We know that we faulted in the atomic pagefault
748  * disabled section so we can as well avoid the #PF overhead by
749  * calling get_user_pages() right away.
750  */
751 static int fault_in_user_writeable(u32 __user *uaddr)
752 {
753         struct mm_struct *mm = current->mm;
754         int ret;
755
756         down_read(&mm->mmap_sem);
757         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
758                                FAULT_FLAG_WRITE, NULL);
759         up_read(&mm->mmap_sem);
760
761         return ret < 0 ? ret : 0;
762 }
763
764 /**
765  * futex_top_waiter() - Return the highest priority waiter on a futex
766  * @hb:         the hash bucket the futex_q's reside in
767  * @key:        the futex key (to distinguish it from other futex futex_q's)
768  *
769  * Must be called with the hb lock held.
770  */
771 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
772                                         union futex_key *key)
773 {
774         struct futex_q *this;
775
776         plist_for_each_entry(this, &hb->chain, list) {
777                 if (match_futex(&this->key, key))
778                         return this;
779         }
780         return NULL;
781 }
782
783 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
784                                       u32 uval, u32 newval)
785 {
786         int ret;
787
788         pagefault_disable();
789         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
790         pagefault_enable();
791
792         return ret;
793 }
794
795 static int get_futex_value_locked(u32 *dest, u32 __user *from)
796 {
797         int ret;
798
799         pagefault_disable();
800         ret = __get_user(*dest, from);
801         pagefault_enable();
802
803         return ret ? -EFAULT : 0;
804 }
805
806
807 /*
808  * PI code:
809  */
810 static int refill_pi_state_cache(void)
811 {
812         struct futex_pi_state *pi_state;
813
814         if (likely(current->pi_state_cache))
815                 return 0;
816
817         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
818
819         if (!pi_state)
820                 return -ENOMEM;
821
822         INIT_LIST_HEAD(&pi_state->list);
823         /* pi_mutex gets initialized later */
824         pi_state->owner = NULL;
825         refcount_set(&pi_state->refcount, 1);
826         pi_state->key = FUTEX_KEY_INIT;
827
828         current->pi_state_cache = pi_state;
829
830         return 0;
831 }
832
833 static struct futex_pi_state *alloc_pi_state(void)
834 {
835         struct futex_pi_state *pi_state = current->pi_state_cache;
836
837         WARN_ON(!pi_state);
838         current->pi_state_cache = NULL;
839
840         return pi_state;
841 }
842
843 static void get_pi_state(struct futex_pi_state *pi_state)
844 {
845         WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
846 }
847
848 /*
849  * Drops a reference to the pi_state object and frees or caches it
850  * when the last reference is gone.
851  */
852 static void put_pi_state(struct futex_pi_state *pi_state)
853 {
854         if (!pi_state)
855                 return;
856
857         if (!refcount_dec_and_test(&pi_state->refcount))
858                 return;
859
860         /*
861          * If pi_state->owner is NULL, the owner is most probably dying
862          * and has cleaned up the pi_state already
863          */
864         if (pi_state->owner) {
865                 struct task_struct *owner;
866
867                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
868                 owner = pi_state->owner;
869                 if (owner) {
870                         raw_spin_lock(&owner->pi_lock);
871                         list_del_init(&pi_state->list);
872                         raw_spin_unlock(&owner->pi_lock);
873                 }
874                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
875                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
876         }
877
878         if (current->pi_state_cache) {
879                 kfree(pi_state);
880         } else {
881                 /*
882                  * pi_state->list is already empty.
883                  * clear pi_state->owner.
884                  * refcount is at 0 - put it back to 1.
885                  */
886                 pi_state->owner = NULL;
887                 refcount_set(&pi_state->refcount, 1);
888                 current->pi_state_cache = pi_state;
889         }
890 }
891
892 #ifdef CONFIG_FUTEX_PI
893
894 /*
895  * This task is holding PI mutexes at exit time => bad.
896  * Kernel cleans up PI-state, but userspace is likely hosed.
897  * (Robust-futex cleanup is separate and might save the day for userspace.)
898  */
899 static void exit_pi_state_list(struct task_struct *curr)
900 {
901         struct list_head *next, *head = &curr->pi_state_list;
902         struct futex_pi_state *pi_state;
903         struct futex_hash_bucket *hb;
904         union futex_key key = FUTEX_KEY_INIT;
905
906         if (!futex_cmpxchg_enabled)
907                 return;
908         /*
909          * We are a ZOMBIE and nobody can enqueue itself on
910          * pi_state_list anymore, but we have to be careful
911          * versus waiters unqueueing themselves:
912          */
913         raw_spin_lock_irq(&curr->pi_lock);
914         while (!list_empty(head)) {
915                 next = head->next;
916                 pi_state = list_entry(next, struct futex_pi_state, list);
917                 key = pi_state->key;
918                 hb = hash_futex(&key);
919
920                 /*
921                  * We can race against put_pi_state() removing itself from the
922                  * list (a waiter going away). put_pi_state() will first
923                  * decrement the reference count and then modify the list, so
924                  * its possible to see the list entry but fail this reference
925                  * acquire.
926                  *
927                  * In that case; drop the locks to let put_pi_state() make
928                  * progress and retry the loop.
929                  */
930                 if (!refcount_inc_not_zero(&pi_state->refcount)) {
931                         raw_spin_unlock_irq(&curr->pi_lock);
932                         cpu_relax();
933                         raw_spin_lock_irq(&curr->pi_lock);
934                         continue;
935                 }
936                 raw_spin_unlock_irq(&curr->pi_lock);
937
938                 spin_lock(&hb->lock);
939                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
940                 raw_spin_lock(&curr->pi_lock);
941                 /*
942                  * We dropped the pi-lock, so re-check whether this
943                  * task still owns the PI-state:
944                  */
945                 if (head->next != next) {
946                         /* retain curr->pi_lock for the loop invariant */
947                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
948                         spin_unlock(&hb->lock);
949                         put_pi_state(pi_state);
950                         continue;
951                 }
952
953                 WARN_ON(pi_state->owner != curr);
954                 WARN_ON(list_empty(&pi_state->list));
955                 list_del_init(&pi_state->list);
956                 pi_state->owner = NULL;
957
958                 raw_spin_unlock(&curr->pi_lock);
959                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
960                 spin_unlock(&hb->lock);
961
962                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
963                 put_pi_state(pi_state);
964
965                 raw_spin_lock_irq(&curr->pi_lock);
966         }
967         raw_spin_unlock_irq(&curr->pi_lock);
968 }
969 #else
970 static inline void exit_pi_state_list(struct task_struct *curr) { }
971 #endif
972
973 /*
974  * We need to check the following states:
975  *
976  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
977  *
978  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
979  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
980  *
981  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
982  *
983  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
984  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
985  *
986  * [6]  Found  | Found    | task      | 0         | 1      | Valid
987  *
988  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
989  *
990  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
991  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
992  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
993  *
994  * [1]  Indicates that the kernel can acquire the futex atomically. We
995  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
996  *
997  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
998  *      thread is found then it indicates that the owner TID has died.
999  *
1000  * [3]  Invalid. The waiter is queued on a non PI futex
1001  *
1002  * [4]  Valid state after exit_robust_list(), which sets the user space
1003  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
1004  *
1005  * [5]  The user space value got manipulated between exit_robust_list()
1006  *      and exit_pi_state_list()
1007  *
1008  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
1009  *      the pi_state but cannot access the user space value.
1010  *
1011  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1012  *
1013  * [8]  Owner and user space value match
1014  *
1015  * [9]  There is no transient state which sets the user space TID to 0
1016  *      except exit_robust_list(), but this is indicated by the
1017  *      FUTEX_OWNER_DIED bit. See [4]
1018  *
1019  * [10] There is no transient state which leaves owner and user space
1020  *      TID out of sync.
1021  *
1022  *
1023  * Serialization and lifetime rules:
1024  *
1025  * hb->lock:
1026  *
1027  *      hb -> futex_q, relation
1028  *      futex_q -> pi_state, relation
1029  *
1030  *      (cannot be raw because hb can contain arbitrary amount
1031  *       of futex_q's)
1032  *
1033  * pi_mutex->wait_lock:
1034  *
1035  *      {uval, pi_state}
1036  *
1037  *      (and pi_mutex 'obviously')
1038  *
1039  * p->pi_lock:
1040  *
1041  *      p->pi_state_list -> pi_state->list, relation
1042  *
1043  * pi_state->refcount:
1044  *
1045  *      pi_state lifetime
1046  *
1047  *
1048  * Lock order:
1049  *
1050  *   hb->lock
1051  *     pi_mutex->wait_lock
1052  *       p->pi_lock
1053  *
1054  */
1055
1056 /*
1057  * Validate that the existing waiter has a pi_state and sanity check
1058  * the pi_state against the user space value. If correct, attach to
1059  * it.
1060  */
1061 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1062                               struct futex_pi_state *pi_state,
1063                               struct futex_pi_state **ps)
1064 {
1065         pid_t pid = uval & FUTEX_TID_MASK;
1066         u32 uval2;
1067         int ret;
1068
1069         /*
1070          * Userspace might have messed up non-PI and PI futexes [3]
1071          */
1072         if (unlikely(!pi_state))
1073                 return -EINVAL;
1074
1075         /*
1076          * We get here with hb->lock held, and having found a
1077          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1078          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1079          * which in turn means that futex_lock_pi() still has a reference on
1080          * our pi_state.
1081          *
1082          * The waiter holding a reference on @pi_state also protects against
1083          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1084          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1085          * free pi_state before we can take a reference ourselves.
1086          */
1087         WARN_ON(!refcount_read(&pi_state->refcount));
1088
1089         /*
1090          * Now that we have a pi_state, we can acquire wait_lock
1091          * and do the state validation.
1092          */
1093         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1094
1095         /*
1096          * Since {uval, pi_state} is serialized by wait_lock, and our current
1097          * uval was read without holding it, it can have changed. Verify it
1098          * still is what we expect it to be, otherwise retry the entire
1099          * operation.
1100          */
1101         if (get_futex_value_locked(&uval2, uaddr))
1102                 goto out_efault;
1103
1104         if (uval != uval2)
1105                 goto out_eagain;
1106
1107         /*
1108          * Handle the owner died case:
1109          */
1110         if (uval & FUTEX_OWNER_DIED) {
1111                 /*
1112                  * exit_pi_state_list sets owner to NULL and wakes the
1113                  * topmost waiter. The task which acquires the
1114                  * pi_state->rt_mutex will fixup owner.
1115                  */
1116                 if (!pi_state->owner) {
1117                         /*
1118                          * No pi state owner, but the user space TID
1119                          * is not 0. Inconsistent state. [5]
1120                          */
1121                         if (pid)
1122                                 goto out_einval;
1123                         /*
1124                          * Take a ref on the state and return success. [4]
1125                          */
1126                         goto out_attach;
1127                 }
1128
1129                 /*
1130                  * If TID is 0, then either the dying owner has not
1131                  * yet executed exit_pi_state_list() or some waiter
1132                  * acquired the rtmutex in the pi state, but did not
1133                  * yet fixup the TID in user space.
1134                  *
1135                  * Take a ref on the state and return success. [6]
1136                  */
1137                 if (!pid)
1138                         goto out_attach;
1139         } else {
1140                 /*
1141                  * If the owner died bit is not set, then the pi_state
1142                  * must have an owner. [7]
1143                  */
1144                 if (!pi_state->owner)
1145                         goto out_einval;
1146         }
1147
1148         /*
1149          * Bail out if user space manipulated the futex value. If pi
1150          * state exists then the owner TID must be the same as the
1151          * user space TID. [9/10]
1152          */
1153         if (pid != task_pid_vnr(pi_state->owner))
1154                 goto out_einval;
1155
1156 out_attach:
1157         get_pi_state(pi_state);
1158         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1159         *ps = pi_state;
1160         return 0;
1161
1162 out_einval:
1163         ret = -EINVAL;
1164         goto out_error;
1165
1166 out_eagain:
1167         ret = -EAGAIN;
1168         goto out_error;
1169
1170 out_efault:
1171         ret = -EFAULT;
1172         goto out_error;
1173
1174 out_error:
1175         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1176         return ret;
1177 }
1178
1179 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1180                             struct task_struct *tsk)
1181 {
1182         u32 uval2;
1183
1184         /*
1185          * If PF_EXITPIDONE is not yet set, then try again.
1186          */
1187         if (tsk && !(tsk->flags & PF_EXITPIDONE))
1188                 return -EAGAIN;
1189
1190         /*
1191          * Reread the user space value to handle the following situation:
1192          *
1193          * CPU0                         CPU1
1194          *
1195          * sys_exit()                   sys_futex()
1196          *  do_exit()                    futex_lock_pi()
1197          *                                futex_lock_pi_atomic()
1198          *   exit_signals(tsk)              No waiters:
1199          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1200          *  mm_release(tsk)                 Set waiter bit
1201          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1202          *      Set owner died              attach_to_pi_owner() {
1203          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1204          *   }                               if (!tsk->flags & PF_EXITING) {
1205          *  ...                                attach();
1206          *  tsk->flags |= PF_EXITPIDONE;     } else {
1207          *                                     if (!(tsk->flags & PF_EXITPIDONE))
1208          *                                       return -EAGAIN;
1209          *                                     return -ESRCH; <--- FAIL
1210          *                                   }
1211          *
1212          * Returning ESRCH unconditionally is wrong here because the
1213          * user space value has been changed by the exiting task.
1214          *
1215          * The same logic applies to the case where the exiting task is
1216          * already gone.
1217          */
1218         if (get_futex_value_locked(&uval2, uaddr))
1219                 return -EFAULT;
1220
1221         /* If the user space value has changed, try again. */
1222         if (uval2 != uval)
1223                 return -EAGAIN;
1224
1225         /*
1226          * The exiting task did not have a robust list, the robust list was
1227          * corrupted or the user space value in *uaddr is simply bogus.
1228          * Give up and tell user space.
1229          */
1230         return -ESRCH;
1231 }
1232
1233 /*
1234  * Lookup the task for the TID provided from user space and attach to
1235  * it after doing proper sanity checks.
1236  */
1237 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1238                               struct futex_pi_state **ps)
1239 {
1240         pid_t pid = uval & FUTEX_TID_MASK;
1241         struct futex_pi_state *pi_state;
1242         struct task_struct *p;
1243
1244         /*
1245          * We are the first waiter - try to look up the real owner and attach
1246          * the new pi_state to it, but bail out when TID = 0 [1]
1247          *
1248          * The !pid check is paranoid. None of the call sites should end up
1249          * with pid == 0, but better safe than sorry. Let the caller retry
1250          */
1251         if (!pid)
1252                 return -EAGAIN;
1253         p = find_get_task_by_vpid(pid);
1254         if (!p)
1255                 return handle_exit_race(uaddr, uval, NULL);
1256
1257         if (unlikely(p->flags & PF_KTHREAD)) {
1258                 put_task_struct(p);
1259                 return -EPERM;
1260         }
1261
1262         /*
1263          * We need to look at the task state flags to figure out,
1264          * whether the task is exiting. To protect against the do_exit
1265          * change of the task flags, we do this protected by
1266          * p->pi_lock:
1267          */
1268         raw_spin_lock_irq(&p->pi_lock);
1269         if (unlikely(p->flags & PF_EXITING)) {
1270                 /*
1271                  * The task is on the way out. When PF_EXITPIDONE is
1272                  * set, we know that the task has finished the
1273                  * cleanup:
1274                  */
1275                 int ret = handle_exit_race(uaddr, uval, p);
1276
1277                 raw_spin_unlock_irq(&p->pi_lock);
1278                 put_task_struct(p);
1279                 return ret;
1280         }
1281
1282         /*
1283          * No existing pi state. First waiter. [2]
1284          *
1285          * This creates pi_state, we have hb->lock held, this means nothing can
1286          * observe this state, wait_lock is irrelevant.
1287          */
1288         pi_state = alloc_pi_state();
1289
1290         /*
1291          * Initialize the pi_mutex in locked state and make @p
1292          * the owner of it:
1293          */
1294         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1295
1296         /* Store the key for possible exit cleanups: */
1297         pi_state->key = *key;
1298
1299         WARN_ON(!list_empty(&pi_state->list));
1300         list_add(&pi_state->list, &p->pi_state_list);
1301         /*
1302          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1303          * because there is no concurrency as the object is not published yet.
1304          */
1305         pi_state->owner = p;
1306         raw_spin_unlock_irq(&p->pi_lock);
1307
1308         put_task_struct(p);
1309
1310         *ps = pi_state;
1311
1312         return 0;
1313 }
1314
1315 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1316                            struct futex_hash_bucket *hb,
1317                            union futex_key *key, struct futex_pi_state **ps)
1318 {
1319         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1320
1321         /*
1322          * If there is a waiter on that futex, validate it and
1323          * attach to the pi_state when the validation succeeds.
1324          */
1325         if (top_waiter)
1326                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1327
1328         /*
1329          * We are the first waiter - try to look up the owner based on
1330          * @uval and attach to it.
1331          */
1332         return attach_to_pi_owner(uaddr, uval, key, ps);
1333 }
1334
1335 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1336 {
1337         int err;
1338         u32 uninitialized_var(curval);
1339
1340         if (unlikely(should_fail_futex(true)))
1341                 return -EFAULT;
1342
1343         err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1344         if (unlikely(err))
1345                 return err;
1346
1347         /* If user space value changed, let the caller retry */
1348         return curval != uval ? -EAGAIN : 0;
1349 }
1350
1351 /**
1352  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1353  * @uaddr:              the pi futex user address
1354  * @hb:                 the pi futex hash bucket
1355  * @key:                the futex key associated with uaddr and hb
1356  * @ps:                 the pi_state pointer where we store the result of the
1357  *                      lookup
1358  * @task:               the task to perform the atomic lock work for.  This will
1359  *                      be "current" except in the case of requeue pi.
1360  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1361  *
1362  * Return:
1363  *  -  0 - ready to wait;
1364  *  -  1 - acquired the lock;
1365  *  - <0 - error
1366  *
1367  * The hb->lock and futex_key refs shall be held by the caller.
1368  */
1369 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1370                                 union futex_key *key,
1371                                 struct futex_pi_state **ps,
1372                                 struct task_struct *task, int set_waiters)
1373 {
1374         u32 uval, newval, vpid = task_pid_vnr(task);
1375         struct futex_q *top_waiter;
1376         int ret;
1377
1378         /*
1379          * Read the user space value first so we can validate a few
1380          * things before proceeding further.
1381          */
1382         if (get_futex_value_locked(&uval, uaddr))
1383                 return -EFAULT;
1384
1385         if (unlikely(should_fail_futex(true)))
1386                 return -EFAULT;
1387
1388         /*
1389          * Detect deadlocks.
1390          */
1391         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1392                 return -EDEADLK;
1393
1394         if ((unlikely(should_fail_futex(true))))
1395                 return -EDEADLK;
1396
1397         /*
1398          * Lookup existing state first. If it exists, try to attach to
1399          * its pi_state.
1400          */
1401         top_waiter = futex_top_waiter(hb, key);
1402         if (top_waiter)
1403                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1404
1405         /*
1406          * No waiter and user TID is 0. We are here because the
1407          * waiters or the owner died bit is set or called from
1408          * requeue_cmp_pi or for whatever reason something took the
1409          * syscall.
1410          */
1411         if (!(uval & FUTEX_TID_MASK)) {
1412                 /*
1413                  * We take over the futex. No other waiters and the user space
1414                  * TID is 0. We preserve the owner died bit.
1415                  */
1416                 newval = uval & FUTEX_OWNER_DIED;
1417                 newval |= vpid;
1418
1419                 /* The futex requeue_pi code can enforce the waiters bit */
1420                 if (set_waiters)
1421                         newval |= FUTEX_WAITERS;
1422
1423                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1424                 /* If the take over worked, return 1 */
1425                 return ret < 0 ? ret : 1;
1426         }
1427
1428         /*
1429          * First waiter. Set the waiters bit before attaching ourself to
1430          * the owner. If owner tries to unlock, it will be forced into
1431          * the kernel and blocked on hb->lock.
1432          */
1433         newval = uval | FUTEX_WAITERS;
1434         ret = lock_pi_update_atomic(uaddr, uval, newval);
1435         if (ret)
1436                 return ret;
1437         /*
1438          * If the update of the user space value succeeded, we try to
1439          * attach to the owner. If that fails, no harm done, we only
1440          * set the FUTEX_WAITERS bit in the user space variable.
1441          */
1442         return attach_to_pi_owner(uaddr, newval, key, ps);
1443 }
1444
1445 /**
1446  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1447  * @q:  The futex_q to unqueue
1448  *
1449  * The q->lock_ptr must not be NULL and must be held by the caller.
1450  */
1451 static void __unqueue_futex(struct futex_q *q)
1452 {
1453         struct futex_hash_bucket *hb;
1454
1455         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1456                 return;
1457         lockdep_assert_held(q->lock_ptr);
1458
1459         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1460         plist_del(&q->list, &hb->chain);
1461         hb_waiters_dec(hb);
1462 }
1463
1464 /*
1465  * The hash bucket lock must be held when this is called.
1466  * Afterwards, the futex_q must not be accessed. Callers
1467  * must ensure to later call wake_up_q() for the actual
1468  * wakeups to occur.
1469  */
1470 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1471 {
1472         struct task_struct *p = q->task;
1473
1474         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1475                 return;
1476
1477         get_task_struct(p);
1478         __unqueue_futex(q);
1479         /*
1480          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1481          * is written, without taking any locks. This is possible in the event
1482          * of a spurious wakeup, for example. A memory barrier is required here
1483          * to prevent the following store to lock_ptr from getting ahead of the
1484          * plist_del in __unqueue_futex().
1485          */
1486         smp_store_release(&q->lock_ptr, NULL);
1487
1488         /*
1489          * Queue the task for later wakeup for after we've released
1490          * the hb->lock.
1491          */
1492         wake_q_add_safe(wake_q, p);
1493 }
1494
1495 /*
1496  * Caller must hold a reference on @pi_state.
1497  */
1498 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1499 {
1500         u32 uninitialized_var(curval), newval;
1501         struct task_struct *new_owner;
1502         bool postunlock = false;
1503         DEFINE_WAKE_Q(wake_q);
1504         int ret = 0;
1505
1506         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1507         if (WARN_ON_ONCE(!new_owner)) {
1508                 /*
1509                  * As per the comment in futex_unlock_pi() this should not happen.
1510                  *
1511                  * When this happens, give up our locks and try again, giving
1512                  * the futex_lock_pi() instance time to complete, either by
1513                  * waiting on the rtmutex or removing itself from the futex
1514                  * queue.
1515                  */
1516                 ret = -EAGAIN;
1517                 goto out_unlock;
1518         }
1519
1520         /*
1521          * We pass it to the next owner. The WAITERS bit is always kept
1522          * enabled while there is PI state around. We cleanup the owner
1523          * died bit, because we are the owner.
1524          */
1525         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1526
1527         if (unlikely(should_fail_futex(true)))
1528                 ret = -EFAULT;
1529
1530         ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1531         if (!ret && (curval != uval)) {
1532                 /*
1533                  * If a unconditional UNLOCK_PI operation (user space did not
1534                  * try the TID->0 transition) raced with a waiter setting the
1535                  * FUTEX_WAITERS flag between get_user() and locking the hash
1536                  * bucket lock, retry the operation.
1537                  */
1538                 if ((FUTEX_TID_MASK & curval) == uval)
1539                         ret = -EAGAIN;
1540                 else
1541                         ret = -EINVAL;
1542         }
1543
1544         if (ret)
1545                 goto out_unlock;
1546
1547         /*
1548          * This is a point of no return; once we modify the uval there is no
1549          * going back and subsequent operations must not fail.
1550          */
1551
1552         raw_spin_lock(&pi_state->owner->pi_lock);
1553         WARN_ON(list_empty(&pi_state->list));
1554         list_del_init(&pi_state->list);
1555         raw_spin_unlock(&pi_state->owner->pi_lock);
1556
1557         raw_spin_lock(&new_owner->pi_lock);
1558         WARN_ON(!list_empty(&pi_state->list));
1559         list_add(&pi_state->list, &new_owner->pi_state_list);
1560         pi_state->owner = new_owner;
1561         raw_spin_unlock(&new_owner->pi_lock);
1562
1563         postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1564
1565 out_unlock:
1566         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1567
1568         if (postunlock)
1569                 rt_mutex_postunlock(&wake_q);
1570
1571         return ret;
1572 }
1573
1574 /*
1575  * Express the locking dependencies for lockdep:
1576  */
1577 static inline void
1578 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1579 {
1580         if (hb1 <= hb2) {
1581                 spin_lock(&hb1->lock);
1582                 if (hb1 < hb2)
1583                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1584         } else { /* hb1 > hb2 */
1585                 spin_lock(&hb2->lock);
1586                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1587         }
1588 }
1589
1590 static inline void
1591 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1592 {
1593         spin_unlock(&hb1->lock);
1594         if (hb1 != hb2)
1595                 spin_unlock(&hb2->lock);
1596 }
1597
1598 /*
1599  * Wake up waiters matching bitset queued on this futex (uaddr).
1600  */
1601 static int
1602 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1603 {
1604         struct futex_hash_bucket *hb;
1605         struct futex_q *this, *next;
1606         union futex_key key = FUTEX_KEY_INIT;
1607         int ret;
1608         DEFINE_WAKE_Q(wake_q);
1609
1610         if (!bitset)
1611                 return -EINVAL;
1612
1613         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1614         if (unlikely(ret != 0))
1615                 goto out;
1616
1617         hb = hash_futex(&key);
1618
1619         /* Make sure we really have tasks to wakeup */
1620         if (!hb_waiters_pending(hb))
1621                 goto out_put_key;
1622
1623         spin_lock(&hb->lock);
1624
1625         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1626                 if (match_futex (&this->key, &key)) {
1627                         if (this->pi_state || this->rt_waiter) {
1628                                 ret = -EINVAL;
1629                                 break;
1630                         }
1631
1632                         /* Check if one of the bits is set in both bitsets */
1633                         if (!(this->bitset & bitset))
1634                                 continue;
1635
1636                         mark_wake_futex(&wake_q, this);
1637                         if (++ret >= nr_wake)
1638                                 break;
1639                 }
1640         }
1641
1642         spin_unlock(&hb->lock);
1643         wake_up_q(&wake_q);
1644 out_put_key:
1645         put_futex_key(&key);
1646 out:
1647         return ret;
1648 }
1649
1650 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1651 {
1652         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1653         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1654         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1655         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1656         int oldval, ret;
1657
1658         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1659                 if (oparg < 0 || oparg > 31) {
1660                         char comm[sizeof(current->comm)];
1661                         /*
1662                          * kill this print and return -EINVAL when userspace
1663                          * is sane again
1664                          */
1665                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1666                                         get_task_comm(comm, current), oparg);
1667                         oparg &= 31;
1668                 }
1669                 oparg = 1 << oparg;
1670         }
1671
1672         if (!access_ok(uaddr, sizeof(u32)))
1673                 return -EFAULT;
1674
1675         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1676         if (ret)
1677                 return ret;
1678
1679         switch (cmp) {
1680         case FUTEX_OP_CMP_EQ:
1681                 return oldval == cmparg;
1682         case FUTEX_OP_CMP_NE:
1683                 return oldval != cmparg;
1684         case FUTEX_OP_CMP_LT:
1685                 return oldval < cmparg;
1686         case FUTEX_OP_CMP_GE:
1687                 return oldval >= cmparg;
1688         case FUTEX_OP_CMP_LE:
1689                 return oldval <= cmparg;
1690         case FUTEX_OP_CMP_GT:
1691                 return oldval > cmparg;
1692         default:
1693                 return -ENOSYS;
1694         }
1695 }
1696
1697 /*
1698  * Wake up all waiters hashed on the physical page that is mapped
1699  * to this virtual address:
1700  */
1701 static int
1702 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1703               int nr_wake, int nr_wake2, int op)
1704 {
1705         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1706         struct futex_hash_bucket *hb1, *hb2;
1707         struct futex_q *this, *next;
1708         int ret, op_ret;
1709         DEFINE_WAKE_Q(wake_q);
1710
1711 retry:
1712         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1713         if (unlikely(ret != 0))
1714                 goto out;
1715         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1716         if (unlikely(ret != 0))
1717                 goto out_put_key1;
1718
1719         hb1 = hash_futex(&key1);
1720         hb2 = hash_futex(&key2);
1721
1722 retry_private:
1723         double_lock_hb(hb1, hb2);
1724         op_ret = futex_atomic_op_inuser(op, uaddr2);
1725         if (unlikely(op_ret < 0)) {
1726                 double_unlock_hb(hb1, hb2);
1727
1728                 if (!IS_ENABLED(CONFIG_MMU) ||
1729                     unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1730                         /*
1731                          * we don't get EFAULT from MMU faults if we don't have
1732                          * an MMU, but we might get them from range checking
1733                          */
1734                         ret = op_ret;
1735                         goto out_put_keys;
1736                 }
1737
1738                 if (op_ret == -EFAULT) {
1739                         ret = fault_in_user_writeable(uaddr2);
1740                         if (ret)
1741                                 goto out_put_keys;
1742                 }
1743
1744                 if (!(flags & FLAGS_SHARED)) {
1745                         cond_resched();
1746                         goto retry_private;
1747                 }
1748
1749                 put_futex_key(&key2);
1750                 put_futex_key(&key1);
1751                 cond_resched();
1752                 goto retry;
1753         }
1754
1755         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1756                 if (match_futex (&this->key, &key1)) {
1757                         if (this->pi_state || this->rt_waiter) {
1758                                 ret = -EINVAL;
1759                                 goto out_unlock;
1760                         }
1761                         mark_wake_futex(&wake_q, this);
1762                         if (++ret >= nr_wake)
1763                                 break;
1764                 }
1765         }
1766
1767         if (op_ret > 0) {
1768                 op_ret = 0;
1769                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1770                         if (match_futex (&this->key, &key2)) {
1771                                 if (this->pi_state || this->rt_waiter) {
1772                                         ret = -EINVAL;
1773                                         goto out_unlock;
1774                                 }
1775                                 mark_wake_futex(&wake_q, this);
1776                                 if (++op_ret >= nr_wake2)
1777                                         break;
1778                         }
1779                 }
1780                 ret += op_ret;
1781         }
1782
1783 out_unlock:
1784         double_unlock_hb(hb1, hb2);
1785         wake_up_q(&wake_q);
1786 out_put_keys:
1787         put_futex_key(&key2);
1788 out_put_key1:
1789         put_futex_key(&key1);
1790 out:
1791         return ret;
1792 }
1793
1794 /**
1795  * requeue_futex() - Requeue a futex_q from one hb to another
1796  * @q:          the futex_q to requeue
1797  * @hb1:        the source hash_bucket
1798  * @hb2:        the target hash_bucket
1799  * @key2:       the new key for the requeued futex_q
1800  */
1801 static inline
1802 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1803                    struct futex_hash_bucket *hb2, union futex_key *key2)
1804 {
1805
1806         /*
1807          * If key1 and key2 hash to the same bucket, no need to
1808          * requeue.
1809          */
1810         if (likely(&hb1->chain != &hb2->chain)) {
1811                 plist_del(&q->list, &hb1->chain);
1812                 hb_waiters_dec(hb1);
1813                 hb_waiters_inc(hb2);
1814                 plist_add(&q->list, &hb2->chain);
1815                 q->lock_ptr = &hb2->lock;
1816         }
1817         get_futex_key_refs(key2);
1818         q->key = *key2;
1819 }
1820
1821 /**
1822  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1823  * @q:          the futex_q
1824  * @key:        the key of the requeue target futex
1825  * @hb:         the hash_bucket of the requeue target futex
1826  *
1827  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1828  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1829  * to the requeue target futex so the waiter can detect the wakeup on the right
1830  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1831  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1832  * to protect access to the pi_state to fixup the owner later.  Must be called
1833  * with both q->lock_ptr and hb->lock held.
1834  */
1835 static inline
1836 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1837                            struct futex_hash_bucket *hb)
1838 {
1839         get_futex_key_refs(key);
1840         q->key = *key;
1841
1842         __unqueue_futex(q);
1843
1844         WARN_ON(!q->rt_waiter);
1845         q->rt_waiter = NULL;
1846
1847         q->lock_ptr = &hb->lock;
1848
1849         wake_up_state(q->task, TASK_NORMAL);
1850 }
1851
1852 /**
1853  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1854  * @pifutex:            the user address of the to futex
1855  * @hb1:                the from futex hash bucket, must be locked by the caller
1856  * @hb2:                the to futex hash bucket, must be locked by the caller
1857  * @key1:               the from futex key
1858  * @key2:               the to futex key
1859  * @ps:                 address to store the pi_state pointer
1860  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1861  *
1862  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1863  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1864  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1865  * hb1 and hb2 must be held by the caller.
1866  *
1867  * Return:
1868  *  -  0 - failed to acquire the lock atomically;
1869  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1870  *  - <0 - error
1871  */
1872 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1873                                  struct futex_hash_bucket *hb1,
1874                                  struct futex_hash_bucket *hb2,
1875                                  union futex_key *key1, union futex_key *key2,
1876                                  struct futex_pi_state **ps, int set_waiters)
1877 {
1878         struct futex_q *top_waiter = NULL;
1879         u32 curval;
1880         int ret, vpid;
1881
1882         if (get_futex_value_locked(&curval, pifutex))
1883                 return -EFAULT;
1884
1885         if (unlikely(should_fail_futex(true)))
1886                 return -EFAULT;
1887
1888         /*
1889          * Find the top_waiter and determine if there are additional waiters.
1890          * If the caller intends to requeue more than 1 waiter to pifutex,
1891          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1892          * as we have means to handle the possible fault.  If not, don't set
1893          * the bit unecessarily as it will force the subsequent unlock to enter
1894          * the kernel.
1895          */
1896         top_waiter = futex_top_waiter(hb1, key1);
1897
1898         /* There are no waiters, nothing for us to do. */
1899         if (!top_waiter)
1900                 return 0;
1901
1902         /* Ensure we requeue to the expected futex. */
1903         if (!match_futex(top_waiter->requeue_pi_key, key2))
1904                 return -EINVAL;
1905
1906         /*
1907          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1908          * the contended case or if set_waiters is 1.  The pi_state is returned
1909          * in ps in contended cases.
1910          */
1911         vpid = task_pid_vnr(top_waiter->task);
1912         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1913                                    set_waiters);
1914         if (ret == 1) {
1915                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1916                 return vpid;
1917         }
1918         return ret;
1919 }
1920
1921 /**
1922  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1923  * @uaddr1:     source futex user address
1924  * @flags:      futex flags (FLAGS_SHARED, etc.)
1925  * @uaddr2:     target futex user address
1926  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1927  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1928  * @cmpval:     @uaddr1 expected value (or %NULL)
1929  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1930  *              pi futex (pi to pi requeue is not supported)
1931  *
1932  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1933  * uaddr2 atomically on behalf of the top waiter.
1934  *
1935  * Return:
1936  *  - >=0 - on success, the number of tasks requeued or woken;
1937  *  -  <0 - on error
1938  */
1939 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1940                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1941                          u32 *cmpval, int requeue_pi)
1942 {
1943         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1944         int drop_count = 0, task_count = 0, ret;
1945         struct futex_pi_state *pi_state = NULL;
1946         struct futex_hash_bucket *hb1, *hb2;
1947         struct futex_q *this, *next;
1948         DEFINE_WAKE_Q(wake_q);
1949
1950         if (nr_wake < 0 || nr_requeue < 0)
1951                 return -EINVAL;
1952
1953         /*
1954          * When PI not supported: return -ENOSYS if requeue_pi is true,
1955          * consequently the compiler knows requeue_pi is always false past
1956          * this point which will optimize away all the conditional code
1957          * further down.
1958          */
1959         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1960                 return -ENOSYS;
1961
1962         if (requeue_pi) {
1963                 /*
1964                  * Requeue PI only works on two distinct uaddrs. This
1965                  * check is only valid for private futexes. See below.
1966                  */
1967                 if (uaddr1 == uaddr2)
1968                         return -EINVAL;
1969
1970                 /*
1971                  * requeue_pi requires a pi_state, try to allocate it now
1972                  * without any locks in case it fails.
1973                  */
1974                 if (refill_pi_state_cache())
1975                         return -ENOMEM;
1976                 /*
1977                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1978                  * + nr_requeue, since it acquires the rt_mutex prior to
1979                  * returning to userspace, so as to not leave the rt_mutex with
1980                  * waiters and no owner.  However, second and third wake-ups
1981                  * cannot be predicted as they involve race conditions with the
1982                  * first wake and a fault while looking up the pi_state.  Both
1983                  * pthread_cond_signal() and pthread_cond_broadcast() should
1984                  * use nr_wake=1.
1985                  */
1986                 if (nr_wake != 1)
1987                         return -EINVAL;
1988         }
1989
1990 retry:
1991         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1992         if (unlikely(ret != 0))
1993                 goto out;
1994         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1995                             requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1996         if (unlikely(ret != 0))
1997                 goto out_put_key1;
1998
1999         /*
2000          * The check above which compares uaddrs is not sufficient for
2001          * shared futexes. We need to compare the keys:
2002          */
2003         if (requeue_pi && match_futex(&key1, &key2)) {
2004                 ret = -EINVAL;
2005                 goto out_put_keys;
2006         }
2007
2008         hb1 = hash_futex(&key1);
2009         hb2 = hash_futex(&key2);
2010
2011 retry_private:
2012         hb_waiters_inc(hb2);
2013         double_lock_hb(hb1, hb2);
2014
2015         if (likely(cmpval != NULL)) {
2016                 u32 curval;
2017
2018                 ret = get_futex_value_locked(&curval, uaddr1);
2019
2020                 if (unlikely(ret)) {
2021                         double_unlock_hb(hb1, hb2);
2022                         hb_waiters_dec(hb2);
2023
2024                         ret = get_user(curval, uaddr1);
2025                         if (ret)
2026                                 goto out_put_keys;
2027
2028                         if (!(flags & FLAGS_SHARED))
2029                                 goto retry_private;
2030
2031                         put_futex_key(&key2);
2032                         put_futex_key(&key1);
2033                         goto retry;
2034                 }
2035                 if (curval != *cmpval) {
2036                         ret = -EAGAIN;
2037                         goto out_unlock;
2038                 }
2039         }
2040
2041         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2042                 /*
2043                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2044                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2045                  * bit.  We force this here where we are able to easily handle
2046                  * faults rather in the requeue loop below.
2047                  */
2048                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2049                                                  &key2, &pi_state, nr_requeue);
2050
2051                 /*
2052                  * At this point the top_waiter has either taken uaddr2 or is
2053                  * waiting on it.  If the former, then the pi_state will not
2054                  * exist yet, look it up one more time to ensure we have a
2055                  * reference to it. If the lock was taken, ret contains the
2056                  * vpid of the top waiter task.
2057                  * If the lock was not taken, we have pi_state and an initial
2058                  * refcount on it. In case of an error we have nothing.
2059                  */
2060                 if (ret > 0) {
2061                         WARN_ON(pi_state);
2062                         drop_count++;
2063                         task_count++;
2064                         /*
2065                          * If we acquired the lock, then the user space value
2066                          * of uaddr2 should be vpid. It cannot be changed by
2067                          * the top waiter as it is blocked on hb2 lock if it
2068                          * tries to do so. If something fiddled with it behind
2069                          * our back the pi state lookup might unearth it. So
2070                          * we rather use the known value than rereading and
2071                          * handing potential crap to lookup_pi_state.
2072                          *
2073                          * If that call succeeds then we have pi_state and an
2074                          * initial refcount on it.
2075                          */
2076                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
2077                 }
2078
2079                 switch (ret) {
2080                 case 0:
2081                         /* We hold a reference on the pi state. */
2082                         break;
2083
2084                         /* If the above failed, then pi_state is NULL */
2085                 case -EFAULT:
2086                         double_unlock_hb(hb1, hb2);
2087                         hb_waiters_dec(hb2);
2088                         put_futex_key(&key2);
2089                         put_futex_key(&key1);
2090                         ret = fault_in_user_writeable(uaddr2);
2091                         if (!ret)
2092                                 goto retry;
2093                         goto out;
2094                 case -EAGAIN:
2095                         /*
2096                          * Two reasons for this:
2097                          * - Owner is exiting and we just wait for the
2098                          *   exit to complete.
2099                          * - The user space value changed.
2100                          */
2101                         double_unlock_hb(hb1, hb2);
2102                         hb_waiters_dec(hb2);
2103                         put_futex_key(&key2);
2104                         put_futex_key(&key1);
2105                         cond_resched();
2106                         goto retry;
2107                 default:
2108                         goto out_unlock;
2109                 }
2110         }
2111
2112         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2113                 if (task_count - nr_wake >= nr_requeue)
2114                         break;
2115
2116                 if (!match_futex(&this->key, &key1))
2117                         continue;
2118
2119                 /*
2120                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2121                  * be paired with each other and no other futex ops.
2122                  *
2123                  * We should never be requeueing a futex_q with a pi_state,
2124                  * which is awaiting a futex_unlock_pi().
2125                  */
2126                 if ((requeue_pi && !this->rt_waiter) ||
2127                     (!requeue_pi && this->rt_waiter) ||
2128                     this->pi_state) {
2129                         ret = -EINVAL;
2130                         break;
2131                 }
2132
2133                 /*
2134                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2135                  * lock, we already woke the top_waiter.  If not, it will be
2136                  * woken by futex_unlock_pi().
2137                  */
2138                 if (++task_count <= nr_wake && !requeue_pi) {
2139                         mark_wake_futex(&wake_q, this);
2140                         continue;
2141                 }
2142
2143                 /* Ensure we requeue to the expected futex for requeue_pi. */
2144                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2145                         ret = -EINVAL;
2146                         break;
2147                 }
2148
2149                 /*
2150                  * Requeue nr_requeue waiters and possibly one more in the case
2151                  * of requeue_pi if we couldn't acquire the lock atomically.
2152                  */
2153                 if (requeue_pi) {
2154                         /*
2155                          * Prepare the waiter to take the rt_mutex. Take a
2156                          * refcount on the pi_state and store the pointer in
2157                          * the futex_q object of the waiter.
2158                          */
2159                         get_pi_state(pi_state);
2160                         this->pi_state = pi_state;
2161                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2162                                                         this->rt_waiter,
2163                                                         this->task);
2164                         if (ret == 1) {
2165                                 /*
2166                                  * We got the lock. We do neither drop the
2167                                  * refcount on pi_state nor clear
2168                                  * this->pi_state because the waiter needs the
2169                                  * pi_state for cleaning up the user space
2170                                  * value. It will drop the refcount after
2171                                  * doing so.
2172                                  */
2173                                 requeue_pi_wake_futex(this, &key2, hb2);
2174                                 drop_count++;
2175                                 continue;
2176                         } else if (ret) {
2177                                 /*
2178                                  * rt_mutex_start_proxy_lock() detected a
2179                                  * potential deadlock when we tried to queue
2180                                  * that waiter. Drop the pi_state reference
2181                                  * which we took above and remove the pointer
2182                                  * to the state from the waiters futex_q
2183                                  * object.
2184                                  */
2185                                 this->pi_state = NULL;
2186                                 put_pi_state(pi_state);
2187                                 /*
2188                                  * We stop queueing more waiters and let user
2189                                  * space deal with the mess.
2190                                  */
2191                                 break;
2192                         }
2193                 }
2194                 requeue_futex(this, hb1, hb2, &key2);
2195                 drop_count++;
2196         }
2197
2198         /*
2199          * We took an extra initial reference to the pi_state either
2200          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2201          * need to drop it here again.
2202          */
2203         put_pi_state(pi_state);
2204
2205 out_unlock:
2206         double_unlock_hb(hb1, hb2);
2207         wake_up_q(&wake_q);
2208         hb_waiters_dec(hb2);
2209
2210         /*
2211          * drop_futex_key_refs() must be called outside the spinlocks. During
2212          * the requeue we moved futex_q's from the hash bucket at key1 to the
2213          * one at key2 and updated their key pointer.  We no longer need to
2214          * hold the references to key1.
2215          */
2216         while (--drop_count >= 0)
2217                 drop_futex_key_refs(&key1);
2218
2219 out_put_keys:
2220         put_futex_key(&key2);
2221 out_put_key1:
2222         put_futex_key(&key1);
2223 out:
2224         return ret ? ret : task_count;
2225 }
2226
2227 /* The key must be already stored in q->key. */
2228 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2229         __acquires(&hb->lock)
2230 {
2231         struct futex_hash_bucket *hb;
2232
2233         hb = hash_futex(&q->key);
2234
2235         /*
2236          * Increment the counter before taking the lock so that
2237          * a potential waker won't miss a to-be-slept task that is
2238          * waiting for the spinlock. This is safe as all queue_lock()
2239          * users end up calling queue_me(). Similarly, for housekeeping,
2240          * decrement the counter at queue_unlock() when some error has
2241          * occurred and we don't end up adding the task to the list.
2242          */
2243         hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2244
2245         q->lock_ptr = &hb->lock;
2246
2247         spin_lock(&hb->lock);
2248         return hb;
2249 }
2250
2251 static inline void
2252 queue_unlock(struct futex_hash_bucket *hb)
2253         __releases(&hb->lock)
2254 {
2255         spin_unlock(&hb->lock);
2256         hb_waiters_dec(hb);
2257 }
2258
2259 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2260 {
2261         int prio;
2262
2263         /*
2264          * The priority used to register this element is
2265          * - either the real thread-priority for the real-time threads
2266          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2267          * - or MAX_RT_PRIO for non-RT threads.
2268          * Thus, all RT-threads are woken first in priority order, and
2269          * the others are woken last, in FIFO order.
2270          */
2271         prio = min(current->normal_prio, MAX_RT_PRIO);
2272
2273         plist_node_init(&q->list, prio);
2274         plist_add(&q->list, &hb->chain);
2275         q->task = current;
2276 }
2277
2278 /**
2279  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2280  * @q:  The futex_q to enqueue
2281  * @hb: The destination hash bucket
2282  *
2283  * The hb->lock must be held by the caller, and is released here. A call to
2284  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2285  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2286  * or nothing if the unqueue is done as part of the wake process and the unqueue
2287  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2288  * an example).
2289  */
2290 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2291         __releases(&hb->lock)
2292 {
2293         __queue_me(q, hb);
2294         spin_unlock(&hb->lock);
2295 }
2296
2297 /**
2298  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2299  * @q:  The futex_q to unqueue
2300  *
2301  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2302  * be paired with exactly one earlier call to queue_me().
2303  *
2304  * Return:
2305  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2306  *  - 0 - if the futex_q was already removed by the waking thread
2307  */
2308 static int unqueue_me(struct futex_q *q)
2309 {
2310         spinlock_t *lock_ptr;
2311         int ret = 0;
2312
2313         /* In the common case we don't take the spinlock, which is nice. */
2314 retry:
2315         /*
2316          * q->lock_ptr can change between this read and the following spin_lock.
2317          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2318          * optimizing lock_ptr out of the logic below.
2319          */
2320         lock_ptr = READ_ONCE(q->lock_ptr);
2321         if (lock_ptr != NULL) {
2322                 spin_lock(lock_ptr);
2323                 /*
2324                  * q->lock_ptr can change between reading it and
2325                  * spin_lock(), causing us to take the wrong lock.  This
2326                  * corrects the race condition.
2327                  *
2328                  * Reasoning goes like this: if we have the wrong lock,
2329                  * q->lock_ptr must have changed (maybe several times)
2330                  * between reading it and the spin_lock().  It can
2331                  * change again after the spin_lock() but only if it was
2332                  * already changed before the spin_lock().  It cannot,
2333                  * however, change back to the original value.  Therefore
2334                  * we can detect whether we acquired the correct lock.
2335                  */
2336                 if (unlikely(lock_ptr != q->lock_ptr)) {
2337                         spin_unlock(lock_ptr);
2338                         goto retry;
2339                 }
2340                 __unqueue_futex(q);
2341
2342                 BUG_ON(q->pi_state);
2343
2344                 spin_unlock(lock_ptr);
2345                 ret = 1;
2346         }
2347
2348         drop_futex_key_refs(&q->key);
2349         return ret;
2350 }
2351
2352 /*
2353  * PI futexes can not be requeued and must remove themself from the
2354  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2355  * and dropped here.
2356  */
2357 static void unqueue_me_pi(struct futex_q *q)
2358         __releases(q->lock_ptr)
2359 {
2360         __unqueue_futex(q);
2361
2362         BUG_ON(!q->pi_state);
2363         put_pi_state(q->pi_state);
2364         q->pi_state = NULL;
2365
2366         spin_unlock(q->lock_ptr);
2367 }
2368
2369 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2370                                 struct task_struct *argowner)
2371 {
2372         struct futex_pi_state *pi_state = q->pi_state;
2373         u32 uval, uninitialized_var(curval), newval;
2374         struct task_struct *oldowner, *newowner;
2375         u32 newtid;
2376         int ret, err = 0;
2377
2378         lockdep_assert_held(q->lock_ptr);
2379
2380         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2381
2382         oldowner = pi_state->owner;
2383
2384         /*
2385          * We are here because either:
2386          *
2387          *  - we stole the lock and pi_state->owner needs updating to reflect
2388          *    that (@argowner == current),
2389          *
2390          * or:
2391          *
2392          *  - someone stole our lock and we need to fix things to point to the
2393          *    new owner (@argowner == NULL).
2394          *
2395          * Either way, we have to replace the TID in the user space variable.
2396          * This must be atomic as we have to preserve the owner died bit here.
2397          *
2398          * Note: We write the user space value _before_ changing the pi_state
2399          * because we can fault here. Imagine swapped out pages or a fork
2400          * that marked all the anonymous memory readonly for cow.
2401          *
2402          * Modifying pi_state _before_ the user space value would leave the
2403          * pi_state in an inconsistent state when we fault here, because we
2404          * need to drop the locks to handle the fault. This might be observed
2405          * in the PID check in lookup_pi_state.
2406          */
2407 retry:
2408         if (!argowner) {
2409                 if (oldowner != current) {
2410                         /*
2411                          * We raced against a concurrent self; things are
2412                          * already fixed up. Nothing to do.
2413                          */
2414                         ret = 0;
2415                         goto out_unlock;
2416                 }
2417
2418                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2419                         /* We got the lock after all, nothing to fix. */
2420                         ret = 0;
2421                         goto out_unlock;
2422                 }
2423
2424                 /*
2425                  * Since we just failed the trylock; there must be an owner.
2426                  */
2427                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2428                 BUG_ON(!newowner);
2429         } else {
2430                 WARN_ON_ONCE(argowner != current);
2431                 if (oldowner == current) {
2432                         /*
2433                          * We raced against a concurrent self; things are
2434                          * already fixed up. Nothing to do.
2435                          */
2436                         ret = 0;
2437                         goto out_unlock;
2438                 }
2439                 newowner = argowner;
2440         }
2441
2442         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2443         /* Owner died? */
2444         if (!pi_state->owner)
2445                 newtid |= FUTEX_OWNER_DIED;
2446
2447         err = get_futex_value_locked(&uval, uaddr);
2448         if (err)
2449                 goto handle_err;
2450
2451         for (;;) {
2452                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2453
2454                 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2455                 if (err)
2456                         goto handle_err;
2457
2458                 if (curval == uval)
2459                         break;
2460                 uval = curval;
2461         }
2462
2463         /*
2464          * We fixed up user space. Now we need to fix the pi_state
2465          * itself.
2466          */
2467         if (pi_state->owner != NULL) {
2468                 raw_spin_lock(&pi_state->owner->pi_lock);
2469                 WARN_ON(list_empty(&pi_state->list));
2470                 list_del_init(&pi_state->list);
2471                 raw_spin_unlock(&pi_state->owner->pi_lock);
2472         }
2473
2474         pi_state->owner = newowner;
2475
2476         raw_spin_lock(&newowner->pi_lock);
2477         WARN_ON(!list_empty(&pi_state->list));
2478         list_add(&pi_state->list, &newowner->pi_state_list);
2479         raw_spin_unlock(&newowner->pi_lock);
2480         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2481
2482         return 0;
2483
2484         /*
2485          * In order to reschedule or handle a page fault, we need to drop the
2486          * locks here. In the case of a fault, this gives the other task
2487          * (either the highest priority waiter itself or the task which stole
2488          * the rtmutex) the chance to try the fixup of the pi_state. So once we
2489          * are back from handling the fault we need to check the pi_state after
2490          * reacquiring the locks and before trying to do another fixup. When
2491          * the fixup has been done already we simply return.
2492          *
2493          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2494          * drop hb->lock since the caller owns the hb -> futex_q relation.
2495          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2496          */
2497 handle_err:
2498         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2499         spin_unlock(q->lock_ptr);
2500
2501         switch (err) {
2502         case -EFAULT:
2503                 ret = fault_in_user_writeable(uaddr);
2504                 break;
2505
2506         case -EAGAIN:
2507                 cond_resched();
2508                 ret = 0;
2509                 break;
2510
2511         default:
2512                 WARN_ON_ONCE(1);
2513                 ret = err;
2514                 break;
2515         }
2516
2517         spin_lock(q->lock_ptr);
2518         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2519
2520         /*
2521          * Check if someone else fixed it for us:
2522          */
2523         if (pi_state->owner != oldowner) {
2524                 ret = 0;
2525                 goto out_unlock;
2526         }
2527
2528         if (ret)
2529                 goto out_unlock;
2530
2531         goto retry;
2532
2533 out_unlock:
2534         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2535         return ret;
2536 }
2537
2538 static long futex_wait_restart(struct restart_block *restart);
2539
2540 /**
2541  * fixup_owner() - Post lock pi_state and corner case management
2542  * @uaddr:      user address of the futex
2543  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2544  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2545  *
2546  * After attempting to lock an rt_mutex, this function is called to cleanup
2547  * the pi_state owner as well as handle race conditions that may allow us to
2548  * acquire the lock. Must be called with the hb lock held.
2549  *
2550  * Return:
2551  *  -  1 - success, lock taken;
2552  *  -  0 - success, lock not taken;
2553  *  - <0 - on error (-EFAULT)
2554  */
2555 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2556 {
2557         int ret = 0;
2558
2559         if (locked) {
2560                 /*
2561                  * Got the lock. We might not be the anticipated owner if we
2562                  * did a lock-steal - fix up the PI-state in that case:
2563                  *
2564                  * Speculative pi_state->owner read (we don't hold wait_lock);
2565                  * since we own the lock pi_state->owner == current is the
2566                  * stable state, anything else needs more attention.
2567                  */
2568                 if (q->pi_state->owner != current)
2569                         ret = fixup_pi_state_owner(uaddr, q, current);
2570                 goto out;
2571         }
2572
2573         /*
2574          * If we didn't get the lock; check if anybody stole it from us. In
2575          * that case, we need to fix up the uval to point to them instead of
2576          * us, otherwise bad things happen. [10]
2577          *
2578          * Another speculative read; pi_state->owner == current is unstable
2579          * but needs our attention.
2580          */
2581         if (q->pi_state->owner == current) {
2582                 ret = fixup_pi_state_owner(uaddr, q, NULL);
2583                 goto out;
2584         }
2585
2586         /*
2587          * Paranoia check. If we did not take the lock, then we should not be
2588          * the owner of the rt_mutex.
2589          */
2590         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2591                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2592                                 "pi-state %p\n", ret,
2593                                 q->pi_state->pi_mutex.owner,
2594                                 q->pi_state->owner);
2595         }
2596
2597 out:
2598         return ret ? ret : locked;
2599 }
2600
2601 /**
2602  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2603  * @hb:         the futex hash bucket, must be locked by the caller
2604  * @q:          the futex_q to queue up on
2605  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2606  */
2607 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2608                                 struct hrtimer_sleeper *timeout)
2609 {
2610         /*
2611          * The task state is guaranteed to be set before another task can
2612          * wake it. set_current_state() is implemented using smp_store_mb() and
2613          * queue_me() calls spin_unlock() upon completion, both serializing
2614          * access to the hash list and forcing another memory barrier.
2615          */
2616         set_current_state(TASK_INTERRUPTIBLE);
2617         queue_me(q, hb);
2618
2619         /* Arm the timer */
2620         if (timeout)
2621                 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2622
2623         /*
2624          * If we have been removed from the hash list, then another task
2625          * has tried to wake us, and we can skip the call to schedule().
2626          */
2627         if (likely(!plist_node_empty(&q->list))) {
2628                 /*
2629                  * If the timer has already expired, current will already be
2630                  * flagged for rescheduling. Only call schedule if there
2631                  * is no timeout, or if it has yet to expire.
2632                  */
2633                 if (!timeout || timeout->task)
2634                         freezable_schedule();
2635         }
2636         __set_current_state(TASK_RUNNING);
2637 }
2638
2639 /**
2640  * futex_wait_setup() - Prepare to wait on a futex
2641  * @uaddr:      the futex userspace address
2642  * @val:        the expected value
2643  * @flags:      futex flags (FLAGS_SHARED, etc.)
2644  * @q:          the associated futex_q
2645  * @hb:         storage for hash_bucket pointer to be returned to caller
2646  *
2647  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2648  * compare it with the expected value.  Handle atomic faults internally.
2649  * Return with the hb lock held and a q.key reference on success, and unlocked
2650  * with no q.key reference on failure.
2651  *
2652  * Return:
2653  *  -  0 - uaddr contains val and hb has been locked;
2654  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2655  */
2656 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2657                            struct futex_q *q, struct futex_hash_bucket **hb)
2658 {
2659         u32 uval;
2660         int ret;
2661
2662         /*
2663          * Access the page AFTER the hash-bucket is locked.
2664          * Order is important:
2665          *
2666          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2667          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2668          *
2669          * The basic logical guarantee of a futex is that it blocks ONLY
2670          * if cond(var) is known to be true at the time of blocking, for
2671          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2672          * would open a race condition where we could block indefinitely with
2673          * cond(var) false, which would violate the guarantee.
2674          *
2675          * On the other hand, we insert q and release the hash-bucket only
2676          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2677          * absorb a wakeup if *uaddr does not match the desired values
2678          * while the syscall executes.
2679          */
2680 retry:
2681         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2682         if (unlikely(ret != 0))
2683                 return ret;
2684
2685 retry_private:
2686         *hb = queue_lock(q);
2687
2688         ret = get_futex_value_locked(&uval, uaddr);
2689
2690         if (ret) {
2691                 queue_unlock(*hb);
2692
2693                 ret = get_user(uval, uaddr);
2694                 if (ret)
2695                         goto out;
2696
2697                 if (!(flags & FLAGS_SHARED))
2698                         goto retry_private;
2699
2700                 put_futex_key(&q->key);
2701                 goto retry;
2702         }
2703
2704         if (uval != val) {
2705                 queue_unlock(*hb);
2706                 ret = -EWOULDBLOCK;
2707         }
2708
2709 out:
2710         if (ret)
2711                 put_futex_key(&q->key);
2712         return ret;
2713 }
2714
2715 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2716                       ktime_t *abs_time, u32 bitset)
2717 {
2718         struct hrtimer_sleeper timeout, *to;
2719         struct restart_block *restart;
2720         struct futex_hash_bucket *hb;
2721         struct futex_q q = futex_q_init;
2722         int ret;
2723
2724         if (!bitset)
2725                 return -EINVAL;
2726         q.bitset = bitset;
2727
2728         to = futex_setup_timer(abs_time, &timeout, flags,
2729                                current->timer_slack_ns);
2730 retry:
2731         /*
2732          * Prepare to wait on uaddr. On success, holds hb lock and increments
2733          * q.key refs.
2734          */
2735         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2736         if (ret)
2737                 goto out;
2738
2739         /* queue_me and wait for wakeup, timeout, or a signal. */
2740         futex_wait_queue_me(hb, &q, to);
2741
2742         /* If we were woken (and unqueued), we succeeded, whatever. */
2743         ret = 0;
2744         /* unqueue_me() drops q.key ref */
2745         if (!unqueue_me(&q))
2746                 goto out;
2747         ret = -ETIMEDOUT;
2748         if (to && !to->task)
2749                 goto out;
2750
2751         /*
2752          * We expect signal_pending(current), but we might be the
2753          * victim of a spurious wakeup as well.
2754          */
2755         if (!signal_pending(current))
2756                 goto retry;
2757
2758         ret = -ERESTARTSYS;
2759         if (!abs_time)
2760                 goto out;
2761
2762         restart = &current->restart_block;
2763         restart->fn = futex_wait_restart;
2764         restart->futex.uaddr = uaddr;
2765         restart->futex.val = val;
2766         restart->futex.time = *abs_time;
2767         restart->futex.bitset = bitset;
2768         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2769
2770         ret = -ERESTART_RESTARTBLOCK;
2771
2772 out:
2773         if (to) {
2774                 hrtimer_cancel(&to->timer);
2775                 destroy_hrtimer_on_stack(&to->timer);
2776         }
2777         return ret;
2778 }
2779
2780
2781 static long futex_wait_restart(struct restart_block *restart)
2782 {
2783         u32 __user *uaddr = restart->futex.uaddr;
2784         ktime_t t, *tp = NULL;
2785
2786         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2787                 t = restart->futex.time;
2788                 tp = &t;
2789         }
2790         restart->fn = do_no_restart_syscall;
2791
2792         return (long)futex_wait(uaddr, restart->futex.flags,
2793                                 restart->futex.val, tp, restart->futex.bitset);
2794 }
2795
2796
2797 /*
2798  * Userspace tried a 0 -> TID atomic transition of the futex value
2799  * and failed. The kernel side here does the whole locking operation:
2800  * if there are waiters then it will block as a consequence of relying
2801  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2802  * a 0 value of the futex too.).
2803  *
2804  * Also serves as futex trylock_pi()'ing, and due semantics.
2805  */
2806 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2807                          ktime_t *time, int trylock)
2808 {
2809         struct hrtimer_sleeper timeout, *to;
2810         struct futex_pi_state *pi_state = NULL;
2811         struct rt_mutex_waiter rt_waiter;
2812         struct futex_hash_bucket *hb;
2813         struct futex_q q = futex_q_init;
2814         int res, ret;
2815
2816         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2817                 return -ENOSYS;
2818
2819         if (refill_pi_state_cache())
2820                 return -ENOMEM;
2821
2822         to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2823
2824 retry:
2825         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2826         if (unlikely(ret != 0))
2827                 goto out;
2828
2829 retry_private:
2830         hb = queue_lock(&q);
2831
2832         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2833         if (unlikely(ret)) {
2834                 /*
2835                  * Atomic work succeeded and we got the lock,
2836                  * or failed. Either way, we do _not_ block.
2837                  */
2838                 switch (ret) {
2839                 case 1:
2840                         /* We got the lock. */
2841                         ret = 0;
2842                         goto out_unlock_put_key;
2843                 case -EFAULT:
2844                         goto uaddr_faulted;
2845                 case -EAGAIN:
2846                         /*
2847                          * Two reasons for this:
2848                          * - Task is exiting and we just wait for the
2849                          *   exit to complete.
2850                          * - The user space value changed.
2851                          */
2852                         queue_unlock(hb);
2853                         put_futex_key(&q.key);
2854                         cond_resched();
2855                         goto retry;
2856                 default:
2857                         goto out_unlock_put_key;
2858                 }
2859         }
2860
2861         WARN_ON(!q.pi_state);
2862
2863         /*
2864          * Only actually queue now that the atomic ops are done:
2865          */
2866         __queue_me(&q, hb);
2867
2868         if (trylock) {
2869                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2870                 /* Fixup the trylock return value: */
2871                 ret = ret ? 0 : -EWOULDBLOCK;
2872                 goto no_block;
2873         }
2874
2875         rt_mutex_init_waiter(&rt_waiter);
2876
2877         /*
2878          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2879          * hold it while doing rt_mutex_start_proxy(), because then it will
2880          * include hb->lock in the blocking chain, even through we'll not in
2881          * fact hold it while blocking. This will lead it to report -EDEADLK
2882          * and BUG when futex_unlock_pi() interleaves with this.
2883          *
2884          * Therefore acquire wait_lock while holding hb->lock, but drop the
2885          * latter before calling __rt_mutex_start_proxy_lock(). This
2886          * interleaves with futex_unlock_pi() -- which does a similar lock
2887          * handoff -- such that the latter can observe the futex_q::pi_state
2888          * before __rt_mutex_start_proxy_lock() is done.
2889          */
2890         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2891         spin_unlock(q.lock_ptr);
2892         /*
2893          * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2894          * such that futex_unlock_pi() is guaranteed to observe the waiter when
2895          * it sees the futex_q::pi_state.
2896          */
2897         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2898         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2899
2900         if (ret) {
2901                 if (ret == 1)
2902                         ret = 0;
2903                 goto cleanup;
2904         }
2905
2906         if (unlikely(to))
2907                 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2908
2909         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2910
2911 cleanup:
2912         spin_lock(q.lock_ptr);
2913         /*
2914          * If we failed to acquire the lock (deadlock/signal/timeout), we must
2915          * first acquire the hb->lock before removing the lock from the
2916          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2917          * lists consistent.
2918          *
2919          * In particular; it is important that futex_unlock_pi() can not
2920          * observe this inconsistency.
2921          */
2922         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2923                 ret = 0;
2924
2925 no_block:
2926         /*
2927          * Fixup the pi_state owner and possibly acquire the lock if we
2928          * haven't already.
2929          */
2930         res = fixup_owner(uaddr, &q, !ret);
2931         /*
2932          * If fixup_owner() returned an error, proprogate that.  If it acquired
2933          * the lock, clear our -ETIMEDOUT or -EINTR.
2934          */
2935         if (res)
2936                 ret = (res < 0) ? res : 0;
2937
2938         /*
2939          * If fixup_owner() faulted and was unable to handle the fault, unlock
2940          * it and return the fault to userspace.
2941          */
2942         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2943                 pi_state = q.pi_state;
2944                 get_pi_state(pi_state);
2945         }
2946
2947         /* Unqueue and drop the lock */
2948         unqueue_me_pi(&q);
2949
2950         if (pi_state) {
2951                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2952                 put_pi_state(pi_state);
2953         }
2954
2955         goto out_put_key;
2956
2957 out_unlock_put_key:
2958         queue_unlock(hb);
2959
2960 out_put_key:
2961         put_futex_key(&q.key);
2962 out:
2963         if (to) {
2964                 hrtimer_cancel(&to->timer);
2965                 destroy_hrtimer_on_stack(&to->timer);
2966         }
2967         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2968
2969 uaddr_faulted:
2970         queue_unlock(hb);
2971
2972         ret = fault_in_user_writeable(uaddr);
2973         if (ret)
2974                 goto out_put_key;
2975
2976         if (!(flags & FLAGS_SHARED))
2977                 goto retry_private;
2978
2979         put_futex_key(&q.key);
2980         goto retry;
2981 }
2982
2983 /*
2984  * Userspace attempted a TID -> 0 atomic transition, and failed.
2985  * This is the in-kernel slowpath: we look up the PI state (if any),
2986  * and do the rt-mutex unlock.
2987  */
2988 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2989 {
2990         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2991         union futex_key key = FUTEX_KEY_INIT;
2992         struct futex_hash_bucket *hb;
2993         struct futex_q *top_waiter;
2994         int ret;
2995
2996         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2997                 return -ENOSYS;
2998
2999 retry:
3000         if (get_user(uval, uaddr))
3001                 return -EFAULT;
3002         /*
3003          * We release only a lock we actually own:
3004          */
3005         if ((uval & FUTEX_TID_MASK) != vpid)
3006                 return -EPERM;
3007
3008         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
3009         if (ret)
3010                 return ret;
3011
3012         hb = hash_futex(&key);
3013         spin_lock(&hb->lock);
3014
3015         /*
3016          * Check waiters first. We do not trust user space values at
3017          * all and we at least want to know if user space fiddled
3018          * with the futex value instead of blindly unlocking.
3019          */
3020         top_waiter = futex_top_waiter(hb, &key);
3021         if (top_waiter) {
3022                 struct futex_pi_state *pi_state = top_waiter->pi_state;
3023
3024                 ret = -EINVAL;
3025                 if (!pi_state)
3026                         goto out_unlock;
3027
3028                 /*
3029                  * If current does not own the pi_state then the futex is
3030                  * inconsistent and user space fiddled with the futex value.
3031                  */
3032                 if (pi_state->owner != current)
3033                         goto out_unlock;
3034
3035                 get_pi_state(pi_state);
3036                 /*
3037                  * By taking wait_lock while still holding hb->lock, we ensure
3038                  * there is no point where we hold neither; and therefore
3039                  * wake_futex_pi() must observe a state consistent with what we
3040                  * observed.
3041                  *
3042                  * In particular; this forces __rt_mutex_start_proxy() to
3043                  * complete such that we're guaranteed to observe the
3044                  * rt_waiter. Also see the WARN in wake_futex_pi().
3045                  */
3046                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3047                 spin_unlock(&hb->lock);
3048
3049                 /* drops pi_state->pi_mutex.wait_lock */
3050                 ret = wake_futex_pi(uaddr, uval, pi_state);
3051
3052                 put_pi_state(pi_state);
3053
3054                 /*
3055                  * Success, we're done! No tricky corner cases.
3056                  */
3057                 if (!ret)
3058                         goto out_putkey;
3059                 /*
3060                  * The atomic access to the futex value generated a
3061                  * pagefault, so retry the user-access and the wakeup:
3062                  */
3063                 if (ret == -EFAULT)
3064                         goto pi_faulted;
3065                 /*
3066                  * A unconditional UNLOCK_PI op raced against a waiter
3067                  * setting the FUTEX_WAITERS bit. Try again.
3068                  */
3069                 if (ret == -EAGAIN)
3070                         goto pi_retry;
3071                 /*
3072                  * wake_futex_pi has detected invalid state. Tell user
3073                  * space.
3074                  */
3075                 goto out_putkey;
3076         }
3077
3078         /*
3079          * We have no kernel internal state, i.e. no waiters in the
3080          * kernel. Waiters which are about to queue themselves are stuck
3081          * on hb->lock. So we can safely ignore them. We do neither
3082          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3083          * owner.
3084          */
3085         if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3086                 spin_unlock(&hb->lock);
3087                 switch (ret) {
3088                 case -EFAULT:
3089                         goto pi_faulted;
3090
3091                 case -EAGAIN:
3092                         goto pi_retry;
3093
3094                 default:
3095                         WARN_ON_ONCE(1);
3096                         goto out_putkey;
3097                 }
3098         }
3099
3100         /*
3101          * If uval has changed, let user space handle it.
3102          */
3103         ret = (curval == uval) ? 0 : -EAGAIN;
3104
3105 out_unlock:
3106         spin_unlock(&hb->lock);
3107 out_putkey:
3108         put_futex_key(&key);
3109         return ret;
3110
3111 pi_retry:
3112         put_futex_key(&key);
3113         cond_resched();
3114         goto retry;
3115
3116 pi_faulted:
3117         put_futex_key(&key);
3118
3119         ret = fault_in_user_writeable(uaddr);
3120         if (!ret)
3121                 goto retry;
3122
3123         return ret;
3124 }
3125
3126 /**
3127  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3128  * @hb:         the hash_bucket futex_q was original enqueued on
3129  * @q:          the futex_q woken while waiting to be requeued
3130  * @key2:       the futex_key of the requeue target futex
3131  * @timeout:    the timeout associated with the wait (NULL if none)
3132  *
3133  * Detect if the task was woken on the initial futex as opposed to the requeue
3134  * target futex.  If so, determine if it was a timeout or a signal that caused
3135  * the wakeup and return the appropriate error code to the caller.  Must be
3136  * called with the hb lock held.
3137  *
3138  * Return:
3139  *  -  0 = no early wakeup detected;
3140  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3141  */
3142 static inline
3143 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3144                                    struct futex_q *q, union futex_key *key2,
3145                                    struct hrtimer_sleeper *timeout)
3146 {
3147         int ret = 0;
3148
3149         /*
3150          * With the hb lock held, we avoid races while we process the wakeup.
3151          * We only need to hold hb (and not hb2) to ensure atomicity as the
3152          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3153          * It can't be requeued from uaddr2 to something else since we don't
3154          * support a PI aware source futex for requeue.
3155          */
3156         if (!match_futex(&q->key, key2)) {
3157                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3158                 /*
3159                  * We were woken prior to requeue by a timeout or a signal.
3160                  * Unqueue the futex_q and determine which it was.
3161                  */
3162                 plist_del(&q->list, &hb->chain);
3163                 hb_waiters_dec(hb);
3164
3165                 /* Handle spurious wakeups gracefully */
3166                 ret = -EWOULDBLOCK;
3167                 if (timeout && !timeout->task)
3168                         ret = -ETIMEDOUT;
3169                 else if (signal_pending(current))
3170                         ret = -ERESTARTNOINTR;
3171         }
3172         return ret;
3173 }
3174
3175 /**
3176  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3177  * @uaddr:      the futex we initially wait on (non-pi)
3178  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3179  *              the same type, no requeueing from private to shared, etc.
3180  * @val:        the expected value of uaddr
3181  * @abs_time:   absolute timeout
3182  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3183  * @uaddr2:     the pi futex we will take prior to returning to user-space
3184  *
3185  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3186  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3187  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3188  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3189  * without one, the pi logic would not know which task to boost/deboost, if
3190  * there was a need to.
3191  *
3192  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3193  * via the following--
3194  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3195  * 2) wakeup on uaddr2 after a requeue
3196  * 3) signal
3197  * 4) timeout
3198  *
3199  * If 3, cleanup and return -ERESTARTNOINTR.
3200  *
3201  * If 2, we may then block on trying to take the rt_mutex and return via:
3202  * 5) successful lock
3203  * 6) signal
3204  * 7) timeout
3205  * 8) other lock acquisition failure
3206  *
3207  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3208  *
3209  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3210  *
3211  * Return:
3212  *  -  0 - On success;
3213  *  - <0 - On error
3214  */
3215 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3216                                  u32 val, ktime_t *abs_time, u32 bitset,
3217                                  u32 __user *uaddr2)
3218 {
3219         struct hrtimer_sleeper timeout, *to;
3220         struct futex_pi_state *pi_state = NULL;
3221         struct rt_mutex_waiter rt_waiter;
3222         struct futex_hash_bucket *hb;
3223         union futex_key key2 = FUTEX_KEY_INIT;
3224         struct futex_q q = futex_q_init;
3225         int res, ret;
3226
3227         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3228                 return -ENOSYS;
3229
3230         if (uaddr == uaddr2)
3231                 return -EINVAL;
3232
3233         if (!bitset)
3234                 return -EINVAL;
3235
3236         to = futex_setup_timer(abs_time, &timeout, flags,
3237                                current->timer_slack_ns);
3238
3239         /*
3240          * The waiter is allocated on our stack, manipulated by the requeue
3241          * code while we sleep on uaddr.
3242          */
3243         rt_mutex_init_waiter(&rt_waiter);
3244
3245         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3246         if (unlikely(ret != 0))
3247                 goto out;
3248
3249         q.bitset = bitset;
3250         q.rt_waiter = &rt_waiter;
3251         q.requeue_pi_key = &key2;
3252
3253         /*
3254          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3255          * count.
3256          */
3257         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3258         if (ret)
3259                 goto out_key2;
3260
3261         /*
3262          * The check above which compares uaddrs is not sufficient for
3263          * shared futexes. We need to compare the keys:
3264          */
3265         if (match_futex(&q.key, &key2)) {
3266                 queue_unlock(hb);
3267                 ret = -EINVAL;
3268                 goto out_put_keys;
3269         }
3270
3271         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3272         futex_wait_queue_me(hb, &q, to);
3273
3274         spin_lock(&hb->lock);
3275         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3276         spin_unlock(&hb->lock);
3277         if (ret)
3278                 goto out_put_keys;
3279
3280         /*
3281          * In order for us to be here, we know our q.key == key2, and since
3282          * we took the hb->lock above, we also know that futex_requeue() has
3283          * completed and we no longer have to concern ourselves with a wakeup
3284          * race with the atomic proxy lock acquisition by the requeue code. The
3285          * futex_requeue dropped our key1 reference and incremented our key2
3286          * reference count.
3287          */
3288
3289         /* Check if the requeue code acquired the second futex for us. */
3290         if (!q.rt_waiter) {
3291                 /*
3292                  * Got the lock. We might not be the anticipated owner if we
3293                  * did a lock-steal - fix up the PI-state in that case.
3294                  */
3295                 if (q.pi_state && (q.pi_state->owner != current)) {
3296                         spin_lock(q.lock_ptr);
3297                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3298                         if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3299                                 pi_state = q.pi_state;
3300                                 get_pi_state(pi_state);
3301                         }
3302                         /*
3303                          * Drop the reference to the pi state which
3304                          * the requeue_pi() code acquired for us.
3305                          */
3306                         put_pi_state(q.pi_state);
3307                         spin_unlock(q.lock_ptr);
3308                 }
3309         } else {
3310                 struct rt_mutex *pi_mutex;
3311
3312                 /*
3313                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3314                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3315                  * the pi_state.
3316                  */
3317                 WARN_ON(!q.pi_state);
3318                 pi_mutex = &q.pi_state->pi_mutex;
3319                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3320
3321                 spin_lock(q.lock_ptr);
3322                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3323                         ret = 0;
3324
3325                 debug_rt_mutex_free_waiter(&rt_waiter);
3326                 /*
3327                  * Fixup the pi_state owner and possibly acquire the lock if we
3328                  * haven't already.
3329                  */
3330                 res = fixup_owner(uaddr2, &q, !ret);
3331                 /*
3332                  * If fixup_owner() returned an error, proprogate that.  If it
3333                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3334                  */
3335                 if (res)
3336                         ret = (res < 0) ? res : 0;
3337
3338                 /*
3339                  * If fixup_pi_state_owner() faulted and was unable to handle
3340                  * the fault, unlock the rt_mutex and return the fault to
3341                  * userspace.
3342                  */
3343                 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3344                         pi_state = q.pi_state;
3345                         get_pi_state(pi_state);
3346                 }
3347
3348                 /* Unqueue and drop the lock. */
3349                 unqueue_me_pi(&q);
3350         }
3351
3352         if (pi_state) {
3353                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3354                 put_pi_state(pi_state);
3355         }
3356
3357         if (ret == -EINTR) {
3358                 /*
3359                  * We've already been requeued, but cannot restart by calling
3360                  * futex_lock_pi() directly. We could restart this syscall, but
3361                  * it would detect that the user space "val" changed and return
3362                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3363                  * -EWOULDBLOCK directly.
3364                  */
3365                 ret = -EWOULDBLOCK;
3366         }
3367
3368 out_put_keys:
3369         put_futex_key(&q.key);
3370 out_key2:
3371         put_futex_key(&key2);
3372
3373 out:
3374         if (to) {
3375                 hrtimer_cancel(&to->timer);
3376                 destroy_hrtimer_on_stack(&to->timer);
3377         }
3378         return ret;
3379 }
3380
3381 /*
3382  * Support for robust futexes: the kernel cleans up held futexes at
3383  * thread exit time.
3384  *
3385  * Implementation: user-space maintains a per-thread list of locks it
3386  * is holding. Upon do_exit(), the kernel carefully walks this list,
3387  * and marks all locks that are owned by this thread with the
3388  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3389  * always manipulated with the lock held, so the list is private and
3390  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3391  * field, to allow the kernel to clean up if the thread dies after
3392  * acquiring the lock, but just before it could have added itself to
3393  * the list. There can only be one such pending lock.
3394  */
3395
3396 /**
3397  * sys_set_robust_list() - Set the robust-futex list head of a task
3398  * @head:       pointer to the list-head
3399  * @len:        length of the list-head, as userspace expects
3400  */
3401 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3402                 size_t, len)
3403 {
3404         if (!futex_cmpxchg_enabled)
3405                 return -ENOSYS;
3406         /*
3407          * The kernel knows only one size for now:
3408          */
3409         if (unlikely(len != sizeof(*head)))
3410                 return -EINVAL;
3411
3412         current->robust_list = head;
3413
3414         return 0;
3415 }
3416
3417 /**
3418  * sys_get_robust_list() - Get the robust-futex list head of a task
3419  * @pid:        pid of the process [zero for current task]
3420  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3421  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3422  */
3423 SYSCALL_DEFINE3(get_robust_list, int, pid,
3424                 struct robust_list_head __user * __user *, head_ptr,
3425                 size_t __user *, len_ptr)
3426 {
3427         struct robust_list_head __user *head;
3428         unsigned long ret;
3429         struct task_struct *p;
3430
3431         if (!futex_cmpxchg_enabled)
3432                 return -ENOSYS;
3433
3434         rcu_read_lock();
3435
3436         ret = -ESRCH;
3437         if (!pid)
3438                 p = current;
3439         else {
3440                 p = find_task_by_vpid(pid);
3441                 if (!p)
3442                         goto err_unlock;
3443         }
3444
3445         ret = -EPERM;
3446         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3447                 goto err_unlock;
3448
3449         head = p->robust_list;
3450         rcu_read_unlock();
3451
3452         if (put_user(sizeof(*head), len_ptr))
3453                 return -EFAULT;
3454         return put_user(head, head_ptr);
3455
3456 err_unlock:
3457         rcu_read_unlock();
3458
3459         return ret;
3460 }
3461
3462 /* Constants for the pending_op argument of handle_futex_death */
3463 #define HANDLE_DEATH_PENDING    true
3464 #define HANDLE_DEATH_LIST       false
3465
3466 /*
3467  * Process a futex-list entry, check whether it's owned by the
3468  * dying task, and do notification if so:
3469  */
3470 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3471                               bool pi, bool pending_op)
3472 {
3473         u32 uval, uninitialized_var(nval), mval;
3474         int err;
3475
3476         /* Futex address must be 32bit aligned */
3477         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3478                 return -1;
3479
3480 retry:
3481         if (get_user(uval, uaddr))
3482                 return -1;
3483
3484         /*
3485          * Special case for regular (non PI) futexes. The unlock path in
3486          * user space has two race scenarios:
3487          *
3488          * 1. The unlock path releases the user space futex value and
3489          *    before it can execute the futex() syscall to wake up
3490          *    waiters it is killed.
3491          *
3492          * 2. A woken up waiter is killed before it can acquire the
3493          *    futex in user space.
3494          *
3495          * In both cases the TID validation below prevents a wakeup of
3496          * potential waiters which can cause these waiters to block
3497          * forever.
3498          *
3499          * In both cases the following conditions are met:
3500          *
3501          *      1) task->robust_list->list_op_pending != NULL
3502          *         @pending_op == true
3503          *      2) User space futex value == 0
3504          *      3) Regular futex: @pi == false
3505          *
3506          * If these conditions are met, it is safe to attempt waking up a
3507          * potential waiter without touching the user space futex value and
3508          * trying to set the OWNER_DIED bit. The user space futex value is
3509          * uncontended and the rest of the user space mutex state is
3510          * consistent, so a woken waiter will just take over the
3511          * uncontended futex. Setting the OWNER_DIED bit would create
3512          * inconsistent state and malfunction of the user space owner died
3513          * handling.
3514          */
3515         if (pending_op && !pi && !uval) {
3516                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3517                 return 0;
3518         }
3519
3520         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3521                 return 0;
3522
3523         /*
3524          * Ok, this dying thread is truly holding a futex
3525          * of interest. Set the OWNER_DIED bit atomically
3526          * via cmpxchg, and if the value had FUTEX_WAITERS
3527          * set, wake up a waiter (if any). (We have to do a
3528          * futex_wake() even if OWNER_DIED is already set -
3529          * to handle the rare but possible case of recursive
3530          * thread-death.) The rest of the cleanup is done in
3531          * userspace.
3532          */
3533         mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3534
3535         /*
3536          * We are not holding a lock here, but we want to have
3537          * the pagefault_disable/enable() protection because
3538          * we want to handle the fault gracefully. If the
3539          * access fails we try to fault in the futex with R/W
3540          * verification via get_user_pages. get_user() above
3541          * does not guarantee R/W access. If that fails we
3542          * give up and leave the futex locked.
3543          */
3544         if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3545                 switch (err) {
3546                 case -EFAULT:
3547                         if (fault_in_user_writeable(uaddr))
3548                                 return -1;
3549                         goto retry;
3550
3551                 case -EAGAIN:
3552                         cond_resched();
3553                         goto retry;
3554
3555                 default:
3556                         WARN_ON_ONCE(1);
3557                         return err;
3558                 }
3559         }
3560
3561         if (nval != uval)
3562                 goto retry;
3563
3564         /*
3565          * Wake robust non-PI futexes here. The wakeup of
3566          * PI futexes happens in exit_pi_state():
3567          */
3568         if (!pi && (uval & FUTEX_WAITERS))
3569                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3570
3571         return 0;
3572 }
3573
3574 /*
3575  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3576  */
3577 static inline int fetch_robust_entry(struct robust_list __user **entry,
3578                                      struct robust_list __user * __user *head,
3579                                      unsigned int *pi)
3580 {
3581         unsigned long uentry;
3582
3583         if (get_user(uentry, (unsigned long __user *)head))
3584                 return -EFAULT;
3585
3586         *entry = (void __user *)(uentry & ~1UL);
3587         *pi = uentry & 1;
3588
3589         return 0;
3590 }
3591
3592 /*
3593  * Walk curr->robust_list (very carefully, it's a userspace list!)
3594  * and mark any locks found there dead, and notify any waiters.
3595  *
3596  * We silently return on any sign of list-walking problem.
3597  */
3598 static void exit_robust_list(struct task_struct *curr)
3599 {
3600         struct robust_list_head __user *head = curr->robust_list;
3601         struct robust_list __user *entry, *next_entry, *pending;
3602         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3603         unsigned int uninitialized_var(next_pi);
3604         unsigned long futex_offset;
3605         int rc;
3606
3607         if (!futex_cmpxchg_enabled)
3608                 return;
3609
3610         /*
3611          * Fetch the list head (which was registered earlier, via
3612          * sys_set_robust_list()):
3613          */
3614         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3615                 return;
3616         /*
3617          * Fetch the relative futex offset:
3618          */
3619         if (get_user(futex_offset, &head->futex_offset))
3620                 return;
3621         /*
3622          * Fetch any possibly pending lock-add first, and handle it
3623          * if it exists:
3624          */
3625         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3626                 return;
3627
3628         next_entry = NULL;      /* avoid warning with gcc */
3629         while (entry != &head->list) {
3630                 /*
3631                  * Fetch the next entry in the list before calling
3632                  * handle_futex_death:
3633                  */
3634                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3635                 /*
3636                  * A pending lock might already be on the list, so
3637                  * don't process it twice:
3638                  */
3639                 if (entry != pending) {
3640                         if (handle_futex_death((void __user *)entry + futex_offset,
3641                                                 curr, pi, HANDLE_DEATH_LIST))
3642                                 return;
3643                 }
3644                 if (rc)
3645                         return;
3646                 entry = next_entry;
3647                 pi = next_pi;
3648                 /*
3649                  * Avoid excessively long or circular lists:
3650                  */
3651                 if (!--limit)
3652                         break;
3653
3654                 cond_resched();
3655         }
3656
3657         if (pending) {
3658                 handle_futex_death((void __user *)pending + futex_offset,
3659                                    curr, pip, HANDLE_DEATH_PENDING);
3660         }
3661 }
3662
3663 void futex_mm_release(struct task_struct *tsk)
3664 {
3665         if (unlikely(tsk->robust_list)) {
3666                 exit_robust_list(tsk);
3667                 tsk->robust_list = NULL;
3668         }
3669
3670 #ifdef CONFIG_COMPAT
3671         if (unlikely(tsk->compat_robust_list)) {
3672                 compat_exit_robust_list(tsk);
3673                 tsk->compat_robust_list = NULL;
3674         }
3675 #endif
3676
3677         if (unlikely(!list_empty(&tsk->pi_state_list)))
3678                 exit_pi_state_list(tsk);
3679 }
3680
3681 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3682                 u32 __user *uaddr2, u32 val2, u32 val3)
3683 {
3684         int cmd = op & FUTEX_CMD_MASK;
3685         unsigned int flags = 0;
3686
3687         if (!(op & FUTEX_PRIVATE_FLAG))
3688                 flags |= FLAGS_SHARED;
3689
3690         if (op & FUTEX_CLOCK_REALTIME) {
3691                 flags |= FLAGS_CLOCKRT;
3692                 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3693                     cmd != FUTEX_WAIT_REQUEUE_PI)
3694                         return -ENOSYS;
3695         }
3696
3697         switch (cmd) {
3698         case FUTEX_LOCK_PI:
3699         case FUTEX_UNLOCK_PI:
3700         case FUTEX_TRYLOCK_PI:
3701         case FUTEX_WAIT_REQUEUE_PI:
3702         case FUTEX_CMP_REQUEUE_PI:
3703                 if (!futex_cmpxchg_enabled)
3704                         return -ENOSYS;
3705         }
3706
3707         switch (cmd) {
3708         case FUTEX_WAIT:
3709                 val3 = FUTEX_BITSET_MATCH_ANY;
3710                 /* fall through */
3711         case FUTEX_WAIT_BITSET:
3712                 return futex_wait(uaddr, flags, val, timeout, val3);
3713         case FUTEX_WAKE:
3714                 val3 = FUTEX_BITSET_MATCH_ANY;
3715                 /* fall through */
3716         case FUTEX_WAKE_BITSET:
3717                 return futex_wake(uaddr, flags, val, val3);
3718         case FUTEX_REQUEUE:
3719                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3720         case FUTEX_CMP_REQUEUE:
3721                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3722         case FUTEX_WAKE_OP:
3723                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3724         case FUTEX_LOCK_PI:
3725                 return futex_lock_pi(uaddr, flags, timeout, 0);
3726         case FUTEX_UNLOCK_PI:
3727                 return futex_unlock_pi(uaddr, flags);
3728         case FUTEX_TRYLOCK_PI:
3729                 return futex_lock_pi(uaddr, flags, NULL, 1);
3730         case FUTEX_WAIT_REQUEUE_PI:
3731                 val3 = FUTEX_BITSET_MATCH_ANY;
3732                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3733                                              uaddr2);
3734         case FUTEX_CMP_REQUEUE_PI:
3735                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3736         }
3737         return -ENOSYS;
3738 }
3739
3740
3741 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3742                 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3743                 u32, val3)
3744 {
3745         struct timespec64 ts;
3746         ktime_t t, *tp = NULL;
3747         u32 val2 = 0;
3748         int cmd = op & FUTEX_CMD_MASK;
3749
3750         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3751                       cmd == FUTEX_WAIT_BITSET ||
3752                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3753                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3754                         return -EFAULT;
3755                 if (get_timespec64(&ts, utime))
3756                         return -EFAULT;
3757                 if (!timespec64_valid(&ts))
3758                         return -EINVAL;
3759
3760                 t = timespec64_to_ktime(ts);
3761                 if (cmd == FUTEX_WAIT)
3762                         t = ktime_add_safe(ktime_get(), t);
3763                 tp = &t;
3764         }
3765         /*
3766          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3767          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3768          */
3769         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3770             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3771                 val2 = (u32) (unsigned long) utime;
3772
3773         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3774 }
3775
3776 #ifdef CONFIG_COMPAT
3777 /*
3778  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3779  */
3780 static inline int
3781 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3782                    compat_uptr_t __user *head, unsigned int *pi)
3783 {
3784         if (get_user(*uentry, head))
3785                 return -EFAULT;
3786
3787         *entry = compat_ptr((*uentry) & ~1);
3788         *pi = (unsigned int)(*uentry) & 1;
3789
3790         return 0;
3791 }
3792
3793 static void __user *futex_uaddr(struct robust_list __user *entry,
3794                                 compat_long_t futex_offset)
3795 {
3796         compat_uptr_t base = ptr_to_compat(entry);
3797         void __user *uaddr = compat_ptr(base + futex_offset);
3798
3799         return uaddr;
3800 }
3801
3802 /*
3803  * Walk curr->robust_list (very carefully, it's a userspace list!)
3804  * and mark any locks found there dead, and notify any waiters.
3805  *
3806  * We silently return on any sign of list-walking problem.
3807  */
3808 static void compat_exit_robust_list(struct task_struct *curr)
3809 {
3810         struct compat_robust_list_head __user *head = curr->compat_robust_list;
3811         struct robust_list __user *entry, *next_entry, *pending;
3812         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3813         unsigned int uninitialized_var(next_pi);
3814         compat_uptr_t uentry, next_uentry, upending;
3815         compat_long_t futex_offset;
3816         int rc;
3817
3818         if (!futex_cmpxchg_enabled)
3819                 return;
3820
3821         /*
3822          * Fetch the list head (which was registered earlier, via
3823          * sys_set_robust_list()):
3824          */
3825         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3826                 return;
3827         /*
3828          * Fetch the relative futex offset:
3829          */
3830         if (get_user(futex_offset, &head->futex_offset))
3831                 return;
3832         /*
3833          * Fetch any possibly pending lock-add first, and handle it
3834          * if it exists:
3835          */
3836         if (compat_fetch_robust_entry(&upending, &pending,
3837                                &head->list_op_pending, &pip))
3838                 return;
3839
3840         next_entry = NULL;      /* avoid warning with gcc */
3841         while (entry != (struct robust_list __user *) &head->list) {
3842                 /*
3843                  * Fetch the next entry in the list before calling
3844                  * handle_futex_death:
3845                  */
3846                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3847                         (compat_uptr_t __user *)&entry->next, &next_pi);
3848                 /*
3849                  * A pending lock might already be on the list, so
3850                  * dont process it twice:
3851                  */
3852                 if (entry != pending) {
3853                         void __user *uaddr = futex_uaddr(entry, futex_offset);
3854
3855                         if (handle_futex_death(uaddr, curr, pi,
3856                                                HANDLE_DEATH_LIST))
3857                                 return;
3858                 }
3859                 if (rc)
3860                         return;
3861                 uentry = next_uentry;
3862                 entry = next_entry;
3863                 pi = next_pi;
3864                 /*
3865                  * Avoid excessively long or circular lists:
3866                  */
3867                 if (!--limit)
3868                         break;
3869
3870                 cond_resched();
3871         }
3872         if (pending) {
3873                 void __user *uaddr = futex_uaddr(pending, futex_offset);
3874
3875                 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3876         }
3877 }
3878
3879 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3880                 struct compat_robust_list_head __user *, head,
3881                 compat_size_t, len)
3882 {
3883         if (!futex_cmpxchg_enabled)
3884                 return -ENOSYS;
3885
3886         if (unlikely(len != sizeof(*head)))
3887                 return -EINVAL;
3888
3889         current->compat_robust_list = head;
3890
3891         return 0;
3892 }
3893
3894 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3895                         compat_uptr_t __user *, head_ptr,
3896                         compat_size_t __user *, len_ptr)
3897 {
3898         struct compat_robust_list_head __user *head;
3899         unsigned long ret;
3900         struct task_struct *p;
3901
3902         if (!futex_cmpxchg_enabled)
3903                 return -ENOSYS;
3904
3905         rcu_read_lock();
3906
3907         ret = -ESRCH;
3908         if (!pid)
3909                 p = current;
3910         else {
3911                 p = find_task_by_vpid(pid);
3912                 if (!p)
3913                         goto err_unlock;
3914         }
3915
3916         ret = -EPERM;
3917         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3918                 goto err_unlock;
3919
3920         head = p->compat_robust_list;
3921         rcu_read_unlock();
3922
3923         if (put_user(sizeof(*head), len_ptr))
3924                 return -EFAULT;
3925         return put_user(ptr_to_compat(head), head_ptr);
3926
3927 err_unlock:
3928         rcu_read_unlock();
3929
3930         return ret;
3931 }
3932 #endif /* CONFIG_COMPAT */
3933
3934 #ifdef CONFIG_COMPAT_32BIT_TIME
3935 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3936                 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3937                 u32, val3)
3938 {
3939         struct timespec64 ts;
3940         ktime_t t, *tp = NULL;
3941         int val2 = 0;
3942         int cmd = op & FUTEX_CMD_MASK;
3943
3944         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3945                       cmd == FUTEX_WAIT_BITSET ||
3946                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3947                 if (get_old_timespec32(&ts, utime))
3948                         return -EFAULT;
3949                 if (!timespec64_valid(&ts))
3950                         return -EINVAL;
3951
3952                 t = timespec64_to_ktime(ts);
3953                 if (cmd == FUTEX_WAIT)
3954                         t = ktime_add_safe(ktime_get(), t);
3955                 tp = &t;
3956         }
3957         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3958             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3959                 val2 = (int) (unsigned long) utime;
3960
3961         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3962 }
3963 #endif /* CONFIG_COMPAT_32BIT_TIME */
3964
3965 static void __init futex_detect_cmpxchg(void)
3966 {
3967 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3968         u32 curval;
3969
3970         /*
3971          * This will fail and we want it. Some arch implementations do
3972          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3973          * functionality. We want to know that before we call in any
3974          * of the complex code paths. Also we want to prevent
3975          * registration of robust lists in that case. NULL is
3976          * guaranteed to fault and we get -EFAULT on functional
3977          * implementation, the non-functional ones will return
3978          * -ENOSYS.
3979          */
3980         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3981                 futex_cmpxchg_enabled = 1;
3982 #endif
3983 }
3984
3985 static int __init futex_init(void)
3986 {
3987         unsigned int futex_shift;
3988         unsigned long i;
3989
3990 #if CONFIG_BASE_SMALL
3991         futex_hashsize = 16;
3992 #else
3993         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3994 #endif
3995
3996         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3997                                                futex_hashsize, 0,
3998                                                futex_hashsize < 256 ? HASH_SMALL : 0,
3999                                                &futex_shift, NULL,
4000                                                futex_hashsize, futex_hashsize);
4001         futex_hashsize = 1UL << futex_shift;
4002
4003         futex_detect_cmpxchg();
4004
4005         for (i = 0; i < futex_hashsize; i++) {
4006                 atomic_set(&futex_queues[i].waiters, 0);
4007                 plist_head_init(&futex_queues[i].chain);
4008                 spin_lock_init(&futex_queues[i].lock);
4009         }
4010
4011         return 0;
4012 }
4013 core_initcall(futex_init);