]> asedeno.scripts.mit.edu Git - linux.git/blob - kernel/irq/manage.c
Merge tag 'rpmsg-v4.14' of git://github.com/andersson/remoteproc
[linux.git] / kernel / irq / manage.c
1 /*
2  * linux/kernel/irq/manage.c
3  *
4  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5  * Copyright (C) 2005-2006 Thomas Gleixner
6  *
7  * This file contains driver APIs to the irq subsystem.
8  */
9
10 #define pr_fmt(fmt) "genirq: " fmt
11
12 #include <linux/irq.h>
13 #include <linux/kthread.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <uapi/linux/sched/types.h>
22 #include <linux/task_work.h>
23
24 #include "internals.h"
25
26 #ifdef CONFIG_IRQ_FORCED_THREADING
27 __read_mostly bool force_irqthreads;
28
29 static int __init setup_forced_irqthreads(char *arg)
30 {
31         force_irqthreads = true;
32         return 0;
33 }
34 early_param("threadirqs", setup_forced_irqthreads);
35 #endif
36
37 static void __synchronize_hardirq(struct irq_desc *desc)
38 {
39         bool inprogress;
40
41         do {
42                 unsigned long flags;
43
44                 /*
45                  * Wait until we're out of the critical section.  This might
46                  * give the wrong answer due to the lack of memory barriers.
47                  */
48                 while (irqd_irq_inprogress(&desc->irq_data))
49                         cpu_relax();
50
51                 /* Ok, that indicated we're done: double-check carefully. */
52                 raw_spin_lock_irqsave(&desc->lock, flags);
53                 inprogress = irqd_irq_inprogress(&desc->irq_data);
54                 raw_spin_unlock_irqrestore(&desc->lock, flags);
55
56                 /* Oops, that failed? */
57         } while (inprogress);
58 }
59
60 /**
61  *      synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
62  *      @irq: interrupt number to wait for
63  *
64  *      This function waits for any pending hard IRQ handlers for this
65  *      interrupt to complete before returning. If you use this
66  *      function while holding a resource the IRQ handler may need you
67  *      will deadlock. It does not take associated threaded handlers
68  *      into account.
69  *
70  *      Do not use this for shutdown scenarios where you must be sure
71  *      that all parts (hardirq and threaded handler) have completed.
72  *
73  *      Returns: false if a threaded handler is active.
74  *
75  *      This function may be called - with care - from IRQ context.
76  */
77 bool synchronize_hardirq(unsigned int irq)
78 {
79         struct irq_desc *desc = irq_to_desc(irq);
80
81         if (desc) {
82                 __synchronize_hardirq(desc);
83                 return !atomic_read(&desc->threads_active);
84         }
85
86         return true;
87 }
88 EXPORT_SYMBOL(synchronize_hardirq);
89
90 /**
91  *      synchronize_irq - wait for pending IRQ handlers (on other CPUs)
92  *      @irq: interrupt number to wait for
93  *
94  *      This function waits for any pending IRQ handlers for this interrupt
95  *      to complete before returning. If you use this function while
96  *      holding a resource the IRQ handler may need you will deadlock.
97  *
98  *      This function may be called - with care - from IRQ context.
99  */
100 void synchronize_irq(unsigned int irq)
101 {
102         struct irq_desc *desc = irq_to_desc(irq);
103
104         if (desc) {
105                 __synchronize_hardirq(desc);
106                 /*
107                  * We made sure that no hardirq handler is
108                  * running. Now verify that no threaded handlers are
109                  * active.
110                  */
111                 wait_event(desc->wait_for_threads,
112                            !atomic_read(&desc->threads_active));
113         }
114 }
115 EXPORT_SYMBOL(synchronize_irq);
116
117 #ifdef CONFIG_SMP
118 cpumask_var_t irq_default_affinity;
119
120 static bool __irq_can_set_affinity(struct irq_desc *desc)
121 {
122         if (!desc || !irqd_can_balance(&desc->irq_data) ||
123             !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
124                 return false;
125         return true;
126 }
127
128 /**
129  *      irq_can_set_affinity - Check if the affinity of a given irq can be set
130  *      @irq:           Interrupt to check
131  *
132  */
133 int irq_can_set_affinity(unsigned int irq)
134 {
135         return __irq_can_set_affinity(irq_to_desc(irq));
136 }
137
138 /**
139  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
140  * @irq:        Interrupt to check
141  *
142  * Like irq_can_set_affinity() above, but additionally checks for the
143  * AFFINITY_MANAGED flag.
144  */
145 bool irq_can_set_affinity_usr(unsigned int irq)
146 {
147         struct irq_desc *desc = irq_to_desc(irq);
148
149         return __irq_can_set_affinity(desc) &&
150                 !irqd_affinity_is_managed(&desc->irq_data);
151 }
152
153 /**
154  *      irq_set_thread_affinity - Notify irq threads to adjust affinity
155  *      @desc:          irq descriptor which has affitnity changed
156  *
157  *      We just set IRQTF_AFFINITY and delegate the affinity setting
158  *      to the interrupt thread itself. We can not call
159  *      set_cpus_allowed_ptr() here as we hold desc->lock and this
160  *      code can be called from hard interrupt context.
161  */
162 void irq_set_thread_affinity(struct irq_desc *desc)
163 {
164         struct irqaction *action;
165
166         for_each_action_of_desc(desc, action)
167                 if (action->thread)
168                         set_bit(IRQTF_AFFINITY, &action->thread_flags);
169 }
170
171 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
172                         bool force)
173 {
174         struct irq_desc *desc = irq_data_to_desc(data);
175         struct irq_chip *chip = irq_data_get_irq_chip(data);
176         int ret;
177
178         ret = chip->irq_set_affinity(data, mask, force);
179         switch (ret) {
180         case IRQ_SET_MASK_OK:
181         case IRQ_SET_MASK_OK_DONE:
182                 cpumask_copy(desc->irq_common_data.affinity, mask);
183         case IRQ_SET_MASK_OK_NOCOPY:
184                 irq_set_thread_affinity(desc);
185                 ret = 0;
186         }
187
188         return ret;
189 }
190
191 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
192                             bool force)
193 {
194         struct irq_chip *chip = irq_data_get_irq_chip(data);
195         struct irq_desc *desc = irq_data_to_desc(data);
196         int ret = 0;
197
198         if (!chip || !chip->irq_set_affinity)
199                 return -EINVAL;
200
201         if (irq_can_move_pcntxt(data)) {
202                 ret = irq_do_set_affinity(data, mask, force);
203         } else {
204                 irqd_set_move_pending(data);
205                 irq_copy_pending(desc, mask);
206         }
207
208         if (desc->affinity_notify) {
209                 kref_get(&desc->affinity_notify->kref);
210                 schedule_work(&desc->affinity_notify->work);
211         }
212         irqd_set(data, IRQD_AFFINITY_SET);
213
214         return ret;
215 }
216
217 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
218 {
219         struct irq_desc *desc = irq_to_desc(irq);
220         unsigned long flags;
221         int ret;
222
223         if (!desc)
224                 return -EINVAL;
225
226         raw_spin_lock_irqsave(&desc->lock, flags);
227         ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
228         raw_spin_unlock_irqrestore(&desc->lock, flags);
229         return ret;
230 }
231
232 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
233 {
234         unsigned long flags;
235         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
236
237         if (!desc)
238                 return -EINVAL;
239         desc->affinity_hint = m;
240         irq_put_desc_unlock(desc, flags);
241         /* set the initial affinity to prevent every interrupt being on CPU0 */
242         if (m)
243                 __irq_set_affinity(irq, m, false);
244         return 0;
245 }
246 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
247
248 static void irq_affinity_notify(struct work_struct *work)
249 {
250         struct irq_affinity_notify *notify =
251                 container_of(work, struct irq_affinity_notify, work);
252         struct irq_desc *desc = irq_to_desc(notify->irq);
253         cpumask_var_t cpumask;
254         unsigned long flags;
255
256         if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
257                 goto out;
258
259         raw_spin_lock_irqsave(&desc->lock, flags);
260         if (irq_move_pending(&desc->irq_data))
261                 irq_get_pending(cpumask, desc);
262         else
263                 cpumask_copy(cpumask, desc->irq_common_data.affinity);
264         raw_spin_unlock_irqrestore(&desc->lock, flags);
265
266         notify->notify(notify, cpumask);
267
268         free_cpumask_var(cpumask);
269 out:
270         kref_put(&notify->kref, notify->release);
271 }
272
273 /**
274  *      irq_set_affinity_notifier - control notification of IRQ affinity changes
275  *      @irq:           Interrupt for which to enable/disable notification
276  *      @notify:        Context for notification, or %NULL to disable
277  *                      notification.  Function pointers must be initialised;
278  *                      the other fields will be initialised by this function.
279  *
280  *      Must be called in process context.  Notification may only be enabled
281  *      after the IRQ is allocated and must be disabled before the IRQ is
282  *      freed using free_irq().
283  */
284 int
285 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
286 {
287         struct irq_desc *desc = irq_to_desc(irq);
288         struct irq_affinity_notify *old_notify;
289         unsigned long flags;
290
291         /* The release function is promised process context */
292         might_sleep();
293
294         if (!desc)
295                 return -EINVAL;
296
297         /* Complete initialisation of *notify */
298         if (notify) {
299                 notify->irq = irq;
300                 kref_init(&notify->kref);
301                 INIT_WORK(&notify->work, irq_affinity_notify);
302         }
303
304         raw_spin_lock_irqsave(&desc->lock, flags);
305         old_notify = desc->affinity_notify;
306         desc->affinity_notify = notify;
307         raw_spin_unlock_irqrestore(&desc->lock, flags);
308
309         if (old_notify)
310                 kref_put(&old_notify->kref, old_notify->release);
311
312         return 0;
313 }
314 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
315
316 #ifndef CONFIG_AUTO_IRQ_AFFINITY
317 /*
318  * Generic version of the affinity autoselector.
319  */
320 int irq_setup_affinity(struct irq_desc *desc)
321 {
322         struct cpumask *set = irq_default_affinity;
323         int ret, node = irq_desc_get_node(desc);
324         static DEFINE_RAW_SPINLOCK(mask_lock);
325         static struct cpumask mask;
326
327         /* Excludes PER_CPU and NO_BALANCE interrupts */
328         if (!__irq_can_set_affinity(desc))
329                 return 0;
330
331         raw_spin_lock(&mask_lock);
332         /*
333          * Preserve the managed affinity setting and a userspace affinity
334          * setup, but make sure that one of the targets is online.
335          */
336         if (irqd_affinity_is_managed(&desc->irq_data) ||
337             irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
338                 if (cpumask_intersects(desc->irq_common_data.affinity,
339                                        cpu_online_mask))
340                         set = desc->irq_common_data.affinity;
341                 else
342                         irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
343         }
344
345         cpumask_and(&mask, cpu_online_mask, set);
346         if (node != NUMA_NO_NODE) {
347                 const struct cpumask *nodemask = cpumask_of_node(node);
348
349                 /* make sure at least one of the cpus in nodemask is online */
350                 if (cpumask_intersects(&mask, nodemask))
351                         cpumask_and(&mask, &mask, nodemask);
352         }
353         ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
354         raw_spin_unlock(&mask_lock);
355         return ret;
356 }
357 #else
358 /* Wrapper for ALPHA specific affinity selector magic */
359 int irq_setup_affinity(struct irq_desc *desc)
360 {
361         return irq_select_affinity(irq_desc_get_irq(desc));
362 }
363 #endif
364
365 /*
366  * Called when a bogus affinity is set via /proc/irq
367  */
368 int irq_select_affinity_usr(unsigned int irq)
369 {
370         struct irq_desc *desc = irq_to_desc(irq);
371         unsigned long flags;
372         int ret;
373
374         raw_spin_lock_irqsave(&desc->lock, flags);
375         ret = irq_setup_affinity(desc);
376         raw_spin_unlock_irqrestore(&desc->lock, flags);
377         return ret;
378 }
379 #endif
380
381 /**
382  *      irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
383  *      @irq: interrupt number to set affinity
384  *      @vcpu_info: vCPU specific data
385  *
386  *      This function uses the vCPU specific data to set the vCPU
387  *      affinity for an irq. The vCPU specific data is passed from
388  *      outside, such as KVM. One example code path is as below:
389  *      KVM -> IOMMU -> irq_set_vcpu_affinity().
390  */
391 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
392 {
393         unsigned long flags;
394         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
395         struct irq_data *data;
396         struct irq_chip *chip;
397         int ret = -ENOSYS;
398
399         if (!desc)
400                 return -EINVAL;
401
402         data = irq_desc_get_irq_data(desc);
403         do {
404                 chip = irq_data_get_irq_chip(data);
405                 if (chip && chip->irq_set_vcpu_affinity)
406                         break;
407 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
408                 data = data->parent_data;
409 #else
410                 data = NULL;
411 #endif
412         } while (data);
413
414         if (data)
415                 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
416         irq_put_desc_unlock(desc, flags);
417
418         return ret;
419 }
420 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
421
422 void __disable_irq(struct irq_desc *desc)
423 {
424         if (!desc->depth++)
425                 irq_disable(desc);
426 }
427
428 static int __disable_irq_nosync(unsigned int irq)
429 {
430         unsigned long flags;
431         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
432
433         if (!desc)
434                 return -EINVAL;
435         __disable_irq(desc);
436         irq_put_desc_busunlock(desc, flags);
437         return 0;
438 }
439
440 /**
441  *      disable_irq_nosync - disable an irq without waiting
442  *      @irq: Interrupt to disable
443  *
444  *      Disable the selected interrupt line.  Disables and Enables are
445  *      nested.
446  *      Unlike disable_irq(), this function does not ensure existing
447  *      instances of the IRQ handler have completed before returning.
448  *
449  *      This function may be called from IRQ context.
450  */
451 void disable_irq_nosync(unsigned int irq)
452 {
453         __disable_irq_nosync(irq);
454 }
455 EXPORT_SYMBOL(disable_irq_nosync);
456
457 /**
458  *      disable_irq - disable an irq and wait for completion
459  *      @irq: Interrupt to disable
460  *
461  *      Disable the selected interrupt line.  Enables and Disables are
462  *      nested.
463  *      This function waits for any pending IRQ handlers for this interrupt
464  *      to complete before returning. If you use this function while
465  *      holding a resource the IRQ handler may need you will deadlock.
466  *
467  *      This function may be called - with care - from IRQ context.
468  */
469 void disable_irq(unsigned int irq)
470 {
471         if (!__disable_irq_nosync(irq))
472                 synchronize_irq(irq);
473 }
474 EXPORT_SYMBOL(disable_irq);
475
476 /**
477  *      disable_hardirq - disables an irq and waits for hardirq completion
478  *      @irq: Interrupt to disable
479  *
480  *      Disable the selected interrupt line.  Enables and Disables are
481  *      nested.
482  *      This function waits for any pending hard IRQ handlers for this
483  *      interrupt to complete before returning. If you use this function while
484  *      holding a resource the hard IRQ handler may need you will deadlock.
485  *
486  *      When used to optimistically disable an interrupt from atomic context
487  *      the return value must be checked.
488  *
489  *      Returns: false if a threaded handler is active.
490  *
491  *      This function may be called - with care - from IRQ context.
492  */
493 bool disable_hardirq(unsigned int irq)
494 {
495         if (!__disable_irq_nosync(irq))
496                 return synchronize_hardirq(irq);
497
498         return false;
499 }
500 EXPORT_SYMBOL_GPL(disable_hardirq);
501
502 void __enable_irq(struct irq_desc *desc)
503 {
504         switch (desc->depth) {
505         case 0:
506  err_out:
507                 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
508                      irq_desc_get_irq(desc));
509                 break;
510         case 1: {
511                 if (desc->istate & IRQS_SUSPENDED)
512                         goto err_out;
513                 /* Prevent probing on this irq: */
514                 irq_settings_set_noprobe(desc);
515                 /*
516                  * Call irq_startup() not irq_enable() here because the
517                  * interrupt might be marked NOAUTOEN. So irq_startup()
518                  * needs to be invoked when it gets enabled the first
519                  * time. If it was already started up, then irq_startup()
520                  * will invoke irq_enable() under the hood.
521                  */
522                 irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
523                 break;
524         }
525         default:
526                 desc->depth--;
527         }
528 }
529
530 /**
531  *      enable_irq - enable handling of an irq
532  *      @irq: Interrupt to enable
533  *
534  *      Undoes the effect of one call to disable_irq().  If this
535  *      matches the last disable, processing of interrupts on this
536  *      IRQ line is re-enabled.
537  *
538  *      This function may be called from IRQ context only when
539  *      desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
540  */
541 void enable_irq(unsigned int irq)
542 {
543         unsigned long flags;
544         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
545
546         if (!desc)
547                 return;
548         if (WARN(!desc->irq_data.chip,
549                  KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
550                 goto out;
551
552         __enable_irq(desc);
553 out:
554         irq_put_desc_busunlock(desc, flags);
555 }
556 EXPORT_SYMBOL(enable_irq);
557
558 static int set_irq_wake_real(unsigned int irq, unsigned int on)
559 {
560         struct irq_desc *desc = irq_to_desc(irq);
561         int ret = -ENXIO;
562
563         if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
564                 return 0;
565
566         if (desc->irq_data.chip->irq_set_wake)
567                 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
568
569         return ret;
570 }
571
572 /**
573  *      irq_set_irq_wake - control irq power management wakeup
574  *      @irq:   interrupt to control
575  *      @on:    enable/disable power management wakeup
576  *
577  *      Enable/disable power management wakeup mode, which is
578  *      disabled by default.  Enables and disables must match,
579  *      just as they match for non-wakeup mode support.
580  *
581  *      Wakeup mode lets this IRQ wake the system from sleep
582  *      states like "suspend to RAM".
583  */
584 int irq_set_irq_wake(unsigned int irq, unsigned int on)
585 {
586         unsigned long flags;
587         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
588         int ret = 0;
589
590         if (!desc)
591                 return -EINVAL;
592
593         /* wakeup-capable irqs can be shared between drivers that
594          * don't need to have the same sleep mode behaviors.
595          */
596         if (on) {
597                 if (desc->wake_depth++ == 0) {
598                         ret = set_irq_wake_real(irq, on);
599                         if (ret)
600                                 desc->wake_depth = 0;
601                         else
602                                 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
603                 }
604         } else {
605                 if (desc->wake_depth == 0) {
606                         WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
607                 } else if (--desc->wake_depth == 0) {
608                         ret = set_irq_wake_real(irq, on);
609                         if (ret)
610                                 desc->wake_depth = 1;
611                         else
612                                 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
613                 }
614         }
615         irq_put_desc_busunlock(desc, flags);
616         return ret;
617 }
618 EXPORT_SYMBOL(irq_set_irq_wake);
619
620 /*
621  * Internal function that tells the architecture code whether a
622  * particular irq has been exclusively allocated or is available
623  * for driver use.
624  */
625 int can_request_irq(unsigned int irq, unsigned long irqflags)
626 {
627         unsigned long flags;
628         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
629         int canrequest = 0;
630
631         if (!desc)
632                 return 0;
633
634         if (irq_settings_can_request(desc)) {
635                 if (!desc->action ||
636                     irqflags & desc->action->flags & IRQF_SHARED)
637                         canrequest = 1;
638         }
639         irq_put_desc_unlock(desc, flags);
640         return canrequest;
641 }
642
643 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
644 {
645         struct irq_chip *chip = desc->irq_data.chip;
646         int ret, unmask = 0;
647
648         if (!chip || !chip->irq_set_type) {
649                 /*
650                  * IRQF_TRIGGER_* but the PIC does not support multiple
651                  * flow-types?
652                  */
653                 pr_debug("No set_type function for IRQ %d (%s)\n",
654                          irq_desc_get_irq(desc),
655                          chip ? (chip->name ? : "unknown") : "unknown");
656                 return 0;
657         }
658
659         if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
660                 if (!irqd_irq_masked(&desc->irq_data))
661                         mask_irq(desc);
662                 if (!irqd_irq_disabled(&desc->irq_data))
663                         unmask = 1;
664         }
665
666         /* Mask all flags except trigger mode */
667         flags &= IRQ_TYPE_SENSE_MASK;
668         ret = chip->irq_set_type(&desc->irq_data, flags);
669
670         switch (ret) {
671         case IRQ_SET_MASK_OK:
672         case IRQ_SET_MASK_OK_DONE:
673                 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
674                 irqd_set(&desc->irq_data, flags);
675
676         case IRQ_SET_MASK_OK_NOCOPY:
677                 flags = irqd_get_trigger_type(&desc->irq_data);
678                 irq_settings_set_trigger_mask(desc, flags);
679                 irqd_clear(&desc->irq_data, IRQD_LEVEL);
680                 irq_settings_clr_level(desc);
681                 if (flags & IRQ_TYPE_LEVEL_MASK) {
682                         irq_settings_set_level(desc);
683                         irqd_set(&desc->irq_data, IRQD_LEVEL);
684                 }
685
686                 ret = 0;
687                 break;
688         default:
689                 pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
690                        flags, irq_desc_get_irq(desc), chip->irq_set_type);
691         }
692         if (unmask)
693                 unmask_irq(desc);
694         return ret;
695 }
696
697 #ifdef CONFIG_HARDIRQS_SW_RESEND
698 int irq_set_parent(int irq, int parent_irq)
699 {
700         unsigned long flags;
701         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
702
703         if (!desc)
704                 return -EINVAL;
705
706         desc->parent_irq = parent_irq;
707
708         irq_put_desc_unlock(desc, flags);
709         return 0;
710 }
711 EXPORT_SYMBOL_GPL(irq_set_parent);
712 #endif
713
714 /*
715  * Default primary interrupt handler for threaded interrupts. Is
716  * assigned as primary handler when request_threaded_irq is called
717  * with handler == NULL. Useful for oneshot interrupts.
718  */
719 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
720 {
721         return IRQ_WAKE_THREAD;
722 }
723
724 /*
725  * Primary handler for nested threaded interrupts. Should never be
726  * called.
727  */
728 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
729 {
730         WARN(1, "Primary handler called for nested irq %d\n", irq);
731         return IRQ_NONE;
732 }
733
734 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
735 {
736         WARN(1, "Secondary action handler called for irq %d\n", irq);
737         return IRQ_NONE;
738 }
739
740 static int irq_wait_for_interrupt(struct irqaction *action)
741 {
742         set_current_state(TASK_INTERRUPTIBLE);
743
744         while (!kthread_should_stop()) {
745
746                 if (test_and_clear_bit(IRQTF_RUNTHREAD,
747                                        &action->thread_flags)) {
748                         __set_current_state(TASK_RUNNING);
749                         return 0;
750                 }
751                 schedule();
752                 set_current_state(TASK_INTERRUPTIBLE);
753         }
754         __set_current_state(TASK_RUNNING);
755         return -1;
756 }
757
758 /*
759  * Oneshot interrupts keep the irq line masked until the threaded
760  * handler finished. unmask if the interrupt has not been disabled and
761  * is marked MASKED.
762  */
763 static void irq_finalize_oneshot(struct irq_desc *desc,
764                                  struct irqaction *action)
765 {
766         if (!(desc->istate & IRQS_ONESHOT) ||
767             action->handler == irq_forced_secondary_handler)
768                 return;
769 again:
770         chip_bus_lock(desc);
771         raw_spin_lock_irq(&desc->lock);
772
773         /*
774          * Implausible though it may be we need to protect us against
775          * the following scenario:
776          *
777          * The thread is faster done than the hard interrupt handler
778          * on the other CPU. If we unmask the irq line then the
779          * interrupt can come in again and masks the line, leaves due
780          * to IRQS_INPROGRESS and the irq line is masked forever.
781          *
782          * This also serializes the state of shared oneshot handlers
783          * versus "desc->threads_onehsot |= action->thread_mask;" in
784          * irq_wake_thread(). See the comment there which explains the
785          * serialization.
786          */
787         if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
788                 raw_spin_unlock_irq(&desc->lock);
789                 chip_bus_sync_unlock(desc);
790                 cpu_relax();
791                 goto again;
792         }
793
794         /*
795          * Now check again, whether the thread should run. Otherwise
796          * we would clear the threads_oneshot bit of this thread which
797          * was just set.
798          */
799         if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
800                 goto out_unlock;
801
802         desc->threads_oneshot &= ~action->thread_mask;
803
804         if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
805             irqd_irq_masked(&desc->irq_data))
806                 unmask_threaded_irq(desc);
807
808 out_unlock:
809         raw_spin_unlock_irq(&desc->lock);
810         chip_bus_sync_unlock(desc);
811 }
812
813 #ifdef CONFIG_SMP
814 /*
815  * Check whether we need to change the affinity of the interrupt thread.
816  */
817 static void
818 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
819 {
820         cpumask_var_t mask;
821         bool valid = true;
822
823         if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
824                 return;
825
826         /*
827          * In case we are out of memory we set IRQTF_AFFINITY again and
828          * try again next time
829          */
830         if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
831                 set_bit(IRQTF_AFFINITY, &action->thread_flags);
832                 return;
833         }
834
835         raw_spin_lock_irq(&desc->lock);
836         /*
837          * This code is triggered unconditionally. Check the affinity
838          * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
839          */
840         if (cpumask_available(desc->irq_common_data.affinity))
841                 cpumask_copy(mask, desc->irq_common_data.affinity);
842         else
843                 valid = false;
844         raw_spin_unlock_irq(&desc->lock);
845
846         if (valid)
847                 set_cpus_allowed_ptr(current, mask);
848         free_cpumask_var(mask);
849 }
850 #else
851 static inline void
852 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
853 #endif
854
855 /*
856  * Interrupts which are not explicitely requested as threaded
857  * interrupts rely on the implicit bh/preempt disable of the hard irq
858  * context. So we need to disable bh here to avoid deadlocks and other
859  * side effects.
860  */
861 static irqreturn_t
862 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
863 {
864         irqreturn_t ret;
865
866         local_bh_disable();
867         ret = action->thread_fn(action->irq, action->dev_id);
868         irq_finalize_oneshot(desc, action);
869         local_bh_enable();
870         return ret;
871 }
872
873 /*
874  * Interrupts explicitly requested as threaded interrupts want to be
875  * preemtible - many of them need to sleep and wait for slow busses to
876  * complete.
877  */
878 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
879                 struct irqaction *action)
880 {
881         irqreturn_t ret;
882
883         ret = action->thread_fn(action->irq, action->dev_id);
884         irq_finalize_oneshot(desc, action);
885         return ret;
886 }
887
888 static void wake_threads_waitq(struct irq_desc *desc)
889 {
890         if (atomic_dec_and_test(&desc->threads_active))
891                 wake_up(&desc->wait_for_threads);
892 }
893
894 static void irq_thread_dtor(struct callback_head *unused)
895 {
896         struct task_struct *tsk = current;
897         struct irq_desc *desc;
898         struct irqaction *action;
899
900         if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
901                 return;
902
903         action = kthread_data(tsk);
904
905         pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
906                tsk->comm, tsk->pid, action->irq);
907
908
909         desc = irq_to_desc(action->irq);
910         /*
911          * If IRQTF_RUNTHREAD is set, we need to decrement
912          * desc->threads_active and wake possible waiters.
913          */
914         if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
915                 wake_threads_waitq(desc);
916
917         /* Prevent a stale desc->threads_oneshot */
918         irq_finalize_oneshot(desc, action);
919 }
920
921 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
922 {
923         struct irqaction *secondary = action->secondary;
924
925         if (WARN_ON_ONCE(!secondary))
926                 return;
927
928         raw_spin_lock_irq(&desc->lock);
929         __irq_wake_thread(desc, secondary);
930         raw_spin_unlock_irq(&desc->lock);
931 }
932
933 /*
934  * Interrupt handler thread
935  */
936 static int irq_thread(void *data)
937 {
938         struct callback_head on_exit_work;
939         struct irqaction *action = data;
940         struct irq_desc *desc = irq_to_desc(action->irq);
941         irqreturn_t (*handler_fn)(struct irq_desc *desc,
942                         struct irqaction *action);
943
944         if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
945                                         &action->thread_flags))
946                 handler_fn = irq_forced_thread_fn;
947         else
948                 handler_fn = irq_thread_fn;
949
950         init_task_work(&on_exit_work, irq_thread_dtor);
951         task_work_add(current, &on_exit_work, false);
952
953         irq_thread_check_affinity(desc, action);
954
955         while (!irq_wait_for_interrupt(action)) {
956                 irqreturn_t action_ret;
957
958                 irq_thread_check_affinity(desc, action);
959
960                 action_ret = handler_fn(desc, action);
961                 if (action_ret == IRQ_HANDLED)
962                         atomic_inc(&desc->threads_handled);
963                 if (action_ret == IRQ_WAKE_THREAD)
964                         irq_wake_secondary(desc, action);
965
966                 wake_threads_waitq(desc);
967         }
968
969         /*
970          * This is the regular exit path. __free_irq() is stopping the
971          * thread via kthread_stop() after calling
972          * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the
973          * oneshot mask bit can be set. We cannot verify that as we
974          * cannot touch the oneshot mask at this point anymore as
975          * __setup_irq() might have given out currents thread_mask
976          * again.
977          */
978         task_work_cancel(current, irq_thread_dtor);
979         return 0;
980 }
981
982 /**
983  *      irq_wake_thread - wake the irq thread for the action identified by dev_id
984  *      @irq:           Interrupt line
985  *      @dev_id:        Device identity for which the thread should be woken
986  *
987  */
988 void irq_wake_thread(unsigned int irq, void *dev_id)
989 {
990         struct irq_desc *desc = irq_to_desc(irq);
991         struct irqaction *action;
992         unsigned long flags;
993
994         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
995                 return;
996
997         raw_spin_lock_irqsave(&desc->lock, flags);
998         for_each_action_of_desc(desc, action) {
999                 if (action->dev_id == dev_id) {
1000                         if (action->thread)
1001                                 __irq_wake_thread(desc, action);
1002                         break;
1003                 }
1004         }
1005         raw_spin_unlock_irqrestore(&desc->lock, flags);
1006 }
1007 EXPORT_SYMBOL_GPL(irq_wake_thread);
1008
1009 static int irq_setup_forced_threading(struct irqaction *new)
1010 {
1011         if (!force_irqthreads)
1012                 return 0;
1013         if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1014                 return 0;
1015
1016         new->flags |= IRQF_ONESHOT;
1017
1018         /*
1019          * Handle the case where we have a real primary handler and a
1020          * thread handler. We force thread them as well by creating a
1021          * secondary action.
1022          */
1023         if (new->handler != irq_default_primary_handler && new->thread_fn) {
1024                 /* Allocate the secondary action */
1025                 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1026                 if (!new->secondary)
1027                         return -ENOMEM;
1028                 new->secondary->handler = irq_forced_secondary_handler;
1029                 new->secondary->thread_fn = new->thread_fn;
1030                 new->secondary->dev_id = new->dev_id;
1031                 new->secondary->irq = new->irq;
1032                 new->secondary->name = new->name;
1033         }
1034         /* Deal with the primary handler */
1035         set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1036         new->thread_fn = new->handler;
1037         new->handler = irq_default_primary_handler;
1038         return 0;
1039 }
1040
1041 static int irq_request_resources(struct irq_desc *desc)
1042 {
1043         struct irq_data *d = &desc->irq_data;
1044         struct irq_chip *c = d->chip;
1045
1046         return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1047 }
1048
1049 static void irq_release_resources(struct irq_desc *desc)
1050 {
1051         struct irq_data *d = &desc->irq_data;
1052         struct irq_chip *c = d->chip;
1053
1054         if (c->irq_release_resources)
1055                 c->irq_release_resources(d);
1056 }
1057
1058 static int
1059 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1060 {
1061         struct task_struct *t;
1062         struct sched_param param = {
1063                 .sched_priority = MAX_USER_RT_PRIO/2,
1064         };
1065
1066         if (!secondary) {
1067                 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1068                                    new->name);
1069         } else {
1070                 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1071                                    new->name);
1072                 param.sched_priority -= 1;
1073         }
1074
1075         if (IS_ERR(t))
1076                 return PTR_ERR(t);
1077
1078         sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1079
1080         /*
1081          * We keep the reference to the task struct even if
1082          * the thread dies to avoid that the interrupt code
1083          * references an already freed task_struct.
1084          */
1085         get_task_struct(t);
1086         new->thread = t;
1087         /*
1088          * Tell the thread to set its affinity. This is
1089          * important for shared interrupt handlers as we do
1090          * not invoke setup_affinity() for the secondary
1091          * handlers as everything is already set up. Even for
1092          * interrupts marked with IRQF_NO_BALANCE this is
1093          * correct as we want the thread to move to the cpu(s)
1094          * on which the requesting code placed the interrupt.
1095          */
1096         set_bit(IRQTF_AFFINITY, &new->thread_flags);
1097         return 0;
1098 }
1099
1100 /*
1101  * Internal function to register an irqaction - typically used to
1102  * allocate special interrupts that are part of the architecture.
1103  *
1104  * Locking rules:
1105  *
1106  * desc->request_mutex  Provides serialization against a concurrent free_irq()
1107  *   chip_bus_lock      Provides serialization for slow bus operations
1108  *     desc->lock       Provides serialization against hard interrupts
1109  *
1110  * chip_bus_lock and desc->lock are sufficient for all other management and
1111  * interrupt related functions. desc->request_mutex solely serializes
1112  * request/free_irq().
1113  */
1114 static int
1115 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1116 {
1117         struct irqaction *old, **old_ptr;
1118         unsigned long flags, thread_mask = 0;
1119         int ret, nested, shared = 0;
1120
1121         if (!desc)
1122                 return -EINVAL;
1123
1124         if (desc->irq_data.chip == &no_irq_chip)
1125                 return -ENOSYS;
1126         if (!try_module_get(desc->owner))
1127                 return -ENODEV;
1128
1129         new->irq = irq;
1130
1131         /*
1132          * If the trigger type is not specified by the caller,
1133          * then use the default for this interrupt.
1134          */
1135         if (!(new->flags & IRQF_TRIGGER_MASK))
1136                 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1137
1138         /*
1139          * Check whether the interrupt nests into another interrupt
1140          * thread.
1141          */
1142         nested = irq_settings_is_nested_thread(desc);
1143         if (nested) {
1144                 if (!new->thread_fn) {
1145                         ret = -EINVAL;
1146                         goto out_mput;
1147                 }
1148                 /*
1149                  * Replace the primary handler which was provided from
1150                  * the driver for non nested interrupt handling by the
1151                  * dummy function which warns when called.
1152                  */
1153                 new->handler = irq_nested_primary_handler;
1154         } else {
1155                 if (irq_settings_can_thread(desc)) {
1156                         ret = irq_setup_forced_threading(new);
1157                         if (ret)
1158                                 goto out_mput;
1159                 }
1160         }
1161
1162         /*
1163          * Create a handler thread when a thread function is supplied
1164          * and the interrupt does not nest into another interrupt
1165          * thread.
1166          */
1167         if (new->thread_fn && !nested) {
1168                 ret = setup_irq_thread(new, irq, false);
1169                 if (ret)
1170                         goto out_mput;
1171                 if (new->secondary) {
1172                         ret = setup_irq_thread(new->secondary, irq, true);
1173                         if (ret)
1174                                 goto out_thread;
1175                 }
1176         }
1177
1178         /*
1179          * Drivers are often written to work w/o knowledge about the
1180          * underlying irq chip implementation, so a request for a
1181          * threaded irq without a primary hard irq context handler
1182          * requires the ONESHOT flag to be set. Some irq chips like
1183          * MSI based interrupts are per se one shot safe. Check the
1184          * chip flags, so we can avoid the unmask dance at the end of
1185          * the threaded handler for those.
1186          */
1187         if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1188                 new->flags &= ~IRQF_ONESHOT;
1189
1190         /*
1191          * Protects against a concurrent __free_irq() call which might wait
1192          * for synchronize_irq() to complete without holding the optional
1193          * chip bus lock and desc->lock.
1194          */
1195         mutex_lock(&desc->request_mutex);
1196
1197         /*
1198          * Acquire bus lock as the irq_request_resources() callback below
1199          * might rely on the serialization or the magic power management
1200          * functions which are abusing the irq_bus_lock() callback,
1201          */
1202         chip_bus_lock(desc);
1203
1204         /* First installed action requests resources. */
1205         if (!desc->action) {
1206                 ret = irq_request_resources(desc);
1207                 if (ret) {
1208                         pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1209                                new->name, irq, desc->irq_data.chip->name);
1210                         goto out_bus_unlock;
1211                 }
1212         }
1213
1214         /*
1215          * The following block of code has to be executed atomically
1216          * protected against a concurrent interrupt and any of the other
1217          * management calls which are not serialized via
1218          * desc->request_mutex or the optional bus lock.
1219          */
1220         raw_spin_lock_irqsave(&desc->lock, flags);
1221         old_ptr = &desc->action;
1222         old = *old_ptr;
1223         if (old) {
1224                 /*
1225                  * Can't share interrupts unless both agree to and are
1226                  * the same type (level, edge, polarity). So both flag
1227                  * fields must have IRQF_SHARED set and the bits which
1228                  * set the trigger type must match. Also all must
1229                  * agree on ONESHOT.
1230                  */
1231                 unsigned int oldtype = irqd_get_trigger_type(&desc->irq_data);
1232
1233                 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1234                     (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1235                     ((old->flags ^ new->flags) & IRQF_ONESHOT))
1236                         goto mismatch;
1237
1238                 /* All handlers must agree on per-cpuness */
1239                 if ((old->flags & IRQF_PERCPU) !=
1240                     (new->flags & IRQF_PERCPU))
1241                         goto mismatch;
1242
1243                 /* add new interrupt at end of irq queue */
1244                 do {
1245                         /*
1246                          * Or all existing action->thread_mask bits,
1247                          * so we can find the next zero bit for this
1248                          * new action.
1249                          */
1250                         thread_mask |= old->thread_mask;
1251                         old_ptr = &old->next;
1252                         old = *old_ptr;
1253                 } while (old);
1254                 shared = 1;
1255         }
1256
1257         /*
1258          * Setup the thread mask for this irqaction for ONESHOT. For
1259          * !ONESHOT irqs the thread mask is 0 so we can avoid a
1260          * conditional in irq_wake_thread().
1261          */
1262         if (new->flags & IRQF_ONESHOT) {
1263                 /*
1264                  * Unlikely to have 32 resp 64 irqs sharing one line,
1265                  * but who knows.
1266                  */
1267                 if (thread_mask == ~0UL) {
1268                         ret = -EBUSY;
1269                         goto out_unlock;
1270                 }
1271                 /*
1272                  * The thread_mask for the action is or'ed to
1273                  * desc->thread_active to indicate that the
1274                  * IRQF_ONESHOT thread handler has been woken, but not
1275                  * yet finished. The bit is cleared when a thread
1276                  * completes. When all threads of a shared interrupt
1277                  * line have completed desc->threads_active becomes
1278                  * zero and the interrupt line is unmasked. See
1279                  * handle.c:irq_wake_thread() for further information.
1280                  *
1281                  * If no thread is woken by primary (hard irq context)
1282                  * interrupt handlers, then desc->threads_active is
1283                  * also checked for zero to unmask the irq line in the
1284                  * affected hard irq flow handlers
1285                  * (handle_[fasteoi|level]_irq).
1286                  *
1287                  * The new action gets the first zero bit of
1288                  * thread_mask assigned. See the loop above which or's
1289                  * all existing action->thread_mask bits.
1290                  */
1291                 new->thread_mask = 1 << ffz(thread_mask);
1292
1293         } else if (new->handler == irq_default_primary_handler &&
1294                    !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1295                 /*
1296                  * The interrupt was requested with handler = NULL, so
1297                  * we use the default primary handler for it. But it
1298                  * does not have the oneshot flag set. In combination
1299                  * with level interrupts this is deadly, because the
1300                  * default primary handler just wakes the thread, then
1301                  * the irq lines is reenabled, but the device still
1302                  * has the level irq asserted. Rinse and repeat....
1303                  *
1304                  * While this works for edge type interrupts, we play
1305                  * it safe and reject unconditionally because we can't
1306                  * say for sure which type this interrupt really
1307                  * has. The type flags are unreliable as the
1308                  * underlying chip implementation can override them.
1309                  */
1310                 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1311                        irq);
1312                 ret = -EINVAL;
1313                 goto out_unlock;
1314         }
1315
1316         if (!shared) {
1317                 init_waitqueue_head(&desc->wait_for_threads);
1318
1319                 /* Setup the type (level, edge polarity) if configured: */
1320                 if (new->flags & IRQF_TRIGGER_MASK) {
1321                         ret = __irq_set_trigger(desc,
1322                                                 new->flags & IRQF_TRIGGER_MASK);
1323
1324                         if (ret)
1325                                 goto out_unlock;
1326                 }
1327
1328                 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1329                                   IRQS_ONESHOT | IRQS_WAITING);
1330                 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1331
1332                 if (new->flags & IRQF_PERCPU) {
1333                         irqd_set(&desc->irq_data, IRQD_PER_CPU);
1334                         irq_settings_set_per_cpu(desc);
1335                 }
1336
1337                 if (new->flags & IRQF_ONESHOT)
1338                         desc->istate |= IRQS_ONESHOT;
1339
1340                 /* Exclude IRQ from balancing if requested */
1341                 if (new->flags & IRQF_NOBALANCING) {
1342                         irq_settings_set_no_balancing(desc);
1343                         irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1344                 }
1345
1346                 if (irq_settings_can_autoenable(desc)) {
1347                         irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1348                 } else {
1349                         /*
1350                          * Shared interrupts do not go well with disabling
1351                          * auto enable. The sharing interrupt might request
1352                          * it while it's still disabled and then wait for
1353                          * interrupts forever.
1354                          */
1355                         WARN_ON_ONCE(new->flags & IRQF_SHARED);
1356                         /* Undo nested disables: */
1357                         desc->depth = 1;
1358                 }
1359
1360         } else if (new->flags & IRQF_TRIGGER_MASK) {
1361                 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1362                 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1363
1364                 if (nmsk != omsk)
1365                         /* hope the handler works with current  trigger mode */
1366                         pr_warn("irq %d uses trigger mode %u; requested %u\n",
1367                                 irq, omsk, nmsk);
1368         }
1369
1370         *old_ptr = new;
1371
1372         irq_pm_install_action(desc, new);
1373
1374         /* Reset broken irq detection when installing new handler */
1375         desc->irq_count = 0;
1376         desc->irqs_unhandled = 0;
1377
1378         /*
1379          * Check whether we disabled the irq via the spurious handler
1380          * before. Reenable it and give it another chance.
1381          */
1382         if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1383                 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1384                 __enable_irq(desc);
1385         }
1386
1387         raw_spin_unlock_irqrestore(&desc->lock, flags);
1388         chip_bus_sync_unlock(desc);
1389         mutex_unlock(&desc->request_mutex);
1390
1391         irq_setup_timings(desc, new);
1392
1393         /*
1394          * Strictly no need to wake it up, but hung_task complains
1395          * when no hard interrupt wakes the thread up.
1396          */
1397         if (new->thread)
1398                 wake_up_process(new->thread);
1399         if (new->secondary)
1400                 wake_up_process(new->secondary->thread);
1401
1402         register_irq_proc(irq, desc);
1403         irq_add_debugfs_entry(irq, desc);
1404         new->dir = NULL;
1405         register_handler_proc(irq, new);
1406         return 0;
1407
1408 mismatch:
1409         if (!(new->flags & IRQF_PROBE_SHARED)) {
1410                 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1411                        irq, new->flags, new->name, old->flags, old->name);
1412 #ifdef CONFIG_DEBUG_SHIRQ
1413                 dump_stack();
1414 #endif
1415         }
1416         ret = -EBUSY;
1417
1418 out_unlock:
1419         raw_spin_unlock_irqrestore(&desc->lock, flags);
1420
1421         if (!desc->action)
1422                 irq_release_resources(desc);
1423 out_bus_unlock:
1424         chip_bus_sync_unlock(desc);
1425         mutex_unlock(&desc->request_mutex);
1426
1427 out_thread:
1428         if (new->thread) {
1429                 struct task_struct *t = new->thread;
1430
1431                 new->thread = NULL;
1432                 kthread_stop(t);
1433                 put_task_struct(t);
1434         }
1435         if (new->secondary && new->secondary->thread) {
1436                 struct task_struct *t = new->secondary->thread;
1437
1438                 new->secondary->thread = NULL;
1439                 kthread_stop(t);
1440                 put_task_struct(t);
1441         }
1442 out_mput:
1443         module_put(desc->owner);
1444         return ret;
1445 }
1446
1447 /**
1448  *      setup_irq - setup an interrupt
1449  *      @irq: Interrupt line to setup
1450  *      @act: irqaction for the interrupt
1451  *
1452  * Used to statically setup interrupts in the early boot process.
1453  */
1454 int setup_irq(unsigned int irq, struct irqaction *act)
1455 {
1456         int retval;
1457         struct irq_desc *desc = irq_to_desc(irq);
1458
1459         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1460                 return -EINVAL;
1461
1462         retval = irq_chip_pm_get(&desc->irq_data);
1463         if (retval < 0)
1464                 return retval;
1465
1466         retval = __setup_irq(irq, desc, act);
1467
1468         if (retval)
1469                 irq_chip_pm_put(&desc->irq_data);
1470
1471         return retval;
1472 }
1473 EXPORT_SYMBOL_GPL(setup_irq);
1474
1475 /*
1476  * Internal function to unregister an irqaction - used to free
1477  * regular and special interrupts that are part of the architecture.
1478  */
1479 static struct irqaction *__free_irq(unsigned int irq, void *dev_id)
1480 {
1481         struct irq_desc *desc = irq_to_desc(irq);
1482         struct irqaction *action, **action_ptr;
1483         unsigned long flags;
1484
1485         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1486
1487         if (!desc)
1488                 return NULL;
1489
1490         mutex_lock(&desc->request_mutex);
1491         chip_bus_lock(desc);
1492         raw_spin_lock_irqsave(&desc->lock, flags);
1493
1494         /*
1495          * There can be multiple actions per IRQ descriptor, find the right
1496          * one based on the dev_id:
1497          */
1498         action_ptr = &desc->action;
1499         for (;;) {
1500                 action = *action_ptr;
1501
1502                 if (!action) {
1503                         WARN(1, "Trying to free already-free IRQ %d\n", irq);
1504                         raw_spin_unlock_irqrestore(&desc->lock, flags);
1505                         chip_bus_sync_unlock(desc);
1506                         mutex_unlock(&desc->request_mutex);
1507                         return NULL;
1508                 }
1509
1510                 if (action->dev_id == dev_id)
1511                         break;
1512                 action_ptr = &action->next;
1513         }
1514
1515         /* Found it - now remove it from the list of entries: */
1516         *action_ptr = action->next;
1517
1518         irq_pm_remove_action(desc, action);
1519
1520         /* If this was the last handler, shut down the IRQ line: */
1521         if (!desc->action) {
1522                 irq_settings_clr_disable_unlazy(desc);
1523                 irq_shutdown(desc);
1524         }
1525
1526 #ifdef CONFIG_SMP
1527         /* make sure affinity_hint is cleaned up */
1528         if (WARN_ON_ONCE(desc->affinity_hint))
1529                 desc->affinity_hint = NULL;
1530 #endif
1531
1532         raw_spin_unlock_irqrestore(&desc->lock, flags);
1533         /*
1534          * Drop bus_lock here so the changes which were done in the chip
1535          * callbacks above are synced out to the irq chips which hang
1536          * behind a slow bus (I2C, SPI) before calling synchronize_irq().
1537          *
1538          * Aside of that the bus_lock can also be taken from the threaded
1539          * handler in irq_finalize_oneshot() which results in a deadlock
1540          * because synchronize_irq() would wait forever for the thread to
1541          * complete, which is blocked on the bus lock.
1542          *
1543          * The still held desc->request_mutex() protects against a
1544          * concurrent request_irq() of this irq so the release of resources
1545          * and timing data is properly serialized.
1546          */
1547         chip_bus_sync_unlock(desc);
1548
1549         unregister_handler_proc(irq, action);
1550
1551         /* Make sure it's not being used on another CPU: */
1552         synchronize_irq(irq);
1553
1554 #ifdef CONFIG_DEBUG_SHIRQ
1555         /*
1556          * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1557          * event to happen even now it's being freed, so let's make sure that
1558          * is so by doing an extra call to the handler ....
1559          *
1560          * ( We do this after actually deregistering it, to make sure that a
1561          *   'real' IRQ doesn't run in * parallel with our fake. )
1562          */
1563         if (action->flags & IRQF_SHARED) {
1564                 local_irq_save(flags);
1565                 action->handler(irq, dev_id);
1566                 local_irq_restore(flags);
1567         }
1568 #endif
1569
1570         if (action->thread) {
1571                 kthread_stop(action->thread);
1572                 put_task_struct(action->thread);
1573                 if (action->secondary && action->secondary->thread) {
1574                         kthread_stop(action->secondary->thread);
1575                         put_task_struct(action->secondary->thread);
1576                 }
1577         }
1578
1579         /* Last action releases resources */
1580         if (!desc->action) {
1581                 /*
1582                  * Reaquire bus lock as irq_release_resources() might
1583                  * require it to deallocate resources over the slow bus.
1584                  */
1585                 chip_bus_lock(desc);
1586                 irq_release_resources(desc);
1587                 chip_bus_sync_unlock(desc);
1588                 irq_remove_timings(desc);
1589         }
1590
1591         mutex_unlock(&desc->request_mutex);
1592
1593         irq_chip_pm_put(&desc->irq_data);
1594         module_put(desc->owner);
1595         kfree(action->secondary);
1596         return action;
1597 }
1598
1599 /**
1600  *      remove_irq - free an interrupt
1601  *      @irq: Interrupt line to free
1602  *      @act: irqaction for the interrupt
1603  *
1604  * Used to remove interrupts statically setup by the early boot process.
1605  */
1606 void remove_irq(unsigned int irq, struct irqaction *act)
1607 {
1608         struct irq_desc *desc = irq_to_desc(irq);
1609
1610         if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1611                 __free_irq(irq, act->dev_id);
1612 }
1613 EXPORT_SYMBOL_GPL(remove_irq);
1614
1615 /**
1616  *      free_irq - free an interrupt allocated with request_irq
1617  *      @irq: Interrupt line to free
1618  *      @dev_id: Device identity to free
1619  *
1620  *      Remove an interrupt handler. The handler is removed and if the
1621  *      interrupt line is no longer in use by any driver it is disabled.
1622  *      On a shared IRQ the caller must ensure the interrupt is disabled
1623  *      on the card it drives before calling this function. The function
1624  *      does not return until any executing interrupts for this IRQ
1625  *      have completed.
1626  *
1627  *      This function must not be called from interrupt context.
1628  *
1629  *      Returns the devname argument passed to request_irq.
1630  */
1631 const void *free_irq(unsigned int irq, void *dev_id)
1632 {
1633         struct irq_desc *desc = irq_to_desc(irq);
1634         struct irqaction *action;
1635         const char *devname;
1636
1637         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1638                 return NULL;
1639
1640 #ifdef CONFIG_SMP
1641         if (WARN_ON(desc->affinity_notify))
1642                 desc->affinity_notify = NULL;
1643 #endif
1644
1645         action = __free_irq(irq, dev_id);
1646         devname = action->name;
1647         kfree(action);
1648         return devname;
1649 }
1650 EXPORT_SYMBOL(free_irq);
1651
1652 /**
1653  *      request_threaded_irq - allocate an interrupt line
1654  *      @irq: Interrupt line to allocate
1655  *      @handler: Function to be called when the IRQ occurs.
1656  *                Primary handler for threaded interrupts
1657  *                If NULL and thread_fn != NULL the default
1658  *                primary handler is installed
1659  *      @thread_fn: Function called from the irq handler thread
1660  *                  If NULL, no irq thread is created
1661  *      @irqflags: Interrupt type flags
1662  *      @devname: An ascii name for the claiming device
1663  *      @dev_id: A cookie passed back to the handler function
1664  *
1665  *      This call allocates interrupt resources and enables the
1666  *      interrupt line and IRQ handling. From the point this
1667  *      call is made your handler function may be invoked. Since
1668  *      your handler function must clear any interrupt the board
1669  *      raises, you must take care both to initialise your hardware
1670  *      and to set up the interrupt handler in the right order.
1671  *
1672  *      If you want to set up a threaded irq handler for your device
1673  *      then you need to supply @handler and @thread_fn. @handler is
1674  *      still called in hard interrupt context and has to check
1675  *      whether the interrupt originates from the device. If yes it
1676  *      needs to disable the interrupt on the device and return
1677  *      IRQ_WAKE_THREAD which will wake up the handler thread and run
1678  *      @thread_fn. This split handler design is necessary to support
1679  *      shared interrupts.
1680  *
1681  *      Dev_id must be globally unique. Normally the address of the
1682  *      device data structure is used as the cookie. Since the handler
1683  *      receives this value it makes sense to use it.
1684  *
1685  *      If your interrupt is shared you must pass a non NULL dev_id
1686  *      as this is required when freeing the interrupt.
1687  *
1688  *      Flags:
1689  *
1690  *      IRQF_SHARED             Interrupt is shared
1691  *      IRQF_TRIGGER_*          Specify active edge(s) or level
1692  *
1693  */
1694 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1695                          irq_handler_t thread_fn, unsigned long irqflags,
1696                          const char *devname, void *dev_id)
1697 {
1698         struct irqaction *action;
1699         struct irq_desc *desc;
1700         int retval;
1701
1702         if (irq == IRQ_NOTCONNECTED)
1703                 return -ENOTCONN;
1704
1705         /*
1706          * Sanity-check: shared interrupts must pass in a real dev-ID,
1707          * otherwise we'll have trouble later trying to figure out
1708          * which interrupt is which (messes up the interrupt freeing
1709          * logic etc).
1710          *
1711          * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1712          * it cannot be set along with IRQF_NO_SUSPEND.
1713          */
1714         if (((irqflags & IRQF_SHARED) && !dev_id) ||
1715             (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1716             ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1717                 return -EINVAL;
1718
1719         desc = irq_to_desc(irq);
1720         if (!desc)
1721                 return -EINVAL;
1722
1723         if (!irq_settings_can_request(desc) ||
1724             WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1725                 return -EINVAL;
1726
1727         if (!handler) {
1728                 if (!thread_fn)
1729                         return -EINVAL;
1730                 handler = irq_default_primary_handler;
1731         }
1732
1733         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1734         if (!action)
1735                 return -ENOMEM;
1736
1737         action->handler = handler;
1738         action->thread_fn = thread_fn;
1739         action->flags = irqflags;
1740         action->name = devname;
1741         action->dev_id = dev_id;
1742
1743         retval = irq_chip_pm_get(&desc->irq_data);
1744         if (retval < 0) {
1745                 kfree(action);
1746                 return retval;
1747         }
1748
1749         retval = __setup_irq(irq, desc, action);
1750
1751         if (retval) {
1752                 irq_chip_pm_put(&desc->irq_data);
1753                 kfree(action->secondary);
1754                 kfree(action);
1755         }
1756
1757 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1758         if (!retval && (irqflags & IRQF_SHARED)) {
1759                 /*
1760                  * It's a shared IRQ -- the driver ought to be prepared for it
1761                  * to happen immediately, so let's make sure....
1762                  * We disable the irq to make sure that a 'real' IRQ doesn't
1763                  * run in parallel with our fake.
1764                  */
1765                 unsigned long flags;
1766
1767                 disable_irq(irq);
1768                 local_irq_save(flags);
1769
1770                 handler(irq, dev_id);
1771
1772                 local_irq_restore(flags);
1773                 enable_irq(irq);
1774         }
1775 #endif
1776         return retval;
1777 }
1778 EXPORT_SYMBOL(request_threaded_irq);
1779
1780 /**
1781  *      request_any_context_irq - allocate an interrupt line
1782  *      @irq: Interrupt line to allocate
1783  *      @handler: Function to be called when the IRQ occurs.
1784  *                Threaded handler for threaded interrupts.
1785  *      @flags: Interrupt type flags
1786  *      @name: An ascii name for the claiming device
1787  *      @dev_id: A cookie passed back to the handler function
1788  *
1789  *      This call allocates interrupt resources and enables the
1790  *      interrupt line and IRQ handling. It selects either a
1791  *      hardirq or threaded handling method depending on the
1792  *      context.
1793  *
1794  *      On failure, it returns a negative value. On success,
1795  *      it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1796  */
1797 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1798                             unsigned long flags, const char *name, void *dev_id)
1799 {
1800         struct irq_desc *desc;
1801         int ret;
1802
1803         if (irq == IRQ_NOTCONNECTED)
1804                 return -ENOTCONN;
1805
1806         desc = irq_to_desc(irq);
1807         if (!desc)
1808                 return -EINVAL;
1809
1810         if (irq_settings_is_nested_thread(desc)) {
1811                 ret = request_threaded_irq(irq, NULL, handler,
1812                                            flags, name, dev_id);
1813                 return !ret ? IRQC_IS_NESTED : ret;
1814         }
1815
1816         ret = request_irq(irq, handler, flags, name, dev_id);
1817         return !ret ? IRQC_IS_HARDIRQ : ret;
1818 }
1819 EXPORT_SYMBOL_GPL(request_any_context_irq);
1820
1821 void enable_percpu_irq(unsigned int irq, unsigned int type)
1822 {
1823         unsigned int cpu = smp_processor_id();
1824         unsigned long flags;
1825         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1826
1827         if (!desc)
1828                 return;
1829
1830         /*
1831          * If the trigger type is not specified by the caller, then
1832          * use the default for this interrupt.
1833          */
1834         type &= IRQ_TYPE_SENSE_MASK;
1835         if (type == IRQ_TYPE_NONE)
1836                 type = irqd_get_trigger_type(&desc->irq_data);
1837
1838         if (type != IRQ_TYPE_NONE) {
1839                 int ret;
1840
1841                 ret = __irq_set_trigger(desc, type);
1842
1843                 if (ret) {
1844                         WARN(1, "failed to set type for IRQ%d\n", irq);
1845                         goto out;
1846                 }
1847         }
1848
1849         irq_percpu_enable(desc, cpu);
1850 out:
1851         irq_put_desc_unlock(desc, flags);
1852 }
1853 EXPORT_SYMBOL_GPL(enable_percpu_irq);
1854
1855 /**
1856  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1857  * @irq:        Linux irq number to check for
1858  *
1859  * Must be called from a non migratable context. Returns the enable
1860  * state of a per cpu interrupt on the current cpu.
1861  */
1862 bool irq_percpu_is_enabled(unsigned int irq)
1863 {
1864         unsigned int cpu = smp_processor_id();
1865         struct irq_desc *desc;
1866         unsigned long flags;
1867         bool is_enabled;
1868
1869         desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1870         if (!desc)
1871                 return false;
1872
1873         is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1874         irq_put_desc_unlock(desc, flags);
1875
1876         return is_enabled;
1877 }
1878 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1879
1880 void disable_percpu_irq(unsigned int irq)
1881 {
1882         unsigned int cpu = smp_processor_id();
1883         unsigned long flags;
1884         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1885
1886         if (!desc)
1887                 return;
1888
1889         irq_percpu_disable(desc, cpu);
1890         irq_put_desc_unlock(desc, flags);
1891 }
1892 EXPORT_SYMBOL_GPL(disable_percpu_irq);
1893
1894 /*
1895  * Internal function to unregister a percpu irqaction.
1896  */
1897 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1898 {
1899         struct irq_desc *desc = irq_to_desc(irq);
1900         struct irqaction *action;
1901         unsigned long flags;
1902
1903         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1904
1905         if (!desc)
1906                 return NULL;
1907
1908         raw_spin_lock_irqsave(&desc->lock, flags);
1909
1910         action = desc->action;
1911         if (!action || action->percpu_dev_id != dev_id) {
1912                 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1913                 goto bad;
1914         }
1915
1916         if (!cpumask_empty(desc->percpu_enabled)) {
1917                 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
1918                      irq, cpumask_first(desc->percpu_enabled));
1919                 goto bad;
1920         }
1921
1922         /* Found it - now remove it from the list of entries: */
1923         desc->action = NULL;
1924
1925         raw_spin_unlock_irqrestore(&desc->lock, flags);
1926
1927         unregister_handler_proc(irq, action);
1928
1929         irq_chip_pm_put(&desc->irq_data);
1930         module_put(desc->owner);
1931         return action;
1932
1933 bad:
1934         raw_spin_unlock_irqrestore(&desc->lock, flags);
1935         return NULL;
1936 }
1937
1938 /**
1939  *      remove_percpu_irq - free a per-cpu interrupt
1940  *      @irq: Interrupt line to free
1941  *      @act: irqaction for the interrupt
1942  *
1943  * Used to remove interrupts statically setup by the early boot process.
1944  */
1945 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
1946 {
1947         struct irq_desc *desc = irq_to_desc(irq);
1948
1949         if (desc && irq_settings_is_per_cpu_devid(desc))
1950             __free_percpu_irq(irq, act->percpu_dev_id);
1951 }
1952
1953 /**
1954  *      free_percpu_irq - free an interrupt allocated with request_percpu_irq
1955  *      @irq: Interrupt line to free
1956  *      @dev_id: Device identity to free
1957  *
1958  *      Remove a percpu interrupt handler. The handler is removed, but
1959  *      the interrupt line is not disabled. This must be done on each
1960  *      CPU before calling this function. The function does not return
1961  *      until any executing interrupts for this IRQ have completed.
1962  *
1963  *      This function must not be called from interrupt context.
1964  */
1965 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1966 {
1967         struct irq_desc *desc = irq_to_desc(irq);
1968
1969         if (!desc || !irq_settings_is_per_cpu_devid(desc))
1970                 return;
1971
1972         chip_bus_lock(desc);
1973         kfree(__free_percpu_irq(irq, dev_id));
1974         chip_bus_sync_unlock(desc);
1975 }
1976 EXPORT_SYMBOL_GPL(free_percpu_irq);
1977
1978 /**
1979  *      setup_percpu_irq - setup a per-cpu interrupt
1980  *      @irq: Interrupt line to setup
1981  *      @act: irqaction for the interrupt
1982  *
1983  * Used to statically setup per-cpu interrupts in the early boot process.
1984  */
1985 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
1986 {
1987         struct irq_desc *desc = irq_to_desc(irq);
1988         int retval;
1989
1990         if (!desc || !irq_settings_is_per_cpu_devid(desc))
1991                 return -EINVAL;
1992
1993         retval = irq_chip_pm_get(&desc->irq_data);
1994         if (retval < 0)
1995                 return retval;
1996
1997         retval = __setup_irq(irq, desc, act);
1998
1999         if (retval)
2000                 irq_chip_pm_put(&desc->irq_data);
2001
2002         return retval;
2003 }
2004
2005 /**
2006  *      __request_percpu_irq - allocate a percpu interrupt line
2007  *      @irq: Interrupt line to allocate
2008  *      @handler: Function to be called when the IRQ occurs.
2009  *      @flags: Interrupt type flags (IRQF_TIMER only)
2010  *      @devname: An ascii name for the claiming device
2011  *      @dev_id: A percpu cookie passed back to the handler function
2012  *
2013  *      This call allocates interrupt resources and enables the
2014  *      interrupt on the local CPU. If the interrupt is supposed to be
2015  *      enabled on other CPUs, it has to be done on each CPU using
2016  *      enable_percpu_irq().
2017  *
2018  *      Dev_id must be globally unique. It is a per-cpu variable, and
2019  *      the handler gets called with the interrupted CPU's instance of
2020  *      that variable.
2021  */
2022 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2023                          unsigned long flags, const char *devname,
2024                          void __percpu *dev_id)
2025 {
2026         struct irqaction *action;
2027         struct irq_desc *desc;
2028         int retval;
2029
2030         if (!dev_id)
2031                 return -EINVAL;
2032
2033         desc = irq_to_desc(irq);
2034         if (!desc || !irq_settings_can_request(desc) ||
2035             !irq_settings_is_per_cpu_devid(desc))
2036                 return -EINVAL;
2037
2038         if (flags && flags != IRQF_TIMER)
2039                 return -EINVAL;
2040
2041         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2042         if (!action)
2043                 return -ENOMEM;
2044
2045         action->handler = handler;
2046         action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2047         action->name = devname;
2048         action->percpu_dev_id = dev_id;
2049
2050         retval = irq_chip_pm_get(&desc->irq_data);
2051         if (retval < 0) {
2052                 kfree(action);
2053                 return retval;
2054         }
2055
2056         retval = __setup_irq(irq, desc, action);
2057
2058         if (retval) {
2059                 irq_chip_pm_put(&desc->irq_data);
2060                 kfree(action);
2061         }
2062
2063         return retval;
2064 }
2065 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2066
2067 /**
2068  *      irq_get_irqchip_state - returns the irqchip state of a interrupt.
2069  *      @irq: Interrupt line that is forwarded to a VM
2070  *      @which: One of IRQCHIP_STATE_* the caller wants to know about
2071  *      @state: a pointer to a boolean where the state is to be storeed
2072  *
2073  *      This call snapshots the internal irqchip state of an
2074  *      interrupt, returning into @state the bit corresponding to
2075  *      stage @which
2076  *
2077  *      This function should be called with preemption disabled if the
2078  *      interrupt controller has per-cpu registers.
2079  */
2080 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2081                           bool *state)
2082 {
2083         struct irq_desc *desc;
2084         struct irq_data *data;
2085         struct irq_chip *chip;
2086         unsigned long flags;
2087         int err = -EINVAL;
2088
2089         desc = irq_get_desc_buslock(irq, &flags, 0);
2090         if (!desc)
2091                 return err;
2092
2093         data = irq_desc_get_irq_data(desc);
2094
2095         do {
2096                 chip = irq_data_get_irq_chip(data);
2097                 if (chip->irq_get_irqchip_state)
2098                         break;
2099 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2100                 data = data->parent_data;
2101 #else
2102                 data = NULL;
2103 #endif
2104         } while (data);
2105
2106         if (data)
2107                 err = chip->irq_get_irqchip_state(data, which, state);
2108
2109         irq_put_desc_busunlock(desc, flags);
2110         return err;
2111 }
2112 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2113
2114 /**
2115  *      irq_set_irqchip_state - set the state of a forwarded interrupt.
2116  *      @irq: Interrupt line that is forwarded to a VM
2117  *      @which: State to be restored (one of IRQCHIP_STATE_*)
2118  *      @val: Value corresponding to @which
2119  *
2120  *      This call sets the internal irqchip state of an interrupt,
2121  *      depending on the value of @which.
2122  *
2123  *      This function should be called with preemption disabled if the
2124  *      interrupt controller has per-cpu registers.
2125  */
2126 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2127                           bool val)
2128 {
2129         struct irq_desc *desc;
2130         struct irq_data *data;
2131         struct irq_chip *chip;
2132         unsigned long flags;
2133         int err = -EINVAL;
2134
2135         desc = irq_get_desc_buslock(irq, &flags, 0);
2136         if (!desc)
2137                 return err;
2138
2139         data = irq_desc_get_irq_data(desc);
2140
2141         do {
2142                 chip = irq_data_get_irq_chip(data);
2143                 if (chip->irq_set_irqchip_state)
2144                         break;
2145 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2146                 data = data->parent_data;
2147 #else
2148                 data = NULL;
2149 #endif
2150         } while (data);
2151
2152         if (data)
2153                 err = chip->irq_set_irqchip_state(data, which, val);
2154
2155         irq_put_desc_busunlock(desc, flags);
2156         return err;
2157 }
2158 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);