]> asedeno.scripts.mit.edu Git - linux.git/blob - kernel/kexec.c
kexec: support for kexec on panic using new system call
[linux.git] / kernel / kexec.c
1 /*
2  * kexec.c - kexec system call
3  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8
9 #define pr_fmt(fmt)     "kexec: " fmt
10
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/fs.h>
16 #include <linux/kexec.h>
17 #include <linux/mutex.h>
18 #include <linux/list.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/console.h>
34 #include <linux/vmalloc.h>
35 #include <linux/swap.h>
36 #include <linux/syscore_ops.h>
37 #include <linux/compiler.h>
38 #include <linux/hugetlb.h>
39
40 #include <asm/page.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/sections.h>
44
45 #include <crypto/hash.h>
46 #include <crypto/sha.h>
47
48 /* Per cpu memory for storing cpu states in case of system crash. */
49 note_buf_t __percpu *crash_notes;
50
51 /* vmcoreinfo stuff */
52 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
53 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
54 size_t vmcoreinfo_size;
55 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
56
57 /* Flag to indicate we are going to kexec a new kernel */
58 bool kexec_in_progress = false;
59
60 /*
61  * Declare these symbols weak so that if architecture provides a purgatory,
62  * these will be overridden.
63  */
64 char __weak kexec_purgatory[0];
65 size_t __weak kexec_purgatory_size = 0;
66
67 static int kexec_calculate_store_digests(struct kimage *image);
68
69 /* Location of the reserved area for the crash kernel */
70 struct resource crashk_res = {
71         .name  = "Crash kernel",
72         .start = 0,
73         .end   = 0,
74         .flags = IORESOURCE_BUSY | IORESOURCE_MEM
75 };
76 struct resource crashk_low_res = {
77         .name  = "Crash kernel",
78         .start = 0,
79         .end   = 0,
80         .flags = IORESOURCE_BUSY | IORESOURCE_MEM
81 };
82
83 int kexec_should_crash(struct task_struct *p)
84 {
85         if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
86                 return 1;
87         return 0;
88 }
89
90 /*
91  * When kexec transitions to the new kernel there is a one-to-one
92  * mapping between physical and virtual addresses.  On processors
93  * where you can disable the MMU this is trivial, and easy.  For
94  * others it is still a simple predictable page table to setup.
95  *
96  * In that environment kexec copies the new kernel to its final
97  * resting place.  This means I can only support memory whose
98  * physical address can fit in an unsigned long.  In particular
99  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
100  * If the assembly stub has more restrictive requirements
101  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
102  * defined more restrictively in <asm/kexec.h>.
103  *
104  * The code for the transition from the current kernel to the
105  * the new kernel is placed in the control_code_buffer, whose size
106  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
107  * page of memory is necessary, but some architectures require more.
108  * Because this memory must be identity mapped in the transition from
109  * virtual to physical addresses it must live in the range
110  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
111  * modifiable.
112  *
113  * The assembly stub in the control code buffer is passed a linked list
114  * of descriptor pages detailing the source pages of the new kernel,
115  * and the destination addresses of those source pages.  As this data
116  * structure is not used in the context of the current OS, it must
117  * be self-contained.
118  *
119  * The code has been made to work with highmem pages and will use a
120  * destination page in its final resting place (if it happens
121  * to allocate it).  The end product of this is that most of the
122  * physical address space, and most of RAM can be used.
123  *
124  * Future directions include:
125  *  - allocating a page table with the control code buffer identity
126  *    mapped, to simplify machine_kexec and make kexec_on_panic more
127  *    reliable.
128  */
129
130 /*
131  * KIMAGE_NO_DEST is an impossible destination address..., for
132  * allocating pages whose destination address we do not care about.
133  */
134 #define KIMAGE_NO_DEST (-1UL)
135
136 static int kimage_is_destination_range(struct kimage *image,
137                                        unsigned long start, unsigned long end);
138 static struct page *kimage_alloc_page(struct kimage *image,
139                                        gfp_t gfp_mask,
140                                        unsigned long dest);
141
142 static int copy_user_segment_list(struct kimage *image,
143                                   unsigned long nr_segments,
144                                   struct kexec_segment __user *segments)
145 {
146         int ret;
147         size_t segment_bytes;
148
149         /* Read in the segments */
150         image->nr_segments = nr_segments;
151         segment_bytes = nr_segments * sizeof(*segments);
152         ret = copy_from_user(image->segment, segments, segment_bytes);
153         if (ret)
154                 ret = -EFAULT;
155
156         return ret;
157 }
158
159 static int sanity_check_segment_list(struct kimage *image)
160 {
161         int result, i;
162         unsigned long nr_segments = image->nr_segments;
163
164         /*
165          * Verify we have good destination addresses.  The caller is
166          * responsible for making certain we don't attempt to load
167          * the new image into invalid or reserved areas of RAM.  This
168          * just verifies it is an address we can use.
169          *
170          * Since the kernel does everything in page size chunks ensure
171          * the destination addresses are page aligned.  Too many
172          * special cases crop of when we don't do this.  The most
173          * insidious is getting overlapping destination addresses
174          * simply because addresses are changed to page size
175          * granularity.
176          */
177         result = -EADDRNOTAVAIL;
178         for (i = 0; i < nr_segments; i++) {
179                 unsigned long mstart, mend;
180
181                 mstart = image->segment[i].mem;
182                 mend   = mstart + image->segment[i].memsz;
183                 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
184                         return result;
185                 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
186                         return result;
187         }
188
189         /* Verify our destination addresses do not overlap.
190          * If we alloed overlapping destination addresses
191          * through very weird things can happen with no
192          * easy explanation as one segment stops on another.
193          */
194         result = -EINVAL;
195         for (i = 0; i < nr_segments; i++) {
196                 unsigned long mstart, mend;
197                 unsigned long j;
198
199                 mstart = image->segment[i].mem;
200                 mend   = mstart + image->segment[i].memsz;
201                 for (j = 0; j < i; j++) {
202                         unsigned long pstart, pend;
203                         pstart = image->segment[j].mem;
204                         pend   = pstart + image->segment[j].memsz;
205                         /* Do the segments overlap ? */
206                         if ((mend > pstart) && (mstart < pend))
207                                 return result;
208                 }
209         }
210
211         /* Ensure our buffer sizes are strictly less than
212          * our memory sizes.  This should always be the case,
213          * and it is easier to check up front than to be surprised
214          * later on.
215          */
216         result = -EINVAL;
217         for (i = 0; i < nr_segments; i++) {
218                 if (image->segment[i].bufsz > image->segment[i].memsz)
219                         return result;
220         }
221
222         /*
223          * Verify we have good destination addresses.  Normally
224          * the caller is responsible for making certain we don't
225          * attempt to load the new image into invalid or reserved
226          * areas of RAM.  But crash kernels are preloaded into a
227          * reserved area of ram.  We must ensure the addresses
228          * are in the reserved area otherwise preloading the
229          * kernel could corrupt things.
230          */
231
232         if (image->type == KEXEC_TYPE_CRASH) {
233                 result = -EADDRNOTAVAIL;
234                 for (i = 0; i < nr_segments; i++) {
235                         unsigned long mstart, mend;
236
237                         mstart = image->segment[i].mem;
238                         mend = mstart + image->segment[i].memsz - 1;
239                         /* Ensure we are within the crash kernel limits */
240                         if ((mstart < crashk_res.start) ||
241                             (mend > crashk_res.end))
242                                 return result;
243                 }
244         }
245
246         return 0;
247 }
248
249 static struct kimage *do_kimage_alloc_init(void)
250 {
251         struct kimage *image;
252
253         /* Allocate a controlling structure */
254         image = kzalloc(sizeof(*image), GFP_KERNEL);
255         if (!image)
256                 return NULL;
257
258         image->head = 0;
259         image->entry = &image->head;
260         image->last_entry = &image->head;
261         image->control_page = ~0; /* By default this does not apply */
262         image->type = KEXEC_TYPE_DEFAULT;
263
264         /* Initialize the list of control pages */
265         INIT_LIST_HEAD(&image->control_pages);
266
267         /* Initialize the list of destination pages */
268         INIT_LIST_HEAD(&image->dest_pages);
269
270         /* Initialize the list of unusable pages */
271         INIT_LIST_HEAD(&image->unusable_pages);
272
273         return image;
274 }
275
276 static void kimage_free_page_list(struct list_head *list);
277
278 static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
279                              unsigned long nr_segments,
280                              struct kexec_segment __user *segments,
281                              unsigned long flags)
282 {
283         int ret;
284         struct kimage *image;
285         bool kexec_on_panic = flags & KEXEC_ON_CRASH;
286
287         if (kexec_on_panic) {
288                 /* Verify we have a valid entry point */
289                 if ((entry < crashk_res.start) || (entry > crashk_res.end))
290                         return -EADDRNOTAVAIL;
291         }
292
293         /* Allocate and initialize a controlling structure */
294         image = do_kimage_alloc_init();
295         if (!image)
296                 return -ENOMEM;
297
298         image->start = entry;
299
300         ret = copy_user_segment_list(image, nr_segments, segments);
301         if (ret)
302                 goto out_free_image;
303
304         ret = sanity_check_segment_list(image);
305         if (ret)
306                 goto out_free_image;
307
308          /* Enable the special crash kernel control page allocation policy. */
309         if (kexec_on_panic) {
310                 image->control_page = crashk_res.start;
311                 image->type = KEXEC_TYPE_CRASH;
312         }
313
314         /*
315          * Find a location for the control code buffer, and add it
316          * the vector of segments so that it's pages will also be
317          * counted as destination pages.
318          */
319         ret = -ENOMEM;
320         image->control_code_page = kimage_alloc_control_pages(image,
321                                            get_order(KEXEC_CONTROL_PAGE_SIZE));
322         if (!image->control_code_page) {
323                 pr_err("Could not allocate control_code_buffer\n");
324                 goto out_free_image;
325         }
326
327         if (!kexec_on_panic) {
328                 image->swap_page = kimage_alloc_control_pages(image, 0);
329                 if (!image->swap_page) {
330                         pr_err("Could not allocate swap buffer\n");
331                         goto out_free_control_pages;
332                 }
333         }
334
335         *rimage = image;
336         return 0;
337 out_free_control_pages:
338         kimage_free_page_list(&image->control_pages);
339 out_free_image:
340         kfree(image);
341         return ret;
342 }
343
344 static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len)
345 {
346         struct fd f = fdget(fd);
347         int ret;
348         struct kstat stat;
349         loff_t pos;
350         ssize_t bytes = 0;
351
352         if (!f.file)
353                 return -EBADF;
354
355         ret = vfs_getattr(&f.file->f_path, &stat);
356         if (ret)
357                 goto out;
358
359         if (stat.size > INT_MAX) {
360                 ret = -EFBIG;
361                 goto out;
362         }
363
364         /* Don't hand 0 to vmalloc, it whines. */
365         if (stat.size == 0) {
366                 ret = -EINVAL;
367                 goto out;
368         }
369
370         *buf = vmalloc(stat.size);
371         if (!*buf) {
372                 ret = -ENOMEM;
373                 goto out;
374         }
375
376         pos = 0;
377         while (pos < stat.size) {
378                 bytes = kernel_read(f.file, pos, (char *)(*buf) + pos,
379                                     stat.size - pos);
380                 if (bytes < 0) {
381                         vfree(*buf);
382                         ret = bytes;
383                         goto out;
384                 }
385
386                 if (bytes == 0)
387                         break;
388                 pos += bytes;
389         }
390
391         if (pos != stat.size) {
392                 ret = -EBADF;
393                 vfree(*buf);
394                 goto out;
395         }
396
397         *buf_len = pos;
398 out:
399         fdput(f);
400         return ret;
401 }
402
403 /* Architectures can provide this probe function */
404 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
405                                          unsigned long buf_len)
406 {
407         return -ENOEXEC;
408 }
409
410 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
411 {
412         return ERR_PTR(-ENOEXEC);
413 }
414
415 void __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
416 {
417 }
418
419 /* Apply relocations of type RELA */
420 int __weak
421 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
422                                  unsigned int relsec)
423 {
424         pr_err("RELA relocation unsupported.\n");
425         return -ENOEXEC;
426 }
427
428 /* Apply relocations of type REL */
429 int __weak
430 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
431                              unsigned int relsec)
432 {
433         pr_err("REL relocation unsupported.\n");
434         return -ENOEXEC;
435 }
436
437 /*
438  * Free up memory used by kernel, initrd, and comand line. This is temporary
439  * memory allocation which is not needed any more after these buffers have
440  * been loaded into separate segments and have been copied elsewhere.
441  */
442 static void kimage_file_post_load_cleanup(struct kimage *image)
443 {
444         struct purgatory_info *pi = &image->purgatory_info;
445
446         vfree(image->kernel_buf);
447         image->kernel_buf = NULL;
448
449         vfree(image->initrd_buf);
450         image->initrd_buf = NULL;
451
452         kfree(image->cmdline_buf);
453         image->cmdline_buf = NULL;
454
455         vfree(pi->purgatory_buf);
456         pi->purgatory_buf = NULL;
457
458         vfree(pi->sechdrs);
459         pi->sechdrs = NULL;
460
461         /* See if architecture has anything to cleanup post load */
462         arch_kimage_file_post_load_cleanup(image);
463
464         /*
465          * Above call should have called into bootloader to free up
466          * any data stored in kimage->image_loader_data. It should
467          * be ok now to free it up.
468          */
469         kfree(image->image_loader_data);
470         image->image_loader_data = NULL;
471 }
472
473 /*
474  * In file mode list of segments is prepared by kernel. Copy relevant
475  * data from user space, do error checking, prepare segment list
476  */
477 static int
478 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
479                              const char __user *cmdline_ptr,
480                              unsigned long cmdline_len, unsigned flags)
481 {
482         int ret = 0;
483         void *ldata;
484
485         ret = copy_file_from_fd(kernel_fd, &image->kernel_buf,
486                                 &image->kernel_buf_len);
487         if (ret)
488                 return ret;
489
490         /* Call arch image probe handlers */
491         ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
492                                             image->kernel_buf_len);
493
494         if (ret)
495                 goto out;
496
497         /* It is possible that there no initramfs is being loaded */
498         if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
499                 ret = copy_file_from_fd(initrd_fd, &image->initrd_buf,
500                                         &image->initrd_buf_len);
501                 if (ret)
502                         goto out;
503         }
504
505         if (cmdline_len) {
506                 image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
507                 if (!image->cmdline_buf) {
508                         ret = -ENOMEM;
509                         goto out;
510                 }
511
512                 ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
513                                      cmdline_len);
514                 if (ret) {
515                         ret = -EFAULT;
516                         goto out;
517                 }
518
519                 image->cmdline_buf_len = cmdline_len;
520
521                 /* command line should be a string with last byte null */
522                 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
523                         ret = -EINVAL;
524                         goto out;
525                 }
526         }
527
528         /* Call arch image load handlers */
529         ldata = arch_kexec_kernel_image_load(image);
530
531         if (IS_ERR(ldata)) {
532                 ret = PTR_ERR(ldata);
533                 goto out;
534         }
535
536         image->image_loader_data = ldata;
537 out:
538         /* In case of error, free up all allocated memory in this function */
539         if (ret)
540                 kimage_file_post_load_cleanup(image);
541         return ret;
542 }
543
544 static int
545 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
546                        int initrd_fd, const char __user *cmdline_ptr,
547                        unsigned long cmdline_len, unsigned long flags)
548 {
549         int ret;
550         struct kimage *image;
551         bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
552
553         image = do_kimage_alloc_init();
554         if (!image)
555                 return -ENOMEM;
556
557         image->file_mode = 1;
558
559         if (kexec_on_panic) {
560                 /* Enable special crash kernel control page alloc policy. */
561                 image->control_page = crashk_res.start;
562                 image->type = KEXEC_TYPE_CRASH;
563         }
564
565         ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
566                                            cmdline_ptr, cmdline_len, flags);
567         if (ret)
568                 goto out_free_image;
569
570         ret = sanity_check_segment_list(image);
571         if (ret)
572                 goto out_free_post_load_bufs;
573
574         ret = -ENOMEM;
575         image->control_code_page = kimage_alloc_control_pages(image,
576                                            get_order(KEXEC_CONTROL_PAGE_SIZE));
577         if (!image->control_code_page) {
578                 pr_err("Could not allocate control_code_buffer\n");
579                 goto out_free_post_load_bufs;
580         }
581
582         if (!kexec_on_panic) {
583                 image->swap_page = kimage_alloc_control_pages(image, 0);
584                 if (!image->swap_page) {
585                         pr_err(KERN_ERR "Could not allocate swap buffer\n");
586                         goto out_free_control_pages;
587                 }
588         }
589
590         *rimage = image;
591         return 0;
592 out_free_control_pages:
593         kimage_free_page_list(&image->control_pages);
594 out_free_post_load_bufs:
595         kimage_file_post_load_cleanup(image);
596 out_free_image:
597         kfree(image);
598         return ret;
599 }
600
601 static int kimage_is_destination_range(struct kimage *image,
602                                         unsigned long start,
603                                         unsigned long end)
604 {
605         unsigned long i;
606
607         for (i = 0; i < image->nr_segments; i++) {
608                 unsigned long mstart, mend;
609
610                 mstart = image->segment[i].mem;
611                 mend = mstart + image->segment[i].memsz;
612                 if ((end > mstart) && (start < mend))
613                         return 1;
614         }
615
616         return 0;
617 }
618
619 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
620 {
621         struct page *pages;
622
623         pages = alloc_pages(gfp_mask, order);
624         if (pages) {
625                 unsigned int count, i;
626                 pages->mapping = NULL;
627                 set_page_private(pages, order);
628                 count = 1 << order;
629                 for (i = 0; i < count; i++)
630                         SetPageReserved(pages + i);
631         }
632
633         return pages;
634 }
635
636 static void kimage_free_pages(struct page *page)
637 {
638         unsigned int order, count, i;
639
640         order = page_private(page);
641         count = 1 << order;
642         for (i = 0; i < count; i++)
643                 ClearPageReserved(page + i);
644         __free_pages(page, order);
645 }
646
647 static void kimage_free_page_list(struct list_head *list)
648 {
649         struct list_head *pos, *next;
650
651         list_for_each_safe(pos, next, list) {
652                 struct page *page;
653
654                 page = list_entry(pos, struct page, lru);
655                 list_del(&page->lru);
656                 kimage_free_pages(page);
657         }
658 }
659
660 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
661                                                         unsigned int order)
662 {
663         /* Control pages are special, they are the intermediaries
664          * that are needed while we copy the rest of the pages
665          * to their final resting place.  As such they must
666          * not conflict with either the destination addresses
667          * or memory the kernel is already using.
668          *
669          * The only case where we really need more than one of
670          * these are for architectures where we cannot disable
671          * the MMU and must instead generate an identity mapped
672          * page table for all of the memory.
673          *
674          * At worst this runs in O(N) of the image size.
675          */
676         struct list_head extra_pages;
677         struct page *pages;
678         unsigned int count;
679
680         count = 1 << order;
681         INIT_LIST_HEAD(&extra_pages);
682
683         /* Loop while I can allocate a page and the page allocated
684          * is a destination page.
685          */
686         do {
687                 unsigned long pfn, epfn, addr, eaddr;
688
689                 pages = kimage_alloc_pages(GFP_KERNEL, order);
690                 if (!pages)
691                         break;
692                 pfn   = page_to_pfn(pages);
693                 epfn  = pfn + count;
694                 addr  = pfn << PAGE_SHIFT;
695                 eaddr = epfn << PAGE_SHIFT;
696                 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
697                               kimage_is_destination_range(image, addr, eaddr)) {
698                         list_add(&pages->lru, &extra_pages);
699                         pages = NULL;
700                 }
701         } while (!pages);
702
703         if (pages) {
704                 /* Remember the allocated page... */
705                 list_add(&pages->lru, &image->control_pages);
706
707                 /* Because the page is already in it's destination
708                  * location we will never allocate another page at
709                  * that address.  Therefore kimage_alloc_pages
710                  * will not return it (again) and we don't need
711                  * to give it an entry in image->segment[].
712                  */
713         }
714         /* Deal with the destination pages I have inadvertently allocated.
715          *
716          * Ideally I would convert multi-page allocations into single
717          * page allocations, and add everything to image->dest_pages.
718          *
719          * For now it is simpler to just free the pages.
720          */
721         kimage_free_page_list(&extra_pages);
722
723         return pages;
724 }
725
726 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
727                                                       unsigned int order)
728 {
729         /* Control pages are special, they are the intermediaries
730          * that are needed while we copy the rest of the pages
731          * to their final resting place.  As such they must
732          * not conflict with either the destination addresses
733          * or memory the kernel is already using.
734          *
735          * Control pages are also the only pags we must allocate
736          * when loading a crash kernel.  All of the other pages
737          * are specified by the segments and we just memcpy
738          * into them directly.
739          *
740          * The only case where we really need more than one of
741          * these are for architectures where we cannot disable
742          * the MMU and must instead generate an identity mapped
743          * page table for all of the memory.
744          *
745          * Given the low demand this implements a very simple
746          * allocator that finds the first hole of the appropriate
747          * size in the reserved memory region, and allocates all
748          * of the memory up to and including the hole.
749          */
750         unsigned long hole_start, hole_end, size;
751         struct page *pages;
752
753         pages = NULL;
754         size = (1 << order) << PAGE_SHIFT;
755         hole_start = (image->control_page + (size - 1)) & ~(size - 1);
756         hole_end   = hole_start + size - 1;
757         while (hole_end <= crashk_res.end) {
758                 unsigned long i;
759
760                 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
761                         break;
762                 /* See if I overlap any of the segments */
763                 for (i = 0; i < image->nr_segments; i++) {
764                         unsigned long mstart, mend;
765
766                         mstart = image->segment[i].mem;
767                         mend   = mstart + image->segment[i].memsz - 1;
768                         if ((hole_end >= mstart) && (hole_start <= mend)) {
769                                 /* Advance the hole to the end of the segment */
770                                 hole_start = (mend + (size - 1)) & ~(size - 1);
771                                 hole_end   = hole_start + size - 1;
772                                 break;
773                         }
774                 }
775                 /* If I don't overlap any segments I have found my hole! */
776                 if (i == image->nr_segments) {
777                         pages = pfn_to_page(hole_start >> PAGE_SHIFT);
778                         break;
779                 }
780         }
781         if (pages)
782                 image->control_page = hole_end;
783
784         return pages;
785 }
786
787
788 struct page *kimage_alloc_control_pages(struct kimage *image,
789                                          unsigned int order)
790 {
791         struct page *pages = NULL;
792
793         switch (image->type) {
794         case KEXEC_TYPE_DEFAULT:
795                 pages = kimage_alloc_normal_control_pages(image, order);
796                 break;
797         case KEXEC_TYPE_CRASH:
798                 pages = kimage_alloc_crash_control_pages(image, order);
799                 break;
800         }
801
802         return pages;
803 }
804
805 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
806 {
807         if (*image->entry != 0)
808                 image->entry++;
809
810         if (image->entry == image->last_entry) {
811                 kimage_entry_t *ind_page;
812                 struct page *page;
813
814                 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
815                 if (!page)
816                         return -ENOMEM;
817
818                 ind_page = page_address(page);
819                 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
820                 image->entry = ind_page;
821                 image->last_entry = ind_page +
822                                       ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
823         }
824         *image->entry = entry;
825         image->entry++;
826         *image->entry = 0;
827
828         return 0;
829 }
830
831 static int kimage_set_destination(struct kimage *image,
832                                    unsigned long destination)
833 {
834         int result;
835
836         destination &= PAGE_MASK;
837         result = kimage_add_entry(image, destination | IND_DESTINATION);
838         if (result == 0)
839                 image->destination = destination;
840
841         return result;
842 }
843
844
845 static int kimage_add_page(struct kimage *image, unsigned long page)
846 {
847         int result;
848
849         page &= PAGE_MASK;
850         result = kimage_add_entry(image, page | IND_SOURCE);
851         if (result == 0)
852                 image->destination += PAGE_SIZE;
853
854         return result;
855 }
856
857
858 static void kimage_free_extra_pages(struct kimage *image)
859 {
860         /* Walk through and free any extra destination pages I may have */
861         kimage_free_page_list(&image->dest_pages);
862
863         /* Walk through and free any unusable pages I have cached */
864         kimage_free_page_list(&image->unusable_pages);
865
866 }
867 static void kimage_terminate(struct kimage *image)
868 {
869         if (*image->entry != 0)
870                 image->entry++;
871
872         *image->entry = IND_DONE;
873 }
874
875 #define for_each_kimage_entry(image, ptr, entry) \
876         for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
877                 ptr = (entry & IND_INDIRECTION) ? \
878                         phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
879
880 static void kimage_free_entry(kimage_entry_t entry)
881 {
882         struct page *page;
883
884         page = pfn_to_page(entry >> PAGE_SHIFT);
885         kimage_free_pages(page);
886 }
887
888 static void kimage_free(struct kimage *image)
889 {
890         kimage_entry_t *ptr, entry;
891         kimage_entry_t ind = 0;
892
893         if (!image)
894                 return;
895
896         kimage_free_extra_pages(image);
897         for_each_kimage_entry(image, ptr, entry) {
898                 if (entry & IND_INDIRECTION) {
899                         /* Free the previous indirection page */
900                         if (ind & IND_INDIRECTION)
901                                 kimage_free_entry(ind);
902                         /* Save this indirection page until we are
903                          * done with it.
904                          */
905                         ind = entry;
906                 } else if (entry & IND_SOURCE)
907                         kimage_free_entry(entry);
908         }
909         /* Free the final indirection page */
910         if (ind & IND_INDIRECTION)
911                 kimage_free_entry(ind);
912
913         /* Handle any machine specific cleanup */
914         machine_kexec_cleanup(image);
915
916         /* Free the kexec control pages... */
917         kimage_free_page_list(&image->control_pages);
918
919         /*
920          * Free up any temporary buffers allocated. This might hit if
921          * error occurred much later after buffer allocation.
922          */
923         if (image->file_mode)
924                 kimage_file_post_load_cleanup(image);
925
926         kfree(image);
927 }
928
929 static kimage_entry_t *kimage_dst_used(struct kimage *image,
930                                         unsigned long page)
931 {
932         kimage_entry_t *ptr, entry;
933         unsigned long destination = 0;
934
935         for_each_kimage_entry(image, ptr, entry) {
936                 if (entry & IND_DESTINATION)
937                         destination = entry & PAGE_MASK;
938                 else if (entry & IND_SOURCE) {
939                         if (page == destination)
940                                 return ptr;
941                         destination += PAGE_SIZE;
942                 }
943         }
944
945         return NULL;
946 }
947
948 static struct page *kimage_alloc_page(struct kimage *image,
949                                         gfp_t gfp_mask,
950                                         unsigned long destination)
951 {
952         /*
953          * Here we implement safeguards to ensure that a source page
954          * is not copied to its destination page before the data on
955          * the destination page is no longer useful.
956          *
957          * To do this we maintain the invariant that a source page is
958          * either its own destination page, or it is not a
959          * destination page at all.
960          *
961          * That is slightly stronger than required, but the proof
962          * that no problems will not occur is trivial, and the
963          * implementation is simply to verify.
964          *
965          * When allocating all pages normally this algorithm will run
966          * in O(N) time, but in the worst case it will run in O(N^2)
967          * time.   If the runtime is a problem the data structures can
968          * be fixed.
969          */
970         struct page *page;
971         unsigned long addr;
972
973         /*
974          * Walk through the list of destination pages, and see if I
975          * have a match.
976          */
977         list_for_each_entry(page, &image->dest_pages, lru) {
978                 addr = page_to_pfn(page) << PAGE_SHIFT;
979                 if (addr == destination) {
980                         list_del(&page->lru);
981                         return page;
982                 }
983         }
984         page = NULL;
985         while (1) {
986                 kimage_entry_t *old;
987
988                 /* Allocate a page, if we run out of memory give up */
989                 page = kimage_alloc_pages(gfp_mask, 0);
990                 if (!page)
991                         return NULL;
992                 /* If the page cannot be used file it away */
993                 if (page_to_pfn(page) >
994                                 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
995                         list_add(&page->lru, &image->unusable_pages);
996                         continue;
997                 }
998                 addr = page_to_pfn(page) << PAGE_SHIFT;
999
1000                 /* If it is the destination page we want use it */
1001                 if (addr == destination)
1002                         break;
1003
1004                 /* If the page is not a destination page use it */
1005                 if (!kimage_is_destination_range(image, addr,
1006                                                   addr + PAGE_SIZE))
1007                         break;
1008
1009                 /*
1010                  * I know that the page is someones destination page.
1011                  * See if there is already a source page for this
1012                  * destination page.  And if so swap the source pages.
1013                  */
1014                 old = kimage_dst_used(image, addr);
1015                 if (old) {
1016                         /* If so move it */
1017                         unsigned long old_addr;
1018                         struct page *old_page;
1019
1020                         old_addr = *old & PAGE_MASK;
1021                         old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
1022                         copy_highpage(page, old_page);
1023                         *old = addr | (*old & ~PAGE_MASK);
1024
1025                         /* The old page I have found cannot be a
1026                          * destination page, so return it if it's
1027                          * gfp_flags honor the ones passed in.
1028                          */
1029                         if (!(gfp_mask & __GFP_HIGHMEM) &&
1030                             PageHighMem(old_page)) {
1031                                 kimage_free_pages(old_page);
1032                                 continue;
1033                         }
1034                         addr = old_addr;
1035                         page = old_page;
1036                         break;
1037                 } else {
1038                         /* Place the page on the destination list I
1039                          * will use it later.
1040                          */
1041                         list_add(&page->lru, &image->dest_pages);
1042                 }
1043         }
1044
1045         return page;
1046 }
1047
1048 static int kimage_load_normal_segment(struct kimage *image,
1049                                          struct kexec_segment *segment)
1050 {
1051         unsigned long maddr;
1052         size_t ubytes, mbytes;
1053         int result;
1054         unsigned char __user *buf = NULL;
1055         unsigned char *kbuf = NULL;
1056
1057         result = 0;
1058         if (image->file_mode)
1059                 kbuf = segment->kbuf;
1060         else
1061                 buf = segment->buf;
1062         ubytes = segment->bufsz;
1063         mbytes = segment->memsz;
1064         maddr = segment->mem;
1065
1066         result = kimage_set_destination(image, maddr);
1067         if (result < 0)
1068                 goto out;
1069
1070         while (mbytes) {
1071                 struct page *page;
1072                 char *ptr;
1073                 size_t uchunk, mchunk;
1074
1075                 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
1076                 if (!page) {
1077                         result  = -ENOMEM;
1078                         goto out;
1079                 }
1080                 result = kimage_add_page(image, page_to_pfn(page)
1081                                                                 << PAGE_SHIFT);
1082                 if (result < 0)
1083                         goto out;
1084
1085                 ptr = kmap(page);
1086                 /* Start with a clear page */
1087                 clear_page(ptr);
1088                 ptr += maddr & ~PAGE_MASK;
1089                 mchunk = min_t(size_t, mbytes,
1090                                 PAGE_SIZE - (maddr & ~PAGE_MASK));
1091                 uchunk = min(ubytes, mchunk);
1092
1093                 /* For file based kexec, source pages are in kernel memory */
1094                 if (image->file_mode)
1095                         memcpy(ptr, kbuf, uchunk);
1096                 else
1097                         result = copy_from_user(ptr, buf, uchunk);
1098                 kunmap(page);
1099                 if (result) {
1100                         result = -EFAULT;
1101                         goto out;
1102                 }
1103                 ubytes -= uchunk;
1104                 maddr  += mchunk;
1105                 if (image->file_mode)
1106                         kbuf += mchunk;
1107                 else
1108                         buf += mchunk;
1109                 mbytes -= mchunk;
1110         }
1111 out:
1112         return result;
1113 }
1114
1115 static int kimage_load_crash_segment(struct kimage *image,
1116                                         struct kexec_segment *segment)
1117 {
1118         /* For crash dumps kernels we simply copy the data from
1119          * user space to it's destination.
1120          * We do things a page at a time for the sake of kmap.
1121          */
1122         unsigned long maddr;
1123         size_t ubytes, mbytes;
1124         int result;
1125         unsigned char __user *buf = NULL;
1126         unsigned char *kbuf = NULL;
1127
1128         result = 0;
1129         if (image->file_mode)
1130                 kbuf = segment->kbuf;
1131         else
1132                 buf = segment->buf;
1133         ubytes = segment->bufsz;
1134         mbytes = segment->memsz;
1135         maddr = segment->mem;
1136         while (mbytes) {
1137                 struct page *page;
1138                 char *ptr;
1139                 size_t uchunk, mchunk;
1140
1141                 page = pfn_to_page(maddr >> PAGE_SHIFT);
1142                 if (!page) {
1143                         result  = -ENOMEM;
1144                         goto out;
1145                 }
1146                 ptr = kmap(page);
1147                 ptr += maddr & ~PAGE_MASK;
1148                 mchunk = min_t(size_t, mbytes,
1149                                 PAGE_SIZE - (maddr & ~PAGE_MASK));
1150                 uchunk = min(ubytes, mchunk);
1151                 if (mchunk > uchunk) {
1152                         /* Zero the trailing part of the page */
1153                         memset(ptr + uchunk, 0, mchunk - uchunk);
1154                 }
1155
1156                 /* For file based kexec, source pages are in kernel memory */
1157                 if (image->file_mode)
1158                         memcpy(ptr, kbuf, uchunk);
1159                 else
1160                         result = copy_from_user(ptr, buf, uchunk);
1161                 kexec_flush_icache_page(page);
1162                 kunmap(page);
1163                 if (result) {
1164                         result = -EFAULT;
1165                         goto out;
1166                 }
1167                 ubytes -= uchunk;
1168                 maddr  += mchunk;
1169                 if (image->file_mode)
1170                         kbuf += mchunk;
1171                 else
1172                         buf += mchunk;
1173                 mbytes -= mchunk;
1174         }
1175 out:
1176         return result;
1177 }
1178
1179 static int kimage_load_segment(struct kimage *image,
1180                                 struct kexec_segment *segment)
1181 {
1182         int result = -ENOMEM;
1183
1184         switch (image->type) {
1185         case KEXEC_TYPE_DEFAULT:
1186                 result = kimage_load_normal_segment(image, segment);
1187                 break;
1188         case KEXEC_TYPE_CRASH:
1189                 result = kimage_load_crash_segment(image, segment);
1190                 break;
1191         }
1192
1193         return result;
1194 }
1195
1196 /*
1197  * Exec Kernel system call: for obvious reasons only root may call it.
1198  *
1199  * This call breaks up into three pieces.
1200  * - A generic part which loads the new kernel from the current
1201  *   address space, and very carefully places the data in the
1202  *   allocated pages.
1203  *
1204  * - A generic part that interacts with the kernel and tells all of
1205  *   the devices to shut down.  Preventing on-going dmas, and placing
1206  *   the devices in a consistent state so a later kernel can
1207  *   reinitialize them.
1208  *
1209  * - A machine specific part that includes the syscall number
1210  *   and then copies the image to it's final destination.  And
1211  *   jumps into the image at entry.
1212  *
1213  * kexec does not sync, or unmount filesystems so if you need
1214  * that to happen you need to do that yourself.
1215  */
1216 struct kimage *kexec_image;
1217 struct kimage *kexec_crash_image;
1218 int kexec_load_disabled;
1219
1220 static DEFINE_MUTEX(kexec_mutex);
1221
1222 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
1223                 struct kexec_segment __user *, segments, unsigned long, flags)
1224 {
1225         struct kimage **dest_image, *image;
1226         int result;
1227
1228         /* We only trust the superuser with rebooting the system. */
1229         if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
1230                 return -EPERM;
1231
1232         /*
1233          * Verify we have a legal set of flags
1234          * This leaves us room for future extensions.
1235          */
1236         if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
1237                 return -EINVAL;
1238
1239         /* Verify we are on the appropriate architecture */
1240         if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
1241                 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
1242                 return -EINVAL;
1243
1244         /* Put an artificial cap on the number
1245          * of segments passed to kexec_load.
1246          */
1247         if (nr_segments > KEXEC_SEGMENT_MAX)
1248                 return -EINVAL;
1249
1250         image = NULL;
1251         result = 0;
1252
1253         /* Because we write directly to the reserved memory
1254          * region when loading crash kernels we need a mutex here to
1255          * prevent multiple crash  kernels from attempting to load
1256          * simultaneously, and to prevent a crash kernel from loading
1257          * over the top of a in use crash kernel.
1258          *
1259          * KISS: always take the mutex.
1260          */
1261         if (!mutex_trylock(&kexec_mutex))
1262                 return -EBUSY;
1263
1264         dest_image = &kexec_image;
1265         if (flags & KEXEC_ON_CRASH)
1266                 dest_image = &kexec_crash_image;
1267         if (nr_segments > 0) {
1268                 unsigned long i;
1269
1270                 /* Loading another kernel to reboot into */
1271                 if ((flags & KEXEC_ON_CRASH) == 0)
1272                         result = kimage_alloc_init(&image, entry, nr_segments,
1273                                                    segments, flags);
1274                 /* Loading another kernel to switch to if this one crashes */
1275                 else if (flags & KEXEC_ON_CRASH) {
1276                         /* Free any current crash dump kernel before
1277                          * we corrupt it.
1278                          */
1279                         kimage_free(xchg(&kexec_crash_image, NULL));
1280                         result = kimage_alloc_init(&image, entry, nr_segments,
1281                                                    segments, flags);
1282                         crash_map_reserved_pages();
1283                 }
1284                 if (result)
1285                         goto out;
1286
1287                 if (flags & KEXEC_PRESERVE_CONTEXT)
1288                         image->preserve_context = 1;
1289                 result = machine_kexec_prepare(image);
1290                 if (result)
1291                         goto out;
1292
1293                 for (i = 0; i < nr_segments; i++) {
1294                         result = kimage_load_segment(image, &image->segment[i]);
1295                         if (result)
1296                                 goto out;
1297                 }
1298                 kimage_terminate(image);
1299                 if (flags & KEXEC_ON_CRASH)
1300                         crash_unmap_reserved_pages();
1301         }
1302         /* Install the new kernel, and  Uninstall the old */
1303         image = xchg(dest_image, image);
1304
1305 out:
1306         mutex_unlock(&kexec_mutex);
1307         kimage_free(image);
1308
1309         return result;
1310 }
1311
1312 /*
1313  * Add and remove page tables for crashkernel memory
1314  *
1315  * Provide an empty default implementation here -- architecture
1316  * code may override this
1317  */
1318 void __weak crash_map_reserved_pages(void)
1319 {}
1320
1321 void __weak crash_unmap_reserved_pages(void)
1322 {}
1323
1324 #ifdef CONFIG_COMPAT
1325 COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
1326                        compat_ulong_t, nr_segments,
1327                        struct compat_kexec_segment __user *, segments,
1328                        compat_ulong_t, flags)
1329 {
1330         struct compat_kexec_segment in;
1331         struct kexec_segment out, __user *ksegments;
1332         unsigned long i, result;
1333
1334         /* Don't allow clients that don't understand the native
1335          * architecture to do anything.
1336          */
1337         if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1338                 return -EINVAL;
1339
1340         if (nr_segments > KEXEC_SEGMENT_MAX)
1341                 return -EINVAL;
1342
1343         ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1344         for (i = 0; i < nr_segments; i++) {
1345                 result = copy_from_user(&in, &segments[i], sizeof(in));
1346                 if (result)
1347                         return -EFAULT;
1348
1349                 out.buf   = compat_ptr(in.buf);
1350                 out.bufsz = in.bufsz;
1351                 out.mem   = in.mem;
1352                 out.memsz = in.memsz;
1353
1354                 result = copy_to_user(&ksegments[i], &out, sizeof(out));
1355                 if (result)
1356                         return -EFAULT;
1357         }
1358
1359         return sys_kexec_load(entry, nr_segments, ksegments, flags);
1360 }
1361 #endif
1362
1363 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
1364                 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
1365                 unsigned long, flags)
1366 {
1367         int ret = 0, i;
1368         struct kimage **dest_image, *image;
1369
1370         /* We only trust the superuser with rebooting the system. */
1371         if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
1372                 return -EPERM;
1373
1374         /* Make sure we have a legal set of flags */
1375         if (flags != (flags & KEXEC_FILE_FLAGS))
1376                 return -EINVAL;
1377
1378         image = NULL;
1379
1380         if (!mutex_trylock(&kexec_mutex))
1381                 return -EBUSY;
1382
1383         dest_image = &kexec_image;
1384         if (flags & KEXEC_FILE_ON_CRASH)
1385                 dest_image = &kexec_crash_image;
1386
1387         if (flags & KEXEC_FILE_UNLOAD)
1388                 goto exchange;
1389
1390         /*
1391          * In case of crash, new kernel gets loaded in reserved region. It is
1392          * same memory where old crash kernel might be loaded. Free any
1393          * current crash dump kernel before we corrupt it.
1394          */
1395         if (flags & KEXEC_FILE_ON_CRASH)
1396                 kimage_free(xchg(&kexec_crash_image, NULL));
1397
1398         ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
1399                                      cmdline_len, flags);
1400         if (ret)
1401                 goto out;
1402
1403         ret = machine_kexec_prepare(image);
1404         if (ret)
1405                 goto out;
1406
1407         ret = kexec_calculate_store_digests(image);
1408         if (ret)
1409                 goto out;
1410
1411         for (i = 0; i < image->nr_segments; i++) {
1412                 struct kexec_segment *ksegment;
1413
1414                 ksegment = &image->segment[i];
1415                 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
1416                          i, ksegment->buf, ksegment->bufsz, ksegment->mem,
1417                          ksegment->memsz);
1418
1419                 ret = kimage_load_segment(image, &image->segment[i]);
1420                 if (ret)
1421                         goto out;
1422         }
1423
1424         kimage_terminate(image);
1425
1426         /*
1427          * Free up any temporary buffers allocated which are not needed
1428          * after image has been loaded
1429          */
1430         kimage_file_post_load_cleanup(image);
1431 exchange:
1432         image = xchg(dest_image, image);
1433 out:
1434         mutex_unlock(&kexec_mutex);
1435         kimage_free(image);
1436         return ret;
1437 }
1438
1439 void crash_kexec(struct pt_regs *regs)
1440 {
1441         /* Take the kexec_mutex here to prevent sys_kexec_load
1442          * running on one cpu from replacing the crash kernel
1443          * we are using after a panic on a different cpu.
1444          *
1445          * If the crash kernel was not located in a fixed area
1446          * of memory the xchg(&kexec_crash_image) would be
1447          * sufficient.  But since I reuse the memory...
1448          */
1449         if (mutex_trylock(&kexec_mutex)) {
1450                 if (kexec_crash_image) {
1451                         struct pt_regs fixed_regs;
1452
1453                         crash_setup_regs(&fixed_regs, regs);
1454                         crash_save_vmcoreinfo();
1455                         machine_crash_shutdown(&fixed_regs);
1456                         machine_kexec(kexec_crash_image);
1457                 }
1458                 mutex_unlock(&kexec_mutex);
1459         }
1460 }
1461
1462 size_t crash_get_memory_size(void)
1463 {
1464         size_t size = 0;
1465         mutex_lock(&kexec_mutex);
1466         if (crashk_res.end != crashk_res.start)
1467                 size = resource_size(&crashk_res);
1468         mutex_unlock(&kexec_mutex);
1469         return size;
1470 }
1471
1472 void __weak crash_free_reserved_phys_range(unsigned long begin,
1473                                            unsigned long end)
1474 {
1475         unsigned long addr;
1476
1477         for (addr = begin; addr < end; addr += PAGE_SIZE)
1478                 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
1479 }
1480
1481 int crash_shrink_memory(unsigned long new_size)
1482 {
1483         int ret = 0;
1484         unsigned long start, end;
1485         unsigned long old_size;
1486         struct resource *ram_res;
1487
1488         mutex_lock(&kexec_mutex);
1489
1490         if (kexec_crash_image) {
1491                 ret = -ENOENT;
1492                 goto unlock;
1493         }
1494         start = crashk_res.start;
1495         end = crashk_res.end;
1496         old_size = (end == 0) ? 0 : end - start + 1;
1497         if (new_size >= old_size) {
1498                 ret = (new_size == old_size) ? 0 : -EINVAL;
1499                 goto unlock;
1500         }
1501
1502         ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1503         if (!ram_res) {
1504                 ret = -ENOMEM;
1505                 goto unlock;
1506         }
1507
1508         start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1509         end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1510
1511         crash_map_reserved_pages();
1512         crash_free_reserved_phys_range(end, crashk_res.end);
1513
1514         if ((start == end) && (crashk_res.parent != NULL))
1515                 release_resource(&crashk_res);
1516
1517         ram_res->start = end;
1518         ram_res->end = crashk_res.end;
1519         ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1520         ram_res->name = "System RAM";
1521
1522         crashk_res.end = end - 1;
1523
1524         insert_resource(&iomem_resource, ram_res);
1525         crash_unmap_reserved_pages();
1526
1527 unlock:
1528         mutex_unlock(&kexec_mutex);
1529         return ret;
1530 }
1531
1532 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1533                             size_t data_len)
1534 {
1535         struct elf_note note;
1536
1537         note.n_namesz = strlen(name) + 1;
1538         note.n_descsz = data_len;
1539         note.n_type   = type;
1540         memcpy(buf, &note, sizeof(note));
1541         buf += (sizeof(note) + 3)/4;
1542         memcpy(buf, name, note.n_namesz);
1543         buf += (note.n_namesz + 3)/4;
1544         memcpy(buf, data, note.n_descsz);
1545         buf += (note.n_descsz + 3)/4;
1546
1547         return buf;
1548 }
1549
1550 static void final_note(u32 *buf)
1551 {
1552         struct elf_note note;
1553
1554         note.n_namesz = 0;
1555         note.n_descsz = 0;
1556         note.n_type   = 0;
1557         memcpy(buf, &note, sizeof(note));
1558 }
1559
1560 void crash_save_cpu(struct pt_regs *regs, int cpu)
1561 {
1562         struct elf_prstatus prstatus;
1563         u32 *buf;
1564
1565         if ((cpu < 0) || (cpu >= nr_cpu_ids))
1566                 return;
1567
1568         /* Using ELF notes here is opportunistic.
1569          * I need a well defined structure format
1570          * for the data I pass, and I need tags
1571          * on the data to indicate what information I have
1572          * squirrelled away.  ELF notes happen to provide
1573          * all of that, so there is no need to invent something new.
1574          */
1575         buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1576         if (!buf)
1577                 return;
1578         memset(&prstatus, 0, sizeof(prstatus));
1579         prstatus.pr_pid = current->pid;
1580         elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1581         buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1582                               &prstatus, sizeof(prstatus));
1583         final_note(buf);
1584 }
1585
1586 static int __init crash_notes_memory_init(void)
1587 {
1588         /* Allocate memory for saving cpu registers. */
1589         crash_notes = alloc_percpu(note_buf_t);
1590         if (!crash_notes) {
1591                 pr_warn("Kexec: Memory allocation for saving cpu register states failed\n");
1592                 return -ENOMEM;
1593         }
1594         return 0;
1595 }
1596 subsys_initcall(crash_notes_memory_init);
1597
1598
1599 /*
1600  * parsing the "crashkernel" commandline
1601  *
1602  * this code is intended to be called from architecture specific code
1603  */
1604
1605
1606 /*
1607  * This function parses command lines in the format
1608  *
1609  *   crashkernel=ramsize-range:size[,...][@offset]
1610  *
1611  * The function returns 0 on success and -EINVAL on failure.
1612  */
1613 static int __init parse_crashkernel_mem(char *cmdline,
1614                                         unsigned long long system_ram,
1615                                         unsigned long long *crash_size,
1616                                         unsigned long long *crash_base)
1617 {
1618         char *cur = cmdline, *tmp;
1619
1620         /* for each entry of the comma-separated list */
1621         do {
1622                 unsigned long long start, end = ULLONG_MAX, size;
1623
1624                 /* get the start of the range */
1625                 start = memparse(cur, &tmp);
1626                 if (cur == tmp) {
1627                         pr_warn("crashkernel: Memory value expected\n");
1628                         return -EINVAL;
1629                 }
1630                 cur = tmp;
1631                 if (*cur != '-') {
1632                         pr_warn("crashkernel: '-' expected\n");
1633                         return -EINVAL;
1634                 }
1635                 cur++;
1636
1637                 /* if no ':' is here, than we read the end */
1638                 if (*cur != ':') {
1639                         end = memparse(cur, &tmp);
1640                         if (cur == tmp) {
1641                                 pr_warn("crashkernel: Memory value expected\n");
1642                                 return -EINVAL;
1643                         }
1644                         cur = tmp;
1645                         if (end <= start) {
1646                                 pr_warn("crashkernel: end <= start\n");
1647                                 return -EINVAL;
1648                         }
1649                 }
1650
1651                 if (*cur != ':') {
1652                         pr_warn("crashkernel: ':' expected\n");
1653                         return -EINVAL;
1654                 }
1655                 cur++;
1656
1657                 size = memparse(cur, &tmp);
1658                 if (cur == tmp) {
1659                         pr_warn("Memory value expected\n");
1660                         return -EINVAL;
1661                 }
1662                 cur = tmp;
1663                 if (size >= system_ram) {
1664                         pr_warn("crashkernel: invalid size\n");
1665                         return -EINVAL;
1666                 }
1667
1668                 /* match ? */
1669                 if (system_ram >= start && system_ram < end) {
1670                         *crash_size = size;
1671                         break;
1672                 }
1673         } while (*cur++ == ',');
1674
1675         if (*crash_size > 0) {
1676                 while (*cur && *cur != ' ' && *cur != '@')
1677                         cur++;
1678                 if (*cur == '@') {
1679                         cur++;
1680                         *crash_base = memparse(cur, &tmp);
1681                         if (cur == tmp) {
1682                                 pr_warn("Memory value expected after '@'\n");
1683                                 return -EINVAL;
1684                         }
1685                 }
1686         }
1687
1688         return 0;
1689 }
1690
1691 /*
1692  * That function parses "simple" (old) crashkernel command lines like
1693  *
1694  *      crashkernel=size[@offset]
1695  *
1696  * It returns 0 on success and -EINVAL on failure.
1697  */
1698 static int __init parse_crashkernel_simple(char *cmdline,
1699                                            unsigned long long *crash_size,
1700                                            unsigned long long *crash_base)
1701 {
1702         char *cur = cmdline;
1703
1704         *crash_size = memparse(cmdline, &cur);
1705         if (cmdline == cur) {
1706                 pr_warn("crashkernel: memory value expected\n");
1707                 return -EINVAL;
1708         }
1709
1710         if (*cur == '@')
1711                 *crash_base = memparse(cur+1, &cur);
1712         else if (*cur != ' ' && *cur != '\0') {
1713                 pr_warn("crashkernel: unrecognized char\n");
1714                 return -EINVAL;
1715         }
1716
1717         return 0;
1718 }
1719
1720 #define SUFFIX_HIGH 0
1721 #define SUFFIX_LOW  1
1722 #define SUFFIX_NULL 2
1723 static __initdata char *suffix_tbl[] = {
1724         [SUFFIX_HIGH] = ",high",
1725         [SUFFIX_LOW]  = ",low",
1726         [SUFFIX_NULL] = NULL,
1727 };
1728
1729 /*
1730  * That function parses "suffix"  crashkernel command lines like
1731  *
1732  *      crashkernel=size,[high|low]
1733  *
1734  * It returns 0 on success and -EINVAL on failure.
1735  */
1736 static int __init parse_crashkernel_suffix(char *cmdline,
1737                                            unsigned long long   *crash_size,
1738                                            unsigned long long   *crash_base,
1739                                            const char *suffix)
1740 {
1741         char *cur = cmdline;
1742
1743         *crash_size = memparse(cmdline, &cur);
1744         if (cmdline == cur) {
1745                 pr_warn("crashkernel: memory value expected\n");
1746                 return -EINVAL;
1747         }
1748
1749         /* check with suffix */
1750         if (strncmp(cur, suffix, strlen(suffix))) {
1751                 pr_warn("crashkernel: unrecognized char\n");
1752                 return -EINVAL;
1753         }
1754         cur += strlen(suffix);
1755         if (*cur != ' ' && *cur != '\0') {
1756                 pr_warn("crashkernel: unrecognized char\n");
1757                 return -EINVAL;
1758         }
1759
1760         return 0;
1761 }
1762
1763 static __init char *get_last_crashkernel(char *cmdline,
1764                              const char *name,
1765                              const char *suffix)
1766 {
1767         char *p = cmdline, *ck_cmdline = NULL;
1768
1769         /* find crashkernel and use the last one if there are more */
1770         p = strstr(p, name);
1771         while (p) {
1772                 char *end_p = strchr(p, ' ');
1773                 char *q;
1774
1775                 if (!end_p)
1776                         end_p = p + strlen(p);
1777
1778                 if (!suffix) {
1779                         int i;
1780
1781                         /* skip the one with any known suffix */
1782                         for (i = 0; suffix_tbl[i]; i++) {
1783                                 q = end_p - strlen(suffix_tbl[i]);
1784                                 if (!strncmp(q, suffix_tbl[i],
1785                                              strlen(suffix_tbl[i])))
1786                                         goto next;
1787                         }
1788                         ck_cmdline = p;
1789                 } else {
1790                         q = end_p - strlen(suffix);
1791                         if (!strncmp(q, suffix, strlen(suffix)))
1792                                 ck_cmdline = p;
1793                 }
1794 next:
1795                 p = strstr(p+1, name);
1796         }
1797
1798         if (!ck_cmdline)
1799                 return NULL;
1800
1801         return ck_cmdline;
1802 }
1803
1804 static int __init __parse_crashkernel(char *cmdline,
1805                              unsigned long long system_ram,
1806                              unsigned long long *crash_size,
1807                              unsigned long long *crash_base,
1808                              const char *name,
1809                              const char *suffix)
1810 {
1811         char    *first_colon, *first_space;
1812         char    *ck_cmdline;
1813
1814         BUG_ON(!crash_size || !crash_base);
1815         *crash_size = 0;
1816         *crash_base = 0;
1817
1818         ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
1819
1820         if (!ck_cmdline)
1821                 return -EINVAL;
1822
1823         ck_cmdline += strlen(name);
1824
1825         if (suffix)
1826                 return parse_crashkernel_suffix(ck_cmdline, crash_size,
1827                                 crash_base, suffix);
1828         /*
1829          * if the commandline contains a ':', then that's the extended
1830          * syntax -- if not, it must be the classic syntax
1831          */
1832         first_colon = strchr(ck_cmdline, ':');
1833         first_space = strchr(ck_cmdline, ' ');
1834         if (first_colon && (!first_space || first_colon < first_space))
1835                 return parse_crashkernel_mem(ck_cmdline, system_ram,
1836                                 crash_size, crash_base);
1837
1838         return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
1839 }
1840
1841 /*
1842  * That function is the entry point for command line parsing and should be
1843  * called from the arch-specific code.
1844  */
1845 int __init parse_crashkernel(char *cmdline,
1846                              unsigned long long system_ram,
1847                              unsigned long long *crash_size,
1848                              unsigned long long *crash_base)
1849 {
1850         return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1851                                         "crashkernel=", NULL);
1852 }
1853
1854 int __init parse_crashkernel_high(char *cmdline,
1855                              unsigned long long system_ram,
1856                              unsigned long long *crash_size,
1857                              unsigned long long *crash_base)
1858 {
1859         return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1860                                 "crashkernel=", suffix_tbl[SUFFIX_HIGH]);
1861 }
1862
1863 int __init parse_crashkernel_low(char *cmdline,
1864                              unsigned long long system_ram,
1865                              unsigned long long *crash_size,
1866                              unsigned long long *crash_base)
1867 {
1868         return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1869                                 "crashkernel=", suffix_tbl[SUFFIX_LOW]);
1870 }
1871
1872 static void update_vmcoreinfo_note(void)
1873 {
1874         u32 *buf = vmcoreinfo_note;
1875
1876         if (!vmcoreinfo_size)
1877                 return;
1878         buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1879                               vmcoreinfo_size);
1880         final_note(buf);
1881 }
1882
1883 void crash_save_vmcoreinfo(void)
1884 {
1885         vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1886         update_vmcoreinfo_note();
1887 }
1888
1889 void vmcoreinfo_append_str(const char *fmt, ...)
1890 {
1891         va_list args;
1892         char buf[0x50];
1893         size_t r;
1894
1895         va_start(args, fmt);
1896         r = vscnprintf(buf, sizeof(buf), fmt, args);
1897         va_end(args);
1898
1899         r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
1900
1901         memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1902
1903         vmcoreinfo_size += r;
1904 }
1905
1906 /*
1907  * provide an empty default implementation here -- architecture
1908  * code may override this
1909  */
1910 void __weak arch_crash_save_vmcoreinfo(void)
1911 {}
1912
1913 unsigned long __weak paddr_vmcoreinfo_note(void)
1914 {
1915         return __pa((unsigned long)(char *)&vmcoreinfo_note);
1916 }
1917
1918 static int __init crash_save_vmcoreinfo_init(void)
1919 {
1920         VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1921         VMCOREINFO_PAGESIZE(PAGE_SIZE);
1922
1923         VMCOREINFO_SYMBOL(init_uts_ns);
1924         VMCOREINFO_SYMBOL(node_online_map);
1925 #ifdef CONFIG_MMU
1926         VMCOREINFO_SYMBOL(swapper_pg_dir);
1927 #endif
1928         VMCOREINFO_SYMBOL(_stext);
1929         VMCOREINFO_SYMBOL(vmap_area_list);
1930
1931 #ifndef CONFIG_NEED_MULTIPLE_NODES
1932         VMCOREINFO_SYMBOL(mem_map);
1933         VMCOREINFO_SYMBOL(contig_page_data);
1934 #endif
1935 #ifdef CONFIG_SPARSEMEM
1936         VMCOREINFO_SYMBOL(mem_section);
1937         VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1938         VMCOREINFO_STRUCT_SIZE(mem_section);
1939         VMCOREINFO_OFFSET(mem_section, section_mem_map);
1940 #endif
1941         VMCOREINFO_STRUCT_SIZE(page);
1942         VMCOREINFO_STRUCT_SIZE(pglist_data);
1943         VMCOREINFO_STRUCT_SIZE(zone);
1944         VMCOREINFO_STRUCT_SIZE(free_area);
1945         VMCOREINFO_STRUCT_SIZE(list_head);
1946         VMCOREINFO_SIZE(nodemask_t);
1947         VMCOREINFO_OFFSET(page, flags);
1948         VMCOREINFO_OFFSET(page, _count);
1949         VMCOREINFO_OFFSET(page, mapping);
1950         VMCOREINFO_OFFSET(page, lru);
1951         VMCOREINFO_OFFSET(page, _mapcount);
1952         VMCOREINFO_OFFSET(page, private);
1953         VMCOREINFO_OFFSET(pglist_data, node_zones);
1954         VMCOREINFO_OFFSET(pglist_data, nr_zones);
1955 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1956         VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1957 #endif
1958         VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1959         VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1960         VMCOREINFO_OFFSET(pglist_data, node_id);
1961         VMCOREINFO_OFFSET(zone, free_area);
1962         VMCOREINFO_OFFSET(zone, vm_stat);
1963         VMCOREINFO_OFFSET(zone, spanned_pages);
1964         VMCOREINFO_OFFSET(free_area, free_list);
1965         VMCOREINFO_OFFSET(list_head, next);
1966         VMCOREINFO_OFFSET(list_head, prev);
1967         VMCOREINFO_OFFSET(vmap_area, va_start);
1968         VMCOREINFO_OFFSET(vmap_area, list);
1969         VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1970         log_buf_kexec_setup();
1971         VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1972         VMCOREINFO_NUMBER(NR_FREE_PAGES);
1973         VMCOREINFO_NUMBER(PG_lru);
1974         VMCOREINFO_NUMBER(PG_private);
1975         VMCOREINFO_NUMBER(PG_swapcache);
1976         VMCOREINFO_NUMBER(PG_slab);
1977 #ifdef CONFIG_MEMORY_FAILURE
1978         VMCOREINFO_NUMBER(PG_hwpoison);
1979 #endif
1980         VMCOREINFO_NUMBER(PG_head_mask);
1981         VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
1982 #ifdef CONFIG_HUGETLBFS
1983         VMCOREINFO_SYMBOL(free_huge_page);
1984 #endif
1985
1986         arch_crash_save_vmcoreinfo();
1987         update_vmcoreinfo_note();
1988
1989         return 0;
1990 }
1991
1992 subsys_initcall(crash_save_vmcoreinfo_init);
1993
1994 static int __kexec_add_segment(struct kimage *image, char *buf,
1995                                unsigned long bufsz, unsigned long mem,
1996                                unsigned long memsz)
1997 {
1998         struct kexec_segment *ksegment;
1999
2000         ksegment = &image->segment[image->nr_segments];
2001         ksegment->kbuf = buf;
2002         ksegment->bufsz = bufsz;
2003         ksegment->mem = mem;
2004         ksegment->memsz = memsz;
2005         image->nr_segments++;
2006
2007         return 0;
2008 }
2009
2010 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
2011                                     struct kexec_buf *kbuf)
2012 {
2013         struct kimage *image = kbuf->image;
2014         unsigned long temp_start, temp_end;
2015
2016         temp_end = min(end, kbuf->buf_max);
2017         temp_start = temp_end - kbuf->memsz;
2018
2019         do {
2020                 /* align down start */
2021                 temp_start = temp_start & (~(kbuf->buf_align - 1));
2022
2023                 if (temp_start < start || temp_start < kbuf->buf_min)
2024                         return 0;
2025
2026                 temp_end = temp_start + kbuf->memsz - 1;
2027
2028                 /*
2029                  * Make sure this does not conflict with any of existing
2030                  * segments
2031                  */
2032                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
2033                         temp_start = temp_start - PAGE_SIZE;
2034                         continue;
2035                 }
2036
2037                 /* We found a suitable memory range */
2038                 break;
2039         } while (1);
2040
2041         /* If we are here, we found a suitable memory range */
2042         __kexec_add_segment(image, kbuf->buffer, kbuf->bufsz, temp_start,
2043                             kbuf->memsz);
2044
2045         /* Success, stop navigating through remaining System RAM ranges */
2046         return 1;
2047 }
2048
2049 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
2050                                      struct kexec_buf *kbuf)
2051 {
2052         struct kimage *image = kbuf->image;
2053         unsigned long temp_start, temp_end;
2054
2055         temp_start = max(start, kbuf->buf_min);
2056
2057         do {
2058                 temp_start = ALIGN(temp_start, kbuf->buf_align);
2059                 temp_end = temp_start + kbuf->memsz - 1;
2060
2061                 if (temp_end > end || temp_end > kbuf->buf_max)
2062                         return 0;
2063                 /*
2064                  * Make sure this does not conflict with any of existing
2065                  * segments
2066                  */
2067                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
2068                         temp_start = temp_start + PAGE_SIZE;
2069                         continue;
2070                 }
2071
2072                 /* We found a suitable memory range */
2073                 break;
2074         } while (1);
2075
2076         /* If we are here, we found a suitable memory range */
2077         __kexec_add_segment(image, kbuf->buffer, kbuf->bufsz, temp_start,
2078                             kbuf->memsz);
2079
2080         /* Success, stop navigating through remaining System RAM ranges */
2081         return 1;
2082 }
2083
2084 static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
2085 {
2086         struct kexec_buf *kbuf = (struct kexec_buf *)arg;
2087         unsigned long sz = end - start + 1;
2088
2089         /* Returning 0 will take to next memory range */
2090         if (sz < kbuf->memsz)
2091                 return 0;
2092
2093         if (end < kbuf->buf_min || start > kbuf->buf_max)
2094                 return 0;
2095
2096         /*
2097          * Allocate memory top down with-in ram range. Otherwise bottom up
2098          * allocation.
2099          */
2100         if (kbuf->top_down)
2101                 return locate_mem_hole_top_down(start, end, kbuf);
2102         return locate_mem_hole_bottom_up(start, end, kbuf);
2103 }
2104
2105 /*
2106  * Helper function for placing a buffer in a kexec segment. This assumes
2107  * that kexec_mutex is held.
2108  */
2109 int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
2110                      unsigned long memsz, unsigned long buf_align,
2111                      unsigned long buf_min, unsigned long buf_max,
2112                      bool top_down, unsigned long *load_addr)
2113 {
2114
2115         struct kexec_segment *ksegment;
2116         struct kexec_buf buf, *kbuf;
2117         int ret;
2118
2119         /* Currently adding segment this way is allowed only in file mode */
2120         if (!image->file_mode)
2121                 return -EINVAL;
2122
2123         if (image->nr_segments >= KEXEC_SEGMENT_MAX)
2124                 return -EINVAL;
2125
2126         /*
2127          * Make sure we are not trying to add buffer after allocating
2128          * control pages. All segments need to be placed first before
2129          * any control pages are allocated. As control page allocation
2130          * logic goes through list of segments to make sure there are
2131          * no destination overlaps.
2132          */
2133         if (!list_empty(&image->control_pages)) {
2134                 WARN_ON(1);
2135                 return -EINVAL;
2136         }
2137
2138         memset(&buf, 0, sizeof(struct kexec_buf));
2139         kbuf = &buf;
2140         kbuf->image = image;
2141         kbuf->buffer = buffer;
2142         kbuf->bufsz = bufsz;
2143
2144         kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
2145         kbuf->buf_align = max(buf_align, PAGE_SIZE);
2146         kbuf->buf_min = buf_min;
2147         kbuf->buf_max = buf_max;
2148         kbuf->top_down = top_down;
2149
2150         /* Walk the RAM ranges and allocate a suitable range for the buffer */
2151         if (image->type == KEXEC_TYPE_CRASH)
2152                 ret = walk_iomem_res("Crash kernel",
2153                                      IORESOURCE_MEM | IORESOURCE_BUSY,
2154                                      crashk_res.start, crashk_res.end, kbuf,
2155                                      locate_mem_hole_callback);
2156         else
2157                 ret = walk_system_ram_res(0, -1, kbuf,
2158                                           locate_mem_hole_callback);
2159         if (ret != 1) {
2160                 /* A suitable memory range could not be found for buffer */
2161                 return -EADDRNOTAVAIL;
2162         }
2163
2164         /* Found a suitable memory range */
2165         ksegment = &image->segment[image->nr_segments - 1];
2166         *load_addr = ksegment->mem;
2167         return 0;
2168 }
2169
2170 /* Calculate and store the digest of segments */
2171 static int kexec_calculate_store_digests(struct kimage *image)
2172 {
2173         struct crypto_shash *tfm;
2174         struct shash_desc *desc;
2175         int ret = 0, i, j, zero_buf_sz, sha_region_sz;
2176         size_t desc_size, nullsz;
2177         char *digest;
2178         void *zero_buf;
2179         struct kexec_sha_region *sha_regions;
2180         struct purgatory_info *pi = &image->purgatory_info;
2181
2182         zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
2183         zero_buf_sz = PAGE_SIZE;
2184
2185         tfm = crypto_alloc_shash("sha256", 0, 0);
2186         if (IS_ERR(tfm)) {
2187                 ret = PTR_ERR(tfm);
2188                 goto out;
2189         }
2190
2191         desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
2192         desc = kzalloc(desc_size, GFP_KERNEL);
2193         if (!desc) {
2194                 ret = -ENOMEM;
2195                 goto out_free_tfm;
2196         }
2197
2198         sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
2199         sha_regions = vzalloc(sha_region_sz);
2200         if (!sha_regions)
2201                 goto out_free_desc;
2202
2203         desc->tfm   = tfm;
2204         desc->flags = 0;
2205
2206         ret = crypto_shash_init(desc);
2207         if (ret < 0)
2208                 goto out_free_sha_regions;
2209
2210         digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
2211         if (!digest) {
2212                 ret = -ENOMEM;
2213                 goto out_free_sha_regions;
2214         }
2215
2216         for (j = i = 0; i < image->nr_segments; i++) {
2217                 struct kexec_segment *ksegment;
2218
2219                 ksegment = &image->segment[i];
2220                 /*
2221                  * Skip purgatory as it will be modified once we put digest
2222                  * info in purgatory.
2223                  */
2224                 if (ksegment->kbuf == pi->purgatory_buf)
2225                         continue;
2226
2227                 ret = crypto_shash_update(desc, ksegment->kbuf,
2228                                           ksegment->bufsz);
2229                 if (ret)
2230                         break;
2231
2232                 /*
2233                  * Assume rest of the buffer is filled with zero and
2234                  * update digest accordingly.
2235                  */
2236                 nullsz = ksegment->memsz - ksegment->bufsz;
2237                 while (nullsz) {
2238                         unsigned long bytes = nullsz;
2239
2240                         if (bytes > zero_buf_sz)
2241                                 bytes = zero_buf_sz;
2242                         ret = crypto_shash_update(desc, zero_buf, bytes);
2243                         if (ret)
2244                                 break;
2245                         nullsz -= bytes;
2246                 }
2247
2248                 if (ret)
2249                         break;
2250
2251                 sha_regions[j].start = ksegment->mem;
2252                 sha_regions[j].len = ksegment->memsz;
2253                 j++;
2254         }
2255
2256         if (!ret) {
2257                 ret = crypto_shash_final(desc, digest);
2258                 if (ret)
2259                         goto out_free_digest;
2260                 ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
2261                                                 sha_regions, sha_region_sz, 0);
2262                 if (ret)
2263                         goto out_free_digest;
2264
2265                 ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
2266                                                 digest, SHA256_DIGEST_SIZE, 0);
2267                 if (ret)
2268                         goto out_free_digest;
2269         }
2270
2271 out_free_digest:
2272         kfree(digest);
2273 out_free_sha_regions:
2274         vfree(sha_regions);
2275 out_free_desc:
2276         kfree(desc);
2277 out_free_tfm:
2278         kfree(tfm);
2279 out:
2280         return ret;
2281 }
2282
2283 /* Actually load purgatory. Lot of code taken from kexec-tools */
2284 static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
2285                                   unsigned long max, int top_down)
2286 {
2287         struct purgatory_info *pi = &image->purgatory_info;
2288         unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
2289         unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
2290         unsigned char *buf_addr, *src;
2291         int i, ret = 0, entry_sidx = -1;
2292         const Elf_Shdr *sechdrs_c;
2293         Elf_Shdr *sechdrs = NULL;
2294         void *purgatory_buf = NULL;
2295
2296         /*
2297          * sechdrs_c points to section headers in purgatory and are read
2298          * only. No modifications allowed.
2299          */
2300         sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
2301
2302         /*
2303          * We can not modify sechdrs_c[] and its fields. It is read only.
2304          * Copy it over to a local copy where one can store some temporary
2305          * data and free it at the end. We need to modify ->sh_addr and
2306          * ->sh_offset fields to keep track of permanent and temporary
2307          * locations of sections.
2308          */
2309         sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
2310         if (!sechdrs)
2311                 return -ENOMEM;
2312
2313         memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
2314
2315         /*
2316          * We seem to have multiple copies of sections. First copy is which
2317          * is embedded in kernel in read only section. Some of these sections
2318          * will be copied to a temporary buffer and relocated. And these
2319          * sections will finally be copied to their final destination at
2320          * segment load time.
2321          *
2322          * Use ->sh_offset to reflect section address in memory. It will
2323          * point to original read only copy if section is not allocatable.
2324          * Otherwise it will point to temporary copy which will be relocated.
2325          *
2326          * Use ->sh_addr to contain final address of the section where it
2327          * will go during execution time.
2328          */
2329         for (i = 0; i < pi->ehdr->e_shnum; i++) {
2330                 if (sechdrs[i].sh_type == SHT_NOBITS)
2331                         continue;
2332
2333                 sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
2334                                                 sechdrs[i].sh_offset;
2335         }
2336
2337         /*
2338          * Identify entry point section and make entry relative to section
2339          * start.
2340          */
2341         entry = pi->ehdr->e_entry;
2342         for (i = 0; i < pi->ehdr->e_shnum; i++) {
2343                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2344                         continue;
2345
2346                 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
2347                         continue;
2348
2349                 /* Make entry section relative */
2350                 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
2351                     ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
2352                      pi->ehdr->e_entry)) {
2353                         entry_sidx = i;
2354                         entry -= sechdrs[i].sh_addr;
2355                         break;
2356                 }
2357         }
2358
2359         /* Determine how much memory is needed to load relocatable object. */
2360         buf_align = 1;
2361         bss_align = 1;
2362         buf_sz = 0;
2363         bss_sz = 0;
2364
2365         for (i = 0; i < pi->ehdr->e_shnum; i++) {
2366                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2367                         continue;
2368
2369                 align = sechdrs[i].sh_addralign;
2370                 if (sechdrs[i].sh_type != SHT_NOBITS) {
2371                         if (buf_align < align)
2372                                 buf_align = align;
2373                         buf_sz = ALIGN(buf_sz, align);
2374                         buf_sz += sechdrs[i].sh_size;
2375                 } else {
2376                         /* bss section */
2377                         if (bss_align < align)
2378                                 bss_align = align;
2379                         bss_sz = ALIGN(bss_sz, align);
2380                         bss_sz += sechdrs[i].sh_size;
2381                 }
2382         }
2383
2384         /* Determine the bss padding required to align bss properly */
2385         bss_pad = 0;
2386         if (buf_sz & (bss_align - 1))
2387                 bss_pad = bss_align - (buf_sz & (bss_align - 1));
2388
2389         memsz = buf_sz + bss_pad + bss_sz;
2390
2391         /* Allocate buffer for purgatory */
2392         purgatory_buf = vzalloc(buf_sz);
2393         if (!purgatory_buf) {
2394                 ret = -ENOMEM;
2395                 goto out;
2396         }
2397
2398         if (buf_align < bss_align)
2399                 buf_align = bss_align;
2400
2401         /* Add buffer to segment list */
2402         ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
2403                                 buf_align, min, max, top_down,
2404                                 &pi->purgatory_load_addr);
2405         if (ret)
2406                 goto out;
2407
2408         /* Load SHF_ALLOC sections */
2409         buf_addr = purgatory_buf;
2410         load_addr = curr_load_addr = pi->purgatory_load_addr;
2411         bss_addr = load_addr + buf_sz + bss_pad;
2412
2413         for (i = 0; i < pi->ehdr->e_shnum; i++) {
2414                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
2415                         continue;
2416
2417                 align = sechdrs[i].sh_addralign;
2418                 if (sechdrs[i].sh_type != SHT_NOBITS) {
2419                         curr_load_addr = ALIGN(curr_load_addr, align);
2420                         offset = curr_load_addr - load_addr;
2421                         /* We already modifed ->sh_offset to keep src addr */
2422                         src = (char *) sechdrs[i].sh_offset;
2423                         memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
2424
2425                         /* Store load address and source address of section */
2426                         sechdrs[i].sh_addr = curr_load_addr;
2427
2428                         /*
2429                          * This section got copied to temporary buffer. Update
2430                          * ->sh_offset accordingly.
2431                          */
2432                         sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
2433
2434                         /* Advance to the next address */
2435                         curr_load_addr += sechdrs[i].sh_size;
2436                 } else {
2437                         bss_addr = ALIGN(bss_addr, align);
2438                         sechdrs[i].sh_addr = bss_addr;
2439                         bss_addr += sechdrs[i].sh_size;
2440                 }
2441         }
2442
2443         /* Update entry point based on load address of text section */
2444         if (entry_sidx >= 0)
2445                 entry += sechdrs[entry_sidx].sh_addr;
2446
2447         /* Make kernel jump to purgatory after shutdown */
2448         image->start = entry;
2449
2450         /* Used later to get/set symbol values */
2451         pi->sechdrs = sechdrs;
2452
2453         /*
2454          * Used later to identify which section is purgatory and skip it
2455          * from checksumming.
2456          */
2457         pi->purgatory_buf = purgatory_buf;
2458         return ret;
2459 out:
2460         vfree(sechdrs);
2461         vfree(purgatory_buf);
2462         return ret;
2463 }
2464
2465 static int kexec_apply_relocations(struct kimage *image)
2466 {
2467         int i, ret;
2468         struct purgatory_info *pi = &image->purgatory_info;
2469         Elf_Shdr *sechdrs = pi->sechdrs;
2470
2471         /* Apply relocations */
2472         for (i = 0; i < pi->ehdr->e_shnum; i++) {
2473                 Elf_Shdr *section, *symtab;
2474
2475                 if (sechdrs[i].sh_type != SHT_RELA &&
2476                     sechdrs[i].sh_type != SHT_REL)
2477                         continue;
2478
2479                 /*
2480                  * For section of type SHT_RELA/SHT_REL,
2481                  * ->sh_link contains section header index of associated
2482                  * symbol table. And ->sh_info contains section header
2483                  * index of section to which relocations apply.
2484                  */
2485                 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
2486                     sechdrs[i].sh_link >= pi->ehdr->e_shnum)
2487                         return -ENOEXEC;
2488
2489                 section = &sechdrs[sechdrs[i].sh_info];
2490                 symtab = &sechdrs[sechdrs[i].sh_link];
2491
2492                 if (!(section->sh_flags & SHF_ALLOC))
2493                         continue;
2494
2495                 /*
2496                  * symtab->sh_link contain section header index of associated
2497                  * string table.
2498                  */
2499                 if (symtab->sh_link >= pi->ehdr->e_shnum)
2500                         /* Invalid section number? */
2501                         continue;
2502
2503                 /*
2504                  * Respective archicture needs to provide support for applying
2505                  * relocations of type SHT_RELA/SHT_REL.
2506                  */
2507                 if (sechdrs[i].sh_type == SHT_RELA)
2508                         ret = arch_kexec_apply_relocations_add(pi->ehdr,
2509                                                                sechdrs, i);
2510                 else if (sechdrs[i].sh_type == SHT_REL)
2511                         ret = arch_kexec_apply_relocations(pi->ehdr,
2512                                                            sechdrs, i);
2513                 if (ret)
2514                         return ret;
2515         }
2516
2517         return 0;
2518 }
2519
2520 /* Load relocatable purgatory object and relocate it appropriately */
2521 int kexec_load_purgatory(struct kimage *image, unsigned long min,
2522                          unsigned long max, int top_down,
2523                          unsigned long *load_addr)
2524 {
2525         struct purgatory_info *pi = &image->purgatory_info;
2526         int ret;
2527
2528         if (kexec_purgatory_size <= 0)
2529                 return -EINVAL;
2530
2531         if (kexec_purgatory_size < sizeof(Elf_Ehdr))
2532                 return -ENOEXEC;
2533
2534         pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
2535
2536         if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
2537             || pi->ehdr->e_type != ET_REL
2538             || !elf_check_arch(pi->ehdr)
2539             || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
2540                 return -ENOEXEC;
2541
2542         if (pi->ehdr->e_shoff >= kexec_purgatory_size
2543             || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
2544             kexec_purgatory_size - pi->ehdr->e_shoff))
2545                 return -ENOEXEC;
2546
2547         ret = __kexec_load_purgatory(image, min, max, top_down);
2548         if (ret)
2549                 return ret;
2550
2551         ret = kexec_apply_relocations(image);
2552         if (ret)
2553                 goto out;
2554
2555         *load_addr = pi->purgatory_load_addr;
2556         return 0;
2557 out:
2558         vfree(pi->sechdrs);
2559         vfree(pi->purgatory_buf);
2560         return ret;
2561 }
2562
2563 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
2564                                             const char *name)
2565 {
2566         Elf_Sym *syms;
2567         Elf_Shdr *sechdrs;
2568         Elf_Ehdr *ehdr;
2569         int i, k;
2570         const char *strtab;
2571
2572         if (!pi->sechdrs || !pi->ehdr)
2573                 return NULL;
2574
2575         sechdrs = pi->sechdrs;
2576         ehdr = pi->ehdr;
2577
2578         for (i = 0; i < ehdr->e_shnum; i++) {
2579                 if (sechdrs[i].sh_type != SHT_SYMTAB)
2580                         continue;
2581
2582                 if (sechdrs[i].sh_link >= ehdr->e_shnum)
2583                         /* Invalid strtab section number */
2584                         continue;
2585                 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
2586                 syms = (Elf_Sym *)sechdrs[i].sh_offset;
2587
2588                 /* Go through symbols for a match */
2589                 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
2590                         if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
2591                                 continue;
2592
2593                         if (strcmp(strtab + syms[k].st_name, name) != 0)
2594                                 continue;
2595
2596                         if (syms[k].st_shndx == SHN_UNDEF ||
2597                             syms[k].st_shndx >= ehdr->e_shnum) {
2598                                 pr_debug("Symbol: %s has bad section index %d.\n",
2599                                                 name, syms[k].st_shndx);
2600                                 return NULL;
2601                         }
2602
2603                         /* Found the symbol we are looking for */
2604                         return &syms[k];
2605                 }
2606         }
2607
2608         return NULL;
2609 }
2610
2611 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
2612 {
2613         struct purgatory_info *pi = &image->purgatory_info;
2614         Elf_Sym *sym;
2615         Elf_Shdr *sechdr;
2616
2617         sym = kexec_purgatory_find_symbol(pi, name);
2618         if (!sym)
2619                 return ERR_PTR(-EINVAL);
2620
2621         sechdr = &pi->sechdrs[sym->st_shndx];
2622
2623         /*
2624          * Returns the address where symbol will finally be loaded after
2625          * kexec_load_segment()
2626          */
2627         return (void *)(sechdr->sh_addr + sym->st_value);
2628 }
2629
2630 /*
2631  * Get or set value of a symbol. If "get_value" is true, symbol value is
2632  * returned in buf otherwise symbol value is set based on value in buf.
2633  */
2634 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
2635                                    void *buf, unsigned int size, bool get_value)
2636 {
2637         Elf_Sym *sym;
2638         Elf_Shdr *sechdrs;
2639         struct purgatory_info *pi = &image->purgatory_info;
2640         char *sym_buf;
2641
2642         sym = kexec_purgatory_find_symbol(pi, name);
2643         if (!sym)
2644                 return -EINVAL;
2645
2646         if (sym->st_size != size) {
2647                 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
2648                        name, (unsigned long)sym->st_size, size);
2649                 return -EINVAL;
2650         }
2651
2652         sechdrs = pi->sechdrs;
2653
2654         if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2655                 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
2656                        get_value ? "get" : "set");
2657                 return -EINVAL;
2658         }
2659
2660         sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
2661                                         sym->st_value;
2662
2663         if (get_value)
2664                 memcpy((void *)buf, sym_buf, size);
2665         else
2666                 memcpy((void *)sym_buf, buf, size);
2667
2668         return 0;
2669 }
2670
2671 /*
2672  * Move into place and start executing a preloaded standalone
2673  * executable.  If nothing was preloaded return an error.
2674  */
2675 int kernel_kexec(void)
2676 {
2677         int error = 0;
2678
2679         if (!mutex_trylock(&kexec_mutex))
2680                 return -EBUSY;
2681         if (!kexec_image) {
2682                 error = -EINVAL;
2683                 goto Unlock;
2684         }
2685
2686 #ifdef CONFIG_KEXEC_JUMP
2687         if (kexec_image->preserve_context) {
2688                 lock_system_sleep();
2689                 pm_prepare_console();
2690                 error = freeze_processes();
2691                 if (error) {
2692                         error = -EBUSY;
2693                         goto Restore_console;
2694                 }
2695                 suspend_console();
2696                 error = dpm_suspend_start(PMSG_FREEZE);
2697                 if (error)
2698                         goto Resume_console;
2699                 /* At this point, dpm_suspend_start() has been called,
2700                  * but *not* dpm_suspend_end(). We *must* call
2701                  * dpm_suspend_end() now.  Otherwise, drivers for
2702                  * some devices (e.g. interrupt controllers) become
2703                  * desynchronized with the actual state of the
2704                  * hardware at resume time, and evil weirdness ensues.
2705                  */
2706                 error = dpm_suspend_end(PMSG_FREEZE);
2707                 if (error)
2708                         goto Resume_devices;
2709                 error = disable_nonboot_cpus();
2710                 if (error)
2711                         goto Enable_cpus;
2712                 local_irq_disable();
2713                 error = syscore_suspend();
2714                 if (error)
2715                         goto Enable_irqs;
2716         } else
2717 #endif
2718         {
2719                 kexec_in_progress = true;
2720                 kernel_restart_prepare(NULL);
2721                 migrate_to_reboot_cpu();
2722
2723                 /*
2724                  * migrate_to_reboot_cpu() disables CPU hotplug assuming that
2725                  * no further code needs to use CPU hotplug (which is true in
2726                  * the reboot case). However, the kexec path depends on using
2727                  * CPU hotplug again; so re-enable it here.
2728                  */
2729                 cpu_hotplug_enable();
2730                 pr_emerg("Starting new kernel\n");
2731                 machine_shutdown();
2732         }
2733
2734         machine_kexec(kexec_image);
2735
2736 #ifdef CONFIG_KEXEC_JUMP
2737         if (kexec_image->preserve_context) {
2738                 syscore_resume();
2739  Enable_irqs:
2740                 local_irq_enable();
2741  Enable_cpus:
2742                 enable_nonboot_cpus();
2743                 dpm_resume_start(PMSG_RESTORE);
2744  Resume_devices:
2745                 dpm_resume_end(PMSG_RESTORE);
2746  Resume_console:
2747                 resume_console();
2748                 thaw_processes();
2749  Restore_console:
2750                 pm_restore_console();
2751                 unlock_system_sleep();
2752         }
2753 #endif
2754
2755  Unlock:
2756         mutex_unlock(&kexec_mutex);
2757         return error;
2758 }