]> asedeno.scripts.mit.edu Git - linux.git/blob - kernel/kprobes.c
63c342e5e6c3481540d7f1e6b271d2e6fffbf1f2
[linux.git] / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *              Probes initial implementation (includes suggestions from
23  *              Rusty Russell).
24  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *              hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *              interface to access function arguments.
28  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *              exceptions notifier to be first on the priority list.
30  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *              <prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
67
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72         raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
74
75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76                                         unsigned int __unused)
77 {
78         return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79 }
80
81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82 {
83         return &(kretprobe_table_locks[hash].lock);
84 }
85
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
88
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90 /*
91  * kprobe->ainsn.insn points to the copy of the instruction to be
92  * single-stepped. x86_64, POWER4 and above have no-exec support and
93  * stepping on the instruction on a vmalloced/kmalloced/data page
94  * is a recipe for disaster
95  */
96 struct kprobe_insn_page {
97         struct list_head list;
98         kprobe_opcode_t *insns;         /* Page of instruction slots */
99         struct kprobe_insn_cache *cache;
100         int nused;
101         int ngarbage;
102         char slot_used[];
103 };
104
105 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
106         (offsetof(struct kprobe_insn_page, slot_used) + \
107          (sizeof(char) * (slots)))
108
109 static int slots_per_page(struct kprobe_insn_cache *c)
110 {
111         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112 }
113
114 enum kprobe_slot_state {
115         SLOT_CLEAN = 0,
116         SLOT_DIRTY = 1,
117         SLOT_USED = 2,
118 };
119
120 void __weak *alloc_insn_page(void)
121 {
122         return module_alloc(PAGE_SIZE);
123 }
124
125 void __weak free_insn_page(void *page)
126 {
127         module_memfree(page);
128 }
129
130 struct kprobe_insn_cache kprobe_insn_slots = {
131         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132         .alloc = alloc_insn_page,
133         .free = free_insn_page,
134         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135         .insn_size = MAX_INSN_SIZE,
136         .nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140 /**
141  * __get_insn_slot() - Find a slot on an executable page for an instruction.
142  * We allocate an executable page if there's no room on existing ones.
143  */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146         struct kprobe_insn_page *kip;
147         kprobe_opcode_t *slot = NULL;
148
149         /* Since the slot array is not protected by rcu, we need a mutex */
150         mutex_lock(&c->mutex);
151  retry:
152         rcu_read_lock();
153         list_for_each_entry_rcu(kip, &c->pages, list) {
154                 if (kip->nused < slots_per_page(c)) {
155                         int i;
156                         for (i = 0; i < slots_per_page(c); i++) {
157                                 if (kip->slot_used[i] == SLOT_CLEAN) {
158                                         kip->slot_used[i] = SLOT_USED;
159                                         kip->nused++;
160                                         slot = kip->insns + (i * c->insn_size);
161                                         rcu_read_unlock();
162                                         goto out;
163                                 }
164                         }
165                         /* kip->nused is broken. Fix it. */
166                         kip->nused = slots_per_page(c);
167                         WARN_ON(1);
168                 }
169         }
170         rcu_read_unlock();
171
172         /* If there are any garbage slots, collect it and try again. */
173         if (c->nr_garbage && collect_garbage_slots(c) == 0)
174                 goto retry;
175
176         /* All out of space.  Need to allocate a new page. */
177         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178         if (!kip)
179                 goto out;
180
181         /*
182          * Use module_alloc so this page is within +/- 2GB of where the
183          * kernel image and loaded module images reside. This is required
184          * so x86_64 can correctly handle the %rip-relative fixups.
185          */
186         kip->insns = c->alloc();
187         if (!kip->insns) {
188                 kfree(kip);
189                 goto out;
190         }
191         INIT_LIST_HEAD(&kip->list);
192         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193         kip->slot_used[0] = SLOT_USED;
194         kip->nused = 1;
195         kip->ngarbage = 0;
196         kip->cache = c;
197         list_add_rcu(&kip->list, &c->pages);
198         slot = kip->insns;
199 out:
200         mutex_unlock(&c->mutex);
201         return slot;
202 }
203
204 /* Return 1 if all garbages are collected, otherwise 0. */
205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207         kip->slot_used[idx] = SLOT_CLEAN;
208         kip->nused--;
209         if (kip->nused == 0) {
210                 /*
211                  * Page is no longer in use.  Free it unless
212                  * it's the last one.  We keep the last one
213                  * so as not to have to set it up again the
214                  * next time somebody inserts a probe.
215                  */
216                 if (!list_is_singular(&kip->list)) {
217                         list_del_rcu(&kip->list);
218                         synchronize_rcu();
219                         kip->cache->free(kip->insns);
220                         kfree(kip);
221                 }
222                 return 1;
223         }
224         return 0;
225 }
226
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229         struct kprobe_insn_page *kip, *next;
230
231         /* Ensure no-one is interrupted on the garbages */
232         synchronize_sched();
233
234         list_for_each_entry_safe(kip, next, &c->pages, list) {
235                 int i;
236                 if (kip->ngarbage == 0)
237                         continue;
238                 kip->ngarbage = 0;      /* we will collect all garbages */
239                 for (i = 0; i < slots_per_page(c); i++) {
240                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241                                 break;
242                 }
243         }
244         c->nr_garbage = 0;
245         return 0;
246 }
247
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249                       kprobe_opcode_t *slot, int dirty)
250 {
251         struct kprobe_insn_page *kip;
252         long idx;
253
254         mutex_lock(&c->mutex);
255         rcu_read_lock();
256         list_for_each_entry_rcu(kip, &c->pages, list) {
257                 idx = ((long)slot - (long)kip->insns) /
258                         (c->insn_size * sizeof(kprobe_opcode_t));
259                 if (idx >= 0 && idx < slots_per_page(c))
260                         goto out;
261         }
262         /* Could not find this slot. */
263         WARN_ON(1);
264         kip = NULL;
265 out:
266         rcu_read_unlock();
267         /* Mark and sweep: this may sleep */
268         if (kip) {
269                 /* Check double free */
270                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271                 if (dirty) {
272                         kip->slot_used[idx] = SLOT_DIRTY;
273                         kip->ngarbage++;
274                         if (++c->nr_garbage > slots_per_page(c))
275                                 collect_garbage_slots(c);
276                 } else {
277                         collect_one_slot(kip, idx);
278                 }
279         }
280         mutex_unlock(&c->mutex);
281 }
282
283 /*
284  * Check given address is on the page of kprobe instruction slots.
285  * This will be used for checking whether the address on a stack
286  * is on a text area or not.
287  */
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289 {
290         struct kprobe_insn_page *kip;
291         bool ret = false;
292
293         rcu_read_lock();
294         list_for_each_entry_rcu(kip, &c->pages, list) {
295                 if (addr >= (unsigned long)kip->insns &&
296                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
297                         ret = true;
298                         break;
299                 }
300         }
301         rcu_read_unlock();
302
303         return ret;
304 }
305
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310         .alloc = alloc_insn_page,
311         .free = free_insn_page,
312         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313         /* .insn_size is initialized later */
314         .nr_garbage = 0,
315 };
316 #endif
317 #endif
318
319 /* We have preemption disabled.. so it is safe to use __ versions */
320 static inline void set_kprobe_instance(struct kprobe *kp)
321 {
322         __this_cpu_write(kprobe_instance, kp);
323 }
324
325 static inline void reset_kprobe_instance(void)
326 {
327         __this_cpu_write(kprobe_instance, NULL);
328 }
329
330 /*
331  * This routine is called either:
332  *      - under the kprobe_mutex - during kprobe_[un]register()
333  *                              OR
334  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
335  */
336 struct kprobe *get_kprobe(void *addr)
337 {
338         struct hlist_head *head;
339         struct kprobe *p;
340
341         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342         hlist_for_each_entry_rcu(p, head, hlist) {
343                 if (p->addr == addr)
344                         return p;
345         }
346
347         return NULL;
348 }
349 NOKPROBE_SYMBOL(get_kprobe);
350
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352
353 /* Return true if the kprobe is an aggregator */
354 static inline int kprobe_aggrprobe(struct kprobe *p)
355 {
356         return p->pre_handler == aggr_pre_handler;
357 }
358
359 /* Return true(!0) if the kprobe is unused */
360 static inline int kprobe_unused(struct kprobe *p)
361 {
362         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363                list_empty(&p->list);
364 }
365
366 /*
367  * Keep all fields in the kprobe consistent
368  */
369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370 {
371         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373 }
374
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
378
379 /*
380  * Call all pre_handler on the list, but ignores its return value.
381  * This must be called from arch-dep optimized caller.
382  */
383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384 {
385         struct kprobe *kp;
386
387         list_for_each_entry_rcu(kp, &p->list, list) {
388                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389                         set_kprobe_instance(kp);
390                         kp->pre_handler(kp, regs);
391                 }
392                 reset_kprobe_instance();
393         }
394 }
395 NOKPROBE_SYMBOL(opt_pre_handler);
396
397 /* Free optimized instructions and optimized_kprobe */
398 static void free_aggr_kprobe(struct kprobe *p)
399 {
400         struct optimized_kprobe *op;
401
402         op = container_of(p, struct optimized_kprobe, kp);
403         arch_remove_optimized_kprobe(op);
404         arch_remove_kprobe(p);
405         kfree(op);
406 }
407
408 /* Return true(!0) if the kprobe is ready for optimization. */
409 static inline int kprobe_optready(struct kprobe *p)
410 {
411         struct optimized_kprobe *op;
412
413         if (kprobe_aggrprobe(p)) {
414                 op = container_of(p, struct optimized_kprobe, kp);
415                 return arch_prepared_optinsn(&op->optinsn);
416         }
417
418         return 0;
419 }
420
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422 static inline int kprobe_disarmed(struct kprobe *p)
423 {
424         struct optimized_kprobe *op;
425
426         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427         if (!kprobe_aggrprobe(p))
428                 return kprobe_disabled(p);
429
430         op = container_of(p, struct optimized_kprobe, kp);
431
432         return kprobe_disabled(p) && list_empty(&op->list);
433 }
434
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
436 static int kprobe_queued(struct kprobe *p)
437 {
438         struct optimized_kprobe *op;
439
440         if (kprobe_aggrprobe(p)) {
441                 op = container_of(p, struct optimized_kprobe, kp);
442                 if (!list_empty(&op->list))
443                         return 1;
444         }
445         return 0;
446 }
447
448 /*
449  * Return an optimized kprobe whose optimizing code replaces
450  * instructions including addr (exclude breakpoint).
451  */
452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
453 {
454         int i;
455         struct kprobe *p = NULL;
456         struct optimized_kprobe *op;
457
458         /* Don't check i == 0, since that is a breakpoint case. */
459         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460                 p = get_kprobe((void *)(addr - i));
461
462         if (p && kprobe_optready(p)) {
463                 op = container_of(p, struct optimized_kprobe, kp);
464                 if (arch_within_optimized_kprobe(op, addr))
465                         return p;
466         }
467
468         return NULL;
469 }
470
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
475
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
479
480 /*
481  * Optimize (replace a breakpoint with a jump) kprobes listed on
482  * optimizing_list.
483  */
484 static void do_optimize_kprobes(void)
485 {
486         /*
487          * The optimization/unoptimization refers online_cpus via
488          * stop_machine() and cpu-hotplug modifies online_cpus.
489          * And same time, text_mutex will be held in cpu-hotplug and here.
490          * This combination can cause a deadlock (cpu-hotplug try to lock
491          * text_mutex but stop_machine can not be done because online_cpus
492          * has been changed)
493          * To avoid this deadlock, caller must have locked cpu hotplug
494          * for preventing cpu-hotplug outside of text_mutex locking.
495          */
496         lockdep_assert_cpus_held();
497
498         /* Optimization never be done when disarmed */
499         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
500             list_empty(&optimizing_list))
501                 return;
502
503         mutex_lock(&text_mutex);
504         arch_optimize_kprobes(&optimizing_list);
505         mutex_unlock(&text_mutex);
506 }
507
508 /*
509  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
510  * if need) kprobes listed on unoptimizing_list.
511  */
512 static void do_unoptimize_kprobes(void)
513 {
514         struct optimized_kprobe *op, *tmp;
515
516         /* See comment in do_optimize_kprobes() */
517         lockdep_assert_cpus_held();
518
519         /* Unoptimization must be done anytime */
520         if (list_empty(&unoptimizing_list))
521                 return;
522
523         mutex_lock(&text_mutex);
524         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
525         /* Loop free_list for disarming */
526         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
527                 /* Disarm probes if marked disabled */
528                 if (kprobe_disabled(&op->kp))
529                         arch_disarm_kprobe(&op->kp);
530                 if (kprobe_unused(&op->kp)) {
531                         /*
532                          * Remove unused probes from hash list. After waiting
533                          * for synchronization, these probes are reclaimed.
534                          * (reclaiming is done by do_free_cleaned_kprobes.)
535                          */
536                         hlist_del_rcu(&op->kp.hlist);
537                 } else
538                         list_del_init(&op->list);
539         }
540         mutex_unlock(&text_mutex);
541 }
542
543 /* Reclaim all kprobes on the free_list */
544 static void do_free_cleaned_kprobes(void)
545 {
546         struct optimized_kprobe *op, *tmp;
547
548         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549                 BUG_ON(!kprobe_unused(&op->kp));
550                 list_del_init(&op->list);
551                 free_aggr_kprobe(&op->kp);
552         }
553 }
554
555 /* Start optimizer after OPTIMIZE_DELAY passed */
556 static void kick_kprobe_optimizer(void)
557 {
558         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
559 }
560
561 /* Kprobe jump optimizer */
562 static void kprobe_optimizer(struct work_struct *work)
563 {
564         mutex_lock(&kprobe_mutex);
565         cpus_read_lock();
566         /* Lock modules while optimizing kprobes */
567         mutex_lock(&module_mutex);
568
569         /*
570          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
571          * kprobes before waiting for quiesence period.
572          */
573         do_unoptimize_kprobes();
574
575         /*
576          * Step 2: Wait for quiesence period to ensure all potentially
577          * preempted tasks to have normally scheduled. Because optprobe
578          * may modify multiple instructions, there is a chance that Nth
579          * instruction is preempted. In that case, such tasks can return
580          * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
581          * Note that on non-preemptive kernel, this is transparently converted
582          * to synchronoze_sched() to wait for all interrupts to have completed.
583          */
584         synchronize_rcu_tasks();
585
586         /* Step 3: Optimize kprobes after quiesence period */
587         do_optimize_kprobes();
588
589         /* Step 4: Free cleaned kprobes after quiesence period */
590         do_free_cleaned_kprobes();
591
592         mutex_unlock(&module_mutex);
593         cpus_read_unlock();
594         mutex_unlock(&kprobe_mutex);
595
596         /* Step 5: Kick optimizer again if needed */
597         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
598                 kick_kprobe_optimizer();
599 }
600
601 /* Wait for completing optimization and unoptimization */
602 void wait_for_kprobe_optimizer(void)
603 {
604         mutex_lock(&kprobe_mutex);
605
606         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
607                 mutex_unlock(&kprobe_mutex);
608
609                 /* this will also make optimizing_work execute immmediately */
610                 flush_delayed_work(&optimizing_work);
611                 /* @optimizing_work might not have been queued yet, relax */
612                 cpu_relax();
613
614                 mutex_lock(&kprobe_mutex);
615         }
616
617         mutex_unlock(&kprobe_mutex);
618 }
619
620 /* Optimize kprobe if p is ready to be optimized */
621 static void optimize_kprobe(struct kprobe *p)
622 {
623         struct optimized_kprobe *op;
624
625         /* Check if the kprobe is disabled or not ready for optimization. */
626         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
627             (kprobe_disabled(p) || kprobes_all_disarmed))
628                 return;
629
630         /* kprobes with post_handler can not be optimized */
631         if (p->post_handler)
632                 return;
633
634         op = container_of(p, struct optimized_kprobe, kp);
635
636         /* Check there is no other kprobes at the optimized instructions */
637         if (arch_check_optimized_kprobe(op) < 0)
638                 return;
639
640         /* Check if it is already optimized. */
641         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
642                 return;
643         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
644
645         if (!list_empty(&op->list))
646                 /* This is under unoptimizing. Just dequeue the probe */
647                 list_del_init(&op->list);
648         else {
649                 list_add(&op->list, &optimizing_list);
650                 kick_kprobe_optimizer();
651         }
652 }
653
654 /* Short cut to direct unoptimizing */
655 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
656 {
657         lockdep_assert_cpus_held();
658         arch_unoptimize_kprobe(op);
659         if (kprobe_disabled(&op->kp))
660                 arch_disarm_kprobe(&op->kp);
661 }
662
663 /* Unoptimize a kprobe if p is optimized */
664 static void unoptimize_kprobe(struct kprobe *p, bool force)
665 {
666         struct optimized_kprobe *op;
667
668         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
669                 return; /* This is not an optprobe nor optimized */
670
671         op = container_of(p, struct optimized_kprobe, kp);
672         if (!kprobe_optimized(p)) {
673                 /* Unoptimized or unoptimizing case */
674                 if (force && !list_empty(&op->list)) {
675                         /*
676                          * Only if this is unoptimizing kprobe and forced,
677                          * forcibly unoptimize it. (No need to unoptimize
678                          * unoptimized kprobe again :)
679                          */
680                         list_del_init(&op->list);
681                         force_unoptimize_kprobe(op);
682                 }
683                 return;
684         }
685
686         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
687         if (!list_empty(&op->list)) {
688                 /* Dequeue from the optimization queue */
689                 list_del_init(&op->list);
690                 return;
691         }
692         /* Optimized kprobe case */
693         if (force)
694                 /* Forcibly update the code: this is a special case */
695                 force_unoptimize_kprobe(op);
696         else {
697                 list_add(&op->list, &unoptimizing_list);
698                 kick_kprobe_optimizer();
699         }
700 }
701
702 /* Cancel unoptimizing for reusing */
703 static int reuse_unused_kprobe(struct kprobe *ap)
704 {
705         struct optimized_kprobe *op;
706         int ret;
707
708         /*
709          * Unused kprobe MUST be on the way of delayed unoptimizing (means
710          * there is still a relative jump) and disabled.
711          */
712         op = container_of(ap, struct optimized_kprobe, kp);
713         WARN_ON_ONCE(list_empty(&op->list));
714         /* Enable the probe again */
715         ap->flags &= ~KPROBE_FLAG_DISABLED;
716         /* Optimize it again (remove from op->list) */
717         ret = kprobe_optready(ap);
718         if (ret)
719                 return ret;
720
721         optimize_kprobe(ap);
722         return 0;
723 }
724
725 /* Remove optimized instructions */
726 static void kill_optimized_kprobe(struct kprobe *p)
727 {
728         struct optimized_kprobe *op;
729
730         op = container_of(p, struct optimized_kprobe, kp);
731         if (!list_empty(&op->list))
732                 /* Dequeue from the (un)optimization queue */
733                 list_del_init(&op->list);
734         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
735
736         if (kprobe_unused(p)) {
737                 /* Enqueue if it is unused */
738                 list_add(&op->list, &freeing_list);
739                 /*
740                  * Remove unused probes from the hash list. After waiting
741                  * for synchronization, this probe is reclaimed.
742                  * (reclaiming is done by do_free_cleaned_kprobes().)
743                  */
744                 hlist_del_rcu(&op->kp.hlist);
745         }
746
747         /* Don't touch the code, because it is already freed. */
748         arch_remove_optimized_kprobe(op);
749 }
750
751 static inline
752 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
753 {
754         if (!kprobe_ftrace(p))
755                 arch_prepare_optimized_kprobe(op, p);
756 }
757
758 /* Try to prepare optimized instructions */
759 static void prepare_optimized_kprobe(struct kprobe *p)
760 {
761         struct optimized_kprobe *op;
762
763         op = container_of(p, struct optimized_kprobe, kp);
764         __prepare_optimized_kprobe(op, p);
765 }
766
767 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
768 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
769 {
770         struct optimized_kprobe *op;
771
772         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
773         if (!op)
774                 return NULL;
775
776         INIT_LIST_HEAD(&op->list);
777         op->kp.addr = p->addr;
778         __prepare_optimized_kprobe(op, p);
779
780         return &op->kp;
781 }
782
783 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
784
785 /*
786  * Prepare an optimized_kprobe and optimize it
787  * NOTE: p must be a normal registered kprobe
788  */
789 static void try_to_optimize_kprobe(struct kprobe *p)
790 {
791         struct kprobe *ap;
792         struct optimized_kprobe *op;
793
794         /* Impossible to optimize ftrace-based kprobe */
795         if (kprobe_ftrace(p))
796                 return;
797
798         /* For preparing optimization, jump_label_text_reserved() is called */
799         cpus_read_lock();
800         jump_label_lock();
801         mutex_lock(&text_mutex);
802
803         ap = alloc_aggr_kprobe(p);
804         if (!ap)
805                 goto out;
806
807         op = container_of(ap, struct optimized_kprobe, kp);
808         if (!arch_prepared_optinsn(&op->optinsn)) {
809                 /* If failed to setup optimizing, fallback to kprobe */
810                 arch_remove_optimized_kprobe(op);
811                 kfree(op);
812                 goto out;
813         }
814
815         init_aggr_kprobe(ap, p);
816         optimize_kprobe(ap);    /* This just kicks optimizer thread */
817
818 out:
819         mutex_unlock(&text_mutex);
820         jump_label_unlock();
821         cpus_read_unlock();
822 }
823
824 #ifdef CONFIG_SYSCTL
825 static void optimize_all_kprobes(void)
826 {
827         struct hlist_head *head;
828         struct kprobe *p;
829         unsigned int i;
830
831         mutex_lock(&kprobe_mutex);
832         /* If optimization is already allowed, just return */
833         if (kprobes_allow_optimization)
834                 goto out;
835
836         cpus_read_lock();
837         kprobes_allow_optimization = true;
838         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
839                 head = &kprobe_table[i];
840                 hlist_for_each_entry_rcu(p, head, hlist)
841                         if (!kprobe_disabled(p))
842                                 optimize_kprobe(p);
843         }
844         cpus_read_unlock();
845         printk(KERN_INFO "Kprobes globally optimized\n");
846 out:
847         mutex_unlock(&kprobe_mutex);
848 }
849
850 static void unoptimize_all_kprobes(void)
851 {
852         struct hlist_head *head;
853         struct kprobe *p;
854         unsigned int i;
855
856         mutex_lock(&kprobe_mutex);
857         /* If optimization is already prohibited, just return */
858         if (!kprobes_allow_optimization) {
859                 mutex_unlock(&kprobe_mutex);
860                 return;
861         }
862
863         cpus_read_lock();
864         kprobes_allow_optimization = false;
865         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
866                 head = &kprobe_table[i];
867                 hlist_for_each_entry_rcu(p, head, hlist) {
868                         if (!kprobe_disabled(p))
869                                 unoptimize_kprobe(p, false);
870                 }
871         }
872         cpus_read_unlock();
873         mutex_unlock(&kprobe_mutex);
874
875         /* Wait for unoptimizing completion */
876         wait_for_kprobe_optimizer();
877         printk(KERN_INFO "Kprobes globally unoptimized\n");
878 }
879
880 static DEFINE_MUTEX(kprobe_sysctl_mutex);
881 int sysctl_kprobes_optimization;
882 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
883                                       void __user *buffer, size_t *length,
884                                       loff_t *ppos)
885 {
886         int ret;
887
888         mutex_lock(&kprobe_sysctl_mutex);
889         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
890         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
891
892         if (sysctl_kprobes_optimization)
893                 optimize_all_kprobes();
894         else
895                 unoptimize_all_kprobes();
896         mutex_unlock(&kprobe_sysctl_mutex);
897
898         return ret;
899 }
900 #endif /* CONFIG_SYSCTL */
901
902 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
903 static void __arm_kprobe(struct kprobe *p)
904 {
905         struct kprobe *_p;
906
907         /* Check collision with other optimized kprobes */
908         _p = get_optimized_kprobe((unsigned long)p->addr);
909         if (unlikely(_p))
910                 /* Fallback to unoptimized kprobe */
911                 unoptimize_kprobe(_p, true);
912
913         arch_arm_kprobe(p);
914         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
915 }
916
917 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
918 static void __disarm_kprobe(struct kprobe *p, bool reopt)
919 {
920         struct kprobe *_p;
921
922         /* Try to unoptimize */
923         unoptimize_kprobe(p, kprobes_all_disarmed);
924
925         if (!kprobe_queued(p)) {
926                 arch_disarm_kprobe(p);
927                 /* If another kprobe was blocked, optimize it. */
928                 _p = get_optimized_kprobe((unsigned long)p->addr);
929                 if (unlikely(_p) && reopt)
930                         optimize_kprobe(_p);
931         }
932         /* TODO: reoptimize others after unoptimized this probe */
933 }
934
935 #else /* !CONFIG_OPTPROBES */
936
937 #define optimize_kprobe(p)                      do {} while (0)
938 #define unoptimize_kprobe(p, f)                 do {} while (0)
939 #define kill_optimized_kprobe(p)                do {} while (0)
940 #define prepare_optimized_kprobe(p)             do {} while (0)
941 #define try_to_optimize_kprobe(p)               do {} while (0)
942 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
943 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
944 #define kprobe_disarmed(p)                      kprobe_disabled(p)
945 #define wait_for_kprobe_optimizer()             do {} while (0)
946
947 static int reuse_unused_kprobe(struct kprobe *ap)
948 {
949         /*
950          * If the optimized kprobe is NOT supported, the aggr kprobe is
951          * released at the same time that the last aggregated kprobe is
952          * unregistered.
953          * Thus there should be no chance to reuse unused kprobe.
954          */
955         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
956         return -EINVAL;
957 }
958
959 static void free_aggr_kprobe(struct kprobe *p)
960 {
961         arch_remove_kprobe(p);
962         kfree(p);
963 }
964
965 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
966 {
967         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
968 }
969 #endif /* CONFIG_OPTPROBES */
970
971 #ifdef CONFIG_KPROBES_ON_FTRACE
972 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
973         .func = kprobe_ftrace_handler,
974         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
975 };
976 static int kprobe_ftrace_enabled;
977
978 /* Must ensure p->addr is really on ftrace */
979 static int prepare_kprobe(struct kprobe *p)
980 {
981         if (!kprobe_ftrace(p))
982                 return arch_prepare_kprobe(p);
983
984         return arch_prepare_kprobe_ftrace(p);
985 }
986
987 /* Caller must lock kprobe_mutex */
988 static int arm_kprobe_ftrace(struct kprobe *p)
989 {
990         int ret = 0;
991
992         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
993                                    (unsigned long)p->addr, 0, 0);
994         if (ret) {
995                 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
996                          p->addr, ret);
997                 return ret;
998         }
999
1000         if (kprobe_ftrace_enabled == 0) {
1001                 ret = register_ftrace_function(&kprobe_ftrace_ops);
1002                 if (ret) {
1003                         pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1004                         goto err_ftrace;
1005                 }
1006         }
1007
1008         kprobe_ftrace_enabled++;
1009         return ret;
1010
1011 err_ftrace:
1012         /*
1013          * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a
1014          * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental
1015          * empty filter_hash which would undesirably trace all functions.
1016          */
1017         ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0);
1018         return ret;
1019 }
1020
1021 /* Caller must lock kprobe_mutex */
1022 static int disarm_kprobe_ftrace(struct kprobe *p)
1023 {
1024         int ret = 0;
1025
1026         if (kprobe_ftrace_enabled == 1) {
1027                 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1028                 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1029                         return ret;
1030         }
1031
1032         kprobe_ftrace_enabled--;
1033
1034         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1035                            (unsigned long)p->addr, 1, 0);
1036         WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1037                   p->addr, ret);
1038         return ret;
1039 }
1040 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1041 #define prepare_kprobe(p)       arch_prepare_kprobe(p)
1042 #define arm_kprobe_ftrace(p)    (-ENODEV)
1043 #define disarm_kprobe_ftrace(p) (-ENODEV)
1044 #endif
1045
1046 /* Arm a kprobe with text_mutex */
1047 static int arm_kprobe(struct kprobe *kp)
1048 {
1049         if (unlikely(kprobe_ftrace(kp)))
1050                 return arm_kprobe_ftrace(kp);
1051
1052         cpus_read_lock();
1053         mutex_lock(&text_mutex);
1054         __arm_kprobe(kp);
1055         mutex_unlock(&text_mutex);
1056         cpus_read_unlock();
1057
1058         return 0;
1059 }
1060
1061 /* Disarm a kprobe with text_mutex */
1062 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1063 {
1064         if (unlikely(kprobe_ftrace(kp)))
1065                 return disarm_kprobe_ftrace(kp);
1066
1067         cpus_read_lock();
1068         mutex_lock(&text_mutex);
1069         __disarm_kprobe(kp, reopt);
1070         mutex_unlock(&text_mutex);
1071         cpus_read_unlock();
1072
1073         return 0;
1074 }
1075
1076 /*
1077  * Aggregate handlers for multiple kprobes support - these handlers
1078  * take care of invoking the individual kprobe handlers on p->list
1079  */
1080 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1081 {
1082         struct kprobe *kp;
1083
1084         list_for_each_entry_rcu(kp, &p->list, list) {
1085                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1086                         set_kprobe_instance(kp);
1087                         if (kp->pre_handler(kp, regs))
1088                                 return 1;
1089                 }
1090                 reset_kprobe_instance();
1091         }
1092         return 0;
1093 }
1094 NOKPROBE_SYMBOL(aggr_pre_handler);
1095
1096 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1097                               unsigned long flags)
1098 {
1099         struct kprobe *kp;
1100
1101         list_for_each_entry_rcu(kp, &p->list, list) {
1102                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1103                         set_kprobe_instance(kp);
1104                         kp->post_handler(kp, regs, flags);
1105                         reset_kprobe_instance();
1106                 }
1107         }
1108 }
1109 NOKPROBE_SYMBOL(aggr_post_handler);
1110
1111 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1112                               int trapnr)
1113 {
1114         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1115
1116         /*
1117          * if we faulted "during" the execution of a user specified
1118          * probe handler, invoke just that probe's fault handler
1119          */
1120         if (cur && cur->fault_handler) {
1121                 if (cur->fault_handler(cur, regs, trapnr))
1122                         return 1;
1123         }
1124         return 0;
1125 }
1126 NOKPROBE_SYMBOL(aggr_fault_handler);
1127
1128 /* Walks the list and increments nmissed count for multiprobe case */
1129 void kprobes_inc_nmissed_count(struct kprobe *p)
1130 {
1131         struct kprobe *kp;
1132         if (!kprobe_aggrprobe(p)) {
1133                 p->nmissed++;
1134         } else {
1135                 list_for_each_entry_rcu(kp, &p->list, list)
1136                         kp->nmissed++;
1137         }
1138         return;
1139 }
1140 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1141
1142 void recycle_rp_inst(struct kretprobe_instance *ri,
1143                      struct hlist_head *head)
1144 {
1145         struct kretprobe *rp = ri->rp;
1146
1147         /* remove rp inst off the rprobe_inst_table */
1148         hlist_del(&ri->hlist);
1149         INIT_HLIST_NODE(&ri->hlist);
1150         if (likely(rp)) {
1151                 raw_spin_lock(&rp->lock);
1152                 hlist_add_head(&ri->hlist, &rp->free_instances);
1153                 raw_spin_unlock(&rp->lock);
1154         } else
1155                 /* Unregistering */
1156                 hlist_add_head(&ri->hlist, head);
1157 }
1158 NOKPROBE_SYMBOL(recycle_rp_inst);
1159
1160 void kretprobe_hash_lock(struct task_struct *tsk,
1161                          struct hlist_head **head, unsigned long *flags)
1162 __acquires(hlist_lock)
1163 {
1164         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1165         raw_spinlock_t *hlist_lock;
1166
1167         *head = &kretprobe_inst_table[hash];
1168         hlist_lock = kretprobe_table_lock_ptr(hash);
1169         raw_spin_lock_irqsave(hlist_lock, *flags);
1170 }
1171 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1172
1173 static void kretprobe_table_lock(unsigned long hash,
1174                                  unsigned long *flags)
1175 __acquires(hlist_lock)
1176 {
1177         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1178         raw_spin_lock_irqsave(hlist_lock, *flags);
1179 }
1180 NOKPROBE_SYMBOL(kretprobe_table_lock);
1181
1182 void kretprobe_hash_unlock(struct task_struct *tsk,
1183                            unsigned long *flags)
1184 __releases(hlist_lock)
1185 {
1186         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1187         raw_spinlock_t *hlist_lock;
1188
1189         hlist_lock = kretprobe_table_lock_ptr(hash);
1190         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1191 }
1192 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1193
1194 static void kretprobe_table_unlock(unsigned long hash,
1195                                    unsigned long *flags)
1196 __releases(hlist_lock)
1197 {
1198         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1199         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1200 }
1201 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1202
1203 /*
1204  * This function is called from finish_task_switch when task tk becomes dead,
1205  * so that we can recycle any function-return probe instances associated
1206  * with this task. These left over instances represent probed functions
1207  * that have been called but will never return.
1208  */
1209 void kprobe_flush_task(struct task_struct *tk)
1210 {
1211         struct kretprobe_instance *ri;
1212         struct hlist_head *head, empty_rp;
1213         struct hlist_node *tmp;
1214         unsigned long hash, flags = 0;
1215
1216         if (unlikely(!kprobes_initialized))
1217                 /* Early boot.  kretprobe_table_locks not yet initialized. */
1218                 return;
1219
1220         INIT_HLIST_HEAD(&empty_rp);
1221         hash = hash_ptr(tk, KPROBE_HASH_BITS);
1222         head = &kretprobe_inst_table[hash];
1223         kretprobe_table_lock(hash, &flags);
1224         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1225                 if (ri->task == tk)
1226                         recycle_rp_inst(ri, &empty_rp);
1227         }
1228         kretprobe_table_unlock(hash, &flags);
1229         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1230                 hlist_del(&ri->hlist);
1231                 kfree(ri);
1232         }
1233 }
1234 NOKPROBE_SYMBOL(kprobe_flush_task);
1235
1236 static inline void free_rp_inst(struct kretprobe *rp)
1237 {
1238         struct kretprobe_instance *ri;
1239         struct hlist_node *next;
1240
1241         hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1242                 hlist_del(&ri->hlist);
1243                 kfree(ri);
1244         }
1245 }
1246
1247 static void cleanup_rp_inst(struct kretprobe *rp)
1248 {
1249         unsigned long flags, hash;
1250         struct kretprobe_instance *ri;
1251         struct hlist_node *next;
1252         struct hlist_head *head;
1253
1254         /* No race here */
1255         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1256                 kretprobe_table_lock(hash, &flags);
1257                 head = &kretprobe_inst_table[hash];
1258                 hlist_for_each_entry_safe(ri, next, head, hlist) {
1259                         if (ri->rp == rp)
1260                                 ri->rp = NULL;
1261                 }
1262                 kretprobe_table_unlock(hash, &flags);
1263         }
1264         free_rp_inst(rp);
1265 }
1266 NOKPROBE_SYMBOL(cleanup_rp_inst);
1267
1268 /* Add the new probe to ap->list */
1269 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1270 {
1271         if (p->post_handler)
1272                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1273
1274         list_add_rcu(&p->list, &ap->list);
1275         if (p->post_handler && !ap->post_handler)
1276                 ap->post_handler = aggr_post_handler;
1277
1278         return 0;
1279 }
1280
1281 /*
1282  * Fill in the required fields of the "manager kprobe". Replace the
1283  * earlier kprobe in the hlist with the manager kprobe
1284  */
1285 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1286 {
1287         /* Copy p's insn slot to ap */
1288         copy_kprobe(p, ap);
1289         flush_insn_slot(ap);
1290         ap->addr = p->addr;
1291         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1292         ap->pre_handler = aggr_pre_handler;
1293         ap->fault_handler = aggr_fault_handler;
1294         /* We don't care the kprobe which has gone. */
1295         if (p->post_handler && !kprobe_gone(p))
1296                 ap->post_handler = aggr_post_handler;
1297
1298         INIT_LIST_HEAD(&ap->list);
1299         INIT_HLIST_NODE(&ap->hlist);
1300
1301         list_add_rcu(&p->list, &ap->list);
1302         hlist_replace_rcu(&p->hlist, &ap->hlist);
1303 }
1304
1305 /*
1306  * This is the second or subsequent kprobe at the address - handle
1307  * the intricacies
1308  */
1309 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1310 {
1311         int ret = 0;
1312         struct kprobe *ap = orig_p;
1313
1314         cpus_read_lock();
1315
1316         /* For preparing optimization, jump_label_text_reserved() is called */
1317         jump_label_lock();
1318         mutex_lock(&text_mutex);
1319
1320         if (!kprobe_aggrprobe(orig_p)) {
1321                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1322                 ap = alloc_aggr_kprobe(orig_p);
1323                 if (!ap) {
1324                         ret = -ENOMEM;
1325                         goto out;
1326                 }
1327                 init_aggr_kprobe(ap, orig_p);
1328         } else if (kprobe_unused(ap)) {
1329                 /* This probe is going to die. Rescue it */
1330                 ret = reuse_unused_kprobe(ap);
1331                 if (ret)
1332                         goto out;
1333         }
1334
1335         if (kprobe_gone(ap)) {
1336                 /*
1337                  * Attempting to insert new probe at the same location that
1338                  * had a probe in the module vaddr area which already
1339                  * freed. So, the instruction slot has already been
1340                  * released. We need a new slot for the new probe.
1341                  */
1342                 ret = arch_prepare_kprobe(ap);
1343                 if (ret)
1344                         /*
1345                          * Even if fail to allocate new slot, don't need to
1346                          * free aggr_probe. It will be used next time, or
1347                          * freed by unregister_kprobe.
1348                          */
1349                         goto out;
1350
1351                 /* Prepare optimized instructions if possible. */
1352                 prepare_optimized_kprobe(ap);
1353
1354                 /*
1355                  * Clear gone flag to prevent allocating new slot again, and
1356                  * set disabled flag because it is not armed yet.
1357                  */
1358                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1359                             | KPROBE_FLAG_DISABLED;
1360         }
1361
1362         /* Copy ap's insn slot to p */
1363         copy_kprobe(ap, p);
1364         ret = add_new_kprobe(ap, p);
1365
1366 out:
1367         mutex_unlock(&text_mutex);
1368         jump_label_unlock();
1369         cpus_read_unlock();
1370
1371         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1372                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1373                 if (!kprobes_all_disarmed) {
1374                         /* Arm the breakpoint again. */
1375                         ret = arm_kprobe(ap);
1376                         if (ret) {
1377                                 ap->flags |= KPROBE_FLAG_DISABLED;
1378                                 list_del_rcu(&p->list);
1379                                 synchronize_sched();
1380                         }
1381                 }
1382         }
1383         return ret;
1384 }
1385
1386 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1387 {
1388         /* The __kprobes marked functions and entry code must not be probed */
1389         return addr >= (unsigned long)__kprobes_text_start &&
1390                addr < (unsigned long)__kprobes_text_end;
1391 }
1392
1393 bool within_kprobe_blacklist(unsigned long addr)
1394 {
1395         struct kprobe_blacklist_entry *ent;
1396
1397         if (arch_within_kprobe_blacklist(addr))
1398                 return true;
1399         /*
1400          * If there exists a kprobe_blacklist, verify and
1401          * fail any probe registration in the prohibited area
1402          */
1403         list_for_each_entry(ent, &kprobe_blacklist, list) {
1404                 if (addr >= ent->start_addr && addr < ent->end_addr)
1405                         return true;
1406         }
1407
1408         return false;
1409 }
1410
1411 /*
1412  * If we have a symbol_name argument, look it up and add the offset field
1413  * to it. This way, we can specify a relative address to a symbol.
1414  * This returns encoded errors if it fails to look up symbol or invalid
1415  * combination of parameters.
1416  */
1417 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1418                         const char *symbol_name, unsigned int offset)
1419 {
1420         if ((symbol_name && addr) || (!symbol_name && !addr))
1421                 goto invalid;
1422
1423         if (symbol_name) {
1424                 addr = kprobe_lookup_name(symbol_name, offset);
1425                 if (!addr)
1426                         return ERR_PTR(-ENOENT);
1427         }
1428
1429         addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1430         if (addr)
1431                 return addr;
1432
1433 invalid:
1434         return ERR_PTR(-EINVAL);
1435 }
1436
1437 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1438 {
1439         return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1440 }
1441
1442 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1443 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1444 {
1445         struct kprobe *ap, *list_p;
1446
1447         ap = get_kprobe(p->addr);
1448         if (unlikely(!ap))
1449                 return NULL;
1450
1451         if (p != ap) {
1452                 list_for_each_entry_rcu(list_p, &ap->list, list)
1453                         if (list_p == p)
1454                         /* kprobe p is a valid probe */
1455                                 goto valid;
1456                 return NULL;
1457         }
1458 valid:
1459         return ap;
1460 }
1461
1462 /* Return error if the kprobe is being re-registered */
1463 static inline int check_kprobe_rereg(struct kprobe *p)
1464 {
1465         int ret = 0;
1466
1467         mutex_lock(&kprobe_mutex);
1468         if (__get_valid_kprobe(p))
1469                 ret = -EINVAL;
1470         mutex_unlock(&kprobe_mutex);
1471
1472         return ret;
1473 }
1474
1475 int __weak arch_check_ftrace_location(struct kprobe *p)
1476 {
1477         unsigned long ftrace_addr;
1478
1479         ftrace_addr = ftrace_location((unsigned long)p->addr);
1480         if (ftrace_addr) {
1481 #ifdef CONFIG_KPROBES_ON_FTRACE
1482                 /* Given address is not on the instruction boundary */
1483                 if ((unsigned long)p->addr != ftrace_addr)
1484                         return -EILSEQ;
1485                 p->flags |= KPROBE_FLAG_FTRACE;
1486 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1487                 return -EINVAL;
1488 #endif
1489         }
1490         return 0;
1491 }
1492
1493 static int check_kprobe_address_safe(struct kprobe *p,
1494                                      struct module **probed_mod)
1495 {
1496         int ret;
1497
1498         ret = arch_check_ftrace_location(p);
1499         if (ret)
1500                 return ret;
1501         jump_label_lock();
1502         preempt_disable();
1503
1504         /* Ensure it is not in reserved area nor out of text */
1505         if (!kernel_text_address((unsigned long) p->addr) ||
1506             within_kprobe_blacklist((unsigned long) p->addr) ||
1507             jump_label_text_reserved(p->addr, p->addr)) {
1508                 ret = -EINVAL;
1509                 goto out;
1510         }
1511
1512         /* Check if are we probing a module */
1513         *probed_mod = __module_text_address((unsigned long) p->addr);
1514         if (*probed_mod) {
1515                 /*
1516                  * We must hold a refcount of the probed module while updating
1517                  * its code to prohibit unexpected unloading.
1518                  */
1519                 if (unlikely(!try_module_get(*probed_mod))) {
1520                         ret = -ENOENT;
1521                         goto out;
1522                 }
1523
1524                 /*
1525                  * If the module freed .init.text, we couldn't insert
1526                  * kprobes in there.
1527                  */
1528                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1529                     (*probed_mod)->state != MODULE_STATE_COMING) {
1530                         module_put(*probed_mod);
1531                         *probed_mod = NULL;
1532                         ret = -ENOENT;
1533                 }
1534         }
1535 out:
1536         preempt_enable();
1537         jump_label_unlock();
1538
1539         return ret;
1540 }
1541
1542 int register_kprobe(struct kprobe *p)
1543 {
1544         int ret;
1545         struct kprobe *old_p;
1546         struct module *probed_mod;
1547         kprobe_opcode_t *addr;
1548
1549         /* Adjust probe address from symbol */
1550         addr = kprobe_addr(p);
1551         if (IS_ERR(addr))
1552                 return PTR_ERR(addr);
1553         p->addr = addr;
1554
1555         ret = check_kprobe_rereg(p);
1556         if (ret)
1557                 return ret;
1558
1559         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1560         p->flags &= KPROBE_FLAG_DISABLED;
1561         p->nmissed = 0;
1562         INIT_LIST_HEAD(&p->list);
1563
1564         ret = check_kprobe_address_safe(p, &probed_mod);
1565         if (ret)
1566                 return ret;
1567
1568         mutex_lock(&kprobe_mutex);
1569
1570         old_p = get_kprobe(p->addr);
1571         if (old_p) {
1572                 /* Since this may unoptimize old_p, locking text_mutex. */
1573                 ret = register_aggr_kprobe(old_p, p);
1574                 goto out;
1575         }
1576
1577         cpus_read_lock();
1578         /* Prevent text modification */
1579         mutex_lock(&text_mutex);
1580         ret = prepare_kprobe(p);
1581         mutex_unlock(&text_mutex);
1582         cpus_read_unlock();
1583         if (ret)
1584                 goto out;
1585
1586         INIT_HLIST_NODE(&p->hlist);
1587         hlist_add_head_rcu(&p->hlist,
1588                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1589
1590         if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1591                 ret = arm_kprobe(p);
1592                 if (ret) {
1593                         hlist_del_rcu(&p->hlist);
1594                         synchronize_sched();
1595                         goto out;
1596                 }
1597         }
1598
1599         /* Try to optimize kprobe */
1600         try_to_optimize_kprobe(p);
1601 out:
1602         mutex_unlock(&kprobe_mutex);
1603
1604         if (probed_mod)
1605                 module_put(probed_mod);
1606
1607         return ret;
1608 }
1609 EXPORT_SYMBOL_GPL(register_kprobe);
1610
1611 /* Check if all probes on the aggrprobe are disabled */
1612 static int aggr_kprobe_disabled(struct kprobe *ap)
1613 {
1614         struct kprobe *kp;
1615
1616         list_for_each_entry_rcu(kp, &ap->list, list)
1617                 if (!kprobe_disabled(kp))
1618                         /*
1619                          * There is an active probe on the list.
1620                          * We can't disable this ap.
1621                          */
1622                         return 0;
1623
1624         return 1;
1625 }
1626
1627 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1628 static struct kprobe *__disable_kprobe(struct kprobe *p)
1629 {
1630         struct kprobe *orig_p;
1631         int ret;
1632
1633         /* Get an original kprobe for return */
1634         orig_p = __get_valid_kprobe(p);
1635         if (unlikely(orig_p == NULL))
1636                 return ERR_PTR(-EINVAL);
1637
1638         if (!kprobe_disabled(p)) {
1639                 /* Disable probe if it is a child probe */
1640                 if (p != orig_p)
1641                         p->flags |= KPROBE_FLAG_DISABLED;
1642
1643                 /* Try to disarm and disable this/parent probe */
1644                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1645                         /*
1646                          * If kprobes_all_disarmed is set, orig_p
1647                          * should have already been disarmed, so
1648                          * skip unneed disarming process.
1649                          */
1650                         if (!kprobes_all_disarmed) {
1651                                 ret = disarm_kprobe(orig_p, true);
1652                                 if (ret) {
1653                                         p->flags &= ~KPROBE_FLAG_DISABLED;
1654                                         return ERR_PTR(ret);
1655                                 }
1656                         }
1657                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1658                 }
1659         }
1660
1661         return orig_p;
1662 }
1663
1664 /*
1665  * Unregister a kprobe without a scheduler synchronization.
1666  */
1667 static int __unregister_kprobe_top(struct kprobe *p)
1668 {
1669         struct kprobe *ap, *list_p;
1670
1671         /* Disable kprobe. This will disarm it if needed. */
1672         ap = __disable_kprobe(p);
1673         if (IS_ERR(ap))
1674                 return PTR_ERR(ap);
1675
1676         if (ap == p)
1677                 /*
1678                  * This probe is an independent(and non-optimized) kprobe
1679                  * (not an aggrprobe). Remove from the hash list.
1680                  */
1681                 goto disarmed;
1682
1683         /* Following process expects this probe is an aggrprobe */
1684         WARN_ON(!kprobe_aggrprobe(ap));
1685
1686         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1687                 /*
1688                  * !disarmed could be happen if the probe is under delayed
1689                  * unoptimizing.
1690                  */
1691                 goto disarmed;
1692         else {
1693                 /* If disabling probe has special handlers, update aggrprobe */
1694                 if (p->post_handler && !kprobe_gone(p)) {
1695                         list_for_each_entry_rcu(list_p, &ap->list, list) {
1696                                 if ((list_p != p) && (list_p->post_handler))
1697                                         goto noclean;
1698                         }
1699                         ap->post_handler = NULL;
1700                 }
1701 noclean:
1702                 /*
1703                  * Remove from the aggrprobe: this path will do nothing in
1704                  * __unregister_kprobe_bottom().
1705                  */
1706                 list_del_rcu(&p->list);
1707                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1708                         /*
1709                          * Try to optimize this probe again, because post
1710                          * handler may have been changed.
1711                          */
1712                         optimize_kprobe(ap);
1713         }
1714         return 0;
1715
1716 disarmed:
1717         hlist_del_rcu(&ap->hlist);
1718         return 0;
1719 }
1720
1721 static void __unregister_kprobe_bottom(struct kprobe *p)
1722 {
1723         struct kprobe *ap;
1724
1725         if (list_empty(&p->list))
1726                 /* This is an independent kprobe */
1727                 arch_remove_kprobe(p);
1728         else if (list_is_singular(&p->list)) {
1729                 /* This is the last child of an aggrprobe */
1730                 ap = list_entry(p->list.next, struct kprobe, list);
1731                 list_del(&p->list);
1732                 free_aggr_kprobe(ap);
1733         }
1734         /* Otherwise, do nothing. */
1735 }
1736
1737 int register_kprobes(struct kprobe **kps, int num)
1738 {
1739         int i, ret = 0;
1740
1741         if (num <= 0)
1742                 return -EINVAL;
1743         for (i = 0; i < num; i++) {
1744                 ret = register_kprobe(kps[i]);
1745                 if (ret < 0) {
1746                         if (i > 0)
1747                                 unregister_kprobes(kps, i);
1748                         break;
1749                 }
1750         }
1751         return ret;
1752 }
1753 EXPORT_SYMBOL_GPL(register_kprobes);
1754
1755 void unregister_kprobe(struct kprobe *p)
1756 {
1757         unregister_kprobes(&p, 1);
1758 }
1759 EXPORT_SYMBOL_GPL(unregister_kprobe);
1760
1761 void unregister_kprobes(struct kprobe **kps, int num)
1762 {
1763         int i;
1764
1765         if (num <= 0)
1766                 return;
1767         mutex_lock(&kprobe_mutex);
1768         for (i = 0; i < num; i++)
1769                 if (__unregister_kprobe_top(kps[i]) < 0)
1770                         kps[i]->addr = NULL;
1771         mutex_unlock(&kprobe_mutex);
1772
1773         synchronize_sched();
1774         for (i = 0; i < num; i++)
1775                 if (kps[i]->addr)
1776                         __unregister_kprobe_bottom(kps[i]);
1777 }
1778 EXPORT_SYMBOL_GPL(unregister_kprobes);
1779
1780 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1781                                         unsigned long val, void *data)
1782 {
1783         return NOTIFY_DONE;
1784 }
1785 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1786
1787 static struct notifier_block kprobe_exceptions_nb = {
1788         .notifier_call = kprobe_exceptions_notify,
1789         .priority = 0x7fffffff /* we need to be notified first */
1790 };
1791
1792 unsigned long __weak arch_deref_entry_point(void *entry)
1793 {
1794         return (unsigned long)entry;
1795 }
1796
1797 #ifdef CONFIG_KRETPROBES
1798 /*
1799  * This kprobe pre_handler is registered with every kretprobe. When probe
1800  * hits it will set up the return probe.
1801  */
1802 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1803 {
1804         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1805         unsigned long hash, flags = 0;
1806         struct kretprobe_instance *ri;
1807
1808         /*
1809          * To avoid deadlocks, prohibit return probing in NMI contexts,
1810          * just skip the probe and increase the (inexact) 'nmissed'
1811          * statistical counter, so that the user is informed that
1812          * something happened:
1813          */
1814         if (unlikely(in_nmi())) {
1815                 rp->nmissed++;
1816                 return 0;
1817         }
1818
1819         /* TODO: consider to only swap the RA after the last pre_handler fired */
1820         hash = hash_ptr(current, KPROBE_HASH_BITS);
1821         raw_spin_lock_irqsave(&rp->lock, flags);
1822         if (!hlist_empty(&rp->free_instances)) {
1823                 ri = hlist_entry(rp->free_instances.first,
1824                                 struct kretprobe_instance, hlist);
1825                 hlist_del(&ri->hlist);
1826                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1827
1828                 ri->rp = rp;
1829                 ri->task = current;
1830
1831                 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1832                         raw_spin_lock_irqsave(&rp->lock, flags);
1833                         hlist_add_head(&ri->hlist, &rp->free_instances);
1834                         raw_spin_unlock_irqrestore(&rp->lock, flags);
1835                         return 0;
1836                 }
1837
1838                 arch_prepare_kretprobe(ri, regs);
1839
1840                 /* XXX(hch): why is there no hlist_move_head? */
1841                 INIT_HLIST_NODE(&ri->hlist);
1842                 kretprobe_table_lock(hash, &flags);
1843                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1844                 kretprobe_table_unlock(hash, &flags);
1845         } else {
1846                 rp->nmissed++;
1847                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1848         }
1849         return 0;
1850 }
1851 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1852
1853 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1854 {
1855         return !offset;
1856 }
1857
1858 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1859 {
1860         kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1861
1862         if (IS_ERR(kp_addr))
1863                 return false;
1864
1865         if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1866                                                 !arch_kprobe_on_func_entry(offset))
1867                 return false;
1868
1869         return true;
1870 }
1871
1872 int register_kretprobe(struct kretprobe *rp)
1873 {
1874         int ret = 0;
1875         struct kretprobe_instance *inst;
1876         int i;
1877         void *addr;
1878
1879         if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1880                 return -EINVAL;
1881
1882         if (kretprobe_blacklist_size) {
1883                 addr = kprobe_addr(&rp->kp);
1884                 if (IS_ERR(addr))
1885                         return PTR_ERR(addr);
1886
1887                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1888                         if (kretprobe_blacklist[i].addr == addr)
1889                                 return -EINVAL;
1890                 }
1891         }
1892
1893         rp->kp.pre_handler = pre_handler_kretprobe;
1894         rp->kp.post_handler = NULL;
1895         rp->kp.fault_handler = NULL;
1896
1897         /* Pre-allocate memory for max kretprobe instances */
1898         if (rp->maxactive <= 0) {
1899 #ifdef CONFIG_PREEMPT
1900                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1901 #else
1902                 rp->maxactive = num_possible_cpus();
1903 #endif
1904         }
1905         raw_spin_lock_init(&rp->lock);
1906         INIT_HLIST_HEAD(&rp->free_instances);
1907         for (i = 0; i < rp->maxactive; i++) {
1908                 inst = kmalloc(sizeof(struct kretprobe_instance) +
1909                                rp->data_size, GFP_KERNEL);
1910                 if (inst == NULL) {
1911                         free_rp_inst(rp);
1912                         return -ENOMEM;
1913                 }
1914                 INIT_HLIST_NODE(&inst->hlist);
1915                 hlist_add_head(&inst->hlist, &rp->free_instances);
1916         }
1917
1918         rp->nmissed = 0;
1919         /* Establish function entry probe point */
1920         ret = register_kprobe(&rp->kp);
1921         if (ret != 0)
1922                 free_rp_inst(rp);
1923         return ret;
1924 }
1925 EXPORT_SYMBOL_GPL(register_kretprobe);
1926
1927 int register_kretprobes(struct kretprobe **rps, int num)
1928 {
1929         int ret = 0, i;
1930
1931         if (num <= 0)
1932                 return -EINVAL;
1933         for (i = 0; i < num; i++) {
1934                 ret = register_kretprobe(rps[i]);
1935                 if (ret < 0) {
1936                         if (i > 0)
1937                                 unregister_kretprobes(rps, i);
1938                         break;
1939                 }
1940         }
1941         return ret;
1942 }
1943 EXPORT_SYMBOL_GPL(register_kretprobes);
1944
1945 void unregister_kretprobe(struct kretprobe *rp)
1946 {
1947         unregister_kretprobes(&rp, 1);
1948 }
1949 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1950
1951 void unregister_kretprobes(struct kretprobe **rps, int num)
1952 {
1953         int i;
1954
1955         if (num <= 0)
1956                 return;
1957         mutex_lock(&kprobe_mutex);
1958         for (i = 0; i < num; i++)
1959                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1960                         rps[i]->kp.addr = NULL;
1961         mutex_unlock(&kprobe_mutex);
1962
1963         synchronize_sched();
1964         for (i = 0; i < num; i++) {
1965                 if (rps[i]->kp.addr) {
1966                         __unregister_kprobe_bottom(&rps[i]->kp);
1967                         cleanup_rp_inst(rps[i]);
1968                 }
1969         }
1970 }
1971 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1972
1973 #else /* CONFIG_KRETPROBES */
1974 int register_kretprobe(struct kretprobe *rp)
1975 {
1976         return -ENOSYS;
1977 }
1978 EXPORT_SYMBOL_GPL(register_kretprobe);
1979
1980 int register_kretprobes(struct kretprobe **rps, int num)
1981 {
1982         return -ENOSYS;
1983 }
1984 EXPORT_SYMBOL_GPL(register_kretprobes);
1985
1986 void unregister_kretprobe(struct kretprobe *rp)
1987 {
1988 }
1989 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1990
1991 void unregister_kretprobes(struct kretprobe **rps, int num)
1992 {
1993 }
1994 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1995
1996 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1997 {
1998         return 0;
1999 }
2000 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2001
2002 #endif /* CONFIG_KRETPROBES */
2003
2004 /* Set the kprobe gone and remove its instruction buffer. */
2005 static void kill_kprobe(struct kprobe *p)
2006 {
2007         struct kprobe *kp;
2008
2009         p->flags |= KPROBE_FLAG_GONE;
2010         if (kprobe_aggrprobe(p)) {
2011                 /*
2012                  * If this is an aggr_kprobe, we have to list all the
2013                  * chained probes and mark them GONE.
2014                  */
2015                 list_for_each_entry_rcu(kp, &p->list, list)
2016                         kp->flags |= KPROBE_FLAG_GONE;
2017                 p->post_handler = NULL;
2018                 kill_optimized_kprobe(p);
2019         }
2020         /*
2021          * Here, we can remove insn_slot safely, because no thread calls
2022          * the original probed function (which will be freed soon) any more.
2023          */
2024         arch_remove_kprobe(p);
2025 }
2026
2027 /* Disable one kprobe */
2028 int disable_kprobe(struct kprobe *kp)
2029 {
2030         int ret = 0;
2031         struct kprobe *p;
2032
2033         mutex_lock(&kprobe_mutex);
2034
2035         /* Disable this kprobe */
2036         p = __disable_kprobe(kp);
2037         if (IS_ERR(p))
2038                 ret = PTR_ERR(p);
2039
2040         mutex_unlock(&kprobe_mutex);
2041         return ret;
2042 }
2043 EXPORT_SYMBOL_GPL(disable_kprobe);
2044
2045 /* Enable one kprobe */
2046 int enable_kprobe(struct kprobe *kp)
2047 {
2048         int ret = 0;
2049         struct kprobe *p;
2050
2051         mutex_lock(&kprobe_mutex);
2052
2053         /* Check whether specified probe is valid. */
2054         p = __get_valid_kprobe(kp);
2055         if (unlikely(p == NULL)) {
2056                 ret = -EINVAL;
2057                 goto out;
2058         }
2059
2060         if (kprobe_gone(kp)) {
2061                 /* This kprobe has gone, we couldn't enable it. */
2062                 ret = -EINVAL;
2063                 goto out;
2064         }
2065
2066         if (p != kp)
2067                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2068
2069         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2070                 p->flags &= ~KPROBE_FLAG_DISABLED;
2071                 ret = arm_kprobe(p);
2072                 if (ret)
2073                         p->flags |= KPROBE_FLAG_DISABLED;
2074         }
2075 out:
2076         mutex_unlock(&kprobe_mutex);
2077         return ret;
2078 }
2079 EXPORT_SYMBOL_GPL(enable_kprobe);
2080
2081 /* Caller must NOT call this in usual path. This is only for critical case */
2082 void dump_kprobe(struct kprobe *kp)
2083 {
2084         pr_err("Dumping kprobe:\n");
2085         pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2086                kp->symbol_name, kp->offset, kp->addr);
2087 }
2088 NOKPROBE_SYMBOL(dump_kprobe);
2089
2090 /*
2091  * Lookup and populate the kprobe_blacklist.
2092  *
2093  * Unlike the kretprobe blacklist, we'll need to determine
2094  * the range of addresses that belong to the said functions,
2095  * since a kprobe need not necessarily be at the beginning
2096  * of a function.
2097  */
2098 static int __init populate_kprobe_blacklist(unsigned long *start,
2099                                              unsigned long *end)
2100 {
2101         unsigned long *iter;
2102         struct kprobe_blacklist_entry *ent;
2103         unsigned long entry, offset = 0, size = 0;
2104
2105         for (iter = start; iter < end; iter++) {
2106                 entry = arch_deref_entry_point((void *)*iter);
2107
2108                 if (!kernel_text_address(entry) ||
2109                     !kallsyms_lookup_size_offset(entry, &size, &offset))
2110                         continue;
2111
2112                 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2113                 if (!ent)
2114                         return -ENOMEM;
2115                 ent->start_addr = entry;
2116                 ent->end_addr = entry + size;
2117                 INIT_LIST_HEAD(&ent->list);
2118                 list_add_tail(&ent->list, &kprobe_blacklist);
2119         }
2120         return 0;
2121 }
2122
2123 /* Module notifier call back, checking kprobes on the module */
2124 static int kprobes_module_callback(struct notifier_block *nb,
2125                                    unsigned long val, void *data)
2126 {
2127         struct module *mod = data;
2128         struct hlist_head *head;
2129         struct kprobe *p;
2130         unsigned int i;
2131         int checkcore = (val == MODULE_STATE_GOING);
2132
2133         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2134                 return NOTIFY_DONE;
2135
2136         /*
2137          * When MODULE_STATE_GOING was notified, both of module .text and
2138          * .init.text sections would be freed. When MODULE_STATE_LIVE was
2139          * notified, only .init.text section would be freed. We need to
2140          * disable kprobes which have been inserted in the sections.
2141          */
2142         mutex_lock(&kprobe_mutex);
2143         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2144                 head = &kprobe_table[i];
2145                 hlist_for_each_entry_rcu(p, head, hlist)
2146                         if (within_module_init((unsigned long)p->addr, mod) ||
2147                             (checkcore &&
2148                              within_module_core((unsigned long)p->addr, mod))) {
2149                                 /*
2150                                  * The vaddr this probe is installed will soon
2151                                  * be vfreed buy not synced to disk. Hence,
2152                                  * disarming the breakpoint isn't needed.
2153                                  *
2154                                  * Note, this will also move any optimized probes
2155                                  * that are pending to be removed from their
2156                                  * corresponding lists to the freeing_list and
2157                                  * will not be touched by the delayed
2158                                  * kprobe_optimizer work handler.
2159                                  */
2160                                 kill_kprobe(p);
2161                         }
2162         }
2163         mutex_unlock(&kprobe_mutex);
2164         return NOTIFY_DONE;
2165 }
2166
2167 static struct notifier_block kprobe_module_nb = {
2168         .notifier_call = kprobes_module_callback,
2169         .priority = 0
2170 };
2171
2172 /* Markers of _kprobe_blacklist section */
2173 extern unsigned long __start_kprobe_blacklist[];
2174 extern unsigned long __stop_kprobe_blacklist[];
2175
2176 static int __init init_kprobes(void)
2177 {
2178         int i, err = 0;
2179
2180         /* FIXME allocate the probe table, currently defined statically */
2181         /* initialize all list heads */
2182         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2183                 INIT_HLIST_HEAD(&kprobe_table[i]);
2184                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2185                 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2186         }
2187
2188         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2189                                         __stop_kprobe_blacklist);
2190         if (err) {
2191                 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2192                 pr_err("Please take care of using kprobes.\n");
2193         }
2194
2195         if (kretprobe_blacklist_size) {
2196                 /* lookup the function address from its name */
2197                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2198                         kretprobe_blacklist[i].addr =
2199                                 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2200                         if (!kretprobe_blacklist[i].addr)
2201                                 printk("kretprobe: lookup failed: %s\n",
2202                                        kretprobe_blacklist[i].name);
2203                 }
2204         }
2205
2206 #if defined(CONFIG_OPTPROBES)
2207 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2208         /* Init kprobe_optinsn_slots */
2209         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2210 #endif
2211         /* By default, kprobes can be optimized */
2212         kprobes_allow_optimization = true;
2213 #endif
2214
2215         /* By default, kprobes are armed */
2216         kprobes_all_disarmed = false;
2217
2218         err = arch_init_kprobes();
2219         if (!err)
2220                 err = register_die_notifier(&kprobe_exceptions_nb);
2221         if (!err)
2222                 err = register_module_notifier(&kprobe_module_nb);
2223
2224         kprobes_initialized = (err == 0);
2225
2226         if (!err)
2227                 init_test_probes();
2228         return err;
2229 }
2230
2231 #ifdef CONFIG_DEBUG_FS
2232 static void report_probe(struct seq_file *pi, struct kprobe *p,
2233                 const char *sym, int offset, char *modname, struct kprobe *pp)
2234 {
2235         char *kprobe_type;
2236         void *addr = p->addr;
2237
2238         if (p->pre_handler == pre_handler_kretprobe)
2239                 kprobe_type = "r";
2240         else
2241                 kprobe_type = "k";
2242
2243         if (!kallsyms_show_value())
2244                 addr = NULL;
2245
2246         if (sym)
2247                 seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2248                         addr, kprobe_type, sym, offset,
2249                         (modname ? modname : " "));
2250         else    /* try to use %pS */
2251                 seq_printf(pi, "%px  %s  %pS ",
2252                         addr, kprobe_type, p->addr);
2253
2254         if (!pp)
2255                 pp = p;
2256         seq_printf(pi, "%s%s%s%s\n",
2257                 (kprobe_gone(p) ? "[GONE]" : ""),
2258                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2259                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2260                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2261 }
2262
2263 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2264 {
2265         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2266 }
2267
2268 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2269 {
2270         (*pos)++;
2271         if (*pos >= KPROBE_TABLE_SIZE)
2272                 return NULL;
2273         return pos;
2274 }
2275
2276 static void kprobe_seq_stop(struct seq_file *f, void *v)
2277 {
2278         /* Nothing to do */
2279 }
2280
2281 static int show_kprobe_addr(struct seq_file *pi, void *v)
2282 {
2283         struct hlist_head *head;
2284         struct kprobe *p, *kp;
2285         const char *sym = NULL;
2286         unsigned int i = *(loff_t *) v;
2287         unsigned long offset = 0;
2288         char *modname, namebuf[KSYM_NAME_LEN];
2289
2290         head = &kprobe_table[i];
2291         preempt_disable();
2292         hlist_for_each_entry_rcu(p, head, hlist) {
2293                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2294                                         &offset, &modname, namebuf);
2295                 if (kprobe_aggrprobe(p)) {
2296                         list_for_each_entry_rcu(kp, &p->list, list)
2297                                 report_probe(pi, kp, sym, offset, modname, p);
2298                 } else
2299                         report_probe(pi, p, sym, offset, modname, NULL);
2300         }
2301         preempt_enable();
2302         return 0;
2303 }
2304
2305 static const struct seq_operations kprobes_seq_ops = {
2306         .start = kprobe_seq_start,
2307         .next  = kprobe_seq_next,
2308         .stop  = kprobe_seq_stop,
2309         .show  = show_kprobe_addr
2310 };
2311
2312 static int kprobes_open(struct inode *inode, struct file *filp)
2313 {
2314         return seq_open(filp, &kprobes_seq_ops);
2315 }
2316
2317 static const struct file_operations debugfs_kprobes_operations = {
2318         .open           = kprobes_open,
2319         .read           = seq_read,
2320         .llseek         = seq_lseek,
2321         .release        = seq_release,
2322 };
2323
2324 /* kprobes/blacklist -- shows which functions can not be probed */
2325 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2326 {
2327         return seq_list_start(&kprobe_blacklist, *pos);
2328 }
2329
2330 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2331 {
2332         return seq_list_next(v, &kprobe_blacklist, pos);
2333 }
2334
2335 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2336 {
2337         struct kprobe_blacklist_entry *ent =
2338                 list_entry(v, struct kprobe_blacklist_entry, list);
2339
2340         /*
2341          * If /proc/kallsyms is not showing kernel address, we won't
2342          * show them here either.
2343          */
2344         if (!kallsyms_show_value())
2345                 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2346                            (void *)ent->start_addr);
2347         else
2348                 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2349                            (void *)ent->end_addr, (void *)ent->start_addr);
2350         return 0;
2351 }
2352
2353 static const struct seq_operations kprobe_blacklist_seq_ops = {
2354         .start = kprobe_blacklist_seq_start,
2355         .next  = kprobe_blacklist_seq_next,
2356         .stop  = kprobe_seq_stop,       /* Reuse void function */
2357         .show  = kprobe_blacklist_seq_show,
2358 };
2359
2360 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2361 {
2362         return seq_open(filp, &kprobe_blacklist_seq_ops);
2363 }
2364
2365 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2366         .open           = kprobe_blacklist_open,
2367         .read           = seq_read,
2368         .llseek         = seq_lseek,
2369         .release        = seq_release,
2370 };
2371
2372 static int arm_all_kprobes(void)
2373 {
2374         struct hlist_head *head;
2375         struct kprobe *p;
2376         unsigned int i, total = 0, errors = 0;
2377         int err, ret = 0;
2378
2379         mutex_lock(&kprobe_mutex);
2380
2381         /* If kprobes are armed, just return */
2382         if (!kprobes_all_disarmed)
2383                 goto already_enabled;
2384
2385         /*
2386          * optimize_kprobe() called by arm_kprobe() checks
2387          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2388          * arm_kprobe.
2389          */
2390         kprobes_all_disarmed = false;
2391         /* Arming kprobes doesn't optimize kprobe itself */
2392         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2393                 head = &kprobe_table[i];
2394                 /* Arm all kprobes on a best-effort basis */
2395                 hlist_for_each_entry_rcu(p, head, hlist) {
2396                         if (!kprobe_disabled(p)) {
2397                                 err = arm_kprobe(p);
2398                                 if (err)  {
2399                                         errors++;
2400                                         ret = err;
2401                                 }
2402                                 total++;
2403                         }
2404                 }
2405         }
2406
2407         if (errors)
2408                 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2409                         errors, total);
2410         else
2411                 pr_info("Kprobes globally enabled\n");
2412
2413 already_enabled:
2414         mutex_unlock(&kprobe_mutex);
2415         return ret;
2416 }
2417
2418 static int disarm_all_kprobes(void)
2419 {
2420         struct hlist_head *head;
2421         struct kprobe *p;
2422         unsigned int i, total = 0, errors = 0;
2423         int err, ret = 0;
2424
2425         mutex_lock(&kprobe_mutex);
2426
2427         /* If kprobes are already disarmed, just return */
2428         if (kprobes_all_disarmed) {
2429                 mutex_unlock(&kprobe_mutex);
2430                 return 0;
2431         }
2432
2433         kprobes_all_disarmed = true;
2434
2435         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2436                 head = &kprobe_table[i];
2437                 /* Disarm all kprobes on a best-effort basis */
2438                 hlist_for_each_entry_rcu(p, head, hlist) {
2439                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2440                                 err = disarm_kprobe(p, false);
2441                                 if (err) {
2442                                         errors++;
2443                                         ret = err;
2444                                 }
2445                                 total++;
2446                         }
2447                 }
2448         }
2449
2450         if (errors)
2451                 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2452                         errors, total);
2453         else
2454                 pr_info("Kprobes globally disabled\n");
2455
2456         mutex_unlock(&kprobe_mutex);
2457
2458         /* Wait for disarming all kprobes by optimizer */
2459         wait_for_kprobe_optimizer();
2460
2461         return ret;
2462 }
2463
2464 /*
2465  * XXX: The debugfs bool file interface doesn't allow for callbacks
2466  * when the bool state is switched. We can reuse that facility when
2467  * available
2468  */
2469 static ssize_t read_enabled_file_bool(struct file *file,
2470                char __user *user_buf, size_t count, loff_t *ppos)
2471 {
2472         char buf[3];
2473
2474         if (!kprobes_all_disarmed)
2475                 buf[0] = '1';
2476         else
2477                 buf[0] = '0';
2478         buf[1] = '\n';
2479         buf[2] = 0x00;
2480         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2481 }
2482
2483 static ssize_t write_enabled_file_bool(struct file *file,
2484                const char __user *user_buf, size_t count, loff_t *ppos)
2485 {
2486         char buf[32];
2487         size_t buf_size;
2488         int ret = 0;
2489
2490         buf_size = min(count, (sizeof(buf)-1));
2491         if (copy_from_user(buf, user_buf, buf_size))
2492                 return -EFAULT;
2493
2494         buf[buf_size] = '\0';
2495         switch (buf[0]) {
2496         case 'y':
2497         case 'Y':
2498         case '1':
2499                 ret = arm_all_kprobes();
2500                 break;
2501         case 'n':
2502         case 'N':
2503         case '0':
2504                 ret = disarm_all_kprobes();
2505                 break;
2506         default:
2507                 return -EINVAL;
2508         }
2509
2510         if (ret)
2511                 return ret;
2512
2513         return count;
2514 }
2515
2516 static const struct file_operations fops_kp = {
2517         .read =         read_enabled_file_bool,
2518         .write =        write_enabled_file_bool,
2519         .llseek =       default_llseek,
2520 };
2521
2522 static int __init debugfs_kprobe_init(void)
2523 {
2524         struct dentry *dir, *file;
2525         unsigned int value = 1;
2526
2527         dir = debugfs_create_dir("kprobes", NULL);
2528         if (!dir)
2529                 return -ENOMEM;
2530
2531         file = debugfs_create_file("list", 0400, dir, NULL,
2532                                 &debugfs_kprobes_operations);
2533         if (!file)
2534                 goto error;
2535
2536         file = debugfs_create_file("enabled", 0600, dir,
2537                                         &value, &fops_kp);
2538         if (!file)
2539                 goto error;
2540
2541         file = debugfs_create_file("blacklist", 0400, dir, NULL,
2542                                 &debugfs_kprobe_blacklist_ops);
2543         if (!file)
2544                 goto error;
2545
2546         return 0;
2547
2548 error:
2549         debugfs_remove(dir);
2550         return -ENOMEM;
2551 }
2552
2553 late_initcall(debugfs_kprobe_init);
2554 #endif /* CONFIG_DEBUG_FS */
2555
2556 module_init(init_kprobes);