]> asedeno.scripts.mit.edu Git - linux.git/blob - kernel/rcu/tree_plugin.h
Linux 5.6-rc7
[linux.git] / kernel / rcu / tree_plugin.h
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  *
10  * Author: Ingo Molnar <mingo@elte.hu>
11  *         Paul E. McKenney <paulmck@linux.ibm.com>
12  */
13
14 #include "../locking/rtmutex_common.h"
15
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
19 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
20
21 /*
22  * Check the RCU kernel configuration parameters and print informative
23  * messages about anything out of the ordinary.
24  */
25 static void __init rcu_bootup_announce_oddness(void)
26 {
27         if (IS_ENABLED(CONFIG_RCU_TRACE))
28                 pr_info("\tRCU event tracing is enabled.\n");
29         if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
30             (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
31                 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
32                         RCU_FANOUT);
33         if (rcu_fanout_exact)
34                 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35         if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
36                 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
37         if (IS_ENABLED(CONFIG_PROVE_RCU))
38                 pr_info("\tRCU lockdep checking is enabled.\n");
39         if (RCU_NUM_LVLS >= 4)
40                 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
41         if (RCU_FANOUT_LEAF != 16)
42                 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
43                         RCU_FANOUT_LEAF);
44         if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
45                 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
46                         rcu_fanout_leaf);
47         if (nr_cpu_ids != NR_CPUS)
48                 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
49 #ifdef CONFIG_RCU_BOOST
50         pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
51                 kthread_prio, CONFIG_RCU_BOOST_DELAY);
52 #endif
53         if (blimit != DEFAULT_RCU_BLIMIT)
54                 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
55         if (qhimark != DEFAULT_RCU_QHIMARK)
56                 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
57         if (qlowmark != DEFAULT_RCU_QLOMARK)
58                 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
59         if (jiffies_till_first_fqs != ULONG_MAX)
60                 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
61         if (jiffies_till_next_fqs != ULONG_MAX)
62                 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
63         if (jiffies_till_sched_qs != ULONG_MAX)
64                 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
65         if (rcu_kick_kthreads)
66                 pr_info("\tKick kthreads if too-long grace period.\n");
67         if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
68                 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
69         if (gp_preinit_delay)
70                 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
71         if (gp_init_delay)
72                 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
73         if (gp_cleanup_delay)
74                 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
75         if (!use_softirq)
76                 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
77         if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
78                 pr_info("\tRCU debug extended QS entry/exit.\n");
79         rcupdate_announce_bootup_oddness();
80 }
81
82 #ifdef CONFIG_PREEMPT_RCU
83
84 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
85 static void rcu_read_unlock_special(struct task_struct *t);
86
87 /*
88  * Tell them what RCU they are running.
89  */
90 static void __init rcu_bootup_announce(void)
91 {
92         pr_info("Preemptible hierarchical RCU implementation.\n");
93         rcu_bootup_announce_oddness();
94 }
95
96 /* Flags for rcu_preempt_ctxt_queue() decision table. */
97 #define RCU_GP_TASKS    0x8
98 #define RCU_EXP_TASKS   0x4
99 #define RCU_GP_BLKD     0x2
100 #define RCU_EXP_BLKD    0x1
101
102 /*
103  * Queues a task preempted within an RCU-preempt read-side critical
104  * section into the appropriate location within the ->blkd_tasks list,
105  * depending on the states of any ongoing normal and expedited grace
106  * periods.  The ->gp_tasks pointer indicates which element the normal
107  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
108  * indicates which element the expedited grace period is waiting on (again,
109  * NULL if none).  If a grace period is waiting on a given element in the
110  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
111  * adding a task to the tail of the list blocks any grace period that is
112  * already waiting on one of the elements.  In contrast, adding a task
113  * to the head of the list won't block any grace period that is already
114  * waiting on one of the elements.
115  *
116  * This queuing is imprecise, and can sometimes make an ongoing grace
117  * period wait for a task that is not strictly speaking blocking it.
118  * Given the choice, we needlessly block a normal grace period rather than
119  * blocking an expedited grace period.
120  *
121  * Note that an endless sequence of expedited grace periods still cannot
122  * indefinitely postpone a normal grace period.  Eventually, all of the
123  * fixed number of preempted tasks blocking the normal grace period that are
124  * not also blocking the expedited grace period will resume and complete
125  * their RCU read-side critical sections.  At that point, the ->gp_tasks
126  * pointer will equal the ->exp_tasks pointer, at which point the end of
127  * the corresponding expedited grace period will also be the end of the
128  * normal grace period.
129  */
130 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
131         __releases(rnp->lock) /* But leaves rrupts disabled. */
132 {
133         int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
134                          (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
135                          (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
136                          (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
137         struct task_struct *t = current;
138
139         raw_lockdep_assert_held_rcu_node(rnp);
140         WARN_ON_ONCE(rdp->mynode != rnp);
141         WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
142         /* RCU better not be waiting on newly onlined CPUs! */
143         WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
144                      rdp->grpmask);
145
146         /*
147          * Decide where to queue the newly blocked task.  In theory,
148          * this could be an if-statement.  In practice, when I tried
149          * that, it was quite messy.
150          */
151         switch (blkd_state) {
152         case 0:
153         case                RCU_EXP_TASKS:
154         case                RCU_EXP_TASKS + RCU_GP_BLKD:
155         case RCU_GP_TASKS:
156         case RCU_GP_TASKS + RCU_EXP_TASKS:
157
158                 /*
159                  * Blocking neither GP, or first task blocking the normal
160                  * GP but not blocking the already-waiting expedited GP.
161                  * Queue at the head of the list to avoid unnecessarily
162                  * blocking the already-waiting GPs.
163                  */
164                 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
165                 break;
166
167         case                                              RCU_EXP_BLKD:
168         case                                RCU_GP_BLKD:
169         case                                RCU_GP_BLKD + RCU_EXP_BLKD:
170         case RCU_GP_TASKS +                               RCU_EXP_BLKD:
171         case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
172         case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
173
174                 /*
175                  * First task arriving that blocks either GP, or first task
176                  * arriving that blocks the expedited GP (with the normal
177                  * GP already waiting), or a task arriving that blocks
178                  * both GPs with both GPs already waiting.  Queue at the
179                  * tail of the list to avoid any GP waiting on any of the
180                  * already queued tasks that are not blocking it.
181                  */
182                 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
183                 break;
184
185         case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
186         case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
187         case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
188
189                 /*
190                  * Second or subsequent task blocking the expedited GP.
191                  * The task either does not block the normal GP, or is the
192                  * first task blocking the normal GP.  Queue just after
193                  * the first task blocking the expedited GP.
194                  */
195                 list_add(&t->rcu_node_entry, rnp->exp_tasks);
196                 break;
197
198         case RCU_GP_TASKS +                 RCU_GP_BLKD:
199         case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
200
201                 /*
202                  * Second or subsequent task blocking the normal GP.
203                  * The task does not block the expedited GP. Queue just
204                  * after the first task blocking the normal GP.
205                  */
206                 list_add(&t->rcu_node_entry, rnp->gp_tasks);
207                 break;
208
209         default:
210
211                 /* Yet another exercise in excessive paranoia. */
212                 WARN_ON_ONCE(1);
213                 break;
214         }
215
216         /*
217          * We have now queued the task.  If it was the first one to
218          * block either grace period, update the ->gp_tasks and/or
219          * ->exp_tasks pointers, respectively, to reference the newly
220          * blocked tasks.
221          */
222         if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
223                 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
224                 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
225         }
226         if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
227                 rnp->exp_tasks = &t->rcu_node_entry;
228         WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
229                      !(rnp->qsmask & rdp->grpmask));
230         WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
231                      !(rnp->expmask & rdp->grpmask));
232         raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
233
234         /*
235          * Report the quiescent state for the expedited GP.  This expedited
236          * GP should not be able to end until we report, so there should be
237          * no need to check for a subsequent expedited GP.  (Though we are
238          * still in a quiescent state in any case.)
239          */
240         if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
241                 rcu_report_exp_rdp(rdp);
242         else
243                 WARN_ON_ONCE(rdp->exp_deferred_qs);
244 }
245
246 /*
247  * Record a preemptible-RCU quiescent state for the specified CPU.
248  * Note that this does not necessarily mean that the task currently running
249  * on the CPU is in a quiescent state:  Instead, it means that the current
250  * grace period need not wait on any RCU read-side critical section that
251  * starts later on this CPU.  It also means that if the current task is
252  * in an RCU read-side critical section, it has already added itself to
253  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
254  * current task, there might be any number of other tasks blocked while
255  * in an RCU read-side critical section.
256  *
257  * Callers to this function must disable preemption.
258  */
259 static void rcu_qs(void)
260 {
261         RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
262         if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
263                 trace_rcu_grace_period(TPS("rcu_preempt"),
264                                        __this_cpu_read(rcu_data.gp_seq),
265                                        TPS("cpuqs"));
266                 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
267                 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
268                 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
269         }
270 }
271
272 /*
273  * We have entered the scheduler, and the current task might soon be
274  * context-switched away from.  If this task is in an RCU read-side
275  * critical section, we will no longer be able to rely on the CPU to
276  * record that fact, so we enqueue the task on the blkd_tasks list.
277  * The task will dequeue itself when it exits the outermost enclosing
278  * RCU read-side critical section.  Therefore, the current grace period
279  * cannot be permitted to complete until the blkd_tasks list entries
280  * predating the current grace period drain, in other words, until
281  * rnp->gp_tasks becomes NULL.
282  *
283  * Caller must disable interrupts.
284  */
285 void rcu_note_context_switch(bool preempt)
286 {
287         struct task_struct *t = current;
288         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
289         struct rcu_node *rnp;
290
291         trace_rcu_utilization(TPS("Start context switch"));
292         lockdep_assert_irqs_disabled();
293         WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
294         if (rcu_preempt_depth() > 0 &&
295             !t->rcu_read_unlock_special.b.blocked) {
296
297                 /* Possibly blocking in an RCU read-side critical section. */
298                 rnp = rdp->mynode;
299                 raw_spin_lock_rcu_node(rnp);
300                 t->rcu_read_unlock_special.b.blocked = true;
301                 t->rcu_blocked_node = rnp;
302
303                 /*
304                  * Verify the CPU's sanity, trace the preemption, and
305                  * then queue the task as required based on the states
306                  * of any ongoing and expedited grace periods.
307                  */
308                 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
309                 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
310                 trace_rcu_preempt_task(rcu_state.name,
311                                        t->pid,
312                                        (rnp->qsmask & rdp->grpmask)
313                                        ? rnp->gp_seq
314                                        : rcu_seq_snap(&rnp->gp_seq));
315                 rcu_preempt_ctxt_queue(rnp, rdp);
316         } else {
317                 rcu_preempt_deferred_qs(t);
318         }
319
320         /*
321          * Either we were not in an RCU read-side critical section to
322          * begin with, or we have now recorded that critical section
323          * globally.  Either way, we can now note a quiescent state
324          * for this CPU.  Again, if we were in an RCU read-side critical
325          * section, and if that critical section was blocking the current
326          * grace period, then the fact that the task has been enqueued
327          * means that we continue to block the current grace period.
328          */
329         rcu_qs();
330         if (rdp->exp_deferred_qs)
331                 rcu_report_exp_rdp(rdp);
332         trace_rcu_utilization(TPS("End context switch"));
333 }
334 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
335
336 /*
337  * Check for preempted RCU readers blocking the current grace period
338  * for the specified rcu_node structure.  If the caller needs a reliable
339  * answer, it must hold the rcu_node's ->lock.
340  */
341 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
342 {
343         return READ_ONCE(rnp->gp_tasks) != NULL;
344 }
345
346 /* Bias and limit values for ->rcu_read_lock_nesting. */
347 #define RCU_NEST_BIAS INT_MAX
348 #define RCU_NEST_NMAX (-INT_MAX / 2)
349 #define RCU_NEST_PMAX (INT_MAX / 2)
350
351 static void rcu_preempt_read_enter(void)
352 {
353         current->rcu_read_lock_nesting++;
354 }
355
356 static void rcu_preempt_read_exit(void)
357 {
358         current->rcu_read_lock_nesting--;
359 }
360
361 static void rcu_preempt_depth_set(int val)
362 {
363         current->rcu_read_lock_nesting = val;
364 }
365
366 /*
367  * Preemptible RCU implementation for rcu_read_lock().
368  * Just increment ->rcu_read_lock_nesting, shared state will be updated
369  * if we block.
370  */
371 void __rcu_read_lock(void)
372 {
373         rcu_preempt_read_enter();
374         if (IS_ENABLED(CONFIG_PROVE_LOCKING))
375                 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
376         barrier();  /* critical section after entry code. */
377 }
378 EXPORT_SYMBOL_GPL(__rcu_read_lock);
379
380 /*
381  * Preemptible RCU implementation for rcu_read_unlock().
382  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
383  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
384  * invoke rcu_read_unlock_special() to clean up after a context switch
385  * in an RCU read-side critical section and other special cases.
386  */
387 void __rcu_read_unlock(void)
388 {
389         struct task_struct *t = current;
390
391         if (rcu_preempt_depth() != 1) {
392                 rcu_preempt_read_exit();
393         } else {
394                 barrier();  /* critical section before exit code. */
395                 rcu_preempt_depth_set(-RCU_NEST_BIAS);
396                 barrier();  /* assign before ->rcu_read_unlock_special load */
397                 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
398                         rcu_read_unlock_special(t);
399                 barrier();  /* ->rcu_read_unlock_special load before assign */
400                 rcu_preempt_depth_set(0);
401         }
402         if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
403                 int rrln = rcu_preempt_depth();
404
405                 WARN_ON_ONCE(rrln < 0 && rrln > RCU_NEST_NMAX);
406         }
407 }
408 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
409
410 /*
411  * Advance a ->blkd_tasks-list pointer to the next entry, instead
412  * returning NULL if at the end of the list.
413  */
414 static struct list_head *rcu_next_node_entry(struct task_struct *t,
415                                              struct rcu_node *rnp)
416 {
417         struct list_head *np;
418
419         np = t->rcu_node_entry.next;
420         if (np == &rnp->blkd_tasks)
421                 np = NULL;
422         return np;
423 }
424
425 /*
426  * Return true if the specified rcu_node structure has tasks that were
427  * preempted within an RCU read-side critical section.
428  */
429 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
430 {
431         return !list_empty(&rnp->blkd_tasks);
432 }
433
434 /*
435  * Report deferred quiescent states.  The deferral time can
436  * be quite short, for example, in the case of the call from
437  * rcu_read_unlock_special().
438  */
439 static void
440 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
441 {
442         bool empty_exp;
443         bool empty_norm;
444         bool empty_exp_now;
445         struct list_head *np;
446         bool drop_boost_mutex = false;
447         struct rcu_data *rdp;
448         struct rcu_node *rnp;
449         union rcu_special special;
450
451         /*
452          * If RCU core is waiting for this CPU to exit its critical section,
453          * report the fact that it has exited.  Because irqs are disabled,
454          * t->rcu_read_unlock_special cannot change.
455          */
456         special = t->rcu_read_unlock_special;
457         rdp = this_cpu_ptr(&rcu_data);
458         if (!special.s && !rdp->exp_deferred_qs) {
459                 local_irq_restore(flags);
460                 return;
461         }
462         t->rcu_read_unlock_special.s = 0;
463         if (special.b.need_qs)
464                 rcu_qs();
465
466         /*
467          * Respond to a request by an expedited grace period for a
468          * quiescent state from this CPU.  Note that requests from
469          * tasks are handled when removing the task from the
470          * blocked-tasks list below.
471          */
472         if (rdp->exp_deferred_qs)
473                 rcu_report_exp_rdp(rdp);
474
475         /* Clean up if blocked during RCU read-side critical section. */
476         if (special.b.blocked) {
477
478                 /*
479                  * Remove this task from the list it blocked on.  The task
480                  * now remains queued on the rcu_node corresponding to the
481                  * CPU it first blocked on, so there is no longer any need
482                  * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
483                  */
484                 rnp = t->rcu_blocked_node;
485                 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
486                 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
487                 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
488                 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
489                 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
490                              (!empty_norm || rnp->qsmask));
491                 empty_exp = sync_rcu_exp_done(rnp);
492                 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
493                 np = rcu_next_node_entry(t, rnp);
494                 list_del_init(&t->rcu_node_entry);
495                 t->rcu_blocked_node = NULL;
496                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
497                                                 rnp->gp_seq, t->pid);
498                 if (&t->rcu_node_entry == rnp->gp_tasks)
499                         WRITE_ONCE(rnp->gp_tasks, np);
500                 if (&t->rcu_node_entry == rnp->exp_tasks)
501                         rnp->exp_tasks = np;
502                 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
503                         /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
504                         drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
505                         if (&t->rcu_node_entry == rnp->boost_tasks)
506                                 rnp->boost_tasks = np;
507                 }
508
509                 /*
510                  * If this was the last task on the current list, and if
511                  * we aren't waiting on any CPUs, report the quiescent state.
512                  * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
513                  * so we must take a snapshot of the expedited state.
514                  */
515                 empty_exp_now = sync_rcu_exp_done(rnp);
516                 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
517                         trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
518                                                          rnp->gp_seq,
519                                                          0, rnp->qsmask,
520                                                          rnp->level,
521                                                          rnp->grplo,
522                                                          rnp->grphi,
523                                                          !!rnp->gp_tasks);
524                         rcu_report_unblock_qs_rnp(rnp, flags);
525                 } else {
526                         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
527                 }
528
529                 /* Unboost if we were boosted. */
530                 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
531                         rt_mutex_futex_unlock(&rnp->boost_mtx);
532
533                 /*
534                  * If this was the last task on the expedited lists,
535                  * then we need to report up the rcu_node hierarchy.
536                  */
537                 if (!empty_exp && empty_exp_now)
538                         rcu_report_exp_rnp(rnp, true);
539         } else {
540                 local_irq_restore(flags);
541         }
542 }
543
544 /*
545  * Is a deferred quiescent-state pending, and are we also not in
546  * an RCU read-side critical section?  It is the caller's responsibility
547  * to ensure it is otherwise safe to report any deferred quiescent
548  * states.  The reason for this is that it is safe to report a
549  * quiescent state during context switch even though preemption
550  * is disabled.  This function cannot be expected to understand these
551  * nuances, so the caller must handle them.
552  */
553 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
554 {
555         return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
556                 READ_ONCE(t->rcu_read_unlock_special.s)) &&
557                rcu_preempt_depth() <= 0;
558 }
559
560 /*
561  * Report a deferred quiescent state if needed and safe to do so.
562  * As with rcu_preempt_need_deferred_qs(), "safe" involves only
563  * not being in an RCU read-side critical section.  The caller must
564  * evaluate safety in terms of interrupt, softirq, and preemption
565  * disabling.
566  */
567 static void rcu_preempt_deferred_qs(struct task_struct *t)
568 {
569         unsigned long flags;
570         bool couldrecurse = rcu_preempt_depth() >= 0;
571
572         if (!rcu_preempt_need_deferred_qs(t))
573                 return;
574         if (couldrecurse)
575                 rcu_preempt_depth_set(rcu_preempt_depth() - RCU_NEST_BIAS);
576         local_irq_save(flags);
577         rcu_preempt_deferred_qs_irqrestore(t, flags);
578         if (couldrecurse)
579                 rcu_preempt_depth_set(rcu_preempt_depth() + RCU_NEST_BIAS);
580 }
581
582 /*
583  * Minimal handler to give the scheduler a chance to re-evaluate.
584  */
585 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
586 {
587         struct rcu_data *rdp;
588
589         rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
590         rdp->defer_qs_iw_pending = false;
591 }
592
593 /*
594  * Handle special cases during rcu_read_unlock(), such as needing to
595  * notify RCU core processing or task having blocked during the RCU
596  * read-side critical section.
597  */
598 static void rcu_read_unlock_special(struct task_struct *t)
599 {
600         unsigned long flags;
601         bool preempt_bh_were_disabled =
602                         !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
603         bool irqs_were_disabled;
604
605         /* NMI handlers cannot block and cannot safely manipulate state. */
606         if (in_nmi())
607                 return;
608
609         local_irq_save(flags);
610         irqs_were_disabled = irqs_disabled_flags(flags);
611         if (preempt_bh_were_disabled || irqs_were_disabled) {
612                 bool exp;
613                 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
614                 struct rcu_node *rnp = rdp->mynode;
615
616                 exp = (t->rcu_blocked_node && t->rcu_blocked_node->exp_tasks) ||
617                       (rdp->grpmask & READ_ONCE(rnp->expmask)) ||
618                       tick_nohz_full_cpu(rdp->cpu);
619                 // Need to defer quiescent state until everything is enabled.
620                 if (irqs_were_disabled && use_softirq &&
621                     (in_interrupt() ||
622                      (exp && !t->rcu_read_unlock_special.b.deferred_qs))) {
623                         // Using softirq, safe to awaken, and we get
624                         // no help from enabling irqs, unlike bh/preempt.
625                         raise_softirq_irqoff(RCU_SOFTIRQ);
626                 } else {
627                         // Enabling BH or preempt does reschedule, so...
628                         // Also if no expediting or NO_HZ_FULL, slow is OK.
629                         set_tsk_need_resched(current);
630                         set_preempt_need_resched();
631                         if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
632                             !rdp->defer_qs_iw_pending && exp) {
633                                 // Get scheduler to re-evaluate and call hooks.
634                                 // If !IRQ_WORK, FQS scan will eventually IPI.
635                                 init_irq_work(&rdp->defer_qs_iw,
636                                               rcu_preempt_deferred_qs_handler);
637                                 rdp->defer_qs_iw_pending = true;
638                                 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
639                         }
640                 }
641                 t->rcu_read_unlock_special.b.deferred_qs = true;
642                 local_irq_restore(flags);
643                 return;
644         }
645         rcu_preempt_deferred_qs_irqrestore(t, flags);
646 }
647
648 /*
649  * Check that the list of blocked tasks for the newly completed grace
650  * period is in fact empty.  It is a serious bug to complete a grace
651  * period that still has RCU readers blocked!  This function must be
652  * invoked -before- updating this rnp's ->gp_seq.
653  *
654  * Also, if there are blocked tasks on the list, they automatically
655  * block the newly created grace period, so set up ->gp_tasks accordingly.
656  */
657 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
658 {
659         struct task_struct *t;
660
661         RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
662         raw_lockdep_assert_held_rcu_node(rnp);
663         if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
664                 dump_blkd_tasks(rnp, 10);
665         if (rcu_preempt_has_tasks(rnp) &&
666             (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
667                 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
668                 t = container_of(rnp->gp_tasks, struct task_struct,
669                                  rcu_node_entry);
670                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
671                                                 rnp->gp_seq, t->pid);
672         }
673         WARN_ON_ONCE(rnp->qsmask);
674 }
675
676 /*
677  * Check for a quiescent state from the current CPU, including voluntary
678  * context switches for Tasks RCU.  When a task blocks, the task is
679  * recorded in the corresponding CPU's rcu_node structure, which is checked
680  * elsewhere, hence this function need only check for quiescent states
681  * related to the current CPU, not to those related to tasks.
682  */
683 static void rcu_flavor_sched_clock_irq(int user)
684 {
685         struct task_struct *t = current;
686
687         if (user || rcu_is_cpu_rrupt_from_idle()) {
688                 rcu_note_voluntary_context_switch(current);
689         }
690         if (rcu_preempt_depth() > 0 ||
691             (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
692                 /* No QS, force context switch if deferred. */
693                 if (rcu_preempt_need_deferred_qs(t)) {
694                         set_tsk_need_resched(t);
695                         set_preempt_need_resched();
696                 }
697         } else if (rcu_preempt_need_deferred_qs(t)) {
698                 rcu_preempt_deferred_qs(t); /* Report deferred QS. */
699                 return;
700         } else if (!rcu_preempt_depth()) {
701                 rcu_qs(); /* Report immediate QS. */
702                 return;
703         }
704
705         /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
706         if (rcu_preempt_depth() > 0 &&
707             __this_cpu_read(rcu_data.core_needs_qs) &&
708             __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
709             !t->rcu_read_unlock_special.b.need_qs &&
710             time_after(jiffies, rcu_state.gp_start + HZ))
711                 t->rcu_read_unlock_special.b.need_qs = true;
712 }
713
714 /*
715  * Check for a task exiting while in a preemptible-RCU read-side
716  * critical section, clean up if so.  No need to issue warnings, as
717  * debug_check_no_locks_held() already does this if lockdep is enabled.
718  * Besides, if this function does anything other than just immediately
719  * return, there was a bug of some sort.  Spewing warnings from this
720  * function is like as not to simply obscure important prior warnings.
721  */
722 void exit_rcu(void)
723 {
724         struct task_struct *t = current;
725
726         if (unlikely(!list_empty(&current->rcu_node_entry))) {
727                 rcu_preempt_depth_set(1);
728                 barrier();
729                 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
730         } else if (unlikely(rcu_preempt_depth())) {
731                 rcu_preempt_depth_set(1);
732         } else {
733                 return;
734         }
735         __rcu_read_unlock();
736         rcu_preempt_deferred_qs(current);
737 }
738
739 /*
740  * Dump the blocked-tasks state, but limit the list dump to the
741  * specified number of elements.
742  */
743 static void
744 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
745 {
746         int cpu;
747         int i;
748         struct list_head *lhp;
749         bool onl;
750         struct rcu_data *rdp;
751         struct rcu_node *rnp1;
752
753         raw_lockdep_assert_held_rcu_node(rnp);
754         pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
755                 __func__, rnp->grplo, rnp->grphi, rnp->level,
756                 (long)rnp->gp_seq, (long)rnp->completedqs);
757         for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
758                 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
759                         __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
760         pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
761                 __func__, READ_ONCE(rnp->gp_tasks), rnp->boost_tasks,
762                 rnp->exp_tasks);
763         pr_info("%s: ->blkd_tasks", __func__);
764         i = 0;
765         list_for_each(lhp, &rnp->blkd_tasks) {
766                 pr_cont(" %p", lhp);
767                 if (++i >= ncheck)
768                         break;
769         }
770         pr_cont("\n");
771         for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
772                 rdp = per_cpu_ptr(&rcu_data, cpu);
773                 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
774                 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
775                         cpu, ".o"[onl],
776                         (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
777                         (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
778         }
779 }
780
781 #else /* #ifdef CONFIG_PREEMPT_RCU */
782
783 /*
784  * Tell them what RCU they are running.
785  */
786 static void __init rcu_bootup_announce(void)
787 {
788         pr_info("Hierarchical RCU implementation.\n");
789         rcu_bootup_announce_oddness();
790 }
791
792 /*
793  * Note a quiescent state for PREEMPTION=n.  Because we do not need to know
794  * how many quiescent states passed, just if there was at least one since
795  * the start of the grace period, this just sets a flag.  The caller must
796  * have disabled preemption.
797  */
798 static void rcu_qs(void)
799 {
800         RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
801         if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
802                 return;
803         trace_rcu_grace_period(TPS("rcu_sched"),
804                                __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
805         __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
806         if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
807                 return;
808         __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
809         rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
810 }
811
812 /*
813  * Register an urgently needed quiescent state.  If there is an
814  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
815  * dyntick-idle quiescent state visible to other CPUs, which will in
816  * some cases serve for expedited as well as normal grace periods.
817  * Either way, register a lightweight quiescent state.
818  */
819 void rcu_all_qs(void)
820 {
821         unsigned long flags;
822
823         if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
824                 return;
825         preempt_disable();
826         /* Load rcu_urgent_qs before other flags. */
827         if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
828                 preempt_enable();
829                 return;
830         }
831         this_cpu_write(rcu_data.rcu_urgent_qs, false);
832         if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
833                 local_irq_save(flags);
834                 rcu_momentary_dyntick_idle();
835                 local_irq_restore(flags);
836         }
837         rcu_qs();
838         preempt_enable();
839 }
840 EXPORT_SYMBOL_GPL(rcu_all_qs);
841
842 /*
843  * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
844  */
845 void rcu_note_context_switch(bool preempt)
846 {
847         trace_rcu_utilization(TPS("Start context switch"));
848         rcu_qs();
849         /* Load rcu_urgent_qs before other flags. */
850         if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
851                 goto out;
852         this_cpu_write(rcu_data.rcu_urgent_qs, false);
853         if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
854                 rcu_momentary_dyntick_idle();
855         if (!preempt)
856                 rcu_tasks_qs(current);
857 out:
858         trace_rcu_utilization(TPS("End context switch"));
859 }
860 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
861
862 /*
863  * Because preemptible RCU does not exist, there are never any preempted
864  * RCU readers.
865  */
866 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
867 {
868         return 0;
869 }
870
871 /*
872  * Because there is no preemptible RCU, there can be no readers blocked.
873  */
874 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
875 {
876         return false;
877 }
878
879 /*
880  * Because there is no preemptible RCU, there can be no deferred quiescent
881  * states.
882  */
883 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
884 {
885         return false;
886 }
887 static void rcu_preempt_deferred_qs(struct task_struct *t) { }
888
889 /*
890  * Because there is no preemptible RCU, there can be no readers blocked,
891  * so there is no need to check for blocked tasks.  So check only for
892  * bogus qsmask values.
893  */
894 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
895 {
896         WARN_ON_ONCE(rnp->qsmask);
897 }
898
899 /*
900  * Check to see if this CPU is in a non-context-switch quiescent state,
901  * namely user mode and idle loop.
902  */
903 static void rcu_flavor_sched_clock_irq(int user)
904 {
905         if (user || rcu_is_cpu_rrupt_from_idle()) {
906
907                 /*
908                  * Get here if this CPU took its interrupt from user
909                  * mode or from the idle loop, and if this is not a
910                  * nested interrupt.  In this case, the CPU is in
911                  * a quiescent state, so note it.
912                  *
913                  * No memory barrier is required here because rcu_qs()
914                  * references only CPU-local variables that other CPUs
915                  * neither access nor modify, at least not while the
916                  * corresponding CPU is online.
917                  */
918
919                 rcu_qs();
920         }
921 }
922
923 /*
924  * Because preemptible RCU does not exist, tasks cannot possibly exit
925  * while in preemptible RCU read-side critical sections.
926  */
927 void exit_rcu(void)
928 {
929 }
930
931 /*
932  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
933  */
934 static void
935 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
936 {
937         WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
938 }
939
940 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
941
942 /*
943  * If boosting, set rcuc kthreads to realtime priority.
944  */
945 static void rcu_cpu_kthread_setup(unsigned int cpu)
946 {
947 #ifdef CONFIG_RCU_BOOST
948         struct sched_param sp;
949
950         sp.sched_priority = kthread_prio;
951         sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
952 #endif /* #ifdef CONFIG_RCU_BOOST */
953 }
954
955 #ifdef CONFIG_RCU_BOOST
956
957 /*
958  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
959  * or ->boost_tasks, advancing the pointer to the next task in the
960  * ->blkd_tasks list.
961  *
962  * Note that irqs must be enabled: boosting the task can block.
963  * Returns 1 if there are more tasks needing to be boosted.
964  */
965 static int rcu_boost(struct rcu_node *rnp)
966 {
967         unsigned long flags;
968         struct task_struct *t;
969         struct list_head *tb;
970
971         if (READ_ONCE(rnp->exp_tasks) == NULL &&
972             READ_ONCE(rnp->boost_tasks) == NULL)
973                 return 0;  /* Nothing left to boost. */
974
975         raw_spin_lock_irqsave_rcu_node(rnp, flags);
976
977         /*
978          * Recheck under the lock: all tasks in need of boosting
979          * might exit their RCU read-side critical sections on their own.
980          */
981         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
982                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
983                 return 0;
984         }
985
986         /*
987          * Preferentially boost tasks blocking expedited grace periods.
988          * This cannot starve the normal grace periods because a second
989          * expedited grace period must boost all blocked tasks, including
990          * those blocking the pre-existing normal grace period.
991          */
992         if (rnp->exp_tasks != NULL)
993                 tb = rnp->exp_tasks;
994         else
995                 tb = rnp->boost_tasks;
996
997         /*
998          * We boost task t by manufacturing an rt_mutex that appears to
999          * be held by task t.  We leave a pointer to that rt_mutex where
1000          * task t can find it, and task t will release the mutex when it
1001          * exits its outermost RCU read-side critical section.  Then
1002          * simply acquiring this artificial rt_mutex will boost task
1003          * t's priority.  (Thanks to tglx for suggesting this approach!)
1004          *
1005          * Note that task t must acquire rnp->lock to remove itself from
1006          * the ->blkd_tasks list, which it will do from exit() if from
1007          * nowhere else.  We therefore are guaranteed that task t will
1008          * stay around at least until we drop rnp->lock.  Note that
1009          * rnp->lock also resolves races between our priority boosting
1010          * and task t's exiting its outermost RCU read-side critical
1011          * section.
1012          */
1013         t = container_of(tb, struct task_struct, rcu_node_entry);
1014         rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1015         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1016         /* Lock only for side effect: boosts task t's priority. */
1017         rt_mutex_lock(&rnp->boost_mtx);
1018         rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1019
1020         return READ_ONCE(rnp->exp_tasks) != NULL ||
1021                READ_ONCE(rnp->boost_tasks) != NULL;
1022 }
1023
1024 /*
1025  * Priority-boosting kthread, one per leaf rcu_node.
1026  */
1027 static int rcu_boost_kthread(void *arg)
1028 {
1029         struct rcu_node *rnp = (struct rcu_node *)arg;
1030         int spincnt = 0;
1031         int more2boost;
1032
1033         trace_rcu_utilization(TPS("Start boost kthread@init"));
1034         for (;;) {
1035                 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1036                 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1037                 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1038                 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1039                 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1040                 more2boost = rcu_boost(rnp);
1041                 if (more2boost)
1042                         spincnt++;
1043                 else
1044                         spincnt = 0;
1045                 if (spincnt > 10) {
1046                         rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1047                         trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1048                         schedule_timeout_interruptible(2);
1049                         trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1050                         spincnt = 0;
1051                 }
1052         }
1053         /* NOTREACHED */
1054         trace_rcu_utilization(TPS("End boost kthread@notreached"));
1055         return 0;
1056 }
1057
1058 /*
1059  * Check to see if it is time to start boosting RCU readers that are
1060  * blocking the current grace period, and, if so, tell the per-rcu_node
1061  * kthread to start boosting them.  If there is an expedited grace
1062  * period in progress, it is always time to boost.
1063  *
1064  * The caller must hold rnp->lock, which this function releases.
1065  * The ->boost_kthread_task is immortal, so we don't need to worry
1066  * about it going away.
1067  */
1068 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1069         __releases(rnp->lock)
1070 {
1071         raw_lockdep_assert_held_rcu_node(rnp);
1072         if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1073                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1074                 return;
1075         }
1076         if (rnp->exp_tasks != NULL ||
1077             (rnp->gp_tasks != NULL &&
1078              rnp->boost_tasks == NULL &&
1079              rnp->qsmask == 0 &&
1080              ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1081                 if (rnp->exp_tasks == NULL)
1082                         rnp->boost_tasks = rnp->gp_tasks;
1083                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1084                 rcu_wake_cond(rnp->boost_kthread_task,
1085                               rnp->boost_kthread_status);
1086         } else {
1087                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1088         }
1089 }
1090
1091 /*
1092  * Is the current CPU running the RCU-callbacks kthread?
1093  * Caller must have preemption disabled.
1094  */
1095 static bool rcu_is_callbacks_kthread(void)
1096 {
1097         return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1098 }
1099
1100 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1101
1102 /*
1103  * Do priority-boost accounting for the start of a new grace period.
1104  */
1105 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1106 {
1107         rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1108 }
1109
1110 /*
1111  * Create an RCU-boost kthread for the specified node if one does not
1112  * already exist.  We only create this kthread for preemptible RCU.
1113  * Returns zero if all is well, a negated errno otherwise.
1114  */
1115 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1116 {
1117         int rnp_index = rnp - rcu_get_root();
1118         unsigned long flags;
1119         struct sched_param sp;
1120         struct task_struct *t;
1121
1122         if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1123                 return;
1124
1125         if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1126                 return;
1127
1128         rcu_state.boost = 1;
1129
1130         if (rnp->boost_kthread_task != NULL)
1131                 return;
1132
1133         t = kthread_create(rcu_boost_kthread, (void *)rnp,
1134                            "rcub/%d", rnp_index);
1135         if (WARN_ON_ONCE(IS_ERR(t)))
1136                 return;
1137
1138         raw_spin_lock_irqsave_rcu_node(rnp, flags);
1139         rnp->boost_kthread_task = t;
1140         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1141         sp.sched_priority = kthread_prio;
1142         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1143         wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1144 }
1145
1146 /*
1147  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1148  * served by the rcu_node in question.  The CPU hotplug lock is still
1149  * held, so the value of rnp->qsmaskinit will be stable.
1150  *
1151  * We don't include outgoingcpu in the affinity set, use -1 if there is
1152  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1153  * this function allows the kthread to execute on any CPU.
1154  */
1155 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1156 {
1157         struct task_struct *t = rnp->boost_kthread_task;
1158         unsigned long mask = rcu_rnp_online_cpus(rnp);
1159         cpumask_var_t cm;
1160         int cpu;
1161
1162         if (!t)
1163                 return;
1164         if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1165                 return;
1166         for_each_leaf_node_possible_cpu(rnp, cpu)
1167                 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1168                     cpu != outgoingcpu)
1169                         cpumask_set_cpu(cpu, cm);
1170         if (cpumask_weight(cm) == 0)
1171                 cpumask_setall(cm);
1172         set_cpus_allowed_ptr(t, cm);
1173         free_cpumask_var(cm);
1174 }
1175
1176 /*
1177  * Spawn boost kthreads -- called as soon as the scheduler is running.
1178  */
1179 static void __init rcu_spawn_boost_kthreads(void)
1180 {
1181         struct rcu_node *rnp;
1182
1183         rcu_for_each_leaf_node(rnp)
1184                 rcu_spawn_one_boost_kthread(rnp);
1185 }
1186
1187 static void rcu_prepare_kthreads(int cpu)
1188 {
1189         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1190         struct rcu_node *rnp = rdp->mynode;
1191
1192         /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1193         if (rcu_scheduler_fully_active)
1194                 rcu_spawn_one_boost_kthread(rnp);
1195 }
1196
1197 #else /* #ifdef CONFIG_RCU_BOOST */
1198
1199 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1200         __releases(rnp->lock)
1201 {
1202         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1203 }
1204
1205 static bool rcu_is_callbacks_kthread(void)
1206 {
1207         return false;
1208 }
1209
1210 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1211 {
1212 }
1213
1214 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1215 {
1216 }
1217
1218 static void __init rcu_spawn_boost_kthreads(void)
1219 {
1220 }
1221
1222 static void rcu_prepare_kthreads(int cpu)
1223 {
1224 }
1225
1226 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1227
1228 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1229
1230 /*
1231  * Check to see if any future non-offloaded RCU-related work will need
1232  * to be done by the current CPU, even if none need be done immediately,
1233  * returning 1 if so.  This function is part of the RCU implementation;
1234  * it is -not- an exported member of the RCU API.
1235  *
1236  * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1237  * CPU has RCU callbacks queued.
1238  */
1239 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1240 {
1241         *nextevt = KTIME_MAX;
1242         return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1243                !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
1244 }
1245
1246 /*
1247  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1248  * after it.
1249  */
1250 static void rcu_cleanup_after_idle(void)
1251 {
1252 }
1253
1254 /*
1255  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1256  * is nothing.
1257  */
1258 static void rcu_prepare_for_idle(void)
1259 {
1260 }
1261
1262 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1263
1264 /*
1265  * This code is invoked when a CPU goes idle, at which point we want
1266  * to have the CPU do everything required for RCU so that it can enter
1267  * the energy-efficient dyntick-idle mode.
1268  *
1269  * The following preprocessor symbol controls this:
1270  *
1271  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1272  *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1273  *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1274  *      benchmarkers who might otherwise be tempted to set this to a large
1275  *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1276  *      system.  And if you are -that- concerned about energy efficiency,
1277  *      just power the system down and be done with it!
1278  *
1279  * The value below works well in practice.  If future workloads require
1280  * adjustment, they can be converted into kernel config parameters, though
1281  * making the state machine smarter might be a better option.
1282  */
1283 #define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1284
1285 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1286 module_param(rcu_idle_gp_delay, int, 0644);
1287
1288 /*
1289  * Try to advance callbacks on the current CPU, but only if it has been
1290  * awhile since the last time we did so.  Afterwards, if there are any
1291  * callbacks ready for immediate invocation, return true.
1292  */
1293 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1294 {
1295         bool cbs_ready = false;
1296         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1297         struct rcu_node *rnp;
1298
1299         /* Exit early if we advanced recently. */
1300         if (jiffies == rdp->last_advance_all)
1301                 return false;
1302         rdp->last_advance_all = jiffies;
1303
1304         rnp = rdp->mynode;
1305
1306         /*
1307          * Don't bother checking unless a grace period has
1308          * completed since we last checked and there are
1309          * callbacks not yet ready to invoke.
1310          */
1311         if ((rcu_seq_completed_gp(rdp->gp_seq,
1312                                   rcu_seq_current(&rnp->gp_seq)) ||
1313              unlikely(READ_ONCE(rdp->gpwrap))) &&
1314             rcu_segcblist_pend_cbs(&rdp->cblist))
1315                 note_gp_changes(rdp);
1316
1317         if (rcu_segcblist_ready_cbs(&rdp->cblist))
1318                 cbs_ready = true;
1319         return cbs_ready;
1320 }
1321
1322 /*
1323  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1324  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1325  * caller about what to set the timeout.
1326  *
1327  * The caller must have disabled interrupts.
1328  */
1329 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1330 {
1331         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1332         unsigned long dj;
1333
1334         lockdep_assert_irqs_disabled();
1335
1336         /* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1337         if (rcu_segcblist_empty(&rdp->cblist) ||
1338             rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
1339                 *nextevt = KTIME_MAX;
1340                 return 0;
1341         }
1342
1343         /* Attempt to advance callbacks. */
1344         if (rcu_try_advance_all_cbs()) {
1345                 /* Some ready to invoke, so initiate later invocation. */
1346                 invoke_rcu_core();
1347                 return 1;
1348         }
1349         rdp->last_accelerate = jiffies;
1350
1351         /* Request timer and round. */
1352         dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
1353
1354         *nextevt = basemono + dj * TICK_NSEC;
1355         return 0;
1356 }
1357
1358 /*
1359  * Prepare a CPU for idle from an RCU perspective.  The first major task is to
1360  * sense whether nohz mode has been enabled or disabled via sysfs.  The second
1361  * major task is to accelerate (that is, assign grace-period numbers to) any
1362  * recently arrived callbacks.
1363  *
1364  * The caller must have disabled interrupts.
1365  */
1366 static void rcu_prepare_for_idle(void)
1367 {
1368         bool needwake;
1369         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1370         struct rcu_node *rnp;
1371         int tne;
1372
1373         lockdep_assert_irqs_disabled();
1374         if (rcu_segcblist_is_offloaded(&rdp->cblist))
1375                 return;
1376
1377         /* Handle nohz enablement switches conservatively. */
1378         tne = READ_ONCE(tick_nohz_active);
1379         if (tne != rdp->tick_nohz_enabled_snap) {
1380                 if (!rcu_segcblist_empty(&rdp->cblist))
1381                         invoke_rcu_core(); /* force nohz to see update. */
1382                 rdp->tick_nohz_enabled_snap = tne;
1383                 return;
1384         }
1385         if (!tne)
1386                 return;
1387
1388         /*
1389          * If we have not yet accelerated this jiffy, accelerate all
1390          * callbacks on this CPU.
1391          */
1392         if (rdp->last_accelerate == jiffies)
1393                 return;
1394         rdp->last_accelerate = jiffies;
1395         if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1396                 rnp = rdp->mynode;
1397                 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1398                 needwake = rcu_accelerate_cbs(rnp, rdp);
1399                 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1400                 if (needwake)
1401                         rcu_gp_kthread_wake();
1402         }
1403 }
1404
1405 /*
1406  * Clean up for exit from idle.  Attempt to advance callbacks based on
1407  * any grace periods that elapsed while the CPU was idle, and if any
1408  * callbacks are now ready to invoke, initiate invocation.
1409  */
1410 static void rcu_cleanup_after_idle(void)
1411 {
1412         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1413
1414         lockdep_assert_irqs_disabled();
1415         if (rcu_segcblist_is_offloaded(&rdp->cblist))
1416                 return;
1417         if (rcu_try_advance_all_cbs())
1418                 invoke_rcu_core();
1419 }
1420
1421 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1422
1423 #ifdef CONFIG_RCU_NOCB_CPU
1424
1425 /*
1426  * Offload callback processing from the boot-time-specified set of CPUs
1427  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
1428  * created that pull the callbacks from the corresponding CPU, wait for
1429  * a grace period to elapse, and invoke the callbacks.  These kthreads
1430  * are organized into GP kthreads, which manage incoming callbacks, wait for
1431  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1432  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
1433  * do a wake_up() on their GP kthread when they insert a callback into any
1434  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1435  * in which case each kthread actively polls its CPU.  (Which isn't so great
1436  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1437  *
1438  * This is intended to be used in conjunction with Frederic Weisbecker's
1439  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1440  * running CPU-bound user-mode computations.
1441  *
1442  * Offloading of callbacks can also be used as an energy-efficiency
1443  * measure because CPUs with no RCU callbacks queued are more aggressive
1444  * about entering dyntick-idle mode.
1445  */
1446
1447
1448 /*
1449  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1450  * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1451  * comma-separated list of CPUs and/or CPU ranges.  If an invalid list is
1452  * given, a warning is emitted and all CPUs are offloaded.
1453  */
1454 static int __init rcu_nocb_setup(char *str)
1455 {
1456         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1457         if (!strcasecmp(str, "all"))
1458                 cpumask_setall(rcu_nocb_mask);
1459         else
1460                 if (cpulist_parse(str, rcu_nocb_mask)) {
1461                         pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1462                         cpumask_setall(rcu_nocb_mask);
1463                 }
1464         return 1;
1465 }
1466 __setup("rcu_nocbs=", rcu_nocb_setup);
1467
1468 static int __init parse_rcu_nocb_poll(char *arg)
1469 {
1470         rcu_nocb_poll = true;
1471         return 0;
1472 }
1473 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1474
1475 /*
1476  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1477  * After all, the main point of bypassing is to avoid lock contention
1478  * on ->nocb_lock, which only can happen at high call_rcu() rates.
1479  */
1480 int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1481 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1482
1483 /*
1484  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
1485  * lock isn't immediately available, increment ->nocb_lock_contended to
1486  * flag the contention.
1487  */
1488 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1489 {
1490         lockdep_assert_irqs_disabled();
1491         if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1492                 return;
1493         atomic_inc(&rdp->nocb_lock_contended);
1494         WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1495         smp_mb__after_atomic(); /* atomic_inc() before lock. */
1496         raw_spin_lock(&rdp->nocb_bypass_lock);
1497         smp_mb__before_atomic(); /* atomic_dec() after lock. */
1498         atomic_dec(&rdp->nocb_lock_contended);
1499 }
1500
1501 /*
1502  * Spinwait until the specified rcu_data structure's ->nocb_lock is
1503  * not contended.  Please note that this is extremely special-purpose,
1504  * relying on the fact that at most two kthreads and one CPU contend for
1505  * this lock, and also that the two kthreads are guaranteed to have frequent
1506  * grace-period-duration time intervals between successive acquisitions
1507  * of the lock.  This allows us to use an extremely simple throttling
1508  * mechanism, and further to apply it only to the CPU doing floods of
1509  * call_rcu() invocations.  Don't try this at home!
1510  */
1511 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1512 {
1513         WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1514         while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1515                 cpu_relax();
1516 }
1517
1518 /*
1519  * Conditionally acquire the specified rcu_data structure's
1520  * ->nocb_bypass_lock.
1521  */
1522 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1523 {
1524         lockdep_assert_irqs_disabled();
1525         return raw_spin_trylock(&rdp->nocb_bypass_lock);
1526 }
1527
1528 /*
1529  * Release the specified rcu_data structure's ->nocb_bypass_lock.
1530  */
1531 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1532 {
1533         lockdep_assert_irqs_disabled();
1534         raw_spin_unlock(&rdp->nocb_bypass_lock);
1535 }
1536
1537 /*
1538  * Acquire the specified rcu_data structure's ->nocb_lock, but only
1539  * if it corresponds to a no-CBs CPU.
1540  */
1541 static void rcu_nocb_lock(struct rcu_data *rdp)
1542 {
1543         lockdep_assert_irqs_disabled();
1544         if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1545                 return;
1546         raw_spin_lock(&rdp->nocb_lock);
1547 }
1548
1549 /*
1550  * Release the specified rcu_data structure's ->nocb_lock, but only
1551  * if it corresponds to a no-CBs CPU.
1552  */
1553 static void rcu_nocb_unlock(struct rcu_data *rdp)
1554 {
1555         if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1556                 lockdep_assert_irqs_disabled();
1557                 raw_spin_unlock(&rdp->nocb_lock);
1558         }
1559 }
1560
1561 /*
1562  * Release the specified rcu_data structure's ->nocb_lock and restore
1563  * interrupts, but only if it corresponds to a no-CBs CPU.
1564  */
1565 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1566                                        unsigned long flags)
1567 {
1568         if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1569                 lockdep_assert_irqs_disabled();
1570                 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1571         } else {
1572                 local_irq_restore(flags);
1573         }
1574 }
1575
1576 /* Lockdep check that ->cblist may be safely accessed. */
1577 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1578 {
1579         lockdep_assert_irqs_disabled();
1580         if (rcu_segcblist_is_offloaded(&rdp->cblist) &&
1581             cpu_online(rdp->cpu))
1582                 lockdep_assert_held(&rdp->nocb_lock);
1583 }
1584
1585 /*
1586  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1587  * grace period.
1588  */
1589 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1590 {
1591         swake_up_all(sq);
1592 }
1593
1594 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1595 {
1596         return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1597 }
1598
1599 static void rcu_init_one_nocb(struct rcu_node *rnp)
1600 {
1601         init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1602         init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1603 }
1604
1605 /* Is the specified CPU a no-CBs CPU? */
1606 bool rcu_is_nocb_cpu(int cpu)
1607 {
1608         if (cpumask_available(rcu_nocb_mask))
1609                 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1610         return false;
1611 }
1612
1613 /*
1614  * Kick the GP kthread for this NOCB group.  Caller holds ->nocb_lock
1615  * and this function releases it.
1616  */
1617 static void wake_nocb_gp(struct rcu_data *rdp, bool force,
1618                            unsigned long flags)
1619         __releases(rdp->nocb_lock)
1620 {
1621         bool needwake = false;
1622         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1623
1624         lockdep_assert_held(&rdp->nocb_lock);
1625         if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1626                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1627                                     TPS("AlreadyAwake"));
1628                 rcu_nocb_unlock_irqrestore(rdp, flags);
1629                 return;
1630         }
1631         del_timer(&rdp->nocb_timer);
1632         rcu_nocb_unlock_irqrestore(rdp, flags);
1633         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1634         if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1635                 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1636                 needwake = true;
1637                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1638         }
1639         raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1640         if (needwake)
1641                 wake_up_process(rdp_gp->nocb_gp_kthread);
1642 }
1643
1644 /*
1645  * Arrange to wake the GP kthread for this NOCB group at some future
1646  * time when it is safe to do so.
1647  */
1648 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1649                                const char *reason)
1650 {
1651         if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1652                 mod_timer(&rdp->nocb_timer, jiffies + 1);
1653         if (rdp->nocb_defer_wakeup < waketype)
1654                 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1655         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1656 }
1657
1658 /*
1659  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1660  * However, if there is a callback to be enqueued and if ->nocb_bypass
1661  * proves to be initially empty, just return false because the no-CB GP
1662  * kthread may need to be awakened in this case.
1663  *
1664  * Note that this function always returns true if rhp is NULL.
1665  */
1666 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1667                                      unsigned long j)
1668 {
1669         struct rcu_cblist rcl;
1670
1671         WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1672         rcu_lockdep_assert_cblist_protected(rdp);
1673         lockdep_assert_held(&rdp->nocb_bypass_lock);
1674         if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1675                 raw_spin_unlock(&rdp->nocb_bypass_lock);
1676                 return false;
1677         }
1678         /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1679         if (rhp)
1680                 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1681         rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1682         rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1683         WRITE_ONCE(rdp->nocb_bypass_first, j);
1684         rcu_nocb_bypass_unlock(rdp);
1685         return true;
1686 }
1687
1688 /*
1689  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1690  * However, if there is a callback to be enqueued and if ->nocb_bypass
1691  * proves to be initially empty, just return false because the no-CB GP
1692  * kthread may need to be awakened in this case.
1693  *
1694  * Note that this function always returns true if rhp is NULL.
1695  */
1696 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1697                                   unsigned long j)
1698 {
1699         if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1700                 return true;
1701         rcu_lockdep_assert_cblist_protected(rdp);
1702         rcu_nocb_bypass_lock(rdp);
1703         return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1704 }
1705
1706 /*
1707  * If the ->nocb_bypass_lock is immediately available, flush the
1708  * ->nocb_bypass queue into ->cblist.
1709  */
1710 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1711 {
1712         rcu_lockdep_assert_cblist_protected(rdp);
1713         if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1714             !rcu_nocb_bypass_trylock(rdp))
1715                 return;
1716         WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1717 }
1718
1719 /*
1720  * See whether it is appropriate to use the ->nocb_bypass list in order
1721  * to control contention on ->nocb_lock.  A limited number of direct
1722  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
1723  * is non-empty, further callbacks must be placed into ->nocb_bypass,
1724  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
1725  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
1726  * used if ->cblist is empty, because otherwise callbacks can be stranded
1727  * on ->nocb_bypass because we cannot count on the current CPU ever again
1728  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
1729  * non-empty, the corresponding no-CBs grace-period kthread must not be
1730  * in an indefinite sleep state.
1731  *
1732  * Finally, it is not permitted to use the bypass during early boot,
1733  * as doing so would confuse the auto-initialization code.  Besides
1734  * which, there is no point in worrying about lock contention while
1735  * there is only one CPU in operation.
1736  */
1737 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1738                                 bool *was_alldone, unsigned long flags)
1739 {
1740         unsigned long c;
1741         unsigned long cur_gp_seq;
1742         unsigned long j = jiffies;
1743         long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1744
1745         if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1746                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1747                 return false; /* Not offloaded, no bypassing. */
1748         }
1749         lockdep_assert_irqs_disabled();
1750
1751         // Don't use ->nocb_bypass during early boot.
1752         if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1753                 rcu_nocb_lock(rdp);
1754                 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1755                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1756                 return false;
1757         }
1758
1759         // If we have advanced to a new jiffy, reset counts to allow
1760         // moving back from ->nocb_bypass to ->cblist.
1761         if (j == rdp->nocb_nobypass_last) {
1762                 c = rdp->nocb_nobypass_count + 1;
1763         } else {
1764                 WRITE_ONCE(rdp->nocb_nobypass_last, j);
1765                 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1766                 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1767                                  nocb_nobypass_lim_per_jiffy))
1768                         c = 0;
1769                 else if (c > nocb_nobypass_lim_per_jiffy)
1770                         c = nocb_nobypass_lim_per_jiffy;
1771         }
1772         WRITE_ONCE(rdp->nocb_nobypass_count, c);
1773
1774         // If there hasn't yet been all that many ->cblist enqueues
1775         // this jiffy, tell the caller to enqueue onto ->cblist.  But flush
1776         // ->nocb_bypass first.
1777         if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1778                 rcu_nocb_lock(rdp);
1779                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1780                 if (*was_alldone)
1781                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1782                                             TPS("FirstQ"));
1783                 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1784                 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1785                 return false; // Caller must enqueue the callback.
1786         }
1787
1788         // If ->nocb_bypass has been used too long or is too full,
1789         // flush ->nocb_bypass to ->cblist.
1790         if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1791             ncbs >= qhimark) {
1792                 rcu_nocb_lock(rdp);
1793                 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1794                         *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1795                         if (*was_alldone)
1796                                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1797                                                     TPS("FirstQ"));
1798                         WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1799                         return false; // Caller must enqueue the callback.
1800                 }
1801                 if (j != rdp->nocb_gp_adv_time &&
1802                     rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1803                     rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1804                         rcu_advance_cbs_nowake(rdp->mynode, rdp);
1805                         rdp->nocb_gp_adv_time = j;
1806                 }
1807                 rcu_nocb_unlock_irqrestore(rdp, flags);
1808                 return true; // Callback already enqueued.
1809         }
1810
1811         // We need to use the bypass.
1812         rcu_nocb_wait_contended(rdp);
1813         rcu_nocb_bypass_lock(rdp);
1814         ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1815         rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1816         rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1817         if (!ncbs) {
1818                 WRITE_ONCE(rdp->nocb_bypass_first, j);
1819                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1820         }
1821         rcu_nocb_bypass_unlock(rdp);
1822         smp_mb(); /* Order enqueue before wake. */
1823         if (ncbs) {
1824                 local_irq_restore(flags);
1825         } else {
1826                 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
1827                 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1828                 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1829                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1830                                             TPS("FirstBQwake"));
1831                         __call_rcu_nocb_wake(rdp, true, flags);
1832                 } else {
1833                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1834                                             TPS("FirstBQnoWake"));
1835                         rcu_nocb_unlock_irqrestore(rdp, flags);
1836                 }
1837         }
1838         return true; // Callback already enqueued.
1839 }
1840
1841 /*
1842  * Awaken the no-CBs grace-period kthead if needed, either due to it
1843  * legitimately being asleep or due to overload conditions.
1844  *
1845  * If warranted, also wake up the kthread servicing this CPUs queues.
1846  */
1847 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1848                                  unsigned long flags)
1849                                  __releases(rdp->nocb_lock)
1850 {
1851         unsigned long cur_gp_seq;
1852         unsigned long j;
1853         long len;
1854         struct task_struct *t;
1855
1856         // If we are being polled or there is no kthread, just leave.
1857         t = READ_ONCE(rdp->nocb_gp_kthread);
1858         if (rcu_nocb_poll || !t) {
1859                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1860                                     TPS("WakeNotPoll"));
1861                 rcu_nocb_unlock_irqrestore(rdp, flags);
1862                 return;
1863         }
1864         // Need to actually to a wakeup.
1865         len = rcu_segcblist_n_cbs(&rdp->cblist);
1866         if (was_alldone) {
1867                 rdp->qlen_last_fqs_check = len;
1868                 if (!irqs_disabled_flags(flags)) {
1869                         /* ... if queue was empty ... */
1870                         wake_nocb_gp(rdp, false, flags);
1871                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1872                                             TPS("WakeEmpty"));
1873                 } else {
1874                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1875                                            TPS("WakeEmptyIsDeferred"));
1876                         rcu_nocb_unlock_irqrestore(rdp, flags);
1877                 }
1878         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1879                 /* ... or if many callbacks queued. */
1880                 rdp->qlen_last_fqs_check = len;
1881                 j = jiffies;
1882                 if (j != rdp->nocb_gp_adv_time &&
1883                     rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1884                     rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1885                         rcu_advance_cbs_nowake(rdp->mynode, rdp);
1886                         rdp->nocb_gp_adv_time = j;
1887                 }
1888                 smp_mb(); /* Enqueue before timer_pending(). */
1889                 if ((rdp->nocb_cb_sleep ||
1890                      !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1891                     !timer_pending(&rdp->nocb_bypass_timer))
1892                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1893                                            TPS("WakeOvfIsDeferred"));
1894                 rcu_nocb_unlock_irqrestore(rdp, flags);
1895         } else {
1896                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1897                 rcu_nocb_unlock_irqrestore(rdp, flags);
1898         }
1899         return;
1900 }
1901
1902 /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1903 static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
1904 {
1905         unsigned long flags;
1906         struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1907
1908         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1909         rcu_nocb_lock_irqsave(rdp, flags);
1910         smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1911         __call_rcu_nocb_wake(rdp, true, flags);
1912 }
1913
1914 /*
1915  * No-CBs GP kthreads come here to wait for additional callbacks to show up
1916  * or for grace periods to end.
1917  */
1918 static void nocb_gp_wait(struct rcu_data *my_rdp)
1919 {
1920         bool bypass = false;
1921         long bypass_ncbs;
1922         int __maybe_unused cpu = my_rdp->cpu;
1923         unsigned long cur_gp_seq;
1924         unsigned long flags;
1925         bool gotcbs = false;
1926         unsigned long j = jiffies;
1927         bool needwait_gp = false; // This prevents actual uninitialized use.
1928         bool needwake;
1929         bool needwake_gp;
1930         struct rcu_data *rdp;
1931         struct rcu_node *rnp;
1932         unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
1933
1934         /*
1935          * Each pass through the following loop checks for CBs and for the
1936          * nearest grace period (if any) to wait for next.  The CB kthreads
1937          * and the global grace-period kthread are awakened if needed.
1938          */
1939         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
1940                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1941                 rcu_nocb_lock_irqsave(rdp, flags);
1942                 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1943                 if (bypass_ncbs &&
1944                     (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1945                      bypass_ncbs > 2 * qhimark)) {
1946                         // Bypass full or old, so flush it.
1947                         (void)rcu_nocb_try_flush_bypass(rdp, j);
1948                         bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1949                 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1950                         rcu_nocb_unlock_irqrestore(rdp, flags);
1951                         continue; /* No callbacks here, try next. */
1952                 }
1953                 if (bypass_ncbs) {
1954                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1955                                             TPS("Bypass"));
1956                         bypass = true;
1957                 }
1958                 rnp = rdp->mynode;
1959                 if (bypass) {  // Avoid race with first bypass CB.
1960                         WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1961                                    RCU_NOCB_WAKE_NOT);
1962                         del_timer(&my_rdp->nocb_timer);
1963                 }
1964                 // Advance callbacks if helpful and low contention.
1965                 needwake_gp = false;
1966                 if (!rcu_segcblist_restempty(&rdp->cblist,
1967                                              RCU_NEXT_READY_TAIL) ||
1968                     (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1969                      rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1970                         raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1971                         needwake_gp = rcu_advance_cbs(rnp, rdp);
1972                         raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1973                 }
1974                 // Need to wait on some grace period?
1975                 WARN_ON_ONCE(!rcu_segcblist_restempty(&rdp->cblist,
1976                                                       RCU_NEXT_READY_TAIL));
1977                 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
1978                         if (!needwait_gp ||
1979                             ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
1980                                 wait_gp_seq = cur_gp_seq;
1981                         needwait_gp = true;
1982                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1983                                             TPS("NeedWaitGP"));
1984                 }
1985                 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
1986                         needwake = rdp->nocb_cb_sleep;
1987                         WRITE_ONCE(rdp->nocb_cb_sleep, false);
1988                         smp_mb(); /* CB invocation -after- GP end. */
1989                 } else {
1990                         needwake = false;
1991                 }
1992                 rcu_nocb_unlock_irqrestore(rdp, flags);
1993                 if (needwake) {
1994                         swake_up_one(&rdp->nocb_cb_wq);
1995                         gotcbs = true;
1996                 }
1997                 if (needwake_gp)
1998                         rcu_gp_kthread_wake();
1999         }
2000
2001         my_rdp->nocb_gp_bypass = bypass;
2002         my_rdp->nocb_gp_gp = needwait_gp;
2003         my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
2004         if (bypass && !rcu_nocb_poll) {
2005                 // At least one child with non-empty ->nocb_bypass, so set
2006                 // timer in order to avoid stranding its callbacks.
2007                 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2008                 mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2009                 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2010         }
2011         if (rcu_nocb_poll) {
2012                 /* Polling, so trace if first poll in the series. */
2013                 if (gotcbs)
2014                         trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2015                 schedule_timeout_interruptible(1);
2016         } else if (!needwait_gp) {
2017                 /* Wait for callbacks to appear. */
2018                 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2019                 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2020                                 !READ_ONCE(my_rdp->nocb_gp_sleep));
2021                 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2022         } else {
2023                 rnp = my_rdp->mynode;
2024                 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2025                 swait_event_interruptible_exclusive(
2026                         rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2027                         rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2028                         !READ_ONCE(my_rdp->nocb_gp_sleep));
2029                 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2030         }
2031         if (!rcu_nocb_poll) {
2032                 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2033                 if (bypass)
2034                         del_timer(&my_rdp->nocb_bypass_timer);
2035                 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2036                 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2037         }
2038         my_rdp->nocb_gp_seq = -1;
2039         WARN_ON(signal_pending(current));
2040 }
2041
2042 /*
2043  * No-CBs grace-period-wait kthread.  There is one of these per group
2044  * of CPUs, but only once at least one CPU in that group has come online
2045  * at least once since boot.  This kthread checks for newly posted
2046  * callbacks from any of the CPUs it is responsible for, waits for a
2047  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2048  * that then have callback-invocation work to do.
2049  */
2050 static int rcu_nocb_gp_kthread(void *arg)
2051 {
2052         struct rcu_data *rdp = arg;
2053
2054         for (;;) {
2055                 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2056                 nocb_gp_wait(rdp);
2057                 cond_resched_tasks_rcu_qs();
2058         }
2059         return 0;
2060 }
2061
2062 /*
2063  * Invoke any ready callbacks from the corresponding no-CBs CPU,
2064  * then, if there are no more, wait for more to appear.
2065  */
2066 static void nocb_cb_wait(struct rcu_data *rdp)
2067 {
2068         unsigned long cur_gp_seq;
2069         unsigned long flags;
2070         bool needwake_gp = false;
2071         struct rcu_node *rnp = rdp->mynode;
2072
2073         local_irq_save(flags);
2074         rcu_momentary_dyntick_idle();
2075         local_irq_restore(flags);
2076         local_bh_disable();
2077         rcu_do_batch(rdp);
2078         local_bh_enable();
2079         lockdep_assert_irqs_enabled();
2080         rcu_nocb_lock_irqsave(rdp, flags);
2081         if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2082             rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2083             raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2084                 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2085                 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2086         }
2087         if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2088                 rcu_nocb_unlock_irqrestore(rdp, flags);
2089                 if (needwake_gp)
2090                         rcu_gp_kthread_wake();
2091                 return;
2092         }
2093
2094         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2095         WRITE_ONCE(rdp->nocb_cb_sleep, true);
2096         rcu_nocb_unlock_irqrestore(rdp, flags);
2097         if (needwake_gp)
2098                 rcu_gp_kthread_wake();
2099         swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2100                                  !READ_ONCE(rdp->nocb_cb_sleep));
2101         if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2102                 /* ^^^ Ensure CB invocation follows _sleep test. */
2103                 return;
2104         }
2105         WARN_ON(signal_pending(current));
2106         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2107 }
2108
2109 /*
2110  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
2111  * nocb_cb_wait() to do the dirty work.
2112  */
2113 static int rcu_nocb_cb_kthread(void *arg)
2114 {
2115         struct rcu_data *rdp = arg;
2116
2117         // Each pass through this loop does one callback batch, and,
2118         // if there are no more ready callbacks, waits for them.
2119         for (;;) {
2120                 nocb_cb_wait(rdp);
2121                 cond_resched_tasks_rcu_qs();
2122         }
2123         return 0;
2124 }
2125
2126 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2127 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2128 {
2129         return READ_ONCE(rdp->nocb_defer_wakeup);
2130 }
2131
2132 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2133 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2134 {
2135         unsigned long flags;
2136         int ndw;
2137
2138         rcu_nocb_lock_irqsave(rdp, flags);
2139         if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2140                 rcu_nocb_unlock_irqrestore(rdp, flags);
2141                 return;
2142         }
2143         ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2144         WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2145         wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2146         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2147 }
2148
2149 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2150 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2151 {
2152         struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2153
2154         do_nocb_deferred_wakeup_common(rdp);
2155 }
2156
2157 /*
2158  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2159  * This means we do an inexact common-case check.  Note that if
2160  * we miss, ->nocb_timer will eventually clean things up.
2161  */
2162 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2163 {
2164         if (rcu_nocb_need_deferred_wakeup(rdp))
2165                 do_nocb_deferred_wakeup_common(rdp);
2166 }
2167
2168 void __init rcu_init_nohz(void)
2169 {
2170         int cpu;
2171         bool need_rcu_nocb_mask = false;
2172         struct rcu_data *rdp;
2173
2174 #if defined(CONFIG_NO_HZ_FULL)
2175         if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2176                 need_rcu_nocb_mask = true;
2177 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2178
2179         if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2180                 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2181                         pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2182                         return;
2183                 }
2184         }
2185         if (!cpumask_available(rcu_nocb_mask))
2186                 return;
2187
2188 #if defined(CONFIG_NO_HZ_FULL)
2189         if (tick_nohz_full_running)
2190                 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2191 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2192
2193         if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2194                 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2195                 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2196                             rcu_nocb_mask);
2197         }
2198         if (cpumask_empty(rcu_nocb_mask))
2199                 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2200         else
2201                 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2202                         cpumask_pr_args(rcu_nocb_mask));
2203         if (rcu_nocb_poll)
2204                 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2205
2206         for_each_cpu(cpu, rcu_nocb_mask) {
2207                 rdp = per_cpu_ptr(&rcu_data, cpu);
2208                 if (rcu_segcblist_empty(&rdp->cblist))
2209                         rcu_segcblist_init(&rdp->cblist);
2210                 rcu_segcblist_offload(&rdp->cblist);
2211         }
2212         rcu_organize_nocb_kthreads();
2213 }
2214
2215 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2216 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2217 {
2218         init_swait_queue_head(&rdp->nocb_cb_wq);
2219         init_swait_queue_head(&rdp->nocb_gp_wq);
2220         raw_spin_lock_init(&rdp->nocb_lock);
2221         raw_spin_lock_init(&rdp->nocb_bypass_lock);
2222         raw_spin_lock_init(&rdp->nocb_gp_lock);
2223         timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2224         timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2225         rcu_cblist_init(&rdp->nocb_bypass);
2226 }
2227
2228 /*
2229  * If the specified CPU is a no-CBs CPU that does not already have its
2230  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
2231  * for this CPU's group has not yet been created, spawn it as well.
2232  */
2233 static void rcu_spawn_one_nocb_kthread(int cpu)
2234 {
2235         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2236         struct rcu_data *rdp_gp;
2237         struct task_struct *t;
2238
2239         /*
2240          * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2241          * then nothing to do.
2242          */
2243         if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2244                 return;
2245
2246         /* If we didn't spawn the GP kthread first, reorganize! */
2247         rdp_gp = rdp->nocb_gp_rdp;
2248         if (!rdp_gp->nocb_gp_kthread) {
2249                 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2250                                 "rcuog/%d", rdp_gp->cpu);
2251                 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2252                         return;
2253                 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
2254         }
2255
2256         /* Spawn the kthread for this CPU. */
2257         t = kthread_run(rcu_nocb_cb_kthread, rdp,
2258                         "rcuo%c/%d", rcu_state.abbr, cpu);
2259         if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2260                 return;
2261         WRITE_ONCE(rdp->nocb_cb_kthread, t);
2262         WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2263 }
2264
2265 /*
2266  * If the specified CPU is a no-CBs CPU that does not already have its
2267  * rcuo kthread, spawn it.
2268  */
2269 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2270 {
2271         if (rcu_scheduler_fully_active)
2272                 rcu_spawn_one_nocb_kthread(cpu);
2273 }
2274
2275 /*
2276  * Once the scheduler is running, spawn rcuo kthreads for all online
2277  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2278  * non-boot CPUs come online -- if this changes, we will need to add
2279  * some mutual exclusion.
2280  */
2281 static void __init rcu_spawn_nocb_kthreads(void)
2282 {
2283         int cpu;
2284
2285         for_each_online_cpu(cpu)
2286                 rcu_spawn_cpu_nocb_kthread(cpu);
2287 }
2288
2289 /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
2290 static int rcu_nocb_gp_stride = -1;
2291 module_param(rcu_nocb_gp_stride, int, 0444);
2292
2293 /*
2294  * Initialize GP-CB relationships for all no-CBs CPU.
2295  */
2296 static void __init rcu_organize_nocb_kthreads(void)
2297 {
2298         int cpu;
2299         bool firsttime = true;
2300         bool gotnocbs = false;
2301         bool gotnocbscbs = true;
2302         int ls = rcu_nocb_gp_stride;
2303         int nl = 0;  /* Next GP kthread. */
2304         struct rcu_data *rdp;
2305         struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
2306         struct rcu_data *rdp_prev = NULL;
2307
2308         if (!cpumask_available(rcu_nocb_mask))
2309                 return;
2310         if (ls == -1) {
2311                 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2312                 rcu_nocb_gp_stride = ls;
2313         }
2314
2315         /*
2316          * Each pass through this loop sets up one rcu_data structure.
2317          * Should the corresponding CPU come online in the future, then
2318          * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2319          */
2320         for_each_cpu(cpu, rcu_nocb_mask) {
2321                 rdp = per_cpu_ptr(&rcu_data, cpu);
2322                 if (rdp->cpu >= nl) {
2323                         /* New GP kthread, set up for CBs & next GP. */
2324                         gotnocbs = true;
2325                         nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2326                         rdp->nocb_gp_rdp = rdp;
2327                         rdp_gp = rdp;
2328                         if (dump_tree) {
2329                                 if (!firsttime)
2330                                         pr_cont("%s\n", gotnocbscbs
2331                                                         ? "" : " (self only)");
2332                                 gotnocbscbs = false;
2333                                 firsttime = false;
2334                                 pr_alert("%s: No-CB GP kthread CPU %d:",
2335                                          __func__, cpu);
2336                         }
2337                 } else {
2338                         /* Another CB kthread, link to previous GP kthread. */
2339                         gotnocbscbs = true;
2340                         rdp->nocb_gp_rdp = rdp_gp;
2341                         rdp_prev->nocb_next_cb_rdp = rdp;
2342                         if (dump_tree)
2343                                 pr_cont(" %d", cpu);
2344                 }
2345                 rdp_prev = rdp;
2346         }
2347         if (gotnocbs && dump_tree)
2348                 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
2349 }
2350
2351 /*
2352  * Bind the current task to the offloaded CPUs.  If there are no offloaded
2353  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
2354  */
2355 void rcu_bind_current_to_nocb(void)
2356 {
2357         if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2358                 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2359 }
2360 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2361
2362 /*
2363  * Dump out nocb grace-period kthread state for the specified rcu_data
2364  * structure.
2365  */
2366 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2367 {
2368         struct rcu_node *rnp = rdp->mynode;
2369
2370         pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2371                 rdp->cpu,
2372                 "kK"[!!rdp->nocb_gp_kthread],
2373                 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2374                 "dD"[!!rdp->nocb_defer_wakeup],
2375                 "tT"[timer_pending(&rdp->nocb_timer)],
2376                 "bB"[timer_pending(&rdp->nocb_bypass_timer)],
2377                 "sS"[!!rdp->nocb_gp_sleep],
2378                 ".W"[swait_active(&rdp->nocb_gp_wq)],
2379                 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
2380                 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
2381                 ".B"[!!rdp->nocb_gp_bypass],
2382                 ".G"[!!rdp->nocb_gp_gp],
2383                 (long)rdp->nocb_gp_seq,
2384                 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2385 }
2386
2387 /* Dump out nocb kthread state for the specified rcu_data structure. */
2388 static void show_rcu_nocb_state(struct rcu_data *rdp)
2389 {
2390         struct rcu_segcblist *rsclp = &rdp->cblist;
2391         bool waslocked;
2392         bool wastimer;
2393         bool wassleep;
2394
2395         if (rdp->nocb_gp_rdp == rdp)
2396                 show_rcu_nocb_gp_state(rdp);
2397
2398         pr_info("   CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2399                 rdp->cpu, rdp->nocb_gp_rdp->cpu,
2400                 "kK"[!!rdp->nocb_cb_kthread],
2401                 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2402                 "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2403                 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2404                 "sS"[!!rdp->nocb_cb_sleep],
2405                 ".W"[swait_active(&rdp->nocb_cb_wq)],
2406                 jiffies - rdp->nocb_bypass_first,
2407                 jiffies - rdp->nocb_nobypass_last,
2408                 rdp->nocb_nobypass_count,
2409                 ".D"[rcu_segcblist_ready_cbs(rsclp)],
2410                 ".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2411                 ".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2412                 ".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2413                 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2414                 rcu_segcblist_n_cbs(&rdp->cblist));
2415
2416         /* It is OK for GP kthreads to have GP state. */
2417         if (rdp->nocb_gp_rdp == rdp)
2418                 return;
2419
2420         waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2421         wastimer = timer_pending(&rdp->nocb_timer);
2422         wassleep = swait_active(&rdp->nocb_gp_wq);
2423         if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep &&
2424             !waslocked && !wastimer && !wassleep)
2425                 return;  /* Nothing untowards. */
2426
2427         pr_info("   !!! %c%c%c%c %c\n",
2428                 "lL"[waslocked],
2429                 "dD"[!!rdp->nocb_defer_wakeup],
2430                 "tT"[wastimer],
2431                 "sS"[!!rdp->nocb_gp_sleep],
2432                 ".W"[wassleep]);
2433 }
2434
2435 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2436
2437 /* No ->nocb_lock to acquire.  */
2438 static void rcu_nocb_lock(struct rcu_data *rdp)
2439 {
2440 }
2441
2442 /* No ->nocb_lock to release.  */
2443 static void rcu_nocb_unlock(struct rcu_data *rdp)
2444 {
2445 }
2446
2447 /* No ->nocb_lock to release.  */
2448 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2449                                        unsigned long flags)
2450 {
2451         local_irq_restore(flags);
2452 }
2453
2454 /* Lockdep check that ->cblist may be safely accessed. */
2455 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2456 {
2457         lockdep_assert_irqs_disabled();
2458 }
2459
2460 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2461 {
2462 }
2463
2464 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2465 {
2466         return NULL;
2467 }
2468
2469 static void rcu_init_one_nocb(struct rcu_node *rnp)
2470 {
2471 }
2472
2473 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2474                                   unsigned long j)
2475 {
2476         return true;
2477 }
2478
2479 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2480                                 bool *was_alldone, unsigned long flags)
2481 {
2482         return false;
2483 }
2484
2485 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2486                                  unsigned long flags)
2487 {
2488         WARN_ON_ONCE(1);  /* Should be dead code! */
2489 }
2490
2491 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2492 {
2493 }
2494
2495 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2496 {
2497         return false;
2498 }
2499
2500 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2501 {
2502 }
2503
2504 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2505 {
2506 }
2507
2508 static void __init rcu_spawn_nocb_kthreads(void)
2509 {
2510 }
2511
2512 static void show_rcu_nocb_state(struct rcu_data *rdp)
2513 {
2514 }
2515
2516 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2517
2518 /*
2519  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2520  * grace-period kthread will do force_quiescent_state() processing?
2521  * The idea is to avoid waking up RCU core processing on such a
2522  * CPU unless the grace period has extended for too long.
2523  *
2524  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2525  * CONFIG_RCU_NOCB_CPU CPUs.
2526  */
2527 static bool rcu_nohz_full_cpu(void)
2528 {
2529 #ifdef CONFIG_NO_HZ_FULL
2530         if (tick_nohz_full_cpu(smp_processor_id()) &&
2531             (!rcu_gp_in_progress() ||
2532              ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2533                 return true;
2534 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2535         return false;
2536 }
2537
2538 /*
2539  * Bind the RCU grace-period kthreads to the housekeeping CPU.
2540  */
2541 static void rcu_bind_gp_kthread(void)
2542 {
2543         if (!tick_nohz_full_enabled())
2544                 return;
2545         housekeeping_affine(current, HK_FLAG_RCU);
2546 }
2547
2548 /* Record the current task on dyntick-idle entry. */
2549 static void rcu_dynticks_task_enter(void)
2550 {
2551 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2552         WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2553 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2554 }
2555
2556 /* Record no current task on dyntick-idle exit. */
2557 static void rcu_dynticks_task_exit(void)
2558 {
2559 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2560         WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2561 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2562 }