]> asedeno.scripts.mit.edu Git - linux.git/blob - kernel/time/alarmtimer.c
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target...
[linux.git] / kernel / time / alarmtimer.c
1 /*
2  * Alarmtimer interface
3  *
4  * This interface provides a timer which is similarto hrtimers,
5  * but triggers a RTC alarm if the box is suspend.
6  *
7  * This interface is influenced by the Android RTC Alarm timer
8  * interface.
9  *
10  * Copyright (C) 2010 IBM Corperation
11  *
12  * Author: John Stultz <john.stultz@linaro.org>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 #include <linux/time.h>
19 #include <linux/hrtimer.h>
20 #include <linux/timerqueue.h>
21 #include <linux/rtc.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/debug.h>
24 #include <linux/alarmtimer.h>
25 #include <linux/mutex.h>
26 #include <linux/platform_device.h>
27 #include <linux/posix-timers.h>
28 #include <linux/workqueue.h>
29 #include <linux/freezer.h>
30 #include <linux/compat.h>
31
32 #include "posix-timers.h"
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/alarmtimer.h>
36
37 /**
38  * struct alarm_base - Alarm timer bases
39  * @lock:               Lock for syncrhonized access to the base
40  * @timerqueue:         Timerqueue head managing the list of events
41  * @gettime:            Function to read the time correlating to the base
42  * @base_clockid:       clockid for the base
43  */
44 static struct alarm_base {
45         spinlock_t              lock;
46         struct timerqueue_head  timerqueue;
47         ktime_t                 (*gettime)(void);
48         clockid_t               base_clockid;
49 } alarm_bases[ALARM_NUMTYPE];
50
51 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
52 /* freezer information to handle clock_nanosleep triggered wakeups */
53 static enum alarmtimer_type freezer_alarmtype;
54 static ktime_t freezer_expires;
55 static ktime_t freezer_delta;
56 static DEFINE_SPINLOCK(freezer_delta_lock);
57 #endif
58
59 static struct wakeup_source *ws;
60
61 #ifdef CONFIG_RTC_CLASS
62 /* rtc timer and device for setting alarm wakeups at suspend */
63 static struct rtc_timer         rtctimer;
64 static struct rtc_device        *rtcdev;
65 static DEFINE_SPINLOCK(rtcdev_lock);
66
67 /**
68  * alarmtimer_get_rtcdev - Return selected rtcdevice
69  *
70  * This function returns the rtc device to use for wakealarms.
71  * If one has not already been chosen, it checks to see if a
72  * functional rtc device is available.
73  */
74 struct rtc_device *alarmtimer_get_rtcdev(void)
75 {
76         unsigned long flags;
77         struct rtc_device *ret;
78
79         spin_lock_irqsave(&rtcdev_lock, flags);
80         ret = rtcdev;
81         spin_unlock_irqrestore(&rtcdev_lock, flags);
82
83         return ret;
84 }
85 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
86
87 static int alarmtimer_rtc_add_device(struct device *dev,
88                                 struct class_interface *class_intf)
89 {
90         unsigned long flags;
91         struct rtc_device *rtc = to_rtc_device(dev);
92
93         if (rtcdev)
94                 return -EBUSY;
95
96         if (!rtc->ops->set_alarm)
97                 return -1;
98         if (!device_may_wakeup(rtc->dev.parent))
99                 return -1;
100
101         spin_lock_irqsave(&rtcdev_lock, flags);
102         if (!rtcdev) {
103                 rtcdev = rtc;
104                 /* hold a reference so it doesn't go away */
105                 get_device(dev);
106         }
107         spin_unlock_irqrestore(&rtcdev_lock, flags);
108         return 0;
109 }
110
111 static inline void alarmtimer_rtc_timer_init(void)
112 {
113         rtc_timer_init(&rtctimer, NULL, NULL);
114 }
115
116 static struct class_interface alarmtimer_rtc_interface = {
117         .add_dev = &alarmtimer_rtc_add_device,
118 };
119
120 static int alarmtimer_rtc_interface_setup(void)
121 {
122         alarmtimer_rtc_interface.class = rtc_class;
123         return class_interface_register(&alarmtimer_rtc_interface);
124 }
125 static void alarmtimer_rtc_interface_remove(void)
126 {
127         class_interface_unregister(&alarmtimer_rtc_interface);
128 }
129 #else
130 struct rtc_device *alarmtimer_get_rtcdev(void)
131 {
132         return NULL;
133 }
134 #define rtcdev (NULL)
135 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
136 static inline void alarmtimer_rtc_interface_remove(void) { }
137 static inline void alarmtimer_rtc_timer_init(void) { }
138 #endif
139
140 /**
141  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
142  * @base: pointer to the base where the timer is being run
143  * @alarm: pointer to alarm being enqueued.
144  *
145  * Adds alarm to a alarm_base timerqueue
146  *
147  * Must hold base->lock when calling.
148  */
149 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
150 {
151         if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
152                 timerqueue_del(&base->timerqueue, &alarm->node);
153
154         timerqueue_add(&base->timerqueue, &alarm->node);
155         alarm->state |= ALARMTIMER_STATE_ENQUEUED;
156 }
157
158 /**
159  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
160  * @base: pointer to the base where the timer is running
161  * @alarm: pointer to alarm being removed
162  *
163  * Removes alarm to a alarm_base timerqueue
164  *
165  * Must hold base->lock when calling.
166  */
167 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
168 {
169         if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
170                 return;
171
172         timerqueue_del(&base->timerqueue, &alarm->node);
173         alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
174 }
175
176
177 /**
178  * alarmtimer_fired - Handles alarm hrtimer being fired.
179  * @timer: pointer to hrtimer being run
180  *
181  * When a alarm timer fires, this runs through the timerqueue to
182  * see which alarms expired, and runs those. If there are more alarm
183  * timers queued for the future, we set the hrtimer to fire when
184  * when the next future alarm timer expires.
185  */
186 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
187 {
188         struct alarm *alarm = container_of(timer, struct alarm, timer);
189         struct alarm_base *base = &alarm_bases[alarm->type];
190         unsigned long flags;
191         int ret = HRTIMER_NORESTART;
192         int restart = ALARMTIMER_NORESTART;
193
194         spin_lock_irqsave(&base->lock, flags);
195         alarmtimer_dequeue(base, alarm);
196         spin_unlock_irqrestore(&base->lock, flags);
197
198         if (alarm->function)
199                 restart = alarm->function(alarm, base->gettime());
200
201         spin_lock_irqsave(&base->lock, flags);
202         if (restart != ALARMTIMER_NORESTART) {
203                 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
204                 alarmtimer_enqueue(base, alarm);
205                 ret = HRTIMER_RESTART;
206         }
207         spin_unlock_irqrestore(&base->lock, flags);
208
209         trace_alarmtimer_fired(alarm, base->gettime());
210         return ret;
211
212 }
213
214 ktime_t alarm_expires_remaining(const struct alarm *alarm)
215 {
216         struct alarm_base *base = &alarm_bases[alarm->type];
217         return ktime_sub(alarm->node.expires, base->gettime());
218 }
219 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
220
221 #ifdef CONFIG_RTC_CLASS
222 /**
223  * alarmtimer_suspend - Suspend time callback
224  * @dev: unused
225  * @state: unused
226  *
227  * When we are going into suspend, we look through the bases
228  * to see which is the soonest timer to expire. We then
229  * set an rtc timer to fire that far into the future, which
230  * will wake us from suspend.
231  */
232 static int alarmtimer_suspend(struct device *dev)
233 {
234         ktime_t min, now, expires;
235         int i, ret, type;
236         struct rtc_device *rtc;
237         unsigned long flags;
238         struct rtc_time tm;
239
240         spin_lock_irqsave(&freezer_delta_lock, flags);
241         min = freezer_delta;
242         expires = freezer_expires;
243         type = freezer_alarmtype;
244         freezer_delta = 0;
245         spin_unlock_irqrestore(&freezer_delta_lock, flags);
246
247         rtc = alarmtimer_get_rtcdev();
248         /* If we have no rtcdev, just return */
249         if (!rtc)
250                 return 0;
251
252         /* Find the soonest timer to expire*/
253         for (i = 0; i < ALARM_NUMTYPE; i++) {
254                 struct alarm_base *base = &alarm_bases[i];
255                 struct timerqueue_node *next;
256                 ktime_t delta;
257
258                 spin_lock_irqsave(&base->lock, flags);
259                 next = timerqueue_getnext(&base->timerqueue);
260                 spin_unlock_irqrestore(&base->lock, flags);
261                 if (!next)
262                         continue;
263                 delta = ktime_sub(next->expires, base->gettime());
264                 if (!min || (delta < min)) {
265                         expires = next->expires;
266                         min = delta;
267                         type = i;
268                 }
269         }
270         if (min == 0)
271                 return 0;
272
273         if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
274                 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
275                 return -EBUSY;
276         }
277
278         trace_alarmtimer_suspend(expires, type);
279
280         /* Setup an rtc timer to fire that far in the future */
281         rtc_timer_cancel(rtc, &rtctimer);
282         rtc_read_time(rtc, &tm);
283         now = rtc_tm_to_ktime(tm);
284         now = ktime_add(now, min);
285
286         /* Set alarm, if in the past reject suspend briefly to handle */
287         ret = rtc_timer_start(rtc, &rtctimer, now, 0);
288         if (ret < 0)
289                 __pm_wakeup_event(ws, MSEC_PER_SEC);
290         return ret;
291 }
292
293 static int alarmtimer_resume(struct device *dev)
294 {
295         struct rtc_device *rtc;
296
297         rtc = alarmtimer_get_rtcdev();
298         if (rtc)
299                 rtc_timer_cancel(rtc, &rtctimer);
300         return 0;
301 }
302
303 #else
304 static int alarmtimer_suspend(struct device *dev)
305 {
306         return 0;
307 }
308
309 static int alarmtimer_resume(struct device *dev)
310 {
311         return 0;
312 }
313 #endif
314
315 /**
316  * alarm_init - Initialize an alarm structure
317  * @alarm: ptr to alarm to be initialized
318  * @type: the type of the alarm
319  * @function: callback that is run when the alarm fires
320  */
321 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
322                 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
323 {
324         timerqueue_init(&alarm->node);
325         hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
326                         HRTIMER_MODE_ABS);
327         alarm->timer.function = alarmtimer_fired;
328         alarm->function = function;
329         alarm->type = type;
330         alarm->state = ALARMTIMER_STATE_INACTIVE;
331 }
332 EXPORT_SYMBOL_GPL(alarm_init);
333
334 /**
335  * alarm_start - Sets an absolute alarm to fire
336  * @alarm: ptr to alarm to set
337  * @start: time to run the alarm
338  */
339 void alarm_start(struct alarm *alarm, ktime_t start)
340 {
341         struct alarm_base *base = &alarm_bases[alarm->type];
342         unsigned long flags;
343
344         spin_lock_irqsave(&base->lock, flags);
345         alarm->node.expires = start;
346         alarmtimer_enqueue(base, alarm);
347         hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
348         spin_unlock_irqrestore(&base->lock, flags);
349
350         trace_alarmtimer_start(alarm, base->gettime());
351 }
352 EXPORT_SYMBOL_GPL(alarm_start);
353
354 /**
355  * alarm_start_relative - Sets a relative alarm to fire
356  * @alarm: ptr to alarm to set
357  * @start: time relative to now to run the alarm
358  */
359 void alarm_start_relative(struct alarm *alarm, ktime_t start)
360 {
361         struct alarm_base *base = &alarm_bases[alarm->type];
362
363         start = ktime_add_safe(start, base->gettime());
364         alarm_start(alarm, start);
365 }
366 EXPORT_SYMBOL_GPL(alarm_start_relative);
367
368 void alarm_restart(struct alarm *alarm)
369 {
370         struct alarm_base *base = &alarm_bases[alarm->type];
371         unsigned long flags;
372
373         spin_lock_irqsave(&base->lock, flags);
374         hrtimer_set_expires(&alarm->timer, alarm->node.expires);
375         hrtimer_restart(&alarm->timer);
376         alarmtimer_enqueue(base, alarm);
377         spin_unlock_irqrestore(&base->lock, flags);
378 }
379 EXPORT_SYMBOL_GPL(alarm_restart);
380
381 /**
382  * alarm_try_to_cancel - Tries to cancel an alarm timer
383  * @alarm: ptr to alarm to be canceled
384  *
385  * Returns 1 if the timer was canceled, 0 if it was not running,
386  * and -1 if the callback was running
387  */
388 int alarm_try_to_cancel(struct alarm *alarm)
389 {
390         struct alarm_base *base = &alarm_bases[alarm->type];
391         unsigned long flags;
392         int ret;
393
394         spin_lock_irqsave(&base->lock, flags);
395         ret = hrtimer_try_to_cancel(&alarm->timer);
396         if (ret >= 0)
397                 alarmtimer_dequeue(base, alarm);
398         spin_unlock_irqrestore(&base->lock, flags);
399
400         trace_alarmtimer_cancel(alarm, base->gettime());
401         return ret;
402 }
403 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
404
405
406 /**
407  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
408  * @alarm: ptr to alarm to be canceled
409  *
410  * Returns 1 if the timer was canceled, 0 if it was not active.
411  */
412 int alarm_cancel(struct alarm *alarm)
413 {
414         for (;;) {
415                 int ret = alarm_try_to_cancel(alarm);
416                 if (ret >= 0)
417                         return ret;
418                 cpu_relax();
419         }
420 }
421 EXPORT_SYMBOL_GPL(alarm_cancel);
422
423
424 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
425 {
426         u64 overrun = 1;
427         ktime_t delta;
428
429         delta = ktime_sub(now, alarm->node.expires);
430
431         if (delta < 0)
432                 return 0;
433
434         if (unlikely(delta >= interval)) {
435                 s64 incr = ktime_to_ns(interval);
436
437                 overrun = ktime_divns(delta, incr);
438
439                 alarm->node.expires = ktime_add_ns(alarm->node.expires,
440                                                         incr*overrun);
441
442                 if (alarm->node.expires > now)
443                         return overrun;
444                 /*
445                  * This (and the ktime_add() below) is the
446                  * correction for exact:
447                  */
448                 overrun++;
449         }
450
451         alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
452         return overrun;
453 }
454 EXPORT_SYMBOL_GPL(alarm_forward);
455
456 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
457 {
458         struct alarm_base *base = &alarm_bases[alarm->type];
459
460         return alarm_forward(alarm, base->gettime(), interval);
461 }
462 EXPORT_SYMBOL_GPL(alarm_forward_now);
463
464 #ifdef CONFIG_POSIX_TIMERS
465
466 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
467 {
468         struct alarm_base *base;
469         unsigned long flags;
470         ktime_t delta;
471
472         switch(type) {
473         case ALARM_REALTIME:
474                 base = &alarm_bases[ALARM_REALTIME];
475                 type = ALARM_REALTIME_FREEZER;
476                 break;
477         case ALARM_BOOTTIME:
478                 base = &alarm_bases[ALARM_BOOTTIME];
479                 type = ALARM_BOOTTIME_FREEZER;
480                 break;
481         default:
482                 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
483                 return;
484         }
485
486         delta = ktime_sub(absexp, base->gettime());
487
488         spin_lock_irqsave(&freezer_delta_lock, flags);
489         if (!freezer_delta || (delta < freezer_delta)) {
490                 freezer_delta = delta;
491                 freezer_expires = absexp;
492                 freezer_alarmtype = type;
493         }
494         spin_unlock_irqrestore(&freezer_delta_lock, flags);
495 }
496
497 /**
498  * clock2alarm - helper that converts from clockid to alarmtypes
499  * @clockid: clockid.
500  */
501 static enum alarmtimer_type clock2alarm(clockid_t clockid)
502 {
503         if (clockid == CLOCK_REALTIME_ALARM)
504                 return ALARM_REALTIME;
505         if (clockid == CLOCK_BOOTTIME_ALARM)
506                 return ALARM_BOOTTIME;
507         return -1;
508 }
509
510 /**
511  * alarm_handle_timer - Callback for posix timers
512  * @alarm: alarm that fired
513  *
514  * Posix timer callback for expired alarm timers.
515  */
516 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
517                                                         ktime_t now)
518 {
519         struct k_itimer *ptr = container_of(alarm, struct k_itimer,
520                                             it.alarm.alarmtimer);
521         enum alarmtimer_restart result = ALARMTIMER_NORESTART;
522         unsigned long flags;
523         int si_private = 0;
524
525         spin_lock_irqsave(&ptr->it_lock, flags);
526
527         ptr->it_active = 0;
528         if (ptr->it_interval)
529                 si_private = ++ptr->it_requeue_pending;
530
531         if (posix_timer_event(ptr, si_private) && ptr->it_interval) {
532                 /*
533                  * Handle ignored signals and rearm the timer. This will go
534                  * away once we handle ignored signals proper.
535                  */
536                 ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval);
537                 ++ptr->it_requeue_pending;
538                 ptr->it_active = 1;
539                 result = ALARMTIMER_RESTART;
540         }
541         spin_unlock_irqrestore(&ptr->it_lock, flags);
542
543         return result;
544 }
545
546 /**
547  * alarm_timer_rearm - Posix timer callback for rearming timer
548  * @timr:       Pointer to the posixtimer data struct
549  */
550 static void alarm_timer_rearm(struct k_itimer *timr)
551 {
552         struct alarm *alarm = &timr->it.alarm.alarmtimer;
553
554         timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
555         alarm_start(alarm, alarm->node.expires);
556 }
557
558 /**
559  * alarm_timer_forward - Posix timer callback for forwarding timer
560  * @timr:       Pointer to the posixtimer data struct
561  * @now:        Current time to forward the timer against
562  */
563 static int alarm_timer_forward(struct k_itimer *timr, ktime_t now)
564 {
565         struct alarm *alarm = &timr->it.alarm.alarmtimer;
566
567         return (int) alarm_forward(alarm, timr->it_interval, now);
568 }
569
570 /**
571  * alarm_timer_remaining - Posix timer callback to retrieve remaining time
572  * @timr:       Pointer to the posixtimer data struct
573  * @now:        Current time to calculate against
574  */
575 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
576 {
577         struct alarm *alarm = &timr->it.alarm.alarmtimer;
578
579         return ktime_sub(now, alarm->node.expires);
580 }
581
582 /**
583  * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
584  * @timr:       Pointer to the posixtimer data struct
585  */
586 static int alarm_timer_try_to_cancel(struct k_itimer *timr)
587 {
588         return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
589 }
590
591 /**
592  * alarm_timer_arm - Posix timer callback to arm a timer
593  * @timr:       Pointer to the posixtimer data struct
594  * @expires:    The new expiry time
595  * @absolute:   Expiry value is absolute time
596  * @sigev_none: Posix timer does not deliver signals
597  */
598 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
599                             bool absolute, bool sigev_none)
600 {
601         struct alarm *alarm = &timr->it.alarm.alarmtimer;
602         struct alarm_base *base = &alarm_bases[alarm->type];
603
604         if (!absolute)
605                 expires = ktime_add_safe(expires, base->gettime());
606         if (sigev_none)
607                 alarm->node.expires = expires;
608         else
609                 alarm_start(&timr->it.alarm.alarmtimer, expires);
610 }
611
612 /**
613  * alarm_clock_getres - posix getres interface
614  * @which_clock: clockid
615  * @tp: timespec to fill
616  *
617  * Returns the granularity of underlying alarm base clock
618  */
619 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
620 {
621         if (!alarmtimer_get_rtcdev())
622                 return -EINVAL;
623
624         tp->tv_sec = 0;
625         tp->tv_nsec = hrtimer_resolution;
626         return 0;
627 }
628
629 /**
630  * alarm_clock_get - posix clock_get interface
631  * @which_clock: clockid
632  * @tp: timespec to fill.
633  *
634  * Provides the underlying alarm base time.
635  */
636 static int alarm_clock_get(clockid_t which_clock, struct timespec64 *tp)
637 {
638         struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
639
640         if (!alarmtimer_get_rtcdev())
641                 return -EINVAL;
642
643         *tp = ktime_to_timespec64(base->gettime());
644         return 0;
645 }
646
647 /**
648  * alarm_timer_create - posix timer_create interface
649  * @new_timer: k_itimer pointer to manage
650  *
651  * Initializes the k_itimer structure.
652  */
653 static int alarm_timer_create(struct k_itimer *new_timer)
654 {
655         enum  alarmtimer_type type;
656
657         if (!alarmtimer_get_rtcdev())
658                 return -ENOTSUPP;
659
660         if (!capable(CAP_WAKE_ALARM))
661                 return -EPERM;
662
663         type = clock2alarm(new_timer->it_clock);
664         alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
665         return 0;
666 }
667
668 /**
669  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
670  * @alarm: ptr to alarm that fired
671  *
672  * Wakes up the task that set the alarmtimer
673  */
674 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
675                                                                 ktime_t now)
676 {
677         struct task_struct *task = (struct task_struct *)alarm->data;
678
679         alarm->data = NULL;
680         if (task)
681                 wake_up_process(task);
682         return ALARMTIMER_NORESTART;
683 }
684
685 /**
686  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
687  * @alarm: ptr to alarmtimer
688  * @absexp: absolute expiration time
689  *
690  * Sets the alarm timer and sleeps until it is fired or interrupted.
691  */
692 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
693                                 enum alarmtimer_type type)
694 {
695         struct restart_block *restart;
696         alarm->data = (void *)current;
697         do {
698                 set_current_state(TASK_INTERRUPTIBLE);
699                 alarm_start(alarm, absexp);
700                 if (likely(alarm->data))
701                         schedule();
702
703                 alarm_cancel(alarm);
704         } while (alarm->data && !signal_pending(current));
705
706         __set_current_state(TASK_RUNNING);
707
708         if (!alarm->data)
709                 return 0;
710
711         if (freezing(current))
712                 alarmtimer_freezerset(absexp, type);
713         restart = &current->restart_block;
714         if (restart->nanosleep.type != TT_NONE) {
715                 struct timespec64 rmt;
716                 ktime_t rem;
717
718                 rem = ktime_sub(absexp, alarm_bases[type].gettime());
719
720                 if (rem <= 0)
721                         return 0;
722                 rmt = ktime_to_timespec64(rem);
723
724                 return nanosleep_copyout(restart, &rmt);
725         }
726         return -ERESTART_RESTARTBLOCK;
727 }
728
729 /**
730  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
731  * @restart: ptr to restart block
732  *
733  * Handles restarted clock_nanosleep calls
734  */
735 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
736 {
737         enum  alarmtimer_type type = restart->nanosleep.clockid;
738         ktime_t exp = restart->nanosleep.expires;
739         struct alarm alarm;
740
741         alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
742
743         return alarmtimer_do_nsleep(&alarm, exp, type);
744 }
745
746 /**
747  * alarm_timer_nsleep - alarmtimer nanosleep
748  * @which_clock: clockid
749  * @flags: determins abstime or relative
750  * @tsreq: requested sleep time (abs or rel)
751  * @rmtp: remaining sleep time saved
752  *
753  * Handles clock_nanosleep calls against _ALARM clockids
754  */
755 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
756                               const struct timespec64 *tsreq)
757 {
758         enum  alarmtimer_type type = clock2alarm(which_clock);
759         struct restart_block *restart = &current->restart_block;
760         struct alarm alarm;
761         ktime_t exp;
762         int ret = 0;
763
764         if (!alarmtimer_get_rtcdev())
765                 return -ENOTSUPP;
766
767         if (flags & ~TIMER_ABSTIME)
768                 return -EINVAL;
769
770         if (!capable(CAP_WAKE_ALARM))
771                 return -EPERM;
772
773         alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
774
775         exp = timespec64_to_ktime(*tsreq);
776         /* Convert (if necessary) to absolute time */
777         if (flags != TIMER_ABSTIME) {
778                 ktime_t now = alarm_bases[type].gettime();
779                 exp = ktime_add(now, exp);
780         }
781
782         ret = alarmtimer_do_nsleep(&alarm, exp, type);
783         if (ret != -ERESTART_RESTARTBLOCK)
784                 return ret;
785
786         /* abs timers don't set remaining time or restart */
787         if (flags == TIMER_ABSTIME)
788                 return -ERESTARTNOHAND;
789
790         restart->fn = alarm_timer_nsleep_restart;
791         restart->nanosleep.clockid = type;
792         restart->nanosleep.expires = exp;
793         return ret;
794 }
795
796 const struct k_clock alarm_clock = {
797         .clock_getres           = alarm_clock_getres,
798         .clock_get              = alarm_clock_get,
799         .timer_create           = alarm_timer_create,
800         .timer_set              = common_timer_set,
801         .timer_del              = common_timer_del,
802         .timer_get              = common_timer_get,
803         .timer_arm              = alarm_timer_arm,
804         .timer_rearm            = alarm_timer_rearm,
805         .timer_forward          = alarm_timer_forward,
806         .timer_remaining        = alarm_timer_remaining,
807         .timer_try_to_cancel    = alarm_timer_try_to_cancel,
808         .nsleep                 = alarm_timer_nsleep,
809 };
810 #endif /* CONFIG_POSIX_TIMERS */
811
812
813 /* Suspend hook structures */
814 static const struct dev_pm_ops alarmtimer_pm_ops = {
815         .suspend = alarmtimer_suspend,
816         .resume = alarmtimer_resume,
817 };
818
819 static struct platform_driver alarmtimer_driver = {
820         .driver = {
821                 .name = "alarmtimer",
822                 .pm = &alarmtimer_pm_ops,
823         }
824 };
825
826 /**
827  * alarmtimer_init - Initialize alarm timer code
828  *
829  * This function initializes the alarm bases and registers
830  * the posix clock ids.
831  */
832 static int __init alarmtimer_init(void)
833 {
834         struct platform_device *pdev;
835         int error = 0;
836         int i;
837
838         alarmtimer_rtc_timer_init();
839
840         /* Initialize alarm bases */
841         alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
842         alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
843         alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
844         alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
845         for (i = 0; i < ALARM_NUMTYPE; i++) {
846                 timerqueue_init_head(&alarm_bases[i].timerqueue);
847                 spin_lock_init(&alarm_bases[i].lock);
848         }
849
850         error = alarmtimer_rtc_interface_setup();
851         if (error)
852                 return error;
853
854         error = platform_driver_register(&alarmtimer_driver);
855         if (error)
856                 goto out_if;
857
858         pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
859         if (IS_ERR(pdev)) {
860                 error = PTR_ERR(pdev);
861                 goto out_drv;
862         }
863         ws = wakeup_source_register("alarmtimer");
864         return 0;
865
866 out_drv:
867         platform_driver_unregister(&alarmtimer_driver);
868 out_if:
869         alarmtimer_rtc_interface_remove();
870         return error;
871 }
872 device_initcall(alarmtimer_init);