]> asedeno.scripts.mit.edu Git - linux.git/blob - kernel/time/tick-broadcast.c
tick/broadcast: Reduce lock cacheline contention
[linux.git] / kernel / time / tick-broadcast.c
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/module.h>
23
24 #include "tick-internal.h"
25
26 /*
27  * Broadcast support for broken x86 hardware, where the local apic
28  * timer stops in C3 state.
29  */
30
31 static struct tick_device tick_broadcast_device;
32 static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly;
33 static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly;
34 static cpumask_var_t tmpmask __cpumask_var_read_mostly;
35 static int tick_broadcast_forced;
36
37 static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
38
39 #ifdef CONFIG_TICK_ONESHOT
40 static void tick_broadcast_clear_oneshot(int cpu);
41 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
42 #else
43 static inline void tick_broadcast_clear_oneshot(int cpu) { }
44 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
45 #endif
46
47 /*
48  * Debugging: see timer_list.c
49  */
50 struct tick_device *tick_get_broadcast_device(void)
51 {
52         return &tick_broadcast_device;
53 }
54
55 struct cpumask *tick_get_broadcast_mask(void)
56 {
57         return tick_broadcast_mask;
58 }
59
60 /*
61  * Start the device in periodic mode
62  */
63 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
64 {
65         if (bc)
66                 tick_setup_periodic(bc, 1);
67 }
68
69 /*
70  * Check, if the device can be utilized as broadcast device:
71  */
72 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
73                                         struct clock_event_device *newdev)
74 {
75         if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
76             (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
77             (newdev->features & CLOCK_EVT_FEAT_C3STOP))
78                 return false;
79
80         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
81             !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
82                 return false;
83
84         return !curdev || newdev->rating > curdev->rating;
85 }
86
87 /*
88  * Conditionally install/replace broadcast device
89  */
90 void tick_install_broadcast_device(struct clock_event_device *dev)
91 {
92         struct clock_event_device *cur = tick_broadcast_device.evtdev;
93
94         if (!tick_check_broadcast_device(cur, dev))
95                 return;
96
97         if (!try_module_get(dev->owner))
98                 return;
99
100         clockevents_exchange_device(cur, dev);
101         if (cur)
102                 cur->event_handler = clockevents_handle_noop;
103         tick_broadcast_device.evtdev = dev;
104         if (!cpumask_empty(tick_broadcast_mask))
105                 tick_broadcast_start_periodic(dev);
106         /*
107          * Inform all cpus about this. We might be in a situation
108          * where we did not switch to oneshot mode because the per cpu
109          * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
110          * of a oneshot capable broadcast device. Without that
111          * notification the systems stays stuck in periodic mode
112          * forever.
113          */
114         if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
115                 tick_clock_notify();
116 }
117
118 /*
119  * Check, if the device is the broadcast device
120  */
121 int tick_is_broadcast_device(struct clock_event_device *dev)
122 {
123         return (dev && tick_broadcast_device.evtdev == dev);
124 }
125
126 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
127 {
128         int ret = -ENODEV;
129
130         if (tick_is_broadcast_device(dev)) {
131                 raw_spin_lock(&tick_broadcast_lock);
132                 ret = __clockevents_update_freq(dev, freq);
133                 raw_spin_unlock(&tick_broadcast_lock);
134         }
135         return ret;
136 }
137
138
139 static void err_broadcast(const struct cpumask *mask)
140 {
141         pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
142 }
143
144 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
145 {
146         if (!dev->broadcast)
147                 dev->broadcast = tick_broadcast;
148         if (!dev->broadcast) {
149                 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
150                              dev->name);
151                 dev->broadcast = err_broadcast;
152         }
153 }
154
155 /*
156  * Check, if the device is disfunctional and a place holder, which
157  * needs to be handled by the broadcast device.
158  */
159 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
160 {
161         struct clock_event_device *bc = tick_broadcast_device.evtdev;
162         unsigned long flags;
163         int ret = 0;
164
165         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
166
167         /*
168          * Devices might be registered with both periodic and oneshot
169          * mode disabled. This signals, that the device needs to be
170          * operated from the broadcast device and is a placeholder for
171          * the cpu local device.
172          */
173         if (!tick_device_is_functional(dev)) {
174                 dev->event_handler = tick_handle_periodic;
175                 tick_device_setup_broadcast_func(dev);
176                 cpumask_set_cpu(cpu, tick_broadcast_mask);
177                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
178                         tick_broadcast_start_periodic(bc);
179                 else
180                         tick_broadcast_setup_oneshot(bc);
181                 ret = 1;
182         } else {
183                 /*
184                  * Clear the broadcast bit for this cpu if the
185                  * device is not power state affected.
186                  */
187                 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
188                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
189                 else
190                         tick_device_setup_broadcast_func(dev);
191
192                 /*
193                  * Clear the broadcast bit if the CPU is not in
194                  * periodic broadcast on state.
195                  */
196                 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
197                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
198
199                 switch (tick_broadcast_device.mode) {
200                 case TICKDEV_MODE_ONESHOT:
201                         /*
202                          * If the system is in oneshot mode we can
203                          * unconditionally clear the oneshot mask bit,
204                          * because the CPU is running and therefore
205                          * not in an idle state which causes the power
206                          * state affected device to stop. Let the
207                          * caller initialize the device.
208                          */
209                         tick_broadcast_clear_oneshot(cpu);
210                         ret = 0;
211                         break;
212
213                 case TICKDEV_MODE_PERIODIC:
214                         /*
215                          * If the system is in periodic mode, check
216                          * whether the broadcast device can be
217                          * switched off now.
218                          */
219                         if (cpumask_empty(tick_broadcast_mask) && bc)
220                                 clockevents_shutdown(bc);
221                         /*
222                          * If we kept the cpu in the broadcast mask,
223                          * tell the caller to leave the per cpu device
224                          * in shutdown state. The periodic interrupt
225                          * is delivered by the broadcast device, if
226                          * the broadcast device exists and is not
227                          * hrtimer based.
228                          */
229                         if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
230                                 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
231                         break;
232                 default:
233                         break;
234                 }
235         }
236         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
237         return ret;
238 }
239
240 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
241 int tick_receive_broadcast(void)
242 {
243         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
244         struct clock_event_device *evt = td->evtdev;
245
246         if (!evt)
247                 return -ENODEV;
248
249         if (!evt->event_handler)
250                 return -EINVAL;
251
252         evt->event_handler(evt);
253         return 0;
254 }
255 #endif
256
257 /*
258  * Broadcast the event to the cpus, which are set in the mask (mangled).
259  */
260 static bool tick_do_broadcast(struct cpumask *mask)
261 {
262         int cpu = smp_processor_id();
263         struct tick_device *td;
264         bool local = false;
265
266         /*
267          * Check, if the current cpu is in the mask
268          */
269         if (cpumask_test_cpu(cpu, mask)) {
270                 struct clock_event_device *bc = tick_broadcast_device.evtdev;
271
272                 cpumask_clear_cpu(cpu, mask);
273                 /*
274                  * We only run the local handler, if the broadcast
275                  * device is not hrtimer based. Otherwise we run into
276                  * a hrtimer recursion.
277                  *
278                  * local timer_interrupt()
279                  *   local_handler()
280                  *     expire_hrtimers()
281                  *       bc_handler()
282                  *         local_handler()
283                  *           expire_hrtimers()
284                  */
285                 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
286         }
287
288         if (!cpumask_empty(mask)) {
289                 /*
290                  * It might be necessary to actually check whether the devices
291                  * have different broadcast functions. For now, just use the
292                  * one of the first device. This works as long as we have this
293                  * misfeature only on x86 (lapic)
294                  */
295                 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
296                 td->evtdev->broadcast(mask);
297         }
298         return local;
299 }
300
301 /*
302  * Periodic broadcast:
303  * - invoke the broadcast handlers
304  */
305 static bool tick_do_periodic_broadcast(void)
306 {
307         cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
308         return tick_do_broadcast(tmpmask);
309 }
310
311 /*
312  * Event handler for periodic broadcast ticks
313  */
314 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
315 {
316         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
317         bool bc_local;
318
319         raw_spin_lock(&tick_broadcast_lock);
320
321         /* Handle spurious interrupts gracefully */
322         if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
323                 raw_spin_unlock(&tick_broadcast_lock);
324                 return;
325         }
326
327         bc_local = tick_do_periodic_broadcast();
328
329         if (clockevent_state_oneshot(dev)) {
330                 ktime_t next = ktime_add(dev->next_event, tick_period);
331
332                 clockevents_program_event(dev, next, true);
333         }
334         raw_spin_unlock(&tick_broadcast_lock);
335
336         /*
337          * We run the handler of the local cpu after dropping
338          * tick_broadcast_lock because the handler might deadlock when
339          * trying to switch to oneshot mode.
340          */
341         if (bc_local)
342                 td->evtdev->event_handler(td->evtdev);
343 }
344
345 /**
346  * tick_broadcast_control - Enable/disable or force broadcast mode
347  * @mode:       The selected broadcast mode
348  *
349  * Called when the system enters a state where affected tick devices
350  * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
351  *
352  * Called with interrupts disabled, so clockevents_lock is not
353  * required here because the local clock event device cannot go away
354  * under us.
355  */
356 void tick_broadcast_control(enum tick_broadcast_mode mode)
357 {
358         struct clock_event_device *bc, *dev;
359         struct tick_device *td;
360         int cpu, bc_stopped;
361
362         td = this_cpu_ptr(&tick_cpu_device);
363         dev = td->evtdev;
364
365         /*
366          * Is the device not affected by the powerstate ?
367          */
368         if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
369                 return;
370
371         if (!tick_device_is_functional(dev))
372                 return;
373
374         raw_spin_lock(&tick_broadcast_lock);
375         cpu = smp_processor_id();
376         bc = tick_broadcast_device.evtdev;
377         bc_stopped = cpumask_empty(tick_broadcast_mask);
378
379         switch (mode) {
380         case TICK_BROADCAST_FORCE:
381                 tick_broadcast_forced = 1;
382         case TICK_BROADCAST_ON:
383                 cpumask_set_cpu(cpu, tick_broadcast_on);
384                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
385                         /*
386                          * Only shutdown the cpu local device, if:
387                          *
388                          * - the broadcast device exists
389                          * - the broadcast device is not a hrtimer based one
390                          * - the broadcast device is in periodic mode to
391                          *   avoid a hickup during switch to oneshot mode
392                          */
393                         if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
394                             tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
395                                 clockevents_shutdown(dev);
396                 }
397                 break;
398
399         case TICK_BROADCAST_OFF:
400                 if (tick_broadcast_forced)
401                         break;
402                 cpumask_clear_cpu(cpu, tick_broadcast_on);
403                 if (!tick_device_is_functional(dev))
404                         break;
405                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
406                         if (tick_broadcast_device.mode ==
407                             TICKDEV_MODE_PERIODIC)
408                                 tick_setup_periodic(dev, 0);
409                 }
410                 break;
411         }
412
413         if (bc) {
414                 if (cpumask_empty(tick_broadcast_mask)) {
415                         if (!bc_stopped)
416                                 clockevents_shutdown(bc);
417                 } else if (bc_stopped) {
418                         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
419                                 tick_broadcast_start_periodic(bc);
420                         else
421                                 tick_broadcast_setup_oneshot(bc);
422                 }
423         }
424         raw_spin_unlock(&tick_broadcast_lock);
425 }
426 EXPORT_SYMBOL_GPL(tick_broadcast_control);
427
428 /*
429  * Set the periodic handler depending on broadcast on/off
430  */
431 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
432 {
433         if (!broadcast)
434                 dev->event_handler = tick_handle_periodic;
435         else
436                 dev->event_handler = tick_handle_periodic_broadcast;
437 }
438
439 #ifdef CONFIG_HOTPLUG_CPU
440 /*
441  * Remove a CPU from broadcasting
442  */
443 void tick_shutdown_broadcast(unsigned int cpu)
444 {
445         struct clock_event_device *bc;
446         unsigned long flags;
447
448         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
449
450         bc = tick_broadcast_device.evtdev;
451         cpumask_clear_cpu(cpu, tick_broadcast_mask);
452         cpumask_clear_cpu(cpu, tick_broadcast_on);
453
454         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
455                 if (bc && cpumask_empty(tick_broadcast_mask))
456                         clockevents_shutdown(bc);
457         }
458
459         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
460 }
461 #endif
462
463 void tick_suspend_broadcast(void)
464 {
465         struct clock_event_device *bc;
466         unsigned long flags;
467
468         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
469
470         bc = tick_broadcast_device.evtdev;
471         if (bc)
472                 clockevents_shutdown(bc);
473
474         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
475 }
476
477 /*
478  * This is called from tick_resume_local() on a resuming CPU. That's
479  * called from the core resume function, tick_unfreeze() and the magic XEN
480  * resume hackery.
481  *
482  * In none of these cases the broadcast device mode can change and the
483  * bit of the resuming CPU in the broadcast mask is safe as well.
484  */
485 bool tick_resume_check_broadcast(void)
486 {
487         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
488                 return false;
489         else
490                 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
491 }
492
493 void tick_resume_broadcast(void)
494 {
495         struct clock_event_device *bc;
496         unsigned long flags;
497
498         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
499
500         bc = tick_broadcast_device.evtdev;
501
502         if (bc) {
503                 clockevents_tick_resume(bc);
504
505                 switch (tick_broadcast_device.mode) {
506                 case TICKDEV_MODE_PERIODIC:
507                         if (!cpumask_empty(tick_broadcast_mask))
508                                 tick_broadcast_start_periodic(bc);
509                         break;
510                 case TICKDEV_MODE_ONESHOT:
511                         if (!cpumask_empty(tick_broadcast_mask))
512                                 tick_resume_broadcast_oneshot(bc);
513                         break;
514                 }
515         }
516         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
517 }
518
519 #ifdef CONFIG_TICK_ONESHOT
520
521 static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly;
522 static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly;
523 static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly;
524
525 /*
526  * Exposed for debugging: see timer_list.c
527  */
528 struct cpumask *tick_get_broadcast_oneshot_mask(void)
529 {
530         return tick_broadcast_oneshot_mask;
531 }
532
533 /*
534  * Called before going idle with interrupts disabled. Checks whether a
535  * broadcast event from the other core is about to happen. We detected
536  * that in tick_broadcast_oneshot_control(). The callsite can use this
537  * to avoid a deep idle transition as we are about to get the
538  * broadcast IPI right away.
539  */
540 int tick_check_broadcast_expired(void)
541 {
542         return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
543 }
544
545 /*
546  * Set broadcast interrupt affinity
547  */
548 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
549                                         const struct cpumask *cpumask)
550 {
551         if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
552                 return;
553
554         if (cpumask_equal(bc->cpumask, cpumask))
555                 return;
556
557         bc->cpumask = cpumask;
558         irq_set_affinity(bc->irq, bc->cpumask);
559 }
560
561 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
562                                      ktime_t expires)
563 {
564         if (!clockevent_state_oneshot(bc))
565                 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
566
567         clockevents_program_event(bc, expires, 1);
568         tick_broadcast_set_affinity(bc, cpumask_of(cpu));
569 }
570
571 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
572 {
573         clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
574 }
575
576 /*
577  * Called from irq_enter() when idle was interrupted to reenable the
578  * per cpu device.
579  */
580 void tick_check_oneshot_broadcast_this_cpu(void)
581 {
582         if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
583                 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
584
585                 /*
586                  * We might be in the middle of switching over from
587                  * periodic to oneshot. If the CPU has not yet
588                  * switched over, leave the device alone.
589                  */
590                 if (td->mode == TICKDEV_MODE_ONESHOT) {
591                         clockevents_switch_state(td->evtdev,
592                                               CLOCK_EVT_STATE_ONESHOT);
593                 }
594         }
595 }
596
597 /*
598  * Handle oneshot mode broadcasting
599  */
600 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
601 {
602         struct tick_device *td;
603         ktime_t now, next_event;
604         int cpu, next_cpu = 0;
605         bool bc_local;
606
607         raw_spin_lock(&tick_broadcast_lock);
608         dev->next_event = KTIME_MAX;
609         next_event = KTIME_MAX;
610         cpumask_clear(tmpmask);
611         now = ktime_get();
612         /* Find all expired events */
613         for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
614                 td = &per_cpu(tick_cpu_device, cpu);
615                 if (td->evtdev->next_event <= now) {
616                         cpumask_set_cpu(cpu, tmpmask);
617                         /*
618                          * Mark the remote cpu in the pending mask, so
619                          * it can avoid reprogramming the cpu local
620                          * timer in tick_broadcast_oneshot_control().
621                          */
622                         cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
623                 } else if (td->evtdev->next_event < next_event) {
624                         next_event = td->evtdev->next_event;
625                         next_cpu = cpu;
626                 }
627         }
628
629         /*
630          * Remove the current cpu from the pending mask. The event is
631          * delivered immediately in tick_do_broadcast() !
632          */
633         cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
634
635         /* Take care of enforced broadcast requests */
636         cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
637         cpumask_clear(tick_broadcast_force_mask);
638
639         /*
640          * Sanity check. Catch the case where we try to broadcast to
641          * offline cpus.
642          */
643         if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
644                 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
645
646         /*
647          * Wakeup the cpus which have an expired event.
648          */
649         bc_local = tick_do_broadcast(tmpmask);
650
651         /*
652          * Two reasons for reprogram:
653          *
654          * - The global event did not expire any CPU local
655          * events. This happens in dyntick mode, as the maximum PIT
656          * delta is quite small.
657          *
658          * - There are pending events on sleeping CPUs which were not
659          * in the event mask
660          */
661         if (next_event != KTIME_MAX)
662                 tick_broadcast_set_event(dev, next_cpu, next_event);
663
664         raw_spin_unlock(&tick_broadcast_lock);
665
666         if (bc_local) {
667                 td = this_cpu_ptr(&tick_cpu_device);
668                 td->evtdev->event_handler(td->evtdev);
669         }
670 }
671
672 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
673 {
674         if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
675                 return 0;
676         if (bc->next_event == KTIME_MAX)
677                 return 0;
678         return bc->bound_on == cpu ? -EBUSY : 0;
679 }
680
681 static void broadcast_shutdown_local(struct clock_event_device *bc,
682                                      struct clock_event_device *dev)
683 {
684         /*
685          * For hrtimer based broadcasting we cannot shutdown the cpu
686          * local device if our own event is the first one to expire or
687          * if we own the broadcast timer.
688          */
689         if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
690                 if (broadcast_needs_cpu(bc, smp_processor_id()))
691                         return;
692                 if (dev->next_event < bc->next_event)
693                         return;
694         }
695         clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
696 }
697
698 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
699 {
700         struct clock_event_device *bc, *dev;
701         int cpu, ret = 0;
702         ktime_t now;
703
704         /*
705          * If there is no broadcast device, tell the caller not to go
706          * into deep idle.
707          */
708         if (!tick_broadcast_device.evtdev)
709                 return -EBUSY;
710
711         dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
712
713         raw_spin_lock(&tick_broadcast_lock);
714         bc = tick_broadcast_device.evtdev;
715         cpu = smp_processor_id();
716
717         if (state == TICK_BROADCAST_ENTER) {
718                 /*
719                  * If the current CPU owns the hrtimer broadcast
720                  * mechanism, it cannot go deep idle and we do not add
721                  * the CPU to the broadcast mask. We don't have to go
722                  * through the EXIT path as the local timer is not
723                  * shutdown.
724                  */
725                 ret = broadcast_needs_cpu(bc, cpu);
726                 if (ret)
727                         goto out;
728
729                 /*
730                  * If the broadcast device is in periodic mode, we
731                  * return.
732                  */
733                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
734                         /* If it is a hrtimer based broadcast, return busy */
735                         if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
736                                 ret = -EBUSY;
737                         goto out;
738                 }
739
740                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
741                         WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
742
743                         /* Conditionally shut down the local timer. */
744                         broadcast_shutdown_local(bc, dev);
745
746                         /*
747                          * We only reprogram the broadcast timer if we
748                          * did not mark ourself in the force mask and
749                          * if the cpu local event is earlier than the
750                          * broadcast event. If the current CPU is in
751                          * the force mask, then we are going to be
752                          * woken by the IPI right away; we return
753                          * busy, so the CPU does not try to go deep
754                          * idle.
755                          */
756                         if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
757                                 ret = -EBUSY;
758                         } else if (dev->next_event < bc->next_event) {
759                                 tick_broadcast_set_event(bc, cpu, dev->next_event);
760                                 /*
761                                  * In case of hrtimer broadcasts the
762                                  * programming might have moved the
763                                  * timer to this cpu. If yes, remove
764                                  * us from the broadcast mask and
765                                  * return busy.
766                                  */
767                                 ret = broadcast_needs_cpu(bc, cpu);
768                                 if (ret) {
769                                         cpumask_clear_cpu(cpu,
770                                                 tick_broadcast_oneshot_mask);
771                                 }
772                         }
773                 }
774         } else {
775                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
776                         clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
777                         /*
778                          * The cpu which was handling the broadcast
779                          * timer marked this cpu in the broadcast
780                          * pending mask and fired the broadcast
781                          * IPI. So we are going to handle the expired
782                          * event anyway via the broadcast IPI
783                          * handler. No need to reprogram the timer
784                          * with an already expired event.
785                          */
786                         if (cpumask_test_and_clear_cpu(cpu,
787                                        tick_broadcast_pending_mask))
788                                 goto out;
789
790                         /*
791                          * Bail out if there is no next event.
792                          */
793                         if (dev->next_event == KTIME_MAX)
794                                 goto out;
795                         /*
796                          * If the pending bit is not set, then we are
797                          * either the CPU handling the broadcast
798                          * interrupt or we got woken by something else.
799                          *
800                          * We are not longer in the broadcast mask, so
801                          * if the cpu local expiry time is already
802                          * reached, we would reprogram the cpu local
803                          * timer with an already expired event.
804                          *
805                          * This can lead to a ping-pong when we return
806                          * to idle and therefor rearm the broadcast
807                          * timer before the cpu local timer was able
808                          * to fire. This happens because the forced
809                          * reprogramming makes sure that the event
810                          * will happen in the future and depending on
811                          * the min_delta setting this might be far
812                          * enough out that the ping-pong starts.
813                          *
814                          * If the cpu local next_event has expired
815                          * then we know that the broadcast timer
816                          * next_event has expired as well and
817                          * broadcast is about to be handled. So we
818                          * avoid reprogramming and enforce that the
819                          * broadcast handler, which did not run yet,
820                          * will invoke the cpu local handler.
821                          *
822                          * We cannot call the handler directly from
823                          * here, because we might be in a NOHZ phase
824                          * and we did not go through the irq_enter()
825                          * nohz fixups.
826                          */
827                         now = ktime_get();
828                         if (dev->next_event <= now) {
829                                 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
830                                 goto out;
831                         }
832                         /*
833                          * We got woken by something else. Reprogram
834                          * the cpu local timer device.
835                          */
836                         tick_program_event(dev->next_event, 1);
837                 }
838         }
839 out:
840         raw_spin_unlock(&tick_broadcast_lock);
841         return ret;
842 }
843
844 /*
845  * Reset the one shot broadcast for a cpu
846  *
847  * Called with tick_broadcast_lock held
848  */
849 static void tick_broadcast_clear_oneshot(int cpu)
850 {
851         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
852         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
853 }
854
855 static void tick_broadcast_init_next_event(struct cpumask *mask,
856                                            ktime_t expires)
857 {
858         struct tick_device *td;
859         int cpu;
860
861         for_each_cpu(cpu, mask) {
862                 td = &per_cpu(tick_cpu_device, cpu);
863                 if (td->evtdev)
864                         td->evtdev->next_event = expires;
865         }
866 }
867
868 /**
869  * tick_broadcast_setup_oneshot - setup the broadcast device
870  */
871 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
872 {
873         int cpu = smp_processor_id();
874
875         if (!bc)
876                 return;
877
878         /* Set it up only once ! */
879         if (bc->event_handler != tick_handle_oneshot_broadcast) {
880                 int was_periodic = clockevent_state_periodic(bc);
881
882                 bc->event_handler = tick_handle_oneshot_broadcast;
883
884                 /*
885                  * We must be careful here. There might be other CPUs
886                  * waiting for periodic broadcast. We need to set the
887                  * oneshot_mask bits for those and program the
888                  * broadcast device to fire.
889                  */
890                 cpumask_copy(tmpmask, tick_broadcast_mask);
891                 cpumask_clear_cpu(cpu, tmpmask);
892                 cpumask_or(tick_broadcast_oneshot_mask,
893                            tick_broadcast_oneshot_mask, tmpmask);
894
895                 if (was_periodic && !cpumask_empty(tmpmask)) {
896                         clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
897                         tick_broadcast_init_next_event(tmpmask,
898                                                        tick_next_period);
899                         tick_broadcast_set_event(bc, cpu, tick_next_period);
900                 } else
901                         bc->next_event = KTIME_MAX;
902         } else {
903                 /*
904                  * The first cpu which switches to oneshot mode sets
905                  * the bit for all other cpus which are in the general
906                  * (periodic) broadcast mask. So the bit is set and
907                  * would prevent the first broadcast enter after this
908                  * to program the bc device.
909                  */
910                 tick_broadcast_clear_oneshot(cpu);
911         }
912 }
913
914 /*
915  * Select oneshot operating mode for the broadcast device
916  */
917 void tick_broadcast_switch_to_oneshot(void)
918 {
919         struct clock_event_device *bc;
920         unsigned long flags;
921
922         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
923
924         tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
925         bc = tick_broadcast_device.evtdev;
926         if (bc)
927                 tick_broadcast_setup_oneshot(bc);
928
929         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
930 }
931
932 #ifdef CONFIG_HOTPLUG_CPU
933 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
934 {
935         struct clock_event_device *bc;
936         unsigned long flags;
937
938         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
939         bc = tick_broadcast_device.evtdev;
940
941         if (bc && broadcast_needs_cpu(bc, deadcpu)) {
942                 /* This moves the broadcast assignment to this CPU: */
943                 clockevents_program_event(bc, bc->next_event, 1);
944         }
945         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
946 }
947
948 /*
949  * Remove a dead CPU from broadcasting
950  */
951 void tick_shutdown_broadcast_oneshot(unsigned int cpu)
952 {
953         unsigned long flags;
954
955         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
956
957         /*
958          * Clear the broadcast masks for the dead cpu, but do not stop
959          * the broadcast device!
960          */
961         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
962         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
963         cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
964
965         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
966 }
967 #endif
968
969 /*
970  * Check, whether the broadcast device is in one shot mode
971  */
972 int tick_broadcast_oneshot_active(void)
973 {
974         return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
975 }
976
977 /*
978  * Check whether the broadcast device supports oneshot.
979  */
980 bool tick_broadcast_oneshot_available(void)
981 {
982         struct clock_event_device *bc = tick_broadcast_device.evtdev;
983
984         return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
985 }
986
987 #else
988 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
989 {
990         struct clock_event_device *bc = tick_broadcast_device.evtdev;
991
992         if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
993                 return -EBUSY;
994
995         return 0;
996 }
997 #endif
998
999 void __init tick_broadcast_init(void)
1000 {
1001         zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1002         zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1003         zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1004 #ifdef CONFIG_TICK_ONESHOT
1005         zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1006         zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1007         zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1008 #endif
1009 }