]> asedeno.scripts.mit.edu Git - linux.git/blob - kernel/time/tick-broadcast.c
Merge tag 'for-v4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux...
[linux.git] / kernel / time / tick-broadcast.c
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/module.h>
23
24 #include "tick-internal.h"
25
26 /*
27  * Broadcast support for broken x86 hardware, where the local apic
28  * timer stops in C3 state.
29  */
30
31 static struct tick_device tick_broadcast_device;
32 static cpumask_var_t tick_broadcast_mask;
33 static cpumask_var_t tick_broadcast_on;
34 static cpumask_var_t tmpmask;
35 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
36 static int tick_broadcast_forced;
37
38 #ifdef CONFIG_TICK_ONESHOT
39 static void tick_broadcast_clear_oneshot(int cpu);
40 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
41 #else
42 static inline void tick_broadcast_clear_oneshot(int cpu) { }
43 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
44 #endif
45
46 /*
47  * Debugging: see timer_list.c
48  */
49 struct tick_device *tick_get_broadcast_device(void)
50 {
51         return &tick_broadcast_device;
52 }
53
54 struct cpumask *tick_get_broadcast_mask(void)
55 {
56         return tick_broadcast_mask;
57 }
58
59 /*
60  * Start the device in periodic mode
61  */
62 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
63 {
64         if (bc)
65                 tick_setup_periodic(bc, 1);
66 }
67
68 /*
69  * Check, if the device can be utilized as broadcast device:
70  */
71 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
72                                         struct clock_event_device *newdev)
73 {
74         if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
75             (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
76             (newdev->features & CLOCK_EVT_FEAT_C3STOP))
77                 return false;
78
79         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
80             !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
81                 return false;
82
83         return !curdev || newdev->rating > curdev->rating;
84 }
85
86 /*
87  * Conditionally install/replace broadcast device
88  */
89 void tick_install_broadcast_device(struct clock_event_device *dev)
90 {
91         struct clock_event_device *cur = tick_broadcast_device.evtdev;
92
93         if (!tick_check_broadcast_device(cur, dev))
94                 return;
95
96         if (!try_module_get(dev->owner))
97                 return;
98
99         clockevents_exchange_device(cur, dev);
100         if (cur)
101                 cur->event_handler = clockevents_handle_noop;
102         tick_broadcast_device.evtdev = dev;
103         if (!cpumask_empty(tick_broadcast_mask))
104                 tick_broadcast_start_periodic(dev);
105         /*
106          * Inform all cpus about this. We might be in a situation
107          * where we did not switch to oneshot mode because the per cpu
108          * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
109          * of a oneshot capable broadcast device. Without that
110          * notification the systems stays stuck in periodic mode
111          * forever.
112          */
113         if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
114                 tick_clock_notify();
115 }
116
117 /*
118  * Check, if the device is the broadcast device
119  */
120 int tick_is_broadcast_device(struct clock_event_device *dev)
121 {
122         return (dev && tick_broadcast_device.evtdev == dev);
123 }
124
125 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
126 {
127         int ret = -ENODEV;
128
129         if (tick_is_broadcast_device(dev)) {
130                 raw_spin_lock(&tick_broadcast_lock);
131                 ret = __clockevents_update_freq(dev, freq);
132                 raw_spin_unlock(&tick_broadcast_lock);
133         }
134         return ret;
135 }
136
137
138 static void err_broadcast(const struct cpumask *mask)
139 {
140         pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
141 }
142
143 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
144 {
145         if (!dev->broadcast)
146                 dev->broadcast = tick_broadcast;
147         if (!dev->broadcast) {
148                 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
149                              dev->name);
150                 dev->broadcast = err_broadcast;
151         }
152 }
153
154 /*
155  * Check, if the device is disfunctional and a place holder, which
156  * needs to be handled by the broadcast device.
157  */
158 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
159 {
160         struct clock_event_device *bc = tick_broadcast_device.evtdev;
161         unsigned long flags;
162         int ret = 0;
163
164         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
165
166         /*
167          * Devices might be registered with both periodic and oneshot
168          * mode disabled. This signals, that the device needs to be
169          * operated from the broadcast device and is a placeholder for
170          * the cpu local device.
171          */
172         if (!tick_device_is_functional(dev)) {
173                 dev->event_handler = tick_handle_periodic;
174                 tick_device_setup_broadcast_func(dev);
175                 cpumask_set_cpu(cpu, tick_broadcast_mask);
176                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
177                         tick_broadcast_start_periodic(bc);
178                 else
179                         tick_broadcast_setup_oneshot(bc);
180                 ret = 1;
181         } else {
182                 /*
183                  * Clear the broadcast bit for this cpu if the
184                  * device is not power state affected.
185                  */
186                 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
187                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
188                 else
189                         tick_device_setup_broadcast_func(dev);
190
191                 /*
192                  * Clear the broadcast bit if the CPU is not in
193                  * periodic broadcast on state.
194                  */
195                 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
196                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
197
198                 switch (tick_broadcast_device.mode) {
199                 case TICKDEV_MODE_ONESHOT:
200                         /*
201                          * If the system is in oneshot mode we can
202                          * unconditionally clear the oneshot mask bit,
203                          * because the CPU is running and therefore
204                          * not in an idle state which causes the power
205                          * state affected device to stop. Let the
206                          * caller initialize the device.
207                          */
208                         tick_broadcast_clear_oneshot(cpu);
209                         ret = 0;
210                         break;
211
212                 case TICKDEV_MODE_PERIODIC:
213                         /*
214                          * If the system is in periodic mode, check
215                          * whether the broadcast device can be
216                          * switched off now.
217                          */
218                         if (cpumask_empty(tick_broadcast_mask) && bc)
219                                 clockevents_shutdown(bc);
220                         /*
221                          * If we kept the cpu in the broadcast mask,
222                          * tell the caller to leave the per cpu device
223                          * in shutdown state. The periodic interrupt
224                          * is delivered by the broadcast device, if
225                          * the broadcast device exists and is not
226                          * hrtimer based.
227                          */
228                         if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
229                                 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
230                         break;
231                 default:
232                         break;
233                 }
234         }
235         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
236         return ret;
237 }
238
239 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
240 int tick_receive_broadcast(void)
241 {
242         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
243         struct clock_event_device *evt = td->evtdev;
244
245         if (!evt)
246                 return -ENODEV;
247
248         if (!evt->event_handler)
249                 return -EINVAL;
250
251         evt->event_handler(evt);
252         return 0;
253 }
254 #endif
255
256 /*
257  * Broadcast the event to the cpus, which are set in the mask (mangled).
258  */
259 static bool tick_do_broadcast(struct cpumask *mask)
260 {
261         int cpu = smp_processor_id();
262         struct tick_device *td;
263         bool local = false;
264
265         /*
266          * Check, if the current cpu is in the mask
267          */
268         if (cpumask_test_cpu(cpu, mask)) {
269                 struct clock_event_device *bc = tick_broadcast_device.evtdev;
270
271                 cpumask_clear_cpu(cpu, mask);
272                 /*
273                  * We only run the local handler, if the broadcast
274                  * device is not hrtimer based. Otherwise we run into
275                  * a hrtimer recursion.
276                  *
277                  * local timer_interrupt()
278                  *   local_handler()
279                  *     expire_hrtimers()
280                  *       bc_handler()
281                  *         local_handler()
282                  *           expire_hrtimers()
283                  */
284                 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
285         }
286
287         if (!cpumask_empty(mask)) {
288                 /*
289                  * It might be necessary to actually check whether the devices
290                  * have different broadcast functions. For now, just use the
291                  * one of the first device. This works as long as we have this
292                  * misfeature only on x86 (lapic)
293                  */
294                 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
295                 td->evtdev->broadcast(mask);
296         }
297         return local;
298 }
299
300 /*
301  * Periodic broadcast:
302  * - invoke the broadcast handlers
303  */
304 static bool tick_do_periodic_broadcast(void)
305 {
306         cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
307         return tick_do_broadcast(tmpmask);
308 }
309
310 /*
311  * Event handler for periodic broadcast ticks
312  */
313 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
314 {
315         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
316         bool bc_local;
317
318         raw_spin_lock(&tick_broadcast_lock);
319
320         /* Handle spurious interrupts gracefully */
321         if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
322                 raw_spin_unlock(&tick_broadcast_lock);
323                 return;
324         }
325
326         bc_local = tick_do_periodic_broadcast();
327
328         if (clockevent_state_oneshot(dev)) {
329                 ktime_t next = ktime_add(dev->next_event, tick_period);
330
331                 clockevents_program_event(dev, next, true);
332         }
333         raw_spin_unlock(&tick_broadcast_lock);
334
335         /*
336          * We run the handler of the local cpu after dropping
337          * tick_broadcast_lock because the handler might deadlock when
338          * trying to switch to oneshot mode.
339          */
340         if (bc_local)
341                 td->evtdev->event_handler(td->evtdev);
342 }
343
344 /**
345  * tick_broadcast_control - Enable/disable or force broadcast mode
346  * @mode:       The selected broadcast mode
347  *
348  * Called when the system enters a state where affected tick devices
349  * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
350  */
351 void tick_broadcast_control(enum tick_broadcast_mode mode)
352 {
353         struct clock_event_device *bc, *dev;
354         struct tick_device *td;
355         int cpu, bc_stopped;
356         unsigned long flags;
357
358         /* Protects also the local clockevent device. */
359         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
360         td = this_cpu_ptr(&tick_cpu_device);
361         dev = td->evtdev;
362
363         /*
364          * Is the device not affected by the powerstate ?
365          */
366         if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
367                 goto out;
368
369         if (!tick_device_is_functional(dev))
370                 goto out;
371
372         cpu = smp_processor_id();
373         bc = tick_broadcast_device.evtdev;
374         bc_stopped = cpumask_empty(tick_broadcast_mask);
375
376         switch (mode) {
377         case TICK_BROADCAST_FORCE:
378                 tick_broadcast_forced = 1;
379         case TICK_BROADCAST_ON:
380                 cpumask_set_cpu(cpu, tick_broadcast_on);
381                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
382                         /*
383                          * Only shutdown the cpu local device, if:
384                          *
385                          * - the broadcast device exists
386                          * - the broadcast device is not a hrtimer based one
387                          * - the broadcast device is in periodic mode to
388                          *   avoid a hickup during switch to oneshot mode
389                          */
390                         if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
391                             tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
392                                 clockevents_shutdown(dev);
393                 }
394                 break;
395
396         case TICK_BROADCAST_OFF:
397                 if (tick_broadcast_forced)
398                         break;
399                 cpumask_clear_cpu(cpu, tick_broadcast_on);
400                 if (!tick_device_is_functional(dev))
401                         break;
402                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
403                         if (tick_broadcast_device.mode ==
404                             TICKDEV_MODE_PERIODIC)
405                                 tick_setup_periodic(dev, 0);
406                 }
407                 break;
408         }
409
410         if (bc) {
411                 if (cpumask_empty(tick_broadcast_mask)) {
412                         if (!bc_stopped)
413                                 clockevents_shutdown(bc);
414                 } else if (bc_stopped) {
415                         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
416                                 tick_broadcast_start_periodic(bc);
417                         else
418                                 tick_broadcast_setup_oneshot(bc);
419                 }
420         }
421 out:
422         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
423 }
424 EXPORT_SYMBOL_GPL(tick_broadcast_control);
425
426 /*
427  * Set the periodic handler depending on broadcast on/off
428  */
429 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
430 {
431         if (!broadcast)
432                 dev->event_handler = tick_handle_periodic;
433         else
434                 dev->event_handler = tick_handle_periodic_broadcast;
435 }
436
437 #ifdef CONFIG_HOTPLUG_CPU
438 /*
439  * Remove a CPU from broadcasting
440  */
441 void tick_shutdown_broadcast(unsigned int cpu)
442 {
443         struct clock_event_device *bc;
444         unsigned long flags;
445
446         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
447
448         bc = tick_broadcast_device.evtdev;
449         cpumask_clear_cpu(cpu, tick_broadcast_mask);
450         cpumask_clear_cpu(cpu, tick_broadcast_on);
451
452         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
453                 if (bc && cpumask_empty(tick_broadcast_mask))
454                         clockevents_shutdown(bc);
455         }
456
457         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
458 }
459 #endif
460
461 void tick_suspend_broadcast(void)
462 {
463         struct clock_event_device *bc;
464         unsigned long flags;
465
466         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
467
468         bc = tick_broadcast_device.evtdev;
469         if (bc)
470                 clockevents_shutdown(bc);
471
472         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
473 }
474
475 /*
476  * This is called from tick_resume_local() on a resuming CPU. That's
477  * called from the core resume function, tick_unfreeze() and the magic XEN
478  * resume hackery.
479  *
480  * In none of these cases the broadcast device mode can change and the
481  * bit of the resuming CPU in the broadcast mask is safe as well.
482  */
483 bool tick_resume_check_broadcast(void)
484 {
485         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
486                 return false;
487         else
488                 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
489 }
490
491 void tick_resume_broadcast(void)
492 {
493         struct clock_event_device *bc;
494         unsigned long flags;
495
496         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
497
498         bc = tick_broadcast_device.evtdev;
499
500         if (bc) {
501                 clockevents_tick_resume(bc);
502
503                 switch (tick_broadcast_device.mode) {
504                 case TICKDEV_MODE_PERIODIC:
505                         if (!cpumask_empty(tick_broadcast_mask))
506                                 tick_broadcast_start_periodic(bc);
507                         break;
508                 case TICKDEV_MODE_ONESHOT:
509                         if (!cpumask_empty(tick_broadcast_mask))
510                                 tick_resume_broadcast_oneshot(bc);
511                         break;
512                 }
513         }
514         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
515 }
516
517 #ifdef CONFIG_TICK_ONESHOT
518
519 static cpumask_var_t tick_broadcast_oneshot_mask;
520 static cpumask_var_t tick_broadcast_pending_mask;
521 static cpumask_var_t tick_broadcast_force_mask;
522
523 /*
524  * Exposed for debugging: see timer_list.c
525  */
526 struct cpumask *tick_get_broadcast_oneshot_mask(void)
527 {
528         return tick_broadcast_oneshot_mask;
529 }
530
531 /*
532  * Called before going idle with interrupts disabled. Checks whether a
533  * broadcast event from the other core is about to happen. We detected
534  * that in tick_broadcast_oneshot_control(). The callsite can use this
535  * to avoid a deep idle transition as we are about to get the
536  * broadcast IPI right away.
537  */
538 int tick_check_broadcast_expired(void)
539 {
540         return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
541 }
542
543 /*
544  * Set broadcast interrupt affinity
545  */
546 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
547                                         const struct cpumask *cpumask)
548 {
549         if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
550                 return;
551
552         if (cpumask_equal(bc->cpumask, cpumask))
553                 return;
554
555         bc->cpumask = cpumask;
556         irq_set_affinity(bc->irq, bc->cpumask);
557 }
558
559 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
560                                      ktime_t expires)
561 {
562         if (!clockevent_state_oneshot(bc))
563                 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
564
565         clockevents_program_event(bc, expires, 1);
566         tick_broadcast_set_affinity(bc, cpumask_of(cpu));
567 }
568
569 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
570 {
571         clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
572 }
573
574 /*
575  * Called from irq_enter() when idle was interrupted to reenable the
576  * per cpu device.
577  */
578 void tick_check_oneshot_broadcast_this_cpu(void)
579 {
580         if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
581                 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
582
583                 /*
584                  * We might be in the middle of switching over from
585                  * periodic to oneshot. If the CPU has not yet
586                  * switched over, leave the device alone.
587                  */
588                 if (td->mode == TICKDEV_MODE_ONESHOT) {
589                         clockevents_switch_state(td->evtdev,
590                                               CLOCK_EVT_STATE_ONESHOT);
591                 }
592         }
593 }
594
595 /*
596  * Handle oneshot mode broadcasting
597  */
598 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
599 {
600         struct tick_device *td;
601         ktime_t now, next_event;
602         int cpu, next_cpu = 0;
603         bool bc_local;
604
605         raw_spin_lock(&tick_broadcast_lock);
606         dev->next_event = KTIME_MAX;
607         next_event = KTIME_MAX;
608         cpumask_clear(tmpmask);
609         now = ktime_get();
610         /* Find all expired events */
611         for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
612                 td = &per_cpu(tick_cpu_device, cpu);
613                 if (td->evtdev->next_event <= now) {
614                         cpumask_set_cpu(cpu, tmpmask);
615                         /*
616                          * Mark the remote cpu in the pending mask, so
617                          * it can avoid reprogramming the cpu local
618                          * timer in tick_broadcast_oneshot_control().
619                          */
620                         cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
621                 } else if (td->evtdev->next_event < next_event) {
622                         next_event = td->evtdev->next_event;
623                         next_cpu = cpu;
624                 }
625         }
626
627         /*
628          * Remove the current cpu from the pending mask. The event is
629          * delivered immediately in tick_do_broadcast() !
630          */
631         cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
632
633         /* Take care of enforced broadcast requests */
634         cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
635         cpumask_clear(tick_broadcast_force_mask);
636
637         /*
638          * Sanity check. Catch the case where we try to broadcast to
639          * offline cpus.
640          */
641         if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
642                 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
643
644         /*
645          * Wakeup the cpus which have an expired event.
646          */
647         bc_local = tick_do_broadcast(tmpmask);
648
649         /*
650          * Two reasons for reprogram:
651          *
652          * - The global event did not expire any CPU local
653          * events. This happens in dyntick mode, as the maximum PIT
654          * delta is quite small.
655          *
656          * - There are pending events on sleeping CPUs which were not
657          * in the event mask
658          */
659         if (next_event != KTIME_MAX)
660                 tick_broadcast_set_event(dev, next_cpu, next_event);
661
662         raw_spin_unlock(&tick_broadcast_lock);
663
664         if (bc_local) {
665                 td = this_cpu_ptr(&tick_cpu_device);
666                 td->evtdev->event_handler(td->evtdev);
667         }
668 }
669
670 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
671 {
672         if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
673                 return 0;
674         if (bc->next_event == KTIME_MAX)
675                 return 0;
676         return bc->bound_on == cpu ? -EBUSY : 0;
677 }
678
679 static void broadcast_shutdown_local(struct clock_event_device *bc,
680                                      struct clock_event_device *dev)
681 {
682         /*
683          * For hrtimer based broadcasting we cannot shutdown the cpu
684          * local device if our own event is the first one to expire or
685          * if we own the broadcast timer.
686          */
687         if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
688                 if (broadcast_needs_cpu(bc, smp_processor_id()))
689                         return;
690                 if (dev->next_event < bc->next_event)
691                         return;
692         }
693         clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
694 }
695
696 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
697 {
698         struct clock_event_device *bc, *dev;
699         int cpu, ret = 0;
700         ktime_t now;
701
702         /*
703          * If there is no broadcast device, tell the caller not to go
704          * into deep idle.
705          */
706         if (!tick_broadcast_device.evtdev)
707                 return -EBUSY;
708
709         dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
710
711         raw_spin_lock(&tick_broadcast_lock);
712         bc = tick_broadcast_device.evtdev;
713         cpu = smp_processor_id();
714
715         if (state == TICK_BROADCAST_ENTER) {
716                 /*
717                  * If the current CPU owns the hrtimer broadcast
718                  * mechanism, it cannot go deep idle and we do not add
719                  * the CPU to the broadcast mask. We don't have to go
720                  * through the EXIT path as the local timer is not
721                  * shutdown.
722                  */
723                 ret = broadcast_needs_cpu(bc, cpu);
724                 if (ret)
725                         goto out;
726
727                 /*
728                  * If the broadcast device is in periodic mode, we
729                  * return.
730                  */
731                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
732                         /* If it is a hrtimer based broadcast, return busy */
733                         if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
734                                 ret = -EBUSY;
735                         goto out;
736                 }
737
738                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
739                         WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
740
741                         /* Conditionally shut down the local timer. */
742                         broadcast_shutdown_local(bc, dev);
743
744                         /*
745                          * We only reprogram the broadcast timer if we
746                          * did not mark ourself in the force mask and
747                          * if the cpu local event is earlier than the
748                          * broadcast event. If the current CPU is in
749                          * the force mask, then we are going to be
750                          * woken by the IPI right away; we return
751                          * busy, so the CPU does not try to go deep
752                          * idle.
753                          */
754                         if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
755                                 ret = -EBUSY;
756                         } else if (dev->next_event < bc->next_event) {
757                                 tick_broadcast_set_event(bc, cpu, dev->next_event);
758                                 /*
759                                  * In case of hrtimer broadcasts the
760                                  * programming might have moved the
761                                  * timer to this cpu. If yes, remove
762                                  * us from the broadcast mask and
763                                  * return busy.
764                                  */
765                                 ret = broadcast_needs_cpu(bc, cpu);
766                                 if (ret) {
767                                         cpumask_clear_cpu(cpu,
768                                                 tick_broadcast_oneshot_mask);
769                                 }
770                         }
771                 }
772         } else {
773                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
774                         clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
775                         /*
776                          * The cpu which was handling the broadcast
777                          * timer marked this cpu in the broadcast
778                          * pending mask and fired the broadcast
779                          * IPI. So we are going to handle the expired
780                          * event anyway via the broadcast IPI
781                          * handler. No need to reprogram the timer
782                          * with an already expired event.
783                          */
784                         if (cpumask_test_and_clear_cpu(cpu,
785                                        tick_broadcast_pending_mask))
786                                 goto out;
787
788                         /*
789                          * Bail out if there is no next event.
790                          */
791                         if (dev->next_event == KTIME_MAX)
792                                 goto out;
793                         /*
794                          * If the pending bit is not set, then we are
795                          * either the CPU handling the broadcast
796                          * interrupt or we got woken by something else.
797                          *
798                          * We are not longer in the broadcast mask, so
799                          * if the cpu local expiry time is already
800                          * reached, we would reprogram the cpu local
801                          * timer with an already expired event.
802                          *
803                          * This can lead to a ping-pong when we return
804                          * to idle and therefor rearm the broadcast
805                          * timer before the cpu local timer was able
806                          * to fire. This happens because the forced
807                          * reprogramming makes sure that the event
808                          * will happen in the future and depending on
809                          * the min_delta setting this might be far
810                          * enough out that the ping-pong starts.
811                          *
812                          * If the cpu local next_event has expired
813                          * then we know that the broadcast timer
814                          * next_event has expired as well and
815                          * broadcast is about to be handled. So we
816                          * avoid reprogramming and enforce that the
817                          * broadcast handler, which did not run yet,
818                          * will invoke the cpu local handler.
819                          *
820                          * We cannot call the handler directly from
821                          * here, because we might be in a NOHZ phase
822                          * and we did not go through the irq_enter()
823                          * nohz fixups.
824                          */
825                         now = ktime_get();
826                         if (dev->next_event <= now) {
827                                 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
828                                 goto out;
829                         }
830                         /*
831                          * We got woken by something else. Reprogram
832                          * the cpu local timer device.
833                          */
834                         tick_program_event(dev->next_event, 1);
835                 }
836         }
837 out:
838         raw_spin_unlock(&tick_broadcast_lock);
839         return ret;
840 }
841
842 /*
843  * Reset the one shot broadcast for a cpu
844  *
845  * Called with tick_broadcast_lock held
846  */
847 static void tick_broadcast_clear_oneshot(int cpu)
848 {
849         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
850         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
851 }
852
853 static void tick_broadcast_init_next_event(struct cpumask *mask,
854                                            ktime_t expires)
855 {
856         struct tick_device *td;
857         int cpu;
858
859         for_each_cpu(cpu, mask) {
860                 td = &per_cpu(tick_cpu_device, cpu);
861                 if (td->evtdev)
862                         td->evtdev->next_event = expires;
863         }
864 }
865
866 /**
867  * tick_broadcast_setup_oneshot - setup the broadcast device
868  */
869 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
870 {
871         int cpu = smp_processor_id();
872
873         if (!bc)
874                 return;
875
876         /* Set it up only once ! */
877         if (bc->event_handler != tick_handle_oneshot_broadcast) {
878                 int was_periodic = clockevent_state_periodic(bc);
879
880                 bc->event_handler = tick_handle_oneshot_broadcast;
881
882                 /*
883                  * We must be careful here. There might be other CPUs
884                  * waiting for periodic broadcast. We need to set the
885                  * oneshot_mask bits for those and program the
886                  * broadcast device to fire.
887                  */
888                 cpumask_copy(tmpmask, tick_broadcast_mask);
889                 cpumask_clear_cpu(cpu, tmpmask);
890                 cpumask_or(tick_broadcast_oneshot_mask,
891                            tick_broadcast_oneshot_mask, tmpmask);
892
893                 if (was_periodic && !cpumask_empty(tmpmask)) {
894                         clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
895                         tick_broadcast_init_next_event(tmpmask,
896                                                        tick_next_period);
897                         tick_broadcast_set_event(bc, cpu, tick_next_period);
898                 } else
899                         bc->next_event = KTIME_MAX;
900         } else {
901                 /*
902                  * The first cpu which switches to oneshot mode sets
903                  * the bit for all other cpus which are in the general
904                  * (periodic) broadcast mask. So the bit is set and
905                  * would prevent the first broadcast enter after this
906                  * to program the bc device.
907                  */
908                 tick_broadcast_clear_oneshot(cpu);
909         }
910 }
911
912 /*
913  * Select oneshot operating mode for the broadcast device
914  */
915 void tick_broadcast_switch_to_oneshot(void)
916 {
917         struct clock_event_device *bc;
918         unsigned long flags;
919
920         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
921
922         tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
923         bc = tick_broadcast_device.evtdev;
924         if (bc)
925                 tick_broadcast_setup_oneshot(bc);
926
927         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
928 }
929
930 #ifdef CONFIG_HOTPLUG_CPU
931 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
932 {
933         struct clock_event_device *bc;
934         unsigned long flags;
935
936         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
937         bc = tick_broadcast_device.evtdev;
938
939         if (bc && broadcast_needs_cpu(bc, deadcpu)) {
940                 /* This moves the broadcast assignment to this CPU: */
941                 clockevents_program_event(bc, bc->next_event, 1);
942         }
943         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
944 }
945
946 /*
947  * Remove a dead CPU from broadcasting
948  */
949 void tick_shutdown_broadcast_oneshot(unsigned int cpu)
950 {
951         unsigned long flags;
952
953         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
954
955         /*
956          * Clear the broadcast masks for the dead cpu, but do not stop
957          * the broadcast device!
958          */
959         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
960         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
961         cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
962
963         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
964 }
965 #endif
966
967 /*
968  * Check, whether the broadcast device is in one shot mode
969  */
970 int tick_broadcast_oneshot_active(void)
971 {
972         return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
973 }
974
975 /*
976  * Check whether the broadcast device supports oneshot.
977  */
978 bool tick_broadcast_oneshot_available(void)
979 {
980         struct clock_event_device *bc = tick_broadcast_device.evtdev;
981
982         return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
983 }
984
985 #else
986 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
987 {
988         struct clock_event_device *bc = tick_broadcast_device.evtdev;
989
990         if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
991                 return -EBUSY;
992
993         return 0;
994 }
995 #endif
996
997 void __init tick_broadcast_init(void)
998 {
999         zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1000         zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1001         zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1002 #ifdef CONFIG_TICK_ONESHOT
1003         zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1004         zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1005         zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1006 #endif
1007 }