]> asedeno.scripts.mit.edu Git - linux.git/blob - kernel/time/timekeeping.c
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target...
[linux.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/nmi.h>
18 #include <linux/sched.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/syscore_ops.h>
21 #include <linux/clocksource.h>
22 #include <linux/jiffies.h>
23 #include <linux/time.h>
24 #include <linux/tick.h>
25 #include <linux/stop_machine.h>
26 #include <linux/pvclock_gtod.h>
27 #include <linux/compiler.h>
28
29 #include "tick-internal.h"
30 #include "ntp_internal.h"
31 #include "timekeeping_internal.h"
32
33 #define TK_CLEAR_NTP            (1 << 0)
34 #define TK_MIRROR               (1 << 1)
35 #define TK_CLOCK_WAS_SET        (1 << 2)
36
37 /*
38  * The most important data for readout fits into a single 64 byte
39  * cache line.
40  */
41 static struct {
42         seqcount_t              seq;
43         struct timekeeper       timekeeper;
44 } tk_core ____cacheline_aligned;
45
46 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
47 static struct timekeeper shadow_timekeeper;
48
49 /**
50  * struct tk_fast - NMI safe timekeeper
51  * @seq:        Sequence counter for protecting updates. The lowest bit
52  *              is the index for the tk_read_base array
53  * @base:       tk_read_base array. Access is indexed by the lowest bit of
54  *              @seq.
55  *
56  * See @update_fast_timekeeper() below.
57  */
58 struct tk_fast {
59         seqcount_t              seq;
60         struct tk_read_base     base[2];
61 };
62
63 static struct tk_fast tk_fast_mono ____cacheline_aligned;
64 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
65
66 /* flag for if timekeeping is suspended */
67 int __read_mostly timekeeping_suspended;
68
69 static inline void tk_normalize_xtime(struct timekeeper *tk)
70 {
71         while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
72                 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
73                 tk->xtime_sec++;
74         }
75         while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
76                 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
77                 tk->raw_sec++;
78         }
79 }
80
81 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
82 {
83         struct timespec64 ts;
84
85         ts.tv_sec = tk->xtime_sec;
86         ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
87         return ts;
88 }
89
90 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92         tk->xtime_sec = ts->tv_sec;
93         tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
94 }
95
96 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
97 {
98         tk->xtime_sec += ts->tv_sec;
99         tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
100         tk_normalize_xtime(tk);
101 }
102
103 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
104 {
105         struct timespec64 tmp;
106
107         /*
108          * Verify consistency of: offset_real = -wall_to_monotonic
109          * before modifying anything
110          */
111         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
112                                         -tk->wall_to_monotonic.tv_nsec);
113         WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
114         tk->wall_to_monotonic = wtm;
115         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
116         tk->offs_real = timespec64_to_ktime(tmp);
117         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
118 }
119
120 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
121 {
122         tk->offs_boot = ktime_add(tk->offs_boot, delta);
123 }
124
125 /*
126  * tk_clock_read - atomic clocksource read() helper
127  *
128  * This helper is necessary to use in the read paths because, while the
129  * seqlock ensures we don't return a bad value while structures are updated,
130  * it doesn't protect from potential crashes. There is the possibility that
131  * the tkr's clocksource may change between the read reference, and the
132  * clock reference passed to the read function.  This can cause crashes if
133  * the wrong clocksource is passed to the wrong read function.
134  * This isn't necessary to use when holding the timekeeper_lock or doing
135  * a read of the fast-timekeeper tkrs (which is protected by its own locking
136  * and update logic).
137  */
138 static inline u64 tk_clock_read(struct tk_read_base *tkr)
139 {
140         struct clocksource *clock = READ_ONCE(tkr->clock);
141
142         return clock->read(clock);
143 }
144
145 #ifdef CONFIG_DEBUG_TIMEKEEPING
146 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
147
148 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
149 {
150
151         u64 max_cycles = tk->tkr_mono.clock->max_cycles;
152         const char *name = tk->tkr_mono.clock->name;
153
154         if (offset > max_cycles) {
155                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
156                                 offset, name, max_cycles);
157                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
158         } else {
159                 if (offset > (max_cycles >> 1)) {
160                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
161                                         offset, name, max_cycles >> 1);
162                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
163                 }
164         }
165
166         if (tk->underflow_seen) {
167                 if (jiffies - tk->last_warning > WARNING_FREQ) {
168                         printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
169                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
170                         printk_deferred("         Your kernel is probably still fine.\n");
171                         tk->last_warning = jiffies;
172                 }
173                 tk->underflow_seen = 0;
174         }
175
176         if (tk->overflow_seen) {
177                 if (jiffies - tk->last_warning > WARNING_FREQ) {
178                         printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
179                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
180                         printk_deferred("         Your kernel is probably still fine.\n");
181                         tk->last_warning = jiffies;
182                 }
183                 tk->overflow_seen = 0;
184         }
185 }
186
187 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
188 {
189         struct timekeeper *tk = &tk_core.timekeeper;
190         u64 now, last, mask, max, delta;
191         unsigned int seq;
192
193         /*
194          * Since we're called holding a seqlock, the data may shift
195          * under us while we're doing the calculation. This can cause
196          * false positives, since we'd note a problem but throw the
197          * results away. So nest another seqlock here to atomically
198          * grab the points we are checking with.
199          */
200         do {
201                 seq = read_seqcount_begin(&tk_core.seq);
202                 now = tk_clock_read(tkr);
203                 last = tkr->cycle_last;
204                 mask = tkr->mask;
205                 max = tkr->clock->max_cycles;
206         } while (read_seqcount_retry(&tk_core.seq, seq));
207
208         delta = clocksource_delta(now, last, mask);
209
210         /*
211          * Try to catch underflows by checking if we are seeing small
212          * mask-relative negative values.
213          */
214         if (unlikely((~delta & mask) < (mask >> 3))) {
215                 tk->underflow_seen = 1;
216                 delta = 0;
217         }
218
219         /* Cap delta value to the max_cycles values to avoid mult overflows */
220         if (unlikely(delta > max)) {
221                 tk->overflow_seen = 1;
222                 delta = tkr->clock->max_cycles;
223         }
224
225         return delta;
226 }
227 #else
228 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
229 {
230 }
231 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
232 {
233         u64 cycle_now, delta;
234
235         /* read clocksource */
236         cycle_now = tk_clock_read(tkr);
237
238         /* calculate the delta since the last update_wall_time */
239         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
240
241         return delta;
242 }
243 #endif
244
245 /**
246  * tk_setup_internals - Set up internals to use clocksource clock.
247  *
248  * @tk:         The target timekeeper to setup.
249  * @clock:              Pointer to clocksource.
250  *
251  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
252  * pair and interval request.
253  *
254  * Unless you're the timekeeping code, you should not be using this!
255  */
256 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
257 {
258         u64 interval;
259         u64 tmp, ntpinterval;
260         struct clocksource *old_clock;
261
262         ++tk->cs_was_changed_seq;
263         old_clock = tk->tkr_mono.clock;
264         tk->tkr_mono.clock = clock;
265         tk->tkr_mono.mask = clock->mask;
266         tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
267
268         tk->tkr_raw.clock = clock;
269         tk->tkr_raw.mask = clock->mask;
270         tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
271
272         /* Do the ns -> cycle conversion first, using original mult */
273         tmp = NTP_INTERVAL_LENGTH;
274         tmp <<= clock->shift;
275         ntpinterval = tmp;
276         tmp += clock->mult/2;
277         do_div(tmp, clock->mult);
278         if (tmp == 0)
279                 tmp = 1;
280
281         interval = (u64) tmp;
282         tk->cycle_interval = interval;
283
284         /* Go back from cycles -> shifted ns */
285         tk->xtime_interval = interval * clock->mult;
286         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
287         tk->raw_interval = interval * clock->mult;
288
289          /* if changing clocks, convert xtime_nsec shift units */
290         if (old_clock) {
291                 int shift_change = clock->shift - old_clock->shift;
292                 if (shift_change < 0) {
293                         tk->tkr_mono.xtime_nsec >>= -shift_change;
294                         tk->tkr_raw.xtime_nsec >>= -shift_change;
295                 } else {
296                         tk->tkr_mono.xtime_nsec <<= shift_change;
297                         tk->tkr_raw.xtime_nsec <<= shift_change;
298                 }
299         }
300
301         tk->tkr_mono.shift = clock->shift;
302         tk->tkr_raw.shift = clock->shift;
303
304         tk->ntp_error = 0;
305         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
306         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
307
308         /*
309          * The timekeeper keeps its own mult values for the currently
310          * active clocksource. These value will be adjusted via NTP
311          * to counteract clock drifting.
312          */
313         tk->tkr_mono.mult = clock->mult;
314         tk->tkr_raw.mult = clock->mult;
315         tk->ntp_err_mult = 0;
316 }
317
318 /* Timekeeper helper functions. */
319
320 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
321 static u32 default_arch_gettimeoffset(void) { return 0; }
322 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
323 #else
324 static inline u32 arch_gettimeoffset(void) { return 0; }
325 #endif
326
327 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
328 {
329         u64 nsec;
330
331         nsec = delta * tkr->mult + tkr->xtime_nsec;
332         nsec >>= tkr->shift;
333
334         /* If arch requires, add in get_arch_timeoffset() */
335         return nsec + arch_gettimeoffset();
336 }
337
338 static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
339 {
340         u64 delta;
341
342         delta = timekeeping_get_delta(tkr);
343         return timekeeping_delta_to_ns(tkr, delta);
344 }
345
346 static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
347 {
348         u64 delta;
349
350         /* calculate the delta since the last update_wall_time */
351         delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
352         return timekeeping_delta_to_ns(tkr, delta);
353 }
354
355 /**
356  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
357  * @tkr: Timekeeping readout base from which we take the update
358  *
359  * We want to use this from any context including NMI and tracing /
360  * instrumenting the timekeeping code itself.
361  *
362  * Employ the latch technique; see @raw_write_seqcount_latch.
363  *
364  * So if a NMI hits the update of base[0] then it will use base[1]
365  * which is still consistent. In the worst case this can result is a
366  * slightly wrong timestamp (a few nanoseconds). See
367  * @ktime_get_mono_fast_ns.
368  */
369 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
370 {
371         struct tk_read_base *base = tkf->base;
372
373         /* Force readers off to base[1] */
374         raw_write_seqcount_latch(&tkf->seq);
375
376         /* Update base[0] */
377         memcpy(base, tkr, sizeof(*base));
378
379         /* Force readers back to base[0] */
380         raw_write_seqcount_latch(&tkf->seq);
381
382         /* Update base[1] */
383         memcpy(base + 1, base, sizeof(*base));
384 }
385
386 /**
387  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
388  *
389  * This timestamp is not guaranteed to be monotonic across an update.
390  * The timestamp is calculated by:
391  *
392  *      now = base_mono + clock_delta * slope
393  *
394  * So if the update lowers the slope, readers who are forced to the
395  * not yet updated second array are still using the old steeper slope.
396  *
397  * tmono
398  * ^
399  * |    o  n
400  * |   o n
401  * |  u
402  * | o
403  * |o
404  * |12345678---> reader order
405  *
406  * o = old slope
407  * u = update
408  * n = new slope
409  *
410  * So reader 6 will observe time going backwards versus reader 5.
411  *
412  * While other CPUs are likely to be able observe that, the only way
413  * for a CPU local observation is when an NMI hits in the middle of
414  * the update. Timestamps taken from that NMI context might be ahead
415  * of the following timestamps. Callers need to be aware of that and
416  * deal with it.
417  */
418 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
419 {
420         struct tk_read_base *tkr;
421         unsigned int seq;
422         u64 now;
423
424         do {
425                 seq = raw_read_seqcount_latch(&tkf->seq);
426                 tkr = tkf->base + (seq & 0x01);
427                 now = ktime_to_ns(tkr->base);
428
429                 now += timekeeping_delta_to_ns(tkr,
430                                 clocksource_delta(
431                                         tk_clock_read(tkr),
432                                         tkr->cycle_last,
433                                         tkr->mask));
434         } while (read_seqcount_retry(&tkf->seq, seq));
435
436         return now;
437 }
438
439 u64 ktime_get_mono_fast_ns(void)
440 {
441         return __ktime_get_fast_ns(&tk_fast_mono);
442 }
443 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
444
445 u64 ktime_get_raw_fast_ns(void)
446 {
447         return __ktime_get_fast_ns(&tk_fast_raw);
448 }
449 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
450
451 /**
452  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
453  *
454  * To keep it NMI safe since we're accessing from tracing, we're not using a
455  * separate timekeeper with updates to monotonic clock and boot offset
456  * protected with seqlocks. This has the following minor side effects:
457  *
458  * (1) Its possible that a timestamp be taken after the boot offset is updated
459  * but before the timekeeper is updated. If this happens, the new boot offset
460  * is added to the old timekeeping making the clock appear to update slightly
461  * earlier:
462  *    CPU 0                                        CPU 1
463  *    timekeeping_inject_sleeptime64()
464  *    __timekeeping_inject_sleeptime(tk, delta);
465  *                                                 timestamp();
466  *    timekeeping_update(tk, TK_CLEAR_NTP...);
467  *
468  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
469  * partially updated.  Since the tk->offs_boot update is a rare event, this
470  * should be a rare occurrence which postprocessing should be able to handle.
471  */
472 u64 notrace ktime_get_boot_fast_ns(void)
473 {
474         struct timekeeper *tk = &tk_core.timekeeper;
475
476         return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
477 }
478 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
479
480 /* Suspend-time cycles value for halted fast timekeeper. */
481 static u64 cycles_at_suspend;
482
483 static u64 dummy_clock_read(struct clocksource *cs)
484 {
485         return cycles_at_suspend;
486 }
487
488 static struct clocksource dummy_clock = {
489         .read = dummy_clock_read,
490 };
491
492 /**
493  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
494  * @tk: Timekeeper to snapshot.
495  *
496  * It generally is unsafe to access the clocksource after timekeeping has been
497  * suspended, so take a snapshot of the readout base of @tk and use it as the
498  * fast timekeeper's readout base while suspended.  It will return the same
499  * number of cycles every time until timekeeping is resumed at which time the
500  * proper readout base for the fast timekeeper will be restored automatically.
501  */
502 static void halt_fast_timekeeper(struct timekeeper *tk)
503 {
504         static struct tk_read_base tkr_dummy;
505         struct tk_read_base *tkr = &tk->tkr_mono;
506
507         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
508         cycles_at_suspend = tk_clock_read(tkr);
509         tkr_dummy.clock = &dummy_clock;
510         update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
511
512         tkr = &tk->tkr_raw;
513         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
514         tkr_dummy.clock = &dummy_clock;
515         update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
516 }
517
518 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
519 #warning Please contact your maintainers, as GENERIC_TIME_VSYSCALL_OLD compatibity will disappear soon.
520
521 static inline void update_vsyscall(struct timekeeper *tk)
522 {
523         struct timespec xt, wm;
524
525         xt = timespec64_to_timespec(tk_xtime(tk));
526         wm = timespec64_to_timespec(tk->wall_to_monotonic);
527         update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
528                             tk->tkr_mono.cycle_last);
529 }
530
531 static inline void old_vsyscall_fixup(struct timekeeper *tk)
532 {
533         s64 remainder;
534
535         /*
536         * Store only full nanoseconds into xtime_nsec after rounding
537         * it up and add the remainder to the error difference.
538         * XXX - This is necessary to avoid small 1ns inconsistnecies caused
539         * by truncating the remainder in vsyscalls. However, it causes
540         * additional work to be done in timekeeping_adjust(). Once
541         * the vsyscall implementations are converted to use xtime_nsec
542         * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
543         * users are removed, this can be killed.
544         */
545         remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
546         if (remainder != 0) {
547                 tk->tkr_mono.xtime_nsec -= remainder;
548                 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
549                 tk->ntp_error += remainder << tk->ntp_error_shift;
550                 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
551         }
552 }
553 #else
554 #define old_vsyscall_fixup(tk)
555 #endif
556
557 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
558
559 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
560 {
561         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
562 }
563
564 /**
565  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
566  */
567 int pvclock_gtod_register_notifier(struct notifier_block *nb)
568 {
569         struct timekeeper *tk = &tk_core.timekeeper;
570         unsigned long flags;
571         int ret;
572
573         raw_spin_lock_irqsave(&timekeeper_lock, flags);
574         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
575         update_pvclock_gtod(tk, true);
576         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
577
578         return ret;
579 }
580 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
581
582 /**
583  * pvclock_gtod_unregister_notifier - unregister a pvclock
584  * timedata update listener
585  */
586 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
587 {
588         unsigned long flags;
589         int ret;
590
591         raw_spin_lock_irqsave(&timekeeper_lock, flags);
592         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
593         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
594
595         return ret;
596 }
597 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
598
599 /*
600  * tk_update_leap_state - helper to update the next_leap_ktime
601  */
602 static inline void tk_update_leap_state(struct timekeeper *tk)
603 {
604         tk->next_leap_ktime = ntp_get_next_leap();
605         if (tk->next_leap_ktime != KTIME_MAX)
606                 /* Convert to monotonic time */
607                 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
608 }
609
610 /*
611  * Update the ktime_t based scalar nsec members of the timekeeper
612  */
613 static inline void tk_update_ktime_data(struct timekeeper *tk)
614 {
615         u64 seconds;
616         u32 nsec;
617
618         /*
619          * The xtime based monotonic readout is:
620          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
621          * The ktime based monotonic readout is:
622          *      nsec = base_mono + now();
623          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
624          */
625         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
626         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
627         tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
628
629         /*
630          * The sum of the nanoseconds portions of xtime and
631          * wall_to_monotonic can be greater/equal one second. Take
632          * this into account before updating tk->ktime_sec.
633          */
634         nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
635         if (nsec >= NSEC_PER_SEC)
636                 seconds++;
637         tk->ktime_sec = seconds;
638
639         /* Update the monotonic raw base */
640         seconds = tk->raw_sec;
641         nsec = (u32)(tk->tkr_raw.xtime_nsec >> tk->tkr_raw.shift);
642         tk->tkr_raw.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
643 }
644
645 /* must hold timekeeper_lock */
646 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
647 {
648         if (action & TK_CLEAR_NTP) {
649                 tk->ntp_error = 0;
650                 ntp_clear();
651         }
652
653         tk_update_leap_state(tk);
654         tk_update_ktime_data(tk);
655
656         update_vsyscall(tk);
657         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
658
659         update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
660         update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
661
662         if (action & TK_CLOCK_WAS_SET)
663                 tk->clock_was_set_seq++;
664         /*
665          * The mirroring of the data to the shadow-timekeeper needs
666          * to happen last here to ensure we don't over-write the
667          * timekeeper structure on the next update with stale data
668          */
669         if (action & TK_MIRROR)
670                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
671                        sizeof(tk_core.timekeeper));
672 }
673
674 /**
675  * timekeeping_forward_now - update clock to the current time
676  *
677  * Forward the current clock to update its state since the last call to
678  * update_wall_time(). This is useful before significant clock changes,
679  * as it avoids having to deal with this time offset explicitly.
680  */
681 static void timekeeping_forward_now(struct timekeeper *tk)
682 {
683         u64 cycle_now, delta;
684
685         cycle_now = tk_clock_read(&tk->tkr_mono);
686         delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
687         tk->tkr_mono.cycle_last = cycle_now;
688         tk->tkr_raw.cycle_last  = cycle_now;
689
690         tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
691
692         /* If arch requires, add in get_arch_timeoffset() */
693         tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
694
695
696         tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
697
698         /* If arch requires, add in get_arch_timeoffset() */
699         tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
700
701         tk_normalize_xtime(tk);
702 }
703
704 /**
705  * __getnstimeofday64 - Returns the time of day in a timespec64.
706  * @ts:         pointer to the timespec to be set
707  *
708  * Updates the time of day in the timespec.
709  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
710  */
711 int __getnstimeofday64(struct timespec64 *ts)
712 {
713         struct timekeeper *tk = &tk_core.timekeeper;
714         unsigned long seq;
715         u64 nsecs;
716
717         do {
718                 seq = read_seqcount_begin(&tk_core.seq);
719
720                 ts->tv_sec = tk->xtime_sec;
721                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
722
723         } while (read_seqcount_retry(&tk_core.seq, seq));
724
725         ts->tv_nsec = 0;
726         timespec64_add_ns(ts, nsecs);
727
728         /*
729          * Do not bail out early, in case there were callers still using
730          * the value, even in the face of the WARN_ON.
731          */
732         if (unlikely(timekeeping_suspended))
733                 return -EAGAIN;
734         return 0;
735 }
736 EXPORT_SYMBOL(__getnstimeofday64);
737
738 /**
739  * getnstimeofday64 - Returns the time of day in a timespec64.
740  * @ts:         pointer to the timespec64 to be set
741  *
742  * Returns the time of day in a timespec64 (WARN if suspended).
743  */
744 void getnstimeofday64(struct timespec64 *ts)
745 {
746         WARN_ON(__getnstimeofday64(ts));
747 }
748 EXPORT_SYMBOL(getnstimeofday64);
749
750 ktime_t ktime_get(void)
751 {
752         struct timekeeper *tk = &tk_core.timekeeper;
753         unsigned int seq;
754         ktime_t base;
755         u64 nsecs;
756
757         WARN_ON(timekeeping_suspended);
758
759         do {
760                 seq = read_seqcount_begin(&tk_core.seq);
761                 base = tk->tkr_mono.base;
762                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
763
764         } while (read_seqcount_retry(&tk_core.seq, seq));
765
766         return ktime_add_ns(base, nsecs);
767 }
768 EXPORT_SYMBOL_GPL(ktime_get);
769
770 u32 ktime_get_resolution_ns(void)
771 {
772         struct timekeeper *tk = &tk_core.timekeeper;
773         unsigned int seq;
774         u32 nsecs;
775
776         WARN_ON(timekeeping_suspended);
777
778         do {
779                 seq = read_seqcount_begin(&tk_core.seq);
780                 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
781         } while (read_seqcount_retry(&tk_core.seq, seq));
782
783         return nsecs;
784 }
785 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
786
787 static ktime_t *offsets[TK_OFFS_MAX] = {
788         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
789         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
790         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
791 };
792
793 ktime_t ktime_get_with_offset(enum tk_offsets offs)
794 {
795         struct timekeeper *tk = &tk_core.timekeeper;
796         unsigned int seq;
797         ktime_t base, *offset = offsets[offs];
798         u64 nsecs;
799
800         WARN_ON(timekeeping_suspended);
801
802         do {
803                 seq = read_seqcount_begin(&tk_core.seq);
804                 base = ktime_add(tk->tkr_mono.base, *offset);
805                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
806
807         } while (read_seqcount_retry(&tk_core.seq, seq));
808
809         return ktime_add_ns(base, nsecs);
810
811 }
812 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
813
814 /**
815  * ktime_mono_to_any() - convert mononotic time to any other time
816  * @tmono:      time to convert.
817  * @offs:       which offset to use
818  */
819 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
820 {
821         ktime_t *offset = offsets[offs];
822         unsigned long seq;
823         ktime_t tconv;
824
825         do {
826                 seq = read_seqcount_begin(&tk_core.seq);
827                 tconv = ktime_add(tmono, *offset);
828         } while (read_seqcount_retry(&tk_core.seq, seq));
829
830         return tconv;
831 }
832 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
833
834 /**
835  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
836  */
837 ktime_t ktime_get_raw(void)
838 {
839         struct timekeeper *tk = &tk_core.timekeeper;
840         unsigned int seq;
841         ktime_t base;
842         u64 nsecs;
843
844         do {
845                 seq = read_seqcount_begin(&tk_core.seq);
846                 base = tk->tkr_raw.base;
847                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
848
849         } while (read_seqcount_retry(&tk_core.seq, seq));
850
851         return ktime_add_ns(base, nsecs);
852 }
853 EXPORT_SYMBOL_GPL(ktime_get_raw);
854
855 /**
856  * ktime_get_ts64 - get the monotonic clock in timespec64 format
857  * @ts:         pointer to timespec variable
858  *
859  * The function calculates the monotonic clock from the realtime
860  * clock and the wall_to_monotonic offset and stores the result
861  * in normalized timespec64 format in the variable pointed to by @ts.
862  */
863 void ktime_get_ts64(struct timespec64 *ts)
864 {
865         struct timekeeper *tk = &tk_core.timekeeper;
866         struct timespec64 tomono;
867         unsigned int seq;
868         u64 nsec;
869
870         WARN_ON(timekeeping_suspended);
871
872         do {
873                 seq = read_seqcount_begin(&tk_core.seq);
874                 ts->tv_sec = tk->xtime_sec;
875                 nsec = timekeeping_get_ns(&tk->tkr_mono);
876                 tomono = tk->wall_to_monotonic;
877
878         } while (read_seqcount_retry(&tk_core.seq, seq));
879
880         ts->tv_sec += tomono.tv_sec;
881         ts->tv_nsec = 0;
882         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
883 }
884 EXPORT_SYMBOL_GPL(ktime_get_ts64);
885
886 /**
887  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
888  *
889  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
890  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
891  * works on both 32 and 64 bit systems. On 32 bit systems the readout
892  * covers ~136 years of uptime which should be enough to prevent
893  * premature wrap arounds.
894  */
895 time64_t ktime_get_seconds(void)
896 {
897         struct timekeeper *tk = &tk_core.timekeeper;
898
899         WARN_ON(timekeeping_suspended);
900         return tk->ktime_sec;
901 }
902 EXPORT_SYMBOL_GPL(ktime_get_seconds);
903
904 /**
905  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
906  *
907  * Returns the wall clock seconds since 1970. This replaces the
908  * get_seconds() interface which is not y2038 safe on 32bit systems.
909  *
910  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
911  * 32bit systems the access must be protected with the sequence
912  * counter to provide "atomic" access to the 64bit tk->xtime_sec
913  * value.
914  */
915 time64_t ktime_get_real_seconds(void)
916 {
917         struct timekeeper *tk = &tk_core.timekeeper;
918         time64_t seconds;
919         unsigned int seq;
920
921         if (IS_ENABLED(CONFIG_64BIT))
922                 return tk->xtime_sec;
923
924         do {
925                 seq = read_seqcount_begin(&tk_core.seq);
926                 seconds = tk->xtime_sec;
927
928         } while (read_seqcount_retry(&tk_core.seq, seq));
929
930         return seconds;
931 }
932 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
933
934 /**
935  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
936  * but without the sequence counter protect. This internal function
937  * is called just when timekeeping lock is already held.
938  */
939 time64_t __ktime_get_real_seconds(void)
940 {
941         struct timekeeper *tk = &tk_core.timekeeper;
942
943         return tk->xtime_sec;
944 }
945
946 /**
947  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
948  * @systime_snapshot:   pointer to struct receiving the system time snapshot
949  */
950 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
951 {
952         struct timekeeper *tk = &tk_core.timekeeper;
953         unsigned long seq;
954         ktime_t base_raw;
955         ktime_t base_real;
956         u64 nsec_raw;
957         u64 nsec_real;
958         u64 now;
959
960         WARN_ON_ONCE(timekeeping_suspended);
961
962         do {
963                 seq = read_seqcount_begin(&tk_core.seq);
964                 now = tk_clock_read(&tk->tkr_mono);
965                 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
966                 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
967                 base_real = ktime_add(tk->tkr_mono.base,
968                                       tk_core.timekeeper.offs_real);
969                 base_raw = tk->tkr_raw.base;
970                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
971                 nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
972         } while (read_seqcount_retry(&tk_core.seq, seq));
973
974         systime_snapshot->cycles = now;
975         systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
976         systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
977 }
978 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
979
980 /* Scale base by mult/div checking for overflow */
981 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
982 {
983         u64 tmp, rem;
984
985         tmp = div64_u64_rem(*base, div, &rem);
986
987         if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
988             ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
989                 return -EOVERFLOW;
990         tmp *= mult;
991         rem *= mult;
992
993         do_div(rem, div);
994         *base = tmp + rem;
995         return 0;
996 }
997
998 /**
999  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1000  * @history:                    Snapshot representing start of history
1001  * @partial_history_cycles:     Cycle offset into history (fractional part)
1002  * @total_history_cycles:       Total history length in cycles
1003  * @discontinuity:              True indicates clock was set on history period
1004  * @ts:                         Cross timestamp that should be adjusted using
1005  *      partial/total ratio
1006  *
1007  * Helper function used by get_device_system_crosststamp() to correct the
1008  * crosstimestamp corresponding to the start of the current interval to the
1009  * system counter value (timestamp point) provided by the driver. The
1010  * total_history_* quantities are the total history starting at the provided
1011  * reference point and ending at the start of the current interval. The cycle
1012  * count between the driver timestamp point and the start of the current
1013  * interval is partial_history_cycles.
1014  */
1015 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1016                                          u64 partial_history_cycles,
1017                                          u64 total_history_cycles,
1018                                          bool discontinuity,
1019                                          struct system_device_crosststamp *ts)
1020 {
1021         struct timekeeper *tk = &tk_core.timekeeper;
1022         u64 corr_raw, corr_real;
1023         bool interp_forward;
1024         int ret;
1025
1026         if (total_history_cycles == 0 || partial_history_cycles == 0)
1027                 return 0;
1028
1029         /* Interpolate shortest distance from beginning or end of history */
1030         interp_forward = partial_history_cycles > total_history_cycles / 2;
1031         partial_history_cycles = interp_forward ?
1032                 total_history_cycles - partial_history_cycles :
1033                 partial_history_cycles;
1034
1035         /*
1036          * Scale the monotonic raw time delta by:
1037          *      partial_history_cycles / total_history_cycles
1038          */
1039         corr_raw = (u64)ktime_to_ns(
1040                 ktime_sub(ts->sys_monoraw, history->raw));
1041         ret = scale64_check_overflow(partial_history_cycles,
1042                                      total_history_cycles, &corr_raw);
1043         if (ret)
1044                 return ret;
1045
1046         /*
1047          * If there is a discontinuity in the history, scale monotonic raw
1048          *      correction by:
1049          *      mult(real)/mult(raw) yielding the realtime correction
1050          * Otherwise, calculate the realtime correction similar to monotonic
1051          *      raw calculation
1052          */
1053         if (discontinuity) {
1054                 corr_real = mul_u64_u32_div
1055                         (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1056         } else {
1057                 corr_real = (u64)ktime_to_ns(
1058                         ktime_sub(ts->sys_realtime, history->real));
1059                 ret = scale64_check_overflow(partial_history_cycles,
1060                                              total_history_cycles, &corr_real);
1061                 if (ret)
1062                         return ret;
1063         }
1064
1065         /* Fixup monotonic raw and real time time values */
1066         if (interp_forward) {
1067                 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1068                 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1069         } else {
1070                 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1071                 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1072         }
1073
1074         return 0;
1075 }
1076
1077 /*
1078  * cycle_between - true if test occurs chronologically between before and after
1079  */
1080 static bool cycle_between(u64 before, u64 test, u64 after)
1081 {
1082         if (test > before && test < after)
1083                 return true;
1084         if (test < before && before > after)
1085                 return true;
1086         return false;
1087 }
1088
1089 /**
1090  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1091  * @get_time_fn:        Callback to get simultaneous device time and
1092  *      system counter from the device driver
1093  * @ctx:                Context passed to get_time_fn()
1094  * @history_begin:      Historical reference point used to interpolate system
1095  *      time when counter provided by the driver is before the current interval
1096  * @xtstamp:            Receives simultaneously captured system and device time
1097  *
1098  * Reads a timestamp from a device and correlates it to system time
1099  */
1100 int get_device_system_crosststamp(int (*get_time_fn)
1101                                   (ktime_t *device_time,
1102                                    struct system_counterval_t *sys_counterval,
1103                                    void *ctx),
1104                                   void *ctx,
1105                                   struct system_time_snapshot *history_begin,
1106                                   struct system_device_crosststamp *xtstamp)
1107 {
1108         struct system_counterval_t system_counterval;
1109         struct timekeeper *tk = &tk_core.timekeeper;
1110         u64 cycles, now, interval_start;
1111         unsigned int clock_was_set_seq = 0;
1112         ktime_t base_real, base_raw;
1113         u64 nsec_real, nsec_raw;
1114         u8 cs_was_changed_seq;
1115         unsigned long seq;
1116         bool do_interp;
1117         int ret;
1118
1119         do {
1120                 seq = read_seqcount_begin(&tk_core.seq);
1121                 /*
1122                  * Try to synchronously capture device time and a system
1123                  * counter value calling back into the device driver
1124                  */
1125                 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1126                 if (ret)
1127                         return ret;
1128
1129                 /*
1130                  * Verify that the clocksource associated with the captured
1131                  * system counter value is the same as the currently installed
1132                  * timekeeper clocksource
1133                  */
1134                 if (tk->tkr_mono.clock != system_counterval.cs)
1135                         return -ENODEV;
1136                 cycles = system_counterval.cycles;
1137
1138                 /*
1139                  * Check whether the system counter value provided by the
1140                  * device driver is on the current timekeeping interval.
1141                  */
1142                 now = tk_clock_read(&tk->tkr_mono);
1143                 interval_start = tk->tkr_mono.cycle_last;
1144                 if (!cycle_between(interval_start, cycles, now)) {
1145                         clock_was_set_seq = tk->clock_was_set_seq;
1146                         cs_was_changed_seq = tk->cs_was_changed_seq;
1147                         cycles = interval_start;
1148                         do_interp = true;
1149                 } else {
1150                         do_interp = false;
1151                 }
1152
1153                 base_real = ktime_add(tk->tkr_mono.base,
1154                                       tk_core.timekeeper.offs_real);
1155                 base_raw = tk->tkr_raw.base;
1156
1157                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1158                                                      system_counterval.cycles);
1159                 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1160                                                     system_counterval.cycles);
1161         } while (read_seqcount_retry(&tk_core.seq, seq));
1162
1163         xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1164         xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1165
1166         /*
1167          * Interpolate if necessary, adjusting back from the start of the
1168          * current interval
1169          */
1170         if (do_interp) {
1171                 u64 partial_history_cycles, total_history_cycles;
1172                 bool discontinuity;
1173
1174                 /*
1175                  * Check that the counter value occurs after the provided
1176                  * history reference and that the history doesn't cross a
1177                  * clocksource change
1178                  */
1179                 if (!history_begin ||
1180                     !cycle_between(history_begin->cycles,
1181                                    system_counterval.cycles, cycles) ||
1182                     history_begin->cs_was_changed_seq != cs_was_changed_seq)
1183                         return -EINVAL;
1184                 partial_history_cycles = cycles - system_counterval.cycles;
1185                 total_history_cycles = cycles - history_begin->cycles;
1186                 discontinuity =
1187                         history_begin->clock_was_set_seq != clock_was_set_seq;
1188
1189                 ret = adjust_historical_crosststamp(history_begin,
1190                                                     partial_history_cycles,
1191                                                     total_history_cycles,
1192                                                     discontinuity, xtstamp);
1193                 if (ret)
1194                         return ret;
1195         }
1196
1197         return 0;
1198 }
1199 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1200
1201 /**
1202  * do_gettimeofday - Returns the time of day in a timeval
1203  * @tv:         pointer to the timeval to be set
1204  *
1205  * NOTE: Users should be converted to using getnstimeofday()
1206  */
1207 void do_gettimeofday(struct timeval *tv)
1208 {
1209         struct timespec64 now;
1210
1211         getnstimeofday64(&now);
1212         tv->tv_sec = now.tv_sec;
1213         tv->tv_usec = now.tv_nsec/1000;
1214 }
1215 EXPORT_SYMBOL(do_gettimeofday);
1216
1217 /**
1218  * do_settimeofday64 - Sets the time of day.
1219  * @ts:     pointer to the timespec64 variable containing the new time
1220  *
1221  * Sets the time of day to the new time and update NTP and notify hrtimers
1222  */
1223 int do_settimeofday64(const struct timespec64 *ts)
1224 {
1225         struct timekeeper *tk = &tk_core.timekeeper;
1226         struct timespec64 ts_delta, xt;
1227         unsigned long flags;
1228         int ret = 0;
1229
1230         if (!timespec64_valid_strict(ts))
1231                 return -EINVAL;
1232
1233         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1234         write_seqcount_begin(&tk_core.seq);
1235
1236         timekeeping_forward_now(tk);
1237
1238         xt = tk_xtime(tk);
1239         ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1240         ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1241
1242         if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1243                 ret = -EINVAL;
1244                 goto out;
1245         }
1246
1247         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1248
1249         tk_set_xtime(tk, ts);
1250 out:
1251         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1252
1253         write_seqcount_end(&tk_core.seq);
1254         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1255
1256         /* signal hrtimers about time change */
1257         clock_was_set();
1258
1259         return ret;
1260 }
1261 EXPORT_SYMBOL(do_settimeofday64);
1262
1263 /**
1264  * timekeeping_inject_offset - Adds or subtracts from the current time.
1265  * @tv:         pointer to the timespec variable containing the offset
1266  *
1267  * Adds or subtracts an offset value from the current time.
1268  */
1269 int timekeeping_inject_offset(struct timespec *ts)
1270 {
1271         struct timekeeper *tk = &tk_core.timekeeper;
1272         unsigned long flags;
1273         struct timespec64 ts64, tmp;
1274         int ret = 0;
1275
1276         if (!timespec_inject_offset_valid(ts))
1277                 return -EINVAL;
1278
1279         ts64 = timespec_to_timespec64(*ts);
1280
1281         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1282         write_seqcount_begin(&tk_core.seq);
1283
1284         timekeeping_forward_now(tk);
1285
1286         /* Make sure the proposed value is valid */
1287         tmp = timespec64_add(tk_xtime(tk),  ts64);
1288         if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1289             !timespec64_valid_strict(&tmp)) {
1290                 ret = -EINVAL;
1291                 goto error;
1292         }
1293
1294         tk_xtime_add(tk, &ts64);
1295         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1296
1297 error: /* even if we error out, we forwarded the time, so call update */
1298         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1299
1300         write_seqcount_end(&tk_core.seq);
1301         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1302
1303         /* signal hrtimers about time change */
1304         clock_was_set();
1305
1306         return ret;
1307 }
1308 EXPORT_SYMBOL(timekeeping_inject_offset);
1309
1310 /**
1311  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1312  *
1313  */
1314 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1315 {
1316         tk->tai_offset = tai_offset;
1317         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1318 }
1319
1320 /**
1321  * change_clocksource - Swaps clocksources if a new one is available
1322  *
1323  * Accumulates current time interval and initializes new clocksource
1324  */
1325 static int change_clocksource(void *data)
1326 {
1327         struct timekeeper *tk = &tk_core.timekeeper;
1328         struct clocksource *new, *old;
1329         unsigned long flags;
1330
1331         new = (struct clocksource *) data;
1332
1333         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1334         write_seqcount_begin(&tk_core.seq);
1335
1336         timekeeping_forward_now(tk);
1337         /*
1338          * If the cs is in module, get a module reference. Succeeds
1339          * for built-in code (owner == NULL) as well.
1340          */
1341         if (try_module_get(new->owner)) {
1342                 if (!new->enable || new->enable(new) == 0) {
1343                         old = tk->tkr_mono.clock;
1344                         tk_setup_internals(tk, new);
1345                         if (old->disable)
1346                                 old->disable(old);
1347                         module_put(old->owner);
1348                 } else {
1349                         module_put(new->owner);
1350                 }
1351         }
1352         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1353
1354         write_seqcount_end(&tk_core.seq);
1355         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1356
1357         return 0;
1358 }
1359
1360 /**
1361  * timekeeping_notify - Install a new clock source
1362  * @clock:              pointer to the clock source
1363  *
1364  * This function is called from clocksource.c after a new, better clock
1365  * source has been registered. The caller holds the clocksource_mutex.
1366  */
1367 int timekeeping_notify(struct clocksource *clock)
1368 {
1369         struct timekeeper *tk = &tk_core.timekeeper;
1370
1371         if (tk->tkr_mono.clock == clock)
1372                 return 0;
1373         stop_machine(change_clocksource, clock, NULL);
1374         tick_clock_notify();
1375         return tk->tkr_mono.clock == clock ? 0 : -1;
1376 }
1377
1378 /**
1379  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1380  * @ts:         pointer to the timespec64 to be set
1381  *
1382  * Returns the raw monotonic time (completely un-modified by ntp)
1383  */
1384 void getrawmonotonic64(struct timespec64 *ts)
1385 {
1386         struct timekeeper *tk = &tk_core.timekeeper;
1387         unsigned long seq;
1388         u64 nsecs;
1389
1390         do {
1391                 seq = read_seqcount_begin(&tk_core.seq);
1392                 ts->tv_sec = tk->raw_sec;
1393                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1394
1395         } while (read_seqcount_retry(&tk_core.seq, seq));
1396
1397         ts->tv_nsec = 0;
1398         timespec64_add_ns(ts, nsecs);
1399 }
1400 EXPORT_SYMBOL(getrawmonotonic64);
1401
1402
1403 /**
1404  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1405  */
1406 int timekeeping_valid_for_hres(void)
1407 {
1408         struct timekeeper *tk = &tk_core.timekeeper;
1409         unsigned long seq;
1410         int ret;
1411
1412         do {
1413                 seq = read_seqcount_begin(&tk_core.seq);
1414
1415                 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1416
1417         } while (read_seqcount_retry(&tk_core.seq, seq));
1418
1419         return ret;
1420 }
1421
1422 /**
1423  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1424  */
1425 u64 timekeeping_max_deferment(void)
1426 {
1427         struct timekeeper *tk = &tk_core.timekeeper;
1428         unsigned long seq;
1429         u64 ret;
1430
1431         do {
1432                 seq = read_seqcount_begin(&tk_core.seq);
1433
1434                 ret = tk->tkr_mono.clock->max_idle_ns;
1435
1436         } while (read_seqcount_retry(&tk_core.seq, seq));
1437
1438         return ret;
1439 }
1440
1441 /**
1442  * read_persistent_clock -  Return time from the persistent clock.
1443  *
1444  * Weak dummy function for arches that do not yet support it.
1445  * Reads the time from the battery backed persistent clock.
1446  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1447  *
1448  *  XXX - Do be sure to remove it once all arches implement it.
1449  */
1450 void __weak read_persistent_clock(struct timespec *ts)
1451 {
1452         ts->tv_sec = 0;
1453         ts->tv_nsec = 0;
1454 }
1455
1456 void __weak read_persistent_clock64(struct timespec64 *ts64)
1457 {
1458         struct timespec ts;
1459
1460         read_persistent_clock(&ts);
1461         *ts64 = timespec_to_timespec64(ts);
1462 }
1463
1464 /**
1465  * read_boot_clock64 -  Return time of the system start.
1466  *
1467  * Weak dummy function for arches that do not yet support it.
1468  * Function to read the exact time the system has been started.
1469  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1470  *
1471  *  XXX - Do be sure to remove it once all arches implement it.
1472  */
1473 void __weak read_boot_clock64(struct timespec64 *ts)
1474 {
1475         ts->tv_sec = 0;
1476         ts->tv_nsec = 0;
1477 }
1478
1479 /* Flag for if timekeeping_resume() has injected sleeptime */
1480 static bool sleeptime_injected;
1481
1482 /* Flag for if there is a persistent clock on this platform */
1483 static bool persistent_clock_exists;
1484
1485 /*
1486  * timekeeping_init - Initializes the clocksource and common timekeeping values
1487  */
1488 void __init timekeeping_init(void)
1489 {
1490         struct timekeeper *tk = &tk_core.timekeeper;
1491         struct clocksource *clock;
1492         unsigned long flags;
1493         struct timespec64 now, boot, tmp;
1494
1495         read_persistent_clock64(&now);
1496         if (!timespec64_valid_strict(&now)) {
1497                 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1498                         "         Check your CMOS/BIOS settings.\n");
1499                 now.tv_sec = 0;
1500                 now.tv_nsec = 0;
1501         } else if (now.tv_sec || now.tv_nsec)
1502                 persistent_clock_exists = true;
1503
1504         read_boot_clock64(&boot);
1505         if (!timespec64_valid_strict(&boot)) {
1506                 pr_warn("WARNING: Boot clock returned invalid value!\n"
1507                         "         Check your CMOS/BIOS settings.\n");
1508                 boot.tv_sec = 0;
1509                 boot.tv_nsec = 0;
1510         }
1511
1512         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1513         write_seqcount_begin(&tk_core.seq);
1514         ntp_init();
1515
1516         clock = clocksource_default_clock();
1517         if (clock->enable)
1518                 clock->enable(clock);
1519         tk_setup_internals(tk, clock);
1520
1521         tk_set_xtime(tk, &now);
1522         tk->raw_sec = 0;
1523         if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1524                 boot = tk_xtime(tk);
1525
1526         set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1527         tk_set_wall_to_mono(tk, tmp);
1528
1529         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1530
1531         write_seqcount_end(&tk_core.seq);
1532         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1533 }
1534
1535 /* time in seconds when suspend began for persistent clock */
1536 static struct timespec64 timekeeping_suspend_time;
1537
1538 /**
1539  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1540  * @delta: pointer to a timespec delta value
1541  *
1542  * Takes a timespec offset measuring a suspend interval and properly
1543  * adds the sleep offset to the timekeeping variables.
1544  */
1545 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1546                                            struct timespec64 *delta)
1547 {
1548         if (!timespec64_valid_strict(delta)) {
1549                 printk_deferred(KERN_WARNING
1550                                 "__timekeeping_inject_sleeptime: Invalid "
1551                                 "sleep delta value!\n");
1552                 return;
1553         }
1554         tk_xtime_add(tk, delta);
1555         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1556         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1557         tk_debug_account_sleep_time(delta);
1558 }
1559
1560 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1561 /**
1562  * We have three kinds of time sources to use for sleep time
1563  * injection, the preference order is:
1564  * 1) non-stop clocksource
1565  * 2) persistent clock (ie: RTC accessible when irqs are off)
1566  * 3) RTC
1567  *
1568  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1569  * If system has neither 1) nor 2), 3) will be used finally.
1570  *
1571  *
1572  * If timekeeping has injected sleeptime via either 1) or 2),
1573  * 3) becomes needless, so in this case we don't need to call
1574  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1575  * means.
1576  */
1577 bool timekeeping_rtc_skipresume(void)
1578 {
1579         return sleeptime_injected;
1580 }
1581
1582 /**
1583  * 1) can be determined whether to use or not only when doing
1584  * timekeeping_resume() which is invoked after rtc_suspend(),
1585  * so we can't skip rtc_suspend() surely if system has 1).
1586  *
1587  * But if system has 2), 2) will definitely be used, so in this
1588  * case we don't need to call rtc_suspend(), and this is what
1589  * timekeeping_rtc_skipsuspend() means.
1590  */
1591 bool timekeeping_rtc_skipsuspend(void)
1592 {
1593         return persistent_clock_exists;
1594 }
1595
1596 /**
1597  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1598  * @delta: pointer to a timespec64 delta value
1599  *
1600  * This hook is for architectures that cannot support read_persistent_clock64
1601  * because their RTC/persistent clock is only accessible when irqs are enabled.
1602  * and also don't have an effective nonstop clocksource.
1603  *
1604  * This function should only be called by rtc_resume(), and allows
1605  * a suspend offset to be injected into the timekeeping values.
1606  */
1607 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1608 {
1609         struct timekeeper *tk = &tk_core.timekeeper;
1610         unsigned long flags;
1611
1612         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1613         write_seqcount_begin(&tk_core.seq);
1614
1615         timekeeping_forward_now(tk);
1616
1617         __timekeeping_inject_sleeptime(tk, delta);
1618
1619         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1620
1621         write_seqcount_end(&tk_core.seq);
1622         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1623
1624         /* signal hrtimers about time change */
1625         clock_was_set();
1626 }
1627 #endif
1628
1629 /**
1630  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1631  */
1632 void timekeeping_resume(void)
1633 {
1634         struct timekeeper *tk = &tk_core.timekeeper;
1635         struct clocksource *clock = tk->tkr_mono.clock;
1636         unsigned long flags;
1637         struct timespec64 ts_new, ts_delta;
1638         u64 cycle_now;
1639
1640         sleeptime_injected = false;
1641         read_persistent_clock64(&ts_new);
1642
1643         clockevents_resume();
1644         clocksource_resume();
1645
1646         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1647         write_seqcount_begin(&tk_core.seq);
1648
1649         /*
1650          * After system resumes, we need to calculate the suspended time and
1651          * compensate it for the OS time. There are 3 sources that could be
1652          * used: Nonstop clocksource during suspend, persistent clock and rtc
1653          * device.
1654          *
1655          * One specific platform may have 1 or 2 or all of them, and the
1656          * preference will be:
1657          *      suspend-nonstop clocksource -> persistent clock -> rtc
1658          * The less preferred source will only be tried if there is no better
1659          * usable source. The rtc part is handled separately in rtc core code.
1660          */
1661         cycle_now = tk_clock_read(&tk->tkr_mono);
1662         if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1663                 cycle_now > tk->tkr_mono.cycle_last) {
1664                 u64 nsec, cyc_delta;
1665
1666                 cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1667                                               tk->tkr_mono.mask);
1668                 nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1669                 ts_delta = ns_to_timespec64(nsec);
1670                 sleeptime_injected = true;
1671         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1672                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1673                 sleeptime_injected = true;
1674         }
1675
1676         if (sleeptime_injected)
1677                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1678
1679         /* Re-base the last cycle value */
1680         tk->tkr_mono.cycle_last = cycle_now;
1681         tk->tkr_raw.cycle_last  = cycle_now;
1682
1683         tk->ntp_error = 0;
1684         timekeeping_suspended = 0;
1685         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1686         write_seqcount_end(&tk_core.seq);
1687         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1688
1689         touch_softlockup_watchdog();
1690
1691         tick_resume();
1692         hrtimers_resume();
1693 }
1694
1695 int timekeeping_suspend(void)
1696 {
1697         struct timekeeper *tk = &tk_core.timekeeper;
1698         unsigned long flags;
1699         struct timespec64               delta, delta_delta;
1700         static struct timespec64        old_delta;
1701
1702         read_persistent_clock64(&timekeeping_suspend_time);
1703
1704         /*
1705          * On some systems the persistent_clock can not be detected at
1706          * timekeeping_init by its return value, so if we see a valid
1707          * value returned, update the persistent_clock_exists flag.
1708          */
1709         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1710                 persistent_clock_exists = true;
1711
1712         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1713         write_seqcount_begin(&tk_core.seq);
1714         timekeeping_forward_now(tk);
1715         timekeeping_suspended = 1;
1716
1717         if (persistent_clock_exists) {
1718                 /*
1719                  * To avoid drift caused by repeated suspend/resumes,
1720                  * which each can add ~1 second drift error,
1721                  * try to compensate so the difference in system time
1722                  * and persistent_clock time stays close to constant.
1723                  */
1724                 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1725                 delta_delta = timespec64_sub(delta, old_delta);
1726                 if (abs(delta_delta.tv_sec) >= 2) {
1727                         /*
1728                          * if delta_delta is too large, assume time correction
1729                          * has occurred and set old_delta to the current delta.
1730                          */
1731                         old_delta = delta;
1732                 } else {
1733                         /* Otherwise try to adjust old_system to compensate */
1734                         timekeeping_suspend_time =
1735                                 timespec64_add(timekeeping_suspend_time, delta_delta);
1736                 }
1737         }
1738
1739         timekeeping_update(tk, TK_MIRROR);
1740         halt_fast_timekeeper(tk);
1741         write_seqcount_end(&tk_core.seq);
1742         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1743
1744         tick_suspend();
1745         clocksource_suspend();
1746         clockevents_suspend();
1747
1748         return 0;
1749 }
1750
1751 /* sysfs resume/suspend bits for timekeeping */
1752 static struct syscore_ops timekeeping_syscore_ops = {
1753         .resume         = timekeeping_resume,
1754         .suspend        = timekeeping_suspend,
1755 };
1756
1757 static int __init timekeeping_init_ops(void)
1758 {
1759         register_syscore_ops(&timekeeping_syscore_ops);
1760         return 0;
1761 }
1762 device_initcall(timekeeping_init_ops);
1763
1764 /*
1765  * Apply a multiplier adjustment to the timekeeper
1766  */
1767 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1768                                                          s64 offset,
1769                                                          bool negative,
1770                                                          int adj_scale)
1771 {
1772         s64 interval = tk->cycle_interval;
1773         s32 mult_adj = 1;
1774
1775         if (negative) {
1776                 mult_adj = -mult_adj;
1777                 interval = -interval;
1778                 offset  = -offset;
1779         }
1780         mult_adj <<= adj_scale;
1781         interval <<= adj_scale;
1782         offset <<= adj_scale;
1783
1784         /*
1785          * So the following can be confusing.
1786          *
1787          * To keep things simple, lets assume mult_adj == 1 for now.
1788          *
1789          * When mult_adj != 1, remember that the interval and offset values
1790          * have been appropriately scaled so the math is the same.
1791          *
1792          * The basic idea here is that we're increasing the multiplier
1793          * by one, this causes the xtime_interval to be incremented by
1794          * one cycle_interval. This is because:
1795          *      xtime_interval = cycle_interval * mult
1796          * So if mult is being incremented by one:
1797          *      xtime_interval = cycle_interval * (mult + 1)
1798          * Its the same as:
1799          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1800          * Which can be shortened to:
1801          *      xtime_interval += cycle_interval
1802          *
1803          * So offset stores the non-accumulated cycles. Thus the current
1804          * time (in shifted nanoseconds) is:
1805          *      now = (offset * adj) + xtime_nsec
1806          * Now, even though we're adjusting the clock frequency, we have
1807          * to keep time consistent. In other words, we can't jump back
1808          * in time, and we also want to avoid jumping forward in time.
1809          *
1810          * So given the same offset value, we need the time to be the same
1811          * both before and after the freq adjustment.
1812          *      now = (offset * adj_1) + xtime_nsec_1
1813          *      now = (offset * adj_2) + xtime_nsec_2
1814          * So:
1815          *      (offset * adj_1) + xtime_nsec_1 =
1816          *              (offset * adj_2) + xtime_nsec_2
1817          * And we know:
1818          *      adj_2 = adj_1 + 1
1819          * So:
1820          *      (offset * adj_1) + xtime_nsec_1 =
1821          *              (offset * (adj_1+1)) + xtime_nsec_2
1822          *      (offset * adj_1) + xtime_nsec_1 =
1823          *              (offset * adj_1) + offset + xtime_nsec_2
1824          * Canceling the sides:
1825          *      xtime_nsec_1 = offset + xtime_nsec_2
1826          * Which gives us:
1827          *      xtime_nsec_2 = xtime_nsec_1 - offset
1828          * Which simplfies to:
1829          *      xtime_nsec -= offset
1830          *
1831          * XXX - TODO: Doc ntp_error calculation.
1832          */
1833         if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1834                 /* NTP adjustment caused clocksource mult overflow */
1835                 WARN_ON_ONCE(1);
1836                 return;
1837         }
1838
1839         tk->tkr_mono.mult += mult_adj;
1840         tk->xtime_interval += interval;
1841         tk->tkr_mono.xtime_nsec -= offset;
1842         tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1843 }
1844
1845 /*
1846  * Calculate the multiplier adjustment needed to match the frequency
1847  * specified by NTP
1848  */
1849 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1850                                                         s64 offset)
1851 {
1852         s64 interval = tk->cycle_interval;
1853         s64 xinterval = tk->xtime_interval;
1854         u32 base = tk->tkr_mono.clock->mult;
1855         u32 max = tk->tkr_mono.clock->maxadj;
1856         u32 cur_adj = tk->tkr_mono.mult;
1857         s64 tick_error;
1858         bool negative;
1859         u32 adj_scale;
1860
1861         /* Remove any current error adj from freq calculation */
1862         if (tk->ntp_err_mult)
1863                 xinterval -= tk->cycle_interval;
1864
1865         tk->ntp_tick = ntp_tick_length();
1866
1867         /* Calculate current error per tick */
1868         tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1869         tick_error -= (xinterval + tk->xtime_remainder);
1870
1871         /* Don't worry about correcting it if its small */
1872         if (likely((tick_error >= 0) && (tick_error <= interval)))
1873                 return;
1874
1875         /* preserve the direction of correction */
1876         negative = (tick_error < 0);
1877
1878         /* If any adjustment would pass the max, just return */
1879         if (negative && (cur_adj - 1) <= (base - max))
1880                 return;
1881         if (!negative && (cur_adj + 1) >= (base + max))
1882                 return;
1883         /*
1884          * Sort out the magnitude of the correction, but
1885          * avoid making so large a correction that we go
1886          * over the max adjustment.
1887          */
1888         adj_scale = 0;
1889         tick_error = abs(tick_error);
1890         while (tick_error > interval) {
1891                 u32 adj = 1 << (adj_scale + 1);
1892
1893                 /* Check if adjustment gets us within 1 unit from the max */
1894                 if (negative && (cur_adj - adj) <= (base - max))
1895                         break;
1896                 if (!negative && (cur_adj + adj) >= (base + max))
1897                         break;
1898
1899                 adj_scale++;
1900                 tick_error >>= 1;
1901         }
1902
1903         /* scale the corrections */
1904         timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1905 }
1906
1907 /*
1908  * Adjust the timekeeper's multiplier to the correct frequency
1909  * and also to reduce the accumulated error value.
1910  */
1911 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1912 {
1913         /* Correct for the current frequency error */
1914         timekeeping_freqadjust(tk, offset);
1915
1916         /* Next make a small adjustment to fix any cumulative error */
1917         if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1918                 tk->ntp_err_mult = 1;
1919                 timekeeping_apply_adjustment(tk, offset, 0, 0);
1920         } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1921                 /* Undo any existing error adjustment */
1922                 timekeeping_apply_adjustment(tk, offset, 1, 0);
1923                 tk->ntp_err_mult = 0;
1924         }
1925
1926         if (unlikely(tk->tkr_mono.clock->maxadj &&
1927                 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1928                         > tk->tkr_mono.clock->maxadj))) {
1929                 printk_once(KERN_WARNING
1930                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1931                         tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1932                         (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1933         }
1934
1935         /*
1936          * It may be possible that when we entered this function, xtime_nsec
1937          * was very small.  Further, if we're slightly speeding the clocksource
1938          * in the code above, its possible the required corrective factor to
1939          * xtime_nsec could cause it to underflow.
1940          *
1941          * Now, since we already accumulated the second, cannot simply roll
1942          * the accumulated second back, since the NTP subsystem has been
1943          * notified via second_overflow. So instead we push xtime_nsec forward
1944          * by the amount we underflowed, and add that amount into the error.
1945          *
1946          * We'll correct this error next time through this function, when
1947          * xtime_nsec is not as small.
1948          */
1949         if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1950                 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1951                 tk->tkr_mono.xtime_nsec = 0;
1952                 tk->ntp_error += neg << tk->ntp_error_shift;
1953         }
1954 }
1955
1956 /**
1957  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1958  *
1959  * Helper function that accumulates the nsecs greater than a second
1960  * from the xtime_nsec field to the xtime_secs field.
1961  * It also calls into the NTP code to handle leapsecond processing.
1962  *
1963  */
1964 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1965 {
1966         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1967         unsigned int clock_set = 0;
1968
1969         while (tk->tkr_mono.xtime_nsec >= nsecps) {
1970                 int leap;
1971
1972                 tk->tkr_mono.xtime_nsec -= nsecps;
1973                 tk->xtime_sec++;
1974
1975                 /* Figure out if its a leap sec and apply if needed */
1976                 leap = second_overflow(tk->xtime_sec);
1977                 if (unlikely(leap)) {
1978                         struct timespec64 ts;
1979
1980                         tk->xtime_sec += leap;
1981
1982                         ts.tv_sec = leap;
1983                         ts.tv_nsec = 0;
1984                         tk_set_wall_to_mono(tk,
1985                                 timespec64_sub(tk->wall_to_monotonic, ts));
1986
1987                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1988
1989                         clock_set = TK_CLOCK_WAS_SET;
1990                 }
1991         }
1992         return clock_set;
1993 }
1994
1995 /**
1996  * logarithmic_accumulation - shifted accumulation of cycles
1997  *
1998  * This functions accumulates a shifted interval of cycles into
1999  * into a shifted interval nanoseconds. Allows for O(log) accumulation
2000  * loop.
2001  *
2002  * Returns the unconsumed cycles.
2003  */
2004 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2005                                     u32 shift, unsigned int *clock_set)
2006 {
2007         u64 interval = tk->cycle_interval << shift;
2008         u64 snsec_per_sec;
2009
2010         /* If the offset is smaller than a shifted interval, do nothing */
2011         if (offset < interval)
2012                 return offset;
2013
2014         /* Accumulate one shifted interval */
2015         offset -= interval;
2016         tk->tkr_mono.cycle_last += interval;
2017         tk->tkr_raw.cycle_last  += interval;
2018
2019         tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2020         *clock_set |= accumulate_nsecs_to_secs(tk);
2021
2022         /* Accumulate raw time */
2023         tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2024         snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2025         while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2026                 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2027                 tk->raw_sec++;
2028         }
2029
2030         /* Accumulate error between NTP and clock interval */
2031         tk->ntp_error += tk->ntp_tick << shift;
2032         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2033                                                 (tk->ntp_error_shift + shift);
2034
2035         return offset;
2036 }
2037
2038 /**
2039  * update_wall_time - Uses the current clocksource to increment the wall time
2040  *
2041  */
2042 void update_wall_time(void)
2043 {
2044         struct timekeeper *real_tk = &tk_core.timekeeper;
2045         struct timekeeper *tk = &shadow_timekeeper;
2046         u64 offset;
2047         int shift = 0, maxshift;
2048         unsigned int clock_set = 0;
2049         unsigned long flags;
2050
2051         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2052
2053         /* Make sure we're fully resumed: */
2054         if (unlikely(timekeeping_suspended))
2055                 goto out;
2056
2057 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2058         offset = real_tk->cycle_interval;
2059 #else
2060         offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2061                                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2062 #endif
2063
2064         /* Check if there's really nothing to do */
2065         if (offset < real_tk->cycle_interval)
2066                 goto out;
2067
2068         /* Do some additional sanity checking */
2069         timekeeping_check_update(real_tk, offset);
2070
2071         /*
2072          * With NO_HZ we may have to accumulate many cycle_intervals
2073          * (think "ticks") worth of time at once. To do this efficiently,
2074          * we calculate the largest doubling multiple of cycle_intervals
2075          * that is smaller than the offset.  We then accumulate that
2076          * chunk in one go, and then try to consume the next smaller
2077          * doubled multiple.
2078          */
2079         shift = ilog2(offset) - ilog2(tk->cycle_interval);
2080         shift = max(0, shift);
2081         /* Bound shift to one less than what overflows tick_length */
2082         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2083         shift = min(shift, maxshift);
2084         while (offset >= tk->cycle_interval) {
2085                 offset = logarithmic_accumulation(tk, offset, shift,
2086                                                         &clock_set);
2087                 if (offset < tk->cycle_interval<<shift)
2088                         shift--;
2089         }
2090
2091         /* correct the clock when NTP error is too big */
2092         timekeeping_adjust(tk, offset);
2093
2094         /*
2095          * XXX This can be killed once everyone converts
2096          * to the new update_vsyscall.
2097          */
2098         old_vsyscall_fixup(tk);
2099
2100         /*
2101          * Finally, make sure that after the rounding
2102          * xtime_nsec isn't larger than NSEC_PER_SEC
2103          */
2104         clock_set |= accumulate_nsecs_to_secs(tk);
2105
2106         write_seqcount_begin(&tk_core.seq);
2107         /*
2108          * Update the real timekeeper.
2109          *
2110          * We could avoid this memcpy by switching pointers, but that
2111          * requires changes to all other timekeeper usage sites as
2112          * well, i.e. move the timekeeper pointer getter into the
2113          * spinlocked/seqcount protected sections. And we trade this
2114          * memcpy under the tk_core.seq against one before we start
2115          * updating.
2116          */
2117         timekeeping_update(tk, clock_set);
2118         memcpy(real_tk, tk, sizeof(*tk));
2119         /* The memcpy must come last. Do not put anything here! */
2120         write_seqcount_end(&tk_core.seq);
2121 out:
2122         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2123         if (clock_set)
2124                 /* Have to call _delayed version, since in irq context*/
2125                 clock_was_set_delayed();
2126 }
2127
2128 /**
2129  * getboottime64 - Return the real time of system boot.
2130  * @ts:         pointer to the timespec64 to be set
2131  *
2132  * Returns the wall-time of boot in a timespec64.
2133  *
2134  * This is based on the wall_to_monotonic offset and the total suspend
2135  * time. Calls to settimeofday will affect the value returned (which
2136  * basically means that however wrong your real time clock is at boot time,
2137  * you get the right time here).
2138  */
2139 void getboottime64(struct timespec64 *ts)
2140 {
2141         struct timekeeper *tk = &tk_core.timekeeper;
2142         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2143
2144         *ts = ktime_to_timespec64(t);
2145 }
2146 EXPORT_SYMBOL_GPL(getboottime64);
2147
2148 unsigned long get_seconds(void)
2149 {
2150         struct timekeeper *tk = &tk_core.timekeeper;
2151
2152         return tk->xtime_sec;
2153 }
2154 EXPORT_SYMBOL(get_seconds);
2155
2156 struct timespec __current_kernel_time(void)
2157 {
2158         struct timekeeper *tk = &tk_core.timekeeper;
2159
2160         return timespec64_to_timespec(tk_xtime(tk));
2161 }
2162
2163 struct timespec64 current_kernel_time64(void)
2164 {
2165         struct timekeeper *tk = &tk_core.timekeeper;
2166         struct timespec64 now;
2167         unsigned long seq;
2168
2169         do {
2170                 seq = read_seqcount_begin(&tk_core.seq);
2171
2172                 now = tk_xtime(tk);
2173         } while (read_seqcount_retry(&tk_core.seq, seq));
2174
2175         return now;
2176 }
2177 EXPORT_SYMBOL(current_kernel_time64);
2178
2179 struct timespec64 get_monotonic_coarse64(void)
2180 {
2181         struct timekeeper *tk = &tk_core.timekeeper;
2182         struct timespec64 now, mono;
2183         unsigned long seq;
2184
2185         do {
2186                 seq = read_seqcount_begin(&tk_core.seq);
2187
2188                 now = tk_xtime(tk);
2189                 mono = tk->wall_to_monotonic;
2190         } while (read_seqcount_retry(&tk_core.seq, seq));
2191
2192         set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2193                                 now.tv_nsec + mono.tv_nsec);
2194
2195         return now;
2196 }
2197 EXPORT_SYMBOL(get_monotonic_coarse64);
2198
2199 /*
2200  * Must hold jiffies_lock
2201  */
2202 void do_timer(unsigned long ticks)
2203 {
2204         jiffies_64 += ticks;
2205         calc_global_load(ticks);
2206 }
2207
2208 /**
2209  * ktime_get_update_offsets_now - hrtimer helper
2210  * @cwsseq:     pointer to check and store the clock was set sequence number
2211  * @offs_real:  pointer to storage for monotonic -> realtime offset
2212  * @offs_boot:  pointer to storage for monotonic -> boottime offset
2213  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
2214  *
2215  * Returns current monotonic time and updates the offsets if the
2216  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2217  * different.
2218  *
2219  * Called from hrtimer_interrupt() or retrigger_next_event()
2220  */
2221 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2222                                      ktime_t *offs_boot, ktime_t *offs_tai)
2223 {
2224         struct timekeeper *tk = &tk_core.timekeeper;
2225         unsigned int seq;
2226         ktime_t base;
2227         u64 nsecs;
2228
2229         do {
2230                 seq = read_seqcount_begin(&tk_core.seq);
2231
2232                 base = tk->tkr_mono.base;
2233                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2234                 base = ktime_add_ns(base, nsecs);
2235
2236                 if (*cwsseq != tk->clock_was_set_seq) {
2237                         *cwsseq = tk->clock_was_set_seq;
2238                         *offs_real = tk->offs_real;
2239                         *offs_boot = tk->offs_boot;
2240                         *offs_tai = tk->offs_tai;
2241                 }
2242
2243                 /* Handle leapsecond insertion adjustments */
2244                 if (unlikely(base >= tk->next_leap_ktime))
2245                         *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2246
2247         } while (read_seqcount_retry(&tk_core.seq, seq));
2248
2249         return base;
2250 }
2251
2252 /**
2253  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2254  */
2255 int do_adjtimex(struct timex *txc)
2256 {
2257         struct timekeeper *tk = &tk_core.timekeeper;
2258         unsigned long flags;
2259         struct timespec64 ts;
2260         s32 orig_tai, tai;
2261         int ret;
2262
2263         /* Validate the data before disabling interrupts */
2264         ret = ntp_validate_timex(txc);
2265         if (ret)
2266                 return ret;
2267
2268         if (txc->modes & ADJ_SETOFFSET) {
2269                 struct timespec delta;
2270                 delta.tv_sec  = txc->time.tv_sec;
2271                 delta.tv_nsec = txc->time.tv_usec;
2272                 if (!(txc->modes & ADJ_NANO))
2273                         delta.tv_nsec *= 1000;
2274                 ret = timekeeping_inject_offset(&delta);
2275                 if (ret)
2276                         return ret;
2277         }
2278
2279         getnstimeofday64(&ts);
2280
2281         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2282         write_seqcount_begin(&tk_core.seq);
2283
2284         orig_tai = tai = tk->tai_offset;
2285         ret = __do_adjtimex(txc, &ts, &tai);
2286
2287         if (tai != orig_tai) {
2288                 __timekeeping_set_tai_offset(tk, tai);
2289                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2290         }
2291         tk_update_leap_state(tk);
2292
2293         write_seqcount_end(&tk_core.seq);
2294         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2295
2296         if (tai != orig_tai)
2297                 clock_was_set();
2298
2299         ntp_notify_cmos_timer();
2300
2301         return ret;
2302 }
2303
2304 #ifdef CONFIG_NTP_PPS
2305 /**
2306  * hardpps() - Accessor function to NTP __hardpps function
2307  */
2308 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2309 {
2310         unsigned long flags;
2311
2312         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2313         write_seqcount_begin(&tk_core.seq);
2314
2315         __hardpps(phase_ts, raw_ts);
2316
2317         write_seqcount_end(&tk_core.seq);
2318         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2319 }
2320 EXPORT_SYMBOL(hardpps);
2321 #endif
2322
2323 /**
2324  * xtime_update() - advances the timekeeping infrastructure
2325  * @ticks:      number of ticks, that have elapsed since the last call.
2326  *
2327  * Must be called with interrupts disabled.
2328  */
2329 void xtime_update(unsigned long ticks)
2330 {
2331         write_seqlock(&jiffies_lock);
2332         do_timer(ticks);
2333         write_sequnlock(&jiffies_lock);
2334         update_wall_time();
2335 }