]> asedeno.scripts.mit.edu Git - linux.git/blob - kernel/trace/ring_buffer.c
Merge tag 'kbuild-v4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[linux.git] / kernel / trace / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_events.h>
8 #include <linux/ring_buffer.h>
9 #include <linux/trace_clock.h>
10 #include <linux/sched/clock.h>
11 #include <linux/trace_seq.h>
12 #include <linux/spinlock.h>
13 #include <linux/irq_work.h>
14 #include <linux/uaccess.h>
15 #include <linux/hardirq.h>
16 #include <linux/kthread.h>      /* for self test */
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/oom.h>
27
28 #include <asm/local.h>
29
30 static void update_pages_handler(struct work_struct *work);
31
32 /*
33  * The ring buffer header is special. We must manually up keep it.
34  */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37         trace_seq_puts(s, "# compressed entry header\n");
38         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
39         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
40         trace_seq_puts(s, "\tarray       :   32 bits\n");
41         trace_seq_putc(s, '\n');
42         trace_seq_printf(s, "\tpadding     : type == %d\n",
43                          RINGBUF_TYPE_PADDING);
44         trace_seq_printf(s, "\ttime_extend : type == %d\n",
45                          RINGBUF_TYPE_TIME_EXTEND);
46         trace_seq_printf(s, "\ttime_stamp : type == %d\n",
47                          RINGBUF_TYPE_TIME_STAMP);
48         trace_seq_printf(s, "\tdata max type_len  == %d\n",
49                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50
51         return !trace_seq_has_overflowed(s);
52 }
53
54 /*
55  * The ring buffer is made up of a list of pages. A separate list of pages is
56  * allocated for each CPU. A writer may only write to a buffer that is
57  * associated with the CPU it is currently executing on.  A reader may read
58  * from any per cpu buffer.
59  *
60  * The reader is special. For each per cpu buffer, the reader has its own
61  * reader page. When a reader has read the entire reader page, this reader
62  * page is swapped with another page in the ring buffer.
63  *
64  * Now, as long as the writer is off the reader page, the reader can do what
65  * ever it wants with that page. The writer will never write to that page
66  * again (as long as it is out of the ring buffer).
67  *
68  * Here's some silly ASCII art.
69  *
70  *   +------+
71  *   |reader|          RING BUFFER
72  *   |page  |
73  *   +------+        +---+   +---+   +---+
74  *                   |   |-->|   |-->|   |
75  *                   +---+   +---+   +---+
76  *                     ^               |
77  *                     |               |
78  *                     +---------------+
79  *
80  *
81  *   +------+
82  *   |reader|          RING BUFFER
83  *   |page  |------------------v
84  *   +------+        +---+   +---+   +---+
85  *                   |   |-->|   |-->|   |
86  *                   +---+   +---+   +---+
87  *                     ^               |
88  *                     |               |
89  *                     +---------------+
90  *
91  *
92  *   +------+
93  *   |reader|          RING BUFFER
94  *   |page  |------------------v
95  *   +------+        +---+   +---+   +---+
96  *      ^            |   |-->|   |-->|   |
97  *      |            +---+   +---+   +---+
98  *      |                              |
99  *      |                              |
100  *      +------------------------------+
101  *
102  *
103  *   +------+
104  *   |buffer|          RING BUFFER
105  *   |page  |------------------v
106  *   +------+        +---+   +---+   +---+
107  *      ^            |   |   |   |-->|   |
108  *      |   New      +---+   +---+   +---+
109  *      |  Reader------^               |
110  *      |   page                       |
111  *      +------------------------------+
112  *
113  *
114  * After we make this swap, the reader can hand this page off to the splice
115  * code and be done with it. It can even allocate a new page if it needs to
116  * and swap that into the ring buffer.
117  *
118  * We will be using cmpxchg soon to make all this lockless.
119  *
120  */
121
122 /* Used for individual buffers (after the counter) */
123 #define RB_BUFFER_OFF           (1 << 20)
124
125 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
126
127 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
128 #define RB_ALIGNMENT            4U
129 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
130 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
131
132 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
133 # define RB_FORCE_8BYTE_ALIGNMENT       0
134 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
135 #else
136 # define RB_FORCE_8BYTE_ALIGNMENT       1
137 # define RB_ARCH_ALIGNMENT              8U
138 #endif
139
140 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
141
142 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
143 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
144
145 enum {
146         RB_LEN_TIME_EXTEND = 8,
147         RB_LEN_TIME_STAMP =  8,
148 };
149
150 #define skip_time_extend(event) \
151         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
152
153 #define extended_time(event) \
154         (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
155
156 static inline int rb_null_event(struct ring_buffer_event *event)
157 {
158         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
159 }
160
161 static void rb_event_set_padding(struct ring_buffer_event *event)
162 {
163         /* padding has a NULL time_delta */
164         event->type_len = RINGBUF_TYPE_PADDING;
165         event->time_delta = 0;
166 }
167
168 static unsigned
169 rb_event_data_length(struct ring_buffer_event *event)
170 {
171         unsigned length;
172
173         if (event->type_len)
174                 length = event->type_len * RB_ALIGNMENT;
175         else
176                 length = event->array[0];
177         return length + RB_EVNT_HDR_SIZE;
178 }
179
180 /*
181  * Return the length of the given event. Will return
182  * the length of the time extend if the event is a
183  * time extend.
184  */
185 static inline unsigned
186 rb_event_length(struct ring_buffer_event *event)
187 {
188         switch (event->type_len) {
189         case RINGBUF_TYPE_PADDING:
190                 if (rb_null_event(event))
191                         /* undefined */
192                         return -1;
193                 return  event->array[0] + RB_EVNT_HDR_SIZE;
194
195         case RINGBUF_TYPE_TIME_EXTEND:
196                 return RB_LEN_TIME_EXTEND;
197
198         case RINGBUF_TYPE_TIME_STAMP:
199                 return RB_LEN_TIME_STAMP;
200
201         case RINGBUF_TYPE_DATA:
202                 return rb_event_data_length(event);
203         default:
204                 BUG();
205         }
206         /* not hit */
207         return 0;
208 }
209
210 /*
211  * Return total length of time extend and data,
212  *   or just the event length for all other events.
213  */
214 static inline unsigned
215 rb_event_ts_length(struct ring_buffer_event *event)
216 {
217         unsigned len = 0;
218
219         if (extended_time(event)) {
220                 /* time extends include the data event after it */
221                 len = RB_LEN_TIME_EXTEND;
222                 event = skip_time_extend(event);
223         }
224         return len + rb_event_length(event);
225 }
226
227 /**
228  * ring_buffer_event_length - return the length of the event
229  * @event: the event to get the length of
230  *
231  * Returns the size of the data load of a data event.
232  * If the event is something other than a data event, it
233  * returns the size of the event itself. With the exception
234  * of a TIME EXTEND, where it still returns the size of the
235  * data load of the data event after it.
236  */
237 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
238 {
239         unsigned length;
240
241         if (extended_time(event))
242                 event = skip_time_extend(event);
243
244         length = rb_event_length(event);
245         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
246                 return length;
247         length -= RB_EVNT_HDR_SIZE;
248         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
249                 length -= sizeof(event->array[0]);
250         return length;
251 }
252 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
253
254 /* inline for ring buffer fast paths */
255 static __always_inline void *
256 rb_event_data(struct ring_buffer_event *event)
257 {
258         if (extended_time(event))
259                 event = skip_time_extend(event);
260         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
261         /* If length is in len field, then array[0] has the data */
262         if (event->type_len)
263                 return (void *)&event->array[0];
264         /* Otherwise length is in array[0] and array[1] has the data */
265         return (void *)&event->array[1];
266 }
267
268 /**
269  * ring_buffer_event_data - return the data of the event
270  * @event: the event to get the data from
271  */
272 void *ring_buffer_event_data(struct ring_buffer_event *event)
273 {
274         return rb_event_data(event);
275 }
276 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
277
278 #define for_each_buffer_cpu(buffer, cpu)                \
279         for_each_cpu(cpu, buffer->cpumask)
280
281 #define TS_SHIFT        27
282 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
283 #define TS_DELTA_TEST   (~TS_MASK)
284
285 /**
286  * ring_buffer_event_time_stamp - return the event's extended timestamp
287  * @event: the event to get the timestamp of
288  *
289  * Returns the extended timestamp associated with a data event.
290  * An extended time_stamp is a 64-bit timestamp represented
291  * internally in a special way that makes the best use of space
292  * contained within a ring buffer event.  This function decodes
293  * it and maps it to a straight u64 value.
294  */
295 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
296 {
297         u64 ts;
298
299         ts = event->array[0];
300         ts <<= TS_SHIFT;
301         ts += event->time_delta;
302
303         return ts;
304 }
305
306 /* Flag when events were overwritten */
307 #define RB_MISSED_EVENTS        (1 << 31)
308 /* Missed count stored at end */
309 #define RB_MISSED_STORED        (1 << 30)
310
311 #define RB_MISSED_FLAGS         (RB_MISSED_EVENTS|RB_MISSED_STORED)
312
313 struct buffer_data_page {
314         u64              time_stamp;    /* page time stamp */
315         local_t          commit;        /* write committed index */
316         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
317 };
318
319 /*
320  * Note, the buffer_page list must be first. The buffer pages
321  * are allocated in cache lines, which means that each buffer
322  * page will be at the beginning of a cache line, and thus
323  * the least significant bits will be zero. We use this to
324  * add flags in the list struct pointers, to make the ring buffer
325  * lockless.
326  */
327 struct buffer_page {
328         struct list_head list;          /* list of buffer pages */
329         local_t          write;         /* index for next write */
330         unsigned         read;          /* index for next read */
331         local_t          entries;       /* entries on this page */
332         unsigned long    real_end;      /* real end of data */
333         struct buffer_data_page *page;  /* Actual data page */
334 };
335
336 /*
337  * The buffer page counters, write and entries, must be reset
338  * atomically when crossing page boundaries. To synchronize this
339  * update, two counters are inserted into the number. One is
340  * the actual counter for the write position or count on the page.
341  *
342  * The other is a counter of updaters. Before an update happens
343  * the update partition of the counter is incremented. This will
344  * allow the updater to update the counter atomically.
345  *
346  * The counter is 20 bits, and the state data is 12.
347  */
348 #define RB_WRITE_MASK           0xfffff
349 #define RB_WRITE_INTCNT         (1 << 20)
350
351 static void rb_init_page(struct buffer_data_page *bpage)
352 {
353         local_set(&bpage->commit, 0);
354 }
355
356 /**
357  * ring_buffer_page_len - the size of data on the page.
358  * @page: The page to read
359  *
360  * Returns the amount of data on the page, including buffer page header.
361  */
362 size_t ring_buffer_page_len(void *page)
363 {
364         struct buffer_data_page *bpage = page;
365
366         return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
367                 + BUF_PAGE_HDR_SIZE;
368 }
369
370 /*
371  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
372  * this issue out.
373  */
374 static void free_buffer_page(struct buffer_page *bpage)
375 {
376         free_page((unsigned long)bpage->page);
377         kfree(bpage);
378 }
379
380 /*
381  * We need to fit the time_stamp delta into 27 bits.
382  */
383 static inline int test_time_stamp(u64 delta)
384 {
385         if (delta & TS_DELTA_TEST)
386                 return 1;
387         return 0;
388 }
389
390 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
391
392 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
393 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
394
395 int ring_buffer_print_page_header(struct trace_seq *s)
396 {
397         struct buffer_data_page field;
398
399         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
400                          "offset:0;\tsize:%u;\tsigned:%u;\n",
401                          (unsigned int)sizeof(field.time_stamp),
402                          (unsigned int)is_signed_type(u64));
403
404         trace_seq_printf(s, "\tfield: local_t commit;\t"
405                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
406                          (unsigned int)offsetof(typeof(field), commit),
407                          (unsigned int)sizeof(field.commit),
408                          (unsigned int)is_signed_type(long));
409
410         trace_seq_printf(s, "\tfield: int overwrite;\t"
411                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
412                          (unsigned int)offsetof(typeof(field), commit),
413                          1,
414                          (unsigned int)is_signed_type(long));
415
416         trace_seq_printf(s, "\tfield: char data;\t"
417                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
418                          (unsigned int)offsetof(typeof(field), data),
419                          (unsigned int)BUF_PAGE_SIZE,
420                          (unsigned int)is_signed_type(char));
421
422         return !trace_seq_has_overflowed(s);
423 }
424
425 struct rb_irq_work {
426         struct irq_work                 work;
427         wait_queue_head_t               waiters;
428         wait_queue_head_t               full_waiters;
429         bool                            waiters_pending;
430         bool                            full_waiters_pending;
431         bool                            wakeup_full;
432 };
433
434 /*
435  * Structure to hold event state and handle nested events.
436  */
437 struct rb_event_info {
438         u64                     ts;
439         u64                     delta;
440         unsigned long           length;
441         struct buffer_page      *tail_page;
442         int                     add_timestamp;
443 };
444
445 /*
446  * Used for which event context the event is in.
447  *  NMI     = 0
448  *  IRQ     = 1
449  *  SOFTIRQ = 2
450  *  NORMAL  = 3
451  *
452  * See trace_recursive_lock() comment below for more details.
453  */
454 enum {
455         RB_CTX_NMI,
456         RB_CTX_IRQ,
457         RB_CTX_SOFTIRQ,
458         RB_CTX_NORMAL,
459         RB_CTX_MAX
460 };
461
462 /*
463  * head_page == tail_page && head == tail then buffer is empty.
464  */
465 struct ring_buffer_per_cpu {
466         int                             cpu;
467         atomic_t                        record_disabled;
468         struct ring_buffer              *buffer;
469         raw_spinlock_t                  reader_lock;    /* serialize readers */
470         arch_spinlock_t                 lock;
471         struct lock_class_key           lock_key;
472         struct buffer_data_page         *free_page;
473         unsigned long                   nr_pages;
474         unsigned int                    current_context;
475         struct list_head                *pages;
476         struct buffer_page              *head_page;     /* read from head */
477         struct buffer_page              *tail_page;     /* write to tail */
478         struct buffer_page              *commit_page;   /* committed pages */
479         struct buffer_page              *reader_page;
480         unsigned long                   lost_events;
481         unsigned long                   last_overrun;
482         unsigned long                   nest;
483         local_t                         entries_bytes;
484         local_t                         entries;
485         local_t                         overrun;
486         local_t                         commit_overrun;
487         local_t                         dropped_events;
488         local_t                         committing;
489         local_t                         commits;
490         unsigned long                   read;
491         unsigned long                   read_bytes;
492         u64                             write_stamp;
493         u64                             read_stamp;
494         /* ring buffer pages to update, > 0 to add, < 0 to remove */
495         long                            nr_pages_to_update;
496         struct list_head                new_pages; /* new pages to add */
497         struct work_struct              update_pages_work;
498         struct completion               update_done;
499
500         struct rb_irq_work              irq_work;
501 };
502
503 struct ring_buffer {
504         unsigned                        flags;
505         int                             cpus;
506         atomic_t                        record_disabled;
507         atomic_t                        resize_disabled;
508         cpumask_var_t                   cpumask;
509
510         struct lock_class_key           *reader_lock_key;
511
512         struct mutex                    mutex;
513
514         struct ring_buffer_per_cpu      **buffers;
515
516         struct hlist_node               node;
517         u64                             (*clock)(void);
518
519         struct rb_irq_work              irq_work;
520         bool                            time_stamp_abs;
521 };
522
523 struct ring_buffer_iter {
524         struct ring_buffer_per_cpu      *cpu_buffer;
525         unsigned long                   head;
526         struct buffer_page              *head_page;
527         struct buffer_page              *cache_reader_page;
528         unsigned long                   cache_read;
529         u64                             read_stamp;
530 };
531
532 /*
533  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
534  *
535  * Schedules a delayed work to wake up any task that is blocked on the
536  * ring buffer waiters queue.
537  */
538 static void rb_wake_up_waiters(struct irq_work *work)
539 {
540         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
541
542         wake_up_all(&rbwork->waiters);
543         if (rbwork->wakeup_full) {
544                 rbwork->wakeup_full = false;
545                 wake_up_all(&rbwork->full_waiters);
546         }
547 }
548
549 /**
550  * ring_buffer_wait - wait for input to the ring buffer
551  * @buffer: buffer to wait on
552  * @cpu: the cpu buffer to wait on
553  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
554  *
555  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
556  * as data is added to any of the @buffer's cpu buffers. Otherwise
557  * it will wait for data to be added to a specific cpu buffer.
558  */
559 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
560 {
561         struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
562         DEFINE_WAIT(wait);
563         struct rb_irq_work *work;
564         int ret = 0;
565
566         /*
567          * Depending on what the caller is waiting for, either any
568          * data in any cpu buffer, or a specific buffer, put the
569          * caller on the appropriate wait queue.
570          */
571         if (cpu == RING_BUFFER_ALL_CPUS) {
572                 work = &buffer->irq_work;
573                 /* Full only makes sense on per cpu reads */
574                 full = false;
575         } else {
576                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
577                         return -ENODEV;
578                 cpu_buffer = buffer->buffers[cpu];
579                 work = &cpu_buffer->irq_work;
580         }
581
582
583         while (true) {
584                 if (full)
585                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
586                 else
587                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
588
589                 /*
590                  * The events can happen in critical sections where
591                  * checking a work queue can cause deadlocks.
592                  * After adding a task to the queue, this flag is set
593                  * only to notify events to try to wake up the queue
594                  * using irq_work.
595                  *
596                  * We don't clear it even if the buffer is no longer
597                  * empty. The flag only causes the next event to run
598                  * irq_work to do the work queue wake up. The worse
599                  * that can happen if we race with !trace_empty() is that
600                  * an event will cause an irq_work to try to wake up
601                  * an empty queue.
602                  *
603                  * There's no reason to protect this flag either, as
604                  * the work queue and irq_work logic will do the necessary
605                  * synchronization for the wake ups. The only thing
606                  * that is necessary is that the wake up happens after
607                  * a task has been queued. It's OK for spurious wake ups.
608                  */
609                 if (full)
610                         work->full_waiters_pending = true;
611                 else
612                         work->waiters_pending = true;
613
614                 if (signal_pending(current)) {
615                         ret = -EINTR;
616                         break;
617                 }
618
619                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
620                         break;
621
622                 if (cpu != RING_BUFFER_ALL_CPUS &&
623                     !ring_buffer_empty_cpu(buffer, cpu)) {
624                         unsigned long flags;
625                         bool pagebusy;
626
627                         if (!full)
628                                 break;
629
630                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
631                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
632                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
633
634                         if (!pagebusy)
635                                 break;
636                 }
637
638                 schedule();
639         }
640
641         if (full)
642                 finish_wait(&work->full_waiters, &wait);
643         else
644                 finish_wait(&work->waiters, &wait);
645
646         return ret;
647 }
648
649 /**
650  * ring_buffer_poll_wait - poll on buffer input
651  * @buffer: buffer to wait on
652  * @cpu: the cpu buffer to wait on
653  * @filp: the file descriptor
654  * @poll_table: The poll descriptor
655  *
656  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
657  * as data is added to any of the @buffer's cpu buffers. Otherwise
658  * it will wait for data to be added to a specific cpu buffer.
659  *
660  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
661  * zero otherwise.
662  */
663 __poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
664                           struct file *filp, poll_table *poll_table)
665 {
666         struct ring_buffer_per_cpu *cpu_buffer;
667         struct rb_irq_work *work;
668
669         if (cpu == RING_BUFFER_ALL_CPUS)
670                 work = &buffer->irq_work;
671         else {
672                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
673                         return -EINVAL;
674
675                 cpu_buffer = buffer->buffers[cpu];
676                 work = &cpu_buffer->irq_work;
677         }
678
679         poll_wait(filp, &work->waiters, poll_table);
680         work->waiters_pending = true;
681         /*
682          * There's a tight race between setting the waiters_pending and
683          * checking if the ring buffer is empty.  Once the waiters_pending bit
684          * is set, the next event will wake the task up, but we can get stuck
685          * if there's only a single event in.
686          *
687          * FIXME: Ideally, we need a memory barrier on the writer side as well,
688          * but adding a memory barrier to all events will cause too much of a
689          * performance hit in the fast path.  We only need a memory barrier when
690          * the buffer goes from empty to having content.  But as this race is
691          * extremely small, and it's not a problem if another event comes in, we
692          * will fix it later.
693          */
694         smp_mb();
695
696         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
697             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
698                 return EPOLLIN | EPOLLRDNORM;
699         return 0;
700 }
701
702 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
703 #define RB_WARN_ON(b, cond)                                             \
704         ({                                                              \
705                 int _____ret = unlikely(cond);                          \
706                 if (_____ret) {                                         \
707                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
708                                 struct ring_buffer_per_cpu *__b =       \
709                                         (void *)b;                      \
710                                 atomic_inc(&__b->buffer->record_disabled); \
711                         } else                                          \
712                                 atomic_inc(&b->record_disabled);        \
713                         WARN_ON(1);                                     \
714                 }                                                       \
715                 _____ret;                                               \
716         })
717
718 /* Up this if you want to test the TIME_EXTENTS and normalization */
719 #define DEBUG_SHIFT 0
720
721 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
722 {
723         /* shift to debug/test normalization and TIME_EXTENTS */
724         return buffer->clock() << DEBUG_SHIFT;
725 }
726
727 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
728 {
729         u64 time;
730
731         preempt_disable_notrace();
732         time = rb_time_stamp(buffer);
733         preempt_enable_no_resched_notrace();
734
735         return time;
736 }
737 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
738
739 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
740                                       int cpu, u64 *ts)
741 {
742         /* Just stupid testing the normalize function and deltas */
743         *ts >>= DEBUG_SHIFT;
744 }
745 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
746
747 /*
748  * Making the ring buffer lockless makes things tricky.
749  * Although writes only happen on the CPU that they are on,
750  * and they only need to worry about interrupts. Reads can
751  * happen on any CPU.
752  *
753  * The reader page is always off the ring buffer, but when the
754  * reader finishes with a page, it needs to swap its page with
755  * a new one from the buffer. The reader needs to take from
756  * the head (writes go to the tail). But if a writer is in overwrite
757  * mode and wraps, it must push the head page forward.
758  *
759  * Here lies the problem.
760  *
761  * The reader must be careful to replace only the head page, and
762  * not another one. As described at the top of the file in the
763  * ASCII art, the reader sets its old page to point to the next
764  * page after head. It then sets the page after head to point to
765  * the old reader page. But if the writer moves the head page
766  * during this operation, the reader could end up with the tail.
767  *
768  * We use cmpxchg to help prevent this race. We also do something
769  * special with the page before head. We set the LSB to 1.
770  *
771  * When the writer must push the page forward, it will clear the
772  * bit that points to the head page, move the head, and then set
773  * the bit that points to the new head page.
774  *
775  * We also don't want an interrupt coming in and moving the head
776  * page on another writer. Thus we use the second LSB to catch
777  * that too. Thus:
778  *
779  * head->list->prev->next        bit 1          bit 0
780  *                              -------        -------
781  * Normal page                     0              0
782  * Points to head page             0              1
783  * New head page                   1              0
784  *
785  * Note we can not trust the prev pointer of the head page, because:
786  *
787  * +----+       +-----+        +-----+
788  * |    |------>|  T  |---X--->|  N  |
789  * |    |<------|     |        |     |
790  * +----+       +-----+        +-----+
791  *   ^                           ^ |
792  *   |          +-----+          | |
793  *   +----------|  R  |----------+ |
794  *              |     |<-----------+
795  *              +-----+
796  *
797  * Key:  ---X-->  HEAD flag set in pointer
798  *         T      Tail page
799  *         R      Reader page
800  *         N      Next page
801  *
802  * (see __rb_reserve_next() to see where this happens)
803  *
804  *  What the above shows is that the reader just swapped out
805  *  the reader page with a page in the buffer, but before it
806  *  could make the new header point back to the new page added
807  *  it was preempted by a writer. The writer moved forward onto
808  *  the new page added by the reader and is about to move forward
809  *  again.
810  *
811  *  You can see, it is legitimate for the previous pointer of
812  *  the head (or any page) not to point back to itself. But only
813  *  temporarily.
814  */
815
816 #define RB_PAGE_NORMAL          0UL
817 #define RB_PAGE_HEAD            1UL
818 #define RB_PAGE_UPDATE          2UL
819
820
821 #define RB_FLAG_MASK            3UL
822
823 /* PAGE_MOVED is not part of the mask */
824 #define RB_PAGE_MOVED           4UL
825
826 /*
827  * rb_list_head - remove any bit
828  */
829 static struct list_head *rb_list_head(struct list_head *list)
830 {
831         unsigned long val = (unsigned long)list;
832
833         return (struct list_head *)(val & ~RB_FLAG_MASK);
834 }
835
836 /*
837  * rb_is_head_page - test if the given page is the head page
838  *
839  * Because the reader may move the head_page pointer, we can
840  * not trust what the head page is (it may be pointing to
841  * the reader page). But if the next page is a header page,
842  * its flags will be non zero.
843  */
844 static inline int
845 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
846                 struct buffer_page *page, struct list_head *list)
847 {
848         unsigned long val;
849
850         val = (unsigned long)list->next;
851
852         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
853                 return RB_PAGE_MOVED;
854
855         return val & RB_FLAG_MASK;
856 }
857
858 /*
859  * rb_is_reader_page
860  *
861  * The unique thing about the reader page, is that, if the
862  * writer is ever on it, the previous pointer never points
863  * back to the reader page.
864  */
865 static bool rb_is_reader_page(struct buffer_page *page)
866 {
867         struct list_head *list = page->list.prev;
868
869         return rb_list_head(list->next) != &page->list;
870 }
871
872 /*
873  * rb_set_list_to_head - set a list_head to be pointing to head.
874  */
875 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
876                                 struct list_head *list)
877 {
878         unsigned long *ptr;
879
880         ptr = (unsigned long *)&list->next;
881         *ptr |= RB_PAGE_HEAD;
882         *ptr &= ~RB_PAGE_UPDATE;
883 }
884
885 /*
886  * rb_head_page_activate - sets up head page
887  */
888 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
889 {
890         struct buffer_page *head;
891
892         head = cpu_buffer->head_page;
893         if (!head)
894                 return;
895
896         /*
897          * Set the previous list pointer to have the HEAD flag.
898          */
899         rb_set_list_to_head(cpu_buffer, head->list.prev);
900 }
901
902 static void rb_list_head_clear(struct list_head *list)
903 {
904         unsigned long *ptr = (unsigned long *)&list->next;
905
906         *ptr &= ~RB_FLAG_MASK;
907 }
908
909 /*
910  * rb_head_page_deactivate - clears head page ptr (for free list)
911  */
912 static void
913 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
914 {
915         struct list_head *hd;
916
917         /* Go through the whole list and clear any pointers found. */
918         rb_list_head_clear(cpu_buffer->pages);
919
920         list_for_each(hd, cpu_buffer->pages)
921                 rb_list_head_clear(hd);
922 }
923
924 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
925                             struct buffer_page *head,
926                             struct buffer_page *prev,
927                             int old_flag, int new_flag)
928 {
929         struct list_head *list;
930         unsigned long val = (unsigned long)&head->list;
931         unsigned long ret;
932
933         list = &prev->list;
934
935         val &= ~RB_FLAG_MASK;
936
937         ret = cmpxchg((unsigned long *)&list->next,
938                       val | old_flag, val | new_flag);
939
940         /* check if the reader took the page */
941         if ((ret & ~RB_FLAG_MASK) != val)
942                 return RB_PAGE_MOVED;
943
944         return ret & RB_FLAG_MASK;
945 }
946
947 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
948                                    struct buffer_page *head,
949                                    struct buffer_page *prev,
950                                    int old_flag)
951 {
952         return rb_head_page_set(cpu_buffer, head, prev,
953                                 old_flag, RB_PAGE_UPDATE);
954 }
955
956 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
957                                  struct buffer_page *head,
958                                  struct buffer_page *prev,
959                                  int old_flag)
960 {
961         return rb_head_page_set(cpu_buffer, head, prev,
962                                 old_flag, RB_PAGE_HEAD);
963 }
964
965 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
966                                    struct buffer_page *head,
967                                    struct buffer_page *prev,
968                                    int old_flag)
969 {
970         return rb_head_page_set(cpu_buffer, head, prev,
971                                 old_flag, RB_PAGE_NORMAL);
972 }
973
974 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
975                                struct buffer_page **bpage)
976 {
977         struct list_head *p = rb_list_head((*bpage)->list.next);
978
979         *bpage = list_entry(p, struct buffer_page, list);
980 }
981
982 static struct buffer_page *
983 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
984 {
985         struct buffer_page *head;
986         struct buffer_page *page;
987         struct list_head *list;
988         int i;
989
990         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
991                 return NULL;
992
993         /* sanity check */
994         list = cpu_buffer->pages;
995         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
996                 return NULL;
997
998         page = head = cpu_buffer->head_page;
999         /*
1000          * It is possible that the writer moves the header behind
1001          * where we started, and we miss in one loop.
1002          * A second loop should grab the header, but we'll do
1003          * three loops just because I'm paranoid.
1004          */
1005         for (i = 0; i < 3; i++) {
1006                 do {
1007                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1008                                 cpu_buffer->head_page = page;
1009                                 return page;
1010                         }
1011                         rb_inc_page(cpu_buffer, &page);
1012                 } while (page != head);
1013         }
1014
1015         RB_WARN_ON(cpu_buffer, 1);
1016
1017         return NULL;
1018 }
1019
1020 static int rb_head_page_replace(struct buffer_page *old,
1021                                 struct buffer_page *new)
1022 {
1023         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1024         unsigned long val;
1025         unsigned long ret;
1026
1027         val = *ptr & ~RB_FLAG_MASK;
1028         val |= RB_PAGE_HEAD;
1029
1030         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1031
1032         return ret == val;
1033 }
1034
1035 /*
1036  * rb_tail_page_update - move the tail page forward
1037  */
1038 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1039                                struct buffer_page *tail_page,
1040                                struct buffer_page *next_page)
1041 {
1042         unsigned long old_entries;
1043         unsigned long old_write;
1044
1045         /*
1046          * The tail page now needs to be moved forward.
1047          *
1048          * We need to reset the tail page, but without messing
1049          * with possible erasing of data brought in by interrupts
1050          * that have moved the tail page and are currently on it.
1051          *
1052          * We add a counter to the write field to denote this.
1053          */
1054         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1055         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1056
1057         /*
1058          * Just make sure we have seen our old_write and synchronize
1059          * with any interrupts that come in.
1060          */
1061         barrier();
1062
1063         /*
1064          * If the tail page is still the same as what we think
1065          * it is, then it is up to us to update the tail
1066          * pointer.
1067          */
1068         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1069                 /* Zero the write counter */
1070                 unsigned long val = old_write & ~RB_WRITE_MASK;
1071                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1072
1073                 /*
1074                  * This will only succeed if an interrupt did
1075                  * not come in and change it. In which case, we
1076                  * do not want to modify it.
1077                  *
1078                  * We add (void) to let the compiler know that we do not care
1079                  * about the return value of these functions. We use the
1080                  * cmpxchg to only update if an interrupt did not already
1081                  * do it for us. If the cmpxchg fails, we don't care.
1082                  */
1083                 (void)local_cmpxchg(&next_page->write, old_write, val);
1084                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1085
1086                 /*
1087                  * No need to worry about races with clearing out the commit.
1088                  * it only can increment when a commit takes place. But that
1089                  * only happens in the outer most nested commit.
1090                  */
1091                 local_set(&next_page->page->commit, 0);
1092
1093                 /* Again, either we update tail_page or an interrupt does */
1094                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1095         }
1096 }
1097
1098 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1099                           struct buffer_page *bpage)
1100 {
1101         unsigned long val = (unsigned long)bpage;
1102
1103         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1104                 return 1;
1105
1106         return 0;
1107 }
1108
1109 /**
1110  * rb_check_list - make sure a pointer to a list has the last bits zero
1111  */
1112 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1113                          struct list_head *list)
1114 {
1115         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1116                 return 1;
1117         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1118                 return 1;
1119         return 0;
1120 }
1121
1122 /**
1123  * rb_check_pages - integrity check of buffer pages
1124  * @cpu_buffer: CPU buffer with pages to test
1125  *
1126  * As a safety measure we check to make sure the data pages have not
1127  * been corrupted.
1128  */
1129 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1130 {
1131         struct list_head *head = cpu_buffer->pages;
1132         struct buffer_page *bpage, *tmp;
1133
1134         /* Reset the head page if it exists */
1135         if (cpu_buffer->head_page)
1136                 rb_set_head_page(cpu_buffer);
1137
1138         rb_head_page_deactivate(cpu_buffer);
1139
1140         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1141                 return -1;
1142         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1143                 return -1;
1144
1145         if (rb_check_list(cpu_buffer, head))
1146                 return -1;
1147
1148         list_for_each_entry_safe(bpage, tmp, head, list) {
1149                 if (RB_WARN_ON(cpu_buffer,
1150                                bpage->list.next->prev != &bpage->list))
1151                         return -1;
1152                 if (RB_WARN_ON(cpu_buffer,
1153                                bpage->list.prev->next != &bpage->list))
1154                         return -1;
1155                 if (rb_check_list(cpu_buffer, &bpage->list))
1156                         return -1;
1157         }
1158
1159         rb_head_page_activate(cpu_buffer);
1160
1161         return 0;
1162 }
1163
1164 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1165 {
1166         struct buffer_page *bpage, *tmp;
1167         bool user_thread = current->mm != NULL;
1168         gfp_t mflags;
1169         long i;
1170
1171         /*
1172          * Check if the available memory is there first.
1173          * Note, si_mem_available() only gives us a rough estimate of available
1174          * memory. It may not be accurate. But we don't care, we just want
1175          * to prevent doing any allocation when it is obvious that it is
1176          * not going to succeed.
1177          */
1178         i = si_mem_available();
1179         if (i < nr_pages)
1180                 return -ENOMEM;
1181
1182         /*
1183          * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1184          * gracefully without invoking oom-killer and the system is not
1185          * destabilized.
1186          */
1187         mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1188
1189         /*
1190          * If a user thread allocates too much, and si_mem_available()
1191          * reports there's enough memory, even though there is not.
1192          * Make sure the OOM killer kills this thread. This can happen
1193          * even with RETRY_MAYFAIL because another task may be doing
1194          * an allocation after this task has taken all memory.
1195          * This is the task the OOM killer needs to take out during this
1196          * loop, even if it was triggered by an allocation somewhere else.
1197          */
1198         if (user_thread)
1199                 set_current_oom_origin();
1200         for (i = 0; i < nr_pages; i++) {
1201                 struct page *page;
1202
1203                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1204                                     mflags, cpu_to_node(cpu));
1205                 if (!bpage)
1206                         goto free_pages;
1207
1208                 list_add(&bpage->list, pages);
1209
1210                 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1211                 if (!page)
1212                         goto free_pages;
1213                 bpage->page = page_address(page);
1214                 rb_init_page(bpage->page);
1215
1216                 if (user_thread && fatal_signal_pending(current))
1217                         goto free_pages;
1218         }
1219         if (user_thread)
1220                 clear_current_oom_origin();
1221
1222         return 0;
1223
1224 free_pages:
1225         list_for_each_entry_safe(bpage, tmp, pages, list) {
1226                 list_del_init(&bpage->list);
1227                 free_buffer_page(bpage);
1228         }
1229         if (user_thread)
1230                 clear_current_oom_origin();
1231
1232         return -ENOMEM;
1233 }
1234
1235 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1236                              unsigned long nr_pages)
1237 {
1238         LIST_HEAD(pages);
1239
1240         WARN_ON(!nr_pages);
1241
1242         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1243                 return -ENOMEM;
1244
1245         /*
1246          * The ring buffer page list is a circular list that does not
1247          * start and end with a list head. All page list items point to
1248          * other pages.
1249          */
1250         cpu_buffer->pages = pages.next;
1251         list_del(&pages);
1252
1253         cpu_buffer->nr_pages = nr_pages;
1254
1255         rb_check_pages(cpu_buffer);
1256
1257         return 0;
1258 }
1259
1260 static struct ring_buffer_per_cpu *
1261 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1262 {
1263         struct ring_buffer_per_cpu *cpu_buffer;
1264         struct buffer_page *bpage;
1265         struct page *page;
1266         int ret;
1267
1268         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1269                                   GFP_KERNEL, cpu_to_node(cpu));
1270         if (!cpu_buffer)
1271                 return NULL;
1272
1273         cpu_buffer->cpu = cpu;
1274         cpu_buffer->buffer = buffer;
1275         raw_spin_lock_init(&cpu_buffer->reader_lock);
1276         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1277         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1278         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1279         init_completion(&cpu_buffer->update_done);
1280         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1281         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1282         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1283
1284         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1285                             GFP_KERNEL, cpu_to_node(cpu));
1286         if (!bpage)
1287                 goto fail_free_buffer;
1288
1289         rb_check_bpage(cpu_buffer, bpage);
1290
1291         cpu_buffer->reader_page = bpage;
1292         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1293         if (!page)
1294                 goto fail_free_reader;
1295         bpage->page = page_address(page);
1296         rb_init_page(bpage->page);
1297
1298         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1299         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1300
1301         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1302         if (ret < 0)
1303                 goto fail_free_reader;
1304
1305         cpu_buffer->head_page
1306                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1307         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1308
1309         rb_head_page_activate(cpu_buffer);
1310
1311         return cpu_buffer;
1312
1313  fail_free_reader:
1314         free_buffer_page(cpu_buffer->reader_page);
1315
1316  fail_free_buffer:
1317         kfree(cpu_buffer);
1318         return NULL;
1319 }
1320
1321 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1322 {
1323         struct list_head *head = cpu_buffer->pages;
1324         struct buffer_page *bpage, *tmp;
1325
1326         free_buffer_page(cpu_buffer->reader_page);
1327
1328         rb_head_page_deactivate(cpu_buffer);
1329
1330         if (head) {
1331                 list_for_each_entry_safe(bpage, tmp, head, list) {
1332                         list_del_init(&bpage->list);
1333                         free_buffer_page(bpage);
1334                 }
1335                 bpage = list_entry(head, struct buffer_page, list);
1336                 free_buffer_page(bpage);
1337         }
1338
1339         kfree(cpu_buffer);
1340 }
1341
1342 /**
1343  * __ring_buffer_alloc - allocate a new ring_buffer
1344  * @size: the size in bytes per cpu that is needed.
1345  * @flags: attributes to set for the ring buffer.
1346  *
1347  * Currently the only flag that is available is the RB_FL_OVERWRITE
1348  * flag. This flag means that the buffer will overwrite old data
1349  * when the buffer wraps. If this flag is not set, the buffer will
1350  * drop data when the tail hits the head.
1351  */
1352 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1353                                         struct lock_class_key *key)
1354 {
1355         struct ring_buffer *buffer;
1356         long nr_pages;
1357         int bsize;
1358         int cpu;
1359         int ret;
1360
1361         /* keep it in its own cache line */
1362         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1363                          GFP_KERNEL);
1364         if (!buffer)
1365                 return NULL;
1366
1367         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1368                 goto fail_free_buffer;
1369
1370         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1371         buffer->flags = flags;
1372         buffer->clock = trace_clock_local;
1373         buffer->reader_lock_key = key;
1374
1375         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1376         init_waitqueue_head(&buffer->irq_work.waiters);
1377
1378         /* need at least two pages */
1379         if (nr_pages < 2)
1380                 nr_pages = 2;
1381
1382         buffer->cpus = nr_cpu_ids;
1383
1384         bsize = sizeof(void *) * nr_cpu_ids;
1385         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1386                                   GFP_KERNEL);
1387         if (!buffer->buffers)
1388                 goto fail_free_cpumask;
1389
1390         cpu = raw_smp_processor_id();
1391         cpumask_set_cpu(cpu, buffer->cpumask);
1392         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1393         if (!buffer->buffers[cpu])
1394                 goto fail_free_buffers;
1395
1396         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1397         if (ret < 0)
1398                 goto fail_free_buffers;
1399
1400         mutex_init(&buffer->mutex);
1401
1402         return buffer;
1403
1404  fail_free_buffers:
1405         for_each_buffer_cpu(buffer, cpu) {
1406                 if (buffer->buffers[cpu])
1407                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1408         }
1409         kfree(buffer->buffers);
1410
1411  fail_free_cpumask:
1412         free_cpumask_var(buffer->cpumask);
1413
1414  fail_free_buffer:
1415         kfree(buffer);
1416         return NULL;
1417 }
1418 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1419
1420 /**
1421  * ring_buffer_free - free a ring buffer.
1422  * @buffer: the buffer to free.
1423  */
1424 void
1425 ring_buffer_free(struct ring_buffer *buffer)
1426 {
1427         int cpu;
1428
1429         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1430
1431         for_each_buffer_cpu(buffer, cpu)
1432                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1433
1434         kfree(buffer->buffers);
1435         free_cpumask_var(buffer->cpumask);
1436
1437         kfree(buffer);
1438 }
1439 EXPORT_SYMBOL_GPL(ring_buffer_free);
1440
1441 void ring_buffer_set_clock(struct ring_buffer *buffer,
1442                            u64 (*clock)(void))
1443 {
1444         buffer->clock = clock;
1445 }
1446
1447 void ring_buffer_set_time_stamp_abs(struct ring_buffer *buffer, bool abs)
1448 {
1449         buffer->time_stamp_abs = abs;
1450 }
1451
1452 bool ring_buffer_time_stamp_abs(struct ring_buffer *buffer)
1453 {
1454         return buffer->time_stamp_abs;
1455 }
1456
1457 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1458
1459 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1460 {
1461         return local_read(&bpage->entries) & RB_WRITE_MASK;
1462 }
1463
1464 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1465 {
1466         return local_read(&bpage->write) & RB_WRITE_MASK;
1467 }
1468
1469 static int
1470 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1471 {
1472         struct list_head *tail_page, *to_remove, *next_page;
1473         struct buffer_page *to_remove_page, *tmp_iter_page;
1474         struct buffer_page *last_page, *first_page;
1475         unsigned long nr_removed;
1476         unsigned long head_bit;
1477         int page_entries;
1478
1479         head_bit = 0;
1480
1481         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1482         atomic_inc(&cpu_buffer->record_disabled);
1483         /*
1484          * We don't race with the readers since we have acquired the reader
1485          * lock. We also don't race with writers after disabling recording.
1486          * This makes it easy to figure out the first and the last page to be
1487          * removed from the list. We unlink all the pages in between including
1488          * the first and last pages. This is done in a busy loop so that we
1489          * lose the least number of traces.
1490          * The pages are freed after we restart recording and unlock readers.
1491          */
1492         tail_page = &cpu_buffer->tail_page->list;
1493
1494         /*
1495          * tail page might be on reader page, we remove the next page
1496          * from the ring buffer
1497          */
1498         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1499                 tail_page = rb_list_head(tail_page->next);
1500         to_remove = tail_page;
1501
1502         /* start of pages to remove */
1503         first_page = list_entry(rb_list_head(to_remove->next),
1504                                 struct buffer_page, list);
1505
1506         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1507                 to_remove = rb_list_head(to_remove)->next;
1508                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1509         }
1510
1511         next_page = rb_list_head(to_remove)->next;
1512
1513         /*
1514          * Now we remove all pages between tail_page and next_page.
1515          * Make sure that we have head_bit value preserved for the
1516          * next page
1517          */
1518         tail_page->next = (struct list_head *)((unsigned long)next_page |
1519                                                 head_bit);
1520         next_page = rb_list_head(next_page);
1521         next_page->prev = tail_page;
1522
1523         /* make sure pages points to a valid page in the ring buffer */
1524         cpu_buffer->pages = next_page;
1525
1526         /* update head page */
1527         if (head_bit)
1528                 cpu_buffer->head_page = list_entry(next_page,
1529                                                 struct buffer_page, list);
1530
1531         /*
1532          * change read pointer to make sure any read iterators reset
1533          * themselves
1534          */
1535         cpu_buffer->read = 0;
1536
1537         /* pages are removed, resume tracing and then free the pages */
1538         atomic_dec(&cpu_buffer->record_disabled);
1539         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1540
1541         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1542
1543         /* last buffer page to remove */
1544         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1545                                 list);
1546         tmp_iter_page = first_page;
1547
1548         do {
1549                 cond_resched();
1550
1551                 to_remove_page = tmp_iter_page;
1552                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1553
1554                 /* update the counters */
1555                 page_entries = rb_page_entries(to_remove_page);
1556                 if (page_entries) {
1557                         /*
1558                          * If something was added to this page, it was full
1559                          * since it is not the tail page. So we deduct the
1560                          * bytes consumed in ring buffer from here.
1561                          * Increment overrun to account for the lost events.
1562                          */
1563                         local_add(page_entries, &cpu_buffer->overrun);
1564                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1565                 }
1566
1567                 /*
1568                  * We have already removed references to this list item, just
1569                  * free up the buffer_page and its page
1570                  */
1571                 free_buffer_page(to_remove_page);
1572                 nr_removed--;
1573
1574         } while (to_remove_page != last_page);
1575
1576         RB_WARN_ON(cpu_buffer, nr_removed);
1577
1578         return nr_removed == 0;
1579 }
1580
1581 static int
1582 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1583 {
1584         struct list_head *pages = &cpu_buffer->new_pages;
1585         int retries, success;
1586
1587         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1588         /*
1589          * We are holding the reader lock, so the reader page won't be swapped
1590          * in the ring buffer. Now we are racing with the writer trying to
1591          * move head page and the tail page.
1592          * We are going to adapt the reader page update process where:
1593          * 1. We first splice the start and end of list of new pages between
1594          *    the head page and its previous page.
1595          * 2. We cmpxchg the prev_page->next to point from head page to the
1596          *    start of new pages list.
1597          * 3. Finally, we update the head->prev to the end of new list.
1598          *
1599          * We will try this process 10 times, to make sure that we don't keep
1600          * spinning.
1601          */
1602         retries = 10;
1603         success = 0;
1604         while (retries--) {
1605                 struct list_head *head_page, *prev_page, *r;
1606                 struct list_head *last_page, *first_page;
1607                 struct list_head *head_page_with_bit;
1608
1609                 head_page = &rb_set_head_page(cpu_buffer)->list;
1610                 if (!head_page)
1611                         break;
1612                 prev_page = head_page->prev;
1613
1614                 first_page = pages->next;
1615                 last_page  = pages->prev;
1616
1617                 head_page_with_bit = (struct list_head *)
1618                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1619
1620                 last_page->next = head_page_with_bit;
1621                 first_page->prev = prev_page;
1622
1623                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1624
1625                 if (r == head_page_with_bit) {
1626                         /*
1627                          * yay, we replaced the page pointer to our new list,
1628                          * now, we just have to update to head page's prev
1629                          * pointer to point to end of list
1630                          */
1631                         head_page->prev = last_page;
1632                         success = 1;
1633                         break;
1634                 }
1635         }
1636
1637         if (success)
1638                 INIT_LIST_HEAD(pages);
1639         /*
1640          * If we weren't successful in adding in new pages, warn and stop
1641          * tracing
1642          */
1643         RB_WARN_ON(cpu_buffer, !success);
1644         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1645
1646         /* free pages if they weren't inserted */
1647         if (!success) {
1648                 struct buffer_page *bpage, *tmp;
1649                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1650                                          list) {
1651                         list_del_init(&bpage->list);
1652                         free_buffer_page(bpage);
1653                 }
1654         }
1655         return success;
1656 }
1657
1658 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1659 {
1660         int success;
1661
1662         if (cpu_buffer->nr_pages_to_update > 0)
1663                 success = rb_insert_pages(cpu_buffer);
1664         else
1665                 success = rb_remove_pages(cpu_buffer,
1666                                         -cpu_buffer->nr_pages_to_update);
1667
1668         if (success)
1669                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1670 }
1671
1672 static void update_pages_handler(struct work_struct *work)
1673 {
1674         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1675                         struct ring_buffer_per_cpu, update_pages_work);
1676         rb_update_pages(cpu_buffer);
1677         complete(&cpu_buffer->update_done);
1678 }
1679
1680 /**
1681  * ring_buffer_resize - resize the ring buffer
1682  * @buffer: the buffer to resize.
1683  * @size: the new size.
1684  * @cpu_id: the cpu buffer to resize
1685  *
1686  * Minimum size is 2 * BUF_PAGE_SIZE.
1687  *
1688  * Returns 0 on success and < 0 on failure.
1689  */
1690 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1691                         int cpu_id)
1692 {
1693         struct ring_buffer_per_cpu *cpu_buffer;
1694         unsigned long nr_pages;
1695         int cpu, err = 0;
1696
1697         /*
1698          * Always succeed at resizing a non-existent buffer:
1699          */
1700         if (!buffer)
1701                 return size;
1702
1703         /* Make sure the requested buffer exists */
1704         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1705             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1706                 return size;
1707
1708         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1709
1710         /* we need a minimum of two pages */
1711         if (nr_pages < 2)
1712                 nr_pages = 2;
1713
1714         size = nr_pages * BUF_PAGE_SIZE;
1715
1716         /*
1717          * Don't succeed if resizing is disabled, as a reader might be
1718          * manipulating the ring buffer and is expecting a sane state while
1719          * this is true.
1720          */
1721         if (atomic_read(&buffer->resize_disabled))
1722                 return -EBUSY;
1723
1724         /* prevent another thread from changing buffer sizes */
1725         mutex_lock(&buffer->mutex);
1726
1727         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1728                 /* calculate the pages to update */
1729                 for_each_buffer_cpu(buffer, cpu) {
1730                         cpu_buffer = buffer->buffers[cpu];
1731
1732                         cpu_buffer->nr_pages_to_update = nr_pages -
1733                                                         cpu_buffer->nr_pages;
1734                         /*
1735                          * nothing more to do for removing pages or no update
1736                          */
1737                         if (cpu_buffer->nr_pages_to_update <= 0)
1738                                 continue;
1739                         /*
1740                          * to add pages, make sure all new pages can be
1741                          * allocated without receiving ENOMEM
1742                          */
1743                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1744                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1745                                                 &cpu_buffer->new_pages, cpu)) {
1746                                 /* not enough memory for new pages */
1747                                 err = -ENOMEM;
1748                                 goto out_err;
1749                         }
1750                 }
1751
1752                 get_online_cpus();
1753                 /*
1754                  * Fire off all the required work handlers
1755                  * We can't schedule on offline CPUs, but it's not necessary
1756                  * since we can change their buffer sizes without any race.
1757                  */
1758                 for_each_buffer_cpu(buffer, cpu) {
1759                         cpu_buffer = buffer->buffers[cpu];
1760                         if (!cpu_buffer->nr_pages_to_update)
1761                                 continue;
1762
1763                         /* Can't run something on an offline CPU. */
1764                         if (!cpu_online(cpu)) {
1765                                 rb_update_pages(cpu_buffer);
1766                                 cpu_buffer->nr_pages_to_update = 0;
1767                         } else {
1768                                 schedule_work_on(cpu,
1769                                                 &cpu_buffer->update_pages_work);
1770                         }
1771                 }
1772
1773                 /* wait for all the updates to complete */
1774                 for_each_buffer_cpu(buffer, cpu) {
1775                         cpu_buffer = buffer->buffers[cpu];
1776                         if (!cpu_buffer->nr_pages_to_update)
1777                                 continue;
1778
1779                         if (cpu_online(cpu))
1780                                 wait_for_completion(&cpu_buffer->update_done);
1781                         cpu_buffer->nr_pages_to_update = 0;
1782                 }
1783
1784                 put_online_cpus();
1785         } else {
1786                 /* Make sure this CPU has been initialized */
1787                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1788                         goto out;
1789
1790                 cpu_buffer = buffer->buffers[cpu_id];
1791
1792                 if (nr_pages == cpu_buffer->nr_pages)
1793                         goto out;
1794
1795                 cpu_buffer->nr_pages_to_update = nr_pages -
1796                                                 cpu_buffer->nr_pages;
1797
1798                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1799                 if (cpu_buffer->nr_pages_to_update > 0 &&
1800                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1801                                             &cpu_buffer->new_pages, cpu_id)) {
1802                         err = -ENOMEM;
1803                         goto out_err;
1804                 }
1805
1806                 get_online_cpus();
1807
1808                 /* Can't run something on an offline CPU. */
1809                 if (!cpu_online(cpu_id))
1810                         rb_update_pages(cpu_buffer);
1811                 else {
1812                         schedule_work_on(cpu_id,
1813                                          &cpu_buffer->update_pages_work);
1814                         wait_for_completion(&cpu_buffer->update_done);
1815                 }
1816
1817                 cpu_buffer->nr_pages_to_update = 0;
1818                 put_online_cpus();
1819         }
1820
1821  out:
1822         /*
1823          * The ring buffer resize can happen with the ring buffer
1824          * enabled, so that the update disturbs the tracing as little
1825          * as possible. But if the buffer is disabled, we do not need
1826          * to worry about that, and we can take the time to verify
1827          * that the buffer is not corrupt.
1828          */
1829         if (atomic_read(&buffer->record_disabled)) {
1830                 atomic_inc(&buffer->record_disabled);
1831                 /*
1832                  * Even though the buffer was disabled, we must make sure
1833                  * that it is truly disabled before calling rb_check_pages.
1834                  * There could have been a race between checking
1835                  * record_disable and incrementing it.
1836                  */
1837                 synchronize_rcu();
1838                 for_each_buffer_cpu(buffer, cpu) {
1839                         cpu_buffer = buffer->buffers[cpu];
1840                         rb_check_pages(cpu_buffer);
1841                 }
1842                 atomic_dec(&buffer->record_disabled);
1843         }
1844
1845         mutex_unlock(&buffer->mutex);
1846         return size;
1847
1848  out_err:
1849         for_each_buffer_cpu(buffer, cpu) {
1850                 struct buffer_page *bpage, *tmp;
1851
1852                 cpu_buffer = buffer->buffers[cpu];
1853                 cpu_buffer->nr_pages_to_update = 0;
1854
1855                 if (list_empty(&cpu_buffer->new_pages))
1856                         continue;
1857
1858                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1859                                         list) {
1860                         list_del_init(&bpage->list);
1861                         free_buffer_page(bpage);
1862                 }
1863         }
1864         mutex_unlock(&buffer->mutex);
1865         return err;
1866 }
1867 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1868
1869 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1870 {
1871         mutex_lock(&buffer->mutex);
1872         if (val)
1873                 buffer->flags |= RB_FL_OVERWRITE;
1874         else
1875                 buffer->flags &= ~RB_FL_OVERWRITE;
1876         mutex_unlock(&buffer->mutex);
1877 }
1878 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1879
1880 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1881 {
1882         return bpage->page->data + index;
1883 }
1884
1885 static __always_inline struct ring_buffer_event *
1886 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1887 {
1888         return __rb_page_index(cpu_buffer->reader_page,
1889                                cpu_buffer->reader_page->read);
1890 }
1891
1892 static __always_inline struct ring_buffer_event *
1893 rb_iter_head_event(struct ring_buffer_iter *iter)
1894 {
1895         return __rb_page_index(iter->head_page, iter->head);
1896 }
1897
1898 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1899 {
1900         return local_read(&bpage->page->commit);
1901 }
1902
1903 /* Size is determined by what has been committed */
1904 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1905 {
1906         return rb_page_commit(bpage);
1907 }
1908
1909 static __always_inline unsigned
1910 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1911 {
1912         return rb_page_commit(cpu_buffer->commit_page);
1913 }
1914
1915 static __always_inline unsigned
1916 rb_event_index(struct ring_buffer_event *event)
1917 {
1918         unsigned long addr = (unsigned long)event;
1919
1920         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1921 }
1922
1923 static void rb_inc_iter(struct ring_buffer_iter *iter)
1924 {
1925         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1926
1927         /*
1928          * The iterator could be on the reader page (it starts there).
1929          * But the head could have moved, since the reader was
1930          * found. Check for this case and assign the iterator
1931          * to the head page instead of next.
1932          */
1933         if (iter->head_page == cpu_buffer->reader_page)
1934                 iter->head_page = rb_set_head_page(cpu_buffer);
1935         else
1936                 rb_inc_page(cpu_buffer, &iter->head_page);
1937
1938         iter->read_stamp = iter->head_page->page->time_stamp;
1939         iter->head = 0;
1940 }
1941
1942 /*
1943  * rb_handle_head_page - writer hit the head page
1944  *
1945  * Returns: +1 to retry page
1946  *           0 to continue
1947  *          -1 on error
1948  */
1949 static int
1950 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1951                     struct buffer_page *tail_page,
1952                     struct buffer_page *next_page)
1953 {
1954         struct buffer_page *new_head;
1955         int entries;
1956         int type;
1957         int ret;
1958
1959         entries = rb_page_entries(next_page);
1960
1961         /*
1962          * The hard part is here. We need to move the head
1963          * forward, and protect against both readers on
1964          * other CPUs and writers coming in via interrupts.
1965          */
1966         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1967                                        RB_PAGE_HEAD);
1968
1969         /*
1970          * type can be one of four:
1971          *  NORMAL - an interrupt already moved it for us
1972          *  HEAD   - we are the first to get here.
1973          *  UPDATE - we are the interrupt interrupting
1974          *           a current move.
1975          *  MOVED  - a reader on another CPU moved the next
1976          *           pointer to its reader page. Give up
1977          *           and try again.
1978          */
1979
1980         switch (type) {
1981         case RB_PAGE_HEAD:
1982                 /*
1983                  * We changed the head to UPDATE, thus
1984                  * it is our responsibility to update
1985                  * the counters.
1986                  */
1987                 local_add(entries, &cpu_buffer->overrun);
1988                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1989
1990                 /*
1991                  * The entries will be zeroed out when we move the
1992                  * tail page.
1993                  */
1994
1995                 /* still more to do */
1996                 break;
1997
1998         case RB_PAGE_UPDATE:
1999                 /*
2000                  * This is an interrupt that interrupt the
2001                  * previous update. Still more to do.
2002                  */
2003                 break;
2004         case RB_PAGE_NORMAL:
2005                 /*
2006                  * An interrupt came in before the update
2007                  * and processed this for us.
2008                  * Nothing left to do.
2009                  */
2010                 return 1;
2011         case RB_PAGE_MOVED:
2012                 /*
2013                  * The reader is on another CPU and just did
2014                  * a swap with our next_page.
2015                  * Try again.
2016                  */
2017                 return 1;
2018         default:
2019                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2020                 return -1;
2021         }
2022
2023         /*
2024          * Now that we are here, the old head pointer is
2025          * set to UPDATE. This will keep the reader from
2026          * swapping the head page with the reader page.
2027          * The reader (on another CPU) will spin till
2028          * we are finished.
2029          *
2030          * We just need to protect against interrupts
2031          * doing the job. We will set the next pointer
2032          * to HEAD. After that, we set the old pointer
2033          * to NORMAL, but only if it was HEAD before.
2034          * otherwise we are an interrupt, and only
2035          * want the outer most commit to reset it.
2036          */
2037         new_head = next_page;
2038         rb_inc_page(cpu_buffer, &new_head);
2039
2040         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2041                                     RB_PAGE_NORMAL);
2042
2043         /*
2044          * Valid returns are:
2045          *  HEAD   - an interrupt came in and already set it.
2046          *  NORMAL - One of two things:
2047          *            1) We really set it.
2048          *            2) A bunch of interrupts came in and moved
2049          *               the page forward again.
2050          */
2051         switch (ret) {
2052         case RB_PAGE_HEAD:
2053         case RB_PAGE_NORMAL:
2054                 /* OK */
2055                 break;
2056         default:
2057                 RB_WARN_ON(cpu_buffer, 1);
2058                 return -1;
2059         }
2060
2061         /*
2062          * It is possible that an interrupt came in,
2063          * set the head up, then more interrupts came in
2064          * and moved it again. When we get back here,
2065          * the page would have been set to NORMAL but we
2066          * just set it back to HEAD.
2067          *
2068          * How do you detect this? Well, if that happened
2069          * the tail page would have moved.
2070          */
2071         if (ret == RB_PAGE_NORMAL) {
2072                 struct buffer_page *buffer_tail_page;
2073
2074                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2075                 /*
2076                  * If the tail had moved passed next, then we need
2077                  * to reset the pointer.
2078                  */
2079                 if (buffer_tail_page != tail_page &&
2080                     buffer_tail_page != next_page)
2081                         rb_head_page_set_normal(cpu_buffer, new_head,
2082                                                 next_page,
2083                                                 RB_PAGE_HEAD);
2084         }
2085
2086         /*
2087          * If this was the outer most commit (the one that
2088          * changed the original pointer from HEAD to UPDATE),
2089          * then it is up to us to reset it to NORMAL.
2090          */
2091         if (type == RB_PAGE_HEAD) {
2092                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2093                                               tail_page,
2094                                               RB_PAGE_UPDATE);
2095                 if (RB_WARN_ON(cpu_buffer,
2096                                ret != RB_PAGE_UPDATE))
2097                         return -1;
2098         }
2099
2100         return 0;
2101 }
2102
2103 static inline void
2104 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2105               unsigned long tail, struct rb_event_info *info)
2106 {
2107         struct buffer_page *tail_page = info->tail_page;
2108         struct ring_buffer_event *event;
2109         unsigned long length = info->length;
2110
2111         /*
2112          * Only the event that crossed the page boundary
2113          * must fill the old tail_page with padding.
2114          */
2115         if (tail >= BUF_PAGE_SIZE) {
2116                 /*
2117                  * If the page was filled, then we still need
2118                  * to update the real_end. Reset it to zero
2119                  * and the reader will ignore it.
2120                  */
2121                 if (tail == BUF_PAGE_SIZE)
2122                         tail_page->real_end = 0;
2123
2124                 local_sub(length, &tail_page->write);
2125                 return;
2126         }
2127
2128         event = __rb_page_index(tail_page, tail);
2129
2130         /* account for padding bytes */
2131         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2132
2133         /*
2134          * Save the original length to the meta data.
2135          * This will be used by the reader to add lost event
2136          * counter.
2137          */
2138         tail_page->real_end = tail;
2139
2140         /*
2141          * If this event is bigger than the minimum size, then
2142          * we need to be careful that we don't subtract the
2143          * write counter enough to allow another writer to slip
2144          * in on this page.
2145          * We put in a discarded commit instead, to make sure
2146          * that this space is not used again.
2147          *
2148          * If we are less than the minimum size, we don't need to
2149          * worry about it.
2150          */
2151         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2152                 /* No room for any events */
2153
2154                 /* Mark the rest of the page with padding */
2155                 rb_event_set_padding(event);
2156
2157                 /* Set the write back to the previous setting */
2158                 local_sub(length, &tail_page->write);
2159                 return;
2160         }
2161
2162         /* Put in a discarded event */
2163         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2164         event->type_len = RINGBUF_TYPE_PADDING;
2165         /* time delta must be non zero */
2166         event->time_delta = 1;
2167
2168         /* Set write to end of buffer */
2169         length = (tail + length) - BUF_PAGE_SIZE;
2170         local_sub(length, &tail_page->write);
2171 }
2172
2173 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2174
2175 /*
2176  * This is the slow path, force gcc not to inline it.
2177  */
2178 static noinline struct ring_buffer_event *
2179 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2180              unsigned long tail, struct rb_event_info *info)
2181 {
2182         struct buffer_page *tail_page = info->tail_page;
2183         struct buffer_page *commit_page = cpu_buffer->commit_page;
2184         struct ring_buffer *buffer = cpu_buffer->buffer;
2185         struct buffer_page *next_page;
2186         int ret;
2187
2188         next_page = tail_page;
2189
2190         rb_inc_page(cpu_buffer, &next_page);
2191
2192         /*
2193          * If for some reason, we had an interrupt storm that made
2194          * it all the way around the buffer, bail, and warn
2195          * about it.
2196          */
2197         if (unlikely(next_page == commit_page)) {
2198                 local_inc(&cpu_buffer->commit_overrun);
2199                 goto out_reset;
2200         }
2201
2202         /*
2203          * This is where the fun begins!
2204          *
2205          * We are fighting against races between a reader that
2206          * could be on another CPU trying to swap its reader
2207          * page with the buffer head.
2208          *
2209          * We are also fighting against interrupts coming in and
2210          * moving the head or tail on us as well.
2211          *
2212          * If the next page is the head page then we have filled
2213          * the buffer, unless the commit page is still on the
2214          * reader page.
2215          */
2216         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2217
2218                 /*
2219                  * If the commit is not on the reader page, then
2220                  * move the header page.
2221                  */
2222                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2223                         /*
2224                          * If we are not in overwrite mode,
2225                          * this is easy, just stop here.
2226                          */
2227                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2228                                 local_inc(&cpu_buffer->dropped_events);
2229                                 goto out_reset;
2230                         }
2231
2232                         ret = rb_handle_head_page(cpu_buffer,
2233                                                   tail_page,
2234                                                   next_page);
2235                         if (ret < 0)
2236                                 goto out_reset;
2237                         if (ret)
2238                                 goto out_again;
2239                 } else {
2240                         /*
2241                          * We need to be careful here too. The
2242                          * commit page could still be on the reader
2243                          * page. We could have a small buffer, and
2244                          * have filled up the buffer with events
2245                          * from interrupts and such, and wrapped.
2246                          *
2247                          * Note, if the tail page is also the on the
2248                          * reader_page, we let it move out.
2249                          */
2250                         if (unlikely((cpu_buffer->commit_page !=
2251                                       cpu_buffer->tail_page) &&
2252                                      (cpu_buffer->commit_page ==
2253                                       cpu_buffer->reader_page))) {
2254                                 local_inc(&cpu_buffer->commit_overrun);
2255                                 goto out_reset;
2256                         }
2257                 }
2258         }
2259
2260         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2261
2262  out_again:
2263
2264         rb_reset_tail(cpu_buffer, tail, info);
2265
2266         /* Commit what we have for now. */
2267         rb_end_commit(cpu_buffer);
2268         /* rb_end_commit() decs committing */
2269         local_inc(&cpu_buffer->committing);
2270
2271         /* fail and let the caller try again */
2272         return ERR_PTR(-EAGAIN);
2273
2274  out_reset:
2275         /* reset write */
2276         rb_reset_tail(cpu_buffer, tail, info);
2277
2278         return NULL;
2279 }
2280
2281 /* Slow path, do not inline */
2282 static noinline struct ring_buffer_event *
2283 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2284 {
2285         if (abs)
2286                 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2287         else
2288                 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2289
2290         /* Not the first event on the page, or not delta? */
2291         if (abs || rb_event_index(event)) {
2292                 event->time_delta = delta & TS_MASK;
2293                 event->array[0] = delta >> TS_SHIFT;
2294         } else {
2295                 /* nope, just zero it */
2296                 event->time_delta = 0;
2297                 event->array[0] = 0;
2298         }
2299
2300         return skip_time_extend(event);
2301 }
2302
2303 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2304                                      struct ring_buffer_event *event);
2305
2306 /**
2307  * rb_update_event - update event type and data
2308  * @event: the event to update
2309  * @type: the type of event
2310  * @length: the size of the event field in the ring buffer
2311  *
2312  * Update the type and data fields of the event. The length
2313  * is the actual size that is written to the ring buffer,
2314  * and with this, we can determine what to place into the
2315  * data field.
2316  */
2317 static void
2318 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2319                 struct ring_buffer_event *event,
2320                 struct rb_event_info *info)
2321 {
2322         unsigned length = info->length;
2323         u64 delta = info->delta;
2324
2325         /* Only a commit updates the timestamp */
2326         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2327                 delta = 0;
2328
2329         /*
2330          * If we need to add a timestamp, then we
2331          * add it to the start of the reserved space.
2332          */
2333         if (unlikely(info->add_timestamp)) {
2334                 bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer);
2335
2336                 event = rb_add_time_stamp(event, info->delta, abs);
2337                 length -= RB_LEN_TIME_EXTEND;
2338                 delta = 0;
2339         }
2340
2341         event->time_delta = delta;
2342         length -= RB_EVNT_HDR_SIZE;
2343         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2344                 event->type_len = 0;
2345                 event->array[0] = length;
2346         } else
2347                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2348 }
2349
2350 static unsigned rb_calculate_event_length(unsigned length)
2351 {
2352         struct ring_buffer_event event; /* Used only for sizeof array */
2353
2354         /* zero length can cause confusions */
2355         if (!length)
2356                 length++;
2357
2358         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2359                 length += sizeof(event.array[0]);
2360
2361         length += RB_EVNT_HDR_SIZE;
2362         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2363
2364         /*
2365          * In case the time delta is larger than the 27 bits for it
2366          * in the header, we need to add a timestamp. If another
2367          * event comes in when trying to discard this one to increase
2368          * the length, then the timestamp will be added in the allocated
2369          * space of this event. If length is bigger than the size needed
2370          * for the TIME_EXTEND, then padding has to be used. The events
2371          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2372          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2373          * As length is a multiple of 4, we only need to worry if it
2374          * is 12 (RB_LEN_TIME_EXTEND + 4).
2375          */
2376         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2377                 length += RB_ALIGNMENT;
2378
2379         return length;
2380 }
2381
2382 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2383 static inline bool sched_clock_stable(void)
2384 {
2385         return true;
2386 }
2387 #endif
2388
2389 static inline int
2390 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2391                   struct ring_buffer_event *event)
2392 {
2393         unsigned long new_index, old_index;
2394         struct buffer_page *bpage;
2395         unsigned long index;
2396         unsigned long addr;
2397
2398         new_index = rb_event_index(event);
2399         old_index = new_index + rb_event_ts_length(event);
2400         addr = (unsigned long)event;
2401         addr &= PAGE_MASK;
2402
2403         bpage = READ_ONCE(cpu_buffer->tail_page);
2404
2405         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2406                 unsigned long write_mask =
2407                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2408                 unsigned long event_length = rb_event_length(event);
2409                 /*
2410                  * This is on the tail page. It is possible that
2411                  * a write could come in and move the tail page
2412                  * and write to the next page. That is fine
2413                  * because we just shorten what is on this page.
2414                  */
2415                 old_index += write_mask;
2416                 new_index += write_mask;
2417                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2418                 if (index == old_index) {
2419                         /* update counters */
2420                         local_sub(event_length, &cpu_buffer->entries_bytes);
2421                         return 1;
2422                 }
2423         }
2424
2425         /* could not discard */
2426         return 0;
2427 }
2428
2429 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2430 {
2431         local_inc(&cpu_buffer->committing);
2432         local_inc(&cpu_buffer->commits);
2433 }
2434
2435 static __always_inline void
2436 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2437 {
2438         unsigned long max_count;
2439
2440         /*
2441          * We only race with interrupts and NMIs on this CPU.
2442          * If we own the commit event, then we can commit
2443          * all others that interrupted us, since the interruptions
2444          * are in stack format (they finish before they come
2445          * back to us). This allows us to do a simple loop to
2446          * assign the commit to the tail.
2447          */
2448  again:
2449         max_count = cpu_buffer->nr_pages * 100;
2450
2451         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2452                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2453                         return;
2454                 if (RB_WARN_ON(cpu_buffer,
2455                                rb_is_reader_page(cpu_buffer->tail_page)))
2456                         return;
2457                 local_set(&cpu_buffer->commit_page->page->commit,
2458                           rb_page_write(cpu_buffer->commit_page));
2459                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2460                 /* Only update the write stamp if the page has an event */
2461                 if (rb_page_write(cpu_buffer->commit_page))
2462                         cpu_buffer->write_stamp =
2463                                 cpu_buffer->commit_page->page->time_stamp;
2464                 /* add barrier to keep gcc from optimizing too much */
2465                 barrier();
2466         }
2467         while (rb_commit_index(cpu_buffer) !=
2468                rb_page_write(cpu_buffer->commit_page)) {
2469
2470                 local_set(&cpu_buffer->commit_page->page->commit,
2471                           rb_page_write(cpu_buffer->commit_page));
2472                 RB_WARN_ON(cpu_buffer,
2473                            local_read(&cpu_buffer->commit_page->page->commit) &
2474                            ~RB_WRITE_MASK);
2475                 barrier();
2476         }
2477
2478         /* again, keep gcc from optimizing */
2479         barrier();
2480
2481         /*
2482          * If an interrupt came in just after the first while loop
2483          * and pushed the tail page forward, we will be left with
2484          * a dangling commit that will never go forward.
2485          */
2486         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2487                 goto again;
2488 }
2489
2490 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2491 {
2492         unsigned long commits;
2493
2494         if (RB_WARN_ON(cpu_buffer,
2495                        !local_read(&cpu_buffer->committing)))
2496                 return;
2497
2498  again:
2499         commits = local_read(&cpu_buffer->commits);
2500         /* synchronize with interrupts */
2501         barrier();
2502         if (local_read(&cpu_buffer->committing) == 1)
2503                 rb_set_commit_to_write(cpu_buffer);
2504
2505         local_dec(&cpu_buffer->committing);
2506
2507         /* synchronize with interrupts */
2508         barrier();
2509
2510         /*
2511          * Need to account for interrupts coming in between the
2512          * updating of the commit page and the clearing of the
2513          * committing counter.
2514          */
2515         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2516             !local_read(&cpu_buffer->committing)) {
2517                 local_inc(&cpu_buffer->committing);
2518                 goto again;
2519         }
2520 }
2521
2522 static inline void rb_event_discard(struct ring_buffer_event *event)
2523 {
2524         if (extended_time(event))
2525                 event = skip_time_extend(event);
2526
2527         /* array[0] holds the actual length for the discarded event */
2528         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2529         event->type_len = RINGBUF_TYPE_PADDING;
2530         /* time delta must be non zero */
2531         if (!event->time_delta)
2532                 event->time_delta = 1;
2533 }
2534
2535 static __always_inline bool
2536 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2537                    struct ring_buffer_event *event)
2538 {
2539         unsigned long addr = (unsigned long)event;
2540         unsigned long index;
2541
2542         index = rb_event_index(event);
2543         addr &= PAGE_MASK;
2544
2545         return cpu_buffer->commit_page->page == (void *)addr &&
2546                 rb_commit_index(cpu_buffer) == index;
2547 }
2548
2549 static __always_inline void
2550 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2551                       struct ring_buffer_event *event)
2552 {
2553         u64 delta;
2554
2555         /*
2556          * The event first in the commit queue updates the
2557          * time stamp.
2558          */
2559         if (rb_event_is_commit(cpu_buffer, event)) {
2560                 /*
2561                  * A commit event that is first on a page
2562                  * updates the write timestamp with the page stamp
2563                  */
2564                 if (!rb_event_index(event))
2565                         cpu_buffer->write_stamp =
2566                                 cpu_buffer->commit_page->page->time_stamp;
2567                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2568                         delta = ring_buffer_event_time_stamp(event);
2569                         cpu_buffer->write_stamp += delta;
2570                 } else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
2571                         delta = ring_buffer_event_time_stamp(event);
2572                         cpu_buffer->write_stamp = delta;
2573                 } else
2574                         cpu_buffer->write_stamp += event->time_delta;
2575         }
2576 }
2577
2578 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2579                       struct ring_buffer_event *event)
2580 {
2581         local_inc(&cpu_buffer->entries);
2582         rb_update_write_stamp(cpu_buffer, event);
2583         rb_end_commit(cpu_buffer);
2584 }
2585
2586 static __always_inline void
2587 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2588 {
2589         bool pagebusy;
2590
2591         if (buffer->irq_work.waiters_pending) {
2592                 buffer->irq_work.waiters_pending = false;
2593                 /* irq_work_queue() supplies it's own memory barriers */
2594                 irq_work_queue(&buffer->irq_work.work);
2595         }
2596
2597         if (cpu_buffer->irq_work.waiters_pending) {
2598                 cpu_buffer->irq_work.waiters_pending = false;
2599                 /* irq_work_queue() supplies it's own memory barriers */
2600                 irq_work_queue(&cpu_buffer->irq_work.work);
2601         }
2602
2603         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2604
2605         if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2606                 cpu_buffer->irq_work.wakeup_full = true;
2607                 cpu_buffer->irq_work.full_waiters_pending = false;
2608                 /* irq_work_queue() supplies it's own memory barriers */
2609                 irq_work_queue(&cpu_buffer->irq_work.work);
2610         }
2611 }
2612
2613 /*
2614  * The lock and unlock are done within a preempt disable section.
2615  * The current_context per_cpu variable can only be modified
2616  * by the current task between lock and unlock. But it can
2617  * be modified more than once via an interrupt. To pass this
2618  * information from the lock to the unlock without having to
2619  * access the 'in_interrupt()' functions again (which do show
2620  * a bit of overhead in something as critical as function tracing,
2621  * we use a bitmask trick.
2622  *
2623  *  bit 0 =  NMI context
2624  *  bit 1 =  IRQ context
2625  *  bit 2 =  SoftIRQ context
2626  *  bit 3 =  normal context.
2627  *
2628  * This works because this is the order of contexts that can
2629  * preempt other contexts. A SoftIRQ never preempts an IRQ
2630  * context.
2631  *
2632  * When the context is determined, the corresponding bit is
2633  * checked and set (if it was set, then a recursion of that context
2634  * happened).
2635  *
2636  * On unlock, we need to clear this bit. To do so, just subtract
2637  * 1 from the current_context and AND it to itself.
2638  *
2639  * (binary)
2640  *  101 - 1 = 100
2641  *  101 & 100 = 100 (clearing bit zero)
2642  *
2643  *  1010 - 1 = 1001
2644  *  1010 & 1001 = 1000 (clearing bit 1)
2645  *
2646  * The least significant bit can be cleared this way, and it
2647  * just so happens that it is the same bit corresponding to
2648  * the current context.
2649  */
2650
2651 static __always_inline int
2652 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2653 {
2654         unsigned int val = cpu_buffer->current_context;
2655         unsigned long pc = preempt_count();
2656         int bit;
2657
2658         if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2659                 bit = RB_CTX_NORMAL;
2660         else
2661                 bit = pc & NMI_MASK ? RB_CTX_NMI :
2662                         pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2663
2664         if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
2665                 return 1;
2666
2667         val |= (1 << (bit + cpu_buffer->nest));
2668         cpu_buffer->current_context = val;
2669
2670         return 0;
2671 }
2672
2673 static __always_inline void
2674 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2675 {
2676         cpu_buffer->current_context &=
2677                 cpu_buffer->current_context - (1 << cpu_buffer->nest);
2678 }
2679
2680 /* The recursive locking above uses 4 bits */
2681 #define NESTED_BITS 4
2682
2683 /**
2684  * ring_buffer_nest_start - Allow to trace while nested
2685  * @buffer: The ring buffer to modify
2686  *
2687  * The ring buffer has a safety mechanism to prevent recursion.
2688  * But there may be a case where a trace needs to be done while
2689  * tracing something else. In this case, calling this function
2690  * will allow this function to nest within a currently active
2691  * ring_buffer_lock_reserve().
2692  *
2693  * Call this function before calling another ring_buffer_lock_reserve() and
2694  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2695  */
2696 void ring_buffer_nest_start(struct ring_buffer *buffer)
2697 {
2698         struct ring_buffer_per_cpu *cpu_buffer;
2699         int cpu;
2700
2701         /* Enabled by ring_buffer_nest_end() */
2702         preempt_disable_notrace();
2703         cpu = raw_smp_processor_id();
2704         cpu_buffer = buffer->buffers[cpu];
2705         /* This is the shift value for the above recursive locking */
2706         cpu_buffer->nest += NESTED_BITS;
2707 }
2708
2709 /**
2710  * ring_buffer_nest_end - Allow to trace while nested
2711  * @buffer: The ring buffer to modify
2712  *
2713  * Must be called after ring_buffer_nest_start() and after the
2714  * ring_buffer_unlock_commit().
2715  */
2716 void ring_buffer_nest_end(struct ring_buffer *buffer)
2717 {
2718         struct ring_buffer_per_cpu *cpu_buffer;
2719         int cpu;
2720
2721         /* disabled by ring_buffer_nest_start() */
2722         cpu = raw_smp_processor_id();
2723         cpu_buffer = buffer->buffers[cpu];
2724         /* This is the shift value for the above recursive locking */
2725         cpu_buffer->nest -= NESTED_BITS;
2726         preempt_enable_notrace();
2727 }
2728
2729 /**
2730  * ring_buffer_unlock_commit - commit a reserved
2731  * @buffer: The buffer to commit to
2732  * @event: The event pointer to commit.
2733  *
2734  * This commits the data to the ring buffer, and releases any locks held.
2735  *
2736  * Must be paired with ring_buffer_lock_reserve.
2737  */
2738 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2739                               struct ring_buffer_event *event)
2740 {
2741         struct ring_buffer_per_cpu *cpu_buffer;
2742         int cpu = raw_smp_processor_id();
2743
2744         cpu_buffer = buffer->buffers[cpu];
2745
2746         rb_commit(cpu_buffer, event);
2747
2748         rb_wakeups(buffer, cpu_buffer);
2749
2750         trace_recursive_unlock(cpu_buffer);
2751
2752         preempt_enable_notrace();
2753
2754         return 0;
2755 }
2756 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2757
2758 static noinline void
2759 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2760                     struct rb_event_info *info)
2761 {
2762         WARN_ONCE(info->delta > (1ULL << 59),
2763                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2764                   (unsigned long long)info->delta,
2765                   (unsigned long long)info->ts,
2766                   (unsigned long long)cpu_buffer->write_stamp,
2767                   sched_clock_stable() ? "" :
2768                   "If you just came from a suspend/resume,\n"
2769                   "please switch to the trace global clock:\n"
2770                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2771                   "or add trace_clock=global to the kernel command line\n");
2772         info->add_timestamp = 1;
2773 }
2774
2775 static struct ring_buffer_event *
2776 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2777                   struct rb_event_info *info)
2778 {
2779         struct ring_buffer_event *event;
2780         struct buffer_page *tail_page;
2781         unsigned long tail, write;
2782
2783         /*
2784          * If the time delta since the last event is too big to
2785          * hold in the time field of the event, then we append a
2786          * TIME EXTEND event ahead of the data event.
2787          */
2788         if (unlikely(info->add_timestamp))
2789                 info->length += RB_LEN_TIME_EXTEND;
2790
2791         /* Don't let the compiler play games with cpu_buffer->tail_page */
2792         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2793         write = local_add_return(info->length, &tail_page->write);
2794
2795         /* set write to only the index of the write */
2796         write &= RB_WRITE_MASK;
2797         tail = write - info->length;
2798
2799         /*
2800          * If this is the first commit on the page, then it has the same
2801          * timestamp as the page itself.
2802          */
2803         if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer))
2804                 info->delta = 0;
2805
2806         /* See if we shot pass the end of this buffer page */
2807         if (unlikely(write > BUF_PAGE_SIZE))
2808                 return rb_move_tail(cpu_buffer, tail, info);
2809
2810         /* We reserved something on the buffer */
2811
2812         event = __rb_page_index(tail_page, tail);
2813         rb_update_event(cpu_buffer, event, info);
2814
2815         local_inc(&tail_page->entries);
2816
2817         /*
2818          * If this is the first commit on the page, then update
2819          * its timestamp.
2820          */
2821         if (!tail)
2822                 tail_page->page->time_stamp = info->ts;
2823
2824         /* account for these added bytes */
2825         local_add(info->length, &cpu_buffer->entries_bytes);
2826
2827         return event;
2828 }
2829
2830 static __always_inline struct ring_buffer_event *
2831 rb_reserve_next_event(struct ring_buffer *buffer,
2832                       struct ring_buffer_per_cpu *cpu_buffer,
2833                       unsigned long length)
2834 {
2835         struct ring_buffer_event *event;
2836         struct rb_event_info info;
2837         int nr_loops = 0;
2838         u64 diff;
2839
2840         rb_start_commit(cpu_buffer);
2841
2842 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2843         /*
2844          * Due to the ability to swap a cpu buffer from a buffer
2845          * it is possible it was swapped before we committed.
2846          * (committing stops a swap). We check for it here and
2847          * if it happened, we have to fail the write.
2848          */
2849         barrier();
2850         if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2851                 local_dec(&cpu_buffer->committing);
2852                 local_dec(&cpu_buffer->commits);
2853                 return NULL;
2854         }
2855 #endif
2856
2857         info.length = rb_calculate_event_length(length);
2858  again:
2859         info.add_timestamp = 0;
2860         info.delta = 0;
2861
2862         /*
2863          * We allow for interrupts to reenter here and do a trace.
2864          * If one does, it will cause this original code to loop
2865          * back here. Even with heavy interrupts happening, this
2866          * should only happen a few times in a row. If this happens
2867          * 1000 times in a row, there must be either an interrupt
2868          * storm or we have something buggy.
2869          * Bail!
2870          */
2871         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2872                 goto out_fail;
2873
2874         info.ts = rb_time_stamp(cpu_buffer->buffer);
2875         diff = info.ts - cpu_buffer->write_stamp;
2876
2877         /* make sure this diff is calculated here */
2878         barrier();
2879
2880         if (ring_buffer_time_stamp_abs(buffer)) {
2881                 info.delta = info.ts;
2882                 rb_handle_timestamp(cpu_buffer, &info);
2883         } else /* Did the write stamp get updated already? */
2884                 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2885                 info.delta = diff;
2886                 if (unlikely(test_time_stamp(info.delta)))
2887                         rb_handle_timestamp(cpu_buffer, &info);
2888         }
2889
2890         event = __rb_reserve_next(cpu_buffer, &info);
2891
2892         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2893                 if (info.add_timestamp)
2894                         info.length -= RB_LEN_TIME_EXTEND;
2895                 goto again;
2896         }
2897
2898         if (!event)
2899                 goto out_fail;
2900
2901         return event;
2902
2903  out_fail:
2904         rb_end_commit(cpu_buffer);
2905         return NULL;
2906 }
2907
2908 /**
2909  * ring_buffer_lock_reserve - reserve a part of the buffer
2910  * @buffer: the ring buffer to reserve from
2911  * @length: the length of the data to reserve (excluding event header)
2912  *
2913  * Returns a reserved event on the ring buffer to copy directly to.
2914  * The user of this interface will need to get the body to write into
2915  * and can use the ring_buffer_event_data() interface.
2916  *
2917  * The length is the length of the data needed, not the event length
2918  * which also includes the event header.
2919  *
2920  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2921  * If NULL is returned, then nothing has been allocated or locked.
2922  */
2923 struct ring_buffer_event *
2924 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2925 {
2926         struct ring_buffer_per_cpu *cpu_buffer;
2927         struct ring_buffer_event *event;
2928         int cpu;
2929
2930         /* If we are tracing schedule, we don't want to recurse */
2931         preempt_disable_notrace();
2932
2933         if (unlikely(atomic_read(&buffer->record_disabled)))
2934                 goto out;
2935
2936         cpu = raw_smp_processor_id();
2937
2938         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2939                 goto out;
2940
2941         cpu_buffer = buffer->buffers[cpu];
2942
2943         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2944                 goto out;
2945
2946         if (unlikely(length > BUF_MAX_DATA_SIZE))
2947                 goto out;
2948
2949         if (unlikely(trace_recursive_lock(cpu_buffer)))
2950                 goto out;
2951
2952         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2953         if (!event)
2954                 goto out_unlock;
2955
2956         return event;
2957
2958  out_unlock:
2959         trace_recursive_unlock(cpu_buffer);
2960  out:
2961         preempt_enable_notrace();
2962         return NULL;
2963 }
2964 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2965
2966 /*
2967  * Decrement the entries to the page that an event is on.
2968  * The event does not even need to exist, only the pointer
2969  * to the page it is on. This may only be called before the commit
2970  * takes place.
2971  */
2972 static inline void
2973 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2974                    struct ring_buffer_event *event)
2975 {
2976         unsigned long addr = (unsigned long)event;
2977         struct buffer_page *bpage = cpu_buffer->commit_page;
2978         struct buffer_page *start;
2979
2980         addr &= PAGE_MASK;
2981
2982         /* Do the likely case first */
2983         if (likely(bpage->page == (void *)addr)) {
2984                 local_dec(&bpage->entries);
2985                 return;
2986         }
2987
2988         /*
2989          * Because the commit page may be on the reader page we
2990          * start with the next page and check the end loop there.
2991          */
2992         rb_inc_page(cpu_buffer, &bpage);
2993         start = bpage;
2994         do {
2995                 if (bpage->page == (void *)addr) {
2996                         local_dec(&bpage->entries);
2997                         return;
2998                 }
2999                 rb_inc_page(cpu_buffer, &bpage);
3000         } while (bpage != start);
3001
3002         /* commit not part of this buffer?? */
3003         RB_WARN_ON(cpu_buffer, 1);
3004 }
3005
3006 /**
3007  * ring_buffer_commit_discard - discard an event that has not been committed
3008  * @buffer: the ring buffer
3009  * @event: non committed event to discard
3010  *
3011  * Sometimes an event that is in the ring buffer needs to be ignored.
3012  * This function lets the user discard an event in the ring buffer
3013  * and then that event will not be read later.
3014  *
3015  * This function only works if it is called before the item has been
3016  * committed. It will try to free the event from the ring buffer
3017  * if another event has not been added behind it.
3018  *
3019  * If another event has been added behind it, it will set the event
3020  * up as discarded, and perform the commit.
3021  *
3022  * If this function is called, do not call ring_buffer_unlock_commit on
3023  * the event.
3024  */
3025 void ring_buffer_discard_commit(struct ring_buffer *buffer,
3026                                 struct ring_buffer_event *event)
3027 {
3028         struct ring_buffer_per_cpu *cpu_buffer;
3029         int cpu;
3030
3031         /* The event is discarded regardless */
3032         rb_event_discard(event);
3033
3034         cpu = smp_processor_id();
3035         cpu_buffer = buffer->buffers[cpu];
3036
3037         /*
3038          * This must only be called if the event has not been
3039          * committed yet. Thus we can assume that preemption
3040          * is still disabled.
3041          */
3042         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3043
3044         rb_decrement_entry(cpu_buffer, event);
3045         if (rb_try_to_discard(cpu_buffer, event))
3046                 goto out;
3047
3048         /*
3049          * The commit is still visible by the reader, so we
3050          * must still update the timestamp.
3051          */
3052         rb_update_write_stamp(cpu_buffer, event);
3053  out:
3054         rb_end_commit(cpu_buffer);
3055
3056         trace_recursive_unlock(cpu_buffer);
3057
3058         preempt_enable_notrace();
3059
3060 }
3061 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3062
3063 /**
3064  * ring_buffer_write - write data to the buffer without reserving
3065  * @buffer: The ring buffer to write to.
3066  * @length: The length of the data being written (excluding the event header)
3067  * @data: The data to write to the buffer.
3068  *
3069  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3070  * one function. If you already have the data to write to the buffer, it
3071  * may be easier to simply call this function.
3072  *
3073  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3074  * and not the length of the event which would hold the header.
3075  */
3076 int ring_buffer_write(struct ring_buffer *buffer,
3077                       unsigned long length,
3078                       void *data)
3079 {
3080         struct ring_buffer_per_cpu *cpu_buffer;
3081         struct ring_buffer_event *event;
3082         void *body;
3083         int ret = -EBUSY;
3084         int cpu;
3085
3086         preempt_disable_notrace();
3087
3088         if (atomic_read(&buffer->record_disabled))
3089                 goto out;
3090
3091         cpu = raw_smp_processor_id();
3092
3093         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3094                 goto out;
3095
3096         cpu_buffer = buffer->buffers[cpu];
3097
3098         if (atomic_read(&cpu_buffer->record_disabled))
3099                 goto out;
3100
3101         if (length > BUF_MAX_DATA_SIZE)
3102                 goto out;
3103
3104         if (unlikely(trace_recursive_lock(cpu_buffer)))
3105                 goto out;
3106
3107         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3108         if (!event)
3109                 goto out_unlock;
3110
3111         body = rb_event_data(event);
3112
3113         memcpy(body, data, length);
3114
3115         rb_commit(cpu_buffer, event);
3116
3117         rb_wakeups(buffer, cpu_buffer);
3118
3119         ret = 0;
3120
3121  out_unlock:
3122         trace_recursive_unlock(cpu_buffer);
3123
3124  out:
3125         preempt_enable_notrace();
3126
3127         return ret;
3128 }
3129 EXPORT_SYMBOL_GPL(ring_buffer_write);
3130
3131 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3132 {
3133         struct buffer_page *reader = cpu_buffer->reader_page;
3134         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3135         struct buffer_page *commit = cpu_buffer->commit_page;
3136
3137         /* In case of error, head will be NULL */
3138         if (unlikely(!head))
3139                 return true;
3140
3141         return reader->read == rb_page_commit(reader) &&
3142                 (commit == reader ||
3143                  (commit == head &&
3144                   head->read == rb_page_commit(commit)));
3145 }
3146
3147 /**
3148  * ring_buffer_record_disable - stop all writes into the buffer
3149  * @buffer: The ring buffer to stop writes to.
3150  *
3151  * This prevents all writes to the buffer. Any attempt to write
3152  * to the buffer after this will fail and return NULL.
3153  *
3154  * The caller should call synchronize_rcu() after this.
3155  */
3156 void ring_buffer_record_disable(struct ring_buffer *buffer)
3157 {
3158         atomic_inc(&buffer->record_disabled);
3159 }
3160 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3161
3162 /**
3163  * ring_buffer_record_enable - enable writes to the buffer
3164  * @buffer: The ring buffer to enable writes
3165  *
3166  * Note, multiple disables will need the same number of enables
3167  * to truly enable the writing (much like preempt_disable).
3168  */
3169 void ring_buffer_record_enable(struct ring_buffer *buffer)
3170 {
3171         atomic_dec(&buffer->record_disabled);
3172 }
3173 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3174
3175 /**
3176  * ring_buffer_record_off - stop all writes into the buffer
3177  * @buffer: The ring buffer to stop writes to.
3178  *
3179  * This prevents all writes to the buffer. Any attempt to write
3180  * to the buffer after this will fail and return NULL.
3181  *
3182  * This is different than ring_buffer_record_disable() as
3183  * it works like an on/off switch, where as the disable() version
3184  * must be paired with a enable().
3185  */
3186 void ring_buffer_record_off(struct ring_buffer *buffer)
3187 {
3188         unsigned int rd;
3189         unsigned int new_rd;
3190
3191         do {
3192                 rd = atomic_read(&buffer->record_disabled);
3193                 new_rd = rd | RB_BUFFER_OFF;
3194         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3195 }
3196 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3197
3198 /**
3199  * ring_buffer_record_on - restart writes into the buffer
3200  * @buffer: The ring buffer to start writes to.
3201  *
3202  * This enables all writes to the buffer that was disabled by
3203  * ring_buffer_record_off().
3204  *
3205  * This is different than ring_buffer_record_enable() as
3206  * it works like an on/off switch, where as the enable() version
3207  * must be paired with a disable().
3208  */
3209 void ring_buffer_record_on(struct ring_buffer *buffer)
3210 {
3211         unsigned int rd;
3212         unsigned int new_rd;
3213
3214         do {
3215                 rd = atomic_read(&buffer->record_disabled);
3216                 new_rd = rd & ~RB_BUFFER_OFF;
3217         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3218 }
3219 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3220
3221 /**
3222  * ring_buffer_record_is_on - return true if the ring buffer can write
3223  * @buffer: The ring buffer to see if write is enabled
3224  *
3225  * Returns true if the ring buffer is in a state that it accepts writes.
3226  */
3227 bool ring_buffer_record_is_on(struct ring_buffer *buffer)
3228 {
3229         return !atomic_read(&buffer->record_disabled);
3230 }
3231
3232 /**
3233  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3234  * @buffer: The ring buffer to see if write is set enabled
3235  *
3236  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3237  * Note that this does NOT mean it is in a writable state.
3238  *
3239  * It may return true when the ring buffer has been disabled by
3240  * ring_buffer_record_disable(), as that is a temporary disabling of
3241  * the ring buffer.
3242  */
3243 bool ring_buffer_record_is_set_on(struct ring_buffer *buffer)
3244 {
3245         return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3246 }
3247
3248 /**
3249  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3250  * @buffer: The ring buffer to stop writes to.
3251  * @cpu: The CPU buffer to stop
3252  *
3253  * This prevents all writes to the buffer. Any attempt to write
3254  * to the buffer after this will fail and return NULL.
3255  *
3256  * The caller should call synchronize_rcu() after this.
3257  */
3258 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3259 {
3260         struct ring_buffer_per_cpu *cpu_buffer;
3261
3262         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3263                 return;
3264
3265         cpu_buffer = buffer->buffers[cpu];
3266         atomic_inc(&cpu_buffer->record_disabled);
3267 }
3268 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3269
3270 /**
3271  * ring_buffer_record_enable_cpu - enable writes to the buffer
3272  * @buffer: The ring buffer to enable writes
3273  * @cpu: The CPU to enable.
3274  *
3275  * Note, multiple disables will need the same number of enables
3276  * to truly enable the writing (much like preempt_disable).
3277  */
3278 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3279 {
3280         struct ring_buffer_per_cpu *cpu_buffer;
3281
3282         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3283                 return;
3284
3285         cpu_buffer = buffer->buffers[cpu];
3286         atomic_dec(&cpu_buffer->record_disabled);
3287 }
3288 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3289
3290 /*
3291  * The total entries in the ring buffer is the running counter
3292  * of entries entered into the ring buffer, minus the sum of
3293  * the entries read from the ring buffer and the number of
3294  * entries that were overwritten.
3295  */
3296 static inline unsigned long
3297 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3298 {
3299         return local_read(&cpu_buffer->entries) -
3300                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3301 }
3302
3303 /**
3304  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3305  * @buffer: The ring buffer
3306  * @cpu: The per CPU buffer to read from.
3307  */
3308 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3309 {
3310         unsigned long flags;
3311         struct ring_buffer_per_cpu *cpu_buffer;
3312         struct buffer_page *bpage;
3313         u64 ret = 0;
3314
3315         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3316                 return 0;
3317
3318         cpu_buffer = buffer->buffers[cpu];
3319         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3320         /*
3321          * if the tail is on reader_page, oldest time stamp is on the reader
3322          * page
3323          */
3324         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3325                 bpage = cpu_buffer->reader_page;
3326         else
3327                 bpage = rb_set_head_page(cpu_buffer);
3328         if (bpage)
3329                 ret = bpage->page->time_stamp;
3330         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3331
3332         return ret;
3333 }
3334 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3335
3336 /**
3337  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3338  * @buffer: The ring buffer
3339  * @cpu: The per CPU buffer to read from.
3340  */
3341 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3342 {
3343         struct ring_buffer_per_cpu *cpu_buffer;
3344         unsigned long ret;
3345
3346         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3347                 return 0;
3348
3349         cpu_buffer = buffer->buffers[cpu];
3350         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3351
3352         return ret;
3353 }
3354 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3355
3356 /**
3357  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3358  * @buffer: The ring buffer
3359  * @cpu: The per CPU buffer to get the entries from.
3360  */
3361 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3362 {
3363         struct ring_buffer_per_cpu *cpu_buffer;
3364
3365         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3366                 return 0;
3367
3368         cpu_buffer = buffer->buffers[cpu];
3369
3370         return rb_num_of_entries(cpu_buffer);
3371 }
3372 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3373
3374 /**
3375  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3376  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3377  * @buffer: The ring buffer
3378  * @cpu: The per CPU buffer to get the number of overruns from
3379  */
3380 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3381 {
3382         struct ring_buffer_per_cpu *cpu_buffer;
3383         unsigned long ret;
3384
3385         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3386                 return 0;
3387
3388         cpu_buffer = buffer->buffers[cpu];
3389         ret = local_read(&cpu_buffer->overrun);
3390
3391         return ret;
3392 }
3393 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3394
3395 /**
3396  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3397  * commits failing due to the buffer wrapping around while there are uncommitted
3398  * events, such as during an interrupt storm.
3399  * @buffer: The ring buffer
3400  * @cpu: The per CPU buffer to get the number of overruns from
3401  */
3402 unsigned long
3403 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3404 {
3405         struct ring_buffer_per_cpu *cpu_buffer;
3406         unsigned long ret;
3407
3408         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3409                 return 0;
3410
3411         cpu_buffer = buffer->buffers[cpu];
3412         ret = local_read(&cpu_buffer->commit_overrun);
3413
3414         return ret;
3415 }
3416 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3417
3418 /**
3419  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3420  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3421  * @buffer: The ring buffer
3422  * @cpu: The per CPU buffer to get the number of overruns from
3423  */
3424 unsigned long
3425 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3426 {
3427         struct ring_buffer_per_cpu *cpu_buffer;
3428         unsigned long ret;
3429
3430         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3431                 return 0;
3432
3433         cpu_buffer = buffer->buffers[cpu];
3434         ret = local_read(&cpu_buffer->dropped_events);
3435
3436         return ret;
3437 }
3438 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3439
3440 /**
3441  * ring_buffer_read_events_cpu - get the number of events successfully read
3442  * @buffer: The ring buffer
3443  * @cpu: The per CPU buffer to get the number of events read
3444  */
3445 unsigned long
3446 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3447 {
3448         struct ring_buffer_per_cpu *cpu_buffer;
3449
3450         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3451                 return 0;
3452
3453         cpu_buffer = buffer->buffers[cpu];
3454         return cpu_buffer->read;
3455 }
3456 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3457
3458 /**
3459  * ring_buffer_entries - get the number of entries in a buffer
3460  * @buffer: The ring buffer
3461  *
3462  * Returns the total number of entries in the ring buffer
3463  * (all CPU entries)
3464  */
3465 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3466 {
3467         struct ring_buffer_per_cpu *cpu_buffer;
3468         unsigned long entries = 0;
3469         int cpu;
3470
3471         /* if you care about this being correct, lock the buffer */
3472         for_each_buffer_cpu(buffer, cpu) {
3473                 cpu_buffer = buffer->buffers[cpu];
3474                 entries += rb_num_of_entries(cpu_buffer);
3475         }
3476
3477         return entries;
3478 }
3479 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3480
3481 /**
3482  * ring_buffer_overruns - get the number of overruns in buffer
3483  * @buffer: The ring buffer
3484  *
3485  * Returns the total number of overruns in the ring buffer
3486  * (all CPU entries)
3487  */
3488 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3489 {
3490         struct ring_buffer_per_cpu *cpu_buffer;
3491         unsigned long overruns = 0;
3492         int cpu;
3493
3494         /* if you care about this being correct, lock the buffer */
3495         for_each_buffer_cpu(buffer, cpu) {
3496                 cpu_buffer = buffer->buffers[cpu];
3497                 overruns += local_read(&cpu_buffer->overrun);
3498         }
3499
3500         return overruns;
3501 }
3502 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3503
3504 static void rb_iter_reset(struct ring_buffer_iter *iter)
3505 {
3506         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3507
3508         /* Iterator usage is expected to have record disabled */
3509         iter->head_page = cpu_buffer->reader_page;
3510         iter->head = cpu_buffer->reader_page->read;
3511
3512         iter->cache_reader_page = iter->head_page;
3513         iter->cache_read = cpu_buffer->read;
3514
3515         if (iter->head)
3516                 iter->read_stamp = cpu_buffer->read_stamp;
3517         else
3518                 iter->read_stamp = iter->head_page->page->time_stamp;
3519 }
3520
3521 /**
3522  * ring_buffer_iter_reset - reset an iterator
3523  * @iter: The iterator to reset
3524  *
3525  * Resets the iterator, so that it will start from the beginning
3526  * again.
3527  */
3528 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3529 {
3530         struct ring_buffer_per_cpu *cpu_buffer;
3531         unsigned long flags;
3532
3533         if (!iter)
3534                 return;
3535
3536         cpu_buffer = iter->cpu_buffer;
3537
3538         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3539         rb_iter_reset(iter);
3540         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3541 }
3542 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3543
3544 /**
3545  * ring_buffer_iter_empty - check if an iterator has no more to read
3546  * @iter: The iterator to check
3547  */
3548 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3549 {
3550         struct ring_buffer_per_cpu *cpu_buffer;
3551         struct buffer_page *reader;
3552         struct buffer_page *head_page;
3553         struct buffer_page *commit_page;
3554         unsigned commit;
3555
3556         cpu_buffer = iter->cpu_buffer;
3557
3558         /* Remember, trace recording is off when iterator is in use */
3559         reader = cpu_buffer->reader_page;
3560         head_page = cpu_buffer->head_page;
3561         commit_page = cpu_buffer->commit_page;
3562         commit = rb_page_commit(commit_page);
3563
3564         return ((iter->head_page == commit_page && iter->head == commit) ||
3565                 (iter->head_page == reader && commit_page == head_page &&
3566                  head_page->read == commit &&
3567                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
3568 }
3569 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3570
3571 static void
3572 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3573                      struct ring_buffer_event *event)
3574 {
3575         u64 delta;
3576
3577         switch (event->type_len) {
3578         case RINGBUF_TYPE_PADDING:
3579                 return;
3580
3581         case RINGBUF_TYPE_TIME_EXTEND:
3582                 delta = ring_buffer_event_time_stamp(event);
3583                 cpu_buffer->read_stamp += delta;
3584                 return;
3585
3586         case RINGBUF_TYPE_TIME_STAMP:
3587                 delta = ring_buffer_event_time_stamp(event);
3588                 cpu_buffer->read_stamp = delta;
3589                 return;
3590
3591         case RINGBUF_TYPE_DATA:
3592                 cpu_buffer->read_stamp += event->time_delta;
3593                 return;
3594
3595         default:
3596                 BUG();
3597         }
3598         return;
3599 }
3600
3601 static void
3602 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3603                           struct ring_buffer_event *event)
3604 {
3605         u64 delta;
3606
3607         switch (event->type_len) {
3608         case RINGBUF_TYPE_PADDING:
3609                 return;
3610
3611         case RINGBUF_TYPE_TIME_EXTEND:
3612                 delta = ring_buffer_event_time_stamp(event);
3613                 iter->read_stamp += delta;
3614                 return;
3615
3616         case RINGBUF_TYPE_TIME_STAMP:
3617                 delta = ring_buffer_event_time_stamp(event);
3618                 iter->read_stamp = delta;
3619                 return;
3620
3621         case RINGBUF_TYPE_DATA:
3622                 iter->read_stamp += event->time_delta;
3623                 return;
3624
3625         default:
3626                 BUG();
3627         }
3628         return;
3629 }
3630
3631 static struct buffer_page *
3632 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3633 {
3634         struct buffer_page *reader = NULL;
3635         unsigned long overwrite;
3636         unsigned long flags;
3637         int nr_loops = 0;
3638         int ret;
3639
3640         local_irq_save(flags);
3641         arch_spin_lock(&cpu_buffer->lock);
3642
3643  again:
3644         /*
3645          * This should normally only loop twice. But because the
3646          * start of the reader inserts an empty page, it causes
3647          * a case where we will loop three times. There should be no
3648          * reason to loop four times (that I know of).
3649          */
3650         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3651                 reader = NULL;
3652                 goto out;
3653         }
3654
3655         reader = cpu_buffer->reader_page;
3656
3657         /* If there's more to read, return this page */
3658         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3659                 goto out;
3660
3661         /* Never should we have an index greater than the size */
3662         if (RB_WARN_ON(cpu_buffer,
3663                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3664                 goto out;
3665
3666         /* check if we caught up to the tail */
3667         reader = NULL;
3668         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3669                 goto out;
3670
3671         /* Don't bother swapping if the ring buffer is empty */
3672         if (rb_num_of_entries(cpu_buffer) == 0)
3673                 goto out;
3674
3675         /*
3676          * Reset the reader page to size zero.
3677          */
3678         local_set(&cpu_buffer->reader_page->write, 0);
3679         local_set(&cpu_buffer->reader_page->entries, 0);
3680         local_set(&cpu_buffer->reader_page->page->commit, 0);
3681         cpu_buffer->reader_page->real_end = 0;
3682
3683  spin:
3684         /*
3685          * Splice the empty reader page into the list around the head.
3686          */
3687         reader = rb_set_head_page(cpu_buffer);
3688         if (!reader)
3689                 goto out;
3690         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3691         cpu_buffer->reader_page->list.prev = reader->list.prev;
3692
3693         /*
3694          * cpu_buffer->pages just needs to point to the buffer, it
3695          *  has no specific buffer page to point to. Lets move it out
3696          *  of our way so we don't accidentally swap it.
3697          */
3698         cpu_buffer->pages = reader->list.prev;
3699
3700         /* The reader page will be pointing to the new head */
3701         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3702
3703         /*
3704          * We want to make sure we read the overruns after we set up our
3705          * pointers to the next object. The writer side does a
3706          * cmpxchg to cross pages which acts as the mb on the writer
3707          * side. Note, the reader will constantly fail the swap
3708          * while the writer is updating the pointers, so this
3709          * guarantees that the overwrite recorded here is the one we
3710          * want to compare with the last_overrun.
3711          */
3712         smp_mb();
3713         overwrite = local_read(&(cpu_buffer->overrun));
3714
3715         /*
3716          * Here's the tricky part.
3717          *
3718          * We need to move the pointer past the header page.
3719          * But we can only do that if a writer is not currently
3720          * moving it. The page before the header page has the
3721          * flag bit '1' set if it is pointing to the page we want.
3722          * but if the writer is in the process of moving it
3723          * than it will be '2' or already moved '0'.
3724          */
3725
3726         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3727
3728         /*
3729          * If we did not convert it, then we must try again.
3730          */
3731         if (!ret)
3732                 goto spin;
3733
3734         /*
3735          * Yeah! We succeeded in replacing the page.
3736          *
3737          * Now make the new head point back to the reader page.
3738          */
3739         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3740         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3741
3742         /* Finally update the reader page to the new head */
3743         cpu_buffer->reader_page = reader;
3744         cpu_buffer->reader_page->read = 0;
3745
3746         if (overwrite != cpu_buffer->last_overrun) {
3747                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3748                 cpu_buffer->last_overrun = overwrite;
3749         }
3750
3751         goto again;
3752
3753  out:
3754         /* Update the read_stamp on the first event */
3755         if (reader && reader->read == 0)
3756                 cpu_buffer->read_stamp = reader->page->time_stamp;
3757
3758         arch_spin_unlock(&cpu_buffer->lock);
3759         local_irq_restore(flags);
3760
3761         return reader;
3762 }
3763
3764 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3765 {
3766         struct ring_buffer_event *event;
3767         struct buffer_page *reader;
3768         unsigned length;
3769
3770         reader = rb_get_reader_page(cpu_buffer);
3771
3772         /* This function should not be called when buffer is empty */
3773         if (RB_WARN_ON(cpu_buffer, !reader))
3774                 return;
3775
3776         event = rb_reader_event(cpu_buffer);
3777
3778         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3779                 cpu_buffer->read++;
3780
3781         rb_update_read_stamp(cpu_buffer, event);
3782
3783         length = rb_event_length(event);
3784         cpu_buffer->reader_page->read += length;
3785 }
3786
3787 static void rb_advance_iter(struct ring_buffer_iter *iter)
3788 {
3789         struct ring_buffer_per_cpu *cpu_buffer;
3790         struct ring_buffer_event *event;
3791         unsigned length;
3792
3793         cpu_buffer = iter->cpu_buffer;
3794
3795         /*
3796          * Check if we are at the end of the buffer.
3797          */
3798         if (iter->head >= rb_page_size(iter->head_page)) {
3799                 /* discarded commits can make the page empty */
3800                 if (iter->head_page == cpu_buffer->commit_page)
3801                         return;
3802                 rb_inc_iter(iter);
3803                 return;
3804         }
3805
3806         event = rb_iter_head_event(iter);
3807
3808         length = rb_event_length(event);
3809
3810         /*
3811          * This should not be called to advance the header if we are
3812          * at the tail of the buffer.
3813          */
3814         if (RB_WARN_ON(cpu_buffer,
3815                        (iter->head_page == cpu_buffer->commit_page) &&
3816                        (iter->head + length > rb_commit_index(cpu_buffer))))
3817                 return;
3818
3819         rb_update_iter_read_stamp(iter, event);
3820
3821         iter->head += length;
3822
3823         /* check for end of page padding */
3824         if ((iter->head >= rb_page_size(iter->head_page)) &&
3825             (iter->head_page != cpu_buffer->commit_page))
3826                 rb_inc_iter(iter);
3827 }
3828
3829 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3830 {
3831         return cpu_buffer->lost_events;
3832 }
3833
3834 static struct ring_buffer_event *
3835 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3836                unsigned long *lost_events)
3837 {
3838         struct ring_buffer_event *event;
3839         struct buffer_page *reader;
3840         int nr_loops = 0;
3841
3842         if (ts)
3843                 *ts = 0;
3844  again:
3845         /*
3846          * We repeat when a time extend is encountered.
3847          * Since the time extend is always attached to a data event,
3848          * we should never loop more than once.
3849          * (We never hit the following condition more than twice).
3850          */
3851         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3852                 return NULL;
3853
3854         reader = rb_get_reader_page(cpu_buffer);
3855         if (!reader)
3856                 return NULL;
3857
3858         event = rb_reader_event(cpu_buffer);
3859
3860         switch (event->type_len) {
3861         case RINGBUF_TYPE_PADDING:
3862                 if (rb_null_event(event))
3863                         RB_WARN_ON(cpu_buffer, 1);
3864                 /*
3865                  * Because the writer could be discarding every
3866                  * event it creates (which would probably be bad)
3867                  * if we were to go back to "again" then we may never
3868                  * catch up, and will trigger the warn on, or lock
3869                  * the box. Return the padding, and we will release
3870                  * the current locks, and try again.
3871                  */
3872                 return event;
3873
3874         case RINGBUF_TYPE_TIME_EXTEND:
3875                 /* Internal data, OK to advance */
3876                 rb_advance_reader(cpu_buffer);
3877                 goto again;
3878
3879         case RINGBUF_TYPE_TIME_STAMP:
3880                 if (ts) {
3881                         *ts = ring_buffer_event_time_stamp(event);
3882                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3883                                                          cpu_buffer->cpu, ts);
3884                 }
3885                 /* Internal data, OK to advance */
3886                 rb_advance_reader(cpu_buffer);
3887                 goto again;
3888
3889         case RINGBUF_TYPE_DATA:
3890                 if (ts && !(*ts)) {
3891                         *ts = cpu_buffer->read_stamp + event->time_delta;
3892                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3893                                                          cpu_buffer->cpu, ts);
3894                 }
3895                 if (lost_events)
3896                         *lost_events = rb_lost_events(cpu_buffer);
3897                 return event;
3898
3899         default:
3900                 BUG();
3901         }
3902
3903         return NULL;
3904 }
3905 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3906
3907 static struct ring_buffer_event *
3908 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3909 {
3910         struct ring_buffer *buffer;
3911         struct ring_buffer_per_cpu *cpu_buffer;
3912         struct ring_buffer_event *event;
3913         int nr_loops = 0;
3914
3915         if (ts)
3916                 *ts = 0;
3917
3918         cpu_buffer = iter->cpu_buffer;
3919         buffer = cpu_buffer->buffer;
3920
3921         /*
3922          * Check if someone performed a consuming read to
3923          * the buffer. A consuming read invalidates the iterator
3924          * and we need to reset the iterator in this case.
3925          */
3926         if (unlikely(iter->cache_read != cpu_buffer->read ||
3927                      iter->cache_reader_page != cpu_buffer->reader_page))
3928                 rb_iter_reset(iter);
3929
3930  again:
3931         if (ring_buffer_iter_empty(iter))
3932                 return NULL;
3933
3934         /*
3935          * We repeat when a time extend is encountered or we hit
3936          * the end of the page. Since the time extend is always attached
3937          * to a data event, we should never loop more than three times.
3938          * Once for going to next page, once on time extend, and
3939          * finally once to get the event.
3940          * (We never hit the following condition more than thrice).
3941          */
3942         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3943                 return NULL;
3944
3945         if (rb_per_cpu_empty(cpu_buffer))
3946                 return NULL;
3947
3948         if (iter->head >= rb_page_size(iter->head_page)) {
3949                 rb_inc_iter(iter);
3950                 goto again;
3951         }
3952
3953         event = rb_iter_head_event(iter);
3954
3955         switch (event->type_len) {
3956         case RINGBUF_TYPE_PADDING:
3957                 if (rb_null_event(event)) {
3958                         rb_inc_iter(iter);
3959                         goto again;
3960                 }
3961                 rb_advance_iter(iter);
3962                 return event;
3963
3964         case RINGBUF_TYPE_TIME_EXTEND:
3965                 /* Internal data, OK to advance */
3966                 rb_advance_iter(iter);
3967                 goto again;
3968
3969         case RINGBUF_TYPE_TIME_STAMP:
3970                 if (ts) {
3971                         *ts = ring_buffer_event_time_stamp(event);
3972                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3973                                                          cpu_buffer->cpu, ts);
3974                 }
3975                 /* Internal data, OK to advance */
3976                 rb_advance_iter(iter);
3977                 goto again;
3978
3979         case RINGBUF_TYPE_DATA:
3980                 if (ts && !(*ts)) {
3981                         *ts = iter->read_stamp + event->time_delta;
3982                         ring_buffer_normalize_time_stamp(buffer,
3983                                                          cpu_buffer->cpu, ts);
3984                 }
3985                 return event;
3986
3987         default:
3988                 BUG();
3989         }
3990
3991         return NULL;
3992 }
3993 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3994
3995 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3996 {
3997         if (likely(!in_nmi())) {
3998                 raw_spin_lock(&cpu_buffer->reader_lock);
3999                 return true;
4000         }
4001
4002         /*
4003          * If an NMI die dumps out the content of the ring buffer
4004          * trylock must be used to prevent a deadlock if the NMI
4005          * preempted a task that holds the ring buffer locks. If
4006          * we get the lock then all is fine, if not, then continue
4007          * to do the read, but this can corrupt the ring buffer,
4008          * so it must be permanently disabled from future writes.
4009          * Reading from NMI is a oneshot deal.
4010          */
4011         if (raw_spin_trylock(&cpu_buffer->reader_lock))
4012                 return true;
4013
4014         /* Continue without locking, but disable the ring buffer */
4015         atomic_inc(&cpu_buffer->record_disabled);
4016         return false;
4017 }
4018
4019 static inline void
4020 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4021 {
4022         if (likely(locked))
4023                 raw_spin_unlock(&cpu_buffer->reader_lock);
4024         return;
4025 }
4026
4027 /**
4028  * ring_buffer_peek - peek at the next event to be read
4029  * @buffer: The ring buffer to read
4030  * @cpu: The cpu to peak at
4031  * @ts: The timestamp counter of this event.
4032  * @lost_events: a variable to store if events were lost (may be NULL)
4033  *
4034  * This will return the event that will be read next, but does
4035  * not consume the data.
4036  */
4037 struct ring_buffer_event *
4038 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
4039                  unsigned long *lost_events)
4040 {
4041         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4042         struct ring_buffer_event *event;
4043         unsigned long flags;
4044         bool dolock;
4045
4046         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4047                 return NULL;
4048
4049  again:
4050         local_irq_save(flags);
4051         dolock = rb_reader_lock(cpu_buffer);
4052         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4053         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4054                 rb_advance_reader(cpu_buffer);
4055         rb_reader_unlock(cpu_buffer, dolock);
4056         local_irq_restore(flags);
4057
4058         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4059                 goto again;
4060
4061         return event;
4062 }
4063
4064 /**
4065  * ring_buffer_iter_peek - peek at the next event to be read
4066  * @iter: The ring buffer iterator
4067  * @ts: The timestamp counter of this event.
4068  *
4069  * This will return the event that will be read next, but does
4070  * not increment the iterator.
4071  */
4072 struct ring_buffer_event *
4073 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4074 {
4075         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4076         struct ring_buffer_event *event;
4077         unsigned long flags;
4078
4079  again:
4080         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4081         event = rb_iter_peek(iter, ts);
4082         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4083
4084         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4085                 goto again;
4086
4087         return event;
4088 }
4089
4090 /**
4091  * ring_buffer_consume - return an event and consume it
4092  * @buffer: The ring buffer to get the next event from
4093  * @cpu: the cpu to read the buffer from
4094  * @ts: a variable to store the timestamp (may be NULL)
4095  * @lost_events: a variable to store if events were lost (may be NULL)
4096  *
4097  * Returns the next event in the ring buffer, and that event is consumed.
4098  * Meaning, that sequential reads will keep returning a different event,
4099  * and eventually empty the ring buffer if the producer is slower.
4100  */
4101 struct ring_buffer_event *
4102 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4103                     unsigned long *lost_events)
4104 {
4105         struct ring_buffer_per_cpu *cpu_buffer;
4106         struct ring_buffer_event *event = NULL;
4107         unsigned long flags;
4108         bool dolock;
4109
4110  again:
4111         /* might be called in atomic */
4112         preempt_disable();
4113
4114         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4115                 goto out;
4116
4117         cpu_buffer = buffer->buffers[cpu];
4118         local_irq_save(flags);
4119         dolock = rb_reader_lock(cpu_buffer);
4120
4121         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4122         if (event) {
4123                 cpu_buffer->lost_events = 0;
4124                 rb_advance_reader(cpu_buffer);
4125         }
4126
4127         rb_reader_unlock(cpu_buffer, dolock);
4128         local_irq_restore(flags);
4129
4130  out:
4131         preempt_enable();
4132
4133         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4134                 goto again;
4135
4136         return event;
4137 }
4138 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4139
4140 /**
4141  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4142  * @buffer: The ring buffer to read from
4143  * @cpu: The cpu buffer to iterate over
4144  *
4145  * This performs the initial preparations necessary to iterate
4146  * through the buffer.  Memory is allocated, buffer recording
4147  * is disabled, and the iterator pointer is returned to the caller.
4148  *
4149  * Disabling buffer recording prevents the reading from being
4150  * corrupted. This is not a consuming read, so a producer is not
4151  * expected.
4152  *
4153  * After a sequence of ring_buffer_read_prepare calls, the user is
4154  * expected to make at least one call to ring_buffer_read_prepare_sync.
4155  * Afterwards, ring_buffer_read_start is invoked to get things going
4156  * for real.
4157  *
4158  * This overall must be paired with ring_buffer_read_finish.
4159  */
4160 struct ring_buffer_iter *
4161 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
4162 {
4163         struct ring_buffer_per_cpu *cpu_buffer;
4164         struct ring_buffer_iter *iter;
4165
4166         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4167                 return NULL;
4168
4169         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4170         if (!iter)
4171                 return NULL;
4172
4173         cpu_buffer = buffer->buffers[cpu];
4174
4175         iter->cpu_buffer = cpu_buffer;
4176
4177         atomic_inc(&buffer->resize_disabled);
4178         atomic_inc(&cpu_buffer->record_disabled);
4179
4180         return iter;
4181 }
4182 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4183
4184 /**
4185  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4186  *
4187  * All previously invoked ring_buffer_read_prepare calls to prepare
4188  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4189  * calls on those iterators are allowed.
4190  */
4191 void
4192 ring_buffer_read_prepare_sync(void)
4193 {
4194         synchronize_rcu();
4195 }
4196 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4197
4198 /**
4199  * ring_buffer_read_start - start a non consuming read of the buffer
4200  * @iter: The iterator returned by ring_buffer_read_prepare
4201  *
4202  * This finalizes the startup of an iteration through the buffer.
4203  * The iterator comes from a call to ring_buffer_read_prepare and
4204  * an intervening ring_buffer_read_prepare_sync must have been
4205  * performed.
4206  *
4207  * Must be paired with ring_buffer_read_finish.
4208  */
4209 void
4210 ring_buffer_read_start(struct ring_buffer_iter *iter)
4211 {
4212         struct ring_buffer_per_cpu *cpu_buffer;
4213         unsigned long flags;
4214
4215         if (!iter)
4216                 return;
4217
4218         cpu_buffer = iter->cpu_buffer;
4219
4220         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4221         arch_spin_lock(&cpu_buffer->lock);
4222         rb_iter_reset(iter);
4223         arch_spin_unlock(&cpu_buffer->lock);
4224         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4225 }
4226 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4227
4228 /**
4229  * ring_buffer_read_finish - finish reading the iterator of the buffer
4230  * @iter: The iterator retrieved by ring_buffer_start
4231  *
4232  * This re-enables the recording to the buffer, and frees the
4233  * iterator.
4234  */
4235 void
4236 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4237 {
4238         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4239         unsigned long flags;
4240
4241         /*
4242          * Ring buffer is disabled from recording, here's a good place
4243          * to check the integrity of the ring buffer.
4244          * Must prevent readers from trying to read, as the check
4245          * clears the HEAD page and readers require it.
4246          */
4247         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4248         rb_check_pages(cpu_buffer);
4249         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4250
4251         atomic_dec(&cpu_buffer->record_disabled);
4252         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4253         kfree(iter);
4254 }
4255 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4256
4257 /**
4258  * ring_buffer_read - read the next item in the ring buffer by the iterator
4259  * @iter: The ring buffer iterator
4260  * @ts: The time stamp of the event read.
4261  *
4262  * This reads the next event in the ring buffer and increments the iterator.
4263  */
4264 struct ring_buffer_event *
4265 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4266 {
4267         struct ring_buffer_event *event;
4268         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4269         unsigned long flags;
4270
4271         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4272  again:
4273         event = rb_iter_peek(iter, ts);
4274         if (!event)
4275                 goto out;
4276
4277         if (event->type_len == RINGBUF_TYPE_PADDING)
4278                 goto again;
4279
4280         rb_advance_iter(iter);
4281  out:
4282         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4283
4284         return event;
4285 }
4286 EXPORT_SYMBOL_GPL(ring_buffer_read);
4287
4288 /**
4289  * ring_buffer_size - return the size of the ring buffer (in bytes)
4290  * @buffer: The ring buffer.
4291  */
4292 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4293 {
4294         /*
4295          * Earlier, this method returned
4296          *      BUF_PAGE_SIZE * buffer->nr_pages
4297          * Since the nr_pages field is now removed, we have converted this to
4298          * return the per cpu buffer value.
4299          */
4300         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4301                 return 0;
4302
4303         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4304 }
4305 EXPORT_SYMBOL_GPL(ring_buffer_size);
4306
4307 static void
4308 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4309 {
4310         rb_head_page_deactivate(cpu_buffer);
4311
4312         cpu_buffer->head_page
4313                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4314         local_set(&cpu_buffer->head_page->write, 0);
4315         local_set(&cpu_buffer->head_page->entries, 0);
4316         local_set(&cpu_buffer->head_page->page->commit, 0);
4317
4318         cpu_buffer->head_page->read = 0;
4319
4320         cpu_buffer->tail_page = cpu_buffer->head_page;
4321         cpu_buffer->commit_page = cpu_buffer->head_page;
4322
4323         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4324         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4325         local_set(&cpu_buffer->reader_page->write, 0);
4326         local_set(&cpu_buffer->reader_page->entries, 0);
4327         local_set(&cpu_buffer->reader_page->page->commit, 0);
4328         cpu_buffer->reader_page->read = 0;
4329
4330         local_set(&cpu_buffer->entries_bytes, 0);
4331         local_set(&cpu_buffer->overrun, 0);
4332         local_set(&cpu_buffer->commit_overrun, 0);
4333         local_set(&cpu_buffer->dropped_events, 0);
4334         local_set(&cpu_buffer->entries, 0);
4335         local_set(&cpu_buffer->committing, 0);
4336         local_set(&cpu_buffer->commits, 0);
4337         cpu_buffer->read = 0;
4338         cpu_buffer->read_bytes = 0;
4339
4340         cpu_buffer->write_stamp = 0;
4341         cpu_buffer->read_stamp = 0;
4342
4343         cpu_buffer->lost_events = 0;
4344         cpu_buffer->last_overrun = 0;
4345
4346         rb_head_page_activate(cpu_buffer);
4347 }
4348
4349 /**
4350  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4351  * @buffer: The ring buffer to reset a per cpu buffer of
4352  * @cpu: The CPU buffer to be reset
4353  */
4354 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4355 {
4356         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4357         unsigned long flags;
4358
4359         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4360                 return;
4361
4362         atomic_inc(&buffer->resize_disabled);
4363         atomic_inc(&cpu_buffer->record_disabled);
4364
4365         /* Make sure all commits have finished */
4366         synchronize_rcu();
4367
4368         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4369
4370         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4371                 goto out;
4372
4373         arch_spin_lock(&cpu_buffer->lock);
4374
4375         rb_reset_cpu(cpu_buffer);
4376
4377         arch_spin_unlock(&cpu_buffer->lock);
4378
4379  out:
4380         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4381
4382         atomic_dec(&cpu_buffer->record_disabled);
4383         atomic_dec(&buffer->resize_disabled);
4384 }
4385 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4386
4387 /**
4388  * ring_buffer_reset - reset a ring buffer
4389  * @buffer: The ring buffer to reset all cpu buffers
4390  */
4391 void ring_buffer_reset(struct ring_buffer *buffer)
4392 {
4393         int cpu;
4394
4395         for_each_buffer_cpu(buffer, cpu)
4396                 ring_buffer_reset_cpu(buffer, cpu);
4397 }
4398 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4399
4400 /**
4401  * rind_buffer_empty - is the ring buffer empty?
4402  * @buffer: The ring buffer to test
4403  */
4404 bool ring_buffer_empty(struct ring_buffer *buffer)
4405 {
4406         struct ring_buffer_per_cpu *cpu_buffer;
4407         unsigned long flags;
4408         bool dolock;
4409         int cpu;
4410         int ret;
4411
4412         /* yes this is racy, but if you don't like the race, lock the buffer */
4413         for_each_buffer_cpu(buffer, cpu) {
4414                 cpu_buffer = buffer->buffers[cpu];
4415                 local_irq_save(flags);
4416                 dolock = rb_reader_lock(cpu_buffer);
4417                 ret = rb_per_cpu_empty(cpu_buffer);
4418                 rb_reader_unlock(cpu_buffer, dolock);
4419                 local_irq_restore(flags);
4420
4421                 if (!ret)
4422                         return false;
4423         }
4424
4425         return true;
4426 }
4427 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4428
4429 /**
4430  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4431  * @buffer: The ring buffer
4432  * @cpu: The CPU buffer to test
4433  */
4434 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4435 {
4436         struct ring_buffer_per_cpu *cpu_buffer;
4437         unsigned long flags;
4438         bool dolock;
4439         int ret;
4440
4441         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4442                 return true;
4443
4444         cpu_buffer = buffer->buffers[cpu];
4445         local_irq_save(flags);
4446         dolock = rb_reader_lock(cpu_buffer);
4447         ret = rb_per_cpu_empty(cpu_buffer);
4448         rb_reader_unlock(cpu_buffer, dolock);
4449         local_irq_restore(flags);
4450
4451         return ret;
4452 }
4453 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4454
4455 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4456 /**
4457  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4458  * @buffer_a: One buffer to swap with
4459  * @buffer_b: The other buffer to swap with
4460  *
4461  * This function is useful for tracers that want to take a "snapshot"
4462  * of a CPU buffer and has another back up buffer lying around.
4463  * it is expected that the tracer handles the cpu buffer not being
4464  * used at the moment.
4465  */
4466 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4467                          struct ring_buffer *buffer_b, int cpu)
4468 {
4469         struct ring_buffer_per_cpu *cpu_buffer_a;
4470         struct ring_buffer_per_cpu *cpu_buffer_b;
4471         int ret = -EINVAL;
4472
4473         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4474             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4475                 goto out;
4476
4477         cpu_buffer_a = buffer_a->buffers[cpu];
4478         cpu_buffer_b = buffer_b->buffers[cpu];
4479
4480         /* At least make sure the two buffers are somewhat the same */
4481         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4482                 goto out;
4483
4484         ret = -EAGAIN;
4485
4486         if (atomic_read(&buffer_a->record_disabled))
4487                 goto out;
4488
4489         if (atomic_read(&buffer_b->record_disabled))
4490                 goto out;
4491
4492         if (atomic_read(&cpu_buffer_a->record_disabled))
4493                 goto out;
4494
4495         if (atomic_read(&cpu_buffer_b->record_disabled))
4496                 goto out;
4497
4498         /*
4499          * We can't do a synchronize_rcu here because this
4500          * function can be called in atomic context.
4501          * Normally this will be called from the same CPU as cpu.
4502          * If not it's up to the caller to protect this.
4503          */
4504         atomic_inc(&cpu_buffer_a->record_disabled);
4505         atomic_inc(&cpu_buffer_b->record_disabled);
4506
4507         ret = -EBUSY;
4508         if (local_read(&cpu_buffer_a->committing))
4509                 goto out_dec;
4510         if (local_read(&cpu_buffer_b->committing))
4511                 goto out_dec;
4512
4513         buffer_a->buffers[cpu] = cpu_buffer_b;
4514         buffer_b->buffers[cpu] = cpu_buffer_a;
4515
4516         cpu_buffer_b->buffer = buffer_a;
4517         cpu_buffer_a->buffer = buffer_b;
4518
4519         ret = 0;
4520
4521 out_dec:
4522         atomic_dec(&cpu_buffer_a->record_disabled);
4523         atomic_dec(&cpu_buffer_b->record_disabled);
4524 out:
4525         return ret;
4526 }
4527 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4528 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4529
4530 /**
4531  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4532  * @buffer: the buffer to allocate for.
4533  * @cpu: the cpu buffer to allocate.
4534  *
4535  * This function is used in conjunction with ring_buffer_read_page.
4536  * When reading a full page from the ring buffer, these functions
4537  * can be used to speed up the process. The calling function should
4538  * allocate a few pages first with this function. Then when it
4539  * needs to get pages from the ring buffer, it passes the result
4540  * of this function into ring_buffer_read_page, which will swap
4541  * the page that was allocated, with the read page of the buffer.
4542  *
4543  * Returns:
4544  *  The page allocated, or ERR_PTR
4545  */
4546 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4547 {
4548         struct ring_buffer_per_cpu *cpu_buffer;
4549         struct buffer_data_page *bpage = NULL;
4550         unsigned long flags;
4551         struct page *page;
4552
4553         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4554                 return ERR_PTR(-ENODEV);
4555
4556         cpu_buffer = buffer->buffers[cpu];
4557         local_irq_save(flags);
4558         arch_spin_lock(&cpu_buffer->lock);
4559
4560         if (cpu_buffer->free_page) {
4561                 bpage = cpu_buffer->free_page;
4562                 cpu_buffer->free_page = NULL;
4563         }
4564
4565         arch_spin_unlock(&cpu_buffer->lock);
4566         local_irq_restore(flags);
4567
4568         if (bpage)
4569                 goto out;
4570
4571         page = alloc_pages_node(cpu_to_node(cpu),
4572                                 GFP_KERNEL | __GFP_NORETRY, 0);
4573         if (!page)
4574                 return ERR_PTR(-ENOMEM);
4575
4576         bpage = page_address(page);
4577
4578  out:
4579         rb_init_page(bpage);
4580
4581         return bpage;
4582 }
4583 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4584
4585 /**
4586  * ring_buffer_free_read_page - free an allocated read page
4587  * @buffer: the buffer the page was allocate for
4588  * @cpu: the cpu buffer the page came from
4589  * @data: the page to free
4590  *
4591  * Free a page allocated from ring_buffer_alloc_read_page.
4592  */
4593 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4594 {
4595         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4596         struct buffer_data_page *bpage = data;
4597         struct page *page = virt_to_page(bpage);
4598         unsigned long flags;
4599
4600         /* If the page is still in use someplace else, we can't reuse it */
4601         if (page_ref_count(page) > 1)
4602                 goto out;
4603
4604         local_irq_save(flags);
4605         arch_spin_lock(&cpu_buffer->lock);
4606
4607         if (!cpu_buffer->free_page) {
4608                 cpu_buffer->free_page = bpage;
4609                 bpage = NULL;
4610         }
4611
4612         arch_spin_unlock(&cpu_buffer->lock);
4613         local_irq_restore(flags);
4614
4615  out:
4616         free_page((unsigned long)bpage);
4617 }
4618 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4619
4620 /**
4621  * ring_buffer_read_page - extract a page from the ring buffer
4622  * @buffer: buffer to extract from
4623  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4624  * @len: amount to extract
4625  * @cpu: the cpu of the buffer to extract
4626  * @full: should the extraction only happen when the page is full.
4627  *
4628  * This function will pull out a page from the ring buffer and consume it.
4629  * @data_page must be the address of the variable that was returned
4630  * from ring_buffer_alloc_read_page. This is because the page might be used
4631  * to swap with a page in the ring buffer.
4632  *
4633  * for example:
4634  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4635  *      if (IS_ERR(rpage))
4636  *              return PTR_ERR(rpage);
4637  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4638  *      if (ret >= 0)
4639  *              process_page(rpage, ret);
4640  *
4641  * When @full is set, the function will not return true unless
4642  * the writer is off the reader page.
4643  *
4644  * Note: it is up to the calling functions to handle sleeps and wakeups.
4645  *  The ring buffer can be used anywhere in the kernel and can not
4646  *  blindly call wake_up. The layer that uses the ring buffer must be
4647  *  responsible for that.
4648  *
4649  * Returns:
4650  *  >=0 if data has been transferred, returns the offset of consumed data.
4651  *  <0 if no data has been transferred.
4652  */
4653 int ring_buffer_read_page(struct ring_buffer *buffer,
4654                           void **data_page, size_t len, int cpu, int full)
4655 {
4656         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4657         struct ring_buffer_event *event;
4658         struct buffer_data_page *bpage;
4659         struct buffer_page *reader;
4660         unsigned long missed_events;
4661         unsigned long flags;
4662         unsigned int commit;
4663         unsigned int read;
4664         u64 save_timestamp;
4665         int ret = -1;
4666
4667         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4668                 goto out;
4669
4670         /*
4671          * If len is not big enough to hold the page header, then
4672          * we can not copy anything.
4673          */
4674         if (len <= BUF_PAGE_HDR_SIZE)
4675                 goto out;
4676
4677         len -= BUF_PAGE_HDR_SIZE;
4678
4679         if (!data_page)
4680                 goto out;
4681
4682         bpage = *data_page;
4683         if (!bpage)
4684                 goto out;
4685
4686         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4687
4688         reader = rb_get_reader_page(cpu_buffer);
4689         if (!reader)
4690                 goto out_unlock;
4691
4692         event = rb_reader_event(cpu_buffer);
4693
4694         read = reader->read;
4695         commit = rb_page_commit(reader);
4696
4697         /* Check if any events were dropped */
4698         missed_events = cpu_buffer->lost_events;
4699
4700         /*
4701          * If this page has been partially read or
4702          * if len is not big enough to read the rest of the page or
4703          * a writer is still on the page, then
4704          * we must copy the data from the page to the buffer.
4705          * Otherwise, we can simply swap the page with the one passed in.
4706          */
4707         if (read || (len < (commit - read)) ||
4708             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4709                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4710                 unsigned int rpos = read;
4711                 unsigned int pos = 0;
4712                 unsigned int size;
4713
4714                 if (full)
4715                         goto out_unlock;
4716
4717                 if (len > (commit - read))
4718                         len = (commit - read);
4719
4720                 /* Always keep the time extend and data together */
4721                 size = rb_event_ts_length(event);
4722
4723                 if (len < size)
4724                         goto out_unlock;
4725
4726                 /* save the current timestamp, since the user will need it */
4727                 save_timestamp = cpu_buffer->read_stamp;
4728
4729                 /* Need to copy one event at a time */
4730                 do {
4731                         /* We need the size of one event, because
4732                          * rb_advance_reader only advances by one event,
4733                          * whereas rb_event_ts_length may include the size of
4734                          * one or two events.
4735                          * We have already ensured there's enough space if this
4736                          * is a time extend. */
4737                         size = rb_event_length(event);
4738                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4739
4740                         len -= size;
4741
4742                         rb_advance_reader(cpu_buffer);
4743                         rpos = reader->read;
4744                         pos += size;
4745
4746                         if (rpos >= commit)
4747                                 break;
4748
4749                         event = rb_reader_event(cpu_buffer);
4750                         /* Always keep the time extend and data together */
4751                         size = rb_event_ts_length(event);
4752                 } while (len >= size);
4753
4754                 /* update bpage */
4755                 local_set(&bpage->commit, pos);
4756                 bpage->time_stamp = save_timestamp;
4757
4758                 /* we copied everything to the beginning */
4759                 read = 0;
4760         } else {
4761                 /* update the entry counter */
4762                 cpu_buffer->read += rb_page_entries(reader);
4763                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4764
4765                 /* swap the pages */
4766                 rb_init_page(bpage);
4767                 bpage = reader->page;
4768                 reader->page = *data_page;
4769                 local_set(&reader->write, 0);
4770                 local_set(&reader->entries, 0);
4771                 reader->read = 0;
4772                 *data_page = bpage;
4773
4774                 /*
4775                  * Use the real_end for the data size,
4776                  * This gives us a chance to store the lost events
4777                  * on the page.
4778                  */
4779                 if (reader->real_end)
4780                         local_set(&bpage->commit, reader->real_end);
4781         }
4782         ret = read;
4783
4784         cpu_buffer->lost_events = 0;
4785
4786         commit = local_read(&bpage->commit);
4787         /*
4788          * Set a flag in the commit field if we lost events
4789          */
4790         if (missed_events) {
4791                 /* If there is room at the end of the page to save the
4792                  * missed events, then record it there.
4793                  */
4794                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4795                         memcpy(&bpage->data[commit], &missed_events,
4796                                sizeof(missed_events));
4797                         local_add(RB_MISSED_STORED, &bpage->commit);
4798                         commit += sizeof(missed_events);
4799                 }
4800                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4801         }
4802
4803         /*
4804          * This page may be off to user land. Zero it out here.
4805          */
4806         if (commit < BUF_PAGE_SIZE)
4807                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4808
4809  out_unlock:
4810         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4811
4812  out:
4813         return ret;
4814 }
4815 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4816
4817 /*
4818  * We only allocate new buffers, never free them if the CPU goes down.
4819  * If we were to free the buffer, then the user would lose any trace that was in
4820  * the buffer.
4821  */
4822 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4823 {
4824         struct ring_buffer *buffer;
4825         long nr_pages_same;
4826         int cpu_i;
4827         unsigned long nr_pages;
4828
4829         buffer = container_of(node, struct ring_buffer, node);
4830         if (cpumask_test_cpu(cpu, buffer->cpumask))
4831                 return 0;
4832
4833         nr_pages = 0;
4834         nr_pages_same = 1;
4835         /* check if all cpu sizes are same */
4836         for_each_buffer_cpu(buffer, cpu_i) {
4837                 /* fill in the size from first enabled cpu */
4838                 if (nr_pages == 0)
4839                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
4840                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4841                         nr_pages_same = 0;
4842                         break;
4843                 }
4844         }
4845         /* allocate minimum pages, user can later expand it */
4846         if (!nr_pages_same)
4847                 nr_pages = 2;
4848         buffer->buffers[cpu] =
4849                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4850         if (!buffer->buffers[cpu]) {
4851                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4852                      cpu);
4853                 return -ENOMEM;
4854         }
4855         smp_wmb();
4856         cpumask_set_cpu(cpu, buffer->cpumask);
4857         return 0;
4858 }
4859
4860 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4861 /*
4862  * This is a basic integrity check of the ring buffer.
4863  * Late in the boot cycle this test will run when configured in.
4864  * It will kick off a thread per CPU that will go into a loop
4865  * writing to the per cpu ring buffer various sizes of data.
4866  * Some of the data will be large items, some small.
4867  *
4868  * Another thread is created that goes into a spin, sending out
4869  * IPIs to the other CPUs to also write into the ring buffer.
4870  * this is to test the nesting ability of the buffer.
4871  *
4872  * Basic stats are recorded and reported. If something in the
4873  * ring buffer should happen that's not expected, a big warning
4874  * is displayed and all ring buffers are disabled.
4875  */
4876 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4877
4878 struct rb_test_data {
4879         struct ring_buffer      *buffer;
4880         unsigned long           events;
4881         unsigned long           bytes_written;
4882         unsigned long           bytes_alloc;
4883         unsigned long           bytes_dropped;
4884         unsigned long           events_nested;
4885         unsigned long           bytes_written_nested;
4886         unsigned long           bytes_alloc_nested;
4887         unsigned long           bytes_dropped_nested;
4888         int                     min_size_nested;
4889         int                     max_size_nested;
4890         int                     max_size;
4891         int                     min_size;
4892         int                     cpu;
4893         int                     cnt;
4894 };
4895
4896 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4897
4898 /* 1 meg per cpu */
4899 #define RB_TEST_BUFFER_SIZE     1048576
4900
4901 static char rb_string[] __initdata =
4902         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4903         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4904         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4905
4906 static bool rb_test_started __initdata;
4907
4908 struct rb_item {
4909         int size;
4910         char str[];
4911 };
4912
4913 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4914 {
4915         struct ring_buffer_event *event;
4916         struct rb_item *item;
4917         bool started;
4918         int event_len;
4919         int size;
4920         int len;
4921         int cnt;
4922
4923         /* Have nested writes different that what is written */
4924         cnt = data->cnt + (nested ? 27 : 0);
4925
4926         /* Multiply cnt by ~e, to make some unique increment */
4927         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4928
4929         len = size + sizeof(struct rb_item);
4930
4931         started = rb_test_started;
4932         /* read rb_test_started before checking buffer enabled */
4933         smp_rmb();
4934
4935         event = ring_buffer_lock_reserve(data->buffer, len);
4936         if (!event) {
4937                 /* Ignore dropped events before test starts. */
4938                 if (started) {
4939                         if (nested)
4940                                 data->bytes_dropped += len;
4941                         else
4942                                 data->bytes_dropped_nested += len;
4943                 }
4944                 return len;
4945         }
4946
4947         event_len = ring_buffer_event_length(event);
4948
4949         if (RB_WARN_ON(data->buffer, event_len < len))
4950                 goto out;
4951
4952         item = ring_buffer_event_data(event);
4953         item->size = size;
4954         memcpy(item->str, rb_string, size);
4955
4956         if (nested) {
4957                 data->bytes_alloc_nested += event_len;
4958                 data->bytes_written_nested += len;
4959                 data->events_nested++;
4960                 if (!data->min_size_nested || len < data->min_size_nested)
4961                         data->min_size_nested = len;
4962                 if (len > data->max_size_nested)
4963                         data->max_size_nested = len;
4964         } else {
4965                 data->bytes_alloc += event_len;
4966                 data->bytes_written += len;
4967                 data->events++;
4968                 if (!data->min_size || len < data->min_size)
4969                         data->max_size = len;
4970                 if (len > data->max_size)
4971                         data->max_size = len;
4972         }
4973
4974  out:
4975         ring_buffer_unlock_commit(data->buffer, event);
4976
4977         return 0;
4978 }
4979
4980 static __init int rb_test(void *arg)
4981 {
4982         struct rb_test_data *data = arg;
4983
4984         while (!kthread_should_stop()) {
4985                 rb_write_something(data, false);
4986                 data->cnt++;
4987
4988                 set_current_state(TASK_INTERRUPTIBLE);
4989                 /* Now sleep between a min of 100-300us and a max of 1ms */
4990                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4991         }
4992
4993         return 0;
4994 }
4995
4996 static __init void rb_ipi(void *ignore)
4997 {
4998         struct rb_test_data *data;
4999         int cpu = smp_processor_id();
5000
5001         data = &rb_data[cpu];
5002         rb_write_something(data, true);
5003 }
5004
5005 static __init int rb_hammer_test(void *arg)
5006 {
5007         while (!kthread_should_stop()) {
5008
5009                 /* Send an IPI to all cpus to write data! */
5010                 smp_call_function(rb_ipi, NULL, 1);
5011                 /* No sleep, but for non preempt, let others run */
5012                 schedule();
5013         }
5014
5015         return 0;
5016 }
5017
5018 static __init int test_ringbuffer(void)
5019 {
5020         struct task_struct *rb_hammer;
5021         struct ring_buffer *buffer;
5022         int cpu;
5023         int ret = 0;
5024
5025         pr_info("Running ring buffer tests...\n");
5026
5027         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5028         if (WARN_ON(!buffer))
5029                 return 0;
5030
5031         /* Disable buffer so that threads can't write to it yet */
5032         ring_buffer_record_off(buffer);
5033
5034         for_each_online_cpu(cpu) {
5035                 rb_data[cpu].buffer = buffer;
5036                 rb_data[cpu].cpu = cpu;
5037                 rb_data[cpu].cnt = cpu;
5038                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5039                                                  "rbtester/%d", cpu);
5040                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5041                         pr_cont("FAILED\n");
5042                         ret = PTR_ERR(rb_threads[cpu]);
5043                         goto out_free;
5044                 }
5045
5046                 kthread_bind(rb_threads[cpu], cpu);
5047                 wake_up_process(rb_threads[cpu]);
5048         }
5049
5050         /* Now create the rb hammer! */
5051         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5052         if (WARN_ON(IS_ERR(rb_hammer))) {
5053                 pr_cont("FAILED\n");
5054                 ret = PTR_ERR(rb_hammer);
5055                 goto out_free;
5056         }
5057
5058         ring_buffer_record_on(buffer);
5059         /*
5060          * Show buffer is enabled before setting rb_test_started.
5061          * Yes there's a small race window where events could be
5062          * dropped and the thread wont catch it. But when a ring
5063          * buffer gets enabled, there will always be some kind of
5064          * delay before other CPUs see it. Thus, we don't care about
5065          * those dropped events. We care about events dropped after
5066          * the threads see that the buffer is active.
5067          */
5068         smp_wmb();
5069         rb_test_started = true;
5070
5071         set_current_state(TASK_INTERRUPTIBLE);
5072         /* Just run for 10 seconds */;
5073         schedule_timeout(10 * HZ);
5074
5075         kthread_stop(rb_hammer);
5076
5077  out_free:
5078         for_each_online_cpu(cpu) {
5079                 if (!rb_threads[cpu])
5080                         break;
5081                 kthread_stop(rb_threads[cpu]);
5082         }
5083         if (ret) {
5084                 ring_buffer_free(buffer);
5085                 return ret;
5086         }
5087
5088         /* Report! */
5089         pr_info("finished\n");
5090         for_each_online_cpu(cpu) {
5091                 struct ring_buffer_event *event;
5092                 struct rb_test_data *data = &rb_data[cpu];
5093                 struct rb_item *item;
5094                 unsigned long total_events;
5095                 unsigned long total_dropped;
5096                 unsigned long total_written;
5097                 unsigned long total_alloc;
5098                 unsigned long total_read = 0;
5099                 unsigned long total_size = 0;
5100                 unsigned long total_len = 0;
5101                 unsigned long total_lost = 0;
5102                 unsigned long lost;
5103                 int big_event_size;
5104                 int small_event_size;
5105
5106                 ret = -1;
5107
5108                 total_events = data->events + data->events_nested;
5109                 total_written = data->bytes_written + data->bytes_written_nested;
5110                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5111                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5112
5113                 big_event_size = data->max_size + data->max_size_nested;
5114                 small_event_size = data->min_size + data->min_size_nested;
5115
5116                 pr_info("CPU %d:\n", cpu);
5117                 pr_info("              events:    %ld\n", total_events);
5118                 pr_info("       dropped bytes:    %ld\n", total_dropped);
5119                 pr_info("       alloced bytes:    %ld\n", total_alloc);
5120                 pr_info("       written bytes:    %ld\n", total_written);
5121                 pr_info("       biggest event:    %d\n", big_event_size);
5122                 pr_info("      smallest event:    %d\n", small_event_size);
5123
5124                 if (RB_WARN_ON(buffer, total_dropped))
5125                         break;
5126
5127                 ret = 0;
5128
5129                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5130                         total_lost += lost;
5131                         item = ring_buffer_event_data(event);
5132                         total_len += ring_buffer_event_length(event);
5133                         total_size += item->size + sizeof(struct rb_item);
5134                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5135                                 pr_info("FAILED!\n");
5136                                 pr_info("buffer had: %.*s\n", item->size, item->str);
5137                                 pr_info("expected:   %.*s\n", item->size, rb_string);
5138                                 RB_WARN_ON(buffer, 1);
5139                                 ret = -1;
5140                                 break;
5141                         }
5142                         total_read++;
5143                 }
5144                 if (ret)
5145                         break;
5146
5147                 ret = -1;
5148
5149                 pr_info("         read events:   %ld\n", total_read);
5150                 pr_info("         lost events:   %ld\n", total_lost);
5151                 pr_info("        total events:   %ld\n", total_lost + total_read);
5152                 pr_info("  recorded len bytes:   %ld\n", total_len);
5153                 pr_info(" recorded size bytes:   %ld\n", total_size);
5154                 if (total_lost)
5155                         pr_info(" With dropped events, record len and size may not match\n"
5156                                 " alloced and written from above\n");
5157                 if (!total_lost) {
5158                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
5159                                        total_size != total_written))
5160                                 break;
5161                 }
5162                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5163                         break;
5164
5165                 ret = 0;
5166         }
5167         if (!ret)
5168                 pr_info("Ring buffer PASSED!\n");
5169
5170         ring_buffer_free(buffer);
5171         return 0;
5172 }
5173
5174 late_initcall(test_ringbuffer);
5175 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */