]> asedeno.scripts.mit.edu Git - linux.git/blob - kernel/trace/ring_buffer.c
Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / kernel / trace / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_events.h>
8 #include <linux/ring_buffer.h>
9 #include <linux/trace_clock.h>
10 #include <linux/sched/clock.h>
11 #include <linux/trace_seq.h>
12 #include <linux/spinlock.h>
13 #include <linux/irq_work.h>
14 #include <linux/uaccess.h>
15 #include <linux/hardirq.h>
16 #include <linux/kthread.h>      /* for self test */
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/oom.h>
27
28 #include <asm/local.h>
29
30 static void update_pages_handler(struct work_struct *work);
31
32 /*
33  * The ring buffer header is special. We must manually up keep it.
34  */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37         trace_seq_puts(s, "# compressed entry header\n");
38         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
39         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
40         trace_seq_puts(s, "\tarray       :   32 bits\n");
41         trace_seq_putc(s, '\n');
42         trace_seq_printf(s, "\tpadding     : type == %d\n",
43                          RINGBUF_TYPE_PADDING);
44         trace_seq_printf(s, "\ttime_extend : type == %d\n",
45                          RINGBUF_TYPE_TIME_EXTEND);
46         trace_seq_printf(s, "\ttime_stamp : type == %d\n",
47                          RINGBUF_TYPE_TIME_STAMP);
48         trace_seq_printf(s, "\tdata max type_len  == %d\n",
49                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50
51         return !trace_seq_has_overflowed(s);
52 }
53
54 /*
55  * The ring buffer is made up of a list of pages. A separate list of pages is
56  * allocated for each CPU. A writer may only write to a buffer that is
57  * associated with the CPU it is currently executing on.  A reader may read
58  * from any per cpu buffer.
59  *
60  * The reader is special. For each per cpu buffer, the reader has its own
61  * reader page. When a reader has read the entire reader page, this reader
62  * page is swapped with another page in the ring buffer.
63  *
64  * Now, as long as the writer is off the reader page, the reader can do what
65  * ever it wants with that page. The writer will never write to that page
66  * again (as long as it is out of the ring buffer).
67  *
68  * Here's some silly ASCII art.
69  *
70  *   +------+
71  *   |reader|          RING BUFFER
72  *   |page  |
73  *   +------+        +---+   +---+   +---+
74  *                   |   |-->|   |-->|   |
75  *                   +---+   +---+   +---+
76  *                     ^               |
77  *                     |               |
78  *                     +---------------+
79  *
80  *
81  *   +------+
82  *   |reader|          RING BUFFER
83  *   |page  |------------------v
84  *   +------+        +---+   +---+   +---+
85  *                   |   |-->|   |-->|   |
86  *                   +---+   +---+   +---+
87  *                     ^               |
88  *                     |               |
89  *                     +---------------+
90  *
91  *
92  *   +------+
93  *   |reader|          RING BUFFER
94  *   |page  |------------------v
95  *   +------+        +---+   +---+   +---+
96  *      ^            |   |-->|   |-->|   |
97  *      |            +---+   +---+   +---+
98  *      |                              |
99  *      |                              |
100  *      +------------------------------+
101  *
102  *
103  *   +------+
104  *   |buffer|          RING BUFFER
105  *   |page  |------------------v
106  *   +------+        +---+   +---+   +---+
107  *      ^            |   |   |   |-->|   |
108  *      |   New      +---+   +---+   +---+
109  *      |  Reader------^               |
110  *      |   page                       |
111  *      +------------------------------+
112  *
113  *
114  * After we make this swap, the reader can hand this page off to the splice
115  * code and be done with it. It can even allocate a new page if it needs to
116  * and swap that into the ring buffer.
117  *
118  * We will be using cmpxchg soon to make all this lockless.
119  *
120  */
121
122 /* Used for individual buffers (after the counter) */
123 #define RB_BUFFER_OFF           (1 << 20)
124
125 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
126
127 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
128 #define RB_ALIGNMENT            4U
129 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
130 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
131 #define RB_ALIGN_DATA           __aligned(RB_ALIGNMENT)
132
133 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
134 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
135
136 enum {
137         RB_LEN_TIME_EXTEND = 8,
138         RB_LEN_TIME_STAMP =  8,
139 };
140
141 #define skip_time_extend(event) \
142         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
143
144 #define extended_time(event) \
145         (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
146
147 static inline int rb_null_event(struct ring_buffer_event *event)
148 {
149         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
150 }
151
152 static void rb_event_set_padding(struct ring_buffer_event *event)
153 {
154         /* padding has a NULL time_delta */
155         event->type_len = RINGBUF_TYPE_PADDING;
156         event->time_delta = 0;
157 }
158
159 static unsigned
160 rb_event_data_length(struct ring_buffer_event *event)
161 {
162         unsigned length;
163
164         if (event->type_len)
165                 length = event->type_len * RB_ALIGNMENT;
166         else
167                 length = event->array[0];
168         return length + RB_EVNT_HDR_SIZE;
169 }
170
171 /*
172  * Return the length of the given event. Will return
173  * the length of the time extend if the event is a
174  * time extend.
175  */
176 static inline unsigned
177 rb_event_length(struct ring_buffer_event *event)
178 {
179         switch (event->type_len) {
180         case RINGBUF_TYPE_PADDING:
181                 if (rb_null_event(event))
182                         /* undefined */
183                         return -1;
184                 return  event->array[0] + RB_EVNT_HDR_SIZE;
185
186         case RINGBUF_TYPE_TIME_EXTEND:
187                 return RB_LEN_TIME_EXTEND;
188
189         case RINGBUF_TYPE_TIME_STAMP:
190                 return RB_LEN_TIME_STAMP;
191
192         case RINGBUF_TYPE_DATA:
193                 return rb_event_data_length(event);
194         default:
195                 BUG();
196         }
197         /* not hit */
198         return 0;
199 }
200
201 /*
202  * Return total length of time extend and data,
203  *   or just the event length for all other events.
204  */
205 static inline unsigned
206 rb_event_ts_length(struct ring_buffer_event *event)
207 {
208         unsigned len = 0;
209
210         if (extended_time(event)) {
211                 /* time extends include the data event after it */
212                 len = RB_LEN_TIME_EXTEND;
213                 event = skip_time_extend(event);
214         }
215         return len + rb_event_length(event);
216 }
217
218 /**
219  * ring_buffer_event_length - return the length of the event
220  * @event: the event to get the length of
221  *
222  * Returns the size of the data load of a data event.
223  * If the event is something other than a data event, it
224  * returns the size of the event itself. With the exception
225  * of a TIME EXTEND, where it still returns the size of the
226  * data load of the data event after it.
227  */
228 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
229 {
230         unsigned length;
231
232         if (extended_time(event))
233                 event = skip_time_extend(event);
234
235         length = rb_event_length(event);
236         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
237                 return length;
238         length -= RB_EVNT_HDR_SIZE;
239         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
240                 length -= sizeof(event->array[0]);
241         return length;
242 }
243 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
244
245 /* inline for ring buffer fast paths */
246 static __always_inline void *
247 rb_event_data(struct ring_buffer_event *event)
248 {
249         if (extended_time(event))
250                 event = skip_time_extend(event);
251         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
252         /* If length is in len field, then array[0] has the data */
253         if (event->type_len)
254                 return (void *)&event->array[0];
255         /* Otherwise length is in array[0] and array[1] has the data */
256         return (void *)&event->array[1];
257 }
258
259 /**
260  * ring_buffer_event_data - return the data of the event
261  * @event: the event to get the data from
262  */
263 void *ring_buffer_event_data(struct ring_buffer_event *event)
264 {
265         return rb_event_data(event);
266 }
267 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
268
269 #define for_each_buffer_cpu(buffer, cpu)                \
270         for_each_cpu(cpu, buffer->cpumask)
271
272 #define TS_SHIFT        27
273 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
274 #define TS_DELTA_TEST   (~TS_MASK)
275
276 /**
277  * ring_buffer_event_time_stamp - return the event's extended timestamp
278  * @event: the event to get the timestamp of
279  *
280  * Returns the extended timestamp associated with a data event.
281  * An extended time_stamp is a 64-bit timestamp represented
282  * internally in a special way that makes the best use of space
283  * contained within a ring buffer event.  This function decodes
284  * it and maps it to a straight u64 value.
285  */
286 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
287 {
288         u64 ts;
289
290         ts = event->array[0];
291         ts <<= TS_SHIFT;
292         ts += event->time_delta;
293
294         return ts;
295 }
296
297 /* Flag when events were overwritten */
298 #define RB_MISSED_EVENTS        (1 << 31)
299 /* Missed count stored at end */
300 #define RB_MISSED_STORED        (1 << 30)
301
302 #define RB_MISSED_FLAGS         (RB_MISSED_EVENTS|RB_MISSED_STORED)
303
304 struct buffer_data_page {
305         u64              time_stamp;    /* page time stamp */
306         local_t          commit;        /* write committed index */
307         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
308 };
309
310 /*
311  * Note, the buffer_page list must be first. The buffer pages
312  * are allocated in cache lines, which means that each buffer
313  * page will be at the beginning of a cache line, and thus
314  * the least significant bits will be zero. We use this to
315  * add flags in the list struct pointers, to make the ring buffer
316  * lockless.
317  */
318 struct buffer_page {
319         struct list_head list;          /* list of buffer pages */
320         local_t          write;         /* index for next write */
321         unsigned         read;          /* index for next read */
322         local_t          entries;       /* entries on this page */
323         unsigned long    real_end;      /* real end of data */
324         struct buffer_data_page *page;  /* Actual data page */
325 };
326
327 /*
328  * The buffer page counters, write and entries, must be reset
329  * atomically when crossing page boundaries. To synchronize this
330  * update, two counters are inserted into the number. One is
331  * the actual counter for the write position or count on the page.
332  *
333  * The other is a counter of updaters. Before an update happens
334  * the update partition of the counter is incremented. This will
335  * allow the updater to update the counter atomically.
336  *
337  * The counter is 20 bits, and the state data is 12.
338  */
339 #define RB_WRITE_MASK           0xfffff
340 #define RB_WRITE_INTCNT         (1 << 20)
341
342 static void rb_init_page(struct buffer_data_page *bpage)
343 {
344         local_set(&bpage->commit, 0);
345 }
346
347 /*
348  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
349  * this issue out.
350  */
351 static void free_buffer_page(struct buffer_page *bpage)
352 {
353         free_page((unsigned long)bpage->page);
354         kfree(bpage);
355 }
356
357 /*
358  * We need to fit the time_stamp delta into 27 bits.
359  */
360 static inline int test_time_stamp(u64 delta)
361 {
362         if (delta & TS_DELTA_TEST)
363                 return 1;
364         return 0;
365 }
366
367 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
368
369 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
370 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
371
372 int ring_buffer_print_page_header(struct trace_seq *s)
373 {
374         struct buffer_data_page field;
375
376         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
377                          "offset:0;\tsize:%u;\tsigned:%u;\n",
378                          (unsigned int)sizeof(field.time_stamp),
379                          (unsigned int)is_signed_type(u64));
380
381         trace_seq_printf(s, "\tfield: local_t commit;\t"
382                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
383                          (unsigned int)offsetof(typeof(field), commit),
384                          (unsigned int)sizeof(field.commit),
385                          (unsigned int)is_signed_type(long));
386
387         trace_seq_printf(s, "\tfield: int overwrite;\t"
388                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
389                          (unsigned int)offsetof(typeof(field), commit),
390                          1,
391                          (unsigned int)is_signed_type(long));
392
393         trace_seq_printf(s, "\tfield: char data;\t"
394                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
395                          (unsigned int)offsetof(typeof(field), data),
396                          (unsigned int)BUF_PAGE_SIZE,
397                          (unsigned int)is_signed_type(char));
398
399         return !trace_seq_has_overflowed(s);
400 }
401
402 struct rb_irq_work {
403         struct irq_work                 work;
404         wait_queue_head_t               waiters;
405         wait_queue_head_t               full_waiters;
406         bool                            waiters_pending;
407         bool                            full_waiters_pending;
408         bool                            wakeup_full;
409 };
410
411 /*
412  * Structure to hold event state and handle nested events.
413  */
414 struct rb_event_info {
415         u64                     ts;
416         u64                     delta;
417         unsigned long           length;
418         struct buffer_page      *tail_page;
419         int                     add_timestamp;
420 };
421
422 /*
423  * Used for which event context the event is in.
424  *  NMI     = 0
425  *  IRQ     = 1
426  *  SOFTIRQ = 2
427  *  NORMAL  = 3
428  *
429  * See trace_recursive_lock() comment below for more details.
430  */
431 enum {
432         RB_CTX_NMI,
433         RB_CTX_IRQ,
434         RB_CTX_SOFTIRQ,
435         RB_CTX_NORMAL,
436         RB_CTX_MAX
437 };
438
439 /*
440  * head_page == tail_page && head == tail then buffer is empty.
441  */
442 struct ring_buffer_per_cpu {
443         int                             cpu;
444         atomic_t                        record_disabled;
445         struct ring_buffer              *buffer;
446         raw_spinlock_t                  reader_lock;    /* serialize readers */
447         arch_spinlock_t                 lock;
448         struct lock_class_key           lock_key;
449         struct buffer_data_page         *free_page;
450         unsigned long                   nr_pages;
451         unsigned int                    current_context;
452         struct list_head                *pages;
453         struct buffer_page              *head_page;     /* read from head */
454         struct buffer_page              *tail_page;     /* write to tail */
455         struct buffer_page              *commit_page;   /* committed pages */
456         struct buffer_page              *reader_page;
457         unsigned long                   lost_events;
458         unsigned long                   last_overrun;
459         unsigned long                   nest;
460         local_t                         entries_bytes;
461         local_t                         entries;
462         local_t                         overrun;
463         local_t                         commit_overrun;
464         local_t                         dropped_events;
465         local_t                         committing;
466         local_t                         commits;
467         local_t                         pages_touched;
468         local_t                         pages_read;
469         long                            last_pages_touch;
470         size_t                          shortest_full;
471         unsigned long                   read;
472         unsigned long                   read_bytes;
473         u64                             write_stamp;
474         u64                             read_stamp;
475         /* ring buffer pages to update, > 0 to add, < 0 to remove */
476         long                            nr_pages_to_update;
477         struct list_head                new_pages; /* new pages to add */
478         struct work_struct              update_pages_work;
479         struct completion               update_done;
480
481         struct rb_irq_work              irq_work;
482 };
483
484 struct ring_buffer {
485         unsigned                        flags;
486         int                             cpus;
487         atomic_t                        record_disabled;
488         atomic_t                        resize_disabled;
489         cpumask_var_t                   cpumask;
490
491         struct lock_class_key           *reader_lock_key;
492
493         struct mutex                    mutex;
494
495         struct ring_buffer_per_cpu      **buffers;
496
497         struct hlist_node               node;
498         u64                             (*clock)(void);
499
500         struct rb_irq_work              irq_work;
501         bool                            time_stamp_abs;
502 };
503
504 struct ring_buffer_iter {
505         struct ring_buffer_per_cpu      *cpu_buffer;
506         unsigned long                   head;
507         struct buffer_page              *head_page;
508         struct buffer_page              *cache_reader_page;
509         unsigned long                   cache_read;
510         u64                             read_stamp;
511 };
512
513 /**
514  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
515  * @buffer: The ring_buffer to get the number of pages from
516  * @cpu: The cpu of the ring_buffer to get the number of pages from
517  *
518  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
519  */
520 size_t ring_buffer_nr_pages(struct ring_buffer *buffer, int cpu)
521 {
522         return buffer->buffers[cpu]->nr_pages;
523 }
524
525 /**
526  * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
527  * @buffer: The ring_buffer to get the number of pages from
528  * @cpu: The cpu of the ring_buffer to get the number of pages from
529  *
530  * Returns the number of pages that have content in the ring buffer.
531  */
532 size_t ring_buffer_nr_dirty_pages(struct ring_buffer *buffer, int cpu)
533 {
534         size_t read;
535         size_t cnt;
536
537         read = local_read(&buffer->buffers[cpu]->pages_read);
538         cnt = local_read(&buffer->buffers[cpu]->pages_touched);
539         /* The reader can read an empty page, but not more than that */
540         if (cnt < read) {
541                 WARN_ON_ONCE(read > cnt + 1);
542                 return 0;
543         }
544
545         return cnt - read;
546 }
547
548 /*
549  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
550  *
551  * Schedules a delayed work to wake up any task that is blocked on the
552  * ring buffer waiters queue.
553  */
554 static void rb_wake_up_waiters(struct irq_work *work)
555 {
556         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
557
558         wake_up_all(&rbwork->waiters);
559         if (rbwork->wakeup_full) {
560                 rbwork->wakeup_full = false;
561                 wake_up_all(&rbwork->full_waiters);
562         }
563 }
564
565 /**
566  * ring_buffer_wait - wait for input to the ring buffer
567  * @buffer: buffer to wait on
568  * @cpu: the cpu buffer to wait on
569  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
570  *
571  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
572  * as data is added to any of the @buffer's cpu buffers. Otherwise
573  * it will wait for data to be added to a specific cpu buffer.
574  */
575 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, int full)
576 {
577         struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
578         DEFINE_WAIT(wait);
579         struct rb_irq_work *work;
580         int ret = 0;
581
582         /*
583          * Depending on what the caller is waiting for, either any
584          * data in any cpu buffer, or a specific buffer, put the
585          * caller on the appropriate wait queue.
586          */
587         if (cpu == RING_BUFFER_ALL_CPUS) {
588                 work = &buffer->irq_work;
589                 /* Full only makes sense on per cpu reads */
590                 full = 0;
591         } else {
592                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
593                         return -ENODEV;
594                 cpu_buffer = buffer->buffers[cpu];
595                 work = &cpu_buffer->irq_work;
596         }
597
598
599         while (true) {
600                 if (full)
601                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
602                 else
603                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
604
605                 /*
606                  * The events can happen in critical sections where
607                  * checking a work queue can cause deadlocks.
608                  * After adding a task to the queue, this flag is set
609                  * only to notify events to try to wake up the queue
610                  * using irq_work.
611                  *
612                  * We don't clear it even if the buffer is no longer
613                  * empty. The flag only causes the next event to run
614                  * irq_work to do the work queue wake up. The worse
615                  * that can happen if we race with !trace_empty() is that
616                  * an event will cause an irq_work to try to wake up
617                  * an empty queue.
618                  *
619                  * There's no reason to protect this flag either, as
620                  * the work queue and irq_work logic will do the necessary
621                  * synchronization for the wake ups. The only thing
622                  * that is necessary is that the wake up happens after
623                  * a task has been queued. It's OK for spurious wake ups.
624                  */
625                 if (full)
626                         work->full_waiters_pending = true;
627                 else
628                         work->waiters_pending = true;
629
630                 if (signal_pending(current)) {
631                         ret = -EINTR;
632                         break;
633                 }
634
635                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
636                         break;
637
638                 if (cpu != RING_BUFFER_ALL_CPUS &&
639                     !ring_buffer_empty_cpu(buffer, cpu)) {
640                         unsigned long flags;
641                         bool pagebusy;
642                         size_t nr_pages;
643                         size_t dirty;
644
645                         if (!full)
646                                 break;
647
648                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
649                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
650                         nr_pages = cpu_buffer->nr_pages;
651                         dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
652                         if (!cpu_buffer->shortest_full ||
653                             cpu_buffer->shortest_full < full)
654                                 cpu_buffer->shortest_full = full;
655                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
656                         if (!pagebusy &&
657                             (!nr_pages || (dirty * 100) > full * nr_pages))
658                                 break;
659                 }
660
661                 schedule();
662         }
663
664         if (full)
665                 finish_wait(&work->full_waiters, &wait);
666         else
667                 finish_wait(&work->waiters, &wait);
668
669         return ret;
670 }
671
672 /**
673  * ring_buffer_poll_wait - poll on buffer input
674  * @buffer: buffer to wait on
675  * @cpu: the cpu buffer to wait on
676  * @filp: the file descriptor
677  * @poll_table: The poll descriptor
678  *
679  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
680  * as data is added to any of the @buffer's cpu buffers. Otherwise
681  * it will wait for data to be added to a specific cpu buffer.
682  *
683  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
684  * zero otherwise.
685  */
686 __poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
687                           struct file *filp, poll_table *poll_table)
688 {
689         struct ring_buffer_per_cpu *cpu_buffer;
690         struct rb_irq_work *work;
691
692         if (cpu == RING_BUFFER_ALL_CPUS)
693                 work = &buffer->irq_work;
694         else {
695                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
696                         return -EINVAL;
697
698                 cpu_buffer = buffer->buffers[cpu];
699                 work = &cpu_buffer->irq_work;
700         }
701
702         poll_wait(filp, &work->waiters, poll_table);
703         work->waiters_pending = true;
704         /*
705          * There's a tight race between setting the waiters_pending and
706          * checking if the ring buffer is empty.  Once the waiters_pending bit
707          * is set, the next event will wake the task up, but we can get stuck
708          * if there's only a single event in.
709          *
710          * FIXME: Ideally, we need a memory barrier on the writer side as well,
711          * but adding a memory barrier to all events will cause too much of a
712          * performance hit in the fast path.  We only need a memory barrier when
713          * the buffer goes from empty to having content.  But as this race is
714          * extremely small, and it's not a problem if another event comes in, we
715          * will fix it later.
716          */
717         smp_mb();
718
719         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
720             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
721                 return EPOLLIN | EPOLLRDNORM;
722         return 0;
723 }
724
725 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
726 #define RB_WARN_ON(b, cond)                                             \
727         ({                                                              \
728                 int _____ret = unlikely(cond);                          \
729                 if (_____ret) {                                         \
730                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
731                                 struct ring_buffer_per_cpu *__b =       \
732                                         (void *)b;                      \
733                                 atomic_inc(&__b->buffer->record_disabled); \
734                         } else                                          \
735                                 atomic_inc(&b->record_disabled);        \
736                         WARN_ON(1);                                     \
737                 }                                                       \
738                 _____ret;                                               \
739         })
740
741 /* Up this if you want to test the TIME_EXTENTS and normalization */
742 #define DEBUG_SHIFT 0
743
744 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
745 {
746         /* shift to debug/test normalization and TIME_EXTENTS */
747         return buffer->clock() << DEBUG_SHIFT;
748 }
749
750 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
751 {
752         u64 time;
753
754         preempt_disable_notrace();
755         time = rb_time_stamp(buffer);
756         preempt_enable_notrace();
757
758         return time;
759 }
760 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
761
762 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
763                                       int cpu, u64 *ts)
764 {
765         /* Just stupid testing the normalize function and deltas */
766         *ts >>= DEBUG_SHIFT;
767 }
768 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
769
770 /*
771  * Making the ring buffer lockless makes things tricky.
772  * Although writes only happen on the CPU that they are on,
773  * and they only need to worry about interrupts. Reads can
774  * happen on any CPU.
775  *
776  * The reader page is always off the ring buffer, but when the
777  * reader finishes with a page, it needs to swap its page with
778  * a new one from the buffer. The reader needs to take from
779  * the head (writes go to the tail). But if a writer is in overwrite
780  * mode and wraps, it must push the head page forward.
781  *
782  * Here lies the problem.
783  *
784  * The reader must be careful to replace only the head page, and
785  * not another one. As described at the top of the file in the
786  * ASCII art, the reader sets its old page to point to the next
787  * page after head. It then sets the page after head to point to
788  * the old reader page. But if the writer moves the head page
789  * during this operation, the reader could end up with the tail.
790  *
791  * We use cmpxchg to help prevent this race. We also do something
792  * special with the page before head. We set the LSB to 1.
793  *
794  * When the writer must push the page forward, it will clear the
795  * bit that points to the head page, move the head, and then set
796  * the bit that points to the new head page.
797  *
798  * We also don't want an interrupt coming in and moving the head
799  * page on another writer. Thus we use the second LSB to catch
800  * that too. Thus:
801  *
802  * head->list->prev->next        bit 1          bit 0
803  *                              -------        -------
804  * Normal page                     0              0
805  * Points to head page             0              1
806  * New head page                   1              0
807  *
808  * Note we can not trust the prev pointer of the head page, because:
809  *
810  * +----+       +-----+        +-----+
811  * |    |------>|  T  |---X--->|  N  |
812  * |    |<------|     |        |     |
813  * +----+       +-----+        +-----+
814  *   ^                           ^ |
815  *   |          +-----+          | |
816  *   +----------|  R  |----------+ |
817  *              |     |<-----------+
818  *              +-----+
819  *
820  * Key:  ---X-->  HEAD flag set in pointer
821  *         T      Tail page
822  *         R      Reader page
823  *         N      Next page
824  *
825  * (see __rb_reserve_next() to see where this happens)
826  *
827  *  What the above shows is that the reader just swapped out
828  *  the reader page with a page in the buffer, but before it
829  *  could make the new header point back to the new page added
830  *  it was preempted by a writer. The writer moved forward onto
831  *  the new page added by the reader and is about to move forward
832  *  again.
833  *
834  *  You can see, it is legitimate for the previous pointer of
835  *  the head (or any page) not to point back to itself. But only
836  *  temporarily.
837  */
838
839 #define RB_PAGE_NORMAL          0UL
840 #define RB_PAGE_HEAD            1UL
841 #define RB_PAGE_UPDATE          2UL
842
843
844 #define RB_FLAG_MASK            3UL
845
846 /* PAGE_MOVED is not part of the mask */
847 #define RB_PAGE_MOVED           4UL
848
849 /*
850  * rb_list_head - remove any bit
851  */
852 static struct list_head *rb_list_head(struct list_head *list)
853 {
854         unsigned long val = (unsigned long)list;
855
856         return (struct list_head *)(val & ~RB_FLAG_MASK);
857 }
858
859 /*
860  * rb_is_head_page - test if the given page is the head page
861  *
862  * Because the reader may move the head_page pointer, we can
863  * not trust what the head page is (it may be pointing to
864  * the reader page). But if the next page is a header page,
865  * its flags will be non zero.
866  */
867 static inline int
868 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
869                 struct buffer_page *page, struct list_head *list)
870 {
871         unsigned long val;
872
873         val = (unsigned long)list->next;
874
875         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
876                 return RB_PAGE_MOVED;
877
878         return val & RB_FLAG_MASK;
879 }
880
881 /*
882  * rb_is_reader_page
883  *
884  * The unique thing about the reader page, is that, if the
885  * writer is ever on it, the previous pointer never points
886  * back to the reader page.
887  */
888 static bool rb_is_reader_page(struct buffer_page *page)
889 {
890         struct list_head *list = page->list.prev;
891
892         return rb_list_head(list->next) != &page->list;
893 }
894
895 /*
896  * rb_set_list_to_head - set a list_head to be pointing to head.
897  */
898 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
899                                 struct list_head *list)
900 {
901         unsigned long *ptr;
902
903         ptr = (unsigned long *)&list->next;
904         *ptr |= RB_PAGE_HEAD;
905         *ptr &= ~RB_PAGE_UPDATE;
906 }
907
908 /*
909  * rb_head_page_activate - sets up head page
910  */
911 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
912 {
913         struct buffer_page *head;
914
915         head = cpu_buffer->head_page;
916         if (!head)
917                 return;
918
919         /*
920          * Set the previous list pointer to have the HEAD flag.
921          */
922         rb_set_list_to_head(cpu_buffer, head->list.prev);
923 }
924
925 static void rb_list_head_clear(struct list_head *list)
926 {
927         unsigned long *ptr = (unsigned long *)&list->next;
928
929         *ptr &= ~RB_FLAG_MASK;
930 }
931
932 /*
933  * rb_head_page_deactivate - clears head page ptr (for free list)
934  */
935 static void
936 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
937 {
938         struct list_head *hd;
939
940         /* Go through the whole list and clear any pointers found. */
941         rb_list_head_clear(cpu_buffer->pages);
942
943         list_for_each(hd, cpu_buffer->pages)
944                 rb_list_head_clear(hd);
945 }
946
947 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
948                             struct buffer_page *head,
949                             struct buffer_page *prev,
950                             int old_flag, int new_flag)
951 {
952         struct list_head *list;
953         unsigned long val = (unsigned long)&head->list;
954         unsigned long ret;
955
956         list = &prev->list;
957
958         val &= ~RB_FLAG_MASK;
959
960         ret = cmpxchg((unsigned long *)&list->next,
961                       val | old_flag, val | new_flag);
962
963         /* check if the reader took the page */
964         if ((ret & ~RB_FLAG_MASK) != val)
965                 return RB_PAGE_MOVED;
966
967         return ret & RB_FLAG_MASK;
968 }
969
970 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
971                                    struct buffer_page *head,
972                                    struct buffer_page *prev,
973                                    int old_flag)
974 {
975         return rb_head_page_set(cpu_buffer, head, prev,
976                                 old_flag, RB_PAGE_UPDATE);
977 }
978
979 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
980                                  struct buffer_page *head,
981                                  struct buffer_page *prev,
982                                  int old_flag)
983 {
984         return rb_head_page_set(cpu_buffer, head, prev,
985                                 old_flag, RB_PAGE_HEAD);
986 }
987
988 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
989                                    struct buffer_page *head,
990                                    struct buffer_page *prev,
991                                    int old_flag)
992 {
993         return rb_head_page_set(cpu_buffer, head, prev,
994                                 old_flag, RB_PAGE_NORMAL);
995 }
996
997 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
998                                struct buffer_page **bpage)
999 {
1000         struct list_head *p = rb_list_head((*bpage)->list.next);
1001
1002         *bpage = list_entry(p, struct buffer_page, list);
1003 }
1004
1005 static struct buffer_page *
1006 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1007 {
1008         struct buffer_page *head;
1009         struct buffer_page *page;
1010         struct list_head *list;
1011         int i;
1012
1013         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1014                 return NULL;
1015
1016         /* sanity check */
1017         list = cpu_buffer->pages;
1018         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1019                 return NULL;
1020
1021         page = head = cpu_buffer->head_page;
1022         /*
1023          * It is possible that the writer moves the header behind
1024          * where we started, and we miss in one loop.
1025          * A second loop should grab the header, but we'll do
1026          * three loops just because I'm paranoid.
1027          */
1028         for (i = 0; i < 3; i++) {
1029                 do {
1030                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1031                                 cpu_buffer->head_page = page;
1032                                 return page;
1033                         }
1034                         rb_inc_page(cpu_buffer, &page);
1035                 } while (page != head);
1036         }
1037
1038         RB_WARN_ON(cpu_buffer, 1);
1039
1040         return NULL;
1041 }
1042
1043 static int rb_head_page_replace(struct buffer_page *old,
1044                                 struct buffer_page *new)
1045 {
1046         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1047         unsigned long val;
1048         unsigned long ret;
1049
1050         val = *ptr & ~RB_FLAG_MASK;
1051         val |= RB_PAGE_HEAD;
1052
1053         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1054
1055         return ret == val;
1056 }
1057
1058 /*
1059  * rb_tail_page_update - move the tail page forward
1060  */
1061 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1062                                struct buffer_page *tail_page,
1063                                struct buffer_page *next_page)
1064 {
1065         unsigned long old_entries;
1066         unsigned long old_write;
1067
1068         /*
1069          * The tail page now needs to be moved forward.
1070          *
1071          * We need to reset the tail page, but without messing
1072          * with possible erasing of data brought in by interrupts
1073          * that have moved the tail page and are currently on it.
1074          *
1075          * We add a counter to the write field to denote this.
1076          */
1077         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1078         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1079
1080         local_inc(&cpu_buffer->pages_touched);
1081         /*
1082          * Just make sure we have seen our old_write and synchronize
1083          * with any interrupts that come in.
1084          */
1085         barrier();
1086
1087         /*
1088          * If the tail page is still the same as what we think
1089          * it is, then it is up to us to update the tail
1090          * pointer.
1091          */
1092         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1093                 /* Zero the write counter */
1094                 unsigned long val = old_write & ~RB_WRITE_MASK;
1095                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1096
1097                 /*
1098                  * This will only succeed if an interrupt did
1099                  * not come in and change it. In which case, we
1100                  * do not want to modify it.
1101                  *
1102                  * We add (void) to let the compiler know that we do not care
1103                  * about the return value of these functions. We use the
1104                  * cmpxchg to only update if an interrupt did not already
1105                  * do it for us. If the cmpxchg fails, we don't care.
1106                  */
1107                 (void)local_cmpxchg(&next_page->write, old_write, val);
1108                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1109
1110                 /*
1111                  * No need to worry about races with clearing out the commit.
1112                  * it only can increment when a commit takes place. But that
1113                  * only happens in the outer most nested commit.
1114                  */
1115                 local_set(&next_page->page->commit, 0);
1116
1117                 /* Again, either we update tail_page or an interrupt does */
1118                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1119         }
1120 }
1121
1122 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1123                           struct buffer_page *bpage)
1124 {
1125         unsigned long val = (unsigned long)bpage;
1126
1127         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1128                 return 1;
1129
1130         return 0;
1131 }
1132
1133 /**
1134  * rb_check_list - make sure a pointer to a list has the last bits zero
1135  */
1136 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1137                          struct list_head *list)
1138 {
1139         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1140                 return 1;
1141         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1142                 return 1;
1143         return 0;
1144 }
1145
1146 /**
1147  * rb_check_pages - integrity check of buffer pages
1148  * @cpu_buffer: CPU buffer with pages to test
1149  *
1150  * As a safety measure we check to make sure the data pages have not
1151  * been corrupted.
1152  */
1153 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1154 {
1155         struct list_head *head = cpu_buffer->pages;
1156         struct buffer_page *bpage, *tmp;
1157
1158         /* Reset the head page if it exists */
1159         if (cpu_buffer->head_page)
1160                 rb_set_head_page(cpu_buffer);
1161
1162         rb_head_page_deactivate(cpu_buffer);
1163
1164         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1165                 return -1;
1166         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1167                 return -1;
1168
1169         if (rb_check_list(cpu_buffer, head))
1170                 return -1;
1171
1172         list_for_each_entry_safe(bpage, tmp, head, list) {
1173                 if (RB_WARN_ON(cpu_buffer,
1174                                bpage->list.next->prev != &bpage->list))
1175                         return -1;
1176                 if (RB_WARN_ON(cpu_buffer,
1177                                bpage->list.prev->next != &bpage->list))
1178                         return -1;
1179                 if (rb_check_list(cpu_buffer, &bpage->list))
1180                         return -1;
1181         }
1182
1183         rb_head_page_activate(cpu_buffer);
1184
1185         return 0;
1186 }
1187
1188 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1189 {
1190         struct buffer_page *bpage, *tmp;
1191         bool user_thread = current->mm != NULL;
1192         gfp_t mflags;
1193         long i;
1194
1195         /*
1196          * Check if the available memory is there first.
1197          * Note, si_mem_available() only gives us a rough estimate of available
1198          * memory. It may not be accurate. But we don't care, we just want
1199          * to prevent doing any allocation when it is obvious that it is
1200          * not going to succeed.
1201          */
1202         i = si_mem_available();
1203         if (i < nr_pages)
1204                 return -ENOMEM;
1205
1206         /*
1207          * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1208          * gracefully without invoking oom-killer and the system is not
1209          * destabilized.
1210          */
1211         mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1212
1213         /*
1214          * If a user thread allocates too much, and si_mem_available()
1215          * reports there's enough memory, even though there is not.
1216          * Make sure the OOM killer kills this thread. This can happen
1217          * even with RETRY_MAYFAIL because another task may be doing
1218          * an allocation after this task has taken all memory.
1219          * This is the task the OOM killer needs to take out during this
1220          * loop, even if it was triggered by an allocation somewhere else.
1221          */
1222         if (user_thread)
1223                 set_current_oom_origin();
1224         for (i = 0; i < nr_pages; i++) {
1225                 struct page *page;
1226
1227                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1228                                     mflags, cpu_to_node(cpu));
1229                 if (!bpage)
1230                         goto free_pages;
1231
1232                 list_add(&bpage->list, pages);
1233
1234                 page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1235                 if (!page)
1236                         goto free_pages;
1237                 bpage->page = page_address(page);
1238                 rb_init_page(bpage->page);
1239
1240                 if (user_thread && fatal_signal_pending(current))
1241                         goto free_pages;
1242         }
1243         if (user_thread)
1244                 clear_current_oom_origin();
1245
1246         return 0;
1247
1248 free_pages:
1249         list_for_each_entry_safe(bpage, tmp, pages, list) {
1250                 list_del_init(&bpage->list);
1251                 free_buffer_page(bpage);
1252         }
1253         if (user_thread)
1254                 clear_current_oom_origin();
1255
1256         return -ENOMEM;
1257 }
1258
1259 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1260                              unsigned long nr_pages)
1261 {
1262         LIST_HEAD(pages);
1263
1264         WARN_ON(!nr_pages);
1265
1266         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1267                 return -ENOMEM;
1268
1269         /*
1270          * The ring buffer page list is a circular list that does not
1271          * start and end with a list head. All page list items point to
1272          * other pages.
1273          */
1274         cpu_buffer->pages = pages.next;
1275         list_del(&pages);
1276
1277         cpu_buffer->nr_pages = nr_pages;
1278
1279         rb_check_pages(cpu_buffer);
1280
1281         return 0;
1282 }
1283
1284 static struct ring_buffer_per_cpu *
1285 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1286 {
1287         struct ring_buffer_per_cpu *cpu_buffer;
1288         struct buffer_page *bpage;
1289         struct page *page;
1290         int ret;
1291
1292         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1293                                   GFP_KERNEL, cpu_to_node(cpu));
1294         if (!cpu_buffer)
1295                 return NULL;
1296
1297         cpu_buffer->cpu = cpu;
1298         cpu_buffer->buffer = buffer;
1299         raw_spin_lock_init(&cpu_buffer->reader_lock);
1300         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1301         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1302         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1303         init_completion(&cpu_buffer->update_done);
1304         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1305         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1306         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1307
1308         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1309                             GFP_KERNEL, cpu_to_node(cpu));
1310         if (!bpage)
1311                 goto fail_free_buffer;
1312
1313         rb_check_bpage(cpu_buffer, bpage);
1314
1315         cpu_buffer->reader_page = bpage;
1316         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1317         if (!page)
1318                 goto fail_free_reader;
1319         bpage->page = page_address(page);
1320         rb_init_page(bpage->page);
1321
1322         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1323         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1324
1325         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1326         if (ret < 0)
1327                 goto fail_free_reader;
1328
1329         cpu_buffer->head_page
1330                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1331         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1332
1333         rb_head_page_activate(cpu_buffer);
1334
1335         return cpu_buffer;
1336
1337  fail_free_reader:
1338         free_buffer_page(cpu_buffer->reader_page);
1339
1340  fail_free_buffer:
1341         kfree(cpu_buffer);
1342         return NULL;
1343 }
1344
1345 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1346 {
1347         struct list_head *head = cpu_buffer->pages;
1348         struct buffer_page *bpage, *tmp;
1349
1350         free_buffer_page(cpu_buffer->reader_page);
1351
1352         rb_head_page_deactivate(cpu_buffer);
1353
1354         if (head) {
1355                 list_for_each_entry_safe(bpage, tmp, head, list) {
1356                         list_del_init(&bpage->list);
1357                         free_buffer_page(bpage);
1358                 }
1359                 bpage = list_entry(head, struct buffer_page, list);
1360                 free_buffer_page(bpage);
1361         }
1362
1363         kfree(cpu_buffer);
1364 }
1365
1366 /**
1367  * __ring_buffer_alloc - allocate a new ring_buffer
1368  * @size: the size in bytes per cpu that is needed.
1369  * @flags: attributes to set for the ring buffer.
1370  *
1371  * Currently the only flag that is available is the RB_FL_OVERWRITE
1372  * flag. This flag means that the buffer will overwrite old data
1373  * when the buffer wraps. If this flag is not set, the buffer will
1374  * drop data when the tail hits the head.
1375  */
1376 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1377                                         struct lock_class_key *key)
1378 {
1379         struct ring_buffer *buffer;
1380         long nr_pages;
1381         int bsize;
1382         int cpu;
1383         int ret;
1384
1385         /* keep it in its own cache line */
1386         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1387                          GFP_KERNEL);
1388         if (!buffer)
1389                 return NULL;
1390
1391         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1392                 goto fail_free_buffer;
1393
1394         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1395         buffer->flags = flags;
1396         buffer->clock = trace_clock_local;
1397         buffer->reader_lock_key = key;
1398
1399         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1400         init_waitqueue_head(&buffer->irq_work.waiters);
1401
1402         /* need at least two pages */
1403         if (nr_pages < 2)
1404                 nr_pages = 2;
1405
1406         buffer->cpus = nr_cpu_ids;
1407
1408         bsize = sizeof(void *) * nr_cpu_ids;
1409         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1410                                   GFP_KERNEL);
1411         if (!buffer->buffers)
1412                 goto fail_free_cpumask;
1413
1414         cpu = raw_smp_processor_id();
1415         cpumask_set_cpu(cpu, buffer->cpumask);
1416         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1417         if (!buffer->buffers[cpu])
1418                 goto fail_free_buffers;
1419
1420         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1421         if (ret < 0)
1422                 goto fail_free_buffers;
1423
1424         mutex_init(&buffer->mutex);
1425
1426         return buffer;
1427
1428  fail_free_buffers:
1429         for_each_buffer_cpu(buffer, cpu) {
1430                 if (buffer->buffers[cpu])
1431                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1432         }
1433         kfree(buffer->buffers);
1434
1435  fail_free_cpumask:
1436         free_cpumask_var(buffer->cpumask);
1437
1438  fail_free_buffer:
1439         kfree(buffer);
1440         return NULL;
1441 }
1442 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1443
1444 /**
1445  * ring_buffer_free - free a ring buffer.
1446  * @buffer: the buffer to free.
1447  */
1448 void
1449 ring_buffer_free(struct ring_buffer *buffer)
1450 {
1451         int cpu;
1452
1453         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1454
1455         for_each_buffer_cpu(buffer, cpu)
1456                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1457
1458         kfree(buffer->buffers);
1459         free_cpumask_var(buffer->cpumask);
1460
1461         kfree(buffer);
1462 }
1463 EXPORT_SYMBOL_GPL(ring_buffer_free);
1464
1465 void ring_buffer_set_clock(struct ring_buffer *buffer,
1466                            u64 (*clock)(void))
1467 {
1468         buffer->clock = clock;
1469 }
1470
1471 void ring_buffer_set_time_stamp_abs(struct ring_buffer *buffer, bool abs)
1472 {
1473         buffer->time_stamp_abs = abs;
1474 }
1475
1476 bool ring_buffer_time_stamp_abs(struct ring_buffer *buffer)
1477 {
1478         return buffer->time_stamp_abs;
1479 }
1480
1481 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1482
1483 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1484 {
1485         return local_read(&bpage->entries) & RB_WRITE_MASK;
1486 }
1487
1488 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1489 {
1490         return local_read(&bpage->write) & RB_WRITE_MASK;
1491 }
1492
1493 static int
1494 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1495 {
1496         struct list_head *tail_page, *to_remove, *next_page;
1497         struct buffer_page *to_remove_page, *tmp_iter_page;
1498         struct buffer_page *last_page, *first_page;
1499         unsigned long nr_removed;
1500         unsigned long head_bit;
1501         int page_entries;
1502
1503         head_bit = 0;
1504
1505         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1506         atomic_inc(&cpu_buffer->record_disabled);
1507         /*
1508          * We don't race with the readers since we have acquired the reader
1509          * lock. We also don't race with writers after disabling recording.
1510          * This makes it easy to figure out the first and the last page to be
1511          * removed from the list. We unlink all the pages in between including
1512          * the first and last pages. This is done in a busy loop so that we
1513          * lose the least number of traces.
1514          * The pages are freed after we restart recording and unlock readers.
1515          */
1516         tail_page = &cpu_buffer->tail_page->list;
1517
1518         /*
1519          * tail page might be on reader page, we remove the next page
1520          * from the ring buffer
1521          */
1522         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1523                 tail_page = rb_list_head(tail_page->next);
1524         to_remove = tail_page;
1525
1526         /* start of pages to remove */
1527         first_page = list_entry(rb_list_head(to_remove->next),
1528                                 struct buffer_page, list);
1529
1530         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1531                 to_remove = rb_list_head(to_remove)->next;
1532                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1533         }
1534
1535         next_page = rb_list_head(to_remove)->next;
1536
1537         /*
1538          * Now we remove all pages between tail_page and next_page.
1539          * Make sure that we have head_bit value preserved for the
1540          * next page
1541          */
1542         tail_page->next = (struct list_head *)((unsigned long)next_page |
1543                                                 head_bit);
1544         next_page = rb_list_head(next_page);
1545         next_page->prev = tail_page;
1546
1547         /* make sure pages points to a valid page in the ring buffer */
1548         cpu_buffer->pages = next_page;
1549
1550         /* update head page */
1551         if (head_bit)
1552                 cpu_buffer->head_page = list_entry(next_page,
1553                                                 struct buffer_page, list);
1554
1555         /*
1556          * change read pointer to make sure any read iterators reset
1557          * themselves
1558          */
1559         cpu_buffer->read = 0;
1560
1561         /* pages are removed, resume tracing and then free the pages */
1562         atomic_dec(&cpu_buffer->record_disabled);
1563         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1564
1565         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1566
1567         /* last buffer page to remove */
1568         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1569                                 list);
1570         tmp_iter_page = first_page;
1571
1572         do {
1573                 cond_resched();
1574
1575                 to_remove_page = tmp_iter_page;
1576                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1577
1578                 /* update the counters */
1579                 page_entries = rb_page_entries(to_remove_page);
1580                 if (page_entries) {
1581                         /*
1582                          * If something was added to this page, it was full
1583                          * since it is not the tail page. So we deduct the
1584                          * bytes consumed in ring buffer from here.
1585                          * Increment overrun to account for the lost events.
1586                          */
1587                         local_add(page_entries, &cpu_buffer->overrun);
1588                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1589                 }
1590
1591                 /*
1592                  * We have already removed references to this list item, just
1593                  * free up the buffer_page and its page
1594                  */
1595                 free_buffer_page(to_remove_page);
1596                 nr_removed--;
1597
1598         } while (to_remove_page != last_page);
1599
1600         RB_WARN_ON(cpu_buffer, nr_removed);
1601
1602         return nr_removed == 0;
1603 }
1604
1605 static int
1606 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1607 {
1608         struct list_head *pages = &cpu_buffer->new_pages;
1609         int retries, success;
1610
1611         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1612         /*
1613          * We are holding the reader lock, so the reader page won't be swapped
1614          * in the ring buffer. Now we are racing with the writer trying to
1615          * move head page and the tail page.
1616          * We are going to adapt the reader page update process where:
1617          * 1. We first splice the start and end of list of new pages between
1618          *    the head page and its previous page.
1619          * 2. We cmpxchg the prev_page->next to point from head page to the
1620          *    start of new pages list.
1621          * 3. Finally, we update the head->prev to the end of new list.
1622          *
1623          * We will try this process 10 times, to make sure that we don't keep
1624          * spinning.
1625          */
1626         retries = 10;
1627         success = 0;
1628         while (retries--) {
1629                 struct list_head *head_page, *prev_page, *r;
1630                 struct list_head *last_page, *first_page;
1631                 struct list_head *head_page_with_bit;
1632
1633                 head_page = &rb_set_head_page(cpu_buffer)->list;
1634                 if (!head_page)
1635                         break;
1636                 prev_page = head_page->prev;
1637
1638                 first_page = pages->next;
1639                 last_page  = pages->prev;
1640
1641                 head_page_with_bit = (struct list_head *)
1642                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1643
1644                 last_page->next = head_page_with_bit;
1645                 first_page->prev = prev_page;
1646
1647                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1648
1649                 if (r == head_page_with_bit) {
1650                         /*
1651                          * yay, we replaced the page pointer to our new list,
1652                          * now, we just have to update to head page's prev
1653                          * pointer to point to end of list
1654                          */
1655                         head_page->prev = last_page;
1656                         success = 1;
1657                         break;
1658                 }
1659         }
1660
1661         if (success)
1662                 INIT_LIST_HEAD(pages);
1663         /*
1664          * If we weren't successful in adding in new pages, warn and stop
1665          * tracing
1666          */
1667         RB_WARN_ON(cpu_buffer, !success);
1668         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1669
1670         /* free pages if they weren't inserted */
1671         if (!success) {
1672                 struct buffer_page *bpage, *tmp;
1673                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1674                                          list) {
1675                         list_del_init(&bpage->list);
1676                         free_buffer_page(bpage);
1677                 }
1678         }
1679         return success;
1680 }
1681
1682 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1683 {
1684         int success;
1685
1686         if (cpu_buffer->nr_pages_to_update > 0)
1687                 success = rb_insert_pages(cpu_buffer);
1688         else
1689                 success = rb_remove_pages(cpu_buffer,
1690                                         -cpu_buffer->nr_pages_to_update);
1691
1692         if (success)
1693                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1694 }
1695
1696 static void update_pages_handler(struct work_struct *work)
1697 {
1698         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1699                         struct ring_buffer_per_cpu, update_pages_work);
1700         rb_update_pages(cpu_buffer);
1701         complete(&cpu_buffer->update_done);
1702 }
1703
1704 /**
1705  * ring_buffer_resize - resize the ring buffer
1706  * @buffer: the buffer to resize.
1707  * @size: the new size.
1708  * @cpu_id: the cpu buffer to resize
1709  *
1710  * Minimum size is 2 * BUF_PAGE_SIZE.
1711  *
1712  * Returns 0 on success and < 0 on failure.
1713  */
1714 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1715                         int cpu_id)
1716 {
1717         struct ring_buffer_per_cpu *cpu_buffer;
1718         unsigned long nr_pages;
1719         int cpu, err = 0;
1720
1721         /*
1722          * Always succeed at resizing a non-existent buffer:
1723          */
1724         if (!buffer)
1725                 return size;
1726
1727         /* Make sure the requested buffer exists */
1728         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1729             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1730                 return size;
1731
1732         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1733
1734         /* we need a minimum of two pages */
1735         if (nr_pages < 2)
1736                 nr_pages = 2;
1737
1738         size = nr_pages * BUF_PAGE_SIZE;
1739
1740         /*
1741          * Don't succeed if resizing is disabled, as a reader might be
1742          * manipulating the ring buffer and is expecting a sane state while
1743          * this is true.
1744          */
1745         if (atomic_read(&buffer->resize_disabled))
1746                 return -EBUSY;
1747
1748         /* prevent another thread from changing buffer sizes */
1749         mutex_lock(&buffer->mutex);
1750
1751         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1752                 /* calculate the pages to update */
1753                 for_each_buffer_cpu(buffer, cpu) {
1754                         cpu_buffer = buffer->buffers[cpu];
1755
1756                         cpu_buffer->nr_pages_to_update = nr_pages -
1757                                                         cpu_buffer->nr_pages;
1758                         /*
1759                          * nothing more to do for removing pages or no update
1760                          */
1761                         if (cpu_buffer->nr_pages_to_update <= 0)
1762                                 continue;
1763                         /*
1764                          * to add pages, make sure all new pages can be
1765                          * allocated without receiving ENOMEM
1766                          */
1767                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1768                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1769                                                 &cpu_buffer->new_pages, cpu)) {
1770                                 /* not enough memory for new pages */
1771                                 err = -ENOMEM;
1772                                 goto out_err;
1773                         }
1774                 }
1775
1776                 get_online_cpus();
1777                 /*
1778                  * Fire off all the required work handlers
1779                  * We can't schedule on offline CPUs, but it's not necessary
1780                  * since we can change their buffer sizes without any race.
1781                  */
1782                 for_each_buffer_cpu(buffer, cpu) {
1783                         cpu_buffer = buffer->buffers[cpu];
1784                         if (!cpu_buffer->nr_pages_to_update)
1785                                 continue;
1786
1787                         /* Can't run something on an offline CPU. */
1788                         if (!cpu_online(cpu)) {
1789                                 rb_update_pages(cpu_buffer);
1790                                 cpu_buffer->nr_pages_to_update = 0;
1791                         } else {
1792                                 schedule_work_on(cpu,
1793                                                 &cpu_buffer->update_pages_work);
1794                         }
1795                 }
1796
1797                 /* wait for all the updates to complete */
1798                 for_each_buffer_cpu(buffer, cpu) {
1799                         cpu_buffer = buffer->buffers[cpu];
1800                         if (!cpu_buffer->nr_pages_to_update)
1801                                 continue;
1802
1803                         if (cpu_online(cpu))
1804                                 wait_for_completion(&cpu_buffer->update_done);
1805                         cpu_buffer->nr_pages_to_update = 0;
1806                 }
1807
1808                 put_online_cpus();
1809         } else {
1810                 /* Make sure this CPU has been initialized */
1811                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1812                         goto out;
1813
1814                 cpu_buffer = buffer->buffers[cpu_id];
1815
1816                 if (nr_pages == cpu_buffer->nr_pages)
1817                         goto out;
1818
1819                 cpu_buffer->nr_pages_to_update = nr_pages -
1820                                                 cpu_buffer->nr_pages;
1821
1822                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1823                 if (cpu_buffer->nr_pages_to_update > 0 &&
1824                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1825                                             &cpu_buffer->new_pages, cpu_id)) {
1826                         err = -ENOMEM;
1827                         goto out_err;
1828                 }
1829
1830                 get_online_cpus();
1831
1832                 /* Can't run something on an offline CPU. */
1833                 if (!cpu_online(cpu_id))
1834                         rb_update_pages(cpu_buffer);
1835                 else {
1836                         schedule_work_on(cpu_id,
1837                                          &cpu_buffer->update_pages_work);
1838                         wait_for_completion(&cpu_buffer->update_done);
1839                 }
1840
1841                 cpu_buffer->nr_pages_to_update = 0;
1842                 put_online_cpus();
1843         }
1844
1845  out:
1846         /*
1847          * The ring buffer resize can happen with the ring buffer
1848          * enabled, so that the update disturbs the tracing as little
1849          * as possible. But if the buffer is disabled, we do not need
1850          * to worry about that, and we can take the time to verify
1851          * that the buffer is not corrupt.
1852          */
1853         if (atomic_read(&buffer->record_disabled)) {
1854                 atomic_inc(&buffer->record_disabled);
1855                 /*
1856                  * Even though the buffer was disabled, we must make sure
1857                  * that it is truly disabled before calling rb_check_pages.
1858                  * There could have been a race between checking
1859                  * record_disable and incrementing it.
1860                  */
1861                 synchronize_rcu();
1862                 for_each_buffer_cpu(buffer, cpu) {
1863                         cpu_buffer = buffer->buffers[cpu];
1864                         rb_check_pages(cpu_buffer);
1865                 }
1866                 atomic_dec(&buffer->record_disabled);
1867         }
1868
1869         mutex_unlock(&buffer->mutex);
1870         return size;
1871
1872  out_err:
1873         for_each_buffer_cpu(buffer, cpu) {
1874                 struct buffer_page *bpage, *tmp;
1875
1876                 cpu_buffer = buffer->buffers[cpu];
1877                 cpu_buffer->nr_pages_to_update = 0;
1878
1879                 if (list_empty(&cpu_buffer->new_pages))
1880                         continue;
1881
1882                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1883                                         list) {
1884                         list_del_init(&bpage->list);
1885                         free_buffer_page(bpage);
1886                 }
1887         }
1888         mutex_unlock(&buffer->mutex);
1889         return err;
1890 }
1891 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1892
1893 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1894 {
1895         mutex_lock(&buffer->mutex);
1896         if (val)
1897                 buffer->flags |= RB_FL_OVERWRITE;
1898         else
1899                 buffer->flags &= ~RB_FL_OVERWRITE;
1900         mutex_unlock(&buffer->mutex);
1901 }
1902 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1903
1904 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1905 {
1906         return bpage->page->data + index;
1907 }
1908
1909 static __always_inline struct ring_buffer_event *
1910 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1911 {
1912         return __rb_page_index(cpu_buffer->reader_page,
1913                                cpu_buffer->reader_page->read);
1914 }
1915
1916 static __always_inline struct ring_buffer_event *
1917 rb_iter_head_event(struct ring_buffer_iter *iter)
1918 {
1919         return __rb_page_index(iter->head_page, iter->head);
1920 }
1921
1922 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1923 {
1924         return local_read(&bpage->page->commit);
1925 }
1926
1927 /* Size is determined by what has been committed */
1928 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1929 {
1930         return rb_page_commit(bpage);
1931 }
1932
1933 static __always_inline unsigned
1934 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1935 {
1936         return rb_page_commit(cpu_buffer->commit_page);
1937 }
1938
1939 static __always_inline unsigned
1940 rb_event_index(struct ring_buffer_event *event)
1941 {
1942         unsigned long addr = (unsigned long)event;
1943
1944         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1945 }
1946
1947 static void rb_inc_iter(struct ring_buffer_iter *iter)
1948 {
1949         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1950
1951         /*
1952          * The iterator could be on the reader page (it starts there).
1953          * But the head could have moved, since the reader was
1954          * found. Check for this case and assign the iterator
1955          * to the head page instead of next.
1956          */
1957         if (iter->head_page == cpu_buffer->reader_page)
1958                 iter->head_page = rb_set_head_page(cpu_buffer);
1959         else
1960                 rb_inc_page(cpu_buffer, &iter->head_page);
1961
1962         iter->read_stamp = iter->head_page->page->time_stamp;
1963         iter->head = 0;
1964 }
1965
1966 /*
1967  * rb_handle_head_page - writer hit the head page
1968  *
1969  * Returns: +1 to retry page
1970  *           0 to continue
1971  *          -1 on error
1972  */
1973 static int
1974 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1975                     struct buffer_page *tail_page,
1976                     struct buffer_page *next_page)
1977 {
1978         struct buffer_page *new_head;
1979         int entries;
1980         int type;
1981         int ret;
1982
1983         entries = rb_page_entries(next_page);
1984
1985         /*
1986          * The hard part is here. We need to move the head
1987          * forward, and protect against both readers on
1988          * other CPUs and writers coming in via interrupts.
1989          */
1990         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1991                                        RB_PAGE_HEAD);
1992
1993         /*
1994          * type can be one of four:
1995          *  NORMAL - an interrupt already moved it for us
1996          *  HEAD   - we are the first to get here.
1997          *  UPDATE - we are the interrupt interrupting
1998          *           a current move.
1999          *  MOVED  - a reader on another CPU moved the next
2000          *           pointer to its reader page. Give up
2001          *           and try again.
2002          */
2003
2004         switch (type) {
2005         case RB_PAGE_HEAD:
2006                 /*
2007                  * We changed the head to UPDATE, thus
2008                  * it is our responsibility to update
2009                  * the counters.
2010                  */
2011                 local_add(entries, &cpu_buffer->overrun);
2012                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2013
2014                 /*
2015                  * The entries will be zeroed out when we move the
2016                  * tail page.
2017                  */
2018
2019                 /* still more to do */
2020                 break;
2021
2022         case RB_PAGE_UPDATE:
2023                 /*
2024                  * This is an interrupt that interrupt the
2025                  * previous update. Still more to do.
2026                  */
2027                 break;
2028         case RB_PAGE_NORMAL:
2029                 /*
2030                  * An interrupt came in before the update
2031                  * and processed this for us.
2032                  * Nothing left to do.
2033                  */
2034                 return 1;
2035         case RB_PAGE_MOVED:
2036                 /*
2037                  * The reader is on another CPU and just did
2038                  * a swap with our next_page.
2039                  * Try again.
2040                  */
2041                 return 1;
2042         default:
2043                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2044                 return -1;
2045         }
2046
2047         /*
2048          * Now that we are here, the old head pointer is
2049          * set to UPDATE. This will keep the reader from
2050          * swapping the head page with the reader page.
2051          * The reader (on another CPU) will spin till
2052          * we are finished.
2053          *
2054          * We just need to protect against interrupts
2055          * doing the job. We will set the next pointer
2056          * to HEAD. After that, we set the old pointer
2057          * to NORMAL, but only if it was HEAD before.
2058          * otherwise we are an interrupt, and only
2059          * want the outer most commit to reset it.
2060          */
2061         new_head = next_page;
2062         rb_inc_page(cpu_buffer, &new_head);
2063
2064         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2065                                     RB_PAGE_NORMAL);
2066
2067         /*
2068          * Valid returns are:
2069          *  HEAD   - an interrupt came in and already set it.
2070          *  NORMAL - One of two things:
2071          *            1) We really set it.
2072          *            2) A bunch of interrupts came in and moved
2073          *               the page forward again.
2074          */
2075         switch (ret) {
2076         case RB_PAGE_HEAD:
2077         case RB_PAGE_NORMAL:
2078                 /* OK */
2079                 break;
2080         default:
2081                 RB_WARN_ON(cpu_buffer, 1);
2082                 return -1;
2083         }
2084
2085         /*
2086          * It is possible that an interrupt came in,
2087          * set the head up, then more interrupts came in
2088          * and moved it again. When we get back here,
2089          * the page would have been set to NORMAL but we
2090          * just set it back to HEAD.
2091          *
2092          * How do you detect this? Well, if that happened
2093          * the tail page would have moved.
2094          */
2095         if (ret == RB_PAGE_NORMAL) {
2096                 struct buffer_page *buffer_tail_page;
2097
2098                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2099                 /*
2100                  * If the tail had moved passed next, then we need
2101                  * to reset the pointer.
2102                  */
2103                 if (buffer_tail_page != tail_page &&
2104                     buffer_tail_page != next_page)
2105                         rb_head_page_set_normal(cpu_buffer, new_head,
2106                                                 next_page,
2107                                                 RB_PAGE_HEAD);
2108         }
2109
2110         /*
2111          * If this was the outer most commit (the one that
2112          * changed the original pointer from HEAD to UPDATE),
2113          * then it is up to us to reset it to NORMAL.
2114          */
2115         if (type == RB_PAGE_HEAD) {
2116                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2117                                               tail_page,
2118                                               RB_PAGE_UPDATE);
2119                 if (RB_WARN_ON(cpu_buffer,
2120                                ret != RB_PAGE_UPDATE))
2121                         return -1;
2122         }
2123
2124         return 0;
2125 }
2126
2127 static inline void
2128 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2129               unsigned long tail, struct rb_event_info *info)
2130 {
2131         struct buffer_page *tail_page = info->tail_page;
2132         struct ring_buffer_event *event;
2133         unsigned long length = info->length;
2134
2135         /*
2136          * Only the event that crossed the page boundary
2137          * must fill the old tail_page with padding.
2138          */
2139         if (tail >= BUF_PAGE_SIZE) {
2140                 /*
2141                  * If the page was filled, then we still need
2142                  * to update the real_end. Reset it to zero
2143                  * and the reader will ignore it.
2144                  */
2145                 if (tail == BUF_PAGE_SIZE)
2146                         tail_page->real_end = 0;
2147
2148                 local_sub(length, &tail_page->write);
2149                 return;
2150         }
2151
2152         event = __rb_page_index(tail_page, tail);
2153
2154         /* account for padding bytes */
2155         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2156
2157         /*
2158          * Save the original length to the meta data.
2159          * This will be used by the reader to add lost event
2160          * counter.
2161          */
2162         tail_page->real_end = tail;
2163
2164         /*
2165          * If this event is bigger than the minimum size, then
2166          * we need to be careful that we don't subtract the
2167          * write counter enough to allow another writer to slip
2168          * in on this page.
2169          * We put in a discarded commit instead, to make sure
2170          * that this space is not used again.
2171          *
2172          * If we are less than the minimum size, we don't need to
2173          * worry about it.
2174          */
2175         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2176                 /* No room for any events */
2177
2178                 /* Mark the rest of the page with padding */
2179                 rb_event_set_padding(event);
2180
2181                 /* Set the write back to the previous setting */
2182                 local_sub(length, &tail_page->write);
2183                 return;
2184         }
2185
2186         /* Put in a discarded event */
2187         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2188         event->type_len = RINGBUF_TYPE_PADDING;
2189         /* time delta must be non zero */
2190         event->time_delta = 1;
2191
2192         /* Set write to end of buffer */
2193         length = (tail + length) - BUF_PAGE_SIZE;
2194         local_sub(length, &tail_page->write);
2195 }
2196
2197 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2198
2199 /*
2200  * This is the slow path, force gcc not to inline it.
2201  */
2202 static noinline struct ring_buffer_event *
2203 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2204              unsigned long tail, struct rb_event_info *info)
2205 {
2206         struct buffer_page *tail_page = info->tail_page;
2207         struct buffer_page *commit_page = cpu_buffer->commit_page;
2208         struct ring_buffer *buffer = cpu_buffer->buffer;
2209         struct buffer_page *next_page;
2210         int ret;
2211
2212         next_page = tail_page;
2213
2214         rb_inc_page(cpu_buffer, &next_page);
2215
2216         /*
2217          * If for some reason, we had an interrupt storm that made
2218          * it all the way around the buffer, bail, and warn
2219          * about it.
2220          */
2221         if (unlikely(next_page == commit_page)) {
2222                 local_inc(&cpu_buffer->commit_overrun);
2223                 goto out_reset;
2224         }
2225
2226         /*
2227          * This is where the fun begins!
2228          *
2229          * We are fighting against races between a reader that
2230          * could be on another CPU trying to swap its reader
2231          * page with the buffer head.
2232          *
2233          * We are also fighting against interrupts coming in and
2234          * moving the head or tail on us as well.
2235          *
2236          * If the next page is the head page then we have filled
2237          * the buffer, unless the commit page is still on the
2238          * reader page.
2239          */
2240         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2241
2242                 /*
2243                  * If the commit is not on the reader page, then
2244                  * move the header page.
2245                  */
2246                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2247                         /*
2248                          * If we are not in overwrite mode,
2249                          * this is easy, just stop here.
2250                          */
2251                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2252                                 local_inc(&cpu_buffer->dropped_events);
2253                                 goto out_reset;
2254                         }
2255
2256                         ret = rb_handle_head_page(cpu_buffer,
2257                                                   tail_page,
2258                                                   next_page);
2259                         if (ret < 0)
2260                                 goto out_reset;
2261                         if (ret)
2262                                 goto out_again;
2263                 } else {
2264                         /*
2265                          * We need to be careful here too. The
2266                          * commit page could still be on the reader
2267                          * page. We could have a small buffer, and
2268                          * have filled up the buffer with events
2269                          * from interrupts and such, and wrapped.
2270                          *
2271                          * Note, if the tail page is also the on the
2272                          * reader_page, we let it move out.
2273                          */
2274                         if (unlikely((cpu_buffer->commit_page !=
2275                                       cpu_buffer->tail_page) &&
2276                                      (cpu_buffer->commit_page ==
2277                                       cpu_buffer->reader_page))) {
2278                                 local_inc(&cpu_buffer->commit_overrun);
2279                                 goto out_reset;
2280                         }
2281                 }
2282         }
2283
2284         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2285
2286  out_again:
2287
2288         rb_reset_tail(cpu_buffer, tail, info);
2289
2290         /* Commit what we have for now. */
2291         rb_end_commit(cpu_buffer);
2292         /* rb_end_commit() decs committing */
2293         local_inc(&cpu_buffer->committing);
2294
2295         /* fail and let the caller try again */
2296         return ERR_PTR(-EAGAIN);
2297
2298  out_reset:
2299         /* reset write */
2300         rb_reset_tail(cpu_buffer, tail, info);
2301
2302         return NULL;
2303 }
2304
2305 /* Slow path, do not inline */
2306 static noinline struct ring_buffer_event *
2307 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2308 {
2309         if (abs)
2310                 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2311         else
2312                 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2313
2314         /* Not the first event on the page, or not delta? */
2315         if (abs || rb_event_index(event)) {
2316                 event->time_delta = delta & TS_MASK;
2317                 event->array[0] = delta >> TS_SHIFT;
2318         } else {
2319                 /* nope, just zero it */
2320                 event->time_delta = 0;
2321                 event->array[0] = 0;
2322         }
2323
2324         return skip_time_extend(event);
2325 }
2326
2327 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2328                                      struct ring_buffer_event *event);
2329
2330 /**
2331  * rb_update_event - update event type and data
2332  * @event: the event to update
2333  * @type: the type of event
2334  * @length: the size of the event field in the ring buffer
2335  *
2336  * Update the type and data fields of the event. The length
2337  * is the actual size that is written to the ring buffer,
2338  * and with this, we can determine what to place into the
2339  * data field.
2340  */
2341 static void
2342 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2343                 struct ring_buffer_event *event,
2344                 struct rb_event_info *info)
2345 {
2346         unsigned length = info->length;
2347         u64 delta = info->delta;
2348
2349         /* Only a commit updates the timestamp */
2350         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2351                 delta = 0;
2352
2353         /*
2354          * If we need to add a timestamp, then we
2355          * add it to the start of the reserved space.
2356          */
2357         if (unlikely(info->add_timestamp)) {
2358                 bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer);
2359
2360                 event = rb_add_time_stamp(event, info->delta, abs);
2361                 length -= RB_LEN_TIME_EXTEND;
2362                 delta = 0;
2363         }
2364
2365         event->time_delta = delta;
2366         length -= RB_EVNT_HDR_SIZE;
2367         if (length > RB_MAX_SMALL_DATA) {
2368                 event->type_len = 0;
2369                 event->array[0] = length;
2370         } else
2371                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2372 }
2373
2374 static unsigned rb_calculate_event_length(unsigned length)
2375 {
2376         struct ring_buffer_event event; /* Used only for sizeof array */
2377
2378         /* zero length can cause confusions */
2379         if (!length)
2380                 length++;
2381
2382         if (length > RB_MAX_SMALL_DATA)
2383                 length += sizeof(event.array[0]);
2384
2385         length += RB_EVNT_HDR_SIZE;
2386         length = ALIGN(length, RB_ALIGNMENT);
2387
2388         /*
2389          * In case the time delta is larger than the 27 bits for it
2390          * in the header, we need to add a timestamp. If another
2391          * event comes in when trying to discard this one to increase
2392          * the length, then the timestamp will be added in the allocated
2393          * space of this event. If length is bigger than the size needed
2394          * for the TIME_EXTEND, then padding has to be used. The events
2395          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2396          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2397          * As length is a multiple of 4, we only need to worry if it
2398          * is 12 (RB_LEN_TIME_EXTEND + 4).
2399          */
2400         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2401                 length += RB_ALIGNMENT;
2402
2403         return length;
2404 }
2405
2406 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2407 static inline bool sched_clock_stable(void)
2408 {
2409         return true;
2410 }
2411 #endif
2412
2413 static inline int
2414 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2415                   struct ring_buffer_event *event)
2416 {
2417         unsigned long new_index, old_index;
2418         struct buffer_page *bpage;
2419         unsigned long index;
2420         unsigned long addr;
2421
2422         new_index = rb_event_index(event);
2423         old_index = new_index + rb_event_ts_length(event);
2424         addr = (unsigned long)event;
2425         addr &= PAGE_MASK;
2426
2427         bpage = READ_ONCE(cpu_buffer->tail_page);
2428
2429         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2430                 unsigned long write_mask =
2431                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2432                 unsigned long event_length = rb_event_length(event);
2433                 /*
2434                  * This is on the tail page. It is possible that
2435                  * a write could come in and move the tail page
2436                  * and write to the next page. That is fine
2437                  * because we just shorten what is on this page.
2438                  */
2439                 old_index += write_mask;
2440                 new_index += write_mask;
2441                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2442                 if (index == old_index) {
2443                         /* update counters */
2444                         local_sub(event_length, &cpu_buffer->entries_bytes);
2445                         return 1;
2446                 }
2447         }
2448
2449         /* could not discard */
2450         return 0;
2451 }
2452
2453 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2454 {
2455         local_inc(&cpu_buffer->committing);
2456         local_inc(&cpu_buffer->commits);
2457 }
2458
2459 static __always_inline void
2460 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2461 {
2462         unsigned long max_count;
2463
2464         /*
2465          * We only race with interrupts and NMIs on this CPU.
2466          * If we own the commit event, then we can commit
2467          * all others that interrupted us, since the interruptions
2468          * are in stack format (they finish before they come
2469          * back to us). This allows us to do a simple loop to
2470          * assign the commit to the tail.
2471          */
2472  again:
2473         max_count = cpu_buffer->nr_pages * 100;
2474
2475         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2476                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2477                         return;
2478                 if (RB_WARN_ON(cpu_buffer,
2479                                rb_is_reader_page(cpu_buffer->tail_page)))
2480                         return;
2481                 local_set(&cpu_buffer->commit_page->page->commit,
2482                           rb_page_write(cpu_buffer->commit_page));
2483                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2484                 /* Only update the write stamp if the page has an event */
2485                 if (rb_page_write(cpu_buffer->commit_page))
2486                         cpu_buffer->write_stamp =
2487                                 cpu_buffer->commit_page->page->time_stamp;
2488                 /* add barrier to keep gcc from optimizing too much */
2489                 barrier();
2490         }
2491         while (rb_commit_index(cpu_buffer) !=
2492                rb_page_write(cpu_buffer->commit_page)) {
2493
2494                 local_set(&cpu_buffer->commit_page->page->commit,
2495                           rb_page_write(cpu_buffer->commit_page));
2496                 RB_WARN_ON(cpu_buffer,
2497                            local_read(&cpu_buffer->commit_page->page->commit) &
2498                            ~RB_WRITE_MASK);
2499                 barrier();
2500         }
2501
2502         /* again, keep gcc from optimizing */
2503         barrier();
2504
2505         /*
2506          * If an interrupt came in just after the first while loop
2507          * and pushed the tail page forward, we will be left with
2508          * a dangling commit that will never go forward.
2509          */
2510         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2511                 goto again;
2512 }
2513
2514 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2515 {
2516         unsigned long commits;
2517
2518         if (RB_WARN_ON(cpu_buffer,
2519                        !local_read(&cpu_buffer->committing)))
2520                 return;
2521
2522  again:
2523         commits = local_read(&cpu_buffer->commits);
2524         /* synchronize with interrupts */
2525         barrier();
2526         if (local_read(&cpu_buffer->committing) == 1)
2527                 rb_set_commit_to_write(cpu_buffer);
2528
2529         local_dec(&cpu_buffer->committing);
2530
2531         /* synchronize with interrupts */
2532         barrier();
2533
2534         /*
2535          * Need to account for interrupts coming in between the
2536          * updating of the commit page and the clearing of the
2537          * committing counter.
2538          */
2539         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2540             !local_read(&cpu_buffer->committing)) {
2541                 local_inc(&cpu_buffer->committing);
2542                 goto again;
2543         }
2544 }
2545
2546 static inline void rb_event_discard(struct ring_buffer_event *event)
2547 {
2548         if (extended_time(event))
2549                 event = skip_time_extend(event);
2550
2551         /* array[0] holds the actual length for the discarded event */
2552         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2553         event->type_len = RINGBUF_TYPE_PADDING;
2554         /* time delta must be non zero */
2555         if (!event->time_delta)
2556                 event->time_delta = 1;
2557 }
2558
2559 static __always_inline bool
2560 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2561                    struct ring_buffer_event *event)
2562 {
2563         unsigned long addr = (unsigned long)event;
2564         unsigned long index;
2565
2566         index = rb_event_index(event);
2567         addr &= PAGE_MASK;
2568
2569         return cpu_buffer->commit_page->page == (void *)addr &&
2570                 rb_commit_index(cpu_buffer) == index;
2571 }
2572
2573 static __always_inline void
2574 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2575                       struct ring_buffer_event *event)
2576 {
2577         u64 delta;
2578
2579         /*
2580          * The event first in the commit queue updates the
2581          * time stamp.
2582          */
2583         if (rb_event_is_commit(cpu_buffer, event)) {
2584                 /*
2585                  * A commit event that is first on a page
2586                  * updates the write timestamp with the page stamp
2587                  */
2588                 if (!rb_event_index(event))
2589                         cpu_buffer->write_stamp =
2590                                 cpu_buffer->commit_page->page->time_stamp;
2591                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2592                         delta = ring_buffer_event_time_stamp(event);
2593                         cpu_buffer->write_stamp += delta;
2594                 } else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
2595                         delta = ring_buffer_event_time_stamp(event);
2596                         cpu_buffer->write_stamp = delta;
2597                 } else
2598                         cpu_buffer->write_stamp += event->time_delta;
2599         }
2600 }
2601
2602 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2603                       struct ring_buffer_event *event)
2604 {
2605         local_inc(&cpu_buffer->entries);
2606         rb_update_write_stamp(cpu_buffer, event);
2607         rb_end_commit(cpu_buffer);
2608 }
2609
2610 static __always_inline void
2611 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2612 {
2613         size_t nr_pages;
2614         size_t dirty;
2615         size_t full;
2616
2617         if (buffer->irq_work.waiters_pending) {
2618                 buffer->irq_work.waiters_pending = false;
2619                 /* irq_work_queue() supplies it's own memory barriers */
2620                 irq_work_queue(&buffer->irq_work.work);
2621         }
2622
2623         if (cpu_buffer->irq_work.waiters_pending) {
2624                 cpu_buffer->irq_work.waiters_pending = false;
2625                 /* irq_work_queue() supplies it's own memory barriers */
2626                 irq_work_queue(&cpu_buffer->irq_work.work);
2627         }
2628
2629         if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2630                 return;
2631
2632         if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2633                 return;
2634
2635         if (!cpu_buffer->irq_work.full_waiters_pending)
2636                 return;
2637
2638         cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2639
2640         full = cpu_buffer->shortest_full;
2641         nr_pages = cpu_buffer->nr_pages;
2642         dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
2643         if (full && nr_pages && (dirty * 100) <= full * nr_pages)
2644                 return;
2645
2646         cpu_buffer->irq_work.wakeup_full = true;
2647         cpu_buffer->irq_work.full_waiters_pending = false;
2648         /* irq_work_queue() supplies it's own memory barriers */
2649         irq_work_queue(&cpu_buffer->irq_work.work);
2650 }
2651
2652 /*
2653  * The lock and unlock are done within a preempt disable section.
2654  * The current_context per_cpu variable can only be modified
2655  * by the current task between lock and unlock. But it can
2656  * be modified more than once via an interrupt. To pass this
2657  * information from the lock to the unlock without having to
2658  * access the 'in_interrupt()' functions again (which do show
2659  * a bit of overhead in something as critical as function tracing,
2660  * we use a bitmask trick.
2661  *
2662  *  bit 0 =  NMI context
2663  *  bit 1 =  IRQ context
2664  *  bit 2 =  SoftIRQ context
2665  *  bit 3 =  normal context.
2666  *
2667  * This works because this is the order of contexts that can
2668  * preempt other contexts. A SoftIRQ never preempts an IRQ
2669  * context.
2670  *
2671  * When the context is determined, the corresponding bit is
2672  * checked and set (if it was set, then a recursion of that context
2673  * happened).
2674  *
2675  * On unlock, we need to clear this bit. To do so, just subtract
2676  * 1 from the current_context and AND it to itself.
2677  *
2678  * (binary)
2679  *  101 - 1 = 100
2680  *  101 & 100 = 100 (clearing bit zero)
2681  *
2682  *  1010 - 1 = 1001
2683  *  1010 & 1001 = 1000 (clearing bit 1)
2684  *
2685  * The least significant bit can be cleared this way, and it
2686  * just so happens that it is the same bit corresponding to
2687  * the current context.
2688  */
2689
2690 static __always_inline int
2691 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2692 {
2693         unsigned int val = cpu_buffer->current_context;
2694         unsigned long pc = preempt_count();
2695         int bit;
2696
2697         if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2698                 bit = RB_CTX_NORMAL;
2699         else
2700                 bit = pc & NMI_MASK ? RB_CTX_NMI :
2701                         pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2702
2703         if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
2704                 return 1;
2705
2706         val |= (1 << (bit + cpu_buffer->nest));
2707         cpu_buffer->current_context = val;
2708
2709         return 0;
2710 }
2711
2712 static __always_inline void
2713 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2714 {
2715         cpu_buffer->current_context &=
2716                 cpu_buffer->current_context - (1 << cpu_buffer->nest);
2717 }
2718
2719 /* The recursive locking above uses 4 bits */
2720 #define NESTED_BITS 4
2721
2722 /**
2723  * ring_buffer_nest_start - Allow to trace while nested
2724  * @buffer: The ring buffer to modify
2725  *
2726  * The ring buffer has a safety mechanism to prevent recursion.
2727  * But there may be a case where a trace needs to be done while
2728  * tracing something else. In this case, calling this function
2729  * will allow this function to nest within a currently active
2730  * ring_buffer_lock_reserve().
2731  *
2732  * Call this function before calling another ring_buffer_lock_reserve() and
2733  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2734  */
2735 void ring_buffer_nest_start(struct ring_buffer *buffer)
2736 {
2737         struct ring_buffer_per_cpu *cpu_buffer;
2738         int cpu;
2739
2740         /* Enabled by ring_buffer_nest_end() */
2741         preempt_disable_notrace();
2742         cpu = raw_smp_processor_id();
2743         cpu_buffer = buffer->buffers[cpu];
2744         /* This is the shift value for the above recursive locking */
2745         cpu_buffer->nest += NESTED_BITS;
2746 }
2747
2748 /**
2749  * ring_buffer_nest_end - Allow to trace while nested
2750  * @buffer: The ring buffer to modify
2751  *
2752  * Must be called after ring_buffer_nest_start() and after the
2753  * ring_buffer_unlock_commit().
2754  */
2755 void ring_buffer_nest_end(struct ring_buffer *buffer)
2756 {
2757         struct ring_buffer_per_cpu *cpu_buffer;
2758         int cpu;
2759
2760         /* disabled by ring_buffer_nest_start() */
2761         cpu = raw_smp_processor_id();
2762         cpu_buffer = buffer->buffers[cpu];
2763         /* This is the shift value for the above recursive locking */
2764         cpu_buffer->nest -= NESTED_BITS;
2765         preempt_enable_notrace();
2766 }
2767
2768 /**
2769  * ring_buffer_unlock_commit - commit a reserved
2770  * @buffer: The buffer to commit to
2771  * @event: The event pointer to commit.
2772  *
2773  * This commits the data to the ring buffer, and releases any locks held.
2774  *
2775  * Must be paired with ring_buffer_lock_reserve.
2776  */
2777 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2778                               struct ring_buffer_event *event)
2779 {
2780         struct ring_buffer_per_cpu *cpu_buffer;
2781         int cpu = raw_smp_processor_id();
2782
2783         cpu_buffer = buffer->buffers[cpu];
2784
2785         rb_commit(cpu_buffer, event);
2786
2787         rb_wakeups(buffer, cpu_buffer);
2788
2789         trace_recursive_unlock(cpu_buffer);
2790
2791         preempt_enable_notrace();
2792
2793         return 0;
2794 }
2795 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2796
2797 static noinline void
2798 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2799                     struct rb_event_info *info)
2800 {
2801         WARN_ONCE(info->delta > (1ULL << 59),
2802                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2803                   (unsigned long long)info->delta,
2804                   (unsigned long long)info->ts,
2805                   (unsigned long long)cpu_buffer->write_stamp,
2806                   sched_clock_stable() ? "" :
2807                   "If you just came from a suspend/resume,\n"
2808                   "please switch to the trace global clock:\n"
2809                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2810                   "or add trace_clock=global to the kernel command line\n");
2811         info->add_timestamp = 1;
2812 }
2813
2814 static struct ring_buffer_event *
2815 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2816                   struct rb_event_info *info)
2817 {
2818         struct ring_buffer_event *event;
2819         struct buffer_page *tail_page;
2820         unsigned long tail, write;
2821
2822         /*
2823          * If the time delta since the last event is too big to
2824          * hold in the time field of the event, then we append a
2825          * TIME EXTEND event ahead of the data event.
2826          */
2827         if (unlikely(info->add_timestamp))
2828                 info->length += RB_LEN_TIME_EXTEND;
2829
2830         /* Don't let the compiler play games with cpu_buffer->tail_page */
2831         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2832         write = local_add_return(info->length, &tail_page->write);
2833
2834         /* set write to only the index of the write */
2835         write &= RB_WRITE_MASK;
2836         tail = write - info->length;
2837
2838         /*
2839          * If this is the first commit on the page, then it has the same
2840          * timestamp as the page itself.
2841          */
2842         if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer))
2843                 info->delta = 0;
2844
2845         /* See if we shot pass the end of this buffer page */
2846         if (unlikely(write > BUF_PAGE_SIZE))
2847                 return rb_move_tail(cpu_buffer, tail, info);
2848
2849         /* We reserved something on the buffer */
2850
2851         event = __rb_page_index(tail_page, tail);
2852         rb_update_event(cpu_buffer, event, info);
2853
2854         local_inc(&tail_page->entries);
2855
2856         /*
2857          * If this is the first commit on the page, then update
2858          * its timestamp.
2859          */
2860         if (!tail)
2861                 tail_page->page->time_stamp = info->ts;
2862
2863         /* account for these added bytes */
2864         local_add(info->length, &cpu_buffer->entries_bytes);
2865
2866         return event;
2867 }
2868
2869 static __always_inline struct ring_buffer_event *
2870 rb_reserve_next_event(struct ring_buffer *buffer,
2871                       struct ring_buffer_per_cpu *cpu_buffer,
2872                       unsigned long length)
2873 {
2874         struct ring_buffer_event *event;
2875         struct rb_event_info info;
2876         int nr_loops = 0;
2877         u64 diff;
2878
2879         rb_start_commit(cpu_buffer);
2880
2881 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2882         /*
2883          * Due to the ability to swap a cpu buffer from a buffer
2884          * it is possible it was swapped before we committed.
2885          * (committing stops a swap). We check for it here and
2886          * if it happened, we have to fail the write.
2887          */
2888         barrier();
2889         if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2890                 local_dec(&cpu_buffer->committing);
2891                 local_dec(&cpu_buffer->commits);
2892                 return NULL;
2893         }
2894 #endif
2895
2896         info.length = rb_calculate_event_length(length);
2897  again:
2898         info.add_timestamp = 0;
2899         info.delta = 0;
2900
2901         /*
2902          * We allow for interrupts to reenter here and do a trace.
2903          * If one does, it will cause this original code to loop
2904          * back here. Even with heavy interrupts happening, this
2905          * should only happen a few times in a row. If this happens
2906          * 1000 times in a row, there must be either an interrupt
2907          * storm or we have something buggy.
2908          * Bail!
2909          */
2910         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2911                 goto out_fail;
2912
2913         info.ts = rb_time_stamp(cpu_buffer->buffer);
2914         diff = info.ts - cpu_buffer->write_stamp;
2915
2916         /* make sure this diff is calculated here */
2917         barrier();
2918
2919         if (ring_buffer_time_stamp_abs(buffer)) {
2920                 info.delta = info.ts;
2921                 rb_handle_timestamp(cpu_buffer, &info);
2922         } else /* Did the write stamp get updated already? */
2923                 if (likely(info.ts >= cpu_buffer->write_stamp)) {
2924                 info.delta = diff;
2925                 if (unlikely(test_time_stamp(info.delta)))
2926                         rb_handle_timestamp(cpu_buffer, &info);
2927         }
2928
2929         event = __rb_reserve_next(cpu_buffer, &info);
2930
2931         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2932                 if (info.add_timestamp)
2933                         info.length -= RB_LEN_TIME_EXTEND;
2934                 goto again;
2935         }
2936
2937         if (!event)
2938                 goto out_fail;
2939
2940         return event;
2941
2942  out_fail:
2943         rb_end_commit(cpu_buffer);
2944         return NULL;
2945 }
2946
2947 /**
2948  * ring_buffer_lock_reserve - reserve a part of the buffer
2949  * @buffer: the ring buffer to reserve from
2950  * @length: the length of the data to reserve (excluding event header)
2951  *
2952  * Returns a reserved event on the ring buffer to copy directly to.
2953  * The user of this interface will need to get the body to write into
2954  * and can use the ring_buffer_event_data() interface.
2955  *
2956  * The length is the length of the data needed, not the event length
2957  * which also includes the event header.
2958  *
2959  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2960  * If NULL is returned, then nothing has been allocated or locked.
2961  */
2962 struct ring_buffer_event *
2963 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2964 {
2965         struct ring_buffer_per_cpu *cpu_buffer;
2966         struct ring_buffer_event *event;
2967         int cpu;
2968
2969         /* If we are tracing schedule, we don't want to recurse */
2970         preempt_disable_notrace();
2971
2972         if (unlikely(atomic_read(&buffer->record_disabled)))
2973                 goto out;
2974
2975         cpu = raw_smp_processor_id();
2976
2977         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2978                 goto out;
2979
2980         cpu_buffer = buffer->buffers[cpu];
2981
2982         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2983                 goto out;
2984
2985         if (unlikely(length > BUF_MAX_DATA_SIZE))
2986                 goto out;
2987
2988         if (unlikely(trace_recursive_lock(cpu_buffer)))
2989                 goto out;
2990
2991         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2992         if (!event)
2993                 goto out_unlock;
2994
2995         return event;
2996
2997  out_unlock:
2998         trace_recursive_unlock(cpu_buffer);
2999  out:
3000         preempt_enable_notrace();
3001         return NULL;
3002 }
3003 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3004
3005 /*
3006  * Decrement the entries to the page that an event is on.
3007  * The event does not even need to exist, only the pointer
3008  * to the page it is on. This may only be called before the commit
3009  * takes place.
3010  */
3011 static inline void
3012 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3013                    struct ring_buffer_event *event)
3014 {
3015         unsigned long addr = (unsigned long)event;
3016         struct buffer_page *bpage = cpu_buffer->commit_page;
3017         struct buffer_page *start;
3018
3019         addr &= PAGE_MASK;
3020
3021         /* Do the likely case first */
3022         if (likely(bpage->page == (void *)addr)) {
3023                 local_dec(&bpage->entries);
3024                 return;
3025         }
3026
3027         /*
3028          * Because the commit page may be on the reader page we
3029          * start with the next page and check the end loop there.
3030          */
3031         rb_inc_page(cpu_buffer, &bpage);
3032         start = bpage;
3033         do {
3034                 if (bpage->page == (void *)addr) {
3035                         local_dec(&bpage->entries);
3036                         return;
3037                 }
3038                 rb_inc_page(cpu_buffer, &bpage);
3039         } while (bpage != start);
3040
3041         /* commit not part of this buffer?? */
3042         RB_WARN_ON(cpu_buffer, 1);
3043 }
3044
3045 /**
3046  * ring_buffer_commit_discard - discard an event that has not been committed
3047  * @buffer: the ring buffer
3048  * @event: non committed event to discard
3049  *
3050  * Sometimes an event that is in the ring buffer needs to be ignored.
3051  * This function lets the user discard an event in the ring buffer
3052  * and then that event will not be read later.
3053  *
3054  * This function only works if it is called before the item has been
3055  * committed. It will try to free the event from the ring buffer
3056  * if another event has not been added behind it.
3057  *
3058  * If another event has been added behind it, it will set the event
3059  * up as discarded, and perform the commit.
3060  *
3061  * If this function is called, do not call ring_buffer_unlock_commit on
3062  * the event.
3063  */
3064 void ring_buffer_discard_commit(struct ring_buffer *buffer,
3065                                 struct ring_buffer_event *event)
3066 {
3067         struct ring_buffer_per_cpu *cpu_buffer;
3068         int cpu;
3069
3070         /* The event is discarded regardless */
3071         rb_event_discard(event);
3072
3073         cpu = smp_processor_id();
3074         cpu_buffer = buffer->buffers[cpu];
3075
3076         /*
3077          * This must only be called if the event has not been
3078          * committed yet. Thus we can assume that preemption
3079          * is still disabled.
3080          */
3081         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3082
3083         rb_decrement_entry(cpu_buffer, event);
3084         if (rb_try_to_discard(cpu_buffer, event))
3085                 goto out;
3086
3087         /*
3088          * The commit is still visible by the reader, so we
3089          * must still update the timestamp.
3090          */
3091         rb_update_write_stamp(cpu_buffer, event);
3092  out:
3093         rb_end_commit(cpu_buffer);
3094
3095         trace_recursive_unlock(cpu_buffer);
3096
3097         preempt_enable_notrace();
3098
3099 }
3100 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3101
3102 /**
3103  * ring_buffer_write - write data to the buffer without reserving
3104  * @buffer: The ring buffer to write to.
3105  * @length: The length of the data being written (excluding the event header)
3106  * @data: The data to write to the buffer.
3107  *
3108  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3109  * one function. If you already have the data to write to the buffer, it
3110  * may be easier to simply call this function.
3111  *
3112  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3113  * and not the length of the event which would hold the header.
3114  */
3115 int ring_buffer_write(struct ring_buffer *buffer,
3116                       unsigned long length,
3117                       void *data)
3118 {
3119         struct ring_buffer_per_cpu *cpu_buffer;
3120         struct ring_buffer_event *event;
3121         void *body;
3122         int ret = -EBUSY;
3123         int cpu;
3124
3125         preempt_disable_notrace();
3126
3127         if (atomic_read(&buffer->record_disabled))
3128                 goto out;
3129
3130         cpu = raw_smp_processor_id();
3131
3132         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3133                 goto out;
3134
3135         cpu_buffer = buffer->buffers[cpu];
3136
3137         if (atomic_read(&cpu_buffer->record_disabled))
3138                 goto out;
3139
3140         if (length > BUF_MAX_DATA_SIZE)
3141                 goto out;
3142
3143         if (unlikely(trace_recursive_lock(cpu_buffer)))
3144                 goto out;
3145
3146         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3147         if (!event)
3148                 goto out_unlock;
3149
3150         body = rb_event_data(event);
3151
3152         memcpy(body, data, length);
3153
3154         rb_commit(cpu_buffer, event);
3155
3156         rb_wakeups(buffer, cpu_buffer);
3157
3158         ret = 0;
3159
3160  out_unlock:
3161         trace_recursive_unlock(cpu_buffer);
3162
3163  out:
3164         preempt_enable_notrace();
3165
3166         return ret;
3167 }
3168 EXPORT_SYMBOL_GPL(ring_buffer_write);
3169
3170 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3171 {
3172         struct buffer_page *reader = cpu_buffer->reader_page;
3173         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3174         struct buffer_page *commit = cpu_buffer->commit_page;
3175
3176         /* In case of error, head will be NULL */
3177         if (unlikely(!head))
3178                 return true;
3179
3180         return reader->read == rb_page_commit(reader) &&
3181                 (commit == reader ||
3182                  (commit == head &&
3183                   head->read == rb_page_commit(commit)));
3184 }
3185
3186 /**
3187  * ring_buffer_record_disable - stop all writes into the buffer
3188  * @buffer: The ring buffer to stop writes to.
3189  *
3190  * This prevents all writes to the buffer. Any attempt to write
3191  * to the buffer after this will fail and return NULL.
3192  *
3193  * The caller should call synchronize_rcu() after this.
3194  */
3195 void ring_buffer_record_disable(struct ring_buffer *buffer)
3196 {
3197         atomic_inc(&buffer->record_disabled);
3198 }
3199 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3200
3201 /**
3202  * ring_buffer_record_enable - enable writes to the buffer
3203  * @buffer: The ring buffer to enable writes
3204  *
3205  * Note, multiple disables will need the same number of enables
3206  * to truly enable the writing (much like preempt_disable).
3207  */
3208 void ring_buffer_record_enable(struct ring_buffer *buffer)
3209 {
3210         atomic_dec(&buffer->record_disabled);
3211 }
3212 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3213
3214 /**
3215  * ring_buffer_record_off - stop all writes into the buffer
3216  * @buffer: The ring buffer to stop writes to.
3217  *
3218  * This prevents all writes to the buffer. Any attempt to write
3219  * to the buffer after this will fail and return NULL.
3220  *
3221  * This is different than ring_buffer_record_disable() as
3222  * it works like an on/off switch, where as the disable() version
3223  * must be paired with a enable().
3224  */
3225 void ring_buffer_record_off(struct ring_buffer *buffer)
3226 {
3227         unsigned int rd;
3228         unsigned int new_rd;
3229
3230         do {
3231                 rd = atomic_read(&buffer->record_disabled);
3232                 new_rd = rd | RB_BUFFER_OFF;
3233         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3234 }
3235 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3236
3237 /**
3238  * ring_buffer_record_on - restart writes into the buffer
3239  * @buffer: The ring buffer to start writes to.
3240  *
3241  * This enables all writes to the buffer that was disabled by
3242  * ring_buffer_record_off().
3243  *
3244  * This is different than ring_buffer_record_enable() as
3245  * it works like an on/off switch, where as the enable() version
3246  * must be paired with a disable().
3247  */
3248 void ring_buffer_record_on(struct ring_buffer *buffer)
3249 {
3250         unsigned int rd;
3251         unsigned int new_rd;
3252
3253         do {
3254                 rd = atomic_read(&buffer->record_disabled);
3255                 new_rd = rd & ~RB_BUFFER_OFF;
3256         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3257 }
3258 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3259
3260 /**
3261  * ring_buffer_record_is_on - return true if the ring buffer can write
3262  * @buffer: The ring buffer to see if write is enabled
3263  *
3264  * Returns true if the ring buffer is in a state that it accepts writes.
3265  */
3266 bool ring_buffer_record_is_on(struct ring_buffer *buffer)
3267 {
3268         return !atomic_read(&buffer->record_disabled);
3269 }
3270
3271 /**
3272  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3273  * @buffer: The ring buffer to see if write is set enabled
3274  *
3275  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3276  * Note that this does NOT mean it is in a writable state.
3277  *
3278  * It may return true when the ring buffer has been disabled by
3279  * ring_buffer_record_disable(), as that is a temporary disabling of
3280  * the ring buffer.
3281  */
3282 bool ring_buffer_record_is_set_on(struct ring_buffer *buffer)
3283 {
3284         return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3285 }
3286
3287 /**
3288  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3289  * @buffer: The ring buffer to stop writes to.
3290  * @cpu: The CPU buffer to stop
3291  *
3292  * This prevents all writes to the buffer. Any attempt to write
3293  * to the buffer after this will fail and return NULL.
3294  *
3295  * The caller should call synchronize_rcu() after this.
3296  */
3297 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3298 {
3299         struct ring_buffer_per_cpu *cpu_buffer;
3300
3301         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3302                 return;
3303
3304         cpu_buffer = buffer->buffers[cpu];
3305         atomic_inc(&cpu_buffer->record_disabled);
3306 }
3307 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3308
3309 /**
3310  * ring_buffer_record_enable_cpu - enable writes to the buffer
3311  * @buffer: The ring buffer to enable writes
3312  * @cpu: The CPU to enable.
3313  *
3314  * Note, multiple disables will need the same number of enables
3315  * to truly enable the writing (much like preempt_disable).
3316  */
3317 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3318 {
3319         struct ring_buffer_per_cpu *cpu_buffer;
3320
3321         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3322                 return;
3323
3324         cpu_buffer = buffer->buffers[cpu];
3325         atomic_dec(&cpu_buffer->record_disabled);
3326 }
3327 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3328
3329 /*
3330  * The total entries in the ring buffer is the running counter
3331  * of entries entered into the ring buffer, minus the sum of
3332  * the entries read from the ring buffer and the number of
3333  * entries that were overwritten.
3334  */
3335 static inline unsigned long
3336 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3337 {
3338         return local_read(&cpu_buffer->entries) -
3339                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3340 }
3341
3342 /**
3343  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3344  * @buffer: The ring buffer
3345  * @cpu: The per CPU buffer to read from.
3346  */
3347 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3348 {
3349         unsigned long flags;
3350         struct ring_buffer_per_cpu *cpu_buffer;
3351         struct buffer_page *bpage;
3352         u64 ret = 0;
3353
3354         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3355                 return 0;
3356
3357         cpu_buffer = buffer->buffers[cpu];
3358         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3359         /*
3360          * if the tail is on reader_page, oldest time stamp is on the reader
3361          * page
3362          */
3363         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3364                 bpage = cpu_buffer->reader_page;
3365         else
3366                 bpage = rb_set_head_page(cpu_buffer);
3367         if (bpage)
3368                 ret = bpage->page->time_stamp;
3369         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3370
3371         return ret;
3372 }
3373 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3374
3375 /**
3376  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3377  * @buffer: The ring buffer
3378  * @cpu: The per CPU buffer to read from.
3379  */
3380 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3381 {
3382         struct ring_buffer_per_cpu *cpu_buffer;
3383         unsigned long ret;
3384
3385         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3386                 return 0;
3387
3388         cpu_buffer = buffer->buffers[cpu];
3389         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3390
3391         return ret;
3392 }
3393 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3394
3395 /**
3396  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3397  * @buffer: The ring buffer
3398  * @cpu: The per CPU buffer to get the entries from.
3399  */
3400 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3401 {
3402         struct ring_buffer_per_cpu *cpu_buffer;
3403
3404         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3405                 return 0;
3406
3407         cpu_buffer = buffer->buffers[cpu];
3408
3409         return rb_num_of_entries(cpu_buffer);
3410 }
3411 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3412
3413 /**
3414  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3415  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3416  * @buffer: The ring buffer
3417  * @cpu: The per CPU buffer to get the number of overruns from
3418  */
3419 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3420 {
3421         struct ring_buffer_per_cpu *cpu_buffer;
3422         unsigned long ret;
3423
3424         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3425                 return 0;
3426
3427         cpu_buffer = buffer->buffers[cpu];
3428         ret = local_read(&cpu_buffer->overrun);
3429
3430         return ret;
3431 }
3432 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3433
3434 /**
3435  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3436  * commits failing due to the buffer wrapping around while there are uncommitted
3437  * events, such as during an interrupt storm.
3438  * @buffer: The ring buffer
3439  * @cpu: The per CPU buffer to get the number of overruns from
3440  */
3441 unsigned long
3442 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3443 {
3444         struct ring_buffer_per_cpu *cpu_buffer;
3445         unsigned long ret;
3446
3447         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3448                 return 0;
3449
3450         cpu_buffer = buffer->buffers[cpu];
3451         ret = local_read(&cpu_buffer->commit_overrun);
3452
3453         return ret;
3454 }
3455 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3456
3457 /**
3458  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3459  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3460  * @buffer: The ring buffer
3461  * @cpu: The per CPU buffer to get the number of overruns from
3462  */
3463 unsigned long
3464 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3465 {
3466         struct ring_buffer_per_cpu *cpu_buffer;
3467         unsigned long ret;
3468
3469         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3470                 return 0;
3471
3472         cpu_buffer = buffer->buffers[cpu];
3473         ret = local_read(&cpu_buffer->dropped_events);
3474
3475         return ret;
3476 }
3477 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3478
3479 /**
3480  * ring_buffer_read_events_cpu - get the number of events successfully read
3481  * @buffer: The ring buffer
3482  * @cpu: The per CPU buffer to get the number of events read
3483  */
3484 unsigned long
3485 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3486 {
3487         struct ring_buffer_per_cpu *cpu_buffer;
3488
3489         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3490                 return 0;
3491
3492         cpu_buffer = buffer->buffers[cpu];
3493         return cpu_buffer->read;
3494 }
3495 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3496
3497 /**
3498  * ring_buffer_entries - get the number of entries in a buffer
3499  * @buffer: The ring buffer
3500  *
3501  * Returns the total number of entries in the ring buffer
3502  * (all CPU entries)
3503  */
3504 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3505 {
3506         struct ring_buffer_per_cpu *cpu_buffer;
3507         unsigned long entries = 0;
3508         int cpu;
3509
3510         /* if you care about this being correct, lock the buffer */
3511         for_each_buffer_cpu(buffer, cpu) {
3512                 cpu_buffer = buffer->buffers[cpu];
3513                 entries += rb_num_of_entries(cpu_buffer);
3514         }
3515
3516         return entries;
3517 }
3518 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3519
3520 /**
3521  * ring_buffer_overruns - get the number of overruns in buffer
3522  * @buffer: The ring buffer
3523  *
3524  * Returns the total number of overruns in the ring buffer
3525  * (all CPU entries)
3526  */
3527 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3528 {
3529         struct ring_buffer_per_cpu *cpu_buffer;
3530         unsigned long overruns = 0;
3531         int cpu;
3532
3533         /* if you care about this being correct, lock the buffer */
3534         for_each_buffer_cpu(buffer, cpu) {
3535                 cpu_buffer = buffer->buffers[cpu];
3536                 overruns += local_read(&cpu_buffer->overrun);
3537         }
3538
3539         return overruns;
3540 }
3541 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3542
3543 static void rb_iter_reset(struct ring_buffer_iter *iter)
3544 {
3545         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3546
3547         /* Iterator usage is expected to have record disabled */
3548         iter->head_page = cpu_buffer->reader_page;
3549         iter->head = cpu_buffer->reader_page->read;
3550
3551         iter->cache_reader_page = iter->head_page;
3552         iter->cache_read = cpu_buffer->read;
3553
3554         if (iter->head)
3555                 iter->read_stamp = cpu_buffer->read_stamp;
3556         else
3557                 iter->read_stamp = iter->head_page->page->time_stamp;
3558 }
3559
3560 /**
3561  * ring_buffer_iter_reset - reset an iterator
3562  * @iter: The iterator to reset
3563  *
3564  * Resets the iterator, so that it will start from the beginning
3565  * again.
3566  */
3567 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3568 {
3569         struct ring_buffer_per_cpu *cpu_buffer;
3570         unsigned long flags;
3571
3572         if (!iter)
3573                 return;
3574
3575         cpu_buffer = iter->cpu_buffer;
3576
3577         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3578         rb_iter_reset(iter);
3579         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3580 }
3581 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3582
3583 /**
3584  * ring_buffer_iter_empty - check if an iterator has no more to read
3585  * @iter: The iterator to check
3586  */
3587 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3588 {
3589         struct ring_buffer_per_cpu *cpu_buffer;
3590         struct buffer_page *reader;
3591         struct buffer_page *head_page;
3592         struct buffer_page *commit_page;
3593         unsigned commit;
3594
3595         cpu_buffer = iter->cpu_buffer;
3596
3597         /* Remember, trace recording is off when iterator is in use */
3598         reader = cpu_buffer->reader_page;
3599         head_page = cpu_buffer->head_page;
3600         commit_page = cpu_buffer->commit_page;
3601         commit = rb_page_commit(commit_page);
3602
3603         return ((iter->head_page == commit_page && iter->head == commit) ||
3604                 (iter->head_page == reader && commit_page == head_page &&
3605                  head_page->read == commit &&
3606                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
3607 }
3608 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3609
3610 static void
3611 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3612                      struct ring_buffer_event *event)
3613 {
3614         u64 delta;
3615
3616         switch (event->type_len) {
3617         case RINGBUF_TYPE_PADDING:
3618                 return;
3619
3620         case RINGBUF_TYPE_TIME_EXTEND:
3621                 delta = ring_buffer_event_time_stamp(event);
3622                 cpu_buffer->read_stamp += delta;
3623                 return;
3624
3625         case RINGBUF_TYPE_TIME_STAMP:
3626                 delta = ring_buffer_event_time_stamp(event);
3627                 cpu_buffer->read_stamp = delta;
3628                 return;
3629
3630         case RINGBUF_TYPE_DATA:
3631                 cpu_buffer->read_stamp += event->time_delta;
3632                 return;
3633
3634         default:
3635                 BUG();
3636         }
3637         return;
3638 }
3639
3640 static void
3641 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3642                           struct ring_buffer_event *event)
3643 {
3644         u64 delta;
3645
3646         switch (event->type_len) {
3647         case RINGBUF_TYPE_PADDING:
3648                 return;
3649
3650         case RINGBUF_TYPE_TIME_EXTEND:
3651                 delta = ring_buffer_event_time_stamp(event);
3652                 iter->read_stamp += delta;
3653                 return;
3654
3655         case RINGBUF_TYPE_TIME_STAMP:
3656                 delta = ring_buffer_event_time_stamp(event);
3657                 iter->read_stamp = delta;
3658                 return;
3659
3660         case RINGBUF_TYPE_DATA:
3661                 iter->read_stamp += event->time_delta;
3662                 return;
3663
3664         default:
3665                 BUG();
3666         }
3667         return;
3668 }
3669
3670 static struct buffer_page *
3671 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3672 {
3673         struct buffer_page *reader = NULL;
3674         unsigned long overwrite;
3675         unsigned long flags;
3676         int nr_loops = 0;
3677         int ret;
3678
3679         local_irq_save(flags);
3680         arch_spin_lock(&cpu_buffer->lock);
3681
3682  again:
3683         /*
3684          * This should normally only loop twice. But because the
3685          * start of the reader inserts an empty page, it causes
3686          * a case where we will loop three times. There should be no
3687          * reason to loop four times (that I know of).
3688          */
3689         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3690                 reader = NULL;
3691                 goto out;
3692         }
3693
3694         reader = cpu_buffer->reader_page;
3695
3696         /* If there's more to read, return this page */
3697         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3698                 goto out;
3699
3700         /* Never should we have an index greater than the size */
3701         if (RB_WARN_ON(cpu_buffer,
3702                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3703                 goto out;
3704
3705         /* check if we caught up to the tail */
3706         reader = NULL;
3707         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3708                 goto out;
3709
3710         /* Don't bother swapping if the ring buffer is empty */
3711         if (rb_num_of_entries(cpu_buffer) == 0)
3712                 goto out;
3713
3714         /*
3715          * Reset the reader page to size zero.
3716          */
3717         local_set(&cpu_buffer->reader_page->write, 0);
3718         local_set(&cpu_buffer->reader_page->entries, 0);
3719         local_set(&cpu_buffer->reader_page->page->commit, 0);
3720         cpu_buffer->reader_page->real_end = 0;
3721
3722  spin:
3723         /*
3724          * Splice the empty reader page into the list around the head.
3725          */
3726         reader = rb_set_head_page(cpu_buffer);
3727         if (!reader)
3728                 goto out;
3729         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3730         cpu_buffer->reader_page->list.prev = reader->list.prev;
3731
3732         /*
3733          * cpu_buffer->pages just needs to point to the buffer, it
3734          *  has no specific buffer page to point to. Lets move it out
3735          *  of our way so we don't accidentally swap it.
3736          */
3737         cpu_buffer->pages = reader->list.prev;
3738
3739         /* The reader page will be pointing to the new head */
3740         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3741
3742         /*
3743          * We want to make sure we read the overruns after we set up our
3744          * pointers to the next object. The writer side does a
3745          * cmpxchg to cross pages which acts as the mb on the writer
3746          * side. Note, the reader will constantly fail the swap
3747          * while the writer is updating the pointers, so this
3748          * guarantees that the overwrite recorded here is the one we
3749          * want to compare with the last_overrun.
3750          */
3751         smp_mb();
3752         overwrite = local_read(&(cpu_buffer->overrun));
3753
3754         /*
3755          * Here's the tricky part.
3756          *
3757          * We need to move the pointer past the header page.
3758          * But we can only do that if a writer is not currently
3759          * moving it. The page before the header page has the
3760          * flag bit '1' set if it is pointing to the page we want.
3761          * but if the writer is in the process of moving it
3762          * than it will be '2' or already moved '0'.
3763          */
3764
3765         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3766
3767         /*
3768          * If we did not convert it, then we must try again.
3769          */
3770         if (!ret)
3771                 goto spin;
3772
3773         /*
3774          * Yay! We succeeded in replacing the page.
3775          *
3776          * Now make the new head point back to the reader page.
3777          */
3778         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3779         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3780
3781         local_inc(&cpu_buffer->pages_read);
3782
3783         /* Finally update the reader page to the new head */
3784         cpu_buffer->reader_page = reader;
3785         cpu_buffer->reader_page->read = 0;
3786
3787         if (overwrite != cpu_buffer->last_overrun) {
3788                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3789                 cpu_buffer->last_overrun = overwrite;
3790         }
3791
3792         goto again;
3793
3794  out:
3795         /* Update the read_stamp on the first event */
3796         if (reader && reader->read == 0)
3797                 cpu_buffer->read_stamp = reader->page->time_stamp;
3798
3799         arch_spin_unlock(&cpu_buffer->lock);
3800         local_irq_restore(flags);
3801
3802         return reader;
3803 }
3804
3805 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3806 {
3807         struct ring_buffer_event *event;
3808         struct buffer_page *reader;
3809         unsigned length;
3810
3811         reader = rb_get_reader_page(cpu_buffer);
3812
3813         /* This function should not be called when buffer is empty */
3814         if (RB_WARN_ON(cpu_buffer, !reader))
3815                 return;
3816
3817         event = rb_reader_event(cpu_buffer);
3818
3819         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3820                 cpu_buffer->read++;
3821
3822         rb_update_read_stamp(cpu_buffer, event);
3823
3824         length = rb_event_length(event);
3825         cpu_buffer->reader_page->read += length;
3826 }
3827
3828 static void rb_advance_iter(struct ring_buffer_iter *iter)
3829 {
3830         struct ring_buffer_per_cpu *cpu_buffer;
3831         struct ring_buffer_event *event;
3832         unsigned length;
3833
3834         cpu_buffer = iter->cpu_buffer;
3835
3836         /*
3837          * Check if we are at the end of the buffer.
3838          */
3839         if (iter->head >= rb_page_size(iter->head_page)) {
3840                 /* discarded commits can make the page empty */
3841                 if (iter->head_page == cpu_buffer->commit_page)
3842                         return;
3843                 rb_inc_iter(iter);
3844                 return;
3845         }
3846
3847         event = rb_iter_head_event(iter);
3848
3849         length = rb_event_length(event);
3850
3851         /*
3852          * This should not be called to advance the header if we are
3853          * at the tail of the buffer.
3854          */
3855         if (RB_WARN_ON(cpu_buffer,
3856                        (iter->head_page == cpu_buffer->commit_page) &&
3857                        (iter->head + length > rb_commit_index(cpu_buffer))))
3858                 return;
3859
3860         rb_update_iter_read_stamp(iter, event);
3861
3862         iter->head += length;
3863
3864         /* check for end of page padding */
3865         if ((iter->head >= rb_page_size(iter->head_page)) &&
3866             (iter->head_page != cpu_buffer->commit_page))
3867                 rb_inc_iter(iter);
3868 }
3869
3870 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3871 {
3872         return cpu_buffer->lost_events;
3873 }
3874
3875 static struct ring_buffer_event *
3876 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3877                unsigned long *lost_events)
3878 {
3879         struct ring_buffer_event *event;
3880         struct buffer_page *reader;
3881         int nr_loops = 0;
3882
3883         if (ts)
3884                 *ts = 0;
3885  again:
3886         /*
3887          * We repeat when a time extend is encountered.
3888          * Since the time extend is always attached to a data event,
3889          * we should never loop more than once.
3890          * (We never hit the following condition more than twice).
3891          */
3892         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3893                 return NULL;
3894
3895         reader = rb_get_reader_page(cpu_buffer);
3896         if (!reader)
3897                 return NULL;
3898
3899         event = rb_reader_event(cpu_buffer);
3900
3901         switch (event->type_len) {
3902         case RINGBUF_TYPE_PADDING:
3903                 if (rb_null_event(event))
3904                         RB_WARN_ON(cpu_buffer, 1);
3905                 /*
3906                  * Because the writer could be discarding every
3907                  * event it creates (which would probably be bad)
3908                  * if we were to go back to "again" then we may never
3909                  * catch up, and will trigger the warn on, or lock
3910                  * the box. Return the padding, and we will release
3911                  * the current locks, and try again.
3912                  */
3913                 return event;
3914
3915         case RINGBUF_TYPE_TIME_EXTEND:
3916                 /* Internal data, OK to advance */
3917                 rb_advance_reader(cpu_buffer);
3918                 goto again;
3919
3920         case RINGBUF_TYPE_TIME_STAMP:
3921                 if (ts) {
3922                         *ts = ring_buffer_event_time_stamp(event);
3923                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3924                                                          cpu_buffer->cpu, ts);
3925                 }
3926                 /* Internal data, OK to advance */
3927                 rb_advance_reader(cpu_buffer);
3928                 goto again;
3929
3930         case RINGBUF_TYPE_DATA:
3931                 if (ts && !(*ts)) {
3932                         *ts = cpu_buffer->read_stamp + event->time_delta;
3933                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3934                                                          cpu_buffer->cpu, ts);
3935                 }
3936                 if (lost_events)
3937                         *lost_events = rb_lost_events(cpu_buffer);
3938                 return event;
3939
3940         default:
3941                 BUG();
3942         }
3943
3944         return NULL;
3945 }
3946 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3947
3948 static struct ring_buffer_event *
3949 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3950 {
3951         struct ring_buffer *buffer;
3952         struct ring_buffer_per_cpu *cpu_buffer;
3953         struct ring_buffer_event *event;
3954         int nr_loops = 0;
3955
3956         if (ts)
3957                 *ts = 0;
3958
3959         cpu_buffer = iter->cpu_buffer;
3960         buffer = cpu_buffer->buffer;
3961
3962         /*
3963          * Check if someone performed a consuming read to
3964          * the buffer. A consuming read invalidates the iterator
3965          * and we need to reset the iterator in this case.
3966          */
3967         if (unlikely(iter->cache_read != cpu_buffer->read ||
3968                      iter->cache_reader_page != cpu_buffer->reader_page))
3969                 rb_iter_reset(iter);
3970
3971  again:
3972         if (ring_buffer_iter_empty(iter))
3973                 return NULL;
3974
3975         /*
3976          * We repeat when a time extend is encountered or we hit
3977          * the end of the page. Since the time extend is always attached
3978          * to a data event, we should never loop more than three times.
3979          * Once for going to next page, once on time extend, and
3980          * finally once to get the event.
3981          * (We never hit the following condition more than thrice).
3982          */
3983         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3984                 return NULL;
3985
3986         if (rb_per_cpu_empty(cpu_buffer))
3987                 return NULL;
3988
3989         if (iter->head >= rb_page_size(iter->head_page)) {
3990                 rb_inc_iter(iter);
3991                 goto again;
3992         }
3993
3994         event = rb_iter_head_event(iter);
3995
3996         switch (event->type_len) {
3997         case RINGBUF_TYPE_PADDING:
3998                 if (rb_null_event(event)) {
3999                         rb_inc_iter(iter);
4000                         goto again;
4001                 }
4002                 rb_advance_iter(iter);
4003                 return event;
4004
4005         case RINGBUF_TYPE_TIME_EXTEND:
4006                 /* Internal data, OK to advance */
4007                 rb_advance_iter(iter);
4008                 goto again;
4009
4010         case RINGBUF_TYPE_TIME_STAMP:
4011                 if (ts) {
4012                         *ts = ring_buffer_event_time_stamp(event);
4013                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4014                                                          cpu_buffer->cpu, ts);
4015                 }
4016                 /* Internal data, OK to advance */
4017                 rb_advance_iter(iter);
4018                 goto again;
4019
4020         case RINGBUF_TYPE_DATA:
4021                 if (ts && !(*ts)) {
4022                         *ts = iter->read_stamp + event->time_delta;
4023                         ring_buffer_normalize_time_stamp(buffer,
4024                                                          cpu_buffer->cpu, ts);
4025                 }
4026                 return event;
4027
4028         default:
4029                 BUG();
4030         }
4031
4032         return NULL;
4033 }
4034 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4035
4036 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4037 {
4038         if (likely(!in_nmi())) {
4039                 raw_spin_lock(&cpu_buffer->reader_lock);
4040                 return true;
4041         }
4042
4043         /*
4044          * If an NMI die dumps out the content of the ring buffer
4045          * trylock must be used to prevent a deadlock if the NMI
4046          * preempted a task that holds the ring buffer locks. If
4047          * we get the lock then all is fine, if not, then continue
4048          * to do the read, but this can corrupt the ring buffer,
4049          * so it must be permanently disabled from future writes.
4050          * Reading from NMI is a oneshot deal.
4051          */
4052         if (raw_spin_trylock(&cpu_buffer->reader_lock))
4053                 return true;
4054
4055         /* Continue without locking, but disable the ring buffer */
4056         atomic_inc(&cpu_buffer->record_disabled);
4057         return false;
4058 }
4059
4060 static inline void
4061 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4062 {
4063         if (likely(locked))
4064                 raw_spin_unlock(&cpu_buffer->reader_lock);
4065         return;
4066 }
4067
4068 /**
4069  * ring_buffer_peek - peek at the next event to be read
4070  * @buffer: The ring buffer to read
4071  * @cpu: The cpu to peak at
4072  * @ts: The timestamp counter of this event.
4073  * @lost_events: a variable to store if events were lost (may be NULL)
4074  *
4075  * This will return the event that will be read next, but does
4076  * not consume the data.
4077  */
4078 struct ring_buffer_event *
4079 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
4080                  unsigned long *lost_events)
4081 {
4082         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4083         struct ring_buffer_event *event;
4084         unsigned long flags;
4085         bool dolock;
4086
4087         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4088                 return NULL;
4089
4090  again:
4091         local_irq_save(flags);
4092         dolock = rb_reader_lock(cpu_buffer);
4093         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4094         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4095                 rb_advance_reader(cpu_buffer);
4096         rb_reader_unlock(cpu_buffer, dolock);
4097         local_irq_restore(flags);
4098
4099         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4100                 goto again;
4101
4102         return event;
4103 }
4104
4105 /**
4106  * ring_buffer_iter_peek - peek at the next event to be read
4107  * @iter: The ring buffer iterator
4108  * @ts: The timestamp counter of this event.
4109  *
4110  * This will return the event that will be read next, but does
4111  * not increment the iterator.
4112  */
4113 struct ring_buffer_event *
4114 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4115 {
4116         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4117         struct ring_buffer_event *event;
4118         unsigned long flags;
4119
4120  again:
4121         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4122         event = rb_iter_peek(iter, ts);
4123         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4124
4125         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4126                 goto again;
4127
4128         return event;
4129 }
4130
4131 /**
4132  * ring_buffer_consume - return an event and consume it
4133  * @buffer: The ring buffer to get the next event from
4134  * @cpu: the cpu to read the buffer from
4135  * @ts: a variable to store the timestamp (may be NULL)
4136  * @lost_events: a variable to store if events were lost (may be NULL)
4137  *
4138  * Returns the next event in the ring buffer, and that event is consumed.
4139  * Meaning, that sequential reads will keep returning a different event,
4140  * and eventually empty the ring buffer if the producer is slower.
4141  */
4142 struct ring_buffer_event *
4143 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4144                     unsigned long *lost_events)
4145 {
4146         struct ring_buffer_per_cpu *cpu_buffer;
4147         struct ring_buffer_event *event = NULL;
4148         unsigned long flags;
4149         bool dolock;
4150
4151  again:
4152         /* might be called in atomic */
4153         preempt_disable();
4154
4155         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4156                 goto out;
4157
4158         cpu_buffer = buffer->buffers[cpu];
4159         local_irq_save(flags);
4160         dolock = rb_reader_lock(cpu_buffer);
4161
4162         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4163         if (event) {
4164                 cpu_buffer->lost_events = 0;
4165                 rb_advance_reader(cpu_buffer);
4166         }
4167
4168         rb_reader_unlock(cpu_buffer, dolock);
4169         local_irq_restore(flags);
4170
4171  out:
4172         preempt_enable();
4173
4174         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4175                 goto again;
4176
4177         return event;
4178 }
4179 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4180
4181 /**
4182  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4183  * @buffer: The ring buffer to read from
4184  * @cpu: The cpu buffer to iterate over
4185  * @flags: gfp flags to use for memory allocation
4186  *
4187  * This performs the initial preparations necessary to iterate
4188  * through the buffer.  Memory is allocated, buffer recording
4189  * is disabled, and the iterator pointer is returned to the caller.
4190  *
4191  * Disabling buffer recording prevents the reading from being
4192  * corrupted. This is not a consuming read, so a producer is not
4193  * expected.
4194  *
4195  * After a sequence of ring_buffer_read_prepare calls, the user is
4196  * expected to make at least one call to ring_buffer_read_prepare_sync.
4197  * Afterwards, ring_buffer_read_start is invoked to get things going
4198  * for real.
4199  *
4200  * This overall must be paired with ring_buffer_read_finish.
4201  */
4202 struct ring_buffer_iter *
4203 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu, gfp_t flags)
4204 {
4205         struct ring_buffer_per_cpu *cpu_buffer;
4206         struct ring_buffer_iter *iter;
4207
4208         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4209                 return NULL;
4210
4211         iter = kmalloc(sizeof(*iter), flags);
4212         if (!iter)
4213                 return NULL;
4214
4215         cpu_buffer = buffer->buffers[cpu];
4216
4217         iter->cpu_buffer = cpu_buffer;
4218
4219         atomic_inc(&buffer->resize_disabled);
4220         atomic_inc(&cpu_buffer->record_disabled);
4221
4222         return iter;
4223 }
4224 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4225
4226 /**
4227  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4228  *
4229  * All previously invoked ring_buffer_read_prepare calls to prepare
4230  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4231  * calls on those iterators are allowed.
4232  */
4233 void
4234 ring_buffer_read_prepare_sync(void)
4235 {
4236         synchronize_rcu();
4237 }
4238 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4239
4240 /**
4241  * ring_buffer_read_start - start a non consuming read of the buffer
4242  * @iter: The iterator returned by ring_buffer_read_prepare
4243  *
4244  * This finalizes the startup of an iteration through the buffer.
4245  * The iterator comes from a call to ring_buffer_read_prepare and
4246  * an intervening ring_buffer_read_prepare_sync must have been
4247  * performed.
4248  *
4249  * Must be paired with ring_buffer_read_finish.
4250  */
4251 void
4252 ring_buffer_read_start(struct ring_buffer_iter *iter)
4253 {
4254         struct ring_buffer_per_cpu *cpu_buffer;
4255         unsigned long flags;
4256
4257         if (!iter)
4258                 return;
4259
4260         cpu_buffer = iter->cpu_buffer;
4261
4262         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4263         arch_spin_lock(&cpu_buffer->lock);
4264         rb_iter_reset(iter);
4265         arch_spin_unlock(&cpu_buffer->lock);
4266         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4267 }
4268 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4269
4270 /**
4271  * ring_buffer_read_finish - finish reading the iterator of the buffer
4272  * @iter: The iterator retrieved by ring_buffer_start
4273  *
4274  * This re-enables the recording to the buffer, and frees the
4275  * iterator.
4276  */
4277 void
4278 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4279 {
4280         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4281         unsigned long flags;
4282
4283         /*
4284          * Ring buffer is disabled from recording, here's a good place
4285          * to check the integrity of the ring buffer.
4286          * Must prevent readers from trying to read, as the check
4287          * clears the HEAD page and readers require it.
4288          */
4289         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4290         rb_check_pages(cpu_buffer);
4291         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4292
4293         atomic_dec(&cpu_buffer->record_disabled);
4294         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4295         kfree(iter);
4296 }
4297 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4298
4299 /**
4300  * ring_buffer_read - read the next item in the ring buffer by the iterator
4301  * @iter: The ring buffer iterator
4302  * @ts: The time stamp of the event read.
4303  *
4304  * This reads the next event in the ring buffer and increments the iterator.
4305  */
4306 struct ring_buffer_event *
4307 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4308 {
4309         struct ring_buffer_event *event;
4310         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4311         unsigned long flags;
4312
4313         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4314  again:
4315         event = rb_iter_peek(iter, ts);
4316         if (!event)
4317                 goto out;
4318
4319         if (event->type_len == RINGBUF_TYPE_PADDING)
4320                 goto again;
4321
4322         rb_advance_iter(iter);
4323  out:
4324         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4325
4326         return event;
4327 }
4328 EXPORT_SYMBOL_GPL(ring_buffer_read);
4329
4330 /**
4331  * ring_buffer_size - return the size of the ring buffer (in bytes)
4332  * @buffer: The ring buffer.
4333  */
4334 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4335 {
4336         /*
4337          * Earlier, this method returned
4338          *      BUF_PAGE_SIZE * buffer->nr_pages
4339          * Since the nr_pages field is now removed, we have converted this to
4340          * return the per cpu buffer value.
4341          */
4342         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4343                 return 0;
4344
4345         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4346 }
4347 EXPORT_SYMBOL_GPL(ring_buffer_size);
4348
4349 static void
4350 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4351 {
4352         rb_head_page_deactivate(cpu_buffer);
4353
4354         cpu_buffer->head_page
4355                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4356         local_set(&cpu_buffer->head_page->write, 0);
4357         local_set(&cpu_buffer->head_page->entries, 0);
4358         local_set(&cpu_buffer->head_page->page->commit, 0);
4359
4360         cpu_buffer->head_page->read = 0;
4361
4362         cpu_buffer->tail_page = cpu_buffer->head_page;
4363         cpu_buffer->commit_page = cpu_buffer->head_page;
4364
4365         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4366         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4367         local_set(&cpu_buffer->reader_page->write, 0);
4368         local_set(&cpu_buffer->reader_page->entries, 0);
4369         local_set(&cpu_buffer->reader_page->page->commit, 0);
4370         cpu_buffer->reader_page->read = 0;
4371
4372         local_set(&cpu_buffer->entries_bytes, 0);
4373         local_set(&cpu_buffer->overrun, 0);
4374         local_set(&cpu_buffer->commit_overrun, 0);
4375         local_set(&cpu_buffer->dropped_events, 0);
4376         local_set(&cpu_buffer->entries, 0);
4377         local_set(&cpu_buffer->committing, 0);
4378         local_set(&cpu_buffer->commits, 0);
4379         local_set(&cpu_buffer->pages_touched, 0);
4380         local_set(&cpu_buffer->pages_read, 0);
4381         cpu_buffer->last_pages_touch = 0;
4382         cpu_buffer->shortest_full = 0;
4383         cpu_buffer->read = 0;
4384         cpu_buffer->read_bytes = 0;
4385
4386         cpu_buffer->write_stamp = 0;
4387         cpu_buffer->read_stamp = 0;
4388
4389         cpu_buffer->lost_events = 0;
4390         cpu_buffer->last_overrun = 0;
4391
4392         rb_head_page_activate(cpu_buffer);
4393 }
4394
4395 /**
4396  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4397  * @buffer: The ring buffer to reset a per cpu buffer of
4398  * @cpu: The CPU buffer to be reset
4399  */
4400 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4401 {
4402         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4403         unsigned long flags;
4404
4405         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4406                 return;
4407
4408         atomic_inc(&buffer->resize_disabled);
4409         atomic_inc(&cpu_buffer->record_disabled);
4410
4411         /* Make sure all commits have finished */
4412         synchronize_rcu();
4413
4414         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4415
4416         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4417                 goto out;
4418
4419         arch_spin_lock(&cpu_buffer->lock);
4420
4421         rb_reset_cpu(cpu_buffer);
4422
4423         arch_spin_unlock(&cpu_buffer->lock);
4424
4425  out:
4426         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4427
4428         atomic_dec(&cpu_buffer->record_disabled);
4429         atomic_dec(&buffer->resize_disabled);
4430 }
4431 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4432
4433 /**
4434  * ring_buffer_reset - reset a ring buffer
4435  * @buffer: The ring buffer to reset all cpu buffers
4436  */
4437 void ring_buffer_reset(struct ring_buffer *buffer)
4438 {
4439         int cpu;
4440
4441         for_each_buffer_cpu(buffer, cpu)
4442                 ring_buffer_reset_cpu(buffer, cpu);
4443 }
4444 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4445
4446 /**
4447  * rind_buffer_empty - is the ring buffer empty?
4448  * @buffer: The ring buffer to test
4449  */
4450 bool ring_buffer_empty(struct ring_buffer *buffer)
4451 {
4452         struct ring_buffer_per_cpu *cpu_buffer;
4453         unsigned long flags;
4454         bool dolock;
4455         int cpu;
4456         int ret;
4457
4458         /* yes this is racy, but if you don't like the race, lock the buffer */
4459         for_each_buffer_cpu(buffer, cpu) {
4460                 cpu_buffer = buffer->buffers[cpu];
4461                 local_irq_save(flags);
4462                 dolock = rb_reader_lock(cpu_buffer);
4463                 ret = rb_per_cpu_empty(cpu_buffer);
4464                 rb_reader_unlock(cpu_buffer, dolock);
4465                 local_irq_restore(flags);
4466
4467                 if (!ret)
4468                         return false;
4469         }
4470
4471         return true;
4472 }
4473 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4474
4475 /**
4476  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4477  * @buffer: The ring buffer
4478  * @cpu: The CPU buffer to test
4479  */
4480 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4481 {
4482         struct ring_buffer_per_cpu *cpu_buffer;
4483         unsigned long flags;
4484         bool dolock;
4485         int ret;
4486
4487         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4488                 return true;
4489
4490         cpu_buffer = buffer->buffers[cpu];
4491         local_irq_save(flags);
4492         dolock = rb_reader_lock(cpu_buffer);
4493         ret = rb_per_cpu_empty(cpu_buffer);
4494         rb_reader_unlock(cpu_buffer, dolock);
4495         local_irq_restore(flags);
4496
4497         return ret;
4498 }
4499 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4500
4501 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4502 /**
4503  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4504  * @buffer_a: One buffer to swap with
4505  * @buffer_b: The other buffer to swap with
4506  *
4507  * This function is useful for tracers that want to take a "snapshot"
4508  * of a CPU buffer and has another back up buffer lying around.
4509  * it is expected that the tracer handles the cpu buffer not being
4510  * used at the moment.
4511  */
4512 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4513                          struct ring_buffer *buffer_b, int cpu)
4514 {
4515         struct ring_buffer_per_cpu *cpu_buffer_a;
4516         struct ring_buffer_per_cpu *cpu_buffer_b;
4517         int ret = -EINVAL;
4518
4519         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4520             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4521                 goto out;
4522
4523         cpu_buffer_a = buffer_a->buffers[cpu];
4524         cpu_buffer_b = buffer_b->buffers[cpu];
4525
4526         /* At least make sure the two buffers are somewhat the same */
4527         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4528                 goto out;
4529
4530         ret = -EAGAIN;
4531
4532         if (atomic_read(&buffer_a->record_disabled))
4533                 goto out;
4534
4535         if (atomic_read(&buffer_b->record_disabled))
4536                 goto out;
4537
4538         if (atomic_read(&cpu_buffer_a->record_disabled))
4539                 goto out;
4540
4541         if (atomic_read(&cpu_buffer_b->record_disabled))
4542                 goto out;
4543
4544         /*
4545          * We can't do a synchronize_rcu here because this
4546          * function can be called in atomic context.
4547          * Normally this will be called from the same CPU as cpu.
4548          * If not it's up to the caller to protect this.
4549          */
4550         atomic_inc(&cpu_buffer_a->record_disabled);
4551         atomic_inc(&cpu_buffer_b->record_disabled);
4552
4553         ret = -EBUSY;
4554         if (local_read(&cpu_buffer_a->committing))
4555                 goto out_dec;
4556         if (local_read(&cpu_buffer_b->committing))
4557                 goto out_dec;
4558
4559         buffer_a->buffers[cpu] = cpu_buffer_b;
4560         buffer_b->buffers[cpu] = cpu_buffer_a;
4561
4562         cpu_buffer_b->buffer = buffer_a;
4563         cpu_buffer_a->buffer = buffer_b;
4564
4565         ret = 0;
4566
4567 out_dec:
4568         atomic_dec(&cpu_buffer_a->record_disabled);
4569         atomic_dec(&cpu_buffer_b->record_disabled);
4570 out:
4571         return ret;
4572 }
4573 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4574 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4575
4576 /**
4577  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4578  * @buffer: the buffer to allocate for.
4579  * @cpu: the cpu buffer to allocate.
4580  *
4581  * This function is used in conjunction with ring_buffer_read_page.
4582  * When reading a full page from the ring buffer, these functions
4583  * can be used to speed up the process. The calling function should
4584  * allocate a few pages first with this function. Then when it
4585  * needs to get pages from the ring buffer, it passes the result
4586  * of this function into ring_buffer_read_page, which will swap
4587  * the page that was allocated, with the read page of the buffer.
4588  *
4589  * Returns:
4590  *  The page allocated, or ERR_PTR
4591  */
4592 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4593 {
4594         struct ring_buffer_per_cpu *cpu_buffer;
4595         struct buffer_data_page *bpage = NULL;
4596         unsigned long flags;
4597         struct page *page;
4598
4599         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4600                 return ERR_PTR(-ENODEV);
4601
4602         cpu_buffer = buffer->buffers[cpu];
4603         local_irq_save(flags);
4604         arch_spin_lock(&cpu_buffer->lock);
4605
4606         if (cpu_buffer->free_page) {
4607                 bpage = cpu_buffer->free_page;
4608                 cpu_buffer->free_page = NULL;
4609         }
4610
4611         arch_spin_unlock(&cpu_buffer->lock);
4612         local_irq_restore(flags);
4613
4614         if (bpage)
4615                 goto out;
4616
4617         page = alloc_pages_node(cpu_to_node(cpu),
4618                                 GFP_KERNEL | __GFP_NORETRY, 0);
4619         if (!page)
4620                 return ERR_PTR(-ENOMEM);
4621
4622         bpage = page_address(page);
4623
4624  out:
4625         rb_init_page(bpage);
4626
4627         return bpage;
4628 }
4629 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4630
4631 /**
4632  * ring_buffer_free_read_page - free an allocated read page
4633  * @buffer: the buffer the page was allocate for
4634  * @cpu: the cpu buffer the page came from
4635  * @data: the page to free
4636  *
4637  * Free a page allocated from ring_buffer_alloc_read_page.
4638  */
4639 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4640 {
4641         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4642         struct buffer_data_page *bpage = data;
4643         struct page *page = virt_to_page(bpage);
4644         unsigned long flags;
4645
4646         /* If the page is still in use someplace else, we can't reuse it */
4647         if (page_ref_count(page) > 1)
4648                 goto out;
4649
4650         local_irq_save(flags);
4651         arch_spin_lock(&cpu_buffer->lock);
4652
4653         if (!cpu_buffer->free_page) {
4654                 cpu_buffer->free_page = bpage;
4655                 bpage = NULL;
4656         }
4657
4658         arch_spin_unlock(&cpu_buffer->lock);
4659         local_irq_restore(flags);
4660
4661  out:
4662         free_page((unsigned long)bpage);
4663 }
4664 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4665
4666 /**
4667  * ring_buffer_read_page - extract a page from the ring buffer
4668  * @buffer: buffer to extract from
4669  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4670  * @len: amount to extract
4671  * @cpu: the cpu of the buffer to extract
4672  * @full: should the extraction only happen when the page is full.
4673  *
4674  * This function will pull out a page from the ring buffer and consume it.
4675  * @data_page must be the address of the variable that was returned
4676  * from ring_buffer_alloc_read_page. This is because the page might be used
4677  * to swap with a page in the ring buffer.
4678  *
4679  * for example:
4680  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4681  *      if (IS_ERR(rpage))
4682  *              return PTR_ERR(rpage);
4683  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4684  *      if (ret >= 0)
4685  *              process_page(rpage, ret);
4686  *
4687  * When @full is set, the function will not return true unless
4688  * the writer is off the reader page.
4689  *
4690  * Note: it is up to the calling functions to handle sleeps and wakeups.
4691  *  The ring buffer can be used anywhere in the kernel and can not
4692  *  blindly call wake_up. The layer that uses the ring buffer must be
4693  *  responsible for that.
4694  *
4695  * Returns:
4696  *  >=0 if data has been transferred, returns the offset of consumed data.
4697  *  <0 if no data has been transferred.
4698  */
4699 int ring_buffer_read_page(struct ring_buffer *buffer,
4700                           void **data_page, size_t len, int cpu, int full)
4701 {
4702         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4703         struct ring_buffer_event *event;
4704         struct buffer_data_page *bpage;
4705         struct buffer_page *reader;
4706         unsigned long missed_events;
4707         unsigned long flags;
4708         unsigned int commit;
4709         unsigned int read;
4710         u64 save_timestamp;
4711         int ret = -1;
4712
4713         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4714                 goto out;
4715
4716         /*
4717          * If len is not big enough to hold the page header, then
4718          * we can not copy anything.
4719          */
4720         if (len <= BUF_PAGE_HDR_SIZE)
4721                 goto out;
4722
4723         len -= BUF_PAGE_HDR_SIZE;
4724
4725         if (!data_page)
4726                 goto out;
4727
4728         bpage = *data_page;
4729         if (!bpage)
4730                 goto out;
4731
4732         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4733
4734         reader = rb_get_reader_page(cpu_buffer);
4735         if (!reader)
4736                 goto out_unlock;
4737
4738         event = rb_reader_event(cpu_buffer);
4739
4740         read = reader->read;
4741         commit = rb_page_commit(reader);
4742
4743         /* Check if any events were dropped */
4744         missed_events = cpu_buffer->lost_events;
4745
4746         /*
4747          * If this page has been partially read or
4748          * if len is not big enough to read the rest of the page or
4749          * a writer is still on the page, then
4750          * we must copy the data from the page to the buffer.
4751          * Otherwise, we can simply swap the page with the one passed in.
4752          */
4753         if (read || (len < (commit - read)) ||
4754             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4755                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4756                 unsigned int rpos = read;
4757                 unsigned int pos = 0;
4758                 unsigned int size;
4759
4760                 if (full)
4761                         goto out_unlock;
4762
4763                 if (len > (commit - read))
4764                         len = (commit - read);
4765
4766                 /* Always keep the time extend and data together */
4767                 size = rb_event_ts_length(event);
4768
4769                 if (len < size)
4770                         goto out_unlock;
4771
4772                 /* save the current timestamp, since the user will need it */
4773                 save_timestamp = cpu_buffer->read_stamp;
4774
4775                 /* Need to copy one event at a time */
4776                 do {
4777                         /* We need the size of one event, because
4778                          * rb_advance_reader only advances by one event,
4779                          * whereas rb_event_ts_length may include the size of
4780                          * one or two events.
4781                          * We have already ensured there's enough space if this
4782                          * is a time extend. */
4783                         size = rb_event_length(event);
4784                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4785
4786                         len -= size;
4787
4788                         rb_advance_reader(cpu_buffer);
4789                         rpos = reader->read;
4790                         pos += size;
4791
4792                         if (rpos >= commit)
4793                                 break;
4794
4795                         event = rb_reader_event(cpu_buffer);
4796                         /* Always keep the time extend and data together */
4797                         size = rb_event_ts_length(event);
4798                 } while (len >= size);
4799
4800                 /* update bpage */
4801                 local_set(&bpage->commit, pos);
4802                 bpage->time_stamp = save_timestamp;
4803
4804                 /* we copied everything to the beginning */
4805                 read = 0;
4806         } else {
4807                 /* update the entry counter */
4808                 cpu_buffer->read += rb_page_entries(reader);
4809                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4810
4811                 /* swap the pages */
4812                 rb_init_page(bpage);
4813                 bpage = reader->page;
4814                 reader->page = *data_page;
4815                 local_set(&reader->write, 0);
4816                 local_set(&reader->entries, 0);
4817                 reader->read = 0;
4818                 *data_page = bpage;
4819
4820                 /*
4821                  * Use the real_end for the data size,
4822                  * This gives us a chance to store the lost events
4823                  * on the page.
4824                  */
4825                 if (reader->real_end)
4826                         local_set(&bpage->commit, reader->real_end);
4827         }
4828         ret = read;
4829
4830         cpu_buffer->lost_events = 0;
4831
4832         commit = local_read(&bpage->commit);
4833         /*
4834          * Set a flag in the commit field if we lost events
4835          */
4836         if (missed_events) {
4837                 /* If there is room at the end of the page to save the
4838                  * missed events, then record it there.
4839                  */
4840                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4841                         memcpy(&bpage->data[commit], &missed_events,
4842                                sizeof(missed_events));
4843                         local_add(RB_MISSED_STORED, &bpage->commit);
4844                         commit += sizeof(missed_events);
4845                 }
4846                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4847         }
4848
4849         /*
4850          * This page may be off to user land. Zero it out here.
4851          */
4852         if (commit < BUF_PAGE_SIZE)
4853                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4854
4855  out_unlock:
4856         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4857
4858  out:
4859         return ret;
4860 }
4861 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4862
4863 /*
4864  * We only allocate new buffers, never free them if the CPU goes down.
4865  * If we were to free the buffer, then the user would lose any trace that was in
4866  * the buffer.
4867  */
4868 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4869 {
4870         struct ring_buffer *buffer;
4871         long nr_pages_same;
4872         int cpu_i;
4873         unsigned long nr_pages;
4874
4875         buffer = container_of(node, struct ring_buffer, node);
4876         if (cpumask_test_cpu(cpu, buffer->cpumask))
4877                 return 0;
4878
4879         nr_pages = 0;
4880         nr_pages_same = 1;
4881         /* check if all cpu sizes are same */
4882         for_each_buffer_cpu(buffer, cpu_i) {
4883                 /* fill in the size from first enabled cpu */
4884                 if (nr_pages == 0)
4885                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
4886                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4887                         nr_pages_same = 0;
4888                         break;
4889                 }
4890         }
4891         /* allocate minimum pages, user can later expand it */
4892         if (!nr_pages_same)
4893                 nr_pages = 2;
4894         buffer->buffers[cpu] =
4895                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4896         if (!buffer->buffers[cpu]) {
4897                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4898                      cpu);
4899                 return -ENOMEM;
4900         }
4901         smp_wmb();
4902         cpumask_set_cpu(cpu, buffer->cpumask);
4903         return 0;
4904 }
4905
4906 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4907 /*
4908  * This is a basic integrity check of the ring buffer.
4909  * Late in the boot cycle this test will run when configured in.
4910  * It will kick off a thread per CPU that will go into a loop
4911  * writing to the per cpu ring buffer various sizes of data.
4912  * Some of the data will be large items, some small.
4913  *
4914  * Another thread is created that goes into a spin, sending out
4915  * IPIs to the other CPUs to also write into the ring buffer.
4916  * this is to test the nesting ability of the buffer.
4917  *
4918  * Basic stats are recorded and reported. If something in the
4919  * ring buffer should happen that's not expected, a big warning
4920  * is displayed and all ring buffers are disabled.
4921  */
4922 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4923
4924 struct rb_test_data {
4925         struct ring_buffer      *buffer;
4926         unsigned long           events;
4927         unsigned long           bytes_written;
4928         unsigned long           bytes_alloc;
4929         unsigned long           bytes_dropped;
4930         unsigned long           events_nested;
4931         unsigned long           bytes_written_nested;
4932         unsigned long           bytes_alloc_nested;
4933         unsigned long           bytes_dropped_nested;
4934         int                     min_size_nested;
4935         int                     max_size_nested;
4936         int                     max_size;
4937         int                     min_size;
4938         int                     cpu;
4939         int                     cnt;
4940 };
4941
4942 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4943
4944 /* 1 meg per cpu */
4945 #define RB_TEST_BUFFER_SIZE     1048576
4946
4947 static char rb_string[] __initdata =
4948         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4949         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4950         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4951
4952 static bool rb_test_started __initdata;
4953
4954 struct rb_item {
4955         int size;
4956         char str[];
4957 };
4958
4959 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4960 {
4961         struct ring_buffer_event *event;
4962         struct rb_item *item;
4963         bool started;
4964         int event_len;
4965         int size;
4966         int len;
4967         int cnt;
4968
4969         /* Have nested writes different that what is written */
4970         cnt = data->cnt + (nested ? 27 : 0);
4971
4972         /* Multiply cnt by ~e, to make some unique increment */
4973         size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
4974
4975         len = size + sizeof(struct rb_item);
4976
4977         started = rb_test_started;
4978         /* read rb_test_started before checking buffer enabled */
4979         smp_rmb();
4980
4981         event = ring_buffer_lock_reserve(data->buffer, len);
4982         if (!event) {
4983                 /* Ignore dropped events before test starts. */
4984                 if (started) {
4985                         if (nested)
4986                                 data->bytes_dropped += len;
4987                         else
4988                                 data->bytes_dropped_nested += len;
4989                 }
4990                 return len;
4991         }
4992
4993         event_len = ring_buffer_event_length(event);
4994
4995         if (RB_WARN_ON(data->buffer, event_len < len))
4996                 goto out;
4997
4998         item = ring_buffer_event_data(event);
4999         item->size = size;
5000         memcpy(item->str, rb_string, size);
5001
5002         if (nested) {
5003                 data->bytes_alloc_nested += event_len;
5004                 data->bytes_written_nested += len;
5005                 data->events_nested++;
5006                 if (!data->min_size_nested || len < data->min_size_nested)
5007                         data->min_size_nested = len;
5008                 if (len > data->max_size_nested)
5009                         data->max_size_nested = len;
5010         } else {
5011                 data->bytes_alloc += event_len;
5012                 data->bytes_written += len;
5013                 data->events++;
5014                 if (!data->min_size || len < data->min_size)
5015                         data->max_size = len;
5016                 if (len > data->max_size)
5017                         data->max_size = len;
5018         }
5019
5020  out:
5021         ring_buffer_unlock_commit(data->buffer, event);
5022
5023         return 0;
5024 }
5025
5026 static __init int rb_test(void *arg)
5027 {
5028         struct rb_test_data *data = arg;
5029
5030         while (!kthread_should_stop()) {
5031                 rb_write_something(data, false);
5032                 data->cnt++;
5033
5034                 set_current_state(TASK_INTERRUPTIBLE);
5035                 /* Now sleep between a min of 100-300us and a max of 1ms */
5036                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5037         }
5038
5039         return 0;
5040 }
5041
5042 static __init void rb_ipi(void *ignore)
5043 {
5044         struct rb_test_data *data;
5045         int cpu = smp_processor_id();
5046
5047         data = &rb_data[cpu];
5048         rb_write_something(data, true);
5049 }
5050
5051 static __init int rb_hammer_test(void *arg)
5052 {
5053         while (!kthread_should_stop()) {
5054
5055                 /* Send an IPI to all cpus to write data! */
5056                 smp_call_function(rb_ipi, NULL, 1);
5057                 /* No sleep, but for non preempt, let others run */
5058                 schedule();
5059         }
5060
5061         return 0;
5062 }
5063
5064 static __init int test_ringbuffer(void)
5065 {
5066         struct task_struct *rb_hammer;
5067         struct ring_buffer *buffer;
5068         int cpu;
5069         int ret = 0;
5070
5071         pr_info("Running ring buffer tests...\n");
5072
5073         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5074         if (WARN_ON(!buffer))
5075                 return 0;
5076
5077         /* Disable buffer so that threads can't write to it yet */
5078         ring_buffer_record_off(buffer);
5079
5080         for_each_online_cpu(cpu) {
5081                 rb_data[cpu].buffer = buffer;
5082                 rb_data[cpu].cpu = cpu;
5083                 rb_data[cpu].cnt = cpu;
5084                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5085                                                  "rbtester/%d", cpu);
5086                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5087                         pr_cont("FAILED\n");
5088                         ret = PTR_ERR(rb_threads[cpu]);
5089                         goto out_free;
5090                 }
5091
5092                 kthread_bind(rb_threads[cpu], cpu);
5093                 wake_up_process(rb_threads[cpu]);
5094         }
5095
5096         /* Now create the rb hammer! */
5097         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5098         if (WARN_ON(IS_ERR(rb_hammer))) {
5099                 pr_cont("FAILED\n");
5100                 ret = PTR_ERR(rb_hammer);
5101                 goto out_free;
5102         }
5103
5104         ring_buffer_record_on(buffer);
5105         /*
5106          * Show buffer is enabled before setting rb_test_started.
5107          * Yes there's a small race window where events could be
5108          * dropped and the thread wont catch it. But when a ring
5109          * buffer gets enabled, there will always be some kind of
5110          * delay before other CPUs see it. Thus, we don't care about
5111          * those dropped events. We care about events dropped after
5112          * the threads see that the buffer is active.
5113          */
5114         smp_wmb();
5115         rb_test_started = true;
5116
5117         set_current_state(TASK_INTERRUPTIBLE);
5118         /* Just run for 10 seconds */;
5119         schedule_timeout(10 * HZ);
5120
5121         kthread_stop(rb_hammer);
5122
5123  out_free:
5124         for_each_online_cpu(cpu) {
5125                 if (!rb_threads[cpu])
5126                         break;
5127                 kthread_stop(rb_threads[cpu]);
5128         }
5129         if (ret) {
5130                 ring_buffer_free(buffer);
5131                 return ret;
5132         }
5133
5134         /* Report! */
5135         pr_info("finished\n");
5136         for_each_online_cpu(cpu) {
5137                 struct ring_buffer_event *event;
5138                 struct rb_test_data *data = &rb_data[cpu];
5139                 struct rb_item *item;
5140                 unsigned long total_events;
5141                 unsigned long total_dropped;
5142                 unsigned long total_written;
5143                 unsigned long total_alloc;
5144                 unsigned long total_read = 0;
5145                 unsigned long total_size = 0;
5146                 unsigned long total_len = 0;
5147                 unsigned long total_lost = 0;
5148                 unsigned long lost;
5149                 int big_event_size;
5150                 int small_event_size;
5151
5152                 ret = -1;
5153
5154                 total_events = data->events + data->events_nested;
5155                 total_written = data->bytes_written + data->bytes_written_nested;
5156                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5157                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5158
5159                 big_event_size = data->max_size + data->max_size_nested;
5160                 small_event_size = data->min_size + data->min_size_nested;
5161
5162                 pr_info("CPU %d:\n", cpu);
5163                 pr_info("              events:    %ld\n", total_events);
5164                 pr_info("       dropped bytes:    %ld\n", total_dropped);
5165                 pr_info("       alloced bytes:    %ld\n", total_alloc);
5166                 pr_info("       written bytes:    %ld\n", total_written);
5167                 pr_info("       biggest event:    %d\n", big_event_size);
5168                 pr_info("      smallest event:    %d\n", small_event_size);
5169
5170                 if (RB_WARN_ON(buffer, total_dropped))
5171                         break;
5172
5173                 ret = 0;
5174
5175                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5176                         total_lost += lost;
5177                         item = ring_buffer_event_data(event);
5178                         total_len += ring_buffer_event_length(event);
5179                         total_size += item->size + sizeof(struct rb_item);
5180                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5181                                 pr_info("FAILED!\n");
5182                                 pr_info("buffer had: %.*s\n", item->size, item->str);
5183                                 pr_info("expected:   %.*s\n", item->size, rb_string);
5184                                 RB_WARN_ON(buffer, 1);
5185                                 ret = -1;
5186                                 break;
5187                         }
5188                         total_read++;
5189                 }
5190                 if (ret)
5191                         break;
5192
5193                 ret = -1;
5194
5195                 pr_info("         read events:   %ld\n", total_read);
5196                 pr_info("         lost events:   %ld\n", total_lost);
5197                 pr_info("        total events:   %ld\n", total_lost + total_read);
5198                 pr_info("  recorded len bytes:   %ld\n", total_len);
5199                 pr_info(" recorded size bytes:   %ld\n", total_size);
5200                 if (total_lost)
5201                         pr_info(" With dropped events, record len and size may not match\n"
5202                                 " alloced and written from above\n");
5203                 if (!total_lost) {
5204                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
5205                                        total_size != total_written))
5206                                 break;
5207                 }
5208                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5209                         break;
5210
5211                 ret = 0;
5212         }
5213         if (!ret)
5214                 pr_info("Ring buffer PASSED!\n");
5215
5216         ring_buffer_free(buffer);
5217         return 0;
5218 }
5219
5220 late_initcall(test_ringbuffer);
5221 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */