]> asedeno.scripts.mit.edu Git - linux.git/blob - mm/compaction.c
mm: fix negative nr_isolated counts
[linux.git] / mm / compaction.c
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include "internal.h"
20
21 #ifdef CONFIG_COMPACTION
22 static inline void count_compact_event(enum vm_event_item item)
23 {
24         count_vm_event(item);
25 }
26
27 static inline void count_compact_events(enum vm_event_item item, long delta)
28 {
29         count_vm_events(item, delta);
30 }
31 #else
32 #define count_compact_event(item) do { } while (0)
33 #define count_compact_events(item, delta) do { } while (0)
34 #endif
35
36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
37 #ifdef CONFIG_TRACEPOINTS
38 static const char *const compaction_status_string[] = {
39         "deferred",
40         "skipped",
41         "continue",
42         "partial",
43         "complete",
44         "no_suitable_page",
45         "not_suitable_zone",
46 };
47 #endif
48
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/compaction.h>
51
52 static unsigned long release_freepages(struct list_head *freelist)
53 {
54         struct page *page, *next;
55         unsigned long high_pfn = 0;
56
57         list_for_each_entry_safe(page, next, freelist, lru) {
58                 unsigned long pfn = page_to_pfn(page);
59                 list_del(&page->lru);
60                 __free_page(page);
61                 if (pfn > high_pfn)
62                         high_pfn = pfn;
63         }
64
65         return high_pfn;
66 }
67
68 static void map_pages(struct list_head *list)
69 {
70         struct page *page;
71
72         list_for_each_entry(page, list, lru) {
73                 arch_alloc_page(page, 0);
74                 kernel_map_pages(page, 1, 1);
75         }
76 }
77
78 static inline bool migrate_async_suitable(int migratetype)
79 {
80         return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
81 }
82
83 /*
84  * Check that the whole (or subset of) a pageblock given by the interval of
85  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
86  * with the migration of free compaction scanner. The scanners then need to
87  * use only pfn_valid_within() check for arches that allow holes within
88  * pageblocks.
89  *
90  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
91  *
92  * It's possible on some configurations to have a setup like node0 node1 node0
93  * i.e. it's possible that all pages within a zones range of pages do not
94  * belong to a single zone. We assume that a border between node0 and node1
95  * can occur within a single pageblock, but not a node0 node1 node0
96  * interleaving within a single pageblock. It is therefore sufficient to check
97  * the first and last page of a pageblock and avoid checking each individual
98  * page in a pageblock.
99  */
100 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
101                                 unsigned long end_pfn, struct zone *zone)
102 {
103         struct page *start_page;
104         struct page *end_page;
105
106         /* end_pfn is one past the range we are checking */
107         end_pfn--;
108
109         if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
110                 return NULL;
111
112         start_page = pfn_to_page(start_pfn);
113
114         if (page_zone(start_page) != zone)
115                 return NULL;
116
117         end_page = pfn_to_page(end_pfn);
118
119         /* This gives a shorter code than deriving page_zone(end_page) */
120         if (page_zone_id(start_page) != page_zone_id(end_page))
121                 return NULL;
122
123         return start_page;
124 }
125
126 #ifdef CONFIG_COMPACTION
127
128 /* Do not skip compaction more than 64 times */
129 #define COMPACT_MAX_DEFER_SHIFT 6
130
131 /*
132  * Compaction is deferred when compaction fails to result in a page
133  * allocation success. 1 << compact_defer_limit compactions are skipped up
134  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
135  */
136 void defer_compaction(struct zone *zone, int order)
137 {
138         zone->compact_considered = 0;
139         zone->compact_defer_shift++;
140
141         if (order < zone->compact_order_failed)
142                 zone->compact_order_failed = order;
143
144         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
145                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
146
147         trace_mm_compaction_defer_compaction(zone, order);
148 }
149
150 /* Returns true if compaction should be skipped this time */
151 bool compaction_deferred(struct zone *zone, int order)
152 {
153         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
154
155         if (order < zone->compact_order_failed)
156                 return false;
157
158         /* Avoid possible overflow */
159         if (++zone->compact_considered > defer_limit)
160                 zone->compact_considered = defer_limit;
161
162         if (zone->compact_considered >= defer_limit)
163                 return false;
164
165         trace_mm_compaction_deferred(zone, order);
166
167         return true;
168 }
169
170 /*
171  * Update defer tracking counters after successful compaction of given order,
172  * which means an allocation either succeeded (alloc_success == true) or is
173  * expected to succeed.
174  */
175 void compaction_defer_reset(struct zone *zone, int order,
176                 bool alloc_success)
177 {
178         if (alloc_success) {
179                 zone->compact_considered = 0;
180                 zone->compact_defer_shift = 0;
181         }
182         if (order >= zone->compact_order_failed)
183                 zone->compact_order_failed = order + 1;
184
185         trace_mm_compaction_defer_reset(zone, order);
186 }
187
188 /* Returns true if restarting compaction after many failures */
189 bool compaction_restarting(struct zone *zone, int order)
190 {
191         if (order < zone->compact_order_failed)
192                 return false;
193
194         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
195                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
196 }
197
198 /* Returns true if the pageblock should be scanned for pages to isolate. */
199 static inline bool isolation_suitable(struct compact_control *cc,
200                                         struct page *page)
201 {
202         if (cc->ignore_skip_hint)
203                 return true;
204
205         return !get_pageblock_skip(page);
206 }
207
208 /*
209  * This function is called to clear all cached information on pageblocks that
210  * should be skipped for page isolation when the migrate and free page scanner
211  * meet.
212  */
213 static void __reset_isolation_suitable(struct zone *zone)
214 {
215         unsigned long start_pfn = zone->zone_start_pfn;
216         unsigned long end_pfn = zone_end_pfn(zone);
217         unsigned long pfn;
218
219         zone->compact_cached_migrate_pfn[0] = start_pfn;
220         zone->compact_cached_migrate_pfn[1] = start_pfn;
221         zone->compact_cached_free_pfn = end_pfn;
222         zone->compact_blockskip_flush = false;
223
224         /* Walk the zone and mark every pageblock as suitable for isolation */
225         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
226                 struct page *page;
227
228                 cond_resched();
229
230                 if (!pfn_valid(pfn))
231                         continue;
232
233                 page = pfn_to_page(pfn);
234                 if (zone != page_zone(page))
235                         continue;
236
237                 clear_pageblock_skip(page);
238         }
239 }
240
241 void reset_isolation_suitable(pg_data_t *pgdat)
242 {
243         int zoneid;
244
245         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
246                 struct zone *zone = &pgdat->node_zones[zoneid];
247                 if (!populated_zone(zone))
248                         continue;
249
250                 /* Only flush if a full compaction finished recently */
251                 if (zone->compact_blockskip_flush)
252                         __reset_isolation_suitable(zone);
253         }
254 }
255
256 /*
257  * If no pages were isolated then mark this pageblock to be skipped in the
258  * future. The information is later cleared by __reset_isolation_suitable().
259  */
260 static void update_pageblock_skip(struct compact_control *cc,
261                         struct page *page, unsigned long nr_isolated,
262                         bool migrate_scanner)
263 {
264         struct zone *zone = cc->zone;
265         unsigned long pfn;
266
267         if (cc->ignore_skip_hint)
268                 return;
269
270         if (!page)
271                 return;
272
273         if (nr_isolated)
274                 return;
275
276         set_pageblock_skip(page);
277
278         pfn = page_to_pfn(page);
279
280         /* Update where async and sync compaction should restart */
281         if (migrate_scanner) {
282                 if (pfn > zone->compact_cached_migrate_pfn[0])
283                         zone->compact_cached_migrate_pfn[0] = pfn;
284                 if (cc->mode != MIGRATE_ASYNC &&
285                     pfn > zone->compact_cached_migrate_pfn[1])
286                         zone->compact_cached_migrate_pfn[1] = pfn;
287         } else {
288                 if (pfn < zone->compact_cached_free_pfn)
289                         zone->compact_cached_free_pfn = pfn;
290         }
291 }
292 #else
293 static inline bool isolation_suitable(struct compact_control *cc,
294                                         struct page *page)
295 {
296         return true;
297 }
298
299 static void update_pageblock_skip(struct compact_control *cc,
300                         struct page *page, unsigned long nr_isolated,
301                         bool migrate_scanner)
302 {
303 }
304 #endif /* CONFIG_COMPACTION */
305
306 /*
307  * Compaction requires the taking of some coarse locks that are potentially
308  * very heavily contended. For async compaction, back out if the lock cannot
309  * be taken immediately. For sync compaction, spin on the lock if needed.
310  *
311  * Returns true if the lock is held
312  * Returns false if the lock is not held and compaction should abort
313  */
314 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
315                                                 struct compact_control *cc)
316 {
317         if (cc->mode == MIGRATE_ASYNC) {
318                 if (!spin_trylock_irqsave(lock, *flags)) {
319                         cc->contended = COMPACT_CONTENDED_LOCK;
320                         return false;
321                 }
322         } else {
323                 spin_lock_irqsave(lock, *flags);
324         }
325
326         return true;
327 }
328
329 /*
330  * Compaction requires the taking of some coarse locks that are potentially
331  * very heavily contended. The lock should be periodically unlocked to avoid
332  * having disabled IRQs for a long time, even when there is nobody waiting on
333  * the lock. It might also be that allowing the IRQs will result in
334  * need_resched() becoming true. If scheduling is needed, async compaction
335  * aborts. Sync compaction schedules.
336  * Either compaction type will also abort if a fatal signal is pending.
337  * In either case if the lock was locked, it is dropped and not regained.
338  *
339  * Returns true if compaction should abort due to fatal signal pending, or
340  *              async compaction due to need_resched()
341  * Returns false when compaction can continue (sync compaction might have
342  *              scheduled)
343  */
344 static bool compact_unlock_should_abort(spinlock_t *lock,
345                 unsigned long flags, bool *locked, struct compact_control *cc)
346 {
347         if (*locked) {
348                 spin_unlock_irqrestore(lock, flags);
349                 *locked = false;
350         }
351
352         if (fatal_signal_pending(current)) {
353                 cc->contended = COMPACT_CONTENDED_SCHED;
354                 return true;
355         }
356
357         if (need_resched()) {
358                 if (cc->mode == MIGRATE_ASYNC) {
359                         cc->contended = COMPACT_CONTENDED_SCHED;
360                         return true;
361                 }
362                 cond_resched();
363         }
364
365         return false;
366 }
367
368 /*
369  * Aside from avoiding lock contention, compaction also periodically checks
370  * need_resched() and either schedules in sync compaction or aborts async
371  * compaction. This is similar to what compact_unlock_should_abort() does, but
372  * is used where no lock is concerned.
373  *
374  * Returns false when no scheduling was needed, or sync compaction scheduled.
375  * Returns true when async compaction should abort.
376  */
377 static inline bool compact_should_abort(struct compact_control *cc)
378 {
379         /* async compaction aborts if contended */
380         if (need_resched()) {
381                 if (cc->mode == MIGRATE_ASYNC) {
382                         cc->contended = COMPACT_CONTENDED_SCHED;
383                         return true;
384                 }
385
386                 cond_resched();
387         }
388
389         return false;
390 }
391
392 /* Returns true if the page is within a block suitable for migration to */
393 static bool suitable_migration_target(struct page *page)
394 {
395         /* If the page is a large free page, then disallow migration */
396         if (PageBuddy(page)) {
397                 /*
398                  * We are checking page_order without zone->lock taken. But
399                  * the only small danger is that we skip a potentially suitable
400                  * pageblock, so it's not worth to check order for valid range.
401                  */
402                 if (page_order_unsafe(page) >= pageblock_order)
403                         return false;
404         }
405
406         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
407         if (migrate_async_suitable(get_pageblock_migratetype(page)))
408                 return true;
409
410         /* Otherwise skip the block */
411         return false;
412 }
413
414 /*
415  * Isolate free pages onto a private freelist. If @strict is true, will abort
416  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
417  * (even though it may still end up isolating some pages).
418  */
419 static unsigned long isolate_freepages_block(struct compact_control *cc,
420                                 unsigned long *start_pfn,
421                                 unsigned long end_pfn,
422                                 struct list_head *freelist,
423                                 bool strict)
424 {
425         int nr_scanned = 0, total_isolated = 0;
426         struct page *cursor, *valid_page = NULL;
427         unsigned long flags = 0;
428         bool locked = false;
429         unsigned long blockpfn = *start_pfn;
430
431         cursor = pfn_to_page(blockpfn);
432
433         /* Isolate free pages. */
434         for (; blockpfn < end_pfn; blockpfn++, cursor++) {
435                 int isolated, i;
436                 struct page *page = cursor;
437
438                 /*
439                  * Periodically drop the lock (if held) regardless of its
440                  * contention, to give chance to IRQs. Abort if fatal signal
441                  * pending or async compaction detects need_resched()
442                  */
443                 if (!(blockpfn % SWAP_CLUSTER_MAX)
444                     && compact_unlock_should_abort(&cc->zone->lock, flags,
445                                                                 &locked, cc))
446                         break;
447
448                 nr_scanned++;
449                 if (!pfn_valid_within(blockpfn))
450                         goto isolate_fail;
451
452                 if (!valid_page)
453                         valid_page = page;
454                 if (!PageBuddy(page))
455                         goto isolate_fail;
456
457                 /*
458                  * If we already hold the lock, we can skip some rechecking.
459                  * Note that if we hold the lock now, checked_pageblock was
460                  * already set in some previous iteration (or strict is true),
461                  * so it is correct to skip the suitable migration target
462                  * recheck as well.
463                  */
464                 if (!locked) {
465                         /*
466                          * The zone lock must be held to isolate freepages.
467                          * Unfortunately this is a very coarse lock and can be
468                          * heavily contended if there are parallel allocations
469                          * or parallel compactions. For async compaction do not
470                          * spin on the lock and we acquire the lock as late as
471                          * possible.
472                          */
473                         locked = compact_trylock_irqsave(&cc->zone->lock,
474                                                                 &flags, cc);
475                         if (!locked)
476                                 break;
477
478                         /* Recheck this is a buddy page under lock */
479                         if (!PageBuddy(page))
480                                 goto isolate_fail;
481                 }
482
483                 /* Found a free page, break it into order-0 pages */
484                 isolated = split_free_page(page);
485                 total_isolated += isolated;
486                 for (i = 0; i < isolated; i++) {
487                         list_add(&page->lru, freelist);
488                         page++;
489                 }
490
491                 /* If a page was split, advance to the end of it */
492                 if (isolated) {
493                         cc->nr_freepages += isolated;
494                         if (!strict &&
495                                 cc->nr_migratepages <= cc->nr_freepages) {
496                                 blockpfn += isolated;
497                                 break;
498                         }
499
500                         blockpfn += isolated - 1;
501                         cursor += isolated - 1;
502                         continue;
503                 }
504
505 isolate_fail:
506                 if (strict)
507                         break;
508                 else
509                         continue;
510
511         }
512
513         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
514                                         nr_scanned, total_isolated);
515
516         /* Record how far we have got within the block */
517         *start_pfn = blockpfn;
518
519         /*
520          * If strict isolation is requested by CMA then check that all the
521          * pages requested were isolated. If there were any failures, 0 is
522          * returned and CMA will fail.
523          */
524         if (strict && blockpfn < end_pfn)
525                 total_isolated = 0;
526
527         if (locked)
528                 spin_unlock_irqrestore(&cc->zone->lock, flags);
529
530         /* Update the pageblock-skip if the whole pageblock was scanned */
531         if (blockpfn == end_pfn)
532                 update_pageblock_skip(cc, valid_page, total_isolated, false);
533
534         count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
535         if (total_isolated)
536                 count_compact_events(COMPACTISOLATED, total_isolated);
537         return total_isolated;
538 }
539
540 /**
541  * isolate_freepages_range() - isolate free pages.
542  * @start_pfn: The first PFN to start isolating.
543  * @end_pfn:   The one-past-last PFN.
544  *
545  * Non-free pages, invalid PFNs, or zone boundaries within the
546  * [start_pfn, end_pfn) range are considered errors, cause function to
547  * undo its actions and return zero.
548  *
549  * Otherwise, function returns one-past-the-last PFN of isolated page
550  * (which may be greater then end_pfn if end fell in a middle of
551  * a free page).
552  */
553 unsigned long
554 isolate_freepages_range(struct compact_control *cc,
555                         unsigned long start_pfn, unsigned long end_pfn)
556 {
557         unsigned long isolated, pfn, block_end_pfn;
558         LIST_HEAD(freelist);
559
560         pfn = start_pfn;
561         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
562
563         for (; pfn < end_pfn; pfn += isolated,
564                                 block_end_pfn += pageblock_nr_pages) {
565                 /* Protect pfn from changing by isolate_freepages_block */
566                 unsigned long isolate_start_pfn = pfn;
567
568                 block_end_pfn = min(block_end_pfn, end_pfn);
569
570                 /*
571                  * pfn could pass the block_end_pfn if isolated freepage
572                  * is more than pageblock order. In this case, we adjust
573                  * scanning range to right one.
574                  */
575                 if (pfn >= block_end_pfn) {
576                         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
577                         block_end_pfn = min(block_end_pfn, end_pfn);
578                 }
579
580                 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
581                         break;
582
583                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
584                                                 block_end_pfn, &freelist, true);
585
586                 /*
587                  * In strict mode, isolate_freepages_block() returns 0 if
588                  * there are any holes in the block (ie. invalid PFNs or
589                  * non-free pages).
590                  */
591                 if (!isolated)
592                         break;
593
594                 /*
595                  * If we managed to isolate pages, it is always (1 << n) *
596                  * pageblock_nr_pages for some non-negative n.  (Max order
597                  * page may span two pageblocks).
598                  */
599         }
600
601         /* split_free_page does not map the pages */
602         map_pages(&freelist);
603
604         if (pfn < end_pfn) {
605                 /* Loop terminated early, cleanup. */
606                 release_freepages(&freelist);
607                 return 0;
608         }
609
610         /* We don't use freelists for anything. */
611         return pfn;
612 }
613
614 /* Update the number of anon and file isolated pages in the zone */
615 static void acct_isolated(struct zone *zone, struct compact_control *cc)
616 {
617         struct page *page;
618         unsigned int count[2] = { 0, };
619
620         if (list_empty(&cc->migratepages))
621                 return;
622
623         list_for_each_entry(page, &cc->migratepages, lru)
624                 count[!!page_is_file_cache(page)]++;
625
626         mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
627         mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
628 }
629
630 /* Similar to reclaim, but different enough that they don't share logic */
631 static bool too_many_isolated(struct zone *zone)
632 {
633         unsigned long active, inactive, isolated;
634
635         inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
636                                         zone_page_state(zone, NR_INACTIVE_ANON);
637         active = zone_page_state(zone, NR_ACTIVE_FILE) +
638                                         zone_page_state(zone, NR_ACTIVE_ANON);
639         isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
640                                         zone_page_state(zone, NR_ISOLATED_ANON);
641
642         return isolated > (inactive + active) / 2;
643 }
644
645 /**
646  * isolate_migratepages_block() - isolate all migrate-able pages within
647  *                                a single pageblock
648  * @cc:         Compaction control structure.
649  * @low_pfn:    The first PFN to isolate
650  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
651  * @isolate_mode: Isolation mode to be used.
652  *
653  * Isolate all pages that can be migrated from the range specified by
654  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
655  * Returns zero if there is a fatal signal pending, otherwise PFN of the
656  * first page that was not scanned (which may be both less, equal to or more
657  * than end_pfn).
658  *
659  * The pages are isolated on cc->migratepages list (not required to be empty),
660  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
661  * is neither read nor updated.
662  */
663 static unsigned long
664 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
665                         unsigned long end_pfn, isolate_mode_t isolate_mode)
666 {
667         struct zone *zone = cc->zone;
668         unsigned long nr_scanned = 0, nr_isolated = 0;
669         struct list_head *migratelist = &cc->migratepages;
670         struct lruvec *lruvec;
671         unsigned long flags = 0;
672         bool locked = false;
673         struct page *page = NULL, *valid_page = NULL;
674         unsigned long start_pfn = low_pfn;
675
676         /*
677          * Ensure that there are not too many pages isolated from the LRU
678          * list by either parallel reclaimers or compaction. If there are,
679          * delay for some time until fewer pages are isolated
680          */
681         while (unlikely(too_many_isolated(zone))) {
682                 /* async migration should just abort */
683                 if (cc->mode == MIGRATE_ASYNC)
684                         return 0;
685
686                 congestion_wait(BLK_RW_ASYNC, HZ/10);
687
688                 if (fatal_signal_pending(current))
689                         return 0;
690         }
691
692         if (compact_should_abort(cc))
693                 return 0;
694
695         /* Time to isolate some pages for migration */
696         for (; low_pfn < end_pfn; low_pfn++) {
697                 /*
698                  * Periodically drop the lock (if held) regardless of its
699                  * contention, to give chance to IRQs. Abort async compaction
700                  * if contended.
701                  */
702                 if (!(low_pfn % SWAP_CLUSTER_MAX)
703                     && compact_unlock_should_abort(&zone->lru_lock, flags,
704                                                                 &locked, cc))
705                         break;
706
707                 if (!pfn_valid_within(low_pfn))
708                         continue;
709                 nr_scanned++;
710
711                 page = pfn_to_page(low_pfn);
712
713                 if (!valid_page)
714                         valid_page = page;
715
716                 /*
717                  * Skip if free. We read page order here without zone lock
718                  * which is generally unsafe, but the race window is small and
719                  * the worst thing that can happen is that we skip some
720                  * potential isolation targets.
721                  */
722                 if (PageBuddy(page)) {
723                         unsigned long freepage_order = page_order_unsafe(page);
724
725                         /*
726                          * Without lock, we cannot be sure that what we got is
727                          * a valid page order. Consider only values in the
728                          * valid order range to prevent low_pfn overflow.
729                          */
730                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
731                                 low_pfn += (1UL << freepage_order) - 1;
732                         continue;
733                 }
734
735                 /*
736                  * Check may be lockless but that's ok as we recheck later.
737                  * It's possible to migrate LRU pages and balloon pages
738                  * Skip any other type of page
739                  */
740                 if (!PageLRU(page)) {
741                         if (unlikely(balloon_page_movable(page))) {
742                                 if (balloon_page_isolate(page)) {
743                                         /* Successfully isolated */
744                                         goto isolate_success;
745                                 }
746                         }
747                         continue;
748                 }
749
750                 /*
751                  * PageLRU is set. lru_lock normally excludes isolation
752                  * splitting and collapsing (collapsing has already happened
753                  * if PageLRU is set) but the lock is not necessarily taken
754                  * here and it is wasteful to take it just to check transhuge.
755                  * Check TransHuge without lock and skip the whole pageblock if
756                  * it's either a transhuge or hugetlbfs page, as calling
757                  * compound_order() without preventing THP from splitting the
758                  * page underneath us may return surprising results.
759                  */
760                 if (PageTransHuge(page)) {
761                         if (!locked)
762                                 low_pfn = ALIGN(low_pfn + 1,
763                                                 pageblock_nr_pages) - 1;
764                         else
765                                 low_pfn += (1 << compound_order(page)) - 1;
766
767                         continue;
768                 }
769
770                 /*
771                  * Migration will fail if an anonymous page is pinned in memory,
772                  * so avoid taking lru_lock and isolating it unnecessarily in an
773                  * admittedly racy check.
774                  */
775                 if (!page_mapping(page) &&
776                     page_count(page) > page_mapcount(page))
777                         continue;
778
779                 /* If we already hold the lock, we can skip some rechecking */
780                 if (!locked) {
781                         locked = compact_trylock_irqsave(&zone->lru_lock,
782                                                                 &flags, cc);
783                         if (!locked)
784                                 break;
785
786                         /* Recheck PageLRU and PageTransHuge under lock */
787                         if (!PageLRU(page))
788                                 continue;
789                         if (PageTransHuge(page)) {
790                                 low_pfn += (1 << compound_order(page)) - 1;
791                                 continue;
792                         }
793                 }
794
795                 lruvec = mem_cgroup_page_lruvec(page, zone);
796
797                 /* Try isolate the page */
798                 if (__isolate_lru_page(page, isolate_mode) != 0)
799                         continue;
800
801                 VM_BUG_ON_PAGE(PageTransCompound(page), page);
802
803                 /* Successfully isolated */
804                 del_page_from_lru_list(page, lruvec, page_lru(page));
805
806 isolate_success:
807                 list_add(&page->lru, migratelist);
808                 cc->nr_migratepages++;
809                 nr_isolated++;
810
811                 /* Avoid isolating too much */
812                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
813                         ++low_pfn;
814                         break;
815                 }
816         }
817
818         /*
819          * The PageBuddy() check could have potentially brought us outside
820          * the range to be scanned.
821          */
822         if (unlikely(low_pfn > end_pfn))
823                 low_pfn = end_pfn;
824
825         if (locked)
826                 spin_unlock_irqrestore(&zone->lru_lock, flags);
827
828         /*
829          * Update the pageblock-skip information and cached scanner pfn,
830          * if the whole pageblock was scanned without isolating any page.
831          */
832         if (low_pfn == end_pfn)
833                 update_pageblock_skip(cc, valid_page, nr_isolated, true);
834
835         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
836                                                 nr_scanned, nr_isolated);
837
838         count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
839         if (nr_isolated)
840                 count_compact_events(COMPACTISOLATED, nr_isolated);
841
842         return low_pfn;
843 }
844
845 /**
846  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
847  * @cc:        Compaction control structure.
848  * @start_pfn: The first PFN to start isolating.
849  * @end_pfn:   The one-past-last PFN.
850  *
851  * Returns zero if isolation fails fatally due to e.g. pending signal.
852  * Otherwise, function returns one-past-the-last PFN of isolated page
853  * (which may be greater than end_pfn if end fell in a middle of a THP page).
854  */
855 unsigned long
856 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
857                                                         unsigned long end_pfn)
858 {
859         unsigned long pfn, block_end_pfn;
860
861         /* Scan block by block. First and last block may be incomplete */
862         pfn = start_pfn;
863         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
864
865         for (; pfn < end_pfn; pfn = block_end_pfn,
866                                 block_end_pfn += pageblock_nr_pages) {
867
868                 block_end_pfn = min(block_end_pfn, end_pfn);
869
870                 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
871                         continue;
872
873                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
874                                                         ISOLATE_UNEVICTABLE);
875
876                 /*
877                  * In case of fatal failure, release everything that might
878                  * have been isolated in the previous iteration, and signal
879                  * the failure back to caller.
880                  */
881                 if (!pfn) {
882                         putback_movable_pages(&cc->migratepages);
883                         cc->nr_migratepages = 0;
884                         break;
885                 }
886
887                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
888                         break;
889         }
890         acct_isolated(cc->zone, cc);
891
892         return pfn;
893 }
894
895 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
896 #ifdef CONFIG_COMPACTION
897 /*
898  * Based on information in the current compact_control, find blocks
899  * suitable for isolating free pages from and then isolate them.
900  */
901 static void isolate_freepages(struct compact_control *cc)
902 {
903         struct zone *zone = cc->zone;
904         struct page *page;
905         unsigned long block_start_pfn;  /* start of current pageblock */
906         unsigned long isolate_start_pfn; /* exact pfn we start at */
907         unsigned long block_end_pfn;    /* end of current pageblock */
908         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
909         struct list_head *freelist = &cc->freepages;
910
911         /*
912          * Initialise the free scanner. The starting point is where we last
913          * successfully isolated from, zone-cached value, or the end of the
914          * zone when isolating for the first time. For looping we also need
915          * this pfn aligned down to the pageblock boundary, because we do
916          * block_start_pfn -= pageblock_nr_pages in the for loop.
917          * For ending point, take care when isolating in last pageblock of a
918          * a zone which ends in the middle of a pageblock.
919          * The low boundary is the end of the pageblock the migration scanner
920          * is using.
921          */
922         isolate_start_pfn = cc->free_pfn;
923         block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
924         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
925                                                 zone_end_pfn(zone));
926         low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
927
928         /*
929          * Isolate free pages until enough are available to migrate the
930          * pages on cc->migratepages. We stop searching if the migrate
931          * and free page scanners meet or enough free pages are isolated.
932          */
933         for (; block_start_pfn >= low_pfn &&
934                         cc->nr_migratepages > cc->nr_freepages;
935                                 block_end_pfn = block_start_pfn,
936                                 block_start_pfn -= pageblock_nr_pages,
937                                 isolate_start_pfn = block_start_pfn) {
938
939                 /*
940                  * This can iterate a massively long zone without finding any
941                  * suitable migration targets, so periodically check if we need
942                  * to schedule, or even abort async compaction.
943                  */
944                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
945                                                 && compact_should_abort(cc))
946                         break;
947
948                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
949                                                                         zone);
950                 if (!page)
951                         continue;
952
953                 /* Check the block is suitable for migration */
954                 if (!suitable_migration_target(page))
955                         continue;
956
957                 /* If isolation recently failed, do not retry */
958                 if (!isolation_suitable(cc, page))
959                         continue;
960
961                 /* Found a block suitable for isolating free pages from. */
962                 isolate_freepages_block(cc, &isolate_start_pfn,
963                                         block_end_pfn, freelist, false);
964
965                 /*
966                  * Remember where the free scanner should restart next time,
967                  * which is where isolate_freepages_block() left off.
968                  * But if it scanned the whole pageblock, isolate_start_pfn
969                  * now points at block_end_pfn, which is the start of the next
970                  * pageblock.
971                  * In that case we will however want to restart at the start
972                  * of the previous pageblock.
973                  */
974                 cc->free_pfn = (isolate_start_pfn < block_end_pfn) ?
975                                 isolate_start_pfn :
976                                 block_start_pfn - pageblock_nr_pages;
977
978                 /*
979                  * isolate_freepages_block() might have aborted due to async
980                  * compaction being contended
981                  */
982                 if (cc->contended)
983                         break;
984         }
985
986         /* split_free_page does not map the pages */
987         map_pages(freelist);
988
989         /*
990          * If we crossed the migrate scanner, we want to keep it that way
991          * so that compact_finished() may detect this
992          */
993         if (block_start_pfn < low_pfn)
994                 cc->free_pfn = cc->migrate_pfn;
995 }
996
997 /*
998  * This is a migrate-callback that "allocates" freepages by taking pages
999  * from the isolated freelists in the block we are migrating to.
1000  */
1001 static struct page *compaction_alloc(struct page *migratepage,
1002                                         unsigned long data,
1003                                         int **result)
1004 {
1005         struct compact_control *cc = (struct compact_control *)data;
1006         struct page *freepage;
1007
1008         /*
1009          * Isolate free pages if necessary, and if we are not aborting due to
1010          * contention.
1011          */
1012         if (list_empty(&cc->freepages)) {
1013                 if (!cc->contended)
1014                         isolate_freepages(cc);
1015
1016                 if (list_empty(&cc->freepages))
1017                         return NULL;
1018         }
1019
1020         freepage = list_entry(cc->freepages.next, struct page, lru);
1021         list_del(&freepage->lru);
1022         cc->nr_freepages--;
1023
1024         return freepage;
1025 }
1026
1027 /*
1028  * This is a migrate-callback that "frees" freepages back to the isolated
1029  * freelist.  All pages on the freelist are from the same zone, so there is no
1030  * special handling needed for NUMA.
1031  */
1032 static void compaction_free(struct page *page, unsigned long data)
1033 {
1034         struct compact_control *cc = (struct compact_control *)data;
1035
1036         list_add(&page->lru, &cc->freepages);
1037         cc->nr_freepages++;
1038 }
1039
1040 /* possible outcome of isolate_migratepages */
1041 typedef enum {
1042         ISOLATE_ABORT,          /* Abort compaction now */
1043         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1044         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1045 } isolate_migrate_t;
1046
1047 /*
1048  * Isolate all pages that can be migrated from the first suitable block,
1049  * starting at the block pointed to by the migrate scanner pfn within
1050  * compact_control.
1051  */
1052 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1053                                         struct compact_control *cc)
1054 {
1055         unsigned long low_pfn, end_pfn;
1056         struct page *page;
1057         const isolate_mode_t isolate_mode =
1058                 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1059
1060         /*
1061          * Start at where we last stopped, or beginning of the zone as
1062          * initialized by compact_zone()
1063          */
1064         low_pfn = cc->migrate_pfn;
1065
1066         /* Only scan within a pageblock boundary */
1067         end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1068
1069         /*
1070          * Iterate over whole pageblocks until we find the first suitable.
1071          * Do not cross the free scanner.
1072          */
1073         for (; end_pfn <= cc->free_pfn;
1074                         low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1075
1076                 /*
1077                  * This can potentially iterate a massively long zone with
1078                  * many pageblocks unsuitable, so periodically check if we
1079                  * need to schedule, or even abort async compaction.
1080                  */
1081                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1082                                                 && compact_should_abort(cc))
1083                         break;
1084
1085                 page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1086                 if (!page)
1087                         continue;
1088
1089                 /* If isolation recently failed, do not retry */
1090                 if (!isolation_suitable(cc, page))
1091                         continue;
1092
1093                 /*
1094                  * For async compaction, also only scan in MOVABLE blocks.
1095                  * Async compaction is optimistic to see if the minimum amount
1096                  * of work satisfies the allocation.
1097                  */
1098                 if (cc->mode == MIGRATE_ASYNC &&
1099                     !migrate_async_suitable(get_pageblock_migratetype(page)))
1100                         continue;
1101
1102                 /* Perform the isolation */
1103                 low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1104                                                                 isolate_mode);
1105
1106                 if (!low_pfn || cc->contended) {
1107                         acct_isolated(zone, cc);
1108                         return ISOLATE_ABORT;
1109                 }
1110
1111                 /*
1112                  * Either we isolated something and proceed with migration. Or
1113                  * we failed and compact_zone should decide if we should
1114                  * continue or not.
1115                  */
1116                 break;
1117         }
1118
1119         acct_isolated(zone, cc);
1120         /*
1121          * Record where migration scanner will be restarted. If we end up in
1122          * the same pageblock as the free scanner, make the scanners fully
1123          * meet so that compact_finished() terminates compaction.
1124          */
1125         cc->migrate_pfn = (end_pfn <= cc->free_pfn) ? low_pfn : cc->free_pfn;
1126
1127         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1128 }
1129
1130 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1131                             const int migratetype)
1132 {
1133         unsigned int order;
1134         unsigned long watermark;
1135
1136         if (cc->contended || fatal_signal_pending(current))
1137                 return COMPACT_PARTIAL;
1138
1139         /* Compaction run completes if the migrate and free scanner meet */
1140         if (cc->free_pfn <= cc->migrate_pfn) {
1141                 /* Let the next compaction start anew. */
1142                 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
1143                 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
1144                 zone->compact_cached_free_pfn = zone_end_pfn(zone);
1145
1146                 /*
1147                  * Mark that the PG_migrate_skip information should be cleared
1148                  * by kswapd when it goes to sleep. kswapd does not set the
1149                  * flag itself as the decision to be clear should be directly
1150                  * based on an allocation request.
1151                  */
1152                 if (!current_is_kswapd())
1153                         zone->compact_blockskip_flush = true;
1154
1155                 return COMPACT_COMPLETE;
1156         }
1157
1158         /*
1159          * order == -1 is expected when compacting via
1160          * /proc/sys/vm/compact_memory
1161          */
1162         if (cc->order == -1)
1163                 return COMPACT_CONTINUE;
1164
1165         /* Compaction run is not finished if the watermark is not met */
1166         watermark = low_wmark_pages(zone);
1167
1168         if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1169                                                         cc->alloc_flags))
1170                 return COMPACT_CONTINUE;
1171
1172         /* Direct compactor: Is a suitable page free? */
1173         for (order = cc->order; order < MAX_ORDER; order++) {
1174                 struct free_area *area = &zone->free_area[order];
1175
1176                 /* Job done if page is free of the right migratetype */
1177                 if (!list_empty(&area->free_list[migratetype]))
1178                         return COMPACT_PARTIAL;
1179
1180                 /* Job done if allocation would set block type */
1181                 if (order >= pageblock_order && area->nr_free)
1182                         return COMPACT_PARTIAL;
1183         }
1184
1185         return COMPACT_NO_SUITABLE_PAGE;
1186 }
1187
1188 static int compact_finished(struct zone *zone, struct compact_control *cc,
1189                             const int migratetype)
1190 {
1191         int ret;
1192
1193         ret = __compact_finished(zone, cc, migratetype);
1194         trace_mm_compaction_finished(zone, cc->order, ret);
1195         if (ret == COMPACT_NO_SUITABLE_PAGE)
1196                 ret = COMPACT_CONTINUE;
1197
1198         return ret;
1199 }
1200
1201 /*
1202  * compaction_suitable: Is this suitable to run compaction on this zone now?
1203  * Returns
1204  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1205  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1206  *   COMPACT_CONTINUE - If compaction should run now
1207  */
1208 static unsigned long __compaction_suitable(struct zone *zone, int order,
1209                                         int alloc_flags, int classzone_idx)
1210 {
1211         int fragindex;
1212         unsigned long watermark;
1213
1214         /*
1215          * order == -1 is expected when compacting via
1216          * /proc/sys/vm/compact_memory
1217          */
1218         if (order == -1)
1219                 return COMPACT_CONTINUE;
1220
1221         watermark = low_wmark_pages(zone);
1222         /*
1223          * If watermarks for high-order allocation are already met, there
1224          * should be no need for compaction at all.
1225          */
1226         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1227                                                                 alloc_flags))
1228                 return COMPACT_PARTIAL;
1229
1230         /*
1231          * Watermarks for order-0 must be met for compaction. Note the 2UL.
1232          * This is because during migration, copies of pages need to be
1233          * allocated and for a short time, the footprint is higher
1234          */
1235         watermark += (2UL << order);
1236         if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1237                 return COMPACT_SKIPPED;
1238
1239         /*
1240          * fragmentation index determines if allocation failures are due to
1241          * low memory or external fragmentation
1242          *
1243          * index of -1000 would imply allocations might succeed depending on
1244          * watermarks, but we already failed the high-order watermark check
1245          * index towards 0 implies failure is due to lack of memory
1246          * index towards 1000 implies failure is due to fragmentation
1247          *
1248          * Only compact if a failure would be due to fragmentation.
1249          */
1250         fragindex = fragmentation_index(zone, order);
1251         if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1252                 return COMPACT_NOT_SUITABLE_ZONE;
1253
1254         return COMPACT_CONTINUE;
1255 }
1256
1257 unsigned long compaction_suitable(struct zone *zone, int order,
1258                                         int alloc_flags, int classzone_idx)
1259 {
1260         unsigned long ret;
1261
1262         ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1263         trace_mm_compaction_suitable(zone, order, ret);
1264         if (ret == COMPACT_NOT_SUITABLE_ZONE)
1265                 ret = COMPACT_SKIPPED;
1266
1267         return ret;
1268 }
1269
1270 static int compact_zone(struct zone *zone, struct compact_control *cc)
1271 {
1272         int ret;
1273         unsigned long start_pfn = zone->zone_start_pfn;
1274         unsigned long end_pfn = zone_end_pfn(zone);
1275         const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1276         const bool sync = cc->mode != MIGRATE_ASYNC;
1277         unsigned long last_migrated_pfn = 0;
1278
1279         ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1280                                                         cc->classzone_idx);
1281         switch (ret) {
1282         case COMPACT_PARTIAL:
1283         case COMPACT_SKIPPED:
1284                 /* Compaction is likely to fail */
1285                 return ret;
1286         case COMPACT_CONTINUE:
1287                 /* Fall through to compaction */
1288                 ;
1289         }
1290
1291         /*
1292          * Clear pageblock skip if there were failures recently and compaction
1293          * is about to be retried after being deferred. kswapd does not do
1294          * this reset as it'll reset the cached information when going to sleep.
1295          */
1296         if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1297                 __reset_isolation_suitable(zone);
1298
1299         /*
1300          * Setup to move all movable pages to the end of the zone. Used cached
1301          * information on where the scanners should start but check that it
1302          * is initialised by ensuring the values are within zone boundaries.
1303          */
1304         cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1305         cc->free_pfn = zone->compact_cached_free_pfn;
1306         if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1307                 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1308                 zone->compact_cached_free_pfn = cc->free_pfn;
1309         }
1310         if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1311                 cc->migrate_pfn = start_pfn;
1312                 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1313                 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1314         }
1315
1316         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1317                                 cc->free_pfn, end_pfn, sync);
1318
1319         migrate_prep_local();
1320
1321         while ((ret = compact_finished(zone, cc, migratetype)) ==
1322                                                 COMPACT_CONTINUE) {
1323                 int err;
1324                 unsigned long isolate_start_pfn = cc->migrate_pfn;
1325
1326                 switch (isolate_migratepages(zone, cc)) {
1327                 case ISOLATE_ABORT:
1328                         ret = COMPACT_PARTIAL;
1329                         putback_movable_pages(&cc->migratepages);
1330                         cc->nr_migratepages = 0;
1331                         goto out;
1332                 case ISOLATE_NONE:
1333                         /*
1334                          * We haven't isolated and migrated anything, but
1335                          * there might still be unflushed migrations from
1336                          * previous cc->order aligned block.
1337                          */
1338                         goto check_drain;
1339                 case ISOLATE_SUCCESS:
1340                         ;
1341                 }
1342
1343                 err = migrate_pages(&cc->migratepages, compaction_alloc,
1344                                 compaction_free, (unsigned long)cc, cc->mode,
1345                                 MR_COMPACTION);
1346
1347                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1348                                                         &cc->migratepages);
1349
1350                 /* All pages were either migrated or will be released */
1351                 cc->nr_migratepages = 0;
1352                 if (err) {
1353                         putback_movable_pages(&cc->migratepages);
1354                         /*
1355                          * migrate_pages() may return -ENOMEM when scanners meet
1356                          * and we want compact_finished() to detect it
1357                          */
1358                         if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1359                                 ret = COMPACT_PARTIAL;
1360                                 goto out;
1361                         }
1362                 }
1363
1364                 /*
1365                  * Record where we could have freed pages by migration and not
1366                  * yet flushed them to buddy allocator. We use the pfn that
1367                  * isolate_migratepages() started from in this loop iteration
1368                  * - this is the lowest page that could have been isolated and
1369                  * then freed by migration.
1370                  */
1371                 if (!last_migrated_pfn)
1372                         last_migrated_pfn = isolate_start_pfn;
1373
1374 check_drain:
1375                 /*
1376                  * Has the migration scanner moved away from the previous
1377                  * cc->order aligned block where we migrated from? If yes,
1378                  * flush the pages that were freed, so that they can merge and
1379                  * compact_finished() can detect immediately if allocation
1380                  * would succeed.
1381                  */
1382                 if (cc->order > 0 && last_migrated_pfn) {
1383                         int cpu;
1384                         unsigned long current_block_start =
1385                                 cc->migrate_pfn & ~((1UL << cc->order) - 1);
1386
1387                         if (last_migrated_pfn < current_block_start) {
1388                                 cpu = get_cpu();
1389                                 lru_add_drain_cpu(cpu);
1390                                 drain_local_pages(zone);
1391                                 put_cpu();
1392                                 /* No more flushing until we migrate again */
1393                                 last_migrated_pfn = 0;
1394                         }
1395                 }
1396
1397         }
1398
1399 out:
1400         /*
1401          * Release free pages and update where the free scanner should restart,
1402          * so we don't leave any returned pages behind in the next attempt.
1403          */
1404         if (cc->nr_freepages > 0) {
1405                 unsigned long free_pfn = release_freepages(&cc->freepages);
1406
1407                 cc->nr_freepages = 0;
1408                 VM_BUG_ON(free_pfn == 0);
1409                 /* The cached pfn is always the first in a pageblock */
1410                 free_pfn &= ~(pageblock_nr_pages-1);
1411                 /*
1412                  * Only go back, not forward. The cached pfn might have been
1413                  * already reset to zone end in compact_finished()
1414                  */
1415                 if (free_pfn > zone->compact_cached_free_pfn)
1416                         zone->compact_cached_free_pfn = free_pfn;
1417         }
1418
1419         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1420                                 cc->free_pfn, end_pfn, sync, ret);
1421
1422         return ret;
1423 }
1424
1425 static unsigned long compact_zone_order(struct zone *zone, int order,
1426                 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1427                 int alloc_flags, int classzone_idx)
1428 {
1429         unsigned long ret;
1430         struct compact_control cc = {
1431                 .nr_freepages = 0,
1432                 .nr_migratepages = 0,
1433                 .order = order,
1434                 .gfp_mask = gfp_mask,
1435                 .zone = zone,
1436                 .mode = mode,
1437                 .alloc_flags = alloc_flags,
1438                 .classzone_idx = classzone_idx,
1439         };
1440         INIT_LIST_HEAD(&cc.freepages);
1441         INIT_LIST_HEAD(&cc.migratepages);
1442
1443         ret = compact_zone(zone, &cc);
1444
1445         VM_BUG_ON(!list_empty(&cc.freepages));
1446         VM_BUG_ON(!list_empty(&cc.migratepages));
1447
1448         *contended = cc.contended;
1449         return ret;
1450 }
1451
1452 int sysctl_extfrag_threshold = 500;
1453
1454 /**
1455  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1456  * @gfp_mask: The GFP mask of the current allocation
1457  * @order: The order of the current allocation
1458  * @alloc_flags: The allocation flags of the current allocation
1459  * @ac: The context of current allocation
1460  * @mode: The migration mode for async, sync light, or sync migration
1461  * @contended: Return value that determines if compaction was aborted due to
1462  *             need_resched() or lock contention
1463  *
1464  * This is the main entry point for direct page compaction.
1465  */
1466 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1467                         int alloc_flags, const struct alloc_context *ac,
1468                         enum migrate_mode mode, int *contended)
1469 {
1470         int may_enter_fs = gfp_mask & __GFP_FS;
1471         int may_perform_io = gfp_mask & __GFP_IO;
1472         struct zoneref *z;
1473         struct zone *zone;
1474         int rc = COMPACT_DEFERRED;
1475         int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1476
1477         *contended = COMPACT_CONTENDED_NONE;
1478
1479         /* Check if the GFP flags allow compaction */
1480         if (!order || !may_enter_fs || !may_perform_io)
1481                 return COMPACT_SKIPPED;
1482
1483         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1484
1485         /* Compact each zone in the list */
1486         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1487                                                                 ac->nodemask) {
1488                 int status;
1489                 int zone_contended;
1490
1491                 if (compaction_deferred(zone, order))
1492                         continue;
1493
1494                 status = compact_zone_order(zone, order, gfp_mask, mode,
1495                                 &zone_contended, alloc_flags,
1496                                 ac->classzone_idx);
1497                 rc = max(status, rc);
1498                 /*
1499                  * It takes at least one zone that wasn't lock contended
1500                  * to clear all_zones_contended.
1501                  */
1502                 all_zones_contended &= zone_contended;
1503
1504                 /* If a normal allocation would succeed, stop compacting */
1505                 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1506                                         ac->classzone_idx, alloc_flags)) {
1507                         /*
1508                          * We think the allocation will succeed in this zone,
1509                          * but it is not certain, hence the false. The caller
1510                          * will repeat this with true if allocation indeed
1511                          * succeeds in this zone.
1512                          */
1513                         compaction_defer_reset(zone, order, false);
1514                         /*
1515                          * It is possible that async compaction aborted due to
1516                          * need_resched() and the watermarks were ok thanks to
1517                          * somebody else freeing memory. The allocation can
1518                          * however still fail so we better signal the
1519                          * need_resched() contention anyway (this will not
1520                          * prevent the allocation attempt).
1521                          */
1522                         if (zone_contended == COMPACT_CONTENDED_SCHED)
1523                                 *contended = COMPACT_CONTENDED_SCHED;
1524
1525                         goto break_loop;
1526                 }
1527
1528                 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1529                         /*
1530                          * We think that allocation won't succeed in this zone
1531                          * so we defer compaction there. If it ends up
1532                          * succeeding after all, it will be reset.
1533                          */
1534                         defer_compaction(zone, order);
1535                 }
1536
1537                 /*
1538                  * We might have stopped compacting due to need_resched() in
1539                  * async compaction, or due to a fatal signal detected. In that
1540                  * case do not try further zones and signal need_resched()
1541                  * contention.
1542                  */
1543                 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1544                                         || fatal_signal_pending(current)) {
1545                         *contended = COMPACT_CONTENDED_SCHED;
1546                         goto break_loop;
1547                 }
1548
1549                 continue;
1550 break_loop:
1551                 /*
1552                  * We might not have tried all the zones, so  be conservative
1553                  * and assume they are not all lock contended.
1554                  */
1555                 all_zones_contended = 0;
1556                 break;
1557         }
1558
1559         /*
1560          * If at least one zone wasn't deferred or skipped, we report if all
1561          * zones that were tried were lock contended.
1562          */
1563         if (rc > COMPACT_SKIPPED && all_zones_contended)
1564                 *contended = COMPACT_CONTENDED_LOCK;
1565
1566         return rc;
1567 }
1568
1569
1570 /* Compact all zones within a node */
1571 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1572 {
1573         int zoneid;
1574         struct zone *zone;
1575
1576         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1577
1578                 zone = &pgdat->node_zones[zoneid];
1579                 if (!populated_zone(zone))
1580                         continue;
1581
1582                 cc->nr_freepages = 0;
1583                 cc->nr_migratepages = 0;
1584                 cc->zone = zone;
1585                 INIT_LIST_HEAD(&cc->freepages);
1586                 INIT_LIST_HEAD(&cc->migratepages);
1587
1588                 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1589                         compact_zone(zone, cc);
1590
1591                 if (cc->order > 0) {
1592                         if (zone_watermark_ok(zone, cc->order,
1593                                                 low_wmark_pages(zone), 0, 0))
1594                                 compaction_defer_reset(zone, cc->order, false);
1595                 }
1596
1597                 VM_BUG_ON(!list_empty(&cc->freepages));
1598                 VM_BUG_ON(!list_empty(&cc->migratepages));
1599         }
1600 }
1601
1602 void compact_pgdat(pg_data_t *pgdat, int order)
1603 {
1604         struct compact_control cc = {
1605                 .order = order,
1606                 .mode = MIGRATE_ASYNC,
1607         };
1608
1609         if (!order)
1610                 return;
1611
1612         __compact_pgdat(pgdat, &cc);
1613 }
1614
1615 static void compact_node(int nid)
1616 {
1617         struct compact_control cc = {
1618                 .order = -1,
1619                 .mode = MIGRATE_SYNC,
1620                 .ignore_skip_hint = true,
1621         };
1622
1623         __compact_pgdat(NODE_DATA(nid), &cc);
1624 }
1625
1626 /* Compact all nodes in the system */
1627 static void compact_nodes(void)
1628 {
1629         int nid;
1630
1631         /* Flush pending updates to the LRU lists */
1632         lru_add_drain_all();
1633
1634         for_each_online_node(nid)
1635                 compact_node(nid);
1636 }
1637
1638 /* The written value is actually unused, all memory is compacted */
1639 int sysctl_compact_memory;
1640
1641 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1642 int sysctl_compaction_handler(struct ctl_table *table, int write,
1643                         void __user *buffer, size_t *length, loff_t *ppos)
1644 {
1645         if (write)
1646                 compact_nodes();
1647
1648         return 0;
1649 }
1650
1651 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1652                         void __user *buffer, size_t *length, loff_t *ppos)
1653 {
1654         proc_dointvec_minmax(table, write, buffer, length, ppos);
1655
1656         return 0;
1657 }
1658
1659 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1660 static ssize_t sysfs_compact_node(struct device *dev,
1661                         struct device_attribute *attr,
1662                         const char *buf, size_t count)
1663 {
1664         int nid = dev->id;
1665
1666         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1667                 /* Flush pending updates to the LRU lists */
1668                 lru_add_drain_all();
1669
1670                 compact_node(nid);
1671         }
1672
1673         return count;
1674 }
1675 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1676
1677 int compaction_register_node(struct node *node)
1678 {
1679         return device_create_file(&node->dev, &dev_attr_compact);
1680 }
1681
1682 void compaction_unregister_node(struct node *node)
1683 {
1684         return device_remove_file(&node->dev, &dev_attr_compact);
1685 }
1686 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1687
1688 #endif /* CONFIG_COMPACTION */