]> asedeno.scripts.mit.edu Git - linux.git/blob - mm/filemap.c
mm: add file_fdatawait_range and file_write_and_wait
[linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
39 #include "internal.h"
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
43
44 /*
45  * FIXME: remove all knowledge of the buffer layer from the core VM
46  */
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48
49 #include <asm/mman.h>
50
51 /*
52  * Shared mappings implemented 30.11.1994. It's not fully working yet,
53  * though.
54  *
55  * Shared mappings now work. 15.8.1995  Bruno.
56  *
57  * finished 'unifying' the page and buffer cache and SMP-threaded the
58  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59  *
60  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61  */
62
63 /*
64  * Lock ordering:
65  *
66  *  ->i_mmap_rwsem              (truncate_pagecache)
67  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
68  *      ->swap_lock             (exclusive_swap_page, others)
69  *        ->mapping->tree_lock
70  *
71  *  ->i_mutex
72  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
73  *
74  *  ->mmap_sem
75  *    ->i_mmap_rwsem
76  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
77  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
78  *
79  *  ->mmap_sem
80  *    ->lock_page               (access_process_vm)
81  *
82  *  ->i_mutex                   (generic_perform_write)
83  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
84  *
85  *  bdi->wb.list_lock
86  *    sb_lock                   (fs/fs-writeback.c)
87  *    ->mapping->tree_lock      (__sync_single_inode)
88  *
89  *  ->i_mmap_rwsem
90  *    ->anon_vma.lock           (vma_adjust)
91  *
92  *  ->anon_vma.lock
93  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
94  *
95  *  ->page_table_lock or pte_lock
96  *    ->swap_lock               (try_to_unmap_one)
97  *    ->private_lock            (try_to_unmap_one)
98  *    ->tree_lock               (try_to_unmap_one)
99  *    ->zone_lru_lock(zone)     (follow_page->mark_page_accessed)
100  *    ->zone_lru_lock(zone)     (check_pte_range->isolate_lru_page)
101  *    ->private_lock            (page_remove_rmap->set_page_dirty)
102  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
104  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
105  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
106  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
107  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
108  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
109  *
110  * ->i_mmap_rwsem
111  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
112  */
113
114 static int page_cache_tree_insert(struct address_space *mapping,
115                                   struct page *page, void **shadowp)
116 {
117         struct radix_tree_node *node;
118         void **slot;
119         int error;
120
121         error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122                                     &node, &slot);
123         if (error)
124                 return error;
125         if (*slot) {
126                 void *p;
127
128                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129                 if (!radix_tree_exceptional_entry(p))
130                         return -EEXIST;
131
132                 mapping->nrexceptional--;
133                 if (!dax_mapping(mapping)) {
134                         if (shadowp)
135                                 *shadowp = p;
136                 } else {
137                         /* DAX can replace empty locked entry with a hole */
138                         WARN_ON_ONCE(p !=
139                                 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
140                         /* Wakeup waiters for exceptional entry lock */
141                         dax_wake_mapping_entry_waiter(mapping, page->index, p,
142                                                       true);
143                 }
144         }
145         __radix_tree_replace(&mapping->page_tree, node, slot, page,
146                              workingset_update_node, mapping);
147         mapping->nrpages++;
148         return 0;
149 }
150
151 static void page_cache_tree_delete(struct address_space *mapping,
152                                    struct page *page, void *shadow)
153 {
154         int i, nr;
155
156         /* hugetlb pages are represented by one entry in the radix tree */
157         nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
158
159         VM_BUG_ON_PAGE(!PageLocked(page), page);
160         VM_BUG_ON_PAGE(PageTail(page), page);
161         VM_BUG_ON_PAGE(nr != 1 && shadow, page);
162
163         for (i = 0; i < nr; i++) {
164                 struct radix_tree_node *node;
165                 void **slot;
166
167                 __radix_tree_lookup(&mapping->page_tree, page->index + i,
168                                     &node, &slot);
169
170                 VM_BUG_ON_PAGE(!node && nr != 1, page);
171
172                 radix_tree_clear_tags(&mapping->page_tree, node, slot);
173                 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
174                                      workingset_update_node, mapping);
175         }
176
177         if (shadow) {
178                 mapping->nrexceptional += nr;
179                 /*
180                  * Make sure the nrexceptional update is committed before
181                  * the nrpages update so that final truncate racing
182                  * with reclaim does not see both counters 0 at the
183                  * same time and miss a shadow entry.
184                  */
185                 smp_wmb();
186         }
187         mapping->nrpages -= nr;
188 }
189
190 /*
191  * Delete a page from the page cache and free it. Caller has to make
192  * sure the page is locked and that nobody else uses it - or that usage
193  * is safe.  The caller must hold the mapping's tree_lock.
194  */
195 void __delete_from_page_cache(struct page *page, void *shadow)
196 {
197         struct address_space *mapping = page->mapping;
198         int nr = hpage_nr_pages(page);
199
200         trace_mm_filemap_delete_from_page_cache(page);
201         /*
202          * if we're uptodate, flush out into the cleancache, otherwise
203          * invalidate any existing cleancache entries.  We can't leave
204          * stale data around in the cleancache once our page is gone
205          */
206         if (PageUptodate(page) && PageMappedToDisk(page))
207                 cleancache_put_page(page);
208         else
209                 cleancache_invalidate_page(mapping, page);
210
211         VM_BUG_ON_PAGE(PageTail(page), page);
212         VM_BUG_ON_PAGE(page_mapped(page), page);
213         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
214                 int mapcount;
215
216                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
217                          current->comm, page_to_pfn(page));
218                 dump_page(page, "still mapped when deleted");
219                 dump_stack();
220                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
221
222                 mapcount = page_mapcount(page);
223                 if (mapping_exiting(mapping) &&
224                     page_count(page) >= mapcount + 2) {
225                         /*
226                          * All vmas have already been torn down, so it's
227                          * a good bet that actually the page is unmapped,
228                          * and we'd prefer not to leak it: if we're wrong,
229                          * some other bad page check should catch it later.
230                          */
231                         page_mapcount_reset(page);
232                         page_ref_sub(page, mapcount);
233                 }
234         }
235
236         page_cache_tree_delete(mapping, page, shadow);
237
238         page->mapping = NULL;
239         /* Leave page->index set: truncation lookup relies upon it */
240
241         /* hugetlb pages do not participate in page cache accounting. */
242         if (PageHuge(page))
243                 return;
244
245         __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
246         if (PageSwapBacked(page)) {
247                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
248                 if (PageTransHuge(page))
249                         __dec_node_page_state(page, NR_SHMEM_THPS);
250         } else {
251                 VM_BUG_ON_PAGE(PageTransHuge(page), page);
252         }
253
254         /*
255          * At this point page must be either written or cleaned by truncate.
256          * Dirty page here signals a bug and loss of unwritten data.
257          *
258          * This fixes dirty accounting after removing the page entirely but
259          * leaves PageDirty set: it has no effect for truncated page and
260          * anyway will be cleared before returning page into buddy allocator.
261          */
262         if (WARN_ON_ONCE(PageDirty(page)))
263                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
264 }
265
266 /**
267  * delete_from_page_cache - delete page from page cache
268  * @page: the page which the kernel is trying to remove from page cache
269  *
270  * This must be called only on pages that have been verified to be in the page
271  * cache and locked.  It will never put the page into the free list, the caller
272  * has a reference on the page.
273  */
274 void delete_from_page_cache(struct page *page)
275 {
276         struct address_space *mapping = page_mapping(page);
277         unsigned long flags;
278         void (*freepage)(struct page *);
279
280         BUG_ON(!PageLocked(page));
281
282         freepage = mapping->a_ops->freepage;
283
284         spin_lock_irqsave(&mapping->tree_lock, flags);
285         __delete_from_page_cache(page, NULL);
286         spin_unlock_irqrestore(&mapping->tree_lock, flags);
287
288         if (freepage)
289                 freepage(page);
290
291         if (PageTransHuge(page) && !PageHuge(page)) {
292                 page_ref_sub(page, HPAGE_PMD_NR);
293                 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
294         } else {
295                 put_page(page);
296         }
297 }
298 EXPORT_SYMBOL(delete_from_page_cache);
299
300 int filemap_check_errors(struct address_space *mapping)
301 {
302         int ret = 0;
303         /* Check for outstanding write errors */
304         if (test_bit(AS_ENOSPC, &mapping->flags) &&
305             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
306                 ret = -ENOSPC;
307         if (test_bit(AS_EIO, &mapping->flags) &&
308             test_and_clear_bit(AS_EIO, &mapping->flags))
309                 ret = -EIO;
310         return ret;
311 }
312 EXPORT_SYMBOL(filemap_check_errors);
313
314 static int filemap_check_and_keep_errors(struct address_space *mapping)
315 {
316         /* Check for outstanding write errors */
317         if (test_bit(AS_EIO, &mapping->flags))
318                 return -EIO;
319         if (test_bit(AS_ENOSPC, &mapping->flags))
320                 return -ENOSPC;
321         return 0;
322 }
323
324 /**
325  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
326  * @mapping:    address space structure to write
327  * @start:      offset in bytes where the range starts
328  * @end:        offset in bytes where the range ends (inclusive)
329  * @sync_mode:  enable synchronous operation
330  *
331  * Start writeback against all of a mapping's dirty pages that lie
332  * within the byte offsets <start, end> inclusive.
333  *
334  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
335  * opposed to a regular memory cleansing writeback.  The difference between
336  * these two operations is that if a dirty page/buffer is encountered, it must
337  * be waited upon, and not just skipped over.
338  */
339 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
340                                 loff_t end, int sync_mode)
341 {
342         int ret;
343         struct writeback_control wbc = {
344                 .sync_mode = sync_mode,
345                 .nr_to_write = LONG_MAX,
346                 .range_start = start,
347                 .range_end = end,
348         };
349
350         if (!mapping_cap_writeback_dirty(mapping))
351                 return 0;
352
353         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
354         ret = do_writepages(mapping, &wbc);
355         wbc_detach_inode(&wbc);
356         return ret;
357 }
358
359 static inline int __filemap_fdatawrite(struct address_space *mapping,
360         int sync_mode)
361 {
362         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
363 }
364
365 int filemap_fdatawrite(struct address_space *mapping)
366 {
367         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
368 }
369 EXPORT_SYMBOL(filemap_fdatawrite);
370
371 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
372                                 loff_t end)
373 {
374         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
375 }
376 EXPORT_SYMBOL(filemap_fdatawrite_range);
377
378 /**
379  * filemap_flush - mostly a non-blocking flush
380  * @mapping:    target address_space
381  *
382  * This is a mostly non-blocking flush.  Not suitable for data-integrity
383  * purposes - I/O may not be started against all dirty pages.
384  */
385 int filemap_flush(struct address_space *mapping)
386 {
387         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
388 }
389 EXPORT_SYMBOL(filemap_flush);
390
391 /**
392  * filemap_range_has_page - check if a page exists in range.
393  * @mapping:           address space within which to check
394  * @start_byte:        offset in bytes where the range starts
395  * @end_byte:          offset in bytes where the range ends (inclusive)
396  *
397  * Find at least one page in the range supplied, usually used to check if
398  * direct writing in this range will trigger a writeback.
399  */
400 bool filemap_range_has_page(struct address_space *mapping,
401                            loff_t start_byte, loff_t end_byte)
402 {
403         pgoff_t index = start_byte >> PAGE_SHIFT;
404         pgoff_t end = end_byte >> PAGE_SHIFT;
405         struct pagevec pvec;
406         bool ret;
407
408         if (end_byte < start_byte)
409                 return false;
410
411         if (mapping->nrpages == 0)
412                 return false;
413
414         pagevec_init(&pvec, 0);
415         if (!pagevec_lookup(&pvec, mapping, index, 1))
416                 return false;
417         ret = (pvec.pages[0]->index <= end);
418         pagevec_release(&pvec);
419         return ret;
420 }
421 EXPORT_SYMBOL(filemap_range_has_page);
422
423 static void __filemap_fdatawait_range(struct address_space *mapping,
424                                      loff_t start_byte, loff_t end_byte)
425 {
426         pgoff_t index = start_byte >> PAGE_SHIFT;
427         pgoff_t end = end_byte >> PAGE_SHIFT;
428         struct pagevec pvec;
429         int nr_pages;
430
431         if (end_byte < start_byte)
432                 return;
433
434         pagevec_init(&pvec, 0);
435         while ((index <= end) &&
436                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
437                         PAGECACHE_TAG_WRITEBACK,
438                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
439                 unsigned i;
440
441                 for (i = 0; i < nr_pages; i++) {
442                         struct page *page = pvec.pages[i];
443
444                         /* until radix tree lookup accepts end_index */
445                         if (page->index > end)
446                                 continue;
447
448                         wait_on_page_writeback(page);
449                         ClearPageError(page);
450                 }
451                 pagevec_release(&pvec);
452                 cond_resched();
453         }
454 }
455
456 /**
457  * filemap_fdatawait_range - wait for writeback to complete
458  * @mapping:            address space structure to wait for
459  * @start_byte:         offset in bytes where the range starts
460  * @end_byte:           offset in bytes where the range ends (inclusive)
461  *
462  * Walk the list of under-writeback pages of the given address space
463  * in the given range and wait for all of them.  Check error status of
464  * the address space and return it.
465  *
466  * Since the error status of the address space is cleared by this function,
467  * callers are responsible for checking the return value and handling and/or
468  * reporting the error.
469  */
470 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
471                             loff_t end_byte)
472 {
473         __filemap_fdatawait_range(mapping, start_byte, end_byte);
474         return filemap_check_errors(mapping);
475 }
476 EXPORT_SYMBOL(filemap_fdatawait_range);
477
478 /**
479  * file_fdatawait_range - wait for writeback to complete
480  * @file:               file pointing to address space structure to wait for
481  * @start_byte:         offset in bytes where the range starts
482  * @end_byte:           offset in bytes where the range ends (inclusive)
483  *
484  * Walk the list of under-writeback pages of the address space that file
485  * refers to, in the given range and wait for all of them.  Check error
486  * status of the address space vs. the file->f_wb_err cursor and return it.
487  *
488  * Since the error status of the file is advanced by this function,
489  * callers are responsible for checking the return value and handling and/or
490  * reporting the error.
491  */
492 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
493 {
494         struct address_space *mapping = file->f_mapping;
495
496         __filemap_fdatawait_range(mapping, start_byte, end_byte);
497         return file_check_and_advance_wb_err(file);
498 }
499 EXPORT_SYMBOL(file_fdatawait_range);
500
501 /**
502  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
503  * @mapping: address space structure to wait for
504  *
505  * Walk the list of under-writeback pages of the given address space
506  * and wait for all of them.  Unlike filemap_fdatawait(), this function
507  * does not clear error status of the address space.
508  *
509  * Use this function if callers don't handle errors themselves.  Expected
510  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
511  * fsfreeze(8)
512  */
513 int filemap_fdatawait_keep_errors(struct address_space *mapping)
514 {
515         loff_t i_size = i_size_read(mapping->host);
516
517         if (i_size == 0)
518                 return 0;
519
520         __filemap_fdatawait_range(mapping, 0, i_size - 1);
521         return filemap_check_and_keep_errors(mapping);
522 }
523 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
524
525 /**
526  * filemap_fdatawait - wait for all under-writeback pages to complete
527  * @mapping: address space structure to wait for
528  *
529  * Walk the list of under-writeback pages of the given address space
530  * and wait for all of them.  Check error status of the address space
531  * and return it.
532  *
533  * Since the error status of the address space is cleared by this function,
534  * callers are responsible for checking the return value and handling and/or
535  * reporting the error.
536  */
537 int filemap_fdatawait(struct address_space *mapping)
538 {
539         loff_t i_size = i_size_read(mapping->host);
540
541         if (i_size == 0)
542                 return 0;
543
544         return filemap_fdatawait_range(mapping, 0, i_size - 1);
545 }
546 EXPORT_SYMBOL(filemap_fdatawait);
547
548 static bool mapping_needs_writeback(struct address_space *mapping)
549 {
550         return (!dax_mapping(mapping) && mapping->nrpages) ||
551             (dax_mapping(mapping) && mapping->nrexceptional);
552 }
553
554 int filemap_write_and_wait(struct address_space *mapping)
555 {
556         int err = 0;
557
558         if (mapping_needs_writeback(mapping)) {
559                 err = filemap_fdatawrite(mapping);
560                 /*
561                  * Even if the above returned error, the pages may be
562                  * written partially (e.g. -ENOSPC), so we wait for it.
563                  * But the -EIO is special case, it may indicate the worst
564                  * thing (e.g. bug) happened, so we avoid waiting for it.
565                  */
566                 if (err != -EIO) {
567                         int err2 = filemap_fdatawait(mapping);
568                         if (!err)
569                                 err = err2;
570                 } else {
571                         /* Clear any previously stored errors */
572                         filemap_check_errors(mapping);
573                 }
574         } else {
575                 err = filemap_check_errors(mapping);
576         }
577         return err;
578 }
579 EXPORT_SYMBOL(filemap_write_and_wait);
580
581 /**
582  * filemap_write_and_wait_range - write out & wait on a file range
583  * @mapping:    the address_space for the pages
584  * @lstart:     offset in bytes where the range starts
585  * @lend:       offset in bytes where the range ends (inclusive)
586  *
587  * Write out and wait upon file offsets lstart->lend, inclusive.
588  *
589  * Note that @lend is inclusive (describes the last byte to be written) so
590  * that this function can be used to write to the very end-of-file (end = -1).
591  */
592 int filemap_write_and_wait_range(struct address_space *mapping,
593                                  loff_t lstart, loff_t lend)
594 {
595         int err = 0;
596
597         if (mapping_needs_writeback(mapping)) {
598                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
599                                                  WB_SYNC_ALL);
600                 /* See comment of filemap_write_and_wait() */
601                 if (err != -EIO) {
602                         int err2 = filemap_fdatawait_range(mapping,
603                                                 lstart, lend);
604                         if (!err)
605                                 err = err2;
606                 } else {
607                         /* Clear any previously stored errors */
608                         filemap_check_errors(mapping);
609                 }
610         } else {
611                 err = filemap_check_errors(mapping);
612         }
613         return err;
614 }
615 EXPORT_SYMBOL(filemap_write_and_wait_range);
616
617 void __filemap_set_wb_err(struct address_space *mapping, int err)
618 {
619         errseq_t eseq = errseq_set(&mapping->wb_err, err);
620
621         trace_filemap_set_wb_err(mapping, eseq);
622 }
623 EXPORT_SYMBOL(__filemap_set_wb_err);
624
625 /**
626  * file_check_and_advance_wb_err - report wb error (if any) that was previously
627  *                                 and advance wb_err to current one
628  * @file: struct file on which the error is being reported
629  *
630  * When userland calls fsync (or something like nfsd does the equivalent), we
631  * want to report any writeback errors that occurred since the last fsync (or
632  * since the file was opened if there haven't been any).
633  *
634  * Grab the wb_err from the mapping. If it matches what we have in the file,
635  * then just quickly return 0. The file is all caught up.
636  *
637  * If it doesn't match, then take the mapping value, set the "seen" flag in
638  * it and try to swap it into place. If it works, or another task beat us
639  * to it with the new value, then update the f_wb_err and return the error
640  * portion. The error at this point must be reported via proper channels
641  * (a'la fsync, or NFS COMMIT operation, etc.).
642  *
643  * While we handle mapping->wb_err with atomic operations, the f_wb_err
644  * value is protected by the f_lock since we must ensure that it reflects
645  * the latest value swapped in for this file descriptor.
646  */
647 int file_check_and_advance_wb_err(struct file *file)
648 {
649         int err = 0;
650         errseq_t old = READ_ONCE(file->f_wb_err);
651         struct address_space *mapping = file->f_mapping;
652
653         /* Locklessly handle the common case where nothing has changed */
654         if (errseq_check(&mapping->wb_err, old)) {
655                 /* Something changed, must use slow path */
656                 spin_lock(&file->f_lock);
657                 old = file->f_wb_err;
658                 err = errseq_check_and_advance(&mapping->wb_err,
659                                                 &file->f_wb_err);
660                 trace_file_check_and_advance_wb_err(file, old);
661                 spin_unlock(&file->f_lock);
662         }
663         return err;
664 }
665 EXPORT_SYMBOL(file_check_and_advance_wb_err);
666
667 /**
668  * file_write_and_wait_range - write out & wait on a file range
669  * @file:       file pointing to address_space with pages
670  * @lstart:     offset in bytes where the range starts
671  * @lend:       offset in bytes where the range ends (inclusive)
672  *
673  * Write out and wait upon file offsets lstart->lend, inclusive.
674  *
675  * Note that @lend is inclusive (describes the last byte to be written) so
676  * that this function can be used to write to the very end-of-file (end = -1).
677  *
678  * After writing out and waiting on the data, we check and advance the
679  * f_wb_err cursor to the latest value, and return any errors detected there.
680  */
681 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
682 {
683         int err = 0, err2;
684         struct address_space *mapping = file->f_mapping;
685
686         if (mapping_needs_writeback(mapping)) {
687                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
688                                                  WB_SYNC_ALL);
689                 /* See comment of filemap_write_and_wait() */
690                 if (err != -EIO)
691                         __filemap_fdatawait_range(mapping, lstart, lend);
692         }
693         err2 = file_check_and_advance_wb_err(file);
694         if (!err)
695                 err = err2;
696         return err;
697 }
698 EXPORT_SYMBOL(file_write_and_wait_range);
699
700 /**
701  * replace_page_cache_page - replace a pagecache page with a new one
702  * @old:        page to be replaced
703  * @new:        page to replace with
704  * @gfp_mask:   allocation mode
705  *
706  * This function replaces a page in the pagecache with a new one.  On
707  * success it acquires the pagecache reference for the new page and
708  * drops it for the old page.  Both the old and new pages must be
709  * locked.  This function does not add the new page to the LRU, the
710  * caller must do that.
711  *
712  * The remove + add is atomic.  The only way this function can fail is
713  * memory allocation failure.
714  */
715 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
716 {
717         int error;
718
719         VM_BUG_ON_PAGE(!PageLocked(old), old);
720         VM_BUG_ON_PAGE(!PageLocked(new), new);
721         VM_BUG_ON_PAGE(new->mapping, new);
722
723         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
724         if (!error) {
725                 struct address_space *mapping = old->mapping;
726                 void (*freepage)(struct page *);
727                 unsigned long flags;
728
729                 pgoff_t offset = old->index;
730                 freepage = mapping->a_ops->freepage;
731
732                 get_page(new);
733                 new->mapping = mapping;
734                 new->index = offset;
735
736                 spin_lock_irqsave(&mapping->tree_lock, flags);
737                 __delete_from_page_cache(old, NULL);
738                 error = page_cache_tree_insert(mapping, new, NULL);
739                 BUG_ON(error);
740
741                 /*
742                  * hugetlb pages do not participate in page cache accounting.
743                  */
744                 if (!PageHuge(new))
745                         __inc_node_page_state(new, NR_FILE_PAGES);
746                 if (PageSwapBacked(new))
747                         __inc_node_page_state(new, NR_SHMEM);
748                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
749                 mem_cgroup_migrate(old, new);
750                 radix_tree_preload_end();
751                 if (freepage)
752                         freepage(old);
753                 put_page(old);
754         }
755
756         return error;
757 }
758 EXPORT_SYMBOL_GPL(replace_page_cache_page);
759
760 static int __add_to_page_cache_locked(struct page *page,
761                                       struct address_space *mapping,
762                                       pgoff_t offset, gfp_t gfp_mask,
763                                       void **shadowp)
764 {
765         int huge = PageHuge(page);
766         struct mem_cgroup *memcg;
767         int error;
768
769         VM_BUG_ON_PAGE(!PageLocked(page), page);
770         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
771
772         if (!huge) {
773                 error = mem_cgroup_try_charge(page, current->mm,
774                                               gfp_mask, &memcg, false);
775                 if (error)
776                         return error;
777         }
778
779         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
780         if (error) {
781                 if (!huge)
782                         mem_cgroup_cancel_charge(page, memcg, false);
783                 return error;
784         }
785
786         get_page(page);
787         page->mapping = mapping;
788         page->index = offset;
789
790         spin_lock_irq(&mapping->tree_lock);
791         error = page_cache_tree_insert(mapping, page, shadowp);
792         radix_tree_preload_end();
793         if (unlikely(error))
794                 goto err_insert;
795
796         /* hugetlb pages do not participate in page cache accounting. */
797         if (!huge)
798                 __inc_node_page_state(page, NR_FILE_PAGES);
799         spin_unlock_irq(&mapping->tree_lock);
800         if (!huge)
801                 mem_cgroup_commit_charge(page, memcg, false, false);
802         trace_mm_filemap_add_to_page_cache(page);
803         return 0;
804 err_insert:
805         page->mapping = NULL;
806         /* Leave page->index set: truncation relies upon it */
807         spin_unlock_irq(&mapping->tree_lock);
808         if (!huge)
809                 mem_cgroup_cancel_charge(page, memcg, false);
810         put_page(page);
811         return error;
812 }
813
814 /**
815  * add_to_page_cache_locked - add a locked page to the pagecache
816  * @page:       page to add
817  * @mapping:    the page's address_space
818  * @offset:     page index
819  * @gfp_mask:   page allocation mode
820  *
821  * This function is used to add a page to the pagecache. It must be locked.
822  * This function does not add the page to the LRU.  The caller must do that.
823  */
824 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
825                 pgoff_t offset, gfp_t gfp_mask)
826 {
827         return __add_to_page_cache_locked(page, mapping, offset,
828                                           gfp_mask, NULL);
829 }
830 EXPORT_SYMBOL(add_to_page_cache_locked);
831
832 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
833                                 pgoff_t offset, gfp_t gfp_mask)
834 {
835         void *shadow = NULL;
836         int ret;
837
838         __SetPageLocked(page);
839         ret = __add_to_page_cache_locked(page, mapping, offset,
840                                          gfp_mask, &shadow);
841         if (unlikely(ret))
842                 __ClearPageLocked(page);
843         else {
844                 /*
845                  * The page might have been evicted from cache only
846                  * recently, in which case it should be activated like
847                  * any other repeatedly accessed page.
848                  * The exception is pages getting rewritten; evicting other
849                  * data from the working set, only to cache data that will
850                  * get overwritten with something else, is a waste of memory.
851                  */
852                 if (!(gfp_mask & __GFP_WRITE) &&
853                     shadow && workingset_refault(shadow)) {
854                         SetPageActive(page);
855                         workingset_activation(page);
856                 } else
857                         ClearPageActive(page);
858                 lru_cache_add(page);
859         }
860         return ret;
861 }
862 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
863
864 #ifdef CONFIG_NUMA
865 struct page *__page_cache_alloc(gfp_t gfp)
866 {
867         int n;
868         struct page *page;
869
870         if (cpuset_do_page_mem_spread()) {
871                 unsigned int cpuset_mems_cookie;
872                 do {
873                         cpuset_mems_cookie = read_mems_allowed_begin();
874                         n = cpuset_mem_spread_node();
875                         page = __alloc_pages_node(n, gfp, 0);
876                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
877
878                 return page;
879         }
880         return alloc_pages(gfp, 0);
881 }
882 EXPORT_SYMBOL(__page_cache_alloc);
883 #endif
884
885 /*
886  * In order to wait for pages to become available there must be
887  * waitqueues associated with pages. By using a hash table of
888  * waitqueues where the bucket discipline is to maintain all
889  * waiters on the same queue and wake all when any of the pages
890  * become available, and for the woken contexts to check to be
891  * sure the appropriate page became available, this saves space
892  * at a cost of "thundering herd" phenomena during rare hash
893  * collisions.
894  */
895 #define PAGE_WAIT_TABLE_BITS 8
896 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
897 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
898
899 static wait_queue_head_t *page_waitqueue(struct page *page)
900 {
901         return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
902 }
903
904 void __init pagecache_init(void)
905 {
906         int i;
907
908         for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
909                 init_waitqueue_head(&page_wait_table[i]);
910
911         page_writeback_init();
912 }
913
914 struct wait_page_key {
915         struct page *page;
916         int bit_nr;
917         int page_match;
918 };
919
920 struct wait_page_queue {
921         struct page *page;
922         int bit_nr;
923         wait_queue_entry_t wait;
924 };
925
926 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
927 {
928         struct wait_page_key *key = arg;
929         struct wait_page_queue *wait_page
930                 = container_of(wait, struct wait_page_queue, wait);
931
932         if (wait_page->page != key->page)
933                return 0;
934         key->page_match = 1;
935
936         if (wait_page->bit_nr != key->bit_nr)
937                 return 0;
938         if (test_bit(key->bit_nr, &key->page->flags))
939                 return 0;
940
941         return autoremove_wake_function(wait, mode, sync, key);
942 }
943
944 static void wake_up_page_bit(struct page *page, int bit_nr)
945 {
946         wait_queue_head_t *q = page_waitqueue(page);
947         struct wait_page_key key;
948         unsigned long flags;
949
950         key.page = page;
951         key.bit_nr = bit_nr;
952         key.page_match = 0;
953
954         spin_lock_irqsave(&q->lock, flags);
955         __wake_up_locked_key(q, TASK_NORMAL, &key);
956         /*
957          * It is possible for other pages to have collided on the waitqueue
958          * hash, so in that case check for a page match. That prevents a long-
959          * term waiter
960          *
961          * It is still possible to miss a case here, when we woke page waiters
962          * and removed them from the waitqueue, but there are still other
963          * page waiters.
964          */
965         if (!waitqueue_active(q) || !key.page_match) {
966                 ClearPageWaiters(page);
967                 /*
968                  * It's possible to miss clearing Waiters here, when we woke
969                  * our page waiters, but the hashed waitqueue has waiters for
970                  * other pages on it.
971                  *
972                  * That's okay, it's a rare case. The next waker will clear it.
973                  */
974         }
975         spin_unlock_irqrestore(&q->lock, flags);
976 }
977
978 static void wake_up_page(struct page *page, int bit)
979 {
980         if (!PageWaiters(page))
981                 return;
982         wake_up_page_bit(page, bit);
983 }
984
985 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
986                 struct page *page, int bit_nr, int state, bool lock)
987 {
988         struct wait_page_queue wait_page;
989         wait_queue_entry_t *wait = &wait_page.wait;
990         int ret = 0;
991
992         init_wait(wait);
993         wait->func = wake_page_function;
994         wait_page.page = page;
995         wait_page.bit_nr = bit_nr;
996
997         for (;;) {
998                 spin_lock_irq(&q->lock);
999
1000                 if (likely(list_empty(&wait->entry))) {
1001                         if (lock)
1002                                 __add_wait_queue_entry_tail_exclusive(q, wait);
1003                         else
1004                                 __add_wait_queue(q, wait);
1005                         SetPageWaiters(page);
1006                 }
1007
1008                 set_current_state(state);
1009
1010                 spin_unlock_irq(&q->lock);
1011
1012                 if (likely(test_bit(bit_nr, &page->flags))) {
1013                         io_schedule();
1014                         if (unlikely(signal_pending_state(state, current))) {
1015                                 ret = -EINTR;
1016                                 break;
1017                         }
1018                 }
1019
1020                 if (lock) {
1021                         if (!test_and_set_bit_lock(bit_nr, &page->flags))
1022                                 break;
1023                 } else {
1024                         if (!test_bit(bit_nr, &page->flags))
1025                                 break;
1026                 }
1027         }
1028
1029         finish_wait(q, wait);
1030
1031         /*
1032          * A signal could leave PageWaiters set. Clearing it here if
1033          * !waitqueue_active would be possible (by open-coding finish_wait),
1034          * but still fail to catch it in the case of wait hash collision. We
1035          * already can fail to clear wait hash collision cases, so don't
1036          * bother with signals either.
1037          */
1038
1039         return ret;
1040 }
1041
1042 void wait_on_page_bit(struct page *page, int bit_nr)
1043 {
1044         wait_queue_head_t *q = page_waitqueue(page);
1045         wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1046 }
1047 EXPORT_SYMBOL(wait_on_page_bit);
1048
1049 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1050 {
1051         wait_queue_head_t *q = page_waitqueue(page);
1052         return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1053 }
1054
1055 /**
1056  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1057  * @page: Page defining the wait queue of interest
1058  * @waiter: Waiter to add to the queue
1059  *
1060  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1061  */
1062 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1063 {
1064         wait_queue_head_t *q = page_waitqueue(page);
1065         unsigned long flags;
1066
1067         spin_lock_irqsave(&q->lock, flags);
1068         __add_wait_queue(q, waiter);
1069         SetPageWaiters(page);
1070         spin_unlock_irqrestore(&q->lock, flags);
1071 }
1072 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1073
1074 #ifndef clear_bit_unlock_is_negative_byte
1075
1076 /*
1077  * PG_waiters is the high bit in the same byte as PG_lock.
1078  *
1079  * On x86 (and on many other architectures), we can clear PG_lock and
1080  * test the sign bit at the same time. But if the architecture does
1081  * not support that special operation, we just do this all by hand
1082  * instead.
1083  *
1084  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1085  * being cleared, but a memory barrier should be unneccssary since it is
1086  * in the same byte as PG_locked.
1087  */
1088 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1089 {
1090         clear_bit_unlock(nr, mem);
1091         /* smp_mb__after_atomic(); */
1092         return test_bit(PG_waiters, mem);
1093 }
1094
1095 #endif
1096
1097 /**
1098  * unlock_page - unlock a locked page
1099  * @page: the page
1100  *
1101  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1102  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1103  * mechanism between PageLocked pages and PageWriteback pages is shared.
1104  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1105  *
1106  * Note that this depends on PG_waiters being the sign bit in the byte
1107  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1108  * clear the PG_locked bit and test PG_waiters at the same time fairly
1109  * portably (architectures that do LL/SC can test any bit, while x86 can
1110  * test the sign bit).
1111  */
1112 void unlock_page(struct page *page)
1113 {
1114         BUILD_BUG_ON(PG_waiters != 7);
1115         page = compound_head(page);
1116         VM_BUG_ON_PAGE(!PageLocked(page), page);
1117         if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1118                 wake_up_page_bit(page, PG_locked);
1119 }
1120 EXPORT_SYMBOL(unlock_page);
1121
1122 /**
1123  * end_page_writeback - end writeback against a page
1124  * @page: the page
1125  */
1126 void end_page_writeback(struct page *page)
1127 {
1128         /*
1129          * TestClearPageReclaim could be used here but it is an atomic
1130          * operation and overkill in this particular case. Failing to
1131          * shuffle a page marked for immediate reclaim is too mild to
1132          * justify taking an atomic operation penalty at the end of
1133          * ever page writeback.
1134          */
1135         if (PageReclaim(page)) {
1136                 ClearPageReclaim(page);
1137                 rotate_reclaimable_page(page);
1138         }
1139
1140         if (!test_clear_page_writeback(page))
1141                 BUG();
1142
1143         smp_mb__after_atomic();
1144         wake_up_page(page, PG_writeback);
1145 }
1146 EXPORT_SYMBOL(end_page_writeback);
1147
1148 /*
1149  * After completing I/O on a page, call this routine to update the page
1150  * flags appropriately
1151  */
1152 void page_endio(struct page *page, bool is_write, int err)
1153 {
1154         if (!is_write) {
1155                 if (!err) {
1156                         SetPageUptodate(page);
1157                 } else {
1158                         ClearPageUptodate(page);
1159                         SetPageError(page);
1160                 }
1161                 unlock_page(page);
1162         } else {
1163                 if (err) {
1164                         struct address_space *mapping;
1165
1166                         SetPageError(page);
1167                         mapping = page_mapping(page);
1168                         if (mapping)
1169                                 mapping_set_error(mapping, err);
1170                 }
1171                 end_page_writeback(page);
1172         }
1173 }
1174 EXPORT_SYMBOL_GPL(page_endio);
1175
1176 /**
1177  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1178  * @__page: the page to lock
1179  */
1180 void __lock_page(struct page *__page)
1181 {
1182         struct page *page = compound_head(__page);
1183         wait_queue_head_t *q = page_waitqueue(page);
1184         wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1185 }
1186 EXPORT_SYMBOL(__lock_page);
1187
1188 int __lock_page_killable(struct page *__page)
1189 {
1190         struct page *page = compound_head(__page);
1191         wait_queue_head_t *q = page_waitqueue(page);
1192         return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1193 }
1194 EXPORT_SYMBOL_GPL(__lock_page_killable);
1195
1196 /*
1197  * Return values:
1198  * 1 - page is locked; mmap_sem is still held.
1199  * 0 - page is not locked.
1200  *     mmap_sem has been released (up_read()), unless flags had both
1201  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1202  *     which case mmap_sem is still held.
1203  *
1204  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1205  * with the page locked and the mmap_sem unperturbed.
1206  */
1207 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1208                          unsigned int flags)
1209 {
1210         if (flags & FAULT_FLAG_ALLOW_RETRY) {
1211                 /*
1212                  * CAUTION! In this case, mmap_sem is not released
1213                  * even though return 0.
1214                  */
1215                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1216                         return 0;
1217
1218                 up_read(&mm->mmap_sem);
1219                 if (flags & FAULT_FLAG_KILLABLE)
1220                         wait_on_page_locked_killable(page);
1221                 else
1222                         wait_on_page_locked(page);
1223                 return 0;
1224         } else {
1225                 if (flags & FAULT_FLAG_KILLABLE) {
1226                         int ret;
1227
1228                         ret = __lock_page_killable(page);
1229                         if (ret) {
1230                                 up_read(&mm->mmap_sem);
1231                                 return 0;
1232                         }
1233                 } else
1234                         __lock_page(page);
1235                 return 1;
1236         }
1237 }
1238
1239 /**
1240  * page_cache_next_hole - find the next hole (not-present entry)
1241  * @mapping: mapping
1242  * @index: index
1243  * @max_scan: maximum range to search
1244  *
1245  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1246  * lowest indexed hole.
1247  *
1248  * Returns: the index of the hole if found, otherwise returns an index
1249  * outside of the set specified (in which case 'return - index >=
1250  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1251  * be returned.
1252  *
1253  * page_cache_next_hole may be called under rcu_read_lock. However,
1254  * like radix_tree_gang_lookup, this will not atomically search a
1255  * snapshot of the tree at a single point in time. For example, if a
1256  * hole is created at index 5, then subsequently a hole is created at
1257  * index 10, page_cache_next_hole covering both indexes may return 10
1258  * if called under rcu_read_lock.
1259  */
1260 pgoff_t page_cache_next_hole(struct address_space *mapping,
1261                              pgoff_t index, unsigned long max_scan)
1262 {
1263         unsigned long i;
1264
1265         for (i = 0; i < max_scan; i++) {
1266                 struct page *page;
1267
1268                 page = radix_tree_lookup(&mapping->page_tree, index);
1269                 if (!page || radix_tree_exceptional_entry(page))
1270                         break;
1271                 index++;
1272                 if (index == 0)
1273                         break;
1274         }
1275
1276         return index;
1277 }
1278 EXPORT_SYMBOL(page_cache_next_hole);
1279
1280 /**
1281  * page_cache_prev_hole - find the prev hole (not-present entry)
1282  * @mapping: mapping
1283  * @index: index
1284  * @max_scan: maximum range to search
1285  *
1286  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1287  * the first hole.
1288  *
1289  * Returns: the index of the hole if found, otherwise returns an index
1290  * outside of the set specified (in which case 'index - return >=
1291  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1292  * will be returned.
1293  *
1294  * page_cache_prev_hole may be called under rcu_read_lock. However,
1295  * like radix_tree_gang_lookup, this will not atomically search a
1296  * snapshot of the tree at a single point in time. For example, if a
1297  * hole is created at index 10, then subsequently a hole is created at
1298  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1299  * called under rcu_read_lock.
1300  */
1301 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1302                              pgoff_t index, unsigned long max_scan)
1303 {
1304         unsigned long i;
1305
1306         for (i = 0; i < max_scan; i++) {
1307                 struct page *page;
1308
1309                 page = radix_tree_lookup(&mapping->page_tree, index);
1310                 if (!page || radix_tree_exceptional_entry(page))
1311                         break;
1312                 index--;
1313                 if (index == ULONG_MAX)
1314                         break;
1315         }
1316
1317         return index;
1318 }
1319 EXPORT_SYMBOL(page_cache_prev_hole);
1320
1321 /**
1322  * find_get_entry - find and get a page cache entry
1323  * @mapping: the address_space to search
1324  * @offset: the page cache index
1325  *
1326  * Looks up the page cache slot at @mapping & @offset.  If there is a
1327  * page cache page, it is returned with an increased refcount.
1328  *
1329  * If the slot holds a shadow entry of a previously evicted page, or a
1330  * swap entry from shmem/tmpfs, it is returned.
1331  *
1332  * Otherwise, %NULL is returned.
1333  */
1334 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1335 {
1336         void **pagep;
1337         struct page *head, *page;
1338
1339         rcu_read_lock();
1340 repeat:
1341         page = NULL;
1342         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1343         if (pagep) {
1344                 page = radix_tree_deref_slot(pagep);
1345                 if (unlikely(!page))
1346                         goto out;
1347                 if (radix_tree_exception(page)) {
1348                         if (radix_tree_deref_retry(page))
1349                                 goto repeat;
1350                         /*
1351                          * A shadow entry of a recently evicted page,
1352                          * or a swap entry from shmem/tmpfs.  Return
1353                          * it without attempting to raise page count.
1354                          */
1355                         goto out;
1356                 }
1357
1358                 head = compound_head(page);
1359                 if (!page_cache_get_speculative(head))
1360                         goto repeat;
1361
1362                 /* The page was split under us? */
1363                 if (compound_head(page) != head) {
1364                         put_page(head);
1365                         goto repeat;
1366                 }
1367
1368                 /*
1369                  * Has the page moved?
1370                  * This is part of the lockless pagecache protocol. See
1371                  * include/linux/pagemap.h for details.
1372                  */
1373                 if (unlikely(page != *pagep)) {
1374                         put_page(head);
1375                         goto repeat;
1376                 }
1377         }
1378 out:
1379         rcu_read_unlock();
1380
1381         return page;
1382 }
1383 EXPORT_SYMBOL(find_get_entry);
1384
1385 /**
1386  * find_lock_entry - locate, pin and lock a page cache entry
1387  * @mapping: the address_space to search
1388  * @offset: the page cache index
1389  *
1390  * Looks up the page cache slot at @mapping & @offset.  If there is a
1391  * page cache page, it is returned locked and with an increased
1392  * refcount.
1393  *
1394  * If the slot holds a shadow entry of a previously evicted page, or a
1395  * swap entry from shmem/tmpfs, it is returned.
1396  *
1397  * Otherwise, %NULL is returned.
1398  *
1399  * find_lock_entry() may sleep.
1400  */
1401 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1402 {
1403         struct page *page;
1404
1405 repeat:
1406         page = find_get_entry(mapping, offset);
1407         if (page && !radix_tree_exception(page)) {
1408                 lock_page(page);
1409                 /* Has the page been truncated? */
1410                 if (unlikely(page_mapping(page) != mapping)) {
1411                         unlock_page(page);
1412                         put_page(page);
1413                         goto repeat;
1414                 }
1415                 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1416         }
1417         return page;
1418 }
1419 EXPORT_SYMBOL(find_lock_entry);
1420
1421 /**
1422  * pagecache_get_page - find and get a page reference
1423  * @mapping: the address_space to search
1424  * @offset: the page index
1425  * @fgp_flags: PCG flags
1426  * @gfp_mask: gfp mask to use for the page cache data page allocation
1427  *
1428  * Looks up the page cache slot at @mapping & @offset.
1429  *
1430  * PCG flags modify how the page is returned.
1431  *
1432  * @fgp_flags can be:
1433  *
1434  * - FGP_ACCESSED: the page will be marked accessed
1435  * - FGP_LOCK: Page is return locked
1436  * - FGP_CREAT: If page is not present then a new page is allocated using
1437  *   @gfp_mask and added to the page cache and the VM's LRU
1438  *   list. The page is returned locked and with an increased
1439  *   refcount. Otherwise, NULL is returned.
1440  *
1441  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1442  * if the GFP flags specified for FGP_CREAT are atomic.
1443  *
1444  * If there is a page cache page, it is returned with an increased refcount.
1445  */
1446 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1447         int fgp_flags, gfp_t gfp_mask)
1448 {
1449         struct page *page;
1450
1451 repeat:
1452         page = find_get_entry(mapping, offset);
1453         if (radix_tree_exceptional_entry(page))
1454                 page = NULL;
1455         if (!page)
1456                 goto no_page;
1457
1458         if (fgp_flags & FGP_LOCK) {
1459                 if (fgp_flags & FGP_NOWAIT) {
1460                         if (!trylock_page(page)) {
1461                                 put_page(page);
1462                                 return NULL;
1463                         }
1464                 } else {
1465                         lock_page(page);
1466                 }
1467
1468                 /* Has the page been truncated? */
1469                 if (unlikely(page->mapping != mapping)) {
1470                         unlock_page(page);
1471                         put_page(page);
1472                         goto repeat;
1473                 }
1474                 VM_BUG_ON_PAGE(page->index != offset, page);
1475         }
1476
1477         if (page && (fgp_flags & FGP_ACCESSED))
1478                 mark_page_accessed(page);
1479
1480 no_page:
1481         if (!page && (fgp_flags & FGP_CREAT)) {
1482                 int err;
1483                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1484                         gfp_mask |= __GFP_WRITE;
1485                 if (fgp_flags & FGP_NOFS)
1486                         gfp_mask &= ~__GFP_FS;
1487
1488                 page = __page_cache_alloc(gfp_mask);
1489                 if (!page)
1490                         return NULL;
1491
1492                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1493                         fgp_flags |= FGP_LOCK;
1494
1495                 /* Init accessed so avoid atomic mark_page_accessed later */
1496                 if (fgp_flags & FGP_ACCESSED)
1497                         __SetPageReferenced(page);
1498
1499                 err = add_to_page_cache_lru(page, mapping, offset,
1500                                 gfp_mask & GFP_RECLAIM_MASK);
1501                 if (unlikely(err)) {
1502                         put_page(page);
1503                         page = NULL;
1504                         if (err == -EEXIST)
1505                                 goto repeat;
1506                 }
1507         }
1508
1509         return page;
1510 }
1511 EXPORT_SYMBOL(pagecache_get_page);
1512
1513 /**
1514  * find_get_entries - gang pagecache lookup
1515  * @mapping:    The address_space to search
1516  * @start:      The starting page cache index
1517  * @nr_entries: The maximum number of entries
1518  * @entries:    Where the resulting entries are placed
1519  * @indices:    The cache indices corresponding to the entries in @entries
1520  *
1521  * find_get_entries() will search for and return a group of up to
1522  * @nr_entries entries in the mapping.  The entries are placed at
1523  * @entries.  find_get_entries() takes a reference against any actual
1524  * pages it returns.
1525  *
1526  * The search returns a group of mapping-contiguous page cache entries
1527  * with ascending indexes.  There may be holes in the indices due to
1528  * not-present pages.
1529  *
1530  * Any shadow entries of evicted pages, or swap entries from
1531  * shmem/tmpfs, are included in the returned array.
1532  *
1533  * find_get_entries() returns the number of pages and shadow entries
1534  * which were found.
1535  */
1536 unsigned find_get_entries(struct address_space *mapping,
1537                           pgoff_t start, unsigned int nr_entries,
1538                           struct page **entries, pgoff_t *indices)
1539 {
1540         void **slot;
1541         unsigned int ret = 0;
1542         struct radix_tree_iter iter;
1543
1544         if (!nr_entries)
1545                 return 0;
1546
1547         rcu_read_lock();
1548         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1549                 struct page *head, *page;
1550 repeat:
1551                 page = radix_tree_deref_slot(slot);
1552                 if (unlikely(!page))
1553                         continue;
1554                 if (radix_tree_exception(page)) {
1555                         if (radix_tree_deref_retry(page)) {
1556                                 slot = radix_tree_iter_retry(&iter);
1557                                 continue;
1558                         }
1559                         /*
1560                          * A shadow entry of a recently evicted page, a swap
1561                          * entry from shmem/tmpfs or a DAX entry.  Return it
1562                          * without attempting to raise page count.
1563                          */
1564                         goto export;
1565                 }
1566
1567                 head = compound_head(page);
1568                 if (!page_cache_get_speculative(head))
1569                         goto repeat;
1570
1571                 /* The page was split under us? */
1572                 if (compound_head(page) != head) {
1573                         put_page(head);
1574                         goto repeat;
1575                 }
1576
1577                 /* Has the page moved? */
1578                 if (unlikely(page != *slot)) {
1579                         put_page(head);
1580                         goto repeat;
1581                 }
1582 export:
1583                 indices[ret] = iter.index;
1584                 entries[ret] = page;
1585                 if (++ret == nr_entries)
1586                         break;
1587         }
1588         rcu_read_unlock();
1589         return ret;
1590 }
1591
1592 /**
1593  * find_get_pages - gang pagecache lookup
1594  * @mapping:    The address_space to search
1595  * @start:      The starting page index
1596  * @nr_pages:   The maximum number of pages
1597  * @pages:      Where the resulting pages are placed
1598  *
1599  * find_get_pages() will search for and return a group of up to
1600  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1601  * find_get_pages() takes a reference against the returned pages.
1602  *
1603  * The search returns a group of mapping-contiguous pages with ascending
1604  * indexes.  There may be holes in the indices due to not-present pages.
1605  *
1606  * find_get_pages() returns the number of pages which were found.
1607  */
1608 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1609                             unsigned int nr_pages, struct page **pages)
1610 {
1611         struct radix_tree_iter iter;
1612         void **slot;
1613         unsigned ret = 0;
1614
1615         if (unlikely(!nr_pages))
1616                 return 0;
1617
1618         rcu_read_lock();
1619         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1620                 struct page *head, *page;
1621 repeat:
1622                 page = radix_tree_deref_slot(slot);
1623                 if (unlikely(!page))
1624                         continue;
1625
1626                 if (radix_tree_exception(page)) {
1627                         if (radix_tree_deref_retry(page)) {
1628                                 slot = radix_tree_iter_retry(&iter);
1629                                 continue;
1630                         }
1631                         /*
1632                          * A shadow entry of a recently evicted page,
1633                          * or a swap entry from shmem/tmpfs.  Skip
1634                          * over it.
1635                          */
1636                         continue;
1637                 }
1638
1639                 head = compound_head(page);
1640                 if (!page_cache_get_speculative(head))
1641                         goto repeat;
1642
1643                 /* The page was split under us? */
1644                 if (compound_head(page) != head) {
1645                         put_page(head);
1646                         goto repeat;
1647                 }
1648
1649                 /* Has the page moved? */
1650                 if (unlikely(page != *slot)) {
1651                         put_page(head);
1652                         goto repeat;
1653                 }
1654
1655                 pages[ret] = page;
1656                 if (++ret == nr_pages)
1657                         break;
1658         }
1659
1660         rcu_read_unlock();
1661         return ret;
1662 }
1663
1664 /**
1665  * find_get_pages_contig - gang contiguous pagecache lookup
1666  * @mapping:    The address_space to search
1667  * @index:      The starting page index
1668  * @nr_pages:   The maximum number of pages
1669  * @pages:      Where the resulting pages are placed
1670  *
1671  * find_get_pages_contig() works exactly like find_get_pages(), except
1672  * that the returned number of pages are guaranteed to be contiguous.
1673  *
1674  * find_get_pages_contig() returns the number of pages which were found.
1675  */
1676 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1677                                unsigned int nr_pages, struct page **pages)
1678 {
1679         struct radix_tree_iter iter;
1680         void **slot;
1681         unsigned int ret = 0;
1682
1683         if (unlikely(!nr_pages))
1684                 return 0;
1685
1686         rcu_read_lock();
1687         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1688                 struct page *head, *page;
1689 repeat:
1690                 page = radix_tree_deref_slot(slot);
1691                 /* The hole, there no reason to continue */
1692                 if (unlikely(!page))
1693                         break;
1694
1695                 if (radix_tree_exception(page)) {
1696                         if (radix_tree_deref_retry(page)) {
1697                                 slot = radix_tree_iter_retry(&iter);
1698                                 continue;
1699                         }
1700                         /*
1701                          * A shadow entry of a recently evicted page,
1702                          * or a swap entry from shmem/tmpfs.  Stop
1703                          * looking for contiguous pages.
1704                          */
1705                         break;
1706                 }
1707
1708                 head = compound_head(page);
1709                 if (!page_cache_get_speculative(head))
1710                         goto repeat;
1711
1712                 /* The page was split under us? */
1713                 if (compound_head(page) != head) {
1714                         put_page(head);
1715                         goto repeat;
1716                 }
1717
1718                 /* Has the page moved? */
1719                 if (unlikely(page != *slot)) {
1720                         put_page(head);
1721                         goto repeat;
1722                 }
1723
1724                 /*
1725                  * must check mapping and index after taking the ref.
1726                  * otherwise we can get both false positives and false
1727                  * negatives, which is just confusing to the caller.
1728                  */
1729                 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1730                         put_page(page);
1731                         break;
1732                 }
1733
1734                 pages[ret] = page;
1735                 if (++ret == nr_pages)
1736                         break;
1737         }
1738         rcu_read_unlock();
1739         return ret;
1740 }
1741 EXPORT_SYMBOL(find_get_pages_contig);
1742
1743 /**
1744  * find_get_pages_tag - find and return pages that match @tag
1745  * @mapping:    the address_space to search
1746  * @index:      the starting page index
1747  * @tag:        the tag index
1748  * @nr_pages:   the maximum number of pages
1749  * @pages:      where the resulting pages are placed
1750  *
1751  * Like find_get_pages, except we only return pages which are tagged with
1752  * @tag.   We update @index to index the next page for the traversal.
1753  */
1754 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1755                         int tag, unsigned int nr_pages, struct page **pages)
1756 {
1757         struct radix_tree_iter iter;
1758         void **slot;
1759         unsigned ret = 0;
1760
1761         if (unlikely(!nr_pages))
1762                 return 0;
1763
1764         rcu_read_lock();
1765         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1766                                    &iter, *index, tag) {
1767                 struct page *head, *page;
1768 repeat:
1769                 page = radix_tree_deref_slot(slot);
1770                 if (unlikely(!page))
1771                         continue;
1772
1773                 if (radix_tree_exception(page)) {
1774                         if (radix_tree_deref_retry(page)) {
1775                                 slot = radix_tree_iter_retry(&iter);
1776                                 continue;
1777                         }
1778                         /*
1779                          * A shadow entry of a recently evicted page.
1780                          *
1781                          * Those entries should never be tagged, but
1782                          * this tree walk is lockless and the tags are
1783                          * looked up in bulk, one radix tree node at a
1784                          * time, so there is a sizable window for page
1785                          * reclaim to evict a page we saw tagged.
1786                          *
1787                          * Skip over it.
1788                          */
1789                         continue;
1790                 }
1791
1792                 head = compound_head(page);
1793                 if (!page_cache_get_speculative(head))
1794                         goto repeat;
1795
1796                 /* The page was split under us? */
1797                 if (compound_head(page) != head) {
1798                         put_page(head);
1799                         goto repeat;
1800                 }
1801
1802                 /* Has the page moved? */
1803                 if (unlikely(page != *slot)) {
1804                         put_page(head);
1805                         goto repeat;
1806                 }
1807
1808                 pages[ret] = page;
1809                 if (++ret == nr_pages)
1810                         break;
1811         }
1812
1813         rcu_read_unlock();
1814
1815         if (ret)
1816                 *index = pages[ret - 1]->index + 1;
1817
1818         return ret;
1819 }
1820 EXPORT_SYMBOL(find_get_pages_tag);
1821
1822 /**
1823  * find_get_entries_tag - find and return entries that match @tag
1824  * @mapping:    the address_space to search
1825  * @start:      the starting page cache index
1826  * @tag:        the tag index
1827  * @nr_entries: the maximum number of entries
1828  * @entries:    where the resulting entries are placed
1829  * @indices:    the cache indices corresponding to the entries in @entries
1830  *
1831  * Like find_get_entries, except we only return entries which are tagged with
1832  * @tag.
1833  */
1834 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1835                         int tag, unsigned int nr_entries,
1836                         struct page **entries, pgoff_t *indices)
1837 {
1838         void **slot;
1839         unsigned int ret = 0;
1840         struct radix_tree_iter iter;
1841
1842         if (!nr_entries)
1843                 return 0;
1844
1845         rcu_read_lock();
1846         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1847                                    &iter, start, tag) {
1848                 struct page *head, *page;
1849 repeat:
1850                 page = radix_tree_deref_slot(slot);
1851                 if (unlikely(!page))
1852                         continue;
1853                 if (radix_tree_exception(page)) {
1854                         if (radix_tree_deref_retry(page)) {
1855                                 slot = radix_tree_iter_retry(&iter);
1856                                 continue;
1857                         }
1858
1859                         /*
1860                          * A shadow entry of a recently evicted page, a swap
1861                          * entry from shmem/tmpfs or a DAX entry.  Return it
1862                          * without attempting to raise page count.
1863                          */
1864                         goto export;
1865                 }
1866
1867                 head = compound_head(page);
1868                 if (!page_cache_get_speculative(head))
1869                         goto repeat;
1870
1871                 /* The page was split under us? */
1872                 if (compound_head(page) != head) {
1873                         put_page(head);
1874                         goto repeat;
1875                 }
1876
1877                 /* Has the page moved? */
1878                 if (unlikely(page != *slot)) {
1879                         put_page(head);
1880                         goto repeat;
1881                 }
1882 export:
1883                 indices[ret] = iter.index;
1884                 entries[ret] = page;
1885                 if (++ret == nr_entries)
1886                         break;
1887         }
1888         rcu_read_unlock();
1889         return ret;
1890 }
1891 EXPORT_SYMBOL(find_get_entries_tag);
1892
1893 /*
1894  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1895  * a _large_ part of the i/o request. Imagine the worst scenario:
1896  *
1897  *      ---R__________________________________________B__________
1898  *         ^ reading here                             ^ bad block(assume 4k)
1899  *
1900  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1901  * => failing the whole request => read(R) => read(R+1) =>
1902  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1903  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1904  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1905  *
1906  * It is going insane. Fix it by quickly scaling down the readahead size.
1907  */
1908 static void shrink_readahead_size_eio(struct file *filp,
1909                                         struct file_ra_state *ra)
1910 {
1911         ra->ra_pages /= 4;
1912 }
1913
1914 /**
1915  * do_generic_file_read - generic file read routine
1916  * @filp:       the file to read
1917  * @ppos:       current file position
1918  * @iter:       data destination
1919  * @written:    already copied
1920  *
1921  * This is a generic file read routine, and uses the
1922  * mapping->a_ops->readpage() function for the actual low-level stuff.
1923  *
1924  * This is really ugly. But the goto's actually try to clarify some
1925  * of the logic when it comes to error handling etc.
1926  */
1927 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1928                 struct iov_iter *iter, ssize_t written)
1929 {
1930         struct address_space *mapping = filp->f_mapping;
1931         struct inode *inode = mapping->host;
1932         struct file_ra_state *ra = &filp->f_ra;
1933         pgoff_t index;
1934         pgoff_t last_index;
1935         pgoff_t prev_index;
1936         unsigned long offset;      /* offset into pagecache page */
1937         unsigned int prev_offset;
1938         int error = 0;
1939
1940         if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1941                 return 0;
1942         iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1943
1944         index = *ppos >> PAGE_SHIFT;
1945         prev_index = ra->prev_pos >> PAGE_SHIFT;
1946         prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1947         last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1948         offset = *ppos & ~PAGE_MASK;
1949
1950         for (;;) {
1951                 struct page *page;
1952                 pgoff_t end_index;
1953                 loff_t isize;
1954                 unsigned long nr, ret;
1955
1956                 cond_resched();
1957 find_page:
1958                 if (fatal_signal_pending(current)) {
1959                         error = -EINTR;
1960                         goto out;
1961                 }
1962
1963                 page = find_get_page(mapping, index);
1964                 if (!page) {
1965                         page_cache_sync_readahead(mapping,
1966                                         ra, filp,
1967                                         index, last_index - index);
1968                         page = find_get_page(mapping, index);
1969                         if (unlikely(page == NULL))
1970                                 goto no_cached_page;
1971                 }
1972                 if (PageReadahead(page)) {
1973                         page_cache_async_readahead(mapping,
1974                                         ra, filp, page,
1975                                         index, last_index - index);
1976                 }
1977                 if (!PageUptodate(page)) {
1978                         /*
1979                          * See comment in do_read_cache_page on why
1980                          * wait_on_page_locked is used to avoid unnecessarily
1981                          * serialisations and why it's safe.
1982                          */
1983                         error = wait_on_page_locked_killable(page);
1984                         if (unlikely(error))
1985                                 goto readpage_error;
1986                         if (PageUptodate(page))
1987                                 goto page_ok;
1988
1989                         if (inode->i_blkbits == PAGE_SHIFT ||
1990                                         !mapping->a_ops->is_partially_uptodate)
1991                                 goto page_not_up_to_date;
1992                         /* pipes can't handle partially uptodate pages */
1993                         if (unlikely(iter->type & ITER_PIPE))
1994                                 goto page_not_up_to_date;
1995                         if (!trylock_page(page))
1996                                 goto page_not_up_to_date;
1997                         /* Did it get truncated before we got the lock? */
1998                         if (!page->mapping)
1999                                 goto page_not_up_to_date_locked;
2000                         if (!mapping->a_ops->is_partially_uptodate(page,
2001                                                         offset, iter->count))
2002                                 goto page_not_up_to_date_locked;
2003                         unlock_page(page);
2004                 }
2005 page_ok:
2006                 /*
2007                  * i_size must be checked after we know the page is Uptodate.
2008                  *
2009                  * Checking i_size after the check allows us to calculate
2010                  * the correct value for "nr", which means the zero-filled
2011                  * part of the page is not copied back to userspace (unless
2012                  * another truncate extends the file - this is desired though).
2013                  */
2014
2015                 isize = i_size_read(inode);
2016                 end_index = (isize - 1) >> PAGE_SHIFT;
2017                 if (unlikely(!isize || index > end_index)) {
2018                         put_page(page);
2019                         goto out;
2020                 }
2021
2022                 /* nr is the maximum number of bytes to copy from this page */
2023                 nr = PAGE_SIZE;
2024                 if (index == end_index) {
2025                         nr = ((isize - 1) & ~PAGE_MASK) + 1;
2026                         if (nr <= offset) {
2027                                 put_page(page);
2028                                 goto out;
2029                         }
2030                 }
2031                 nr = nr - offset;
2032
2033                 /* If users can be writing to this page using arbitrary
2034                  * virtual addresses, take care about potential aliasing
2035                  * before reading the page on the kernel side.
2036                  */
2037                 if (mapping_writably_mapped(mapping))
2038                         flush_dcache_page(page);
2039
2040                 /*
2041                  * When a sequential read accesses a page several times,
2042                  * only mark it as accessed the first time.
2043                  */
2044                 if (prev_index != index || offset != prev_offset)
2045                         mark_page_accessed(page);
2046                 prev_index = index;
2047
2048                 /*
2049                  * Ok, we have the page, and it's up-to-date, so
2050                  * now we can copy it to user space...
2051                  */
2052
2053                 ret = copy_page_to_iter(page, offset, nr, iter);
2054                 offset += ret;
2055                 index += offset >> PAGE_SHIFT;
2056                 offset &= ~PAGE_MASK;
2057                 prev_offset = offset;
2058
2059                 put_page(page);
2060                 written += ret;
2061                 if (!iov_iter_count(iter))
2062                         goto out;
2063                 if (ret < nr) {
2064                         error = -EFAULT;
2065                         goto out;
2066                 }
2067                 continue;
2068
2069 page_not_up_to_date:
2070                 /* Get exclusive access to the page ... */
2071                 error = lock_page_killable(page);
2072                 if (unlikely(error))
2073                         goto readpage_error;
2074
2075 page_not_up_to_date_locked:
2076                 /* Did it get truncated before we got the lock? */
2077                 if (!page->mapping) {
2078                         unlock_page(page);
2079                         put_page(page);
2080                         continue;
2081                 }
2082
2083                 /* Did somebody else fill it already? */
2084                 if (PageUptodate(page)) {
2085                         unlock_page(page);
2086                         goto page_ok;
2087                 }
2088
2089 readpage:
2090                 /*
2091                  * A previous I/O error may have been due to temporary
2092                  * failures, eg. multipath errors.
2093                  * PG_error will be set again if readpage fails.
2094                  */
2095                 ClearPageError(page);
2096                 /* Start the actual read. The read will unlock the page. */
2097                 error = mapping->a_ops->readpage(filp, page);
2098
2099                 if (unlikely(error)) {
2100                         if (error == AOP_TRUNCATED_PAGE) {
2101                                 put_page(page);
2102                                 error = 0;
2103                                 goto find_page;
2104                         }
2105                         goto readpage_error;
2106                 }
2107
2108                 if (!PageUptodate(page)) {
2109                         error = lock_page_killable(page);
2110                         if (unlikely(error))
2111                                 goto readpage_error;
2112                         if (!PageUptodate(page)) {
2113                                 if (page->mapping == NULL) {
2114                                         /*
2115                                          * invalidate_mapping_pages got it
2116                                          */
2117                                         unlock_page(page);
2118                                         put_page(page);
2119                                         goto find_page;
2120                                 }
2121                                 unlock_page(page);
2122                                 shrink_readahead_size_eio(filp, ra);
2123                                 error = -EIO;
2124                                 goto readpage_error;
2125                         }
2126                         unlock_page(page);
2127                 }
2128
2129                 goto page_ok;
2130
2131 readpage_error:
2132                 /* UHHUH! A synchronous read error occurred. Report it */
2133                 put_page(page);
2134                 goto out;
2135
2136 no_cached_page:
2137                 /*
2138                  * Ok, it wasn't cached, so we need to create a new
2139                  * page..
2140                  */
2141                 page = page_cache_alloc_cold(mapping);
2142                 if (!page) {
2143                         error = -ENOMEM;
2144                         goto out;
2145                 }
2146                 error = add_to_page_cache_lru(page, mapping, index,
2147                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
2148                 if (error) {
2149                         put_page(page);
2150                         if (error == -EEXIST) {
2151                                 error = 0;
2152                                 goto find_page;
2153                         }
2154                         goto out;
2155                 }
2156                 goto readpage;
2157         }
2158
2159 out:
2160         ra->prev_pos = prev_index;
2161         ra->prev_pos <<= PAGE_SHIFT;
2162         ra->prev_pos |= prev_offset;
2163
2164         *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2165         file_accessed(filp);
2166         return written ? written : error;
2167 }
2168
2169 /**
2170  * generic_file_read_iter - generic filesystem read routine
2171  * @iocb:       kernel I/O control block
2172  * @iter:       destination for the data read
2173  *
2174  * This is the "read_iter()" routine for all filesystems
2175  * that can use the page cache directly.
2176  */
2177 ssize_t
2178 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2179 {
2180         struct file *file = iocb->ki_filp;
2181         ssize_t retval = 0;
2182         size_t count = iov_iter_count(iter);
2183
2184         if (!count)
2185                 goto out; /* skip atime */
2186
2187         if (iocb->ki_flags & IOCB_DIRECT) {
2188                 struct address_space *mapping = file->f_mapping;
2189                 struct inode *inode = mapping->host;
2190                 loff_t size;
2191
2192                 size = i_size_read(inode);
2193                 if (iocb->ki_flags & IOCB_NOWAIT) {
2194                         if (filemap_range_has_page(mapping, iocb->ki_pos,
2195                                                    iocb->ki_pos + count - 1))
2196                                 return -EAGAIN;
2197                 } else {
2198                         retval = filemap_write_and_wait_range(mapping,
2199                                                 iocb->ki_pos,
2200                                                 iocb->ki_pos + count - 1);
2201                         if (retval < 0)
2202                                 goto out;
2203                 }
2204
2205                 file_accessed(file);
2206
2207                 retval = mapping->a_ops->direct_IO(iocb, iter);
2208                 if (retval >= 0) {
2209                         iocb->ki_pos += retval;
2210                         count -= retval;
2211                 }
2212                 iov_iter_revert(iter, count - iov_iter_count(iter));
2213
2214                 /*
2215                  * Btrfs can have a short DIO read if we encounter
2216                  * compressed extents, so if there was an error, or if
2217                  * we've already read everything we wanted to, or if
2218                  * there was a short read because we hit EOF, go ahead
2219                  * and return.  Otherwise fallthrough to buffered io for
2220                  * the rest of the read.  Buffered reads will not work for
2221                  * DAX files, so don't bother trying.
2222                  */
2223                 if (retval < 0 || !count || iocb->ki_pos >= size ||
2224                     IS_DAX(inode))
2225                         goto out;
2226         }
2227
2228         retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2229 out:
2230         return retval;
2231 }
2232 EXPORT_SYMBOL(generic_file_read_iter);
2233
2234 #ifdef CONFIG_MMU
2235 /**
2236  * page_cache_read - adds requested page to the page cache if not already there
2237  * @file:       file to read
2238  * @offset:     page index
2239  * @gfp_mask:   memory allocation flags
2240  *
2241  * This adds the requested page to the page cache if it isn't already there,
2242  * and schedules an I/O to read in its contents from disk.
2243  */
2244 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2245 {
2246         struct address_space *mapping = file->f_mapping;
2247         struct page *page;
2248         int ret;
2249
2250         do {
2251                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2252                 if (!page)
2253                         return -ENOMEM;
2254
2255                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2256                 if (ret == 0)
2257                         ret = mapping->a_ops->readpage(file, page);
2258                 else if (ret == -EEXIST)
2259                         ret = 0; /* losing race to add is OK */
2260
2261                 put_page(page);
2262
2263         } while (ret == AOP_TRUNCATED_PAGE);
2264
2265         return ret;
2266 }
2267
2268 #define MMAP_LOTSAMISS  (100)
2269
2270 /*
2271  * Synchronous readahead happens when we don't even find
2272  * a page in the page cache at all.
2273  */
2274 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2275                                    struct file_ra_state *ra,
2276                                    struct file *file,
2277                                    pgoff_t offset)
2278 {
2279         struct address_space *mapping = file->f_mapping;
2280
2281         /* If we don't want any read-ahead, don't bother */
2282         if (vma->vm_flags & VM_RAND_READ)
2283                 return;
2284         if (!ra->ra_pages)
2285                 return;
2286
2287         if (vma->vm_flags & VM_SEQ_READ) {
2288                 page_cache_sync_readahead(mapping, ra, file, offset,
2289                                           ra->ra_pages);
2290                 return;
2291         }
2292
2293         /* Avoid banging the cache line if not needed */
2294         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2295                 ra->mmap_miss++;
2296
2297         /*
2298          * Do we miss much more than hit in this file? If so,
2299          * stop bothering with read-ahead. It will only hurt.
2300          */
2301         if (ra->mmap_miss > MMAP_LOTSAMISS)
2302                 return;
2303
2304         /*
2305          * mmap read-around
2306          */
2307         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2308         ra->size = ra->ra_pages;
2309         ra->async_size = ra->ra_pages / 4;
2310         ra_submit(ra, mapping, file);
2311 }
2312
2313 /*
2314  * Asynchronous readahead happens when we find the page and PG_readahead,
2315  * so we want to possibly extend the readahead further..
2316  */
2317 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2318                                     struct file_ra_state *ra,
2319                                     struct file *file,
2320                                     struct page *page,
2321                                     pgoff_t offset)
2322 {
2323         struct address_space *mapping = file->f_mapping;
2324
2325         /* If we don't want any read-ahead, don't bother */
2326         if (vma->vm_flags & VM_RAND_READ)
2327                 return;
2328         if (ra->mmap_miss > 0)
2329                 ra->mmap_miss--;
2330         if (PageReadahead(page))
2331                 page_cache_async_readahead(mapping, ra, file,
2332                                            page, offset, ra->ra_pages);
2333 }
2334
2335 /**
2336  * filemap_fault - read in file data for page fault handling
2337  * @vmf:        struct vm_fault containing details of the fault
2338  *
2339  * filemap_fault() is invoked via the vma operations vector for a
2340  * mapped memory region to read in file data during a page fault.
2341  *
2342  * The goto's are kind of ugly, but this streamlines the normal case of having
2343  * it in the page cache, and handles the special cases reasonably without
2344  * having a lot of duplicated code.
2345  *
2346  * vma->vm_mm->mmap_sem must be held on entry.
2347  *
2348  * If our return value has VM_FAULT_RETRY set, it's because
2349  * lock_page_or_retry() returned 0.
2350  * The mmap_sem has usually been released in this case.
2351  * See __lock_page_or_retry() for the exception.
2352  *
2353  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2354  * has not been released.
2355  *
2356  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2357  */
2358 int filemap_fault(struct vm_fault *vmf)
2359 {
2360         int error;
2361         struct file *file = vmf->vma->vm_file;
2362         struct address_space *mapping = file->f_mapping;
2363         struct file_ra_state *ra = &file->f_ra;
2364         struct inode *inode = mapping->host;
2365         pgoff_t offset = vmf->pgoff;
2366         pgoff_t max_off;
2367         struct page *page;
2368         int ret = 0;
2369
2370         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2371         if (unlikely(offset >= max_off))
2372                 return VM_FAULT_SIGBUS;
2373
2374         /*
2375          * Do we have something in the page cache already?
2376          */
2377         page = find_get_page(mapping, offset);
2378         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2379                 /*
2380                  * We found the page, so try async readahead before
2381                  * waiting for the lock.
2382                  */
2383                 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2384         } else if (!page) {
2385                 /* No page in the page cache at all */
2386                 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2387                 count_vm_event(PGMAJFAULT);
2388                 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2389                 ret = VM_FAULT_MAJOR;
2390 retry_find:
2391                 page = find_get_page(mapping, offset);
2392                 if (!page)
2393                         goto no_cached_page;
2394         }
2395
2396         if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2397                 put_page(page);
2398                 return ret | VM_FAULT_RETRY;
2399         }
2400
2401         /* Did it get truncated? */
2402         if (unlikely(page->mapping != mapping)) {
2403                 unlock_page(page);
2404                 put_page(page);
2405                 goto retry_find;
2406         }
2407         VM_BUG_ON_PAGE(page->index != offset, page);
2408
2409         /*
2410          * We have a locked page in the page cache, now we need to check
2411          * that it's up-to-date. If not, it is going to be due to an error.
2412          */
2413         if (unlikely(!PageUptodate(page)))
2414                 goto page_not_uptodate;
2415
2416         /*
2417          * Found the page and have a reference on it.
2418          * We must recheck i_size under page lock.
2419          */
2420         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2421         if (unlikely(offset >= max_off)) {
2422                 unlock_page(page);
2423                 put_page(page);
2424                 return VM_FAULT_SIGBUS;
2425         }
2426
2427         vmf->page = page;
2428         return ret | VM_FAULT_LOCKED;
2429
2430 no_cached_page:
2431         /*
2432          * We're only likely to ever get here if MADV_RANDOM is in
2433          * effect.
2434          */
2435         error = page_cache_read(file, offset, vmf->gfp_mask);
2436
2437         /*
2438          * The page we want has now been added to the page cache.
2439          * In the unlikely event that someone removed it in the
2440          * meantime, we'll just come back here and read it again.
2441          */
2442         if (error >= 0)
2443                 goto retry_find;
2444
2445         /*
2446          * An error return from page_cache_read can result if the
2447          * system is low on memory, or a problem occurs while trying
2448          * to schedule I/O.
2449          */
2450         if (error == -ENOMEM)
2451                 return VM_FAULT_OOM;
2452         return VM_FAULT_SIGBUS;
2453
2454 page_not_uptodate:
2455         /*
2456          * Umm, take care of errors if the page isn't up-to-date.
2457          * Try to re-read it _once_. We do this synchronously,
2458          * because there really aren't any performance issues here
2459          * and we need to check for errors.
2460          */
2461         ClearPageError(page);
2462         error = mapping->a_ops->readpage(file, page);
2463         if (!error) {
2464                 wait_on_page_locked(page);
2465                 if (!PageUptodate(page))
2466                         error = -EIO;
2467         }
2468         put_page(page);
2469
2470         if (!error || error == AOP_TRUNCATED_PAGE)
2471                 goto retry_find;
2472
2473         /* Things didn't work out. Return zero to tell the mm layer so. */
2474         shrink_readahead_size_eio(file, ra);
2475         return VM_FAULT_SIGBUS;
2476 }
2477 EXPORT_SYMBOL(filemap_fault);
2478
2479 void filemap_map_pages(struct vm_fault *vmf,
2480                 pgoff_t start_pgoff, pgoff_t end_pgoff)
2481 {
2482         struct radix_tree_iter iter;
2483         void **slot;
2484         struct file *file = vmf->vma->vm_file;
2485         struct address_space *mapping = file->f_mapping;
2486         pgoff_t last_pgoff = start_pgoff;
2487         unsigned long max_idx;
2488         struct page *head, *page;
2489
2490         rcu_read_lock();
2491         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2492                         start_pgoff) {
2493                 if (iter.index > end_pgoff)
2494                         break;
2495 repeat:
2496                 page = radix_tree_deref_slot(slot);
2497                 if (unlikely(!page))
2498                         goto next;
2499                 if (radix_tree_exception(page)) {
2500                         if (radix_tree_deref_retry(page)) {
2501                                 slot = radix_tree_iter_retry(&iter);
2502                                 continue;
2503                         }
2504                         goto next;
2505                 }
2506
2507                 head = compound_head(page);
2508                 if (!page_cache_get_speculative(head))
2509                         goto repeat;
2510
2511                 /* The page was split under us? */
2512                 if (compound_head(page) != head) {
2513                         put_page(head);
2514                         goto repeat;
2515                 }
2516
2517                 /* Has the page moved? */
2518                 if (unlikely(page != *slot)) {
2519                         put_page(head);
2520                         goto repeat;
2521                 }
2522
2523                 if (!PageUptodate(page) ||
2524                                 PageReadahead(page) ||
2525                                 PageHWPoison(page))
2526                         goto skip;
2527                 if (!trylock_page(page))
2528                         goto skip;
2529
2530                 if (page->mapping != mapping || !PageUptodate(page))
2531                         goto unlock;
2532
2533                 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2534                 if (page->index >= max_idx)
2535                         goto unlock;
2536
2537                 if (file->f_ra.mmap_miss > 0)
2538                         file->f_ra.mmap_miss--;
2539
2540                 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2541                 if (vmf->pte)
2542                         vmf->pte += iter.index - last_pgoff;
2543                 last_pgoff = iter.index;
2544                 if (alloc_set_pte(vmf, NULL, page))
2545                         goto unlock;
2546                 unlock_page(page);
2547                 goto next;
2548 unlock:
2549                 unlock_page(page);
2550 skip:
2551                 put_page(page);
2552 next:
2553                 /* Huge page is mapped? No need to proceed. */
2554                 if (pmd_trans_huge(*vmf->pmd))
2555                         break;
2556                 if (iter.index == end_pgoff)
2557                         break;
2558         }
2559         rcu_read_unlock();
2560 }
2561 EXPORT_SYMBOL(filemap_map_pages);
2562
2563 int filemap_page_mkwrite(struct vm_fault *vmf)
2564 {
2565         struct page *page = vmf->page;
2566         struct inode *inode = file_inode(vmf->vma->vm_file);
2567         int ret = VM_FAULT_LOCKED;
2568
2569         sb_start_pagefault(inode->i_sb);
2570         file_update_time(vmf->vma->vm_file);
2571         lock_page(page);
2572         if (page->mapping != inode->i_mapping) {
2573                 unlock_page(page);
2574                 ret = VM_FAULT_NOPAGE;
2575                 goto out;
2576         }
2577         /*
2578          * We mark the page dirty already here so that when freeze is in
2579          * progress, we are guaranteed that writeback during freezing will
2580          * see the dirty page and writeprotect it again.
2581          */
2582         set_page_dirty(page);
2583         wait_for_stable_page(page);
2584 out:
2585         sb_end_pagefault(inode->i_sb);
2586         return ret;
2587 }
2588 EXPORT_SYMBOL(filemap_page_mkwrite);
2589
2590 const struct vm_operations_struct generic_file_vm_ops = {
2591         .fault          = filemap_fault,
2592         .map_pages      = filemap_map_pages,
2593         .page_mkwrite   = filemap_page_mkwrite,
2594 };
2595
2596 /* This is used for a general mmap of a disk file */
2597
2598 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2599 {
2600         struct address_space *mapping = file->f_mapping;
2601
2602         if (!mapping->a_ops->readpage)
2603                 return -ENOEXEC;
2604         file_accessed(file);
2605         vma->vm_ops = &generic_file_vm_ops;
2606         return 0;
2607 }
2608
2609 /*
2610  * This is for filesystems which do not implement ->writepage.
2611  */
2612 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2613 {
2614         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2615                 return -EINVAL;
2616         return generic_file_mmap(file, vma);
2617 }
2618 #else
2619 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2620 {
2621         return -ENOSYS;
2622 }
2623 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2624 {
2625         return -ENOSYS;
2626 }
2627 #endif /* CONFIG_MMU */
2628
2629 EXPORT_SYMBOL(generic_file_mmap);
2630 EXPORT_SYMBOL(generic_file_readonly_mmap);
2631
2632 static struct page *wait_on_page_read(struct page *page)
2633 {
2634         if (!IS_ERR(page)) {
2635                 wait_on_page_locked(page);
2636                 if (!PageUptodate(page)) {
2637                         put_page(page);
2638                         page = ERR_PTR(-EIO);
2639                 }
2640         }
2641         return page;
2642 }
2643
2644 static struct page *do_read_cache_page(struct address_space *mapping,
2645                                 pgoff_t index,
2646                                 int (*filler)(void *, struct page *),
2647                                 void *data,
2648                                 gfp_t gfp)
2649 {
2650         struct page *page;
2651         int err;
2652 repeat:
2653         page = find_get_page(mapping, index);
2654         if (!page) {
2655                 page = __page_cache_alloc(gfp | __GFP_COLD);
2656                 if (!page)
2657                         return ERR_PTR(-ENOMEM);
2658                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2659                 if (unlikely(err)) {
2660                         put_page(page);
2661                         if (err == -EEXIST)
2662                                 goto repeat;
2663                         /* Presumably ENOMEM for radix tree node */
2664                         return ERR_PTR(err);
2665                 }
2666
2667 filler:
2668                 err = filler(data, page);
2669                 if (err < 0) {
2670                         put_page(page);
2671                         return ERR_PTR(err);
2672                 }
2673
2674                 page = wait_on_page_read(page);
2675                 if (IS_ERR(page))
2676                         return page;
2677                 goto out;
2678         }
2679         if (PageUptodate(page))
2680                 goto out;
2681
2682         /*
2683          * Page is not up to date and may be locked due one of the following
2684          * case a: Page is being filled and the page lock is held
2685          * case b: Read/write error clearing the page uptodate status
2686          * case c: Truncation in progress (page locked)
2687          * case d: Reclaim in progress
2688          *
2689          * Case a, the page will be up to date when the page is unlocked.
2690          *    There is no need to serialise on the page lock here as the page
2691          *    is pinned so the lock gives no additional protection. Even if the
2692          *    the page is truncated, the data is still valid if PageUptodate as
2693          *    it's a race vs truncate race.
2694          * Case b, the page will not be up to date
2695          * Case c, the page may be truncated but in itself, the data may still
2696          *    be valid after IO completes as it's a read vs truncate race. The
2697          *    operation must restart if the page is not uptodate on unlock but
2698          *    otherwise serialising on page lock to stabilise the mapping gives
2699          *    no additional guarantees to the caller as the page lock is
2700          *    released before return.
2701          * Case d, similar to truncation. If reclaim holds the page lock, it
2702          *    will be a race with remove_mapping that determines if the mapping
2703          *    is valid on unlock but otherwise the data is valid and there is
2704          *    no need to serialise with page lock.
2705          *
2706          * As the page lock gives no additional guarantee, we optimistically
2707          * wait on the page to be unlocked and check if it's up to date and
2708          * use the page if it is. Otherwise, the page lock is required to
2709          * distinguish between the different cases. The motivation is that we
2710          * avoid spurious serialisations and wakeups when multiple processes
2711          * wait on the same page for IO to complete.
2712          */
2713         wait_on_page_locked(page);
2714         if (PageUptodate(page))
2715                 goto out;
2716
2717         /* Distinguish between all the cases under the safety of the lock */
2718         lock_page(page);
2719
2720         /* Case c or d, restart the operation */
2721         if (!page->mapping) {
2722                 unlock_page(page);
2723                 put_page(page);
2724                 goto repeat;
2725         }
2726
2727         /* Someone else locked and filled the page in a very small window */
2728         if (PageUptodate(page)) {
2729                 unlock_page(page);
2730                 goto out;
2731         }
2732         goto filler;
2733
2734 out:
2735         mark_page_accessed(page);
2736         return page;
2737 }
2738
2739 /**
2740  * read_cache_page - read into page cache, fill it if needed
2741  * @mapping:    the page's address_space
2742  * @index:      the page index
2743  * @filler:     function to perform the read
2744  * @data:       first arg to filler(data, page) function, often left as NULL
2745  *
2746  * Read into the page cache. If a page already exists, and PageUptodate() is
2747  * not set, try to fill the page and wait for it to become unlocked.
2748  *
2749  * If the page does not get brought uptodate, return -EIO.
2750  */
2751 struct page *read_cache_page(struct address_space *mapping,
2752                                 pgoff_t index,
2753                                 int (*filler)(void *, struct page *),
2754                                 void *data)
2755 {
2756         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2757 }
2758 EXPORT_SYMBOL(read_cache_page);
2759
2760 /**
2761  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2762  * @mapping:    the page's address_space
2763  * @index:      the page index
2764  * @gfp:        the page allocator flags to use if allocating
2765  *
2766  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2767  * any new page allocations done using the specified allocation flags.
2768  *
2769  * If the page does not get brought uptodate, return -EIO.
2770  */
2771 struct page *read_cache_page_gfp(struct address_space *mapping,
2772                                 pgoff_t index,
2773                                 gfp_t gfp)
2774 {
2775         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2776
2777         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2778 }
2779 EXPORT_SYMBOL(read_cache_page_gfp);
2780
2781 /*
2782  * Performs necessary checks before doing a write
2783  *
2784  * Can adjust writing position or amount of bytes to write.
2785  * Returns appropriate error code that caller should return or
2786  * zero in case that write should be allowed.
2787  */
2788 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2789 {
2790         struct file *file = iocb->ki_filp;
2791         struct inode *inode = file->f_mapping->host;
2792         unsigned long limit = rlimit(RLIMIT_FSIZE);
2793         loff_t pos;
2794
2795         if (!iov_iter_count(from))
2796                 return 0;
2797
2798         /* FIXME: this is for backwards compatibility with 2.4 */
2799         if (iocb->ki_flags & IOCB_APPEND)
2800                 iocb->ki_pos = i_size_read(inode);
2801
2802         pos = iocb->ki_pos;
2803
2804         if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2805                 return -EINVAL;
2806
2807         if (limit != RLIM_INFINITY) {
2808                 if (iocb->ki_pos >= limit) {
2809                         send_sig(SIGXFSZ, current, 0);
2810                         return -EFBIG;
2811                 }
2812                 iov_iter_truncate(from, limit - (unsigned long)pos);
2813         }
2814
2815         /*
2816          * LFS rule
2817          */
2818         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2819                                 !(file->f_flags & O_LARGEFILE))) {
2820                 if (pos >= MAX_NON_LFS)
2821                         return -EFBIG;
2822                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2823         }
2824
2825         /*
2826          * Are we about to exceed the fs block limit ?
2827          *
2828          * If we have written data it becomes a short write.  If we have
2829          * exceeded without writing data we send a signal and return EFBIG.
2830          * Linus frestrict idea will clean these up nicely..
2831          */
2832         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2833                 return -EFBIG;
2834
2835         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2836         return iov_iter_count(from);
2837 }
2838 EXPORT_SYMBOL(generic_write_checks);
2839
2840 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2841                                 loff_t pos, unsigned len, unsigned flags,
2842                                 struct page **pagep, void **fsdata)
2843 {
2844         const struct address_space_operations *aops = mapping->a_ops;
2845
2846         return aops->write_begin(file, mapping, pos, len, flags,
2847                                                         pagep, fsdata);
2848 }
2849 EXPORT_SYMBOL(pagecache_write_begin);
2850
2851 int pagecache_write_end(struct file *file, struct address_space *mapping,
2852                                 loff_t pos, unsigned len, unsigned copied,
2853                                 struct page *page, void *fsdata)
2854 {
2855         const struct address_space_operations *aops = mapping->a_ops;
2856
2857         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2858 }
2859 EXPORT_SYMBOL(pagecache_write_end);
2860
2861 ssize_t
2862 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2863 {
2864         struct file     *file = iocb->ki_filp;
2865         struct address_space *mapping = file->f_mapping;
2866         struct inode    *inode = mapping->host;
2867         loff_t          pos = iocb->ki_pos;
2868         ssize_t         written;
2869         size_t          write_len;
2870         pgoff_t         end;
2871
2872         write_len = iov_iter_count(from);
2873         end = (pos + write_len - 1) >> PAGE_SHIFT;
2874
2875         if (iocb->ki_flags & IOCB_NOWAIT) {
2876                 /* If there are pages to writeback, return */
2877                 if (filemap_range_has_page(inode->i_mapping, pos,
2878                                            pos + iov_iter_count(from)))
2879                         return -EAGAIN;
2880         } else {
2881                 written = filemap_write_and_wait_range(mapping, pos,
2882                                                         pos + write_len - 1);
2883                 if (written)
2884                         goto out;
2885         }
2886
2887         /*
2888          * After a write we want buffered reads to be sure to go to disk to get
2889          * the new data.  We invalidate clean cached page from the region we're
2890          * about to write.  We do this *before* the write so that we can return
2891          * without clobbering -EIOCBQUEUED from ->direct_IO().
2892          */
2893         written = invalidate_inode_pages2_range(mapping,
2894                                         pos >> PAGE_SHIFT, end);
2895         /*
2896          * If a page can not be invalidated, return 0 to fall back
2897          * to buffered write.
2898          */
2899         if (written) {
2900                 if (written == -EBUSY)
2901                         return 0;
2902                 goto out;
2903         }
2904
2905         written = mapping->a_ops->direct_IO(iocb, from);
2906
2907         /*
2908          * Finally, try again to invalidate clean pages which might have been
2909          * cached by non-direct readahead, or faulted in by get_user_pages()
2910          * if the source of the write was an mmap'ed region of the file
2911          * we're writing.  Either one is a pretty crazy thing to do,
2912          * so we don't support it 100%.  If this invalidation
2913          * fails, tough, the write still worked...
2914          */
2915         invalidate_inode_pages2_range(mapping,
2916                                 pos >> PAGE_SHIFT, end);
2917
2918         if (written > 0) {
2919                 pos += written;
2920                 write_len -= written;
2921                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2922                         i_size_write(inode, pos);
2923                         mark_inode_dirty(inode);
2924                 }
2925                 iocb->ki_pos = pos;
2926         }
2927         iov_iter_revert(from, write_len - iov_iter_count(from));
2928 out:
2929         return written;
2930 }
2931 EXPORT_SYMBOL(generic_file_direct_write);
2932
2933 /*
2934  * Find or create a page at the given pagecache position. Return the locked
2935  * page. This function is specifically for buffered writes.
2936  */
2937 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2938                                         pgoff_t index, unsigned flags)
2939 {
2940         struct page *page;
2941         int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2942
2943         if (flags & AOP_FLAG_NOFS)
2944                 fgp_flags |= FGP_NOFS;
2945
2946         page = pagecache_get_page(mapping, index, fgp_flags,
2947                         mapping_gfp_mask(mapping));
2948         if (page)
2949                 wait_for_stable_page(page);
2950
2951         return page;
2952 }
2953 EXPORT_SYMBOL(grab_cache_page_write_begin);
2954
2955 ssize_t generic_perform_write(struct file *file,
2956                                 struct iov_iter *i, loff_t pos)
2957 {
2958         struct address_space *mapping = file->f_mapping;
2959         const struct address_space_operations *a_ops = mapping->a_ops;
2960         long status = 0;
2961         ssize_t written = 0;
2962         unsigned int flags = 0;
2963
2964         do {
2965                 struct page *page;
2966                 unsigned long offset;   /* Offset into pagecache page */
2967                 unsigned long bytes;    /* Bytes to write to page */
2968                 size_t copied;          /* Bytes copied from user */
2969                 void *fsdata;
2970
2971                 offset = (pos & (PAGE_SIZE - 1));
2972                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2973                                                 iov_iter_count(i));
2974
2975 again:
2976                 /*
2977                  * Bring in the user page that we will copy from _first_.
2978                  * Otherwise there's a nasty deadlock on copying from the
2979                  * same page as we're writing to, without it being marked
2980                  * up-to-date.
2981                  *
2982                  * Not only is this an optimisation, but it is also required
2983                  * to check that the address is actually valid, when atomic
2984                  * usercopies are used, below.
2985                  */
2986                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2987                         status = -EFAULT;
2988                         break;
2989                 }
2990
2991                 if (fatal_signal_pending(current)) {
2992                         status = -EINTR;
2993                         break;
2994                 }
2995
2996                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2997                                                 &page, &fsdata);
2998                 if (unlikely(status < 0))
2999                         break;
3000
3001                 if (mapping_writably_mapped(mapping))
3002                         flush_dcache_page(page);
3003
3004                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3005                 flush_dcache_page(page);
3006
3007                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3008                                                 page, fsdata);
3009                 if (unlikely(status < 0))
3010                         break;
3011                 copied = status;
3012
3013                 cond_resched();
3014
3015                 iov_iter_advance(i, copied);
3016                 if (unlikely(copied == 0)) {
3017                         /*
3018                          * If we were unable to copy any data at all, we must
3019                          * fall back to a single segment length write.
3020                          *
3021                          * If we didn't fallback here, we could livelock
3022                          * because not all segments in the iov can be copied at
3023                          * once without a pagefault.
3024                          */
3025                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
3026                                                 iov_iter_single_seg_count(i));
3027                         goto again;
3028                 }
3029                 pos += copied;
3030                 written += copied;
3031
3032                 balance_dirty_pages_ratelimited(mapping);
3033         } while (iov_iter_count(i));
3034
3035         return written ? written : status;
3036 }
3037 EXPORT_SYMBOL(generic_perform_write);
3038
3039 /**
3040  * __generic_file_write_iter - write data to a file
3041  * @iocb:       IO state structure (file, offset, etc.)
3042  * @from:       iov_iter with data to write
3043  *
3044  * This function does all the work needed for actually writing data to a
3045  * file. It does all basic checks, removes SUID from the file, updates
3046  * modification times and calls proper subroutines depending on whether we
3047  * do direct IO or a standard buffered write.
3048  *
3049  * It expects i_mutex to be grabbed unless we work on a block device or similar
3050  * object which does not need locking at all.
3051  *
3052  * This function does *not* take care of syncing data in case of O_SYNC write.
3053  * A caller has to handle it. This is mainly due to the fact that we want to
3054  * avoid syncing under i_mutex.
3055  */
3056 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3057 {
3058         struct file *file = iocb->ki_filp;
3059         struct address_space * mapping = file->f_mapping;
3060         struct inode    *inode = mapping->host;
3061         ssize_t         written = 0;
3062         ssize_t         err;
3063         ssize_t         status;
3064
3065         /* We can write back this queue in page reclaim */
3066         current->backing_dev_info = inode_to_bdi(inode);
3067         err = file_remove_privs(file);
3068         if (err)
3069                 goto out;
3070
3071         err = file_update_time(file);
3072         if (err)
3073                 goto out;
3074
3075         if (iocb->ki_flags & IOCB_DIRECT) {
3076                 loff_t pos, endbyte;
3077
3078                 written = generic_file_direct_write(iocb, from);
3079                 /*
3080                  * If the write stopped short of completing, fall back to
3081                  * buffered writes.  Some filesystems do this for writes to
3082                  * holes, for example.  For DAX files, a buffered write will
3083                  * not succeed (even if it did, DAX does not handle dirty
3084                  * page-cache pages correctly).
3085                  */
3086                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3087                         goto out;
3088
3089                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3090                 /*
3091                  * If generic_perform_write() returned a synchronous error
3092                  * then we want to return the number of bytes which were
3093                  * direct-written, or the error code if that was zero.  Note
3094                  * that this differs from normal direct-io semantics, which
3095                  * will return -EFOO even if some bytes were written.
3096                  */
3097                 if (unlikely(status < 0)) {
3098                         err = status;
3099                         goto out;
3100                 }
3101                 /*
3102                  * We need to ensure that the page cache pages are written to
3103                  * disk and invalidated to preserve the expected O_DIRECT
3104                  * semantics.
3105                  */
3106                 endbyte = pos + status - 1;
3107                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3108                 if (err == 0) {
3109                         iocb->ki_pos = endbyte + 1;
3110                         written += status;
3111                         invalidate_mapping_pages(mapping,
3112                                                  pos >> PAGE_SHIFT,
3113                                                  endbyte >> PAGE_SHIFT);
3114                 } else {
3115                         /*
3116                          * We don't know how much we wrote, so just return
3117                          * the number of bytes which were direct-written
3118                          */
3119                 }
3120         } else {
3121                 written = generic_perform_write(file, from, iocb->ki_pos);
3122                 if (likely(written > 0))
3123                         iocb->ki_pos += written;
3124         }
3125 out:
3126         current->backing_dev_info = NULL;
3127         return written ? written : err;
3128 }
3129 EXPORT_SYMBOL(__generic_file_write_iter);
3130
3131 /**
3132  * generic_file_write_iter - write data to a file
3133  * @iocb:       IO state structure
3134  * @from:       iov_iter with data to write
3135  *
3136  * This is a wrapper around __generic_file_write_iter() to be used by most
3137  * filesystems. It takes care of syncing the file in case of O_SYNC file
3138  * and acquires i_mutex as needed.
3139  */
3140 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3141 {
3142         struct file *file = iocb->ki_filp;
3143         struct inode *inode = file->f_mapping->host;
3144         ssize_t ret;
3145
3146         inode_lock(inode);
3147         ret = generic_write_checks(iocb, from);
3148         if (ret > 0)
3149                 ret = __generic_file_write_iter(iocb, from);
3150         inode_unlock(inode);
3151
3152         if (ret > 0)
3153                 ret = generic_write_sync(iocb, ret);
3154         return ret;
3155 }
3156 EXPORT_SYMBOL(generic_file_write_iter);
3157
3158 /**
3159  * try_to_release_page() - release old fs-specific metadata on a page
3160  *
3161  * @page: the page which the kernel is trying to free
3162  * @gfp_mask: memory allocation flags (and I/O mode)
3163  *
3164  * The address_space is to try to release any data against the page
3165  * (presumably at page->private).  If the release was successful, return '1'.
3166  * Otherwise return zero.
3167  *
3168  * This may also be called if PG_fscache is set on a page, indicating that the
3169  * page is known to the local caching routines.
3170  *
3171  * The @gfp_mask argument specifies whether I/O may be performed to release
3172  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3173  *
3174  */
3175 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3176 {
3177         struct address_space * const mapping = page->mapping;
3178
3179         BUG_ON(!PageLocked(page));
3180         if (PageWriteback(page))
3181                 return 0;
3182
3183         if (mapping && mapping->a_ops->releasepage)
3184                 return mapping->a_ops->releasepage(page, gfp_mask);
3185         return try_to_free_buffers(page);
3186 }
3187
3188 EXPORT_SYMBOL(try_to_release_page);