]> asedeno.scripts.mit.edu Git - linux.git/blob - mm/filemap.c
72e46e6f0d9a0cc91c68c4d9f73e071cbc98f422
[linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
39 #include "internal.h"
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
43
44 /*
45  * FIXME: remove all knowledge of the buffer layer from the core VM
46  */
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48
49 #include <asm/mman.h>
50
51 /*
52  * Shared mappings implemented 30.11.1994. It's not fully working yet,
53  * though.
54  *
55  * Shared mappings now work. 15.8.1995  Bruno.
56  *
57  * finished 'unifying' the page and buffer cache and SMP-threaded the
58  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59  *
60  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61  */
62
63 /*
64  * Lock ordering:
65  *
66  *  ->i_mmap_rwsem              (truncate_pagecache)
67  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
68  *      ->swap_lock             (exclusive_swap_page, others)
69  *        ->mapping->tree_lock
70  *
71  *  ->i_mutex
72  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
73  *
74  *  ->mmap_sem
75  *    ->i_mmap_rwsem
76  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
77  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
78  *
79  *  ->mmap_sem
80  *    ->lock_page               (access_process_vm)
81  *
82  *  ->i_mutex                   (generic_perform_write)
83  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
84  *
85  *  bdi->wb.list_lock
86  *    sb_lock                   (fs/fs-writeback.c)
87  *    ->mapping->tree_lock      (__sync_single_inode)
88  *
89  *  ->i_mmap_rwsem
90  *    ->anon_vma.lock           (vma_adjust)
91  *
92  *  ->anon_vma.lock
93  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
94  *
95  *  ->page_table_lock or pte_lock
96  *    ->swap_lock               (try_to_unmap_one)
97  *    ->private_lock            (try_to_unmap_one)
98  *    ->tree_lock               (try_to_unmap_one)
99  *    ->zone_lru_lock(zone)     (follow_page->mark_page_accessed)
100  *    ->zone_lru_lock(zone)     (check_pte_range->isolate_lru_page)
101  *    ->private_lock            (page_remove_rmap->set_page_dirty)
102  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
104  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
105  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
106  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
107  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
108  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
109  *
110  * ->i_mmap_rwsem
111  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
112  */
113
114 static int page_cache_tree_insert(struct address_space *mapping,
115                                   struct page *page, void **shadowp)
116 {
117         struct radix_tree_node *node;
118         void **slot;
119         int error;
120
121         error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122                                     &node, &slot);
123         if (error)
124                 return error;
125         if (*slot) {
126                 void *p;
127
128                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129                 if (!radix_tree_exceptional_entry(p))
130                         return -EEXIST;
131
132                 mapping->nrexceptional--;
133                 if (!dax_mapping(mapping)) {
134                         if (shadowp)
135                                 *shadowp = p;
136                 } else {
137                         /* DAX can replace empty locked entry with a hole */
138                         WARN_ON_ONCE(p !=
139                                 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
140                         /* Wakeup waiters for exceptional entry lock */
141                         dax_wake_mapping_entry_waiter(mapping, page->index, p,
142                                                       true);
143                 }
144         }
145         __radix_tree_replace(&mapping->page_tree, node, slot, page,
146                              workingset_update_node, mapping);
147         mapping->nrpages++;
148         return 0;
149 }
150
151 static void page_cache_tree_delete(struct address_space *mapping,
152                                    struct page *page, void *shadow)
153 {
154         int i, nr;
155
156         /* hugetlb pages are represented by one entry in the radix tree */
157         nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
158
159         VM_BUG_ON_PAGE(!PageLocked(page), page);
160         VM_BUG_ON_PAGE(PageTail(page), page);
161         VM_BUG_ON_PAGE(nr != 1 && shadow, page);
162
163         for (i = 0; i < nr; i++) {
164                 struct radix_tree_node *node;
165                 void **slot;
166
167                 __radix_tree_lookup(&mapping->page_tree, page->index + i,
168                                     &node, &slot);
169
170                 VM_BUG_ON_PAGE(!node && nr != 1, page);
171
172                 radix_tree_clear_tags(&mapping->page_tree, node, slot);
173                 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
174                                      workingset_update_node, mapping);
175         }
176
177         if (shadow) {
178                 mapping->nrexceptional += nr;
179                 /*
180                  * Make sure the nrexceptional update is committed before
181                  * the nrpages update so that final truncate racing
182                  * with reclaim does not see both counters 0 at the
183                  * same time and miss a shadow entry.
184                  */
185                 smp_wmb();
186         }
187         mapping->nrpages -= nr;
188 }
189
190 /*
191  * Delete a page from the page cache and free it. Caller has to make
192  * sure the page is locked and that nobody else uses it - or that usage
193  * is safe.  The caller must hold the mapping's tree_lock.
194  */
195 void __delete_from_page_cache(struct page *page, void *shadow)
196 {
197         struct address_space *mapping = page->mapping;
198         int nr = hpage_nr_pages(page);
199
200         trace_mm_filemap_delete_from_page_cache(page);
201         /*
202          * if we're uptodate, flush out into the cleancache, otherwise
203          * invalidate any existing cleancache entries.  We can't leave
204          * stale data around in the cleancache once our page is gone
205          */
206         if (PageUptodate(page) && PageMappedToDisk(page))
207                 cleancache_put_page(page);
208         else
209                 cleancache_invalidate_page(mapping, page);
210
211         VM_BUG_ON_PAGE(PageTail(page), page);
212         VM_BUG_ON_PAGE(page_mapped(page), page);
213         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
214                 int mapcount;
215
216                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
217                          current->comm, page_to_pfn(page));
218                 dump_page(page, "still mapped when deleted");
219                 dump_stack();
220                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
221
222                 mapcount = page_mapcount(page);
223                 if (mapping_exiting(mapping) &&
224                     page_count(page) >= mapcount + 2) {
225                         /*
226                          * All vmas have already been torn down, so it's
227                          * a good bet that actually the page is unmapped,
228                          * and we'd prefer not to leak it: if we're wrong,
229                          * some other bad page check should catch it later.
230                          */
231                         page_mapcount_reset(page);
232                         page_ref_sub(page, mapcount);
233                 }
234         }
235
236         page_cache_tree_delete(mapping, page, shadow);
237
238         page->mapping = NULL;
239         /* Leave page->index set: truncation lookup relies upon it */
240
241         /* hugetlb pages do not participate in page cache accounting. */
242         if (PageHuge(page))
243                 return;
244
245         __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
246         if (PageSwapBacked(page)) {
247                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
248                 if (PageTransHuge(page))
249                         __dec_node_page_state(page, NR_SHMEM_THPS);
250         } else {
251                 VM_BUG_ON_PAGE(PageTransHuge(page), page);
252         }
253
254         /*
255          * At this point page must be either written or cleaned by truncate.
256          * Dirty page here signals a bug and loss of unwritten data.
257          *
258          * This fixes dirty accounting after removing the page entirely but
259          * leaves PageDirty set: it has no effect for truncated page and
260          * anyway will be cleared before returning page into buddy allocator.
261          */
262         if (WARN_ON_ONCE(PageDirty(page)))
263                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
264 }
265
266 /**
267  * delete_from_page_cache - delete page from page cache
268  * @page: the page which the kernel is trying to remove from page cache
269  *
270  * This must be called only on pages that have been verified to be in the page
271  * cache and locked.  It will never put the page into the free list, the caller
272  * has a reference on the page.
273  */
274 void delete_from_page_cache(struct page *page)
275 {
276         struct address_space *mapping = page_mapping(page);
277         unsigned long flags;
278         void (*freepage)(struct page *);
279
280         BUG_ON(!PageLocked(page));
281
282         freepage = mapping->a_ops->freepage;
283
284         spin_lock_irqsave(&mapping->tree_lock, flags);
285         __delete_from_page_cache(page, NULL);
286         spin_unlock_irqrestore(&mapping->tree_lock, flags);
287
288         if (freepage)
289                 freepage(page);
290
291         if (PageTransHuge(page) && !PageHuge(page)) {
292                 page_ref_sub(page, HPAGE_PMD_NR);
293                 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
294         } else {
295                 put_page(page);
296         }
297 }
298 EXPORT_SYMBOL(delete_from_page_cache);
299
300 int filemap_check_errors(struct address_space *mapping)
301 {
302         int ret = 0;
303         /* Check for outstanding write errors */
304         if (test_bit(AS_ENOSPC, &mapping->flags) &&
305             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
306                 ret = -ENOSPC;
307         if (test_bit(AS_EIO, &mapping->flags) &&
308             test_and_clear_bit(AS_EIO, &mapping->flags))
309                 ret = -EIO;
310         return ret;
311 }
312 EXPORT_SYMBOL(filemap_check_errors);
313
314 static int filemap_check_and_keep_errors(struct address_space *mapping)
315 {
316         /* Check for outstanding write errors */
317         if (test_bit(AS_EIO, &mapping->flags))
318                 return -EIO;
319         if (test_bit(AS_ENOSPC, &mapping->flags))
320                 return -ENOSPC;
321         return 0;
322 }
323
324 /**
325  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
326  * @mapping:    address space structure to write
327  * @start:      offset in bytes where the range starts
328  * @end:        offset in bytes where the range ends (inclusive)
329  * @sync_mode:  enable synchronous operation
330  *
331  * Start writeback against all of a mapping's dirty pages that lie
332  * within the byte offsets <start, end> inclusive.
333  *
334  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
335  * opposed to a regular memory cleansing writeback.  The difference between
336  * these two operations is that if a dirty page/buffer is encountered, it must
337  * be waited upon, and not just skipped over.
338  */
339 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
340                                 loff_t end, int sync_mode)
341 {
342         int ret;
343         struct writeback_control wbc = {
344                 .sync_mode = sync_mode,
345                 .nr_to_write = LONG_MAX,
346                 .range_start = start,
347                 .range_end = end,
348         };
349
350         if (!mapping_cap_writeback_dirty(mapping))
351                 return 0;
352
353         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
354         ret = do_writepages(mapping, &wbc);
355         wbc_detach_inode(&wbc);
356         return ret;
357 }
358
359 static inline int __filemap_fdatawrite(struct address_space *mapping,
360         int sync_mode)
361 {
362         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
363 }
364
365 int filemap_fdatawrite(struct address_space *mapping)
366 {
367         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
368 }
369 EXPORT_SYMBOL(filemap_fdatawrite);
370
371 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
372                                 loff_t end)
373 {
374         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
375 }
376 EXPORT_SYMBOL(filemap_fdatawrite_range);
377
378 /**
379  * filemap_flush - mostly a non-blocking flush
380  * @mapping:    target address_space
381  *
382  * This is a mostly non-blocking flush.  Not suitable for data-integrity
383  * purposes - I/O may not be started against all dirty pages.
384  */
385 int filemap_flush(struct address_space *mapping)
386 {
387         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
388 }
389 EXPORT_SYMBOL(filemap_flush);
390
391 /**
392  * filemap_range_has_page - check if a page exists in range.
393  * @mapping:           address space within which to check
394  * @start_byte:        offset in bytes where the range starts
395  * @end_byte:          offset in bytes where the range ends (inclusive)
396  *
397  * Find at least one page in the range supplied, usually used to check if
398  * direct writing in this range will trigger a writeback.
399  */
400 bool filemap_range_has_page(struct address_space *mapping,
401                            loff_t start_byte, loff_t end_byte)
402 {
403         pgoff_t index = start_byte >> PAGE_SHIFT;
404         pgoff_t end = end_byte >> PAGE_SHIFT;
405         struct pagevec pvec;
406         bool ret;
407
408         if (end_byte < start_byte)
409                 return false;
410
411         if (mapping->nrpages == 0)
412                 return false;
413
414         pagevec_init(&pvec, 0);
415         if (!pagevec_lookup(&pvec, mapping, index, 1))
416                 return false;
417         ret = (pvec.pages[0]->index <= end);
418         pagevec_release(&pvec);
419         return ret;
420 }
421 EXPORT_SYMBOL(filemap_range_has_page);
422
423 static void __filemap_fdatawait_range(struct address_space *mapping,
424                                      loff_t start_byte, loff_t end_byte)
425 {
426         pgoff_t index = start_byte >> PAGE_SHIFT;
427         pgoff_t end = end_byte >> PAGE_SHIFT;
428         struct pagevec pvec;
429         int nr_pages;
430
431         if (end_byte < start_byte)
432                 return;
433
434         pagevec_init(&pvec, 0);
435         while ((index <= end) &&
436                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
437                         PAGECACHE_TAG_WRITEBACK,
438                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
439                 unsigned i;
440
441                 for (i = 0; i < nr_pages; i++) {
442                         struct page *page = pvec.pages[i];
443
444                         /* until radix tree lookup accepts end_index */
445                         if (page->index > end)
446                                 continue;
447
448                         wait_on_page_writeback(page);
449                         ClearPageError(page);
450                 }
451                 pagevec_release(&pvec);
452                 cond_resched();
453         }
454 }
455
456 /**
457  * filemap_fdatawait_range - wait for writeback to complete
458  * @mapping:            address space structure to wait for
459  * @start_byte:         offset in bytes where the range starts
460  * @end_byte:           offset in bytes where the range ends (inclusive)
461  *
462  * Walk the list of under-writeback pages of the given address space
463  * in the given range and wait for all of them.  Check error status of
464  * the address space and return it.
465  *
466  * Since the error status of the address space is cleared by this function,
467  * callers are responsible for checking the return value and handling and/or
468  * reporting the error.
469  */
470 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
471                             loff_t end_byte)
472 {
473         __filemap_fdatawait_range(mapping, start_byte, end_byte);
474         return filemap_check_errors(mapping);
475 }
476 EXPORT_SYMBOL(filemap_fdatawait_range);
477
478 /**
479  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
480  * @mapping: address space structure to wait for
481  *
482  * Walk the list of under-writeback pages of the given address space
483  * and wait for all of them.  Unlike filemap_fdatawait(), this function
484  * does not clear error status of the address space.
485  *
486  * Use this function if callers don't handle errors themselves.  Expected
487  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
488  * fsfreeze(8)
489  */
490 int filemap_fdatawait_keep_errors(struct address_space *mapping)
491 {
492         loff_t i_size = i_size_read(mapping->host);
493
494         if (i_size == 0)
495                 return 0;
496
497         __filemap_fdatawait_range(mapping, 0, i_size - 1);
498         return filemap_check_and_keep_errors(mapping);
499 }
500 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
501
502 /**
503  * filemap_fdatawait - wait for all under-writeback pages to complete
504  * @mapping: address space structure to wait for
505  *
506  * Walk the list of under-writeback pages of the given address space
507  * and wait for all of them.  Check error status of the address space
508  * and return it.
509  *
510  * Since the error status of the address space is cleared by this function,
511  * callers are responsible for checking the return value and handling and/or
512  * reporting the error.
513  */
514 int filemap_fdatawait(struct address_space *mapping)
515 {
516         loff_t i_size = i_size_read(mapping->host);
517
518         if (i_size == 0)
519                 return 0;
520
521         return filemap_fdatawait_range(mapping, 0, i_size - 1);
522 }
523 EXPORT_SYMBOL(filemap_fdatawait);
524
525 static bool mapping_needs_writeback(struct address_space *mapping)
526 {
527         return (!dax_mapping(mapping) && mapping->nrpages) ||
528             (dax_mapping(mapping) && mapping->nrexceptional);
529 }
530
531 int filemap_write_and_wait(struct address_space *mapping)
532 {
533         int err = 0;
534
535         if (mapping_needs_writeback(mapping)) {
536                 err = filemap_fdatawrite(mapping);
537                 /*
538                  * Even if the above returned error, the pages may be
539                  * written partially (e.g. -ENOSPC), so we wait for it.
540                  * But the -EIO is special case, it may indicate the worst
541                  * thing (e.g. bug) happened, so we avoid waiting for it.
542                  */
543                 if (err != -EIO) {
544                         int err2 = filemap_fdatawait(mapping);
545                         if (!err)
546                                 err = err2;
547                 } else {
548                         /* Clear any previously stored errors */
549                         filemap_check_errors(mapping);
550                 }
551         } else {
552                 err = filemap_check_errors(mapping);
553         }
554         return err;
555 }
556 EXPORT_SYMBOL(filemap_write_and_wait);
557
558 /**
559  * filemap_write_and_wait_range - write out & wait on a file range
560  * @mapping:    the address_space for the pages
561  * @lstart:     offset in bytes where the range starts
562  * @lend:       offset in bytes where the range ends (inclusive)
563  *
564  * Write out and wait upon file offsets lstart->lend, inclusive.
565  *
566  * Note that @lend is inclusive (describes the last byte to be written) so
567  * that this function can be used to write to the very end-of-file (end = -1).
568  */
569 int filemap_write_and_wait_range(struct address_space *mapping,
570                                  loff_t lstart, loff_t lend)
571 {
572         int err = 0;
573
574         if (mapping_needs_writeback(mapping)) {
575                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
576                                                  WB_SYNC_ALL);
577                 /* See comment of filemap_write_and_wait() */
578                 if (err != -EIO) {
579                         int err2 = filemap_fdatawait_range(mapping,
580                                                 lstart, lend);
581                         if (!err)
582                                 err = err2;
583                 } else {
584                         /* Clear any previously stored errors */
585                         filemap_check_errors(mapping);
586                 }
587         } else {
588                 err = filemap_check_errors(mapping);
589         }
590         return err;
591 }
592 EXPORT_SYMBOL(filemap_write_and_wait_range);
593
594 void __filemap_set_wb_err(struct address_space *mapping, int err)
595 {
596         errseq_t eseq = errseq_set(&mapping->wb_err, err);
597
598         trace_filemap_set_wb_err(mapping, eseq);
599 }
600 EXPORT_SYMBOL(__filemap_set_wb_err);
601
602 /**
603  * file_check_and_advance_wb_err - report wb error (if any) that was previously
604  *                                 and advance wb_err to current one
605  * @file: struct file on which the error is being reported
606  *
607  * When userland calls fsync (or something like nfsd does the equivalent), we
608  * want to report any writeback errors that occurred since the last fsync (or
609  * since the file was opened if there haven't been any).
610  *
611  * Grab the wb_err from the mapping. If it matches what we have in the file,
612  * then just quickly return 0. The file is all caught up.
613  *
614  * If it doesn't match, then take the mapping value, set the "seen" flag in
615  * it and try to swap it into place. If it works, or another task beat us
616  * to it with the new value, then update the f_wb_err and return the error
617  * portion. The error at this point must be reported via proper channels
618  * (a'la fsync, or NFS COMMIT operation, etc.).
619  *
620  * While we handle mapping->wb_err with atomic operations, the f_wb_err
621  * value is protected by the f_lock since we must ensure that it reflects
622  * the latest value swapped in for this file descriptor.
623  */
624 int file_check_and_advance_wb_err(struct file *file)
625 {
626         int err = 0;
627         errseq_t old = READ_ONCE(file->f_wb_err);
628         struct address_space *mapping = file->f_mapping;
629
630         /* Locklessly handle the common case where nothing has changed */
631         if (errseq_check(&mapping->wb_err, old)) {
632                 /* Something changed, must use slow path */
633                 spin_lock(&file->f_lock);
634                 old = file->f_wb_err;
635                 err = errseq_check_and_advance(&mapping->wb_err,
636                                                 &file->f_wb_err);
637                 trace_file_check_and_advance_wb_err(file, old);
638                 spin_unlock(&file->f_lock);
639         }
640         return err;
641 }
642 EXPORT_SYMBOL(file_check_and_advance_wb_err);
643
644 /**
645  * file_write_and_wait_range - write out & wait on a file range
646  * @file:       file pointing to address_space with pages
647  * @lstart:     offset in bytes where the range starts
648  * @lend:       offset in bytes where the range ends (inclusive)
649  *
650  * Write out and wait upon file offsets lstart->lend, inclusive.
651  *
652  * Note that @lend is inclusive (describes the last byte to be written) so
653  * that this function can be used to write to the very end-of-file (end = -1).
654  *
655  * After writing out and waiting on the data, we check and advance the
656  * f_wb_err cursor to the latest value, and return any errors detected there.
657  */
658 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
659 {
660         int err = 0, err2;
661         struct address_space *mapping = file->f_mapping;
662
663         if (mapping_needs_writeback(mapping)) {
664                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
665                                                  WB_SYNC_ALL);
666                 /* See comment of filemap_write_and_wait() */
667                 if (err != -EIO)
668                         __filemap_fdatawait_range(mapping, lstart, lend);
669         }
670         err2 = file_check_and_advance_wb_err(file);
671         if (!err)
672                 err = err2;
673         return err;
674 }
675 EXPORT_SYMBOL(file_write_and_wait_range);
676
677 /**
678  * replace_page_cache_page - replace a pagecache page with a new one
679  * @old:        page to be replaced
680  * @new:        page to replace with
681  * @gfp_mask:   allocation mode
682  *
683  * This function replaces a page in the pagecache with a new one.  On
684  * success it acquires the pagecache reference for the new page and
685  * drops it for the old page.  Both the old and new pages must be
686  * locked.  This function does not add the new page to the LRU, the
687  * caller must do that.
688  *
689  * The remove + add is atomic.  The only way this function can fail is
690  * memory allocation failure.
691  */
692 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
693 {
694         int error;
695
696         VM_BUG_ON_PAGE(!PageLocked(old), old);
697         VM_BUG_ON_PAGE(!PageLocked(new), new);
698         VM_BUG_ON_PAGE(new->mapping, new);
699
700         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
701         if (!error) {
702                 struct address_space *mapping = old->mapping;
703                 void (*freepage)(struct page *);
704                 unsigned long flags;
705
706                 pgoff_t offset = old->index;
707                 freepage = mapping->a_ops->freepage;
708
709                 get_page(new);
710                 new->mapping = mapping;
711                 new->index = offset;
712
713                 spin_lock_irqsave(&mapping->tree_lock, flags);
714                 __delete_from_page_cache(old, NULL);
715                 error = page_cache_tree_insert(mapping, new, NULL);
716                 BUG_ON(error);
717
718                 /*
719                  * hugetlb pages do not participate in page cache accounting.
720                  */
721                 if (!PageHuge(new))
722                         __inc_node_page_state(new, NR_FILE_PAGES);
723                 if (PageSwapBacked(new))
724                         __inc_node_page_state(new, NR_SHMEM);
725                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
726                 mem_cgroup_migrate(old, new);
727                 radix_tree_preload_end();
728                 if (freepage)
729                         freepage(old);
730                 put_page(old);
731         }
732
733         return error;
734 }
735 EXPORT_SYMBOL_GPL(replace_page_cache_page);
736
737 static int __add_to_page_cache_locked(struct page *page,
738                                       struct address_space *mapping,
739                                       pgoff_t offset, gfp_t gfp_mask,
740                                       void **shadowp)
741 {
742         int huge = PageHuge(page);
743         struct mem_cgroup *memcg;
744         int error;
745
746         VM_BUG_ON_PAGE(!PageLocked(page), page);
747         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
748
749         if (!huge) {
750                 error = mem_cgroup_try_charge(page, current->mm,
751                                               gfp_mask, &memcg, false);
752                 if (error)
753                         return error;
754         }
755
756         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
757         if (error) {
758                 if (!huge)
759                         mem_cgroup_cancel_charge(page, memcg, false);
760                 return error;
761         }
762
763         get_page(page);
764         page->mapping = mapping;
765         page->index = offset;
766
767         spin_lock_irq(&mapping->tree_lock);
768         error = page_cache_tree_insert(mapping, page, shadowp);
769         radix_tree_preload_end();
770         if (unlikely(error))
771                 goto err_insert;
772
773         /* hugetlb pages do not participate in page cache accounting. */
774         if (!huge)
775                 __inc_node_page_state(page, NR_FILE_PAGES);
776         spin_unlock_irq(&mapping->tree_lock);
777         if (!huge)
778                 mem_cgroup_commit_charge(page, memcg, false, false);
779         trace_mm_filemap_add_to_page_cache(page);
780         return 0;
781 err_insert:
782         page->mapping = NULL;
783         /* Leave page->index set: truncation relies upon it */
784         spin_unlock_irq(&mapping->tree_lock);
785         if (!huge)
786                 mem_cgroup_cancel_charge(page, memcg, false);
787         put_page(page);
788         return error;
789 }
790
791 /**
792  * add_to_page_cache_locked - add a locked page to the pagecache
793  * @page:       page to add
794  * @mapping:    the page's address_space
795  * @offset:     page index
796  * @gfp_mask:   page allocation mode
797  *
798  * This function is used to add a page to the pagecache. It must be locked.
799  * This function does not add the page to the LRU.  The caller must do that.
800  */
801 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
802                 pgoff_t offset, gfp_t gfp_mask)
803 {
804         return __add_to_page_cache_locked(page, mapping, offset,
805                                           gfp_mask, NULL);
806 }
807 EXPORT_SYMBOL(add_to_page_cache_locked);
808
809 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
810                                 pgoff_t offset, gfp_t gfp_mask)
811 {
812         void *shadow = NULL;
813         int ret;
814
815         __SetPageLocked(page);
816         ret = __add_to_page_cache_locked(page, mapping, offset,
817                                          gfp_mask, &shadow);
818         if (unlikely(ret))
819                 __ClearPageLocked(page);
820         else {
821                 /*
822                  * The page might have been evicted from cache only
823                  * recently, in which case it should be activated like
824                  * any other repeatedly accessed page.
825                  * The exception is pages getting rewritten; evicting other
826                  * data from the working set, only to cache data that will
827                  * get overwritten with something else, is a waste of memory.
828                  */
829                 if (!(gfp_mask & __GFP_WRITE) &&
830                     shadow && workingset_refault(shadow)) {
831                         SetPageActive(page);
832                         workingset_activation(page);
833                 } else
834                         ClearPageActive(page);
835                 lru_cache_add(page);
836         }
837         return ret;
838 }
839 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
840
841 #ifdef CONFIG_NUMA
842 struct page *__page_cache_alloc(gfp_t gfp)
843 {
844         int n;
845         struct page *page;
846
847         if (cpuset_do_page_mem_spread()) {
848                 unsigned int cpuset_mems_cookie;
849                 do {
850                         cpuset_mems_cookie = read_mems_allowed_begin();
851                         n = cpuset_mem_spread_node();
852                         page = __alloc_pages_node(n, gfp, 0);
853                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
854
855                 return page;
856         }
857         return alloc_pages(gfp, 0);
858 }
859 EXPORT_SYMBOL(__page_cache_alloc);
860 #endif
861
862 /*
863  * In order to wait for pages to become available there must be
864  * waitqueues associated with pages. By using a hash table of
865  * waitqueues where the bucket discipline is to maintain all
866  * waiters on the same queue and wake all when any of the pages
867  * become available, and for the woken contexts to check to be
868  * sure the appropriate page became available, this saves space
869  * at a cost of "thundering herd" phenomena during rare hash
870  * collisions.
871  */
872 #define PAGE_WAIT_TABLE_BITS 8
873 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
874 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
875
876 static wait_queue_head_t *page_waitqueue(struct page *page)
877 {
878         return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
879 }
880
881 void __init pagecache_init(void)
882 {
883         int i;
884
885         for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
886                 init_waitqueue_head(&page_wait_table[i]);
887
888         page_writeback_init();
889 }
890
891 struct wait_page_key {
892         struct page *page;
893         int bit_nr;
894         int page_match;
895 };
896
897 struct wait_page_queue {
898         struct page *page;
899         int bit_nr;
900         wait_queue_entry_t wait;
901 };
902
903 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
904 {
905         struct wait_page_key *key = arg;
906         struct wait_page_queue *wait_page
907                 = container_of(wait, struct wait_page_queue, wait);
908
909         if (wait_page->page != key->page)
910                return 0;
911         key->page_match = 1;
912
913         if (wait_page->bit_nr != key->bit_nr)
914                 return 0;
915         if (test_bit(key->bit_nr, &key->page->flags))
916                 return 0;
917
918         return autoremove_wake_function(wait, mode, sync, key);
919 }
920
921 static void wake_up_page_bit(struct page *page, int bit_nr)
922 {
923         wait_queue_head_t *q = page_waitqueue(page);
924         struct wait_page_key key;
925         unsigned long flags;
926
927         key.page = page;
928         key.bit_nr = bit_nr;
929         key.page_match = 0;
930
931         spin_lock_irqsave(&q->lock, flags);
932         __wake_up_locked_key(q, TASK_NORMAL, &key);
933         /*
934          * It is possible for other pages to have collided on the waitqueue
935          * hash, so in that case check for a page match. That prevents a long-
936          * term waiter
937          *
938          * It is still possible to miss a case here, when we woke page waiters
939          * and removed them from the waitqueue, but there are still other
940          * page waiters.
941          */
942         if (!waitqueue_active(q) || !key.page_match) {
943                 ClearPageWaiters(page);
944                 /*
945                  * It's possible to miss clearing Waiters here, when we woke
946                  * our page waiters, but the hashed waitqueue has waiters for
947                  * other pages on it.
948                  *
949                  * That's okay, it's a rare case. The next waker will clear it.
950                  */
951         }
952         spin_unlock_irqrestore(&q->lock, flags);
953 }
954
955 static void wake_up_page(struct page *page, int bit)
956 {
957         if (!PageWaiters(page))
958                 return;
959         wake_up_page_bit(page, bit);
960 }
961
962 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
963                 struct page *page, int bit_nr, int state, bool lock)
964 {
965         struct wait_page_queue wait_page;
966         wait_queue_entry_t *wait = &wait_page.wait;
967         int ret = 0;
968
969         init_wait(wait);
970         wait->func = wake_page_function;
971         wait_page.page = page;
972         wait_page.bit_nr = bit_nr;
973
974         for (;;) {
975                 spin_lock_irq(&q->lock);
976
977                 if (likely(list_empty(&wait->entry))) {
978                         if (lock)
979                                 __add_wait_queue_entry_tail_exclusive(q, wait);
980                         else
981                                 __add_wait_queue(q, wait);
982                         SetPageWaiters(page);
983                 }
984
985                 set_current_state(state);
986
987                 spin_unlock_irq(&q->lock);
988
989                 if (likely(test_bit(bit_nr, &page->flags))) {
990                         io_schedule();
991                         if (unlikely(signal_pending_state(state, current))) {
992                                 ret = -EINTR;
993                                 break;
994                         }
995                 }
996
997                 if (lock) {
998                         if (!test_and_set_bit_lock(bit_nr, &page->flags))
999                                 break;
1000                 } else {
1001                         if (!test_bit(bit_nr, &page->flags))
1002                                 break;
1003                 }
1004         }
1005
1006         finish_wait(q, wait);
1007
1008         /*
1009          * A signal could leave PageWaiters set. Clearing it here if
1010          * !waitqueue_active would be possible (by open-coding finish_wait),
1011          * but still fail to catch it in the case of wait hash collision. We
1012          * already can fail to clear wait hash collision cases, so don't
1013          * bother with signals either.
1014          */
1015
1016         return ret;
1017 }
1018
1019 void wait_on_page_bit(struct page *page, int bit_nr)
1020 {
1021         wait_queue_head_t *q = page_waitqueue(page);
1022         wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1023 }
1024 EXPORT_SYMBOL(wait_on_page_bit);
1025
1026 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1027 {
1028         wait_queue_head_t *q = page_waitqueue(page);
1029         return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1030 }
1031
1032 /**
1033  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1034  * @page: Page defining the wait queue of interest
1035  * @waiter: Waiter to add to the queue
1036  *
1037  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1038  */
1039 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1040 {
1041         wait_queue_head_t *q = page_waitqueue(page);
1042         unsigned long flags;
1043
1044         spin_lock_irqsave(&q->lock, flags);
1045         __add_wait_queue(q, waiter);
1046         SetPageWaiters(page);
1047         spin_unlock_irqrestore(&q->lock, flags);
1048 }
1049 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1050
1051 #ifndef clear_bit_unlock_is_negative_byte
1052
1053 /*
1054  * PG_waiters is the high bit in the same byte as PG_lock.
1055  *
1056  * On x86 (and on many other architectures), we can clear PG_lock and
1057  * test the sign bit at the same time. But if the architecture does
1058  * not support that special operation, we just do this all by hand
1059  * instead.
1060  *
1061  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1062  * being cleared, but a memory barrier should be unneccssary since it is
1063  * in the same byte as PG_locked.
1064  */
1065 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1066 {
1067         clear_bit_unlock(nr, mem);
1068         /* smp_mb__after_atomic(); */
1069         return test_bit(PG_waiters, mem);
1070 }
1071
1072 #endif
1073
1074 /**
1075  * unlock_page - unlock a locked page
1076  * @page: the page
1077  *
1078  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1079  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1080  * mechanism between PageLocked pages and PageWriteback pages is shared.
1081  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1082  *
1083  * Note that this depends on PG_waiters being the sign bit in the byte
1084  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1085  * clear the PG_locked bit and test PG_waiters at the same time fairly
1086  * portably (architectures that do LL/SC can test any bit, while x86 can
1087  * test the sign bit).
1088  */
1089 void unlock_page(struct page *page)
1090 {
1091         BUILD_BUG_ON(PG_waiters != 7);
1092         page = compound_head(page);
1093         VM_BUG_ON_PAGE(!PageLocked(page), page);
1094         if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1095                 wake_up_page_bit(page, PG_locked);
1096 }
1097 EXPORT_SYMBOL(unlock_page);
1098
1099 /**
1100  * end_page_writeback - end writeback against a page
1101  * @page: the page
1102  */
1103 void end_page_writeback(struct page *page)
1104 {
1105         /*
1106          * TestClearPageReclaim could be used here but it is an atomic
1107          * operation and overkill in this particular case. Failing to
1108          * shuffle a page marked for immediate reclaim is too mild to
1109          * justify taking an atomic operation penalty at the end of
1110          * ever page writeback.
1111          */
1112         if (PageReclaim(page)) {
1113                 ClearPageReclaim(page);
1114                 rotate_reclaimable_page(page);
1115         }
1116
1117         if (!test_clear_page_writeback(page))
1118                 BUG();
1119
1120         smp_mb__after_atomic();
1121         wake_up_page(page, PG_writeback);
1122 }
1123 EXPORT_SYMBOL(end_page_writeback);
1124
1125 /*
1126  * After completing I/O on a page, call this routine to update the page
1127  * flags appropriately
1128  */
1129 void page_endio(struct page *page, bool is_write, int err)
1130 {
1131         if (!is_write) {
1132                 if (!err) {
1133                         SetPageUptodate(page);
1134                 } else {
1135                         ClearPageUptodate(page);
1136                         SetPageError(page);
1137                 }
1138                 unlock_page(page);
1139         } else {
1140                 if (err) {
1141                         struct address_space *mapping;
1142
1143                         SetPageError(page);
1144                         mapping = page_mapping(page);
1145                         if (mapping)
1146                                 mapping_set_error(mapping, err);
1147                 }
1148                 end_page_writeback(page);
1149         }
1150 }
1151 EXPORT_SYMBOL_GPL(page_endio);
1152
1153 /**
1154  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1155  * @__page: the page to lock
1156  */
1157 void __lock_page(struct page *__page)
1158 {
1159         struct page *page = compound_head(__page);
1160         wait_queue_head_t *q = page_waitqueue(page);
1161         wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1162 }
1163 EXPORT_SYMBOL(__lock_page);
1164
1165 int __lock_page_killable(struct page *__page)
1166 {
1167         struct page *page = compound_head(__page);
1168         wait_queue_head_t *q = page_waitqueue(page);
1169         return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1170 }
1171 EXPORT_SYMBOL_GPL(__lock_page_killable);
1172
1173 /*
1174  * Return values:
1175  * 1 - page is locked; mmap_sem is still held.
1176  * 0 - page is not locked.
1177  *     mmap_sem has been released (up_read()), unless flags had both
1178  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1179  *     which case mmap_sem is still held.
1180  *
1181  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1182  * with the page locked and the mmap_sem unperturbed.
1183  */
1184 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1185                          unsigned int flags)
1186 {
1187         if (flags & FAULT_FLAG_ALLOW_RETRY) {
1188                 /*
1189                  * CAUTION! In this case, mmap_sem is not released
1190                  * even though return 0.
1191                  */
1192                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1193                         return 0;
1194
1195                 up_read(&mm->mmap_sem);
1196                 if (flags & FAULT_FLAG_KILLABLE)
1197                         wait_on_page_locked_killable(page);
1198                 else
1199                         wait_on_page_locked(page);
1200                 return 0;
1201         } else {
1202                 if (flags & FAULT_FLAG_KILLABLE) {
1203                         int ret;
1204
1205                         ret = __lock_page_killable(page);
1206                         if (ret) {
1207                                 up_read(&mm->mmap_sem);
1208                                 return 0;
1209                         }
1210                 } else
1211                         __lock_page(page);
1212                 return 1;
1213         }
1214 }
1215
1216 /**
1217  * page_cache_next_hole - find the next hole (not-present entry)
1218  * @mapping: mapping
1219  * @index: index
1220  * @max_scan: maximum range to search
1221  *
1222  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1223  * lowest indexed hole.
1224  *
1225  * Returns: the index of the hole if found, otherwise returns an index
1226  * outside of the set specified (in which case 'return - index >=
1227  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1228  * be returned.
1229  *
1230  * page_cache_next_hole may be called under rcu_read_lock. However,
1231  * like radix_tree_gang_lookup, this will not atomically search a
1232  * snapshot of the tree at a single point in time. For example, if a
1233  * hole is created at index 5, then subsequently a hole is created at
1234  * index 10, page_cache_next_hole covering both indexes may return 10
1235  * if called under rcu_read_lock.
1236  */
1237 pgoff_t page_cache_next_hole(struct address_space *mapping,
1238                              pgoff_t index, unsigned long max_scan)
1239 {
1240         unsigned long i;
1241
1242         for (i = 0; i < max_scan; i++) {
1243                 struct page *page;
1244
1245                 page = radix_tree_lookup(&mapping->page_tree, index);
1246                 if (!page || radix_tree_exceptional_entry(page))
1247                         break;
1248                 index++;
1249                 if (index == 0)
1250                         break;
1251         }
1252
1253         return index;
1254 }
1255 EXPORT_SYMBOL(page_cache_next_hole);
1256
1257 /**
1258  * page_cache_prev_hole - find the prev hole (not-present entry)
1259  * @mapping: mapping
1260  * @index: index
1261  * @max_scan: maximum range to search
1262  *
1263  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1264  * the first hole.
1265  *
1266  * Returns: the index of the hole if found, otherwise returns an index
1267  * outside of the set specified (in which case 'index - return >=
1268  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1269  * will be returned.
1270  *
1271  * page_cache_prev_hole may be called under rcu_read_lock. However,
1272  * like radix_tree_gang_lookup, this will not atomically search a
1273  * snapshot of the tree at a single point in time. For example, if a
1274  * hole is created at index 10, then subsequently a hole is created at
1275  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1276  * called under rcu_read_lock.
1277  */
1278 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1279                              pgoff_t index, unsigned long max_scan)
1280 {
1281         unsigned long i;
1282
1283         for (i = 0; i < max_scan; i++) {
1284                 struct page *page;
1285
1286                 page = radix_tree_lookup(&mapping->page_tree, index);
1287                 if (!page || radix_tree_exceptional_entry(page))
1288                         break;
1289                 index--;
1290                 if (index == ULONG_MAX)
1291                         break;
1292         }
1293
1294         return index;
1295 }
1296 EXPORT_SYMBOL(page_cache_prev_hole);
1297
1298 /**
1299  * find_get_entry - find and get a page cache entry
1300  * @mapping: the address_space to search
1301  * @offset: the page cache index
1302  *
1303  * Looks up the page cache slot at @mapping & @offset.  If there is a
1304  * page cache page, it is returned with an increased refcount.
1305  *
1306  * If the slot holds a shadow entry of a previously evicted page, or a
1307  * swap entry from shmem/tmpfs, it is returned.
1308  *
1309  * Otherwise, %NULL is returned.
1310  */
1311 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1312 {
1313         void **pagep;
1314         struct page *head, *page;
1315
1316         rcu_read_lock();
1317 repeat:
1318         page = NULL;
1319         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1320         if (pagep) {
1321                 page = radix_tree_deref_slot(pagep);
1322                 if (unlikely(!page))
1323                         goto out;
1324                 if (radix_tree_exception(page)) {
1325                         if (radix_tree_deref_retry(page))
1326                                 goto repeat;
1327                         /*
1328                          * A shadow entry of a recently evicted page,
1329                          * or a swap entry from shmem/tmpfs.  Return
1330                          * it without attempting to raise page count.
1331                          */
1332                         goto out;
1333                 }
1334
1335                 head = compound_head(page);
1336                 if (!page_cache_get_speculative(head))
1337                         goto repeat;
1338
1339                 /* The page was split under us? */
1340                 if (compound_head(page) != head) {
1341                         put_page(head);
1342                         goto repeat;
1343                 }
1344
1345                 /*
1346                  * Has the page moved?
1347                  * This is part of the lockless pagecache protocol. See
1348                  * include/linux/pagemap.h for details.
1349                  */
1350                 if (unlikely(page != *pagep)) {
1351                         put_page(head);
1352                         goto repeat;
1353                 }
1354         }
1355 out:
1356         rcu_read_unlock();
1357
1358         return page;
1359 }
1360 EXPORT_SYMBOL(find_get_entry);
1361
1362 /**
1363  * find_lock_entry - locate, pin and lock a page cache entry
1364  * @mapping: the address_space to search
1365  * @offset: the page cache index
1366  *
1367  * Looks up the page cache slot at @mapping & @offset.  If there is a
1368  * page cache page, it is returned locked and with an increased
1369  * refcount.
1370  *
1371  * If the slot holds a shadow entry of a previously evicted page, or a
1372  * swap entry from shmem/tmpfs, it is returned.
1373  *
1374  * Otherwise, %NULL is returned.
1375  *
1376  * find_lock_entry() may sleep.
1377  */
1378 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1379 {
1380         struct page *page;
1381
1382 repeat:
1383         page = find_get_entry(mapping, offset);
1384         if (page && !radix_tree_exception(page)) {
1385                 lock_page(page);
1386                 /* Has the page been truncated? */
1387                 if (unlikely(page_mapping(page) != mapping)) {
1388                         unlock_page(page);
1389                         put_page(page);
1390                         goto repeat;
1391                 }
1392                 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1393         }
1394         return page;
1395 }
1396 EXPORT_SYMBOL(find_lock_entry);
1397
1398 /**
1399  * pagecache_get_page - find and get a page reference
1400  * @mapping: the address_space to search
1401  * @offset: the page index
1402  * @fgp_flags: PCG flags
1403  * @gfp_mask: gfp mask to use for the page cache data page allocation
1404  *
1405  * Looks up the page cache slot at @mapping & @offset.
1406  *
1407  * PCG flags modify how the page is returned.
1408  *
1409  * @fgp_flags can be:
1410  *
1411  * - FGP_ACCESSED: the page will be marked accessed
1412  * - FGP_LOCK: Page is return locked
1413  * - FGP_CREAT: If page is not present then a new page is allocated using
1414  *   @gfp_mask and added to the page cache and the VM's LRU
1415  *   list. The page is returned locked and with an increased
1416  *   refcount. Otherwise, NULL is returned.
1417  *
1418  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1419  * if the GFP flags specified for FGP_CREAT are atomic.
1420  *
1421  * If there is a page cache page, it is returned with an increased refcount.
1422  */
1423 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1424         int fgp_flags, gfp_t gfp_mask)
1425 {
1426         struct page *page;
1427
1428 repeat:
1429         page = find_get_entry(mapping, offset);
1430         if (radix_tree_exceptional_entry(page))
1431                 page = NULL;
1432         if (!page)
1433                 goto no_page;
1434
1435         if (fgp_flags & FGP_LOCK) {
1436                 if (fgp_flags & FGP_NOWAIT) {
1437                         if (!trylock_page(page)) {
1438                                 put_page(page);
1439                                 return NULL;
1440                         }
1441                 } else {
1442                         lock_page(page);
1443                 }
1444
1445                 /* Has the page been truncated? */
1446                 if (unlikely(page->mapping != mapping)) {
1447                         unlock_page(page);
1448                         put_page(page);
1449                         goto repeat;
1450                 }
1451                 VM_BUG_ON_PAGE(page->index != offset, page);
1452         }
1453
1454         if (page && (fgp_flags & FGP_ACCESSED))
1455                 mark_page_accessed(page);
1456
1457 no_page:
1458         if (!page && (fgp_flags & FGP_CREAT)) {
1459                 int err;
1460                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1461                         gfp_mask |= __GFP_WRITE;
1462                 if (fgp_flags & FGP_NOFS)
1463                         gfp_mask &= ~__GFP_FS;
1464
1465                 page = __page_cache_alloc(gfp_mask);
1466                 if (!page)
1467                         return NULL;
1468
1469                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1470                         fgp_flags |= FGP_LOCK;
1471
1472                 /* Init accessed so avoid atomic mark_page_accessed later */
1473                 if (fgp_flags & FGP_ACCESSED)
1474                         __SetPageReferenced(page);
1475
1476                 err = add_to_page_cache_lru(page, mapping, offset,
1477                                 gfp_mask & GFP_RECLAIM_MASK);
1478                 if (unlikely(err)) {
1479                         put_page(page);
1480                         page = NULL;
1481                         if (err == -EEXIST)
1482                                 goto repeat;
1483                 }
1484         }
1485
1486         return page;
1487 }
1488 EXPORT_SYMBOL(pagecache_get_page);
1489
1490 /**
1491  * find_get_entries - gang pagecache lookup
1492  * @mapping:    The address_space to search
1493  * @start:      The starting page cache index
1494  * @nr_entries: The maximum number of entries
1495  * @entries:    Where the resulting entries are placed
1496  * @indices:    The cache indices corresponding to the entries in @entries
1497  *
1498  * find_get_entries() will search for and return a group of up to
1499  * @nr_entries entries in the mapping.  The entries are placed at
1500  * @entries.  find_get_entries() takes a reference against any actual
1501  * pages it returns.
1502  *
1503  * The search returns a group of mapping-contiguous page cache entries
1504  * with ascending indexes.  There may be holes in the indices due to
1505  * not-present pages.
1506  *
1507  * Any shadow entries of evicted pages, or swap entries from
1508  * shmem/tmpfs, are included in the returned array.
1509  *
1510  * find_get_entries() returns the number of pages and shadow entries
1511  * which were found.
1512  */
1513 unsigned find_get_entries(struct address_space *mapping,
1514                           pgoff_t start, unsigned int nr_entries,
1515                           struct page **entries, pgoff_t *indices)
1516 {
1517         void **slot;
1518         unsigned int ret = 0;
1519         struct radix_tree_iter iter;
1520
1521         if (!nr_entries)
1522                 return 0;
1523
1524         rcu_read_lock();
1525         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1526                 struct page *head, *page;
1527 repeat:
1528                 page = radix_tree_deref_slot(slot);
1529                 if (unlikely(!page))
1530                         continue;
1531                 if (radix_tree_exception(page)) {
1532                         if (radix_tree_deref_retry(page)) {
1533                                 slot = radix_tree_iter_retry(&iter);
1534                                 continue;
1535                         }
1536                         /*
1537                          * A shadow entry of a recently evicted page, a swap
1538                          * entry from shmem/tmpfs or a DAX entry.  Return it
1539                          * without attempting to raise page count.
1540                          */
1541                         goto export;
1542                 }
1543
1544                 head = compound_head(page);
1545                 if (!page_cache_get_speculative(head))
1546                         goto repeat;
1547
1548                 /* The page was split under us? */
1549                 if (compound_head(page) != head) {
1550                         put_page(head);
1551                         goto repeat;
1552                 }
1553
1554                 /* Has the page moved? */
1555                 if (unlikely(page != *slot)) {
1556                         put_page(head);
1557                         goto repeat;
1558                 }
1559 export:
1560                 indices[ret] = iter.index;
1561                 entries[ret] = page;
1562                 if (++ret == nr_entries)
1563                         break;
1564         }
1565         rcu_read_unlock();
1566         return ret;
1567 }
1568
1569 /**
1570  * find_get_pages - gang pagecache lookup
1571  * @mapping:    The address_space to search
1572  * @start:      The starting page index
1573  * @nr_pages:   The maximum number of pages
1574  * @pages:      Where the resulting pages are placed
1575  *
1576  * find_get_pages() will search for and return a group of up to
1577  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1578  * find_get_pages() takes a reference against the returned pages.
1579  *
1580  * The search returns a group of mapping-contiguous pages with ascending
1581  * indexes.  There may be holes in the indices due to not-present pages.
1582  *
1583  * find_get_pages() returns the number of pages which were found.
1584  */
1585 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1586                             unsigned int nr_pages, struct page **pages)
1587 {
1588         struct radix_tree_iter iter;
1589         void **slot;
1590         unsigned ret = 0;
1591
1592         if (unlikely(!nr_pages))
1593                 return 0;
1594
1595         rcu_read_lock();
1596         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1597                 struct page *head, *page;
1598 repeat:
1599                 page = radix_tree_deref_slot(slot);
1600                 if (unlikely(!page))
1601                         continue;
1602
1603                 if (radix_tree_exception(page)) {
1604                         if (radix_tree_deref_retry(page)) {
1605                                 slot = radix_tree_iter_retry(&iter);
1606                                 continue;
1607                         }
1608                         /*
1609                          * A shadow entry of a recently evicted page,
1610                          * or a swap entry from shmem/tmpfs.  Skip
1611                          * over it.
1612                          */
1613                         continue;
1614                 }
1615
1616                 head = compound_head(page);
1617                 if (!page_cache_get_speculative(head))
1618                         goto repeat;
1619
1620                 /* The page was split under us? */
1621                 if (compound_head(page) != head) {
1622                         put_page(head);
1623                         goto repeat;
1624                 }
1625
1626                 /* Has the page moved? */
1627                 if (unlikely(page != *slot)) {
1628                         put_page(head);
1629                         goto repeat;
1630                 }
1631
1632                 pages[ret] = page;
1633                 if (++ret == nr_pages)
1634                         break;
1635         }
1636
1637         rcu_read_unlock();
1638         return ret;
1639 }
1640
1641 /**
1642  * find_get_pages_contig - gang contiguous pagecache lookup
1643  * @mapping:    The address_space to search
1644  * @index:      The starting page index
1645  * @nr_pages:   The maximum number of pages
1646  * @pages:      Where the resulting pages are placed
1647  *
1648  * find_get_pages_contig() works exactly like find_get_pages(), except
1649  * that the returned number of pages are guaranteed to be contiguous.
1650  *
1651  * find_get_pages_contig() returns the number of pages which were found.
1652  */
1653 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1654                                unsigned int nr_pages, struct page **pages)
1655 {
1656         struct radix_tree_iter iter;
1657         void **slot;
1658         unsigned int ret = 0;
1659
1660         if (unlikely(!nr_pages))
1661                 return 0;
1662
1663         rcu_read_lock();
1664         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1665                 struct page *head, *page;
1666 repeat:
1667                 page = radix_tree_deref_slot(slot);
1668                 /* The hole, there no reason to continue */
1669                 if (unlikely(!page))
1670                         break;
1671
1672                 if (radix_tree_exception(page)) {
1673                         if (radix_tree_deref_retry(page)) {
1674                                 slot = radix_tree_iter_retry(&iter);
1675                                 continue;
1676                         }
1677                         /*
1678                          * A shadow entry of a recently evicted page,
1679                          * or a swap entry from shmem/tmpfs.  Stop
1680                          * looking for contiguous pages.
1681                          */
1682                         break;
1683                 }
1684
1685                 head = compound_head(page);
1686                 if (!page_cache_get_speculative(head))
1687                         goto repeat;
1688
1689                 /* The page was split under us? */
1690                 if (compound_head(page) != head) {
1691                         put_page(head);
1692                         goto repeat;
1693                 }
1694
1695                 /* Has the page moved? */
1696                 if (unlikely(page != *slot)) {
1697                         put_page(head);
1698                         goto repeat;
1699                 }
1700
1701                 /*
1702                  * must check mapping and index after taking the ref.
1703                  * otherwise we can get both false positives and false
1704                  * negatives, which is just confusing to the caller.
1705                  */
1706                 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1707                         put_page(page);
1708                         break;
1709                 }
1710
1711                 pages[ret] = page;
1712                 if (++ret == nr_pages)
1713                         break;
1714         }
1715         rcu_read_unlock();
1716         return ret;
1717 }
1718 EXPORT_SYMBOL(find_get_pages_contig);
1719
1720 /**
1721  * find_get_pages_tag - find and return pages that match @tag
1722  * @mapping:    the address_space to search
1723  * @index:      the starting page index
1724  * @tag:        the tag index
1725  * @nr_pages:   the maximum number of pages
1726  * @pages:      where the resulting pages are placed
1727  *
1728  * Like find_get_pages, except we only return pages which are tagged with
1729  * @tag.   We update @index to index the next page for the traversal.
1730  */
1731 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1732                         int tag, unsigned int nr_pages, struct page **pages)
1733 {
1734         struct radix_tree_iter iter;
1735         void **slot;
1736         unsigned ret = 0;
1737
1738         if (unlikely(!nr_pages))
1739                 return 0;
1740
1741         rcu_read_lock();
1742         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1743                                    &iter, *index, tag) {
1744                 struct page *head, *page;
1745 repeat:
1746                 page = radix_tree_deref_slot(slot);
1747                 if (unlikely(!page))
1748                         continue;
1749
1750                 if (radix_tree_exception(page)) {
1751                         if (radix_tree_deref_retry(page)) {
1752                                 slot = radix_tree_iter_retry(&iter);
1753                                 continue;
1754                         }
1755                         /*
1756                          * A shadow entry of a recently evicted page.
1757                          *
1758                          * Those entries should never be tagged, but
1759                          * this tree walk is lockless and the tags are
1760                          * looked up in bulk, one radix tree node at a
1761                          * time, so there is a sizable window for page
1762                          * reclaim to evict a page we saw tagged.
1763                          *
1764                          * Skip over it.
1765                          */
1766                         continue;
1767                 }
1768
1769                 head = compound_head(page);
1770                 if (!page_cache_get_speculative(head))
1771                         goto repeat;
1772
1773                 /* The page was split under us? */
1774                 if (compound_head(page) != head) {
1775                         put_page(head);
1776                         goto repeat;
1777                 }
1778
1779                 /* Has the page moved? */
1780                 if (unlikely(page != *slot)) {
1781                         put_page(head);
1782                         goto repeat;
1783                 }
1784
1785                 pages[ret] = page;
1786                 if (++ret == nr_pages)
1787                         break;
1788         }
1789
1790         rcu_read_unlock();
1791
1792         if (ret)
1793                 *index = pages[ret - 1]->index + 1;
1794
1795         return ret;
1796 }
1797 EXPORT_SYMBOL(find_get_pages_tag);
1798
1799 /**
1800  * find_get_entries_tag - find and return entries that match @tag
1801  * @mapping:    the address_space to search
1802  * @start:      the starting page cache index
1803  * @tag:        the tag index
1804  * @nr_entries: the maximum number of entries
1805  * @entries:    where the resulting entries are placed
1806  * @indices:    the cache indices corresponding to the entries in @entries
1807  *
1808  * Like find_get_entries, except we only return entries which are tagged with
1809  * @tag.
1810  */
1811 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1812                         int tag, unsigned int nr_entries,
1813                         struct page **entries, pgoff_t *indices)
1814 {
1815         void **slot;
1816         unsigned int ret = 0;
1817         struct radix_tree_iter iter;
1818
1819         if (!nr_entries)
1820                 return 0;
1821
1822         rcu_read_lock();
1823         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1824                                    &iter, start, tag) {
1825                 struct page *head, *page;
1826 repeat:
1827                 page = radix_tree_deref_slot(slot);
1828                 if (unlikely(!page))
1829                         continue;
1830                 if (radix_tree_exception(page)) {
1831                         if (radix_tree_deref_retry(page)) {
1832                                 slot = radix_tree_iter_retry(&iter);
1833                                 continue;
1834                         }
1835
1836                         /*
1837                          * A shadow entry of a recently evicted page, a swap
1838                          * entry from shmem/tmpfs or a DAX entry.  Return it
1839                          * without attempting to raise page count.
1840                          */
1841                         goto export;
1842                 }
1843
1844                 head = compound_head(page);
1845                 if (!page_cache_get_speculative(head))
1846                         goto repeat;
1847
1848                 /* The page was split under us? */
1849                 if (compound_head(page) != head) {
1850                         put_page(head);
1851                         goto repeat;
1852                 }
1853
1854                 /* Has the page moved? */
1855                 if (unlikely(page != *slot)) {
1856                         put_page(head);
1857                         goto repeat;
1858                 }
1859 export:
1860                 indices[ret] = iter.index;
1861                 entries[ret] = page;
1862                 if (++ret == nr_entries)
1863                         break;
1864         }
1865         rcu_read_unlock();
1866         return ret;
1867 }
1868 EXPORT_SYMBOL(find_get_entries_tag);
1869
1870 /*
1871  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1872  * a _large_ part of the i/o request. Imagine the worst scenario:
1873  *
1874  *      ---R__________________________________________B__________
1875  *         ^ reading here                             ^ bad block(assume 4k)
1876  *
1877  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1878  * => failing the whole request => read(R) => read(R+1) =>
1879  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1880  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1881  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1882  *
1883  * It is going insane. Fix it by quickly scaling down the readahead size.
1884  */
1885 static void shrink_readahead_size_eio(struct file *filp,
1886                                         struct file_ra_state *ra)
1887 {
1888         ra->ra_pages /= 4;
1889 }
1890
1891 /**
1892  * do_generic_file_read - generic file read routine
1893  * @filp:       the file to read
1894  * @ppos:       current file position
1895  * @iter:       data destination
1896  * @written:    already copied
1897  *
1898  * This is a generic file read routine, and uses the
1899  * mapping->a_ops->readpage() function for the actual low-level stuff.
1900  *
1901  * This is really ugly. But the goto's actually try to clarify some
1902  * of the logic when it comes to error handling etc.
1903  */
1904 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1905                 struct iov_iter *iter, ssize_t written)
1906 {
1907         struct address_space *mapping = filp->f_mapping;
1908         struct inode *inode = mapping->host;
1909         struct file_ra_state *ra = &filp->f_ra;
1910         pgoff_t index;
1911         pgoff_t last_index;
1912         pgoff_t prev_index;
1913         unsigned long offset;      /* offset into pagecache page */
1914         unsigned int prev_offset;
1915         int error = 0;
1916
1917         if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1918                 return 0;
1919         iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1920
1921         index = *ppos >> PAGE_SHIFT;
1922         prev_index = ra->prev_pos >> PAGE_SHIFT;
1923         prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1924         last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1925         offset = *ppos & ~PAGE_MASK;
1926
1927         for (;;) {
1928                 struct page *page;
1929                 pgoff_t end_index;
1930                 loff_t isize;
1931                 unsigned long nr, ret;
1932
1933                 cond_resched();
1934 find_page:
1935                 if (fatal_signal_pending(current)) {
1936                         error = -EINTR;
1937                         goto out;
1938                 }
1939
1940                 page = find_get_page(mapping, index);
1941                 if (!page) {
1942                         page_cache_sync_readahead(mapping,
1943                                         ra, filp,
1944                                         index, last_index - index);
1945                         page = find_get_page(mapping, index);
1946                         if (unlikely(page == NULL))
1947                                 goto no_cached_page;
1948                 }
1949                 if (PageReadahead(page)) {
1950                         page_cache_async_readahead(mapping,
1951                                         ra, filp, page,
1952                                         index, last_index - index);
1953                 }
1954                 if (!PageUptodate(page)) {
1955                         /*
1956                          * See comment in do_read_cache_page on why
1957                          * wait_on_page_locked is used to avoid unnecessarily
1958                          * serialisations and why it's safe.
1959                          */
1960                         error = wait_on_page_locked_killable(page);
1961                         if (unlikely(error))
1962                                 goto readpage_error;
1963                         if (PageUptodate(page))
1964                                 goto page_ok;
1965
1966                         if (inode->i_blkbits == PAGE_SHIFT ||
1967                                         !mapping->a_ops->is_partially_uptodate)
1968                                 goto page_not_up_to_date;
1969                         /* pipes can't handle partially uptodate pages */
1970                         if (unlikely(iter->type & ITER_PIPE))
1971                                 goto page_not_up_to_date;
1972                         if (!trylock_page(page))
1973                                 goto page_not_up_to_date;
1974                         /* Did it get truncated before we got the lock? */
1975                         if (!page->mapping)
1976                                 goto page_not_up_to_date_locked;
1977                         if (!mapping->a_ops->is_partially_uptodate(page,
1978                                                         offset, iter->count))
1979                                 goto page_not_up_to_date_locked;
1980                         unlock_page(page);
1981                 }
1982 page_ok:
1983                 /*
1984                  * i_size must be checked after we know the page is Uptodate.
1985                  *
1986                  * Checking i_size after the check allows us to calculate
1987                  * the correct value for "nr", which means the zero-filled
1988                  * part of the page is not copied back to userspace (unless
1989                  * another truncate extends the file - this is desired though).
1990                  */
1991
1992                 isize = i_size_read(inode);
1993                 end_index = (isize - 1) >> PAGE_SHIFT;
1994                 if (unlikely(!isize || index > end_index)) {
1995                         put_page(page);
1996                         goto out;
1997                 }
1998
1999                 /* nr is the maximum number of bytes to copy from this page */
2000                 nr = PAGE_SIZE;
2001                 if (index == end_index) {
2002                         nr = ((isize - 1) & ~PAGE_MASK) + 1;
2003                         if (nr <= offset) {
2004                                 put_page(page);
2005                                 goto out;
2006                         }
2007                 }
2008                 nr = nr - offset;
2009
2010                 /* If users can be writing to this page using arbitrary
2011                  * virtual addresses, take care about potential aliasing
2012                  * before reading the page on the kernel side.
2013                  */
2014                 if (mapping_writably_mapped(mapping))
2015                         flush_dcache_page(page);
2016
2017                 /*
2018                  * When a sequential read accesses a page several times,
2019                  * only mark it as accessed the first time.
2020                  */
2021                 if (prev_index != index || offset != prev_offset)
2022                         mark_page_accessed(page);
2023                 prev_index = index;
2024
2025                 /*
2026                  * Ok, we have the page, and it's up-to-date, so
2027                  * now we can copy it to user space...
2028                  */
2029
2030                 ret = copy_page_to_iter(page, offset, nr, iter);
2031                 offset += ret;
2032                 index += offset >> PAGE_SHIFT;
2033                 offset &= ~PAGE_MASK;
2034                 prev_offset = offset;
2035
2036                 put_page(page);
2037                 written += ret;
2038                 if (!iov_iter_count(iter))
2039                         goto out;
2040                 if (ret < nr) {
2041                         error = -EFAULT;
2042                         goto out;
2043                 }
2044                 continue;
2045
2046 page_not_up_to_date:
2047                 /* Get exclusive access to the page ... */
2048                 error = lock_page_killable(page);
2049                 if (unlikely(error))
2050                         goto readpage_error;
2051
2052 page_not_up_to_date_locked:
2053                 /* Did it get truncated before we got the lock? */
2054                 if (!page->mapping) {
2055                         unlock_page(page);
2056                         put_page(page);
2057                         continue;
2058                 }
2059
2060                 /* Did somebody else fill it already? */
2061                 if (PageUptodate(page)) {
2062                         unlock_page(page);
2063                         goto page_ok;
2064                 }
2065
2066 readpage:
2067                 /*
2068                  * A previous I/O error may have been due to temporary
2069                  * failures, eg. multipath errors.
2070                  * PG_error will be set again if readpage fails.
2071                  */
2072                 ClearPageError(page);
2073                 /* Start the actual read. The read will unlock the page. */
2074                 error = mapping->a_ops->readpage(filp, page);
2075
2076                 if (unlikely(error)) {
2077                         if (error == AOP_TRUNCATED_PAGE) {
2078                                 put_page(page);
2079                                 error = 0;
2080                                 goto find_page;
2081                         }
2082                         goto readpage_error;
2083                 }
2084
2085                 if (!PageUptodate(page)) {
2086                         error = lock_page_killable(page);
2087                         if (unlikely(error))
2088                                 goto readpage_error;
2089                         if (!PageUptodate(page)) {
2090                                 if (page->mapping == NULL) {
2091                                         /*
2092                                          * invalidate_mapping_pages got it
2093                                          */
2094                                         unlock_page(page);
2095                                         put_page(page);
2096                                         goto find_page;
2097                                 }
2098                                 unlock_page(page);
2099                                 shrink_readahead_size_eio(filp, ra);
2100                                 error = -EIO;
2101                                 goto readpage_error;
2102                         }
2103                         unlock_page(page);
2104                 }
2105
2106                 goto page_ok;
2107
2108 readpage_error:
2109                 /* UHHUH! A synchronous read error occurred. Report it */
2110                 put_page(page);
2111                 goto out;
2112
2113 no_cached_page:
2114                 /*
2115                  * Ok, it wasn't cached, so we need to create a new
2116                  * page..
2117                  */
2118                 page = page_cache_alloc_cold(mapping);
2119                 if (!page) {
2120                         error = -ENOMEM;
2121                         goto out;
2122                 }
2123                 error = add_to_page_cache_lru(page, mapping, index,
2124                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
2125                 if (error) {
2126                         put_page(page);
2127                         if (error == -EEXIST) {
2128                                 error = 0;
2129                                 goto find_page;
2130                         }
2131                         goto out;
2132                 }
2133                 goto readpage;
2134         }
2135
2136 out:
2137         ra->prev_pos = prev_index;
2138         ra->prev_pos <<= PAGE_SHIFT;
2139         ra->prev_pos |= prev_offset;
2140
2141         *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2142         file_accessed(filp);
2143         return written ? written : error;
2144 }
2145
2146 /**
2147  * generic_file_read_iter - generic filesystem read routine
2148  * @iocb:       kernel I/O control block
2149  * @iter:       destination for the data read
2150  *
2151  * This is the "read_iter()" routine for all filesystems
2152  * that can use the page cache directly.
2153  */
2154 ssize_t
2155 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2156 {
2157         struct file *file = iocb->ki_filp;
2158         ssize_t retval = 0;
2159         size_t count = iov_iter_count(iter);
2160
2161         if (!count)
2162                 goto out; /* skip atime */
2163
2164         if (iocb->ki_flags & IOCB_DIRECT) {
2165                 struct address_space *mapping = file->f_mapping;
2166                 struct inode *inode = mapping->host;
2167                 loff_t size;
2168
2169                 size = i_size_read(inode);
2170                 if (iocb->ki_flags & IOCB_NOWAIT) {
2171                         if (filemap_range_has_page(mapping, iocb->ki_pos,
2172                                                    iocb->ki_pos + count - 1))
2173                                 return -EAGAIN;
2174                 } else {
2175                         retval = filemap_write_and_wait_range(mapping,
2176                                                 iocb->ki_pos,
2177                                                 iocb->ki_pos + count - 1);
2178                         if (retval < 0)
2179                                 goto out;
2180                 }
2181
2182                 file_accessed(file);
2183
2184                 retval = mapping->a_ops->direct_IO(iocb, iter);
2185                 if (retval >= 0) {
2186                         iocb->ki_pos += retval;
2187                         count -= retval;
2188                 }
2189                 iov_iter_revert(iter, count - iov_iter_count(iter));
2190
2191                 /*
2192                  * Btrfs can have a short DIO read if we encounter
2193                  * compressed extents, so if there was an error, or if
2194                  * we've already read everything we wanted to, or if
2195                  * there was a short read because we hit EOF, go ahead
2196                  * and return.  Otherwise fallthrough to buffered io for
2197                  * the rest of the read.  Buffered reads will not work for
2198                  * DAX files, so don't bother trying.
2199                  */
2200                 if (retval < 0 || !count || iocb->ki_pos >= size ||
2201                     IS_DAX(inode))
2202                         goto out;
2203         }
2204
2205         retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2206 out:
2207         return retval;
2208 }
2209 EXPORT_SYMBOL(generic_file_read_iter);
2210
2211 #ifdef CONFIG_MMU
2212 /**
2213  * page_cache_read - adds requested page to the page cache if not already there
2214  * @file:       file to read
2215  * @offset:     page index
2216  * @gfp_mask:   memory allocation flags
2217  *
2218  * This adds the requested page to the page cache if it isn't already there,
2219  * and schedules an I/O to read in its contents from disk.
2220  */
2221 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2222 {
2223         struct address_space *mapping = file->f_mapping;
2224         struct page *page;
2225         int ret;
2226
2227         do {
2228                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2229                 if (!page)
2230                         return -ENOMEM;
2231
2232                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2233                 if (ret == 0)
2234                         ret = mapping->a_ops->readpage(file, page);
2235                 else if (ret == -EEXIST)
2236                         ret = 0; /* losing race to add is OK */
2237
2238                 put_page(page);
2239
2240         } while (ret == AOP_TRUNCATED_PAGE);
2241
2242         return ret;
2243 }
2244
2245 #define MMAP_LOTSAMISS  (100)
2246
2247 /*
2248  * Synchronous readahead happens when we don't even find
2249  * a page in the page cache at all.
2250  */
2251 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2252                                    struct file_ra_state *ra,
2253                                    struct file *file,
2254                                    pgoff_t offset)
2255 {
2256         struct address_space *mapping = file->f_mapping;
2257
2258         /* If we don't want any read-ahead, don't bother */
2259         if (vma->vm_flags & VM_RAND_READ)
2260                 return;
2261         if (!ra->ra_pages)
2262                 return;
2263
2264         if (vma->vm_flags & VM_SEQ_READ) {
2265                 page_cache_sync_readahead(mapping, ra, file, offset,
2266                                           ra->ra_pages);
2267                 return;
2268         }
2269
2270         /* Avoid banging the cache line if not needed */
2271         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2272                 ra->mmap_miss++;
2273
2274         /*
2275          * Do we miss much more than hit in this file? If so,
2276          * stop bothering with read-ahead. It will only hurt.
2277          */
2278         if (ra->mmap_miss > MMAP_LOTSAMISS)
2279                 return;
2280
2281         /*
2282          * mmap read-around
2283          */
2284         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2285         ra->size = ra->ra_pages;
2286         ra->async_size = ra->ra_pages / 4;
2287         ra_submit(ra, mapping, file);
2288 }
2289
2290 /*
2291  * Asynchronous readahead happens when we find the page and PG_readahead,
2292  * so we want to possibly extend the readahead further..
2293  */
2294 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2295                                     struct file_ra_state *ra,
2296                                     struct file *file,
2297                                     struct page *page,
2298                                     pgoff_t offset)
2299 {
2300         struct address_space *mapping = file->f_mapping;
2301
2302         /* If we don't want any read-ahead, don't bother */
2303         if (vma->vm_flags & VM_RAND_READ)
2304                 return;
2305         if (ra->mmap_miss > 0)
2306                 ra->mmap_miss--;
2307         if (PageReadahead(page))
2308                 page_cache_async_readahead(mapping, ra, file,
2309                                            page, offset, ra->ra_pages);
2310 }
2311
2312 /**
2313  * filemap_fault - read in file data for page fault handling
2314  * @vmf:        struct vm_fault containing details of the fault
2315  *
2316  * filemap_fault() is invoked via the vma operations vector for a
2317  * mapped memory region to read in file data during a page fault.
2318  *
2319  * The goto's are kind of ugly, but this streamlines the normal case of having
2320  * it in the page cache, and handles the special cases reasonably without
2321  * having a lot of duplicated code.
2322  *
2323  * vma->vm_mm->mmap_sem must be held on entry.
2324  *
2325  * If our return value has VM_FAULT_RETRY set, it's because
2326  * lock_page_or_retry() returned 0.
2327  * The mmap_sem has usually been released in this case.
2328  * See __lock_page_or_retry() for the exception.
2329  *
2330  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2331  * has not been released.
2332  *
2333  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2334  */
2335 int filemap_fault(struct vm_fault *vmf)
2336 {
2337         int error;
2338         struct file *file = vmf->vma->vm_file;
2339         struct address_space *mapping = file->f_mapping;
2340         struct file_ra_state *ra = &file->f_ra;
2341         struct inode *inode = mapping->host;
2342         pgoff_t offset = vmf->pgoff;
2343         pgoff_t max_off;
2344         struct page *page;
2345         int ret = 0;
2346
2347         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2348         if (unlikely(offset >= max_off))
2349                 return VM_FAULT_SIGBUS;
2350
2351         /*
2352          * Do we have something in the page cache already?
2353          */
2354         page = find_get_page(mapping, offset);
2355         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2356                 /*
2357                  * We found the page, so try async readahead before
2358                  * waiting for the lock.
2359                  */
2360                 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2361         } else if (!page) {
2362                 /* No page in the page cache at all */
2363                 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2364                 count_vm_event(PGMAJFAULT);
2365                 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2366                 ret = VM_FAULT_MAJOR;
2367 retry_find:
2368                 page = find_get_page(mapping, offset);
2369                 if (!page)
2370                         goto no_cached_page;
2371         }
2372
2373         if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2374                 put_page(page);
2375                 return ret | VM_FAULT_RETRY;
2376         }
2377
2378         /* Did it get truncated? */
2379         if (unlikely(page->mapping != mapping)) {
2380                 unlock_page(page);
2381                 put_page(page);
2382                 goto retry_find;
2383         }
2384         VM_BUG_ON_PAGE(page->index != offset, page);
2385
2386         /*
2387          * We have a locked page in the page cache, now we need to check
2388          * that it's up-to-date. If not, it is going to be due to an error.
2389          */
2390         if (unlikely(!PageUptodate(page)))
2391                 goto page_not_uptodate;
2392
2393         /*
2394          * Found the page and have a reference on it.
2395          * We must recheck i_size under page lock.
2396          */
2397         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2398         if (unlikely(offset >= max_off)) {
2399                 unlock_page(page);
2400                 put_page(page);
2401                 return VM_FAULT_SIGBUS;
2402         }
2403
2404         vmf->page = page;
2405         return ret | VM_FAULT_LOCKED;
2406
2407 no_cached_page:
2408         /*
2409          * We're only likely to ever get here if MADV_RANDOM is in
2410          * effect.
2411          */
2412         error = page_cache_read(file, offset, vmf->gfp_mask);
2413
2414         /*
2415          * The page we want has now been added to the page cache.
2416          * In the unlikely event that someone removed it in the
2417          * meantime, we'll just come back here and read it again.
2418          */
2419         if (error >= 0)
2420                 goto retry_find;
2421
2422         /*
2423          * An error return from page_cache_read can result if the
2424          * system is low on memory, or a problem occurs while trying
2425          * to schedule I/O.
2426          */
2427         if (error == -ENOMEM)
2428                 return VM_FAULT_OOM;
2429         return VM_FAULT_SIGBUS;
2430
2431 page_not_uptodate:
2432         /*
2433          * Umm, take care of errors if the page isn't up-to-date.
2434          * Try to re-read it _once_. We do this synchronously,
2435          * because there really aren't any performance issues here
2436          * and we need to check for errors.
2437          */
2438         ClearPageError(page);
2439         error = mapping->a_ops->readpage(file, page);
2440         if (!error) {
2441                 wait_on_page_locked(page);
2442                 if (!PageUptodate(page))
2443                         error = -EIO;
2444         }
2445         put_page(page);
2446
2447         if (!error || error == AOP_TRUNCATED_PAGE)
2448                 goto retry_find;
2449
2450         /* Things didn't work out. Return zero to tell the mm layer so. */
2451         shrink_readahead_size_eio(file, ra);
2452         return VM_FAULT_SIGBUS;
2453 }
2454 EXPORT_SYMBOL(filemap_fault);
2455
2456 void filemap_map_pages(struct vm_fault *vmf,
2457                 pgoff_t start_pgoff, pgoff_t end_pgoff)
2458 {
2459         struct radix_tree_iter iter;
2460         void **slot;
2461         struct file *file = vmf->vma->vm_file;
2462         struct address_space *mapping = file->f_mapping;
2463         pgoff_t last_pgoff = start_pgoff;
2464         unsigned long max_idx;
2465         struct page *head, *page;
2466
2467         rcu_read_lock();
2468         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2469                         start_pgoff) {
2470                 if (iter.index > end_pgoff)
2471                         break;
2472 repeat:
2473                 page = radix_tree_deref_slot(slot);
2474                 if (unlikely(!page))
2475                         goto next;
2476                 if (radix_tree_exception(page)) {
2477                         if (radix_tree_deref_retry(page)) {
2478                                 slot = radix_tree_iter_retry(&iter);
2479                                 continue;
2480                         }
2481                         goto next;
2482                 }
2483
2484                 head = compound_head(page);
2485                 if (!page_cache_get_speculative(head))
2486                         goto repeat;
2487
2488                 /* The page was split under us? */
2489                 if (compound_head(page) != head) {
2490                         put_page(head);
2491                         goto repeat;
2492                 }
2493
2494                 /* Has the page moved? */
2495                 if (unlikely(page != *slot)) {
2496                         put_page(head);
2497                         goto repeat;
2498                 }
2499
2500                 if (!PageUptodate(page) ||
2501                                 PageReadahead(page) ||
2502                                 PageHWPoison(page))
2503                         goto skip;
2504                 if (!trylock_page(page))
2505                         goto skip;
2506
2507                 if (page->mapping != mapping || !PageUptodate(page))
2508                         goto unlock;
2509
2510                 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2511                 if (page->index >= max_idx)
2512                         goto unlock;
2513
2514                 if (file->f_ra.mmap_miss > 0)
2515                         file->f_ra.mmap_miss--;
2516
2517                 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2518                 if (vmf->pte)
2519                         vmf->pte += iter.index - last_pgoff;
2520                 last_pgoff = iter.index;
2521                 if (alloc_set_pte(vmf, NULL, page))
2522                         goto unlock;
2523                 unlock_page(page);
2524                 goto next;
2525 unlock:
2526                 unlock_page(page);
2527 skip:
2528                 put_page(page);
2529 next:
2530                 /* Huge page is mapped? No need to proceed. */
2531                 if (pmd_trans_huge(*vmf->pmd))
2532                         break;
2533                 if (iter.index == end_pgoff)
2534                         break;
2535         }
2536         rcu_read_unlock();
2537 }
2538 EXPORT_SYMBOL(filemap_map_pages);
2539
2540 int filemap_page_mkwrite(struct vm_fault *vmf)
2541 {
2542         struct page *page = vmf->page;
2543         struct inode *inode = file_inode(vmf->vma->vm_file);
2544         int ret = VM_FAULT_LOCKED;
2545
2546         sb_start_pagefault(inode->i_sb);
2547         file_update_time(vmf->vma->vm_file);
2548         lock_page(page);
2549         if (page->mapping != inode->i_mapping) {
2550                 unlock_page(page);
2551                 ret = VM_FAULT_NOPAGE;
2552                 goto out;
2553         }
2554         /*
2555          * We mark the page dirty already here so that when freeze is in
2556          * progress, we are guaranteed that writeback during freezing will
2557          * see the dirty page and writeprotect it again.
2558          */
2559         set_page_dirty(page);
2560         wait_for_stable_page(page);
2561 out:
2562         sb_end_pagefault(inode->i_sb);
2563         return ret;
2564 }
2565 EXPORT_SYMBOL(filemap_page_mkwrite);
2566
2567 const struct vm_operations_struct generic_file_vm_ops = {
2568         .fault          = filemap_fault,
2569         .map_pages      = filemap_map_pages,
2570         .page_mkwrite   = filemap_page_mkwrite,
2571 };
2572
2573 /* This is used for a general mmap of a disk file */
2574
2575 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2576 {
2577         struct address_space *mapping = file->f_mapping;
2578
2579         if (!mapping->a_ops->readpage)
2580                 return -ENOEXEC;
2581         file_accessed(file);
2582         vma->vm_ops = &generic_file_vm_ops;
2583         return 0;
2584 }
2585
2586 /*
2587  * This is for filesystems which do not implement ->writepage.
2588  */
2589 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2590 {
2591         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2592                 return -EINVAL;
2593         return generic_file_mmap(file, vma);
2594 }
2595 #else
2596 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2597 {
2598         return -ENOSYS;
2599 }
2600 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2601 {
2602         return -ENOSYS;
2603 }
2604 #endif /* CONFIG_MMU */
2605
2606 EXPORT_SYMBOL(generic_file_mmap);
2607 EXPORT_SYMBOL(generic_file_readonly_mmap);
2608
2609 static struct page *wait_on_page_read(struct page *page)
2610 {
2611         if (!IS_ERR(page)) {
2612                 wait_on_page_locked(page);
2613                 if (!PageUptodate(page)) {
2614                         put_page(page);
2615                         page = ERR_PTR(-EIO);
2616                 }
2617         }
2618         return page;
2619 }
2620
2621 static struct page *do_read_cache_page(struct address_space *mapping,
2622                                 pgoff_t index,
2623                                 int (*filler)(void *, struct page *),
2624                                 void *data,
2625                                 gfp_t gfp)
2626 {
2627         struct page *page;
2628         int err;
2629 repeat:
2630         page = find_get_page(mapping, index);
2631         if (!page) {
2632                 page = __page_cache_alloc(gfp | __GFP_COLD);
2633                 if (!page)
2634                         return ERR_PTR(-ENOMEM);
2635                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2636                 if (unlikely(err)) {
2637                         put_page(page);
2638                         if (err == -EEXIST)
2639                                 goto repeat;
2640                         /* Presumably ENOMEM for radix tree node */
2641                         return ERR_PTR(err);
2642                 }
2643
2644 filler:
2645                 err = filler(data, page);
2646                 if (err < 0) {
2647                         put_page(page);
2648                         return ERR_PTR(err);
2649                 }
2650
2651                 page = wait_on_page_read(page);
2652                 if (IS_ERR(page))
2653                         return page;
2654                 goto out;
2655         }
2656         if (PageUptodate(page))
2657                 goto out;
2658
2659         /*
2660          * Page is not up to date and may be locked due one of the following
2661          * case a: Page is being filled and the page lock is held
2662          * case b: Read/write error clearing the page uptodate status
2663          * case c: Truncation in progress (page locked)
2664          * case d: Reclaim in progress
2665          *
2666          * Case a, the page will be up to date when the page is unlocked.
2667          *    There is no need to serialise on the page lock here as the page
2668          *    is pinned so the lock gives no additional protection. Even if the
2669          *    the page is truncated, the data is still valid if PageUptodate as
2670          *    it's a race vs truncate race.
2671          * Case b, the page will not be up to date
2672          * Case c, the page may be truncated but in itself, the data may still
2673          *    be valid after IO completes as it's a read vs truncate race. The
2674          *    operation must restart if the page is not uptodate on unlock but
2675          *    otherwise serialising on page lock to stabilise the mapping gives
2676          *    no additional guarantees to the caller as the page lock is
2677          *    released before return.
2678          * Case d, similar to truncation. If reclaim holds the page lock, it
2679          *    will be a race with remove_mapping that determines if the mapping
2680          *    is valid on unlock but otherwise the data is valid and there is
2681          *    no need to serialise with page lock.
2682          *
2683          * As the page lock gives no additional guarantee, we optimistically
2684          * wait on the page to be unlocked and check if it's up to date and
2685          * use the page if it is. Otherwise, the page lock is required to
2686          * distinguish between the different cases. The motivation is that we
2687          * avoid spurious serialisations and wakeups when multiple processes
2688          * wait on the same page for IO to complete.
2689          */
2690         wait_on_page_locked(page);
2691         if (PageUptodate(page))
2692                 goto out;
2693
2694         /* Distinguish between all the cases under the safety of the lock */
2695         lock_page(page);
2696
2697         /* Case c or d, restart the operation */
2698         if (!page->mapping) {
2699                 unlock_page(page);
2700                 put_page(page);
2701                 goto repeat;
2702         }
2703
2704         /* Someone else locked and filled the page in a very small window */
2705         if (PageUptodate(page)) {
2706                 unlock_page(page);
2707                 goto out;
2708         }
2709         goto filler;
2710
2711 out:
2712         mark_page_accessed(page);
2713         return page;
2714 }
2715
2716 /**
2717  * read_cache_page - read into page cache, fill it if needed
2718  * @mapping:    the page's address_space
2719  * @index:      the page index
2720  * @filler:     function to perform the read
2721  * @data:       first arg to filler(data, page) function, often left as NULL
2722  *
2723  * Read into the page cache. If a page already exists, and PageUptodate() is
2724  * not set, try to fill the page and wait for it to become unlocked.
2725  *
2726  * If the page does not get brought uptodate, return -EIO.
2727  */
2728 struct page *read_cache_page(struct address_space *mapping,
2729                                 pgoff_t index,
2730                                 int (*filler)(void *, struct page *),
2731                                 void *data)
2732 {
2733         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2734 }
2735 EXPORT_SYMBOL(read_cache_page);
2736
2737 /**
2738  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2739  * @mapping:    the page's address_space
2740  * @index:      the page index
2741  * @gfp:        the page allocator flags to use if allocating
2742  *
2743  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2744  * any new page allocations done using the specified allocation flags.
2745  *
2746  * If the page does not get brought uptodate, return -EIO.
2747  */
2748 struct page *read_cache_page_gfp(struct address_space *mapping,
2749                                 pgoff_t index,
2750                                 gfp_t gfp)
2751 {
2752         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2753
2754         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2755 }
2756 EXPORT_SYMBOL(read_cache_page_gfp);
2757
2758 /*
2759  * Performs necessary checks before doing a write
2760  *
2761  * Can adjust writing position or amount of bytes to write.
2762  * Returns appropriate error code that caller should return or
2763  * zero in case that write should be allowed.
2764  */
2765 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2766 {
2767         struct file *file = iocb->ki_filp;
2768         struct inode *inode = file->f_mapping->host;
2769         unsigned long limit = rlimit(RLIMIT_FSIZE);
2770         loff_t pos;
2771
2772         if (!iov_iter_count(from))
2773                 return 0;
2774
2775         /* FIXME: this is for backwards compatibility with 2.4 */
2776         if (iocb->ki_flags & IOCB_APPEND)
2777                 iocb->ki_pos = i_size_read(inode);
2778
2779         pos = iocb->ki_pos;
2780
2781         if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2782                 return -EINVAL;
2783
2784         if (limit != RLIM_INFINITY) {
2785                 if (iocb->ki_pos >= limit) {
2786                         send_sig(SIGXFSZ, current, 0);
2787                         return -EFBIG;
2788                 }
2789                 iov_iter_truncate(from, limit - (unsigned long)pos);
2790         }
2791
2792         /*
2793          * LFS rule
2794          */
2795         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2796                                 !(file->f_flags & O_LARGEFILE))) {
2797                 if (pos >= MAX_NON_LFS)
2798                         return -EFBIG;
2799                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2800         }
2801
2802         /*
2803          * Are we about to exceed the fs block limit ?
2804          *
2805          * If we have written data it becomes a short write.  If we have
2806          * exceeded without writing data we send a signal and return EFBIG.
2807          * Linus frestrict idea will clean these up nicely..
2808          */
2809         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2810                 return -EFBIG;
2811
2812         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2813         return iov_iter_count(from);
2814 }
2815 EXPORT_SYMBOL(generic_write_checks);
2816
2817 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2818                                 loff_t pos, unsigned len, unsigned flags,
2819                                 struct page **pagep, void **fsdata)
2820 {
2821         const struct address_space_operations *aops = mapping->a_ops;
2822
2823         return aops->write_begin(file, mapping, pos, len, flags,
2824                                                         pagep, fsdata);
2825 }
2826 EXPORT_SYMBOL(pagecache_write_begin);
2827
2828 int pagecache_write_end(struct file *file, struct address_space *mapping,
2829                                 loff_t pos, unsigned len, unsigned copied,
2830                                 struct page *page, void *fsdata)
2831 {
2832         const struct address_space_operations *aops = mapping->a_ops;
2833
2834         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2835 }
2836 EXPORT_SYMBOL(pagecache_write_end);
2837
2838 ssize_t
2839 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2840 {
2841         struct file     *file = iocb->ki_filp;
2842         struct address_space *mapping = file->f_mapping;
2843         struct inode    *inode = mapping->host;
2844         loff_t          pos = iocb->ki_pos;
2845         ssize_t         written;
2846         size_t          write_len;
2847         pgoff_t         end;
2848
2849         write_len = iov_iter_count(from);
2850         end = (pos + write_len - 1) >> PAGE_SHIFT;
2851
2852         if (iocb->ki_flags & IOCB_NOWAIT) {
2853                 /* If there are pages to writeback, return */
2854                 if (filemap_range_has_page(inode->i_mapping, pos,
2855                                            pos + iov_iter_count(from)))
2856                         return -EAGAIN;
2857         } else {
2858                 written = filemap_write_and_wait_range(mapping, pos,
2859                                                         pos + write_len - 1);
2860                 if (written)
2861                         goto out;
2862         }
2863
2864         /*
2865          * After a write we want buffered reads to be sure to go to disk to get
2866          * the new data.  We invalidate clean cached page from the region we're
2867          * about to write.  We do this *before* the write so that we can return
2868          * without clobbering -EIOCBQUEUED from ->direct_IO().
2869          */
2870         written = invalidate_inode_pages2_range(mapping,
2871                                         pos >> PAGE_SHIFT, end);
2872         /*
2873          * If a page can not be invalidated, return 0 to fall back
2874          * to buffered write.
2875          */
2876         if (written) {
2877                 if (written == -EBUSY)
2878                         return 0;
2879                 goto out;
2880         }
2881
2882         written = mapping->a_ops->direct_IO(iocb, from);
2883
2884         /*
2885          * Finally, try again to invalidate clean pages which might have been
2886          * cached by non-direct readahead, or faulted in by get_user_pages()
2887          * if the source of the write was an mmap'ed region of the file
2888          * we're writing.  Either one is a pretty crazy thing to do,
2889          * so we don't support it 100%.  If this invalidation
2890          * fails, tough, the write still worked...
2891          */
2892         invalidate_inode_pages2_range(mapping,
2893                                 pos >> PAGE_SHIFT, end);
2894
2895         if (written > 0) {
2896                 pos += written;
2897                 write_len -= written;
2898                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2899                         i_size_write(inode, pos);
2900                         mark_inode_dirty(inode);
2901                 }
2902                 iocb->ki_pos = pos;
2903         }
2904         iov_iter_revert(from, write_len - iov_iter_count(from));
2905 out:
2906         return written;
2907 }
2908 EXPORT_SYMBOL(generic_file_direct_write);
2909
2910 /*
2911  * Find or create a page at the given pagecache position. Return the locked
2912  * page. This function is specifically for buffered writes.
2913  */
2914 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2915                                         pgoff_t index, unsigned flags)
2916 {
2917         struct page *page;
2918         int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2919
2920         if (flags & AOP_FLAG_NOFS)
2921                 fgp_flags |= FGP_NOFS;
2922
2923         page = pagecache_get_page(mapping, index, fgp_flags,
2924                         mapping_gfp_mask(mapping));
2925         if (page)
2926                 wait_for_stable_page(page);
2927
2928         return page;
2929 }
2930 EXPORT_SYMBOL(grab_cache_page_write_begin);
2931
2932 ssize_t generic_perform_write(struct file *file,
2933                                 struct iov_iter *i, loff_t pos)
2934 {
2935         struct address_space *mapping = file->f_mapping;
2936         const struct address_space_operations *a_ops = mapping->a_ops;
2937         long status = 0;
2938         ssize_t written = 0;
2939         unsigned int flags = 0;
2940
2941         do {
2942                 struct page *page;
2943                 unsigned long offset;   /* Offset into pagecache page */
2944                 unsigned long bytes;    /* Bytes to write to page */
2945                 size_t copied;          /* Bytes copied from user */
2946                 void *fsdata;
2947
2948                 offset = (pos & (PAGE_SIZE - 1));
2949                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2950                                                 iov_iter_count(i));
2951
2952 again:
2953                 /*
2954                  * Bring in the user page that we will copy from _first_.
2955                  * Otherwise there's a nasty deadlock on copying from the
2956                  * same page as we're writing to, without it being marked
2957                  * up-to-date.
2958                  *
2959                  * Not only is this an optimisation, but it is also required
2960                  * to check that the address is actually valid, when atomic
2961                  * usercopies are used, below.
2962                  */
2963                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2964                         status = -EFAULT;
2965                         break;
2966                 }
2967
2968                 if (fatal_signal_pending(current)) {
2969                         status = -EINTR;
2970                         break;
2971                 }
2972
2973                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2974                                                 &page, &fsdata);
2975                 if (unlikely(status < 0))
2976                         break;
2977
2978                 if (mapping_writably_mapped(mapping))
2979                         flush_dcache_page(page);
2980
2981                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2982                 flush_dcache_page(page);
2983
2984                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2985                                                 page, fsdata);
2986                 if (unlikely(status < 0))
2987                         break;
2988                 copied = status;
2989
2990                 cond_resched();
2991
2992                 iov_iter_advance(i, copied);
2993                 if (unlikely(copied == 0)) {
2994                         /*
2995                          * If we were unable to copy any data at all, we must
2996                          * fall back to a single segment length write.
2997                          *
2998                          * If we didn't fallback here, we could livelock
2999                          * because not all segments in the iov can be copied at
3000                          * once without a pagefault.
3001                          */
3002                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
3003                                                 iov_iter_single_seg_count(i));
3004                         goto again;
3005                 }
3006                 pos += copied;
3007                 written += copied;
3008
3009                 balance_dirty_pages_ratelimited(mapping);
3010         } while (iov_iter_count(i));
3011
3012         return written ? written : status;
3013 }
3014 EXPORT_SYMBOL(generic_perform_write);
3015
3016 /**
3017  * __generic_file_write_iter - write data to a file
3018  * @iocb:       IO state structure (file, offset, etc.)
3019  * @from:       iov_iter with data to write
3020  *
3021  * This function does all the work needed for actually writing data to a
3022  * file. It does all basic checks, removes SUID from the file, updates
3023  * modification times and calls proper subroutines depending on whether we
3024  * do direct IO or a standard buffered write.
3025  *
3026  * It expects i_mutex to be grabbed unless we work on a block device or similar
3027  * object which does not need locking at all.
3028  *
3029  * This function does *not* take care of syncing data in case of O_SYNC write.
3030  * A caller has to handle it. This is mainly due to the fact that we want to
3031  * avoid syncing under i_mutex.
3032  */
3033 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3034 {
3035         struct file *file = iocb->ki_filp;
3036         struct address_space * mapping = file->f_mapping;
3037         struct inode    *inode = mapping->host;
3038         ssize_t         written = 0;
3039         ssize_t         err;
3040         ssize_t         status;
3041
3042         /* We can write back this queue in page reclaim */
3043         current->backing_dev_info = inode_to_bdi(inode);
3044         err = file_remove_privs(file);
3045         if (err)
3046                 goto out;
3047
3048         err = file_update_time(file);
3049         if (err)
3050                 goto out;
3051
3052         if (iocb->ki_flags & IOCB_DIRECT) {
3053                 loff_t pos, endbyte;
3054
3055                 written = generic_file_direct_write(iocb, from);
3056                 /*
3057                  * If the write stopped short of completing, fall back to
3058                  * buffered writes.  Some filesystems do this for writes to
3059                  * holes, for example.  For DAX files, a buffered write will
3060                  * not succeed (even if it did, DAX does not handle dirty
3061                  * page-cache pages correctly).
3062                  */
3063                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3064                         goto out;
3065
3066                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3067                 /*
3068                  * If generic_perform_write() returned a synchronous error
3069                  * then we want to return the number of bytes which were
3070                  * direct-written, or the error code if that was zero.  Note
3071                  * that this differs from normal direct-io semantics, which
3072                  * will return -EFOO even if some bytes were written.
3073                  */
3074                 if (unlikely(status < 0)) {
3075                         err = status;
3076                         goto out;
3077                 }
3078                 /*
3079                  * We need to ensure that the page cache pages are written to
3080                  * disk and invalidated to preserve the expected O_DIRECT
3081                  * semantics.
3082                  */
3083                 endbyte = pos + status - 1;
3084                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3085                 if (err == 0) {
3086                         iocb->ki_pos = endbyte + 1;
3087                         written += status;
3088                         invalidate_mapping_pages(mapping,
3089                                                  pos >> PAGE_SHIFT,
3090                                                  endbyte >> PAGE_SHIFT);
3091                 } else {
3092                         /*
3093                          * We don't know how much we wrote, so just return
3094                          * the number of bytes which were direct-written
3095                          */
3096                 }
3097         } else {
3098                 written = generic_perform_write(file, from, iocb->ki_pos);
3099                 if (likely(written > 0))
3100                         iocb->ki_pos += written;
3101         }
3102 out:
3103         current->backing_dev_info = NULL;
3104         return written ? written : err;
3105 }
3106 EXPORT_SYMBOL(__generic_file_write_iter);
3107
3108 /**
3109  * generic_file_write_iter - write data to a file
3110  * @iocb:       IO state structure
3111  * @from:       iov_iter with data to write
3112  *
3113  * This is a wrapper around __generic_file_write_iter() to be used by most
3114  * filesystems. It takes care of syncing the file in case of O_SYNC file
3115  * and acquires i_mutex as needed.
3116  */
3117 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3118 {
3119         struct file *file = iocb->ki_filp;
3120         struct inode *inode = file->f_mapping->host;
3121         ssize_t ret;
3122
3123         inode_lock(inode);
3124         ret = generic_write_checks(iocb, from);
3125         if (ret > 0)
3126                 ret = __generic_file_write_iter(iocb, from);
3127         inode_unlock(inode);
3128
3129         if (ret > 0)
3130                 ret = generic_write_sync(iocb, ret);
3131         return ret;
3132 }
3133 EXPORT_SYMBOL(generic_file_write_iter);
3134
3135 /**
3136  * try_to_release_page() - release old fs-specific metadata on a page
3137  *
3138  * @page: the page which the kernel is trying to free
3139  * @gfp_mask: memory allocation flags (and I/O mode)
3140  *
3141  * The address_space is to try to release any data against the page
3142  * (presumably at page->private).  If the release was successful, return '1'.
3143  * Otherwise return zero.
3144  *
3145  * This may also be called if PG_fscache is set on a page, indicating that the
3146  * page is known to the local caching routines.
3147  *
3148  * The @gfp_mask argument specifies whether I/O may be performed to release
3149  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3150  *
3151  */
3152 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3153 {
3154         struct address_space * const mapping = page->mapping;
3155
3156         BUG_ON(!PageLocked(page));
3157         if (PageWriteback(page))
3158                 return 0;
3159
3160         if (mapping && mapping->a_ops->releasepage)
3161                 return mapping->a_ops->releasepage(page, gfp_mask);
3162         return try_to_free_buffers(page);
3163 }
3164
3165 EXPORT_SYMBOL(try_to_release_page);