]> asedeno.scripts.mit.edu Git - linux.git/blob - mm/filemap.c
fs: new infrastructure for writeback error handling and reporting
[linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
39 #include "internal.h"
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
43
44 /*
45  * FIXME: remove all knowledge of the buffer layer from the core VM
46  */
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48
49 #include <asm/mman.h>
50
51 /*
52  * Shared mappings implemented 30.11.1994. It's not fully working yet,
53  * though.
54  *
55  * Shared mappings now work. 15.8.1995  Bruno.
56  *
57  * finished 'unifying' the page and buffer cache and SMP-threaded the
58  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59  *
60  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61  */
62
63 /*
64  * Lock ordering:
65  *
66  *  ->i_mmap_rwsem              (truncate_pagecache)
67  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
68  *      ->swap_lock             (exclusive_swap_page, others)
69  *        ->mapping->tree_lock
70  *
71  *  ->i_mutex
72  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
73  *
74  *  ->mmap_sem
75  *    ->i_mmap_rwsem
76  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
77  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
78  *
79  *  ->mmap_sem
80  *    ->lock_page               (access_process_vm)
81  *
82  *  ->i_mutex                   (generic_perform_write)
83  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
84  *
85  *  bdi->wb.list_lock
86  *    sb_lock                   (fs/fs-writeback.c)
87  *    ->mapping->tree_lock      (__sync_single_inode)
88  *
89  *  ->i_mmap_rwsem
90  *    ->anon_vma.lock           (vma_adjust)
91  *
92  *  ->anon_vma.lock
93  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
94  *
95  *  ->page_table_lock or pte_lock
96  *    ->swap_lock               (try_to_unmap_one)
97  *    ->private_lock            (try_to_unmap_one)
98  *    ->tree_lock               (try_to_unmap_one)
99  *    ->zone_lru_lock(zone)     (follow_page->mark_page_accessed)
100  *    ->zone_lru_lock(zone)     (check_pte_range->isolate_lru_page)
101  *    ->private_lock            (page_remove_rmap->set_page_dirty)
102  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
104  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
105  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
106  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
107  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
108  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
109  *
110  * ->i_mmap_rwsem
111  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
112  */
113
114 static int page_cache_tree_insert(struct address_space *mapping,
115                                   struct page *page, void **shadowp)
116 {
117         struct radix_tree_node *node;
118         void **slot;
119         int error;
120
121         error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122                                     &node, &slot);
123         if (error)
124                 return error;
125         if (*slot) {
126                 void *p;
127
128                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129                 if (!radix_tree_exceptional_entry(p))
130                         return -EEXIST;
131
132                 mapping->nrexceptional--;
133                 if (!dax_mapping(mapping)) {
134                         if (shadowp)
135                                 *shadowp = p;
136                 } else {
137                         /* DAX can replace empty locked entry with a hole */
138                         WARN_ON_ONCE(p !=
139                                 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
140                         /* Wakeup waiters for exceptional entry lock */
141                         dax_wake_mapping_entry_waiter(mapping, page->index, p,
142                                                       true);
143                 }
144         }
145         __radix_tree_replace(&mapping->page_tree, node, slot, page,
146                              workingset_update_node, mapping);
147         mapping->nrpages++;
148         return 0;
149 }
150
151 static void page_cache_tree_delete(struct address_space *mapping,
152                                    struct page *page, void *shadow)
153 {
154         int i, nr;
155
156         /* hugetlb pages are represented by one entry in the radix tree */
157         nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
158
159         VM_BUG_ON_PAGE(!PageLocked(page), page);
160         VM_BUG_ON_PAGE(PageTail(page), page);
161         VM_BUG_ON_PAGE(nr != 1 && shadow, page);
162
163         for (i = 0; i < nr; i++) {
164                 struct radix_tree_node *node;
165                 void **slot;
166
167                 __radix_tree_lookup(&mapping->page_tree, page->index + i,
168                                     &node, &slot);
169
170                 VM_BUG_ON_PAGE(!node && nr != 1, page);
171
172                 radix_tree_clear_tags(&mapping->page_tree, node, slot);
173                 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
174                                      workingset_update_node, mapping);
175         }
176
177         if (shadow) {
178                 mapping->nrexceptional += nr;
179                 /*
180                  * Make sure the nrexceptional update is committed before
181                  * the nrpages update so that final truncate racing
182                  * with reclaim does not see both counters 0 at the
183                  * same time and miss a shadow entry.
184                  */
185                 smp_wmb();
186         }
187         mapping->nrpages -= nr;
188 }
189
190 /*
191  * Delete a page from the page cache and free it. Caller has to make
192  * sure the page is locked and that nobody else uses it - or that usage
193  * is safe.  The caller must hold the mapping's tree_lock.
194  */
195 void __delete_from_page_cache(struct page *page, void *shadow)
196 {
197         struct address_space *mapping = page->mapping;
198         int nr = hpage_nr_pages(page);
199
200         trace_mm_filemap_delete_from_page_cache(page);
201         /*
202          * if we're uptodate, flush out into the cleancache, otherwise
203          * invalidate any existing cleancache entries.  We can't leave
204          * stale data around in the cleancache once our page is gone
205          */
206         if (PageUptodate(page) && PageMappedToDisk(page))
207                 cleancache_put_page(page);
208         else
209                 cleancache_invalidate_page(mapping, page);
210
211         VM_BUG_ON_PAGE(PageTail(page), page);
212         VM_BUG_ON_PAGE(page_mapped(page), page);
213         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
214                 int mapcount;
215
216                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
217                          current->comm, page_to_pfn(page));
218                 dump_page(page, "still mapped when deleted");
219                 dump_stack();
220                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
221
222                 mapcount = page_mapcount(page);
223                 if (mapping_exiting(mapping) &&
224                     page_count(page) >= mapcount + 2) {
225                         /*
226                          * All vmas have already been torn down, so it's
227                          * a good bet that actually the page is unmapped,
228                          * and we'd prefer not to leak it: if we're wrong,
229                          * some other bad page check should catch it later.
230                          */
231                         page_mapcount_reset(page);
232                         page_ref_sub(page, mapcount);
233                 }
234         }
235
236         page_cache_tree_delete(mapping, page, shadow);
237
238         page->mapping = NULL;
239         /* Leave page->index set: truncation lookup relies upon it */
240
241         /* hugetlb pages do not participate in page cache accounting. */
242         if (!PageHuge(page))
243                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
244         if (PageSwapBacked(page)) {
245                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
246                 if (PageTransHuge(page))
247                         __dec_node_page_state(page, NR_SHMEM_THPS);
248         } else {
249                 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
250         }
251
252         /*
253          * At this point page must be either written or cleaned by truncate.
254          * Dirty page here signals a bug and loss of unwritten data.
255          *
256          * This fixes dirty accounting after removing the page entirely but
257          * leaves PageDirty set: it has no effect for truncated page and
258          * anyway will be cleared before returning page into buddy allocator.
259          */
260         if (WARN_ON_ONCE(PageDirty(page)))
261                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
262 }
263
264 /**
265  * delete_from_page_cache - delete page from page cache
266  * @page: the page which the kernel is trying to remove from page cache
267  *
268  * This must be called only on pages that have been verified to be in the page
269  * cache and locked.  It will never put the page into the free list, the caller
270  * has a reference on the page.
271  */
272 void delete_from_page_cache(struct page *page)
273 {
274         struct address_space *mapping = page_mapping(page);
275         unsigned long flags;
276         void (*freepage)(struct page *);
277
278         BUG_ON(!PageLocked(page));
279
280         freepage = mapping->a_ops->freepage;
281
282         spin_lock_irqsave(&mapping->tree_lock, flags);
283         __delete_from_page_cache(page, NULL);
284         spin_unlock_irqrestore(&mapping->tree_lock, flags);
285
286         if (freepage)
287                 freepage(page);
288
289         if (PageTransHuge(page) && !PageHuge(page)) {
290                 page_ref_sub(page, HPAGE_PMD_NR);
291                 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
292         } else {
293                 put_page(page);
294         }
295 }
296 EXPORT_SYMBOL(delete_from_page_cache);
297
298 int filemap_check_errors(struct address_space *mapping)
299 {
300         int ret = 0;
301         /* Check for outstanding write errors */
302         if (test_bit(AS_ENOSPC, &mapping->flags) &&
303             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
304                 ret = -ENOSPC;
305         if (test_bit(AS_EIO, &mapping->flags) &&
306             test_and_clear_bit(AS_EIO, &mapping->flags))
307                 ret = -EIO;
308         return ret;
309 }
310 EXPORT_SYMBOL(filemap_check_errors);
311
312 static int filemap_check_and_keep_errors(struct address_space *mapping)
313 {
314         /* Check for outstanding write errors */
315         if (test_bit(AS_EIO, &mapping->flags))
316                 return -EIO;
317         if (test_bit(AS_ENOSPC, &mapping->flags))
318                 return -ENOSPC;
319         return 0;
320 }
321
322 /**
323  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
324  * @mapping:    address space structure to write
325  * @start:      offset in bytes where the range starts
326  * @end:        offset in bytes where the range ends (inclusive)
327  * @sync_mode:  enable synchronous operation
328  *
329  * Start writeback against all of a mapping's dirty pages that lie
330  * within the byte offsets <start, end> inclusive.
331  *
332  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
333  * opposed to a regular memory cleansing writeback.  The difference between
334  * these two operations is that if a dirty page/buffer is encountered, it must
335  * be waited upon, and not just skipped over.
336  */
337 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
338                                 loff_t end, int sync_mode)
339 {
340         int ret;
341         struct writeback_control wbc = {
342                 .sync_mode = sync_mode,
343                 .nr_to_write = LONG_MAX,
344                 .range_start = start,
345                 .range_end = end,
346         };
347
348         if (!mapping_cap_writeback_dirty(mapping))
349                 return 0;
350
351         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
352         ret = do_writepages(mapping, &wbc);
353         wbc_detach_inode(&wbc);
354         return ret;
355 }
356
357 static inline int __filemap_fdatawrite(struct address_space *mapping,
358         int sync_mode)
359 {
360         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
361 }
362
363 int filemap_fdatawrite(struct address_space *mapping)
364 {
365         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
366 }
367 EXPORT_SYMBOL(filemap_fdatawrite);
368
369 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
370                                 loff_t end)
371 {
372         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
373 }
374 EXPORT_SYMBOL(filemap_fdatawrite_range);
375
376 /**
377  * filemap_flush - mostly a non-blocking flush
378  * @mapping:    target address_space
379  *
380  * This is a mostly non-blocking flush.  Not suitable for data-integrity
381  * purposes - I/O may not be started against all dirty pages.
382  */
383 int filemap_flush(struct address_space *mapping)
384 {
385         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
386 }
387 EXPORT_SYMBOL(filemap_flush);
388
389 static void __filemap_fdatawait_range(struct address_space *mapping,
390                                      loff_t start_byte, loff_t end_byte)
391 {
392         pgoff_t index = start_byte >> PAGE_SHIFT;
393         pgoff_t end = end_byte >> PAGE_SHIFT;
394         struct pagevec pvec;
395         int nr_pages;
396
397         if (end_byte < start_byte)
398                 return;
399
400         pagevec_init(&pvec, 0);
401         while ((index <= end) &&
402                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
403                         PAGECACHE_TAG_WRITEBACK,
404                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
405                 unsigned i;
406
407                 for (i = 0; i < nr_pages; i++) {
408                         struct page *page = pvec.pages[i];
409
410                         /* until radix tree lookup accepts end_index */
411                         if (page->index > end)
412                                 continue;
413
414                         wait_on_page_writeback(page);
415                         ClearPageError(page);
416                 }
417                 pagevec_release(&pvec);
418                 cond_resched();
419         }
420 }
421
422 /**
423  * filemap_fdatawait_range - wait for writeback to complete
424  * @mapping:            address space structure to wait for
425  * @start_byte:         offset in bytes where the range starts
426  * @end_byte:           offset in bytes where the range ends (inclusive)
427  *
428  * Walk the list of under-writeback pages of the given address space
429  * in the given range and wait for all of them.  Check error status of
430  * the address space and return it.
431  *
432  * Since the error status of the address space is cleared by this function,
433  * callers are responsible for checking the return value and handling and/or
434  * reporting the error.
435  */
436 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
437                             loff_t end_byte)
438 {
439         __filemap_fdatawait_range(mapping, start_byte, end_byte);
440         return filemap_check_errors(mapping);
441 }
442 EXPORT_SYMBOL(filemap_fdatawait_range);
443
444 /**
445  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
446  * @mapping: address space structure to wait for
447  *
448  * Walk the list of under-writeback pages of the given address space
449  * and wait for all of them.  Unlike filemap_fdatawait(), this function
450  * does not clear error status of the address space.
451  *
452  * Use this function if callers don't handle errors themselves.  Expected
453  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
454  * fsfreeze(8)
455  */
456 int filemap_fdatawait_keep_errors(struct address_space *mapping)
457 {
458         loff_t i_size = i_size_read(mapping->host);
459
460         if (i_size == 0)
461                 return 0;
462
463         __filemap_fdatawait_range(mapping, 0, i_size - 1);
464         return filemap_check_and_keep_errors(mapping);
465 }
466 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
467
468 /**
469  * filemap_fdatawait - wait for all under-writeback pages to complete
470  * @mapping: address space structure to wait for
471  *
472  * Walk the list of under-writeback pages of the given address space
473  * and wait for all of them.  Check error status of the address space
474  * and return it.
475  *
476  * Since the error status of the address space is cleared by this function,
477  * callers are responsible for checking the return value and handling and/or
478  * reporting the error.
479  */
480 int filemap_fdatawait(struct address_space *mapping)
481 {
482         loff_t i_size = i_size_read(mapping->host);
483
484         if (i_size == 0)
485                 return 0;
486
487         return filemap_fdatawait_range(mapping, 0, i_size - 1);
488 }
489 EXPORT_SYMBOL(filemap_fdatawait);
490
491 int filemap_write_and_wait(struct address_space *mapping)
492 {
493         int err = 0;
494
495         if ((!dax_mapping(mapping) && mapping->nrpages) ||
496             (dax_mapping(mapping) && mapping->nrexceptional)) {
497                 err = filemap_fdatawrite(mapping);
498                 /*
499                  * Even if the above returned error, the pages may be
500                  * written partially (e.g. -ENOSPC), so we wait for it.
501                  * But the -EIO is special case, it may indicate the worst
502                  * thing (e.g. bug) happened, so we avoid waiting for it.
503                  */
504                 if (err != -EIO) {
505                         int err2 = filemap_fdatawait(mapping);
506                         if (!err)
507                                 err = err2;
508                 } else {
509                         /* Clear any previously stored errors */
510                         filemap_check_errors(mapping);
511                 }
512         } else {
513                 err = filemap_check_errors(mapping);
514         }
515         return err;
516 }
517 EXPORT_SYMBOL(filemap_write_and_wait);
518
519 /**
520  * filemap_write_and_wait_range - write out & wait on a file range
521  * @mapping:    the address_space for the pages
522  * @lstart:     offset in bytes where the range starts
523  * @lend:       offset in bytes where the range ends (inclusive)
524  *
525  * Write out and wait upon file offsets lstart->lend, inclusive.
526  *
527  * Note that @lend is inclusive (describes the last byte to be written) so
528  * that this function can be used to write to the very end-of-file (end = -1).
529  */
530 int filemap_write_and_wait_range(struct address_space *mapping,
531                                  loff_t lstart, loff_t lend)
532 {
533         int err = 0;
534
535         if ((!dax_mapping(mapping) && mapping->nrpages) ||
536             (dax_mapping(mapping) && mapping->nrexceptional)) {
537                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
538                                                  WB_SYNC_ALL);
539                 /* See comment of filemap_write_and_wait() */
540                 if (err != -EIO) {
541                         int err2 = filemap_fdatawait_range(mapping,
542                                                 lstart, lend);
543                         if (!err)
544                                 err = err2;
545                 } else {
546                         /* Clear any previously stored errors */
547                         filemap_check_errors(mapping);
548                 }
549         } else {
550                 err = filemap_check_errors(mapping);
551         }
552         return err;
553 }
554 EXPORT_SYMBOL(filemap_write_and_wait_range);
555
556 void __filemap_set_wb_err(struct address_space *mapping, int err)
557 {
558         errseq_t eseq = __errseq_set(&mapping->wb_err, err);
559
560         trace_filemap_set_wb_err(mapping, eseq);
561 }
562 EXPORT_SYMBOL(__filemap_set_wb_err);
563
564 /**
565  * file_check_and_advance_wb_err - report wb error (if any) that was previously
566  *                                 and advance wb_err to current one
567  * @file: struct file on which the error is being reported
568  *
569  * When userland calls fsync (or something like nfsd does the equivalent), we
570  * want to report any writeback errors that occurred since the last fsync (or
571  * since the file was opened if there haven't been any).
572  *
573  * Grab the wb_err from the mapping. If it matches what we have in the file,
574  * then just quickly return 0. The file is all caught up.
575  *
576  * If it doesn't match, then take the mapping value, set the "seen" flag in
577  * it and try to swap it into place. If it works, or another task beat us
578  * to it with the new value, then update the f_wb_err and return the error
579  * portion. The error at this point must be reported via proper channels
580  * (a'la fsync, or NFS COMMIT operation, etc.).
581  *
582  * While we handle mapping->wb_err with atomic operations, the f_wb_err
583  * value is protected by the f_lock since we must ensure that it reflects
584  * the latest value swapped in for this file descriptor.
585  */
586 int file_check_and_advance_wb_err(struct file *file)
587 {
588         int err = 0;
589         errseq_t old = READ_ONCE(file->f_wb_err);
590         struct address_space *mapping = file->f_mapping;
591
592         /* Locklessly handle the common case where nothing has changed */
593         if (errseq_check(&mapping->wb_err, old)) {
594                 /* Something changed, must use slow path */
595                 spin_lock(&file->f_lock);
596                 old = file->f_wb_err;
597                 err = errseq_check_and_advance(&mapping->wb_err,
598                                                 &file->f_wb_err);
599                 trace_file_check_and_advance_wb_err(file, old);
600                 spin_unlock(&file->f_lock);
601         }
602         return err;
603 }
604 EXPORT_SYMBOL(file_check_and_advance_wb_err);
605
606 /**
607  * file_write_and_wait_range - write out & wait on a file range
608  * @file:       file pointing to address_space with pages
609  * @lstart:     offset in bytes where the range starts
610  * @lend:       offset in bytes where the range ends (inclusive)
611  *
612  * Write out and wait upon file offsets lstart->lend, inclusive.
613  *
614  * Note that @lend is inclusive (describes the last byte to be written) so
615  * that this function can be used to write to the very end-of-file (end = -1).
616  *
617  * After writing out and waiting on the data, we check and advance the
618  * f_wb_err cursor to the latest value, and return any errors detected there.
619  */
620 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
621 {
622         int err = 0, err2;
623         struct address_space *mapping = file->f_mapping;
624
625         if ((!dax_mapping(mapping) && mapping->nrpages) ||
626             (dax_mapping(mapping) && mapping->nrexceptional)) {
627                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
628                                                  WB_SYNC_ALL);
629                 /* See comment of filemap_write_and_wait() */
630                 if (err != -EIO)
631                         __filemap_fdatawait_range(mapping, lstart, lend);
632         }
633         err2 = file_check_and_advance_wb_err(file);
634         if (!err)
635                 err = err2;
636         return err;
637 }
638 EXPORT_SYMBOL(file_write_and_wait_range);
639
640 /**
641  * replace_page_cache_page - replace a pagecache page with a new one
642  * @old:        page to be replaced
643  * @new:        page to replace with
644  * @gfp_mask:   allocation mode
645  *
646  * This function replaces a page in the pagecache with a new one.  On
647  * success it acquires the pagecache reference for the new page and
648  * drops it for the old page.  Both the old and new pages must be
649  * locked.  This function does not add the new page to the LRU, the
650  * caller must do that.
651  *
652  * The remove + add is atomic.  The only way this function can fail is
653  * memory allocation failure.
654  */
655 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
656 {
657         int error;
658
659         VM_BUG_ON_PAGE(!PageLocked(old), old);
660         VM_BUG_ON_PAGE(!PageLocked(new), new);
661         VM_BUG_ON_PAGE(new->mapping, new);
662
663         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
664         if (!error) {
665                 struct address_space *mapping = old->mapping;
666                 void (*freepage)(struct page *);
667                 unsigned long flags;
668
669                 pgoff_t offset = old->index;
670                 freepage = mapping->a_ops->freepage;
671
672                 get_page(new);
673                 new->mapping = mapping;
674                 new->index = offset;
675
676                 spin_lock_irqsave(&mapping->tree_lock, flags);
677                 __delete_from_page_cache(old, NULL);
678                 error = page_cache_tree_insert(mapping, new, NULL);
679                 BUG_ON(error);
680
681                 /*
682                  * hugetlb pages do not participate in page cache accounting.
683                  */
684                 if (!PageHuge(new))
685                         __inc_node_page_state(new, NR_FILE_PAGES);
686                 if (PageSwapBacked(new))
687                         __inc_node_page_state(new, NR_SHMEM);
688                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
689                 mem_cgroup_migrate(old, new);
690                 radix_tree_preload_end();
691                 if (freepage)
692                         freepage(old);
693                 put_page(old);
694         }
695
696         return error;
697 }
698 EXPORT_SYMBOL_GPL(replace_page_cache_page);
699
700 static int __add_to_page_cache_locked(struct page *page,
701                                       struct address_space *mapping,
702                                       pgoff_t offset, gfp_t gfp_mask,
703                                       void **shadowp)
704 {
705         int huge = PageHuge(page);
706         struct mem_cgroup *memcg;
707         int error;
708
709         VM_BUG_ON_PAGE(!PageLocked(page), page);
710         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
711
712         if (!huge) {
713                 error = mem_cgroup_try_charge(page, current->mm,
714                                               gfp_mask, &memcg, false);
715                 if (error)
716                         return error;
717         }
718
719         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
720         if (error) {
721                 if (!huge)
722                         mem_cgroup_cancel_charge(page, memcg, false);
723                 return error;
724         }
725
726         get_page(page);
727         page->mapping = mapping;
728         page->index = offset;
729
730         spin_lock_irq(&mapping->tree_lock);
731         error = page_cache_tree_insert(mapping, page, shadowp);
732         radix_tree_preload_end();
733         if (unlikely(error))
734                 goto err_insert;
735
736         /* hugetlb pages do not participate in page cache accounting. */
737         if (!huge)
738                 __inc_node_page_state(page, NR_FILE_PAGES);
739         spin_unlock_irq(&mapping->tree_lock);
740         if (!huge)
741                 mem_cgroup_commit_charge(page, memcg, false, false);
742         trace_mm_filemap_add_to_page_cache(page);
743         return 0;
744 err_insert:
745         page->mapping = NULL;
746         /* Leave page->index set: truncation relies upon it */
747         spin_unlock_irq(&mapping->tree_lock);
748         if (!huge)
749                 mem_cgroup_cancel_charge(page, memcg, false);
750         put_page(page);
751         return error;
752 }
753
754 /**
755  * add_to_page_cache_locked - add a locked page to the pagecache
756  * @page:       page to add
757  * @mapping:    the page's address_space
758  * @offset:     page index
759  * @gfp_mask:   page allocation mode
760  *
761  * This function is used to add a page to the pagecache. It must be locked.
762  * This function does not add the page to the LRU.  The caller must do that.
763  */
764 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
765                 pgoff_t offset, gfp_t gfp_mask)
766 {
767         return __add_to_page_cache_locked(page, mapping, offset,
768                                           gfp_mask, NULL);
769 }
770 EXPORT_SYMBOL(add_to_page_cache_locked);
771
772 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
773                                 pgoff_t offset, gfp_t gfp_mask)
774 {
775         void *shadow = NULL;
776         int ret;
777
778         __SetPageLocked(page);
779         ret = __add_to_page_cache_locked(page, mapping, offset,
780                                          gfp_mask, &shadow);
781         if (unlikely(ret))
782                 __ClearPageLocked(page);
783         else {
784                 /*
785                  * The page might have been evicted from cache only
786                  * recently, in which case it should be activated like
787                  * any other repeatedly accessed page.
788                  * The exception is pages getting rewritten; evicting other
789                  * data from the working set, only to cache data that will
790                  * get overwritten with something else, is a waste of memory.
791                  */
792                 if (!(gfp_mask & __GFP_WRITE) &&
793                     shadow && workingset_refault(shadow)) {
794                         SetPageActive(page);
795                         workingset_activation(page);
796                 } else
797                         ClearPageActive(page);
798                 lru_cache_add(page);
799         }
800         return ret;
801 }
802 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
803
804 #ifdef CONFIG_NUMA
805 struct page *__page_cache_alloc(gfp_t gfp)
806 {
807         int n;
808         struct page *page;
809
810         if (cpuset_do_page_mem_spread()) {
811                 unsigned int cpuset_mems_cookie;
812                 do {
813                         cpuset_mems_cookie = read_mems_allowed_begin();
814                         n = cpuset_mem_spread_node();
815                         page = __alloc_pages_node(n, gfp, 0);
816                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
817
818                 return page;
819         }
820         return alloc_pages(gfp, 0);
821 }
822 EXPORT_SYMBOL(__page_cache_alloc);
823 #endif
824
825 /*
826  * In order to wait for pages to become available there must be
827  * waitqueues associated with pages. By using a hash table of
828  * waitqueues where the bucket discipline is to maintain all
829  * waiters on the same queue and wake all when any of the pages
830  * become available, and for the woken contexts to check to be
831  * sure the appropriate page became available, this saves space
832  * at a cost of "thundering herd" phenomena during rare hash
833  * collisions.
834  */
835 #define PAGE_WAIT_TABLE_BITS 8
836 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
837 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
838
839 static wait_queue_head_t *page_waitqueue(struct page *page)
840 {
841         return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
842 }
843
844 void __init pagecache_init(void)
845 {
846         int i;
847
848         for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
849                 init_waitqueue_head(&page_wait_table[i]);
850
851         page_writeback_init();
852 }
853
854 struct wait_page_key {
855         struct page *page;
856         int bit_nr;
857         int page_match;
858 };
859
860 struct wait_page_queue {
861         struct page *page;
862         int bit_nr;
863         wait_queue_t wait;
864 };
865
866 static int wake_page_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
867 {
868         struct wait_page_key *key = arg;
869         struct wait_page_queue *wait_page
870                 = container_of(wait, struct wait_page_queue, wait);
871
872         if (wait_page->page != key->page)
873                return 0;
874         key->page_match = 1;
875
876         if (wait_page->bit_nr != key->bit_nr)
877                 return 0;
878         if (test_bit(key->bit_nr, &key->page->flags))
879                 return 0;
880
881         return autoremove_wake_function(wait, mode, sync, key);
882 }
883
884 static void wake_up_page_bit(struct page *page, int bit_nr)
885 {
886         wait_queue_head_t *q = page_waitqueue(page);
887         struct wait_page_key key;
888         unsigned long flags;
889
890         key.page = page;
891         key.bit_nr = bit_nr;
892         key.page_match = 0;
893
894         spin_lock_irqsave(&q->lock, flags);
895         __wake_up_locked_key(q, TASK_NORMAL, &key);
896         /*
897          * It is possible for other pages to have collided on the waitqueue
898          * hash, so in that case check for a page match. That prevents a long-
899          * term waiter
900          *
901          * It is still possible to miss a case here, when we woke page waiters
902          * and removed them from the waitqueue, but there are still other
903          * page waiters.
904          */
905         if (!waitqueue_active(q) || !key.page_match) {
906                 ClearPageWaiters(page);
907                 /*
908                  * It's possible to miss clearing Waiters here, when we woke
909                  * our page waiters, but the hashed waitqueue has waiters for
910                  * other pages on it.
911                  *
912                  * That's okay, it's a rare case. The next waker will clear it.
913                  */
914         }
915         spin_unlock_irqrestore(&q->lock, flags);
916 }
917
918 static void wake_up_page(struct page *page, int bit)
919 {
920         if (!PageWaiters(page))
921                 return;
922         wake_up_page_bit(page, bit);
923 }
924
925 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
926                 struct page *page, int bit_nr, int state, bool lock)
927 {
928         struct wait_page_queue wait_page;
929         wait_queue_t *wait = &wait_page.wait;
930         int ret = 0;
931
932         init_wait(wait);
933         wait->func = wake_page_function;
934         wait_page.page = page;
935         wait_page.bit_nr = bit_nr;
936
937         for (;;) {
938                 spin_lock_irq(&q->lock);
939
940                 if (likely(list_empty(&wait->task_list))) {
941                         if (lock)
942                                 __add_wait_queue_tail_exclusive(q, wait);
943                         else
944                                 __add_wait_queue(q, wait);
945                         SetPageWaiters(page);
946                 }
947
948                 set_current_state(state);
949
950                 spin_unlock_irq(&q->lock);
951
952                 if (likely(test_bit(bit_nr, &page->flags))) {
953                         io_schedule();
954                         if (unlikely(signal_pending_state(state, current))) {
955                                 ret = -EINTR;
956                                 break;
957                         }
958                 }
959
960                 if (lock) {
961                         if (!test_and_set_bit_lock(bit_nr, &page->flags))
962                                 break;
963                 } else {
964                         if (!test_bit(bit_nr, &page->flags))
965                                 break;
966                 }
967         }
968
969         finish_wait(q, wait);
970
971         /*
972          * A signal could leave PageWaiters set. Clearing it here if
973          * !waitqueue_active would be possible (by open-coding finish_wait),
974          * but still fail to catch it in the case of wait hash collision. We
975          * already can fail to clear wait hash collision cases, so don't
976          * bother with signals either.
977          */
978
979         return ret;
980 }
981
982 void wait_on_page_bit(struct page *page, int bit_nr)
983 {
984         wait_queue_head_t *q = page_waitqueue(page);
985         wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
986 }
987 EXPORT_SYMBOL(wait_on_page_bit);
988
989 int wait_on_page_bit_killable(struct page *page, int bit_nr)
990 {
991         wait_queue_head_t *q = page_waitqueue(page);
992         return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
993 }
994
995 /**
996  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
997  * @page: Page defining the wait queue of interest
998  * @waiter: Waiter to add to the queue
999  *
1000  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1001  */
1002 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
1003 {
1004         wait_queue_head_t *q = page_waitqueue(page);
1005         unsigned long flags;
1006
1007         spin_lock_irqsave(&q->lock, flags);
1008         __add_wait_queue(q, waiter);
1009         SetPageWaiters(page);
1010         spin_unlock_irqrestore(&q->lock, flags);
1011 }
1012 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1013
1014 #ifndef clear_bit_unlock_is_negative_byte
1015
1016 /*
1017  * PG_waiters is the high bit in the same byte as PG_lock.
1018  *
1019  * On x86 (and on many other architectures), we can clear PG_lock and
1020  * test the sign bit at the same time. But if the architecture does
1021  * not support that special operation, we just do this all by hand
1022  * instead.
1023  *
1024  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1025  * being cleared, but a memory barrier should be unneccssary since it is
1026  * in the same byte as PG_locked.
1027  */
1028 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1029 {
1030         clear_bit_unlock(nr, mem);
1031         /* smp_mb__after_atomic(); */
1032         return test_bit(PG_waiters, mem);
1033 }
1034
1035 #endif
1036
1037 /**
1038  * unlock_page - unlock a locked page
1039  * @page: the page
1040  *
1041  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1042  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1043  * mechanism between PageLocked pages and PageWriteback pages is shared.
1044  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1045  *
1046  * Note that this depends on PG_waiters being the sign bit in the byte
1047  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1048  * clear the PG_locked bit and test PG_waiters at the same time fairly
1049  * portably (architectures that do LL/SC can test any bit, while x86 can
1050  * test the sign bit).
1051  */
1052 void unlock_page(struct page *page)
1053 {
1054         BUILD_BUG_ON(PG_waiters != 7);
1055         page = compound_head(page);
1056         VM_BUG_ON_PAGE(!PageLocked(page), page);
1057         if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1058                 wake_up_page_bit(page, PG_locked);
1059 }
1060 EXPORT_SYMBOL(unlock_page);
1061
1062 /**
1063  * end_page_writeback - end writeback against a page
1064  * @page: the page
1065  */
1066 void end_page_writeback(struct page *page)
1067 {
1068         /*
1069          * TestClearPageReclaim could be used here but it is an atomic
1070          * operation and overkill in this particular case. Failing to
1071          * shuffle a page marked for immediate reclaim is too mild to
1072          * justify taking an atomic operation penalty at the end of
1073          * ever page writeback.
1074          */
1075         if (PageReclaim(page)) {
1076                 ClearPageReclaim(page);
1077                 rotate_reclaimable_page(page);
1078         }
1079
1080         if (!test_clear_page_writeback(page))
1081                 BUG();
1082
1083         smp_mb__after_atomic();
1084         wake_up_page(page, PG_writeback);
1085 }
1086 EXPORT_SYMBOL(end_page_writeback);
1087
1088 /*
1089  * After completing I/O on a page, call this routine to update the page
1090  * flags appropriately
1091  */
1092 void page_endio(struct page *page, bool is_write, int err)
1093 {
1094         if (!is_write) {
1095                 if (!err) {
1096                         SetPageUptodate(page);
1097                 } else {
1098                         ClearPageUptodate(page);
1099                         SetPageError(page);
1100                 }
1101                 unlock_page(page);
1102         } else {
1103                 if (err) {
1104                         struct address_space *mapping;
1105
1106                         SetPageError(page);
1107                         mapping = page_mapping(page);
1108                         if (mapping)
1109                                 mapping_set_error(mapping, err);
1110                 }
1111                 end_page_writeback(page);
1112         }
1113 }
1114 EXPORT_SYMBOL_GPL(page_endio);
1115
1116 /**
1117  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1118  * @__page: the page to lock
1119  */
1120 void __lock_page(struct page *__page)
1121 {
1122         struct page *page = compound_head(__page);
1123         wait_queue_head_t *q = page_waitqueue(page);
1124         wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1125 }
1126 EXPORT_SYMBOL(__lock_page);
1127
1128 int __lock_page_killable(struct page *__page)
1129 {
1130         struct page *page = compound_head(__page);
1131         wait_queue_head_t *q = page_waitqueue(page);
1132         return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1133 }
1134 EXPORT_SYMBOL_GPL(__lock_page_killable);
1135
1136 /*
1137  * Return values:
1138  * 1 - page is locked; mmap_sem is still held.
1139  * 0 - page is not locked.
1140  *     mmap_sem has been released (up_read()), unless flags had both
1141  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1142  *     which case mmap_sem is still held.
1143  *
1144  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1145  * with the page locked and the mmap_sem unperturbed.
1146  */
1147 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1148                          unsigned int flags)
1149 {
1150         if (flags & FAULT_FLAG_ALLOW_RETRY) {
1151                 /*
1152                  * CAUTION! In this case, mmap_sem is not released
1153                  * even though return 0.
1154                  */
1155                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1156                         return 0;
1157
1158                 up_read(&mm->mmap_sem);
1159                 if (flags & FAULT_FLAG_KILLABLE)
1160                         wait_on_page_locked_killable(page);
1161                 else
1162                         wait_on_page_locked(page);
1163                 return 0;
1164         } else {
1165                 if (flags & FAULT_FLAG_KILLABLE) {
1166                         int ret;
1167
1168                         ret = __lock_page_killable(page);
1169                         if (ret) {
1170                                 up_read(&mm->mmap_sem);
1171                                 return 0;
1172                         }
1173                 } else
1174                         __lock_page(page);
1175                 return 1;
1176         }
1177 }
1178
1179 /**
1180  * page_cache_next_hole - find the next hole (not-present entry)
1181  * @mapping: mapping
1182  * @index: index
1183  * @max_scan: maximum range to search
1184  *
1185  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1186  * lowest indexed hole.
1187  *
1188  * Returns: the index of the hole if found, otherwise returns an index
1189  * outside of the set specified (in which case 'return - index >=
1190  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1191  * be returned.
1192  *
1193  * page_cache_next_hole may be called under rcu_read_lock. However,
1194  * like radix_tree_gang_lookup, this will not atomically search a
1195  * snapshot of the tree at a single point in time. For example, if a
1196  * hole is created at index 5, then subsequently a hole is created at
1197  * index 10, page_cache_next_hole covering both indexes may return 10
1198  * if called under rcu_read_lock.
1199  */
1200 pgoff_t page_cache_next_hole(struct address_space *mapping,
1201                              pgoff_t index, unsigned long max_scan)
1202 {
1203         unsigned long i;
1204
1205         for (i = 0; i < max_scan; i++) {
1206                 struct page *page;
1207
1208                 page = radix_tree_lookup(&mapping->page_tree, index);
1209                 if (!page || radix_tree_exceptional_entry(page))
1210                         break;
1211                 index++;
1212                 if (index == 0)
1213                         break;
1214         }
1215
1216         return index;
1217 }
1218 EXPORT_SYMBOL(page_cache_next_hole);
1219
1220 /**
1221  * page_cache_prev_hole - find the prev hole (not-present entry)
1222  * @mapping: mapping
1223  * @index: index
1224  * @max_scan: maximum range to search
1225  *
1226  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1227  * the first hole.
1228  *
1229  * Returns: the index of the hole if found, otherwise returns an index
1230  * outside of the set specified (in which case 'index - return >=
1231  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1232  * will be returned.
1233  *
1234  * page_cache_prev_hole may be called under rcu_read_lock. However,
1235  * like radix_tree_gang_lookup, this will not atomically search a
1236  * snapshot of the tree at a single point in time. For example, if a
1237  * hole is created at index 10, then subsequently a hole is created at
1238  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1239  * called under rcu_read_lock.
1240  */
1241 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1242                              pgoff_t index, unsigned long max_scan)
1243 {
1244         unsigned long i;
1245
1246         for (i = 0; i < max_scan; i++) {
1247                 struct page *page;
1248
1249                 page = radix_tree_lookup(&mapping->page_tree, index);
1250                 if (!page || radix_tree_exceptional_entry(page))
1251                         break;
1252                 index--;
1253                 if (index == ULONG_MAX)
1254                         break;
1255         }
1256
1257         return index;
1258 }
1259 EXPORT_SYMBOL(page_cache_prev_hole);
1260
1261 /**
1262  * find_get_entry - find and get a page cache entry
1263  * @mapping: the address_space to search
1264  * @offset: the page cache index
1265  *
1266  * Looks up the page cache slot at @mapping & @offset.  If there is a
1267  * page cache page, it is returned with an increased refcount.
1268  *
1269  * If the slot holds a shadow entry of a previously evicted page, or a
1270  * swap entry from shmem/tmpfs, it is returned.
1271  *
1272  * Otherwise, %NULL is returned.
1273  */
1274 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1275 {
1276         void **pagep;
1277         struct page *head, *page;
1278
1279         rcu_read_lock();
1280 repeat:
1281         page = NULL;
1282         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1283         if (pagep) {
1284                 page = radix_tree_deref_slot(pagep);
1285                 if (unlikely(!page))
1286                         goto out;
1287                 if (radix_tree_exception(page)) {
1288                         if (radix_tree_deref_retry(page))
1289                                 goto repeat;
1290                         /*
1291                          * A shadow entry of a recently evicted page,
1292                          * or a swap entry from shmem/tmpfs.  Return
1293                          * it without attempting to raise page count.
1294                          */
1295                         goto out;
1296                 }
1297
1298                 head = compound_head(page);
1299                 if (!page_cache_get_speculative(head))
1300                         goto repeat;
1301
1302                 /* The page was split under us? */
1303                 if (compound_head(page) != head) {
1304                         put_page(head);
1305                         goto repeat;
1306                 }
1307
1308                 /*
1309                  * Has the page moved?
1310                  * This is part of the lockless pagecache protocol. See
1311                  * include/linux/pagemap.h for details.
1312                  */
1313                 if (unlikely(page != *pagep)) {
1314                         put_page(head);
1315                         goto repeat;
1316                 }
1317         }
1318 out:
1319         rcu_read_unlock();
1320
1321         return page;
1322 }
1323 EXPORT_SYMBOL(find_get_entry);
1324
1325 /**
1326  * find_lock_entry - locate, pin and lock a page cache entry
1327  * @mapping: the address_space to search
1328  * @offset: the page cache index
1329  *
1330  * Looks up the page cache slot at @mapping & @offset.  If there is a
1331  * page cache page, it is returned locked and with an increased
1332  * refcount.
1333  *
1334  * If the slot holds a shadow entry of a previously evicted page, or a
1335  * swap entry from shmem/tmpfs, it is returned.
1336  *
1337  * Otherwise, %NULL is returned.
1338  *
1339  * find_lock_entry() may sleep.
1340  */
1341 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1342 {
1343         struct page *page;
1344
1345 repeat:
1346         page = find_get_entry(mapping, offset);
1347         if (page && !radix_tree_exception(page)) {
1348                 lock_page(page);
1349                 /* Has the page been truncated? */
1350                 if (unlikely(page_mapping(page) != mapping)) {
1351                         unlock_page(page);
1352                         put_page(page);
1353                         goto repeat;
1354                 }
1355                 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1356         }
1357         return page;
1358 }
1359 EXPORT_SYMBOL(find_lock_entry);
1360
1361 /**
1362  * pagecache_get_page - find and get a page reference
1363  * @mapping: the address_space to search
1364  * @offset: the page index
1365  * @fgp_flags: PCG flags
1366  * @gfp_mask: gfp mask to use for the page cache data page allocation
1367  *
1368  * Looks up the page cache slot at @mapping & @offset.
1369  *
1370  * PCG flags modify how the page is returned.
1371  *
1372  * @fgp_flags can be:
1373  *
1374  * - FGP_ACCESSED: the page will be marked accessed
1375  * - FGP_LOCK: Page is return locked
1376  * - FGP_CREAT: If page is not present then a new page is allocated using
1377  *   @gfp_mask and added to the page cache and the VM's LRU
1378  *   list. The page is returned locked and with an increased
1379  *   refcount. Otherwise, NULL is returned.
1380  *
1381  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1382  * if the GFP flags specified for FGP_CREAT are atomic.
1383  *
1384  * If there is a page cache page, it is returned with an increased refcount.
1385  */
1386 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1387         int fgp_flags, gfp_t gfp_mask)
1388 {
1389         struct page *page;
1390
1391 repeat:
1392         page = find_get_entry(mapping, offset);
1393         if (radix_tree_exceptional_entry(page))
1394                 page = NULL;
1395         if (!page)
1396                 goto no_page;
1397
1398         if (fgp_flags & FGP_LOCK) {
1399                 if (fgp_flags & FGP_NOWAIT) {
1400                         if (!trylock_page(page)) {
1401                                 put_page(page);
1402                                 return NULL;
1403                         }
1404                 } else {
1405                         lock_page(page);
1406                 }
1407
1408                 /* Has the page been truncated? */
1409                 if (unlikely(page->mapping != mapping)) {
1410                         unlock_page(page);
1411                         put_page(page);
1412                         goto repeat;
1413                 }
1414                 VM_BUG_ON_PAGE(page->index != offset, page);
1415         }
1416
1417         if (page && (fgp_flags & FGP_ACCESSED))
1418                 mark_page_accessed(page);
1419
1420 no_page:
1421         if (!page && (fgp_flags & FGP_CREAT)) {
1422                 int err;
1423                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1424                         gfp_mask |= __GFP_WRITE;
1425                 if (fgp_flags & FGP_NOFS)
1426                         gfp_mask &= ~__GFP_FS;
1427
1428                 page = __page_cache_alloc(gfp_mask);
1429                 if (!page)
1430                         return NULL;
1431
1432                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1433                         fgp_flags |= FGP_LOCK;
1434
1435                 /* Init accessed so avoid atomic mark_page_accessed later */
1436                 if (fgp_flags & FGP_ACCESSED)
1437                         __SetPageReferenced(page);
1438
1439                 err = add_to_page_cache_lru(page, mapping, offset,
1440                                 gfp_mask & GFP_RECLAIM_MASK);
1441                 if (unlikely(err)) {
1442                         put_page(page);
1443                         page = NULL;
1444                         if (err == -EEXIST)
1445                                 goto repeat;
1446                 }
1447         }
1448
1449         return page;
1450 }
1451 EXPORT_SYMBOL(pagecache_get_page);
1452
1453 /**
1454  * find_get_entries - gang pagecache lookup
1455  * @mapping:    The address_space to search
1456  * @start:      The starting page cache index
1457  * @nr_entries: The maximum number of entries
1458  * @entries:    Where the resulting entries are placed
1459  * @indices:    The cache indices corresponding to the entries in @entries
1460  *
1461  * find_get_entries() will search for and return a group of up to
1462  * @nr_entries entries in the mapping.  The entries are placed at
1463  * @entries.  find_get_entries() takes a reference against any actual
1464  * pages it returns.
1465  *
1466  * The search returns a group of mapping-contiguous page cache entries
1467  * with ascending indexes.  There may be holes in the indices due to
1468  * not-present pages.
1469  *
1470  * Any shadow entries of evicted pages, or swap entries from
1471  * shmem/tmpfs, are included in the returned array.
1472  *
1473  * find_get_entries() returns the number of pages and shadow entries
1474  * which were found.
1475  */
1476 unsigned find_get_entries(struct address_space *mapping,
1477                           pgoff_t start, unsigned int nr_entries,
1478                           struct page **entries, pgoff_t *indices)
1479 {
1480         void **slot;
1481         unsigned int ret = 0;
1482         struct radix_tree_iter iter;
1483
1484         if (!nr_entries)
1485                 return 0;
1486
1487         rcu_read_lock();
1488         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1489                 struct page *head, *page;
1490 repeat:
1491                 page = radix_tree_deref_slot(slot);
1492                 if (unlikely(!page))
1493                         continue;
1494                 if (radix_tree_exception(page)) {
1495                         if (radix_tree_deref_retry(page)) {
1496                                 slot = radix_tree_iter_retry(&iter);
1497                                 continue;
1498                         }
1499                         /*
1500                          * A shadow entry of a recently evicted page, a swap
1501                          * entry from shmem/tmpfs or a DAX entry.  Return it
1502                          * without attempting to raise page count.
1503                          */
1504                         goto export;
1505                 }
1506
1507                 head = compound_head(page);
1508                 if (!page_cache_get_speculative(head))
1509                         goto repeat;
1510
1511                 /* The page was split under us? */
1512                 if (compound_head(page) != head) {
1513                         put_page(head);
1514                         goto repeat;
1515                 }
1516
1517                 /* Has the page moved? */
1518                 if (unlikely(page != *slot)) {
1519                         put_page(head);
1520                         goto repeat;
1521                 }
1522 export:
1523                 indices[ret] = iter.index;
1524                 entries[ret] = page;
1525                 if (++ret == nr_entries)
1526                         break;
1527         }
1528         rcu_read_unlock();
1529         return ret;
1530 }
1531
1532 /**
1533  * find_get_pages - gang pagecache lookup
1534  * @mapping:    The address_space to search
1535  * @start:      The starting page index
1536  * @nr_pages:   The maximum number of pages
1537  * @pages:      Where the resulting pages are placed
1538  *
1539  * find_get_pages() will search for and return a group of up to
1540  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1541  * find_get_pages() takes a reference against the returned pages.
1542  *
1543  * The search returns a group of mapping-contiguous pages with ascending
1544  * indexes.  There may be holes in the indices due to not-present pages.
1545  *
1546  * find_get_pages() returns the number of pages which were found.
1547  */
1548 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1549                             unsigned int nr_pages, struct page **pages)
1550 {
1551         struct radix_tree_iter iter;
1552         void **slot;
1553         unsigned ret = 0;
1554
1555         if (unlikely(!nr_pages))
1556                 return 0;
1557
1558         rcu_read_lock();
1559         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1560                 struct page *head, *page;
1561 repeat:
1562                 page = radix_tree_deref_slot(slot);
1563                 if (unlikely(!page))
1564                         continue;
1565
1566                 if (radix_tree_exception(page)) {
1567                         if (radix_tree_deref_retry(page)) {
1568                                 slot = radix_tree_iter_retry(&iter);
1569                                 continue;
1570                         }
1571                         /*
1572                          * A shadow entry of a recently evicted page,
1573                          * or a swap entry from shmem/tmpfs.  Skip
1574                          * over it.
1575                          */
1576                         continue;
1577                 }
1578
1579                 head = compound_head(page);
1580                 if (!page_cache_get_speculative(head))
1581                         goto repeat;
1582
1583                 /* The page was split under us? */
1584                 if (compound_head(page) != head) {
1585                         put_page(head);
1586                         goto repeat;
1587                 }
1588
1589                 /* Has the page moved? */
1590                 if (unlikely(page != *slot)) {
1591                         put_page(head);
1592                         goto repeat;
1593                 }
1594
1595                 pages[ret] = page;
1596                 if (++ret == nr_pages)
1597                         break;
1598         }
1599
1600         rcu_read_unlock();
1601         return ret;
1602 }
1603
1604 /**
1605  * find_get_pages_contig - gang contiguous pagecache lookup
1606  * @mapping:    The address_space to search
1607  * @index:      The starting page index
1608  * @nr_pages:   The maximum number of pages
1609  * @pages:      Where the resulting pages are placed
1610  *
1611  * find_get_pages_contig() works exactly like find_get_pages(), except
1612  * that the returned number of pages are guaranteed to be contiguous.
1613  *
1614  * find_get_pages_contig() returns the number of pages which were found.
1615  */
1616 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1617                                unsigned int nr_pages, struct page **pages)
1618 {
1619         struct radix_tree_iter iter;
1620         void **slot;
1621         unsigned int ret = 0;
1622
1623         if (unlikely(!nr_pages))
1624                 return 0;
1625
1626         rcu_read_lock();
1627         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1628                 struct page *head, *page;
1629 repeat:
1630                 page = radix_tree_deref_slot(slot);
1631                 /* The hole, there no reason to continue */
1632                 if (unlikely(!page))
1633                         break;
1634
1635                 if (radix_tree_exception(page)) {
1636                         if (radix_tree_deref_retry(page)) {
1637                                 slot = radix_tree_iter_retry(&iter);
1638                                 continue;
1639                         }
1640                         /*
1641                          * A shadow entry of a recently evicted page,
1642                          * or a swap entry from shmem/tmpfs.  Stop
1643                          * looking for contiguous pages.
1644                          */
1645                         break;
1646                 }
1647
1648                 head = compound_head(page);
1649                 if (!page_cache_get_speculative(head))
1650                         goto repeat;
1651
1652                 /* The page was split under us? */
1653                 if (compound_head(page) != head) {
1654                         put_page(head);
1655                         goto repeat;
1656                 }
1657
1658                 /* Has the page moved? */
1659                 if (unlikely(page != *slot)) {
1660                         put_page(head);
1661                         goto repeat;
1662                 }
1663
1664                 /*
1665                  * must check mapping and index after taking the ref.
1666                  * otherwise we can get both false positives and false
1667                  * negatives, which is just confusing to the caller.
1668                  */
1669                 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1670                         put_page(page);
1671                         break;
1672                 }
1673
1674                 pages[ret] = page;
1675                 if (++ret == nr_pages)
1676                         break;
1677         }
1678         rcu_read_unlock();
1679         return ret;
1680 }
1681 EXPORT_SYMBOL(find_get_pages_contig);
1682
1683 /**
1684  * find_get_pages_tag - find and return pages that match @tag
1685  * @mapping:    the address_space to search
1686  * @index:      the starting page index
1687  * @tag:        the tag index
1688  * @nr_pages:   the maximum number of pages
1689  * @pages:      where the resulting pages are placed
1690  *
1691  * Like find_get_pages, except we only return pages which are tagged with
1692  * @tag.   We update @index to index the next page for the traversal.
1693  */
1694 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1695                         int tag, unsigned int nr_pages, struct page **pages)
1696 {
1697         struct radix_tree_iter iter;
1698         void **slot;
1699         unsigned ret = 0;
1700
1701         if (unlikely(!nr_pages))
1702                 return 0;
1703
1704         rcu_read_lock();
1705         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1706                                    &iter, *index, tag) {
1707                 struct page *head, *page;
1708 repeat:
1709                 page = radix_tree_deref_slot(slot);
1710                 if (unlikely(!page))
1711                         continue;
1712
1713                 if (radix_tree_exception(page)) {
1714                         if (radix_tree_deref_retry(page)) {
1715                                 slot = radix_tree_iter_retry(&iter);
1716                                 continue;
1717                         }
1718                         /*
1719                          * A shadow entry of a recently evicted page.
1720                          *
1721                          * Those entries should never be tagged, but
1722                          * this tree walk is lockless and the tags are
1723                          * looked up in bulk, one radix tree node at a
1724                          * time, so there is a sizable window for page
1725                          * reclaim to evict a page we saw tagged.
1726                          *
1727                          * Skip over it.
1728                          */
1729                         continue;
1730                 }
1731
1732                 head = compound_head(page);
1733                 if (!page_cache_get_speculative(head))
1734                         goto repeat;
1735
1736                 /* The page was split under us? */
1737                 if (compound_head(page) != head) {
1738                         put_page(head);
1739                         goto repeat;
1740                 }
1741
1742                 /* Has the page moved? */
1743                 if (unlikely(page != *slot)) {
1744                         put_page(head);
1745                         goto repeat;
1746                 }
1747
1748                 pages[ret] = page;
1749                 if (++ret == nr_pages)
1750                         break;
1751         }
1752
1753         rcu_read_unlock();
1754
1755         if (ret)
1756                 *index = pages[ret - 1]->index + 1;
1757
1758         return ret;
1759 }
1760 EXPORT_SYMBOL(find_get_pages_tag);
1761
1762 /**
1763  * find_get_entries_tag - find and return entries that match @tag
1764  * @mapping:    the address_space to search
1765  * @start:      the starting page cache index
1766  * @tag:        the tag index
1767  * @nr_entries: the maximum number of entries
1768  * @entries:    where the resulting entries are placed
1769  * @indices:    the cache indices corresponding to the entries in @entries
1770  *
1771  * Like find_get_entries, except we only return entries which are tagged with
1772  * @tag.
1773  */
1774 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1775                         int tag, unsigned int nr_entries,
1776                         struct page **entries, pgoff_t *indices)
1777 {
1778         void **slot;
1779         unsigned int ret = 0;
1780         struct radix_tree_iter iter;
1781
1782         if (!nr_entries)
1783                 return 0;
1784
1785         rcu_read_lock();
1786         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1787                                    &iter, start, tag) {
1788                 struct page *head, *page;
1789 repeat:
1790                 page = radix_tree_deref_slot(slot);
1791                 if (unlikely(!page))
1792                         continue;
1793                 if (radix_tree_exception(page)) {
1794                         if (radix_tree_deref_retry(page)) {
1795                                 slot = radix_tree_iter_retry(&iter);
1796                                 continue;
1797                         }
1798
1799                         /*
1800                          * A shadow entry of a recently evicted page, a swap
1801                          * entry from shmem/tmpfs or a DAX entry.  Return it
1802                          * without attempting to raise page count.
1803                          */
1804                         goto export;
1805                 }
1806
1807                 head = compound_head(page);
1808                 if (!page_cache_get_speculative(head))
1809                         goto repeat;
1810
1811                 /* The page was split under us? */
1812                 if (compound_head(page) != head) {
1813                         put_page(head);
1814                         goto repeat;
1815                 }
1816
1817                 /* Has the page moved? */
1818                 if (unlikely(page != *slot)) {
1819                         put_page(head);
1820                         goto repeat;
1821                 }
1822 export:
1823                 indices[ret] = iter.index;
1824                 entries[ret] = page;
1825                 if (++ret == nr_entries)
1826                         break;
1827         }
1828         rcu_read_unlock();
1829         return ret;
1830 }
1831 EXPORT_SYMBOL(find_get_entries_tag);
1832
1833 /*
1834  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1835  * a _large_ part of the i/o request. Imagine the worst scenario:
1836  *
1837  *      ---R__________________________________________B__________
1838  *         ^ reading here                             ^ bad block(assume 4k)
1839  *
1840  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1841  * => failing the whole request => read(R) => read(R+1) =>
1842  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1843  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1844  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1845  *
1846  * It is going insane. Fix it by quickly scaling down the readahead size.
1847  */
1848 static void shrink_readahead_size_eio(struct file *filp,
1849                                         struct file_ra_state *ra)
1850 {
1851         ra->ra_pages /= 4;
1852 }
1853
1854 /**
1855  * do_generic_file_read - generic file read routine
1856  * @filp:       the file to read
1857  * @ppos:       current file position
1858  * @iter:       data destination
1859  * @written:    already copied
1860  *
1861  * This is a generic file read routine, and uses the
1862  * mapping->a_ops->readpage() function for the actual low-level stuff.
1863  *
1864  * This is really ugly. But the goto's actually try to clarify some
1865  * of the logic when it comes to error handling etc.
1866  */
1867 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1868                 struct iov_iter *iter, ssize_t written)
1869 {
1870         struct address_space *mapping = filp->f_mapping;
1871         struct inode *inode = mapping->host;
1872         struct file_ra_state *ra = &filp->f_ra;
1873         pgoff_t index;
1874         pgoff_t last_index;
1875         pgoff_t prev_index;
1876         unsigned long offset;      /* offset into pagecache page */
1877         unsigned int prev_offset;
1878         int error = 0;
1879
1880         if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1881                 return 0;
1882         iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1883
1884         index = *ppos >> PAGE_SHIFT;
1885         prev_index = ra->prev_pos >> PAGE_SHIFT;
1886         prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1887         last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1888         offset = *ppos & ~PAGE_MASK;
1889
1890         for (;;) {
1891                 struct page *page;
1892                 pgoff_t end_index;
1893                 loff_t isize;
1894                 unsigned long nr, ret;
1895
1896                 cond_resched();
1897 find_page:
1898                 if (fatal_signal_pending(current)) {
1899                         error = -EINTR;
1900                         goto out;
1901                 }
1902
1903                 page = find_get_page(mapping, index);
1904                 if (!page) {
1905                         page_cache_sync_readahead(mapping,
1906                                         ra, filp,
1907                                         index, last_index - index);
1908                         page = find_get_page(mapping, index);
1909                         if (unlikely(page == NULL))
1910                                 goto no_cached_page;
1911                 }
1912                 if (PageReadahead(page)) {
1913                         page_cache_async_readahead(mapping,
1914                                         ra, filp, page,
1915                                         index, last_index - index);
1916                 }
1917                 if (!PageUptodate(page)) {
1918                         /*
1919                          * See comment in do_read_cache_page on why
1920                          * wait_on_page_locked is used to avoid unnecessarily
1921                          * serialisations and why it's safe.
1922                          */
1923                         error = wait_on_page_locked_killable(page);
1924                         if (unlikely(error))
1925                                 goto readpage_error;
1926                         if (PageUptodate(page))
1927                                 goto page_ok;
1928
1929                         if (inode->i_blkbits == PAGE_SHIFT ||
1930                                         !mapping->a_ops->is_partially_uptodate)
1931                                 goto page_not_up_to_date;
1932                         /* pipes can't handle partially uptodate pages */
1933                         if (unlikely(iter->type & ITER_PIPE))
1934                                 goto page_not_up_to_date;
1935                         if (!trylock_page(page))
1936                                 goto page_not_up_to_date;
1937                         /* Did it get truncated before we got the lock? */
1938                         if (!page->mapping)
1939                                 goto page_not_up_to_date_locked;
1940                         if (!mapping->a_ops->is_partially_uptodate(page,
1941                                                         offset, iter->count))
1942                                 goto page_not_up_to_date_locked;
1943                         unlock_page(page);
1944                 }
1945 page_ok:
1946                 /*
1947                  * i_size must be checked after we know the page is Uptodate.
1948                  *
1949                  * Checking i_size after the check allows us to calculate
1950                  * the correct value for "nr", which means the zero-filled
1951                  * part of the page is not copied back to userspace (unless
1952                  * another truncate extends the file - this is desired though).
1953                  */
1954
1955                 isize = i_size_read(inode);
1956                 end_index = (isize - 1) >> PAGE_SHIFT;
1957                 if (unlikely(!isize || index > end_index)) {
1958                         put_page(page);
1959                         goto out;
1960                 }
1961
1962                 /* nr is the maximum number of bytes to copy from this page */
1963                 nr = PAGE_SIZE;
1964                 if (index == end_index) {
1965                         nr = ((isize - 1) & ~PAGE_MASK) + 1;
1966                         if (nr <= offset) {
1967                                 put_page(page);
1968                                 goto out;
1969                         }
1970                 }
1971                 nr = nr - offset;
1972
1973                 /* If users can be writing to this page using arbitrary
1974                  * virtual addresses, take care about potential aliasing
1975                  * before reading the page on the kernel side.
1976                  */
1977                 if (mapping_writably_mapped(mapping))
1978                         flush_dcache_page(page);
1979
1980                 /*
1981                  * When a sequential read accesses a page several times,
1982                  * only mark it as accessed the first time.
1983                  */
1984                 if (prev_index != index || offset != prev_offset)
1985                         mark_page_accessed(page);
1986                 prev_index = index;
1987
1988                 /*
1989                  * Ok, we have the page, and it's up-to-date, so
1990                  * now we can copy it to user space...
1991                  */
1992
1993                 ret = copy_page_to_iter(page, offset, nr, iter);
1994                 offset += ret;
1995                 index += offset >> PAGE_SHIFT;
1996                 offset &= ~PAGE_MASK;
1997                 prev_offset = offset;
1998
1999                 put_page(page);
2000                 written += ret;
2001                 if (!iov_iter_count(iter))
2002                         goto out;
2003                 if (ret < nr) {
2004                         error = -EFAULT;
2005                         goto out;
2006                 }
2007                 continue;
2008
2009 page_not_up_to_date:
2010                 /* Get exclusive access to the page ... */
2011                 error = lock_page_killable(page);
2012                 if (unlikely(error))
2013                         goto readpage_error;
2014
2015 page_not_up_to_date_locked:
2016                 /* Did it get truncated before we got the lock? */
2017                 if (!page->mapping) {
2018                         unlock_page(page);
2019                         put_page(page);
2020                         continue;
2021                 }
2022
2023                 /* Did somebody else fill it already? */
2024                 if (PageUptodate(page)) {
2025                         unlock_page(page);
2026                         goto page_ok;
2027                 }
2028
2029 readpage:
2030                 /*
2031                  * A previous I/O error may have been due to temporary
2032                  * failures, eg. multipath errors.
2033                  * PG_error will be set again if readpage fails.
2034                  */
2035                 ClearPageError(page);
2036                 /* Start the actual read. The read will unlock the page. */
2037                 error = mapping->a_ops->readpage(filp, page);
2038
2039                 if (unlikely(error)) {
2040                         if (error == AOP_TRUNCATED_PAGE) {
2041                                 put_page(page);
2042                                 error = 0;
2043                                 goto find_page;
2044                         }
2045                         goto readpage_error;
2046                 }
2047
2048                 if (!PageUptodate(page)) {
2049                         error = lock_page_killable(page);
2050                         if (unlikely(error))
2051                                 goto readpage_error;
2052                         if (!PageUptodate(page)) {
2053                                 if (page->mapping == NULL) {
2054                                         /*
2055                                          * invalidate_mapping_pages got it
2056                                          */
2057                                         unlock_page(page);
2058                                         put_page(page);
2059                                         goto find_page;
2060                                 }
2061                                 unlock_page(page);
2062                                 shrink_readahead_size_eio(filp, ra);
2063                                 error = -EIO;
2064                                 goto readpage_error;
2065                         }
2066                         unlock_page(page);
2067                 }
2068
2069                 goto page_ok;
2070
2071 readpage_error:
2072                 /* UHHUH! A synchronous read error occurred. Report it */
2073                 put_page(page);
2074                 goto out;
2075
2076 no_cached_page:
2077                 /*
2078                  * Ok, it wasn't cached, so we need to create a new
2079                  * page..
2080                  */
2081                 page = page_cache_alloc_cold(mapping);
2082                 if (!page) {
2083                         error = -ENOMEM;
2084                         goto out;
2085                 }
2086                 error = add_to_page_cache_lru(page, mapping, index,
2087                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
2088                 if (error) {
2089                         put_page(page);
2090                         if (error == -EEXIST) {
2091                                 error = 0;
2092                                 goto find_page;
2093                         }
2094                         goto out;
2095                 }
2096                 goto readpage;
2097         }
2098
2099 out:
2100         ra->prev_pos = prev_index;
2101         ra->prev_pos <<= PAGE_SHIFT;
2102         ra->prev_pos |= prev_offset;
2103
2104         *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2105         file_accessed(filp);
2106         return written ? written : error;
2107 }
2108
2109 /**
2110  * generic_file_read_iter - generic filesystem read routine
2111  * @iocb:       kernel I/O control block
2112  * @iter:       destination for the data read
2113  *
2114  * This is the "read_iter()" routine for all filesystems
2115  * that can use the page cache directly.
2116  */
2117 ssize_t
2118 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2119 {
2120         struct file *file = iocb->ki_filp;
2121         ssize_t retval = 0;
2122         size_t count = iov_iter_count(iter);
2123
2124         if (!count)
2125                 goto out; /* skip atime */
2126
2127         if (iocb->ki_flags & IOCB_DIRECT) {
2128                 struct address_space *mapping = file->f_mapping;
2129                 struct inode *inode = mapping->host;
2130                 loff_t size;
2131
2132                 size = i_size_read(inode);
2133                 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
2134                                         iocb->ki_pos + count - 1);
2135                 if (retval < 0)
2136                         goto out;
2137
2138                 file_accessed(file);
2139
2140                 retval = mapping->a_ops->direct_IO(iocb, iter);
2141                 if (retval >= 0) {
2142                         iocb->ki_pos += retval;
2143                         count -= retval;
2144                 }
2145                 iov_iter_revert(iter, count - iov_iter_count(iter));
2146
2147                 /*
2148                  * Btrfs can have a short DIO read if we encounter
2149                  * compressed extents, so if there was an error, or if
2150                  * we've already read everything we wanted to, or if
2151                  * there was a short read because we hit EOF, go ahead
2152                  * and return.  Otherwise fallthrough to buffered io for
2153                  * the rest of the read.  Buffered reads will not work for
2154                  * DAX files, so don't bother trying.
2155                  */
2156                 if (retval < 0 || !count || iocb->ki_pos >= size ||
2157                     IS_DAX(inode))
2158                         goto out;
2159         }
2160
2161         retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2162 out:
2163         return retval;
2164 }
2165 EXPORT_SYMBOL(generic_file_read_iter);
2166
2167 #ifdef CONFIG_MMU
2168 /**
2169  * page_cache_read - adds requested page to the page cache if not already there
2170  * @file:       file to read
2171  * @offset:     page index
2172  * @gfp_mask:   memory allocation flags
2173  *
2174  * This adds the requested page to the page cache if it isn't already there,
2175  * and schedules an I/O to read in its contents from disk.
2176  */
2177 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2178 {
2179         struct address_space *mapping = file->f_mapping;
2180         struct page *page;
2181         int ret;
2182
2183         do {
2184                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2185                 if (!page)
2186                         return -ENOMEM;
2187
2188                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2189                 if (ret == 0)
2190                         ret = mapping->a_ops->readpage(file, page);
2191                 else if (ret == -EEXIST)
2192                         ret = 0; /* losing race to add is OK */
2193
2194                 put_page(page);
2195
2196         } while (ret == AOP_TRUNCATED_PAGE);
2197
2198         return ret;
2199 }
2200
2201 #define MMAP_LOTSAMISS  (100)
2202
2203 /*
2204  * Synchronous readahead happens when we don't even find
2205  * a page in the page cache at all.
2206  */
2207 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2208                                    struct file_ra_state *ra,
2209                                    struct file *file,
2210                                    pgoff_t offset)
2211 {
2212         struct address_space *mapping = file->f_mapping;
2213
2214         /* If we don't want any read-ahead, don't bother */
2215         if (vma->vm_flags & VM_RAND_READ)
2216                 return;
2217         if (!ra->ra_pages)
2218                 return;
2219
2220         if (vma->vm_flags & VM_SEQ_READ) {
2221                 page_cache_sync_readahead(mapping, ra, file, offset,
2222                                           ra->ra_pages);
2223                 return;
2224         }
2225
2226         /* Avoid banging the cache line if not needed */
2227         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2228                 ra->mmap_miss++;
2229
2230         /*
2231          * Do we miss much more than hit in this file? If so,
2232          * stop bothering with read-ahead. It will only hurt.
2233          */
2234         if (ra->mmap_miss > MMAP_LOTSAMISS)
2235                 return;
2236
2237         /*
2238          * mmap read-around
2239          */
2240         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2241         ra->size = ra->ra_pages;
2242         ra->async_size = ra->ra_pages / 4;
2243         ra_submit(ra, mapping, file);
2244 }
2245
2246 /*
2247  * Asynchronous readahead happens when we find the page and PG_readahead,
2248  * so we want to possibly extend the readahead further..
2249  */
2250 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2251                                     struct file_ra_state *ra,
2252                                     struct file *file,
2253                                     struct page *page,
2254                                     pgoff_t offset)
2255 {
2256         struct address_space *mapping = file->f_mapping;
2257
2258         /* If we don't want any read-ahead, don't bother */
2259         if (vma->vm_flags & VM_RAND_READ)
2260                 return;
2261         if (ra->mmap_miss > 0)
2262                 ra->mmap_miss--;
2263         if (PageReadahead(page))
2264                 page_cache_async_readahead(mapping, ra, file,
2265                                            page, offset, ra->ra_pages);
2266 }
2267
2268 /**
2269  * filemap_fault - read in file data for page fault handling
2270  * @vmf:        struct vm_fault containing details of the fault
2271  *
2272  * filemap_fault() is invoked via the vma operations vector for a
2273  * mapped memory region to read in file data during a page fault.
2274  *
2275  * The goto's are kind of ugly, but this streamlines the normal case of having
2276  * it in the page cache, and handles the special cases reasonably without
2277  * having a lot of duplicated code.
2278  *
2279  * vma->vm_mm->mmap_sem must be held on entry.
2280  *
2281  * If our return value has VM_FAULT_RETRY set, it's because
2282  * lock_page_or_retry() returned 0.
2283  * The mmap_sem has usually been released in this case.
2284  * See __lock_page_or_retry() for the exception.
2285  *
2286  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2287  * has not been released.
2288  *
2289  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2290  */
2291 int filemap_fault(struct vm_fault *vmf)
2292 {
2293         int error;
2294         struct file *file = vmf->vma->vm_file;
2295         struct address_space *mapping = file->f_mapping;
2296         struct file_ra_state *ra = &file->f_ra;
2297         struct inode *inode = mapping->host;
2298         pgoff_t offset = vmf->pgoff;
2299         pgoff_t max_off;
2300         struct page *page;
2301         int ret = 0;
2302
2303         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2304         if (unlikely(offset >= max_off))
2305                 return VM_FAULT_SIGBUS;
2306
2307         /*
2308          * Do we have something in the page cache already?
2309          */
2310         page = find_get_page(mapping, offset);
2311         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2312                 /*
2313                  * We found the page, so try async readahead before
2314                  * waiting for the lock.
2315                  */
2316                 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2317         } else if (!page) {
2318                 /* No page in the page cache at all */
2319                 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2320                 count_vm_event(PGMAJFAULT);
2321                 mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT);
2322                 ret = VM_FAULT_MAJOR;
2323 retry_find:
2324                 page = find_get_page(mapping, offset);
2325                 if (!page)
2326                         goto no_cached_page;
2327         }
2328
2329         if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2330                 put_page(page);
2331                 return ret | VM_FAULT_RETRY;
2332         }
2333
2334         /* Did it get truncated? */
2335         if (unlikely(page->mapping != mapping)) {
2336                 unlock_page(page);
2337                 put_page(page);
2338                 goto retry_find;
2339         }
2340         VM_BUG_ON_PAGE(page->index != offset, page);
2341
2342         /*
2343          * We have a locked page in the page cache, now we need to check
2344          * that it's up-to-date. If not, it is going to be due to an error.
2345          */
2346         if (unlikely(!PageUptodate(page)))
2347                 goto page_not_uptodate;
2348
2349         /*
2350          * Found the page and have a reference on it.
2351          * We must recheck i_size under page lock.
2352          */
2353         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2354         if (unlikely(offset >= max_off)) {
2355                 unlock_page(page);
2356                 put_page(page);
2357                 return VM_FAULT_SIGBUS;
2358         }
2359
2360         vmf->page = page;
2361         return ret | VM_FAULT_LOCKED;
2362
2363 no_cached_page:
2364         /*
2365          * We're only likely to ever get here if MADV_RANDOM is in
2366          * effect.
2367          */
2368         error = page_cache_read(file, offset, vmf->gfp_mask);
2369
2370         /*
2371          * The page we want has now been added to the page cache.
2372          * In the unlikely event that someone removed it in the
2373          * meantime, we'll just come back here and read it again.
2374          */
2375         if (error >= 0)
2376                 goto retry_find;
2377
2378         /*
2379          * An error return from page_cache_read can result if the
2380          * system is low on memory, or a problem occurs while trying
2381          * to schedule I/O.
2382          */
2383         if (error == -ENOMEM)
2384                 return VM_FAULT_OOM;
2385         return VM_FAULT_SIGBUS;
2386
2387 page_not_uptodate:
2388         /*
2389          * Umm, take care of errors if the page isn't up-to-date.
2390          * Try to re-read it _once_. We do this synchronously,
2391          * because there really aren't any performance issues here
2392          * and we need to check for errors.
2393          */
2394         ClearPageError(page);
2395         error = mapping->a_ops->readpage(file, page);
2396         if (!error) {
2397                 wait_on_page_locked(page);
2398                 if (!PageUptodate(page))
2399                         error = -EIO;
2400         }
2401         put_page(page);
2402
2403         if (!error || error == AOP_TRUNCATED_PAGE)
2404                 goto retry_find;
2405
2406         /* Things didn't work out. Return zero to tell the mm layer so. */
2407         shrink_readahead_size_eio(file, ra);
2408         return VM_FAULT_SIGBUS;
2409 }
2410 EXPORT_SYMBOL(filemap_fault);
2411
2412 void filemap_map_pages(struct vm_fault *vmf,
2413                 pgoff_t start_pgoff, pgoff_t end_pgoff)
2414 {
2415         struct radix_tree_iter iter;
2416         void **slot;
2417         struct file *file = vmf->vma->vm_file;
2418         struct address_space *mapping = file->f_mapping;
2419         pgoff_t last_pgoff = start_pgoff;
2420         unsigned long max_idx;
2421         struct page *head, *page;
2422
2423         rcu_read_lock();
2424         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2425                         start_pgoff) {
2426                 if (iter.index > end_pgoff)
2427                         break;
2428 repeat:
2429                 page = radix_tree_deref_slot(slot);
2430                 if (unlikely(!page))
2431                         goto next;
2432                 if (radix_tree_exception(page)) {
2433                         if (radix_tree_deref_retry(page)) {
2434                                 slot = radix_tree_iter_retry(&iter);
2435                                 continue;
2436                         }
2437                         goto next;
2438                 }
2439
2440                 head = compound_head(page);
2441                 if (!page_cache_get_speculative(head))
2442                         goto repeat;
2443
2444                 /* The page was split under us? */
2445                 if (compound_head(page) != head) {
2446                         put_page(head);
2447                         goto repeat;
2448                 }
2449
2450                 /* Has the page moved? */
2451                 if (unlikely(page != *slot)) {
2452                         put_page(head);
2453                         goto repeat;
2454                 }
2455
2456                 if (!PageUptodate(page) ||
2457                                 PageReadahead(page) ||
2458                                 PageHWPoison(page))
2459                         goto skip;
2460                 if (!trylock_page(page))
2461                         goto skip;
2462
2463                 if (page->mapping != mapping || !PageUptodate(page))
2464                         goto unlock;
2465
2466                 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2467                 if (page->index >= max_idx)
2468                         goto unlock;
2469
2470                 if (file->f_ra.mmap_miss > 0)
2471                         file->f_ra.mmap_miss--;
2472
2473                 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2474                 if (vmf->pte)
2475                         vmf->pte += iter.index - last_pgoff;
2476                 last_pgoff = iter.index;
2477                 if (alloc_set_pte(vmf, NULL, page))
2478                         goto unlock;
2479                 unlock_page(page);
2480                 goto next;
2481 unlock:
2482                 unlock_page(page);
2483 skip:
2484                 put_page(page);
2485 next:
2486                 /* Huge page is mapped? No need to proceed. */
2487                 if (pmd_trans_huge(*vmf->pmd))
2488                         break;
2489                 if (iter.index == end_pgoff)
2490                         break;
2491         }
2492         rcu_read_unlock();
2493 }
2494 EXPORT_SYMBOL(filemap_map_pages);
2495
2496 int filemap_page_mkwrite(struct vm_fault *vmf)
2497 {
2498         struct page *page = vmf->page;
2499         struct inode *inode = file_inode(vmf->vma->vm_file);
2500         int ret = VM_FAULT_LOCKED;
2501
2502         sb_start_pagefault(inode->i_sb);
2503         file_update_time(vmf->vma->vm_file);
2504         lock_page(page);
2505         if (page->mapping != inode->i_mapping) {
2506                 unlock_page(page);
2507                 ret = VM_FAULT_NOPAGE;
2508                 goto out;
2509         }
2510         /*
2511          * We mark the page dirty already here so that when freeze is in
2512          * progress, we are guaranteed that writeback during freezing will
2513          * see the dirty page and writeprotect it again.
2514          */
2515         set_page_dirty(page);
2516         wait_for_stable_page(page);
2517 out:
2518         sb_end_pagefault(inode->i_sb);
2519         return ret;
2520 }
2521 EXPORT_SYMBOL(filemap_page_mkwrite);
2522
2523 const struct vm_operations_struct generic_file_vm_ops = {
2524         .fault          = filemap_fault,
2525         .map_pages      = filemap_map_pages,
2526         .page_mkwrite   = filemap_page_mkwrite,
2527 };
2528
2529 /* This is used for a general mmap of a disk file */
2530
2531 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2532 {
2533         struct address_space *mapping = file->f_mapping;
2534
2535         if (!mapping->a_ops->readpage)
2536                 return -ENOEXEC;
2537         file_accessed(file);
2538         vma->vm_ops = &generic_file_vm_ops;
2539         return 0;
2540 }
2541
2542 /*
2543  * This is for filesystems which do not implement ->writepage.
2544  */
2545 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2546 {
2547         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2548                 return -EINVAL;
2549         return generic_file_mmap(file, vma);
2550 }
2551 #else
2552 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2553 {
2554         return -ENOSYS;
2555 }
2556 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2557 {
2558         return -ENOSYS;
2559 }
2560 #endif /* CONFIG_MMU */
2561
2562 EXPORT_SYMBOL(generic_file_mmap);
2563 EXPORT_SYMBOL(generic_file_readonly_mmap);
2564
2565 static struct page *wait_on_page_read(struct page *page)
2566 {
2567         if (!IS_ERR(page)) {
2568                 wait_on_page_locked(page);
2569                 if (!PageUptodate(page)) {
2570                         put_page(page);
2571                         page = ERR_PTR(-EIO);
2572                 }
2573         }
2574         return page;
2575 }
2576
2577 static struct page *do_read_cache_page(struct address_space *mapping,
2578                                 pgoff_t index,
2579                                 int (*filler)(void *, struct page *),
2580                                 void *data,
2581                                 gfp_t gfp)
2582 {
2583         struct page *page;
2584         int err;
2585 repeat:
2586         page = find_get_page(mapping, index);
2587         if (!page) {
2588                 page = __page_cache_alloc(gfp | __GFP_COLD);
2589                 if (!page)
2590                         return ERR_PTR(-ENOMEM);
2591                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2592                 if (unlikely(err)) {
2593                         put_page(page);
2594                         if (err == -EEXIST)
2595                                 goto repeat;
2596                         /* Presumably ENOMEM for radix tree node */
2597                         return ERR_PTR(err);
2598                 }
2599
2600 filler:
2601                 err = filler(data, page);
2602                 if (err < 0) {
2603                         put_page(page);
2604                         return ERR_PTR(err);
2605                 }
2606
2607                 page = wait_on_page_read(page);
2608                 if (IS_ERR(page))
2609                         return page;
2610                 goto out;
2611         }
2612         if (PageUptodate(page))
2613                 goto out;
2614
2615         /*
2616          * Page is not up to date and may be locked due one of the following
2617          * case a: Page is being filled and the page lock is held
2618          * case b: Read/write error clearing the page uptodate status
2619          * case c: Truncation in progress (page locked)
2620          * case d: Reclaim in progress
2621          *
2622          * Case a, the page will be up to date when the page is unlocked.
2623          *    There is no need to serialise on the page lock here as the page
2624          *    is pinned so the lock gives no additional protection. Even if the
2625          *    the page is truncated, the data is still valid if PageUptodate as
2626          *    it's a race vs truncate race.
2627          * Case b, the page will not be up to date
2628          * Case c, the page may be truncated but in itself, the data may still
2629          *    be valid after IO completes as it's a read vs truncate race. The
2630          *    operation must restart if the page is not uptodate on unlock but
2631          *    otherwise serialising on page lock to stabilise the mapping gives
2632          *    no additional guarantees to the caller as the page lock is
2633          *    released before return.
2634          * Case d, similar to truncation. If reclaim holds the page lock, it
2635          *    will be a race with remove_mapping that determines if the mapping
2636          *    is valid on unlock but otherwise the data is valid and there is
2637          *    no need to serialise with page lock.
2638          *
2639          * As the page lock gives no additional guarantee, we optimistically
2640          * wait on the page to be unlocked and check if it's up to date and
2641          * use the page if it is. Otherwise, the page lock is required to
2642          * distinguish between the different cases. The motivation is that we
2643          * avoid spurious serialisations and wakeups when multiple processes
2644          * wait on the same page for IO to complete.
2645          */
2646         wait_on_page_locked(page);
2647         if (PageUptodate(page))
2648                 goto out;
2649
2650         /* Distinguish between all the cases under the safety of the lock */
2651         lock_page(page);
2652
2653         /* Case c or d, restart the operation */
2654         if (!page->mapping) {
2655                 unlock_page(page);
2656                 put_page(page);
2657                 goto repeat;
2658         }
2659
2660         /* Someone else locked and filled the page in a very small window */
2661         if (PageUptodate(page)) {
2662                 unlock_page(page);
2663                 goto out;
2664         }
2665         goto filler;
2666
2667 out:
2668         mark_page_accessed(page);
2669         return page;
2670 }
2671
2672 /**
2673  * read_cache_page - read into page cache, fill it if needed
2674  * @mapping:    the page's address_space
2675  * @index:      the page index
2676  * @filler:     function to perform the read
2677  * @data:       first arg to filler(data, page) function, often left as NULL
2678  *
2679  * Read into the page cache. If a page already exists, and PageUptodate() is
2680  * not set, try to fill the page and wait for it to become unlocked.
2681  *
2682  * If the page does not get brought uptodate, return -EIO.
2683  */
2684 struct page *read_cache_page(struct address_space *mapping,
2685                                 pgoff_t index,
2686                                 int (*filler)(void *, struct page *),
2687                                 void *data)
2688 {
2689         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2690 }
2691 EXPORT_SYMBOL(read_cache_page);
2692
2693 /**
2694  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2695  * @mapping:    the page's address_space
2696  * @index:      the page index
2697  * @gfp:        the page allocator flags to use if allocating
2698  *
2699  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2700  * any new page allocations done using the specified allocation flags.
2701  *
2702  * If the page does not get brought uptodate, return -EIO.
2703  */
2704 struct page *read_cache_page_gfp(struct address_space *mapping,
2705                                 pgoff_t index,
2706                                 gfp_t gfp)
2707 {
2708         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2709
2710         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2711 }
2712 EXPORT_SYMBOL(read_cache_page_gfp);
2713
2714 /*
2715  * Performs necessary checks before doing a write
2716  *
2717  * Can adjust writing position or amount of bytes to write.
2718  * Returns appropriate error code that caller should return or
2719  * zero in case that write should be allowed.
2720  */
2721 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2722 {
2723         struct file *file = iocb->ki_filp;
2724         struct inode *inode = file->f_mapping->host;
2725         unsigned long limit = rlimit(RLIMIT_FSIZE);
2726         loff_t pos;
2727
2728         if (!iov_iter_count(from))
2729                 return 0;
2730
2731         /* FIXME: this is for backwards compatibility with 2.4 */
2732         if (iocb->ki_flags & IOCB_APPEND)
2733                 iocb->ki_pos = i_size_read(inode);
2734
2735         pos = iocb->ki_pos;
2736
2737         if (limit != RLIM_INFINITY) {
2738                 if (iocb->ki_pos >= limit) {
2739                         send_sig(SIGXFSZ, current, 0);
2740                         return -EFBIG;
2741                 }
2742                 iov_iter_truncate(from, limit - (unsigned long)pos);
2743         }
2744
2745         /*
2746          * LFS rule
2747          */
2748         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2749                                 !(file->f_flags & O_LARGEFILE))) {
2750                 if (pos >= MAX_NON_LFS)
2751                         return -EFBIG;
2752                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2753         }
2754
2755         /*
2756          * Are we about to exceed the fs block limit ?
2757          *
2758          * If we have written data it becomes a short write.  If we have
2759          * exceeded without writing data we send a signal and return EFBIG.
2760          * Linus frestrict idea will clean these up nicely..
2761          */
2762         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2763                 return -EFBIG;
2764
2765         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2766         return iov_iter_count(from);
2767 }
2768 EXPORT_SYMBOL(generic_write_checks);
2769
2770 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2771                                 loff_t pos, unsigned len, unsigned flags,
2772                                 struct page **pagep, void **fsdata)
2773 {
2774         const struct address_space_operations *aops = mapping->a_ops;
2775
2776         return aops->write_begin(file, mapping, pos, len, flags,
2777                                                         pagep, fsdata);
2778 }
2779 EXPORT_SYMBOL(pagecache_write_begin);
2780
2781 int pagecache_write_end(struct file *file, struct address_space *mapping,
2782                                 loff_t pos, unsigned len, unsigned copied,
2783                                 struct page *page, void *fsdata)
2784 {
2785         const struct address_space_operations *aops = mapping->a_ops;
2786
2787         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2788 }
2789 EXPORT_SYMBOL(pagecache_write_end);
2790
2791 ssize_t
2792 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2793 {
2794         struct file     *file = iocb->ki_filp;
2795         struct address_space *mapping = file->f_mapping;
2796         struct inode    *inode = mapping->host;
2797         loff_t          pos = iocb->ki_pos;
2798         ssize_t         written;
2799         size_t          write_len;
2800         pgoff_t         end;
2801
2802         write_len = iov_iter_count(from);
2803         end = (pos + write_len - 1) >> PAGE_SHIFT;
2804
2805         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2806         if (written)
2807                 goto out;
2808
2809         /*
2810          * After a write we want buffered reads to be sure to go to disk to get
2811          * the new data.  We invalidate clean cached page from the region we're
2812          * about to write.  We do this *before* the write so that we can return
2813          * without clobbering -EIOCBQUEUED from ->direct_IO().
2814          */
2815         written = invalidate_inode_pages2_range(mapping,
2816                                         pos >> PAGE_SHIFT, end);
2817         /*
2818          * If a page can not be invalidated, return 0 to fall back
2819          * to buffered write.
2820          */
2821         if (written) {
2822                 if (written == -EBUSY)
2823                         return 0;
2824                 goto out;
2825         }
2826
2827         written = mapping->a_ops->direct_IO(iocb, from);
2828
2829         /*
2830          * Finally, try again to invalidate clean pages which might have been
2831          * cached by non-direct readahead, or faulted in by get_user_pages()
2832          * if the source of the write was an mmap'ed region of the file
2833          * we're writing.  Either one is a pretty crazy thing to do,
2834          * so we don't support it 100%.  If this invalidation
2835          * fails, tough, the write still worked...
2836          */
2837         invalidate_inode_pages2_range(mapping,
2838                                 pos >> PAGE_SHIFT, end);
2839
2840         if (written > 0) {
2841                 pos += written;
2842                 write_len -= written;
2843                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2844                         i_size_write(inode, pos);
2845                         mark_inode_dirty(inode);
2846                 }
2847                 iocb->ki_pos = pos;
2848         }
2849         iov_iter_revert(from, write_len - iov_iter_count(from));
2850 out:
2851         return written;
2852 }
2853 EXPORT_SYMBOL(generic_file_direct_write);
2854
2855 /*
2856  * Find or create a page at the given pagecache position. Return the locked
2857  * page. This function is specifically for buffered writes.
2858  */
2859 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2860                                         pgoff_t index, unsigned flags)
2861 {
2862         struct page *page;
2863         int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2864
2865         if (flags & AOP_FLAG_NOFS)
2866                 fgp_flags |= FGP_NOFS;
2867
2868         page = pagecache_get_page(mapping, index, fgp_flags,
2869                         mapping_gfp_mask(mapping));
2870         if (page)
2871                 wait_for_stable_page(page);
2872
2873         return page;
2874 }
2875 EXPORT_SYMBOL(grab_cache_page_write_begin);
2876
2877 ssize_t generic_perform_write(struct file *file,
2878                                 struct iov_iter *i, loff_t pos)
2879 {
2880         struct address_space *mapping = file->f_mapping;
2881         const struct address_space_operations *a_ops = mapping->a_ops;
2882         long status = 0;
2883         ssize_t written = 0;
2884         unsigned int flags = 0;
2885
2886         do {
2887                 struct page *page;
2888                 unsigned long offset;   /* Offset into pagecache page */
2889                 unsigned long bytes;    /* Bytes to write to page */
2890                 size_t copied;          /* Bytes copied from user */
2891                 void *fsdata;
2892
2893                 offset = (pos & (PAGE_SIZE - 1));
2894                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2895                                                 iov_iter_count(i));
2896
2897 again:
2898                 /*
2899                  * Bring in the user page that we will copy from _first_.
2900                  * Otherwise there's a nasty deadlock on copying from the
2901                  * same page as we're writing to, without it being marked
2902                  * up-to-date.
2903                  *
2904                  * Not only is this an optimisation, but it is also required
2905                  * to check that the address is actually valid, when atomic
2906                  * usercopies are used, below.
2907                  */
2908                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2909                         status = -EFAULT;
2910                         break;
2911                 }
2912
2913                 if (fatal_signal_pending(current)) {
2914                         status = -EINTR;
2915                         break;
2916                 }
2917
2918                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2919                                                 &page, &fsdata);
2920                 if (unlikely(status < 0))
2921                         break;
2922
2923                 if (mapping_writably_mapped(mapping))
2924                         flush_dcache_page(page);
2925
2926                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2927                 flush_dcache_page(page);
2928
2929                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2930                                                 page, fsdata);
2931                 if (unlikely(status < 0))
2932                         break;
2933                 copied = status;
2934
2935                 cond_resched();
2936
2937                 iov_iter_advance(i, copied);
2938                 if (unlikely(copied == 0)) {
2939                         /*
2940                          * If we were unable to copy any data at all, we must
2941                          * fall back to a single segment length write.
2942                          *
2943                          * If we didn't fallback here, we could livelock
2944                          * because not all segments in the iov can be copied at
2945                          * once without a pagefault.
2946                          */
2947                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
2948                                                 iov_iter_single_seg_count(i));
2949                         goto again;
2950                 }
2951                 pos += copied;
2952                 written += copied;
2953
2954                 balance_dirty_pages_ratelimited(mapping);
2955         } while (iov_iter_count(i));
2956
2957         return written ? written : status;
2958 }
2959 EXPORT_SYMBOL(generic_perform_write);
2960
2961 /**
2962  * __generic_file_write_iter - write data to a file
2963  * @iocb:       IO state structure (file, offset, etc.)
2964  * @from:       iov_iter with data to write
2965  *
2966  * This function does all the work needed for actually writing data to a
2967  * file. It does all basic checks, removes SUID from the file, updates
2968  * modification times and calls proper subroutines depending on whether we
2969  * do direct IO or a standard buffered write.
2970  *
2971  * It expects i_mutex to be grabbed unless we work on a block device or similar
2972  * object which does not need locking at all.
2973  *
2974  * This function does *not* take care of syncing data in case of O_SYNC write.
2975  * A caller has to handle it. This is mainly due to the fact that we want to
2976  * avoid syncing under i_mutex.
2977  */
2978 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2979 {
2980         struct file *file = iocb->ki_filp;
2981         struct address_space * mapping = file->f_mapping;
2982         struct inode    *inode = mapping->host;
2983         ssize_t         written = 0;
2984         ssize_t         err;
2985         ssize_t         status;
2986
2987         /* We can write back this queue in page reclaim */
2988         current->backing_dev_info = inode_to_bdi(inode);
2989         err = file_remove_privs(file);
2990         if (err)
2991                 goto out;
2992
2993         err = file_update_time(file);
2994         if (err)
2995                 goto out;
2996
2997         if (iocb->ki_flags & IOCB_DIRECT) {
2998                 loff_t pos, endbyte;
2999
3000                 written = generic_file_direct_write(iocb, from);
3001                 /*
3002                  * If the write stopped short of completing, fall back to
3003                  * buffered writes.  Some filesystems do this for writes to
3004                  * holes, for example.  For DAX files, a buffered write will
3005                  * not succeed (even if it did, DAX does not handle dirty
3006                  * page-cache pages correctly).
3007                  */
3008                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3009                         goto out;
3010
3011                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3012                 /*
3013                  * If generic_perform_write() returned a synchronous error
3014                  * then we want to return the number of bytes which were
3015                  * direct-written, or the error code if that was zero.  Note
3016                  * that this differs from normal direct-io semantics, which
3017                  * will return -EFOO even if some bytes were written.
3018                  */
3019                 if (unlikely(status < 0)) {
3020                         err = status;
3021                         goto out;
3022                 }
3023                 /*
3024                  * We need to ensure that the page cache pages are written to
3025                  * disk and invalidated to preserve the expected O_DIRECT
3026                  * semantics.
3027                  */
3028                 endbyte = pos + status - 1;
3029                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3030                 if (err == 0) {
3031                         iocb->ki_pos = endbyte + 1;
3032                         written += status;
3033                         invalidate_mapping_pages(mapping,
3034                                                  pos >> PAGE_SHIFT,
3035                                                  endbyte >> PAGE_SHIFT);
3036                 } else {
3037                         /*
3038                          * We don't know how much we wrote, so just return
3039                          * the number of bytes which were direct-written
3040                          */
3041                 }
3042         } else {
3043                 written = generic_perform_write(file, from, iocb->ki_pos);
3044                 if (likely(written > 0))
3045                         iocb->ki_pos += written;
3046         }
3047 out:
3048         current->backing_dev_info = NULL;
3049         return written ? written : err;
3050 }
3051 EXPORT_SYMBOL(__generic_file_write_iter);
3052
3053 /**
3054  * generic_file_write_iter - write data to a file
3055  * @iocb:       IO state structure
3056  * @from:       iov_iter with data to write
3057  *
3058  * This is a wrapper around __generic_file_write_iter() to be used by most
3059  * filesystems. It takes care of syncing the file in case of O_SYNC file
3060  * and acquires i_mutex as needed.
3061  */
3062 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3063 {
3064         struct file *file = iocb->ki_filp;
3065         struct inode *inode = file->f_mapping->host;
3066         ssize_t ret;
3067
3068         inode_lock(inode);
3069         ret = generic_write_checks(iocb, from);
3070         if (ret > 0)
3071                 ret = __generic_file_write_iter(iocb, from);
3072         inode_unlock(inode);
3073
3074         if (ret > 0)
3075                 ret = generic_write_sync(iocb, ret);
3076         return ret;
3077 }
3078 EXPORT_SYMBOL(generic_file_write_iter);
3079
3080 /**
3081  * try_to_release_page() - release old fs-specific metadata on a page
3082  *
3083  * @page: the page which the kernel is trying to free
3084  * @gfp_mask: memory allocation flags (and I/O mode)
3085  *
3086  * The address_space is to try to release any data against the page
3087  * (presumably at page->private).  If the release was successful, return '1'.
3088  * Otherwise return zero.
3089  *
3090  * This may also be called if PG_fscache is set on a page, indicating that the
3091  * page is known to the local caching routines.
3092  *
3093  * The @gfp_mask argument specifies whether I/O may be performed to release
3094  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3095  *
3096  */
3097 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3098 {
3099         struct address_space * const mapping = page->mapping;
3100
3101         BUG_ON(!PageLocked(page));
3102         if (PageWriteback(page))
3103                 return 0;
3104
3105         if (mapping && mapping->a_ops->releasepage)
3106                 return mapping->a_ops->releasepage(page, gfp_mask);
3107         return try_to_free_buffers(page);
3108 }
3109
3110 EXPORT_SYMBOL(try_to_release_page);