]> asedeno.scripts.mit.edu Git - linux.git/blob - mm/hmm.c
mm/hmm: hmm_pfns_bad() was accessing wrong struct
[linux.git] / mm / hmm.c
1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * Authors: Jérôme Glisse <jglisse@redhat.com>
15  */
16 /*
17  * Refer to include/linux/hmm.h for information about heterogeneous memory
18  * management or HMM for short.
19  */
20 #include <linux/mm.h>
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/memory_hotplug.h>
35
36 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
37
38 #if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
39 /*
40  * Device private memory see HMM (Documentation/vm/hmm.txt) or hmm.h
41  */
42 DEFINE_STATIC_KEY_FALSE(device_private_key);
43 EXPORT_SYMBOL(device_private_key);
44 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
45
46
47 #if IS_ENABLED(CONFIG_HMM_MIRROR)
48 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
49
50 /*
51  * struct hmm - HMM per mm struct
52  *
53  * @mm: mm struct this HMM struct is bound to
54  * @lock: lock protecting ranges list
55  * @sequence: we track updates to the CPU page table with a sequence number
56  * @ranges: list of range being snapshotted
57  * @mirrors: list of mirrors for this mm
58  * @mmu_notifier: mmu notifier to track updates to CPU page table
59  * @mirrors_sem: read/write semaphore protecting the mirrors list
60  */
61 struct hmm {
62         struct mm_struct        *mm;
63         spinlock_t              lock;
64         atomic_t                sequence;
65         struct list_head        ranges;
66         struct list_head        mirrors;
67         struct mmu_notifier     mmu_notifier;
68         struct rw_semaphore     mirrors_sem;
69 };
70
71 /*
72  * hmm_register - register HMM against an mm (HMM internal)
73  *
74  * @mm: mm struct to attach to
75  *
76  * This is not intended to be used directly by device drivers. It allocates an
77  * HMM struct if mm does not have one, and initializes it.
78  */
79 static struct hmm *hmm_register(struct mm_struct *mm)
80 {
81         struct hmm *hmm = READ_ONCE(mm->hmm);
82         bool cleanup = false;
83
84         /*
85          * The hmm struct can only be freed once the mm_struct goes away,
86          * hence we should always have pre-allocated an new hmm struct
87          * above.
88          */
89         if (hmm)
90                 return hmm;
91
92         hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
93         if (!hmm)
94                 return NULL;
95         INIT_LIST_HEAD(&hmm->mirrors);
96         init_rwsem(&hmm->mirrors_sem);
97         atomic_set(&hmm->sequence, 0);
98         hmm->mmu_notifier.ops = NULL;
99         INIT_LIST_HEAD(&hmm->ranges);
100         spin_lock_init(&hmm->lock);
101         hmm->mm = mm;
102
103         /*
104          * We should only get here if hold the mmap_sem in write mode ie on
105          * registration of first mirror through hmm_mirror_register()
106          */
107         hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
108         if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) {
109                 kfree(hmm);
110                 return NULL;
111         }
112
113         spin_lock(&mm->page_table_lock);
114         if (!mm->hmm)
115                 mm->hmm = hmm;
116         else
117                 cleanup = true;
118         spin_unlock(&mm->page_table_lock);
119
120         if (cleanup) {
121                 mmu_notifier_unregister(&hmm->mmu_notifier, mm);
122                 kfree(hmm);
123         }
124
125         return mm->hmm;
126 }
127
128 void hmm_mm_destroy(struct mm_struct *mm)
129 {
130         kfree(mm->hmm);
131 }
132
133 static void hmm_invalidate_range(struct hmm *hmm,
134                                  enum hmm_update_type action,
135                                  unsigned long start,
136                                  unsigned long end)
137 {
138         struct hmm_mirror *mirror;
139         struct hmm_range *range;
140
141         spin_lock(&hmm->lock);
142         list_for_each_entry(range, &hmm->ranges, list) {
143                 unsigned long addr, idx, npages;
144
145                 if (end < range->start || start >= range->end)
146                         continue;
147
148                 range->valid = false;
149                 addr = max(start, range->start);
150                 idx = (addr - range->start) >> PAGE_SHIFT;
151                 npages = (min(range->end, end) - addr) >> PAGE_SHIFT;
152                 memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages);
153         }
154         spin_unlock(&hmm->lock);
155
156         down_read(&hmm->mirrors_sem);
157         list_for_each_entry(mirror, &hmm->mirrors, list)
158                 mirror->ops->sync_cpu_device_pagetables(mirror, action,
159                                                         start, end);
160         up_read(&hmm->mirrors_sem);
161 }
162
163 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
164 {
165         struct hmm_mirror *mirror;
166         struct hmm *hmm = mm->hmm;
167
168         down_write(&hmm->mirrors_sem);
169         mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
170                                           list);
171         while (mirror) {
172                 list_del_init(&mirror->list);
173                 if (mirror->ops->release) {
174                         /*
175                          * Drop mirrors_sem so callback can wait on any pending
176                          * work that might itself trigger mmu_notifier callback
177                          * and thus would deadlock with us.
178                          */
179                         up_write(&hmm->mirrors_sem);
180                         mirror->ops->release(mirror);
181                         down_write(&hmm->mirrors_sem);
182                 }
183                 mirror = list_first_entry_or_null(&hmm->mirrors,
184                                                   struct hmm_mirror, list);
185         }
186         up_write(&hmm->mirrors_sem);
187 }
188
189 static void hmm_invalidate_range_start(struct mmu_notifier *mn,
190                                        struct mm_struct *mm,
191                                        unsigned long start,
192                                        unsigned long end)
193 {
194         struct hmm *hmm = mm->hmm;
195
196         VM_BUG_ON(!hmm);
197
198         atomic_inc(&hmm->sequence);
199 }
200
201 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
202                                      struct mm_struct *mm,
203                                      unsigned long start,
204                                      unsigned long end)
205 {
206         struct hmm *hmm = mm->hmm;
207
208         VM_BUG_ON(!hmm);
209
210         hmm_invalidate_range(mm->hmm, HMM_UPDATE_INVALIDATE, start, end);
211 }
212
213 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
214         .release                = hmm_release,
215         .invalidate_range_start = hmm_invalidate_range_start,
216         .invalidate_range_end   = hmm_invalidate_range_end,
217 };
218
219 /*
220  * hmm_mirror_register() - register a mirror against an mm
221  *
222  * @mirror: new mirror struct to register
223  * @mm: mm to register against
224  *
225  * To start mirroring a process address space, the device driver must register
226  * an HMM mirror struct.
227  *
228  * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
229  */
230 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
231 {
232         /* Sanity check */
233         if (!mm || !mirror || !mirror->ops)
234                 return -EINVAL;
235
236 again:
237         mirror->hmm = hmm_register(mm);
238         if (!mirror->hmm)
239                 return -ENOMEM;
240
241         down_write(&mirror->hmm->mirrors_sem);
242         if (mirror->hmm->mm == NULL) {
243                 /*
244                  * A racing hmm_mirror_unregister() is about to destroy the hmm
245                  * struct. Try again to allocate a new one.
246                  */
247                 up_write(&mirror->hmm->mirrors_sem);
248                 mirror->hmm = NULL;
249                 goto again;
250         } else {
251                 list_add(&mirror->list, &mirror->hmm->mirrors);
252                 up_write(&mirror->hmm->mirrors_sem);
253         }
254
255         return 0;
256 }
257 EXPORT_SYMBOL(hmm_mirror_register);
258
259 /*
260  * hmm_mirror_unregister() - unregister a mirror
261  *
262  * @mirror: new mirror struct to register
263  *
264  * Stop mirroring a process address space, and cleanup.
265  */
266 void hmm_mirror_unregister(struct hmm_mirror *mirror)
267 {
268         bool should_unregister = false;
269         struct mm_struct *mm;
270         struct hmm *hmm;
271
272         if (mirror->hmm == NULL)
273                 return;
274
275         hmm = mirror->hmm;
276         down_write(&hmm->mirrors_sem);
277         list_del_init(&mirror->list);
278         should_unregister = list_empty(&hmm->mirrors);
279         mirror->hmm = NULL;
280         mm = hmm->mm;
281         hmm->mm = NULL;
282         up_write(&hmm->mirrors_sem);
283
284         if (!should_unregister || mm == NULL)
285                 return;
286
287         spin_lock(&mm->page_table_lock);
288         if (mm->hmm == hmm)
289                 mm->hmm = NULL;
290         spin_unlock(&mm->page_table_lock);
291
292         mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
293         kfree(hmm);
294 }
295 EXPORT_SYMBOL(hmm_mirror_unregister);
296
297 struct hmm_vma_walk {
298         struct hmm_range        *range;
299         unsigned long           last;
300         bool                    fault;
301         bool                    block;
302         bool                    write;
303 };
304
305 static int hmm_vma_do_fault(struct mm_walk *walk,
306                             unsigned long addr,
307                             hmm_pfn_t *pfn)
308 {
309         unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
310         struct hmm_vma_walk *hmm_vma_walk = walk->private;
311         struct vm_area_struct *vma = walk->vma;
312         int r;
313
314         flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
315         flags |= hmm_vma_walk->write ? FAULT_FLAG_WRITE : 0;
316         r = handle_mm_fault(vma, addr, flags);
317         if (r & VM_FAULT_RETRY)
318                 return -EBUSY;
319         if (r & VM_FAULT_ERROR) {
320                 *pfn = HMM_PFN_ERROR;
321                 return -EFAULT;
322         }
323
324         return -EAGAIN;
325 }
326
327 static void hmm_pfns_special(hmm_pfn_t *pfns,
328                              unsigned long addr,
329                              unsigned long end)
330 {
331         for (; addr < end; addr += PAGE_SIZE, pfns++)
332                 *pfns = HMM_PFN_SPECIAL;
333 }
334
335 static int hmm_pfns_bad(unsigned long addr,
336                         unsigned long end,
337                         struct mm_walk *walk)
338 {
339         struct hmm_vma_walk *hmm_vma_walk = walk->private;
340         struct hmm_range *range = hmm_vma_walk->range;
341         hmm_pfn_t *pfns = range->pfns;
342         unsigned long i;
343
344         i = (addr - range->start) >> PAGE_SHIFT;
345         for (; addr < end; addr += PAGE_SIZE, i++)
346                 pfns[i] = HMM_PFN_ERROR;
347
348         return 0;
349 }
350
351 static void hmm_pfns_clear(hmm_pfn_t *pfns,
352                            unsigned long addr,
353                            unsigned long end)
354 {
355         for (; addr < end; addr += PAGE_SIZE, pfns++)
356                 *pfns = 0;
357 }
358
359 static int hmm_vma_walk_hole(unsigned long addr,
360                              unsigned long end,
361                              struct mm_walk *walk)
362 {
363         struct hmm_vma_walk *hmm_vma_walk = walk->private;
364         struct hmm_range *range = hmm_vma_walk->range;
365         hmm_pfn_t *pfns = range->pfns;
366         unsigned long i;
367
368         hmm_vma_walk->last = addr;
369         i = (addr - range->start) >> PAGE_SHIFT;
370         for (; addr < end; addr += PAGE_SIZE, i++) {
371                 pfns[i] = HMM_PFN_EMPTY;
372                 if (hmm_vma_walk->fault) {
373                         int ret;
374
375                         ret = hmm_vma_do_fault(walk, addr, &pfns[i]);
376                         if (ret != -EAGAIN)
377                                 return ret;
378                 }
379         }
380
381         return hmm_vma_walk->fault ? -EAGAIN : 0;
382 }
383
384 static int hmm_vma_walk_clear(unsigned long addr,
385                               unsigned long end,
386                               struct mm_walk *walk)
387 {
388         struct hmm_vma_walk *hmm_vma_walk = walk->private;
389         struct hmm_range *range = hmm_vma_walk->range;
390         hmm_pfn_t *pfns = range->pfns;
391         unsigned long i;
392
393         hmm_vma_walk->last = addr;
394         i = (addr - range->start) >> PAGE_SHIFT;
395         for (; addr < end; addr += PAGE_SIZE, i++) {
396                 pfns[i] = 0;
397                 if (hmm_vma_walk->fault) {
398                         int ret;
399
400                         ret = hmm_vma_do_fault(walk, addr, &pfns[i]);
401                         if (ret != -EAGAIN)
402                                 return ret;
403                 }
404         }
405
406         return hmm_vma_walk->fault ? -EAGAIN : 0;
407 }
408
409 static int hmm_vma_walk_pmd(pmd_t *pmdp,
410                             unsigned long start,
411                             unsigned long end,
412                             struct mm_walk *walk)
413 {
414         struct hmm_vma_walk *hmm_vma_walk = walk->private;
415         struct hmm_range *range = hmm_vma_walk->range;
416         struct vm_area_struct *vma = walk->vma;
417         hmm_pfn_t *pfns = range->pfns;
418         unsigned long addr = start, i;
419         bool write_fault;
420         hmm_pfn_t flag;
421         pte_t *ptep;
422
423         i = (addr - range->start) >> PAGE_SHIFT;
424         flag = vma->vm_flags & VM_READ ? HMM_PFN_READ : 0;
425         write_fault = hmm_vma_walk->fault & hmm_vma_walk->write;
426
427 again:
428         if (pmd_none(*pmdp))
429                 return hmm_vma_walk_hole(start, end, walk);
430
431         if (pmd_huge(*pmdp) && vma->vm_flags & VM_HUGETLB)
432                 return hmm_pfns_bad(start, end, walk);
433
434         if (pmd_devmap(*pmdp) || pmd_trans_huge(*pmdp)) {
435                 unsigned long pfn;
436                 pmd_t pmd;
437
438                 /*
439                  * No need to take pmd_lock here, even if some other threads
440                  * is splitting the huge pmd we will get that event through
441                  * mmu_notifier callback.
442                  *
443                  * So just read pmd value and check again its a transparent
444                  * huge or device mapping one and compute corresponding pfn
445                  * values.
446                  */
447                 pmd = pmd_read_atomic(pmdp);
448                 barrier();
449                 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
450                         goto again;
451                 if (pmd_protnone(pmd))
452                         return hmm_vma_walk_clear(start, end, walk);
453
454                 if (write_fault && !pmd_write(pmd))
455                         return hmm_vma_walk_clear(start, end, walk);
456
457                 pfn = pmd_pfn(pmd) + pte_index(addr);
458                 flag |= pmd_write(pmd) ? HMM_PFN_WRITE : 0;
459                 for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
460                         pfns[i] = hmm_pfn_t_from_pfn(pfn) | flag;
461                 return 0;
462         }
463
464         if (pmd_bad(*pmdp))
465                 return hmm_pfns_bad(start, end, walk);
466
467         ptep = pte_offset_map(pmdp, addr);
468         for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
469                 pte_t pte = *ptep;
470
471                 pfns[i] = 0;
472
473                 if (pte_none(pte)) {
474                         pfns[i] = HMM_PFN_EMPTY;
475                         if (hmm_vma_walk->fault)
476                                 goto fault;
477                         continue;
478                 }
479
480                 if (!pte_present(pte)) {
481                         swp_entry_t entry = pte_to_swp_entry(pte);
482
483                         if (!non_swap_entry(entry)) {
484                                 if (hmm_vma_walk->fault)
485                                         goto fault;
486                                 continue;
487                         }
488
489                         /*
490                          * This is a special swap entry, ignore migration, use
491                          * device and report anything else as error.
492                          */
493                         if (is_device_private_entry(entry)) {
494                                 pfns[i] = hmm_pfn_t_from_pfn(swp_offset(entry));
495                                 if (is_write_device_private_entry(entry)) {
496                                         pfns[i] |= HMM_PFN_WRITE;
497                                 } else if (write_fault)
498                                         goto fault;
499                                 pfns[i] |= HMM_PFN_DEVICE_UNADDRESSABLE;
500                                 pfns[i] |= flag;
501                         } else if (is_migration_entry(entry)) {
502                                 if (hmm_vma_walk->fault) {
503                                         pte_unmap(ptep);
504                                         hmm_vma_walk->last = addr;
505                                         migration_entry_wait(vma->vm_mm,
506                                                              pmdp, addr);
507                                         return -EAGAIN;
508                                 }
509                                 continue;
510                         } else {
511                                 /* Report error for everything else */
512                                 pfns[i] = HMM_PFN_ERROR;
513                         }
514                         continue;
515                 }
516
517                 if (write_fault && !pte_write(pte))
518                         goto fault;
519
520                 pfns[i] = hmm_pfn_t_from_pfn(pte_pfn(pte)) | flag;
521                 pfns[i] |= pte_write(pte) ? HMM_PFN_WRITE : 0;
522                 continue;
523
524 fault:
525                 pte_unmap(ptep);
526                 /* Fault all pages in range */
527                 return hmm_vma_walk_clear(start, end, walk);
528         }
529         pte_unmap(ptep - 1);
530
531         return 0;
532 }
533
534 /*
535  * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
536  * @vma: virtual memory area containing the virtual address range
537  * @range: used to track snapshot validity
538  * @start: range virtual start address (inclusive)
539  * @end: range virtual end address (exclusive)
540  * @entries: array of hmm_pfn_t: provided by the caller, filled in by function
541  * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, 0 success
542  *
543  * This snapshots the CPU page table for a range of virtual addresses. Snapshot
544  * validity is tracked by range struct. See hmm_vma_range_done() for further
545  * information.
546  *
547  * The range struct is initialized here. It tracks the CPU page table, but only
548  * if the function returns success (0), in which case the caller must then call
549  * hmm_vma_range_done() to stop CPU page table update tracking on this range.
550  *
551  * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
552  * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
553  */
554 int hmm_vma_get_pfns(struct vm_area_struct *vma,
555                      struct hmm_range *range,
556                      unsigned long start,
557                      unsigned long end,
558                      hmm_pfn_t *pfns)
559 {
560         struct hmm_vma_walk hmm_vma_walk;
561         struct mm_walk mm_walk;
562         struct hmm *hmm;
563
564         /* FIXME support hugetlb fs */
565         if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
566                 hmm_pfns_special(pfns, start, end);
567                 return -EINVAL;
568         }
569
570         /* Sanity check, this really should not happen ! */
571         if (start < vma->vm_start || start >= vma->vm_end)
572                 return -EINVAL;
573         if (end < vma->vm_start || end > vma->vm_end)
574                 return -EINVAL;
575
576         hmm = hmm_register(vma->vm_mm);
577         if (!hmm)
578                 return -ENOMEM;
579         /* Caller must have registered a mirror, via hmm_mirror_register() ! */
580         if (!hmm->mmu_notifier.ops)
581                 return -EINVAL;
582
583         /* Initialize range to track CPU page table update */
584         range->start = start;
585         range->pfns = pfns;
586         range->end = end;
587         spin_lock(&hmm->lock);
588         range->valid = true;
589         list_add_rcu(&range->list, &hmm->ranges);
590         spin_unlock(&hmm->lock);
591
592         hmm_vma_walk.fault = false;
593         hmm_vma_walk.range = range;
594         mm_walk.private = &hmm_vma_walk;
595
596         mm_walk.vma = vma;
597         mm_walk.mm = vma->vm_mm;
598         mm_walk.pte_entry = NULL;
599         mm_walk.test_walk = NULL;
600         mm_walk.hugetlb_entry = NULL;
601         mm_walk.pmd_entry = hmm_vma_walk_pmd;
602         mm_walk.pte_hole = hmm_vma_walk_hole;
603
604         walk_page_range(start, end, &mm_walk);
605         return 0;
606 }
607 EXPORT_SYMBOL(hmm_vma_get_pfns);
608
609 /*
610  * hmm_vma_range_done() - stop tracking change to CPU page table over a range
611  * @vma: virtual memory area containing the virtual address range
612  * @range: range being tracked
613  * Returns: false if range data has been invalidated, true otherwise
614  *
615  * Range struct is used to track updates to the CPU page table after a call to
616  * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
617  * using the data,  or wants to lock updates to the data it got from those
618  * functions, it must call the hmm_vma_range_done() function, which will then
619  * stop tracking CPU page table updates.
620  *
621  * Note that device driver must still implement general CPU page table update
622  * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
623  * the mmu_notifier API directly.
624  *
625  * CPU page table update tracking done through hmm_range is only temporary and
626  * to be used while trying to duplicate CPU page table contents for a range of
627  * virtual addresses.
628  *
629  * There are two ways to use this :
630  * again:
631  *   hmm_vma_get_pfns(vma, range, start, end, pfns); or hmm_vma_fault(...);
632  *   trans = device_build_page_table_update_transaction(pfns);
633  *   device_page_table_lock();
634  *   if (!hmm_vma_range_done(vma, range)) {
635  *     device_page_table_unlock();
636  *     goto again;
637  *   }
638  *   device_commit_transaction(trans);
639  *   device_page_table_unlock();
640  *
641  * Or:
642  *   hmm_vma_get_pfns(vma, range, start, end, pfns); or hmm_vma_fault(...);
643  *   device_page_table_lock();
644  *   hmm_vma_range_done(vma, range);
645  *   device_update_page_table(pfns);
646  *   device_page_table_unlock();
647  */
648 bool hmm_vma_range_done(struct vm_area_struct *vma, struct hmm_range *range)
649 {
650         unsigned long npages = (range->end - range->start) >> PAGE_SHIFT;
651         struct hmm *hmm;
652
653         if (range->end <= range->start) {
654                 BUG();
655                 return false;
656         }
657
658         hmm = hmm_register(vma->vm_mm);
659         if (!hmm) {
660                 memset(range->pfns, 0, sizeof(*range->pfns) * npages);
661                 return false;
662         }
663
664         spin_lock(&hmm->lock);
665         list_del_rcu(&range->list);
666         spin_unlock(&hmm->lock);
667
668         return range->valid;
669 }
670 EXPORT_SYMBOL(hmm_vma_range_done);
671
672 /*
673  * hmm_vma_fault() - try to fault some address in a virtual address range
674  * @vma: virtual memory area containing the virtual address range
675  * @range: use to track pfns array content validity
676  * @start: fault range virtual start address (inclusive)
677  * @end: fault range virtual end address (exclusive)
678  * @pfns: array of hmm_pfn_t, only entry with fault flag set will be faulted
679  * @write: is it a write fault
680  * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
681  * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
682  *
683  * This is similar to a regular CPU page fault except that it will not trigger
684  * any memory migration if the memory being faulted is not accessible by CPUs.
685  *
686  * On error, for one virtual address in the range, the function will set the
687  * hmm_pfn_t error flag for the corresponding pfn entry.
688  *
689  * Expected use pattern:
690  * retry:
691  *   down_read(&mm->mmap_sem);
692  *   // Find vma and address device wants to fault, initialize hmm_pfn_t
693  *   // array accordingly
694  *   ret = hmm_vma_fault(vma, start, end, pfns, allow_retry);
695  *   switch (ret) {
696  *   case -EAGAIN:
697  *     hmm_vma_range_done(vma, range);
698  *     // You might want to rate limit or yield to play nicely, you may
699  *     // also commit any valid pfn in the array assuming that you are
700  *     // getting true from hmm_vma_range_monitor_end()
701  *     goto retry;
702  *   case 0:
703  *     break;
704  *   default:
705  *     // Handle error !
706  *     up_read(&mm->mmap_sem)
707  *     return;
708  *   }
709  *   // Take device driver lock that serialize device page table update
710  *   driver_lock_device_page_table_update();
711  *   hmm_vma_range_done(vma, range);
712  *   // Commit pfns we got from hmm_vma_fault()
713  *   driver_unlock_device_page_table_update();
714  *   up_read(&mm->mmap_sem)
715  *
716  * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
717  * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
718  *
719  * YOU HAVE BEEN WARNED !
720  */
721 int hmm_vma_fault(struct vm_area_struct *vma,
722                   struct hmm_range *range,
723                   unsigned long start,
724                   unsigned long end,
725                   hmm_pfn_t *pfns,
726                   bool write,
727                   bool block)
728 {
729         struct hmm_vma_walk hmm_vma_walk;
730         struct mm_walk mm_walk;
731         struct hmm *hmm;
732         int ret;
733
734         /* Sanity check, this really should not happen ! */
735         if (start < vma->vm_start || start >= vma->vm_end)
736                 return -EINVAL;
737         if (end < vma->vm_start || end > vma->vm_end)
738                 return -EINVAL;
739
740         hmm = hmm_register(vma->vm_mm);
741         if (!hmm) {
742                 hmm_pfns_clear(pfns, start, end);
743                 return -ENOMEM;
744         }
745         /* Caller must have registered a mirror using hmm_mirror_register() */
746         if (!hmm->mmu_notifier.ops)
747                 return -EINVAL;
748
749         /* Initialize range to track CPU page table update */
750         range->start = start;
751         range->pfns = pfns;
752         range->end = end;
753         spin_lock(&hmm->lock);
754         range->valid = true;
755         list_add_rcu(&range->list, &hmm->ranges);
756         spin_unlock(&hmm->lock);
757
758         /* FIXME support hugetlb fs */
759         if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL)) {
760                 hmm_pfns_special(pfns, start, end);
761                 return 0;
762         }
763
764         hmm_vma_walk.fault = true;
765         hmm_vma_walk.write = write;
766         hmm_vma_walk.block = block;
767         hmm_vma_walk.range = range;
768         mm_walk.private = &hmm_vma_walk;
769         hmm_vma_walk.last = range->start;
770
771         mm_walk.vma = vma;
772         mm_walk.mm = vma->vm_mm;
773         mm_walk.pte_entry = NULL;
774         mm_walk.test_walk = NULL;
775         mm_walk.hugetlb_entry = NULL;
776         mm_walk.pmd_entry = hmm_vma_walk_pmd;
777         mm_walk.pte_hole = hmm_vma_walk_hole;
778
779         do {
780                 ret = walk_page_range(start, end, &mm_walk);
781                 start = hmm_vma_walk.last;
782         } while (ret == -EAGAIN);
783
784         if (ret) {
785                 unsigned long i;
786
787                 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
788                 hmm_pfns_clear(&pfns[i], hmm_vma_walk.last, end);
789                 hmm_vma_range_done(vma, range);
790         }
791         return ret;
792 }
793 EXPORT_SYMBOL(hmm_vma_fault);
794 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
795
796
797 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) ||  IS_ENABLED(CONFIG_DEVICE_PUBLIC)
798 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
799                                        unsigned long addr)
800 {
801         struct page *page;
802
803         page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
804         if (!page)
805                 return NULL;
806         lock_page(page);
807         return page;
808 }
809 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
810
811
812 static void hmm_devmem_ref_release(struct percpu_ref *ref)
813 {
814         struct hmm_devmem *devmem;
815
816         devmem = container_of(ref, struct hmm_devmem, ref);
817         complete(&devmem->completion);
818 }
819
820 static void hmm_devmem_ref_exit(void *data)
821 {
822         struct percpu_ref *ref = data;
823         struct hmm_devmem *devmem;
824
825         devmem = container_of(ref, struct hmm_devmem, ref);
826         percpu_ref_exit(ref);
827         devm_remove_action(devmem->device, &hmm_devmem_ref_exit, data);
828 }
829
830 static void hmm_devmem_ref_kill(void *data)
831 {
832         struct percpu_ref *ref = data;
833         struct hmm_devmem *devmem;
834
835         devmem = container_of(ref, struct hmm_devmem, ref);
836         percpu_ref_kill(ref);
837         wait_for_completion(&devmem->completion);
838         devm_remove_action(devmem->device, &hmm_devmem_ref_kill, data);
839 }
840
841 static int hmm_devmem_fault(struct vm_area_struct *vma,
842                             unsigned long addr,
843                             const struct page *page,
844                             unsigned int flags,
845                             pmd_t *pmdp)
846 {
847         struct hmm_devmem *devmem = page->pgmap->data;
848
849         return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
850 }
851
852 static void hmm_devmem_free(struct page *page, void *data)
853 {
854         struct hmm_devmem *devmem = data;
855
856         devmem->ops->free(devmem, page);
857 }
858
859 static DEFINE_MUTEX(hmm_devmem_lock);
860 static RADIX_TREE(hmm_devmem_radix, GFP_KERNEL);
861
862 static void hmm_devmem_radix_release(struct resource *resource)
863 {
864         resource_size_t key, align_start, align_size;
865
866         align_start = resource->start & ~(PA_SECTION_SIZE - 1);
867         align_size = ALIGN(resource_size(resource), PA_SECTION_SIZE);
868
869         mutex_lock(&hmm_devmem_lock);
870         for (key = resource->start;
871              key <= resource->end;
872              key += PA_SECTION_SIZE)
873                 radix_tree_delete(&hmm_devmem_radix, key >> PA_SECTION_SHIFT);
874         mutex_unlock(&hmm_devmem_lock);
875 }
876
877 static void hmm_devmem_release(struct device *dev, void *data)
878 {
879         struct hmm_devmem *devmem = data;
880         struct resource *resource = devmem->resource;
881         unsigned long start_pfn, npages;
882         struct zone *zone;
883         struct page *page;
884
885         if (percpu_ref_tryget_live(&devmem->ref)) {
886                 dev_WARN(dev, "%s: page mapping is still live!\n", __func__);
887                 percpu_ref_put(&devmem->ref);
888         }
889
890         /* pages are dead and unused, undo the arch mapping */
891         start_pfn = (resource->start & ~(PA_SECTION_SIZE - 1)) >> PAGE_SHIFT;
892         npages = ALIGN(resource_size(resource), PA_SECTION_SIZE) >> PAGE_SHIFT;
893
894         page = pfn_to_page(start_pfn);
895         zone = page_zone(page);
896
897         mem_hotplug_begin();
898         if (resource->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY)
899                 __remove_pages(zone, start_pfn, npages, NULL);
900         else
901                 arch_remove_memory(start_pfn << PAGE_SHIFT,
902                                    npages << PAGE_SHIFT, NULL);
903         mem_hotplug_done();
904
905         hmm_devmem_radix_release(resource);
906 }
907
908 static struct hmm_devmem *hmm_devmem_find(resource_size_t phys)
909 {
910         WARN_ON_ONCE(!rcu_read_lock_held());
911
912         return radix_tree_lookup(&hmm_devmem_radix, phys >> PA_SECTION_SHIFT);
913 }
914
915 static int hmm_devmem_pages_create(struct hmm_devmem *devmem)
916 {
917         resource_size_t key, align_start, align_size, align_end;
918         struct device *device = devmem->device;
919         int ret, nid, is_ram;
920         unsigned long pfn;
921
922         align_start = devmem->resource->start & ~(PA_SECTION_SIZE - 1);
923         align_size = ALIGN(devmem->resource->start +
924                            resource_size(devmem->resource),
925                            PA_SECTION_SIZE) - align_start;
926
927         is_ram = region_intersects(align_start, align_size,
928                                    IORESOURCE_SYSTEM_RAM,
929                                    IORES_DESC_NONE);
930         if (is_ram == REGION_MIXED) {
931                 WARN_ONCE(1, "%s attempted on mixed region %pr\n",
932                                 __func__, devmem->resource);
933                 return -ENXIO;
934         }
935         if (is_ram == REGION_INTERSECTS)
936                 return -ENXIO;
937
938         if (devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY)
939                 devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
940         else
941                 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
942
943         devmem->pagemap.res = *devmem->resource;
944         devmem->pagemap.page_fault = hmm_devmem_fault;
945         devmem->pagemap.page_free = hmm_devmem_free;
946         devmem->pagemap.dev = devmem->device;
947         devmem->pagemap.ref = &devmem->ref;
948         devmem->pagemap.data = devmem;
949
950         mutex_lock(&hmm_devmem_lock);
951         align_end = align_start + align_size - 1;
952         for (key = align_start; key <= align_end; key += PA_SECTION_SIZE) {
953                 struct hmm_devmem *dup;
954
955                 rcu_read_lock();
956                 dup = hmm_devmem_find(key);
957                 rcu_read_unlock();
958                 if (dup) {
959                         dev_err(device, "%s: collides with mapping for %s\n",
960                                 __func__, dev_name(dup->device));
961                         mutex_unlock(&hmm_devmem_lock);
962                         ret = -EBUSY;
963                         goto error;
964                 }
965                 ret = radix_tree_insert(&hmm_devmem_radix,
966                                         key >> PA_SECTION_SHIFT,
967                                         devmem);
968                 if (ret) {
969                         dev_err(device, "%s: failed: %d\n", __func__, ret);
970                         mutex_unlock(&hmm_devmem_lock);
971                         goto error_radix;
972                 }
973         }
974         mutex_unlock(&hmm_devmem_lock);
975
976         nid = dev_to_node(device);
977         if (nid < 0)
978                 nid = numa_mem_id();
979
980         mem_hotplug_begin();
981         /*
982          * For device private memory we call add_pages() as we only need to
983          * allocate and initialize struct page for the device memory. More-
984          * over the device memory is un-accessible thus we do not want to
985          * create a linear mapping for the memory like arch_add_memory()
986          * would do.
987          *
988          * For device public memory, which is accesible by the CPU, we do
989          * want the linear mapping and thus use arch_add_memory().
990          */
991         if (devmem->pagemap.type == MEMORY_DEVICE_PUBLIC)
992                 ret = arch_add_memory(nid, align_start, align_size, NULL,
993                                 false);
994         else
995                 ret = add_pages(nid, align_start >> PAGE_SHIFT,
996                                 align_size >> PAGE_SHIFT, NULL, false);
997         if (ret) {
998                 mem_hotplug_done();
999                 goto error_add_memory;
1000         }
1001         move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
1002                                 align_start >> PAGE_SHIFT,
1003                                 align_size >> PAGE_SHIFT, NULL);
1004         mem_hotplug_done();
1005
1006         for (pfn = devmem->pfn_first; pfn < devmem->pfn_last; pfn++) {
1007                 struct page *page = pfn_to_page(pfn);
1008
1009                 page->pgmap = &devmem->pagemap;
1010         }
1011         return 0;
1012
1013 error_add_memory:
1014         untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
1015 error_radix:
1016         hmm_devmem_radix_release(devmem->resource);
1017 error:
1018         return ret;
1019 }
1020
1021 static int hmm_devmem_match(struct device *dev, void *data, void *match_data)
1022 {
1023         struct hmm_devmem *devmem = data;
1024
1025         return devmem->resource == match_data;
1026 }
1027
1028 static void hmm_devmem_pages_remove(struct hmm_devmem *devmem)
1029 {
1030         devres_release(devmem->device, &hmm_devmem_release,
1031                        &hmm_devmem_match, devmem->resource);
1032 }
1033
1034 /*
1035  * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1036  *
1037  * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1038  * @device: device struct to bind the resource too
1039  * @size: size in bytes of the device memory to add
1040  * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1041  *
1042  * This function first finds an empty range of physical address big enough to
1043  * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1044  * in turn allocates struct pages. It does not do anything beyond that; all
1045  * events affecting the memory will go through the various callbacks provided
1046  * by hmm_devmem_ops struct.
1047  *
1048  * Device driver should call this function during device initialization and
1049  * is then responsible of memory management. HMM only provides helpers.
1050  */
1051 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1052                                   struct device *device,
1053                                   unsigned long size)
1054 {
1055         struct hmm_devmem *devmem;
1056         resource_size_t addr;
1057         int ret;
1058
1059         static_branch_enable(&device_private_key);
1060
1061         devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1062                                    GFP_KERNEL, dev_to_node(device));
1063         if (!devmem)
1064                 return ERR_PTR(-ENOMEM);
1065
1066         init_completion(&devmem->completion);
1067         devmem->pfn_first = -1UL;
1068         devmem->pfn_last = -1UL;
1069         devmem->resource = NULL;
1070         devmem->device = device;
1071         devmem->ops = ops;
1072
1073         ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1074                               0, GFP_KERNEL);
1075         if (ret)
1076                 goto error_percpu_ref;
1077
1078         ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1079         if (ret)
1080                 goto error_devm_add_action;
1081
1082         size = ALIGN(size, PA_SECTION_SIZE);
1083         addr = min((unsigned long)iomem_resource.end,
1084                    (1UL << MAX_PHYSMEM_BITS) - 1);
1085         addr = addr - size + 1UL;
1086
1087         /*
1088          * FIXME add a new helper to quickly walk resource tree and find free
1089          * range
1090          *
1091          * FIXME what about ioport_resource resource ?
1092          */
1093         for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1094                 ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1095                 if (ret != REGION_DISJOINT)
1096                         continue;
1097
1098                 devmem->resource = devm_request_mem_region(device, addr, size,
1099                                                            dev_name(device));
1100                 if (!devmem->resource) {
1101                         ret = -ENOMEM;
1102                         goto error_no_resource;
1103                 }
1104                 break;
1105         }
1106         if (!devmem->resource) {
1107                 ret = -ERANGE;
1108                 goto error_no_resource;
1109         }
1110
1111         devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1112         devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1113         devmem->pfn_last = devmem->pfn_first +
1114                            (resource_size(devmem->resource) >> PAGE_SHIFT);
1115
1116         ret = hmm_devmem_pages_create(devmem);
1117         if (ret)
1118                 goto error_pages;
1119
1120         devres_add(device, devmem);
1121
1122         ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1123         if (ret) {
1124                 hmm_devmem_remove(devmem);
1125                 return ERR_PTR(ret);
1126         }
1127
1128         return devmem;
1129
1130 error_pages:
1131         devm_release_mem_region(device, devmem->resource->start,
1132                                 resource_size(devmem->resource));
1133 error_no_resource:
1134 error_devm_add_action:
1135         hmm_devmem_ref_kill(&devmem->ref);
1136         hmm_devmem_ref_exit(&devmem->ref);
1137 error_percpu_ref:
1138         devres_free(devmem);
1139         return ERR_PTR(ret);
1140 }
1141 EXPORT_SYMBOL(hmm_devmem_add);
1142
1143 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1144                                            struct device *device,
1145                                            struct resource *res)
1146 {
1147         struct hmm_devmem *devmem;
1148         int ret;
1149
1150         if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1151                 return ERR_PTR(-EINVAL);
1152
1153         static_branch_enable(&device_private_key);
1154
1155         devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1156                                    GFP_KERNEL, dev_to_node(device));
1157         if (!devmem)
1158                 return ERR_PTR(-ENOMEM);
1159
1160         init_completion(&devmem->completion);
1161         devmem->pfn_first = -1UL;
1162         devmem->pfn_last = -1UL;
1163         devmem->resource = res;
1164         devmem->device = device;
1165         devmem->ops = ops;
1166
1167         ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1168                               0, GFP_KERNEL);
1169         if (ret)
1170                 goto error_percpu_ref;
1171
1172         ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1173         if (ret)
1174                 goto error_devm_add_action;
1175
1176
1177         devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1178         devmem->pfn_last = devmem->pfn_first +
1179                            (resource_size(devmem->resource) >> PAGE_SHIFT);
1180
1181         ret = hmm_devmem_pages_create(devmem);
1182         if (ret)
1183                 goto error_devm_add_action;
1184
1185         devres_add(device, devmem);
1186
1187         ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1188         if (ret) {
1189                 hmm_devmem_remove(devmem);
1190                 return ERR_PTR(ret);
1191         }
1192
1193         return devmem;
1194
1195 error_devm_add_action:
1196         hmm_devmem_ref_kill(&devmem->ref);
1197         hmm_devmem_ref_exit(&devmem->ref);
1198 error_percpu_ref:
1199         devres_free(devmem);
1200         return ERR_PTR(ret);
1201 }
1202 EXPORT_SYMBOL(hmm_devmem_add_resource);
1203
1204 /*
1205  * hmm_devmem_remove() - remove device memory (kill and free ZONE_DEVICE)
1206  *
1207  * @devmem: hmm_devmem struct use to track and manage the ZONE_DEVICE memory
1208  *
1209  * This will hot-unplug memory that was hotplugged by hmm_devmem_add on behalf
1210  * of the device driver. It will free struct page and remove the resource that
1211  * reserved the physical address range for this device memory.
1212  */
1213 void hmm_devmem_remove(struct hmm_devmem *devmem)
1214 {
1215         resource_size_t start, size;
1216         struct device *device;
1217         bool cdm = false;
1218
1219         if (!devmem)
1220                 return;
1221
1222         device = devmem->device;
1223         start = devmem->resource->start;
1224         size = resource_size(devmem->resource);
1225
1226         cdm = devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY;
1227         hmm_devmem_ref_kill(&devmem->ref);
1228         hmm_devmem_ref_exit(&devmem->ref);
1229         hmm_devmem_pages_remove(devmem);
1230
1231         if (!cdm)
1232                 devm_release_mem_region(device, start, size);
1233 }
1234 EXPORT_SYMBOL(hmm_devmem_remove);
1235
1236 /*
1237  * A device driver that wants to handle multiple devices memory through a
1238  * single fake device can use hmm_device to do so. This is purely a helper
1239  * and it is not needed to make use of any HMM functionality.
1240  */
1241 #define HMM_DEVICE_MAX 256
1242
1243 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1244 static DEFINE_SPINLOCK(hmm_device_lock);
1245 static struct class *hmm_device_class;
1246 static dev_t hmm_device_devt;
1247
1248 static void hmm_device_release(struct device *device)
1249 {
1250         struct hmm_device *hmm_device;
1251
1252         hmm_device = container_of(device, struct hmm_device, device);
1253         spin_lock(&hmm_device_lock);
1254         clear_bit(hmm_device->minor, hmm_device_mask);
1255         spin_unlock(&hmm_device_lock);
1256
1257         kfree(hmm_device);
1258 }
1259
1260 struct hmm_device *hmm_device_new(void *drvdata)
1261 {
1262         struct hmm_device *hmm_device;
1263
1264         hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1265         if (!hmm_device)
1266                 return ERR_PTR(-ENOMEM);
1267
1268         spin_lock(&hmm_device_lock);
1269         hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1270         if (hmm_device->minor >= HMM_DEVICE_MAX) {
1271                 spin_unlock(&hmm_device_lock);
1272                 kfree(hmm_device);
1273                 return ERR_PTR(-EBUSY);
1274         }
1275         set_bit(hmm_device->minor, hmm_device_mask);
1276         spin_unlock(&hmm_device_lock);
1277
1278         dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1279         hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1280                                         hmm_device->minor);
1281         hmm_device->device.release = hmm_device_release;
1282         dev_set_drvdata(&hmm_device->device, drvdata);
1283         hmm_device->device.class = hmm_device_class;
1284         device_initialize(&hmm_device->device);
1285
1286         return hmm_device;
1287 }
1288 EXPORT_SYMBOL(hmm_device_new);
1289
1290 void hmm_device_put(struct hmm_device *hmm_device)
1291 {
1292         put_device(&hmm_device->device);
1293 }
1294 EXPORT_SYMBOL(hmm_device_put);
1295
1296 static int __init hmm_init(void)
1297 {
1298         int ret;
1299
1300         ret = alloc_chrdev_region(&hmm_device_devt, 0,
1301                                   HMM_DEVICE_MAX,
1302                                   "hmm_device");
1303         if (ret)
1304                 return ret;
1305
1306         hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1307         if (IS_ERR(hmm_device_class)) {
1308                 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1309                 return PTR_ERR(hmm_device_class);
1310         }
1311         return 0;
1312 }
1313
1314 device_initcall(hmm_init);
1315 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */