]> asedeno.scripts.mit.edu Git - linux.git/blob - mm/hugetlb.c
hugetlb, mempolicy: fix the mbind hugetlb migration
[linux.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/sched/signal.h>
22 #include <linux/rmap.h>
23 #include <linux/string_helpers.h>
24 #include <linux/swap.h>
25 #include <linux/swapops.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include <linux/userfaultfd_k.h>
37 #include <linux/page_owner.h>
38 #include "internal.h"
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44  * Minimum page order among possible hugepage sizes, set to a proper value
45  * at boot time.
46  */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55 static bool __initdata parsed_valid_hugepagesz = true;
56
57 /*
58  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
59  * free_huge_pages, and surplus_huge_pages.
60  */
61 DEFINE_SPINLOCK(hugetlb_lock);
62
63 /*
64  * Serializes faults on the same logical page.  This is used to
65  * prevent spurious OOMs when the hugepage pool is fully utilized.
66  */
67 static int num_fault_mutexes;
68 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
69
70 /* Forward declaration */
71 static int hugetlb_acct_memory(struct hstate *h, long delta);
72
73 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
74 {
75         bool free = (spool->count == 0) && (spool->used_hpages == 0);
76
77         spin_unlock(&spool->lock);
78
79         /* If no pages are used, and no other handles to the subpool
80          * remain, give up any reservations mased on minimum size and
81          * free the subpool */
82         if (free) {
83                 if (spool->min_hpages != -1)
84                         hugetlb_acct_memory(spool->hstate,
85                                                 -spool->min_hpages);
86                 kfree(spool);
87         }
88 }
89
90 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
91                                                 long min_hpages)
92 {
93         struct hugepage_subpool *spool;
94
95         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
96         if (!spool)
97                 return NULL;
98
99         spin_lock_init(&spool->lock);
100         spool->count = 1;
101         spool->max_hpages = max_hpages;
102         spool->hstate = h;
103         spool->min_hpages = min_hpages;
104
105         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
106                 kfree(spool);
107                 return NULL;
108         }
109         spool->rsv_hpages = min_hpages;
110
111         return spool;
112 }
113
114 void hugepage_put_subpool(struct hugepage_subpool *spool)
115 {
116         spin_lock(&spool->lock);
117         BUG_ON(!spool->count);
118         spool->count--;
119         unlock_or_release_subpool(spool);
120 }
121
122 /*
123  * Subpool accounting for allocating and reserving pages.
124  * Return -ENOMEM if there are not enough resources to satisfy the
125  * the request.  Otherwise, return the number of pages by which the
126  * global pools must be adjusted (upward).  The returned value may
127  * only be different than the passed value (delta) in the case where
128  * a subpool minimum size must be manitained.
129  */
130 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
131                                       long delta)
132 {
133         long ret = delta;
134
135         if (!spool)
136                 return ret;
137
138         spin_lock(&spool->lock);
139
140         if (spool->max_hpages != -1) {          /* maximum size accounting */
141                 if ((spool->used_hpages + delta) <= spool->max_hpages)
142                         spool->used_hpages += delta;
143                 else {
144                         ret = -ENOMEM;
145                         goto unlock_ret;
146                 }
147         }
148
149         /* minimum size accounting */
150         if (spool->min_hpages != -1 && spool->rsv_hpages) {
151                 if (delta > spool->rsv_hpages) {
152                         /*
153                          * Asking for more reserves than those already taken on
154                          * behalf of subpool.  Return difference.
155                          */
156                         ret = delta - spool->rsv_hpages;
157                         spool->rsv_hpages = 0;
158                 } else {
159                         ret = 0;        /* reserves already accounted for */
160                         spool->rsv_hpages -= delta;
161                 }
162         }
163
164 unlock_ret:
165         spin_unlock(&spool->lock);
166         return ret;
167 }
168
169 /*
170  * Subpool accounting for freeing and unreserving pages.
171  * Return the number of global page reservations that must be dropped.
172  * The return value may only be different than the passed value (delta)
173  * in the case where a subpool minimum size must be maintained.
174  */
175 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
176                                        long delta)
177 {
178         long ret = delta;
179
180         if (!spool)
181                 return delta;
182
183         spin_lock(&spool->lock);
184
185         if (spool->max_hpages != -1)            /* maximum size accounting */
186                 spool->used_hpages -= delta;
187
188          /* minimum size accounting */
189         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
190                 if (spool->rsv_hpages + delta <= spool->min_hpages)
191                         ret = 0;
192                 else
193                         ret = spool->rsv_hpages + delta - spool->min_hpages;
194
195                 spool->rsv_hpages += delta;
196                 if (spool->rsv_hpages > spool->min_hpages)
197                         spool->rsv_hpages = spool->min_hpages;
198         }
199
200         /*
201          * If hugetlbfs_put_super couldn't free spool due to an outstanding
202          * quota reference, free it now.
203          */
204         unlock_or_release_subpool(spool);
205
206         return ret;
207 }
208
209 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
210 {
211         return HUGETLBFS_SB(inode->i_sb)->spool;
212 }
213
214 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
215 {
216         return subpool_inode(file_inode(vma->vm_file));
217 }
218
219 /*
220  * Region tracking -- allows tracking of reservations and instantiated pages
221  *                    across the pages in a mapping.
222  *
223  * The region data structures are embedded into a resv_map and protected
224  * by a resv_map's lock.  The set of regions within the resv_map represent
225  * reservations for huge pages, or huge pages that have already been
226  * instantiated within the map.  The from and to elements are huge page
227  * indicies into the associated mapping.  from indicates the starting index
228  * of the region.  to represents the first index past the end of  the region.
229  *
230  * For example, a file region structure with from == 0 and to == 4 represents
231  * four huge pages in a mapping.  It is important to note that the to element
232  * represents the first element past the end of the region. This is used in
233  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
234  *
235  * Interval notation of the form [from, to) will be used to indicate that
236  * the endpoint from is inclusive and to is exclusive.
237  */
238 struct file_region {
239         struct list_head link;
240         long from;
241         long to;
242 };
243
244 /*
245  * Add the huge page range represented by [f, t) to the reserve
246  * map.  In the normal case, existing regions will be expanded
247  * to accommodate the specified range.  Sufficient regions should
248  * exist for expansion due to the previous call to region_chg
249  * with the same range.  However, it is possible that region_del
250  * could have been called after region_chg and modifed the map
251  * in such a way that no region exists to be expanded.  In this
252  * case, pull a region descriptor from the cache associated with
253  * the map and use that for the new range.
254  *
255  * Return the number of new huge pages added to the map.  This
256  * number is greater than or equal to zero.
257  */
258 static long region_add(struct resv_map *resv, long f, long t)
259 {
260         struct list_head *head = &resv->regions;
261         struct file_region *rg, *nrg, *trg;
262         long add = 0;
263
264         spin_lock(&resv->lock);
265         /* Locate the region we are either in or before. */
266         list_for_each_entry(rg, head, link)
267                 if (f <= rg->to)
268                         break;
269
270         /*
271          * If no region exists which can be expanded to include the
272          * specified range, the list must have been modified by an
273          * interleving call to region_del().  Pull a region descriptor
274          * from the cache and use it for this range.
275          */
276         if (&rg->link == head || t < rg->from) {
277                 VM_BUG_ON(resv->region_cache_count <= 0);
278
279                 resv->region_cache_count--;
280                 nrg = list_first_entry(&resv->region_cache, struct file_region,
281                                         link);
282                 list_del(&nrg->link);
283
284                 nrg->from = f;
285                 nrg->to = t;
286                 list_add(&nrg->link, rg->link.prev);
287
288                 add += t - f;
289                 goto out_locked;
290         }
291
292         /* Round our left edge to the current segment if it encloses us. */
293         if (f > rg->from)
294                 f = rg->from;
295
296         /* Check for and consume any regions we now overlap with. */
297         nrg = rg;
298         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
299                 if (&rg->link == head)
300                         break;
301                 if (rg->from > t)
302                         break;
303
304                 /* If this area reaches higher then extend our area to
305                  * include it completely.  If this is not the first area
306                  * which we intend to reuse, free it. */
307                 if (rg->to > t)
308                         t = rg->to;
309                 if (rg != nrg) {
310                         /* Decrement return value by the deleted range.
311                          * Another range will span this area so that by
312                          * end of routine add will be >= zero
313                          */
314                         add -= (rg->to - rg->from);
315                         list_del(&rg->link);
316                         kfree(rg);
317                 }
318         }
319
320         add += (nrg->from - f);         /* Added to beginning of region */
321         nrg->from = f;
322         add += t - nrg->to;             /* Added to end of region */
323         nrg->to = t;
324
325 out_locked:
326         resv->adds_in_progress--;
327         spin_unlock(&resv->lock);
328         VM_BUG_ON(add < 0);
329         return add;
330 }
331
332 /*
333  * Examine the existing reserve map and determine how many
334  * huge pages in the specified range [f, t) are NOT currently
335  * represented.  This routine is called before a subsequent
336  * call to region_add that will actually modify the reserve
337  * map to add the specified range [f, t).  region_chg does
338  * not change the number of huge pages represented by the
339  * map.  However, if the existing regions in the map can not
340  * be expanded to represent the new range, a new file_region
341  * structure is added to the map as a placeholder.  This is
342  * so that the subsequent region_add call will have all the
343  * regions it needs and will not fail.
344  *
345  * Upon entry, region_chg will also examine the cache of region descriptors
346  * associated with the map.  If there are not enough descriptors cached, one
347  * will be allocated for the in progress add operation.
348  *
349  * Returns the number of huge pages that need to be added to the existing
350  * reservation map for the range [f, t).  This number is greater or equal to
351  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
352  * is needed and can not be allocated.
353  */
354 static long region_chg(struct resv_map *resv, long f, long t)
355 {
356         struct list_head *head = &resv->regions;
357         struct file_region *rg, *nrg = NULL;
358         long chg = 0;
359
360 retry:
361         spin_lock(&resv->lock);
362 retry_locked:
363         resv->adds_in_progress++;
364
365         /*
366          * Check for sufficient descriptors in the cache to accommodate
367          * the number of in progress add operations.
368          */
369         if (resv->adds_in_progress > resv->region_cache_count) {
370                 struct file_region *trg;
371
372                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
373                 /* Must drop lock to allocate a new descriptor. */
374                 resv->adds_in_progress--;
375                 spin_unlock(&resv->lock);
376
377                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
378                 if (!trg) {
379                         kfree(nrg);
380                         return -ENOMEM;
381                 }
382
383                 spin_lock(&resv->lock);
384                 list_add(&trg->link, &resv->region_cache);
385                 resv->region_cache_count++;
386                 goto retry_locked;
387         }
388
389         /* Locate the region we are before or in. */
390         list_for_each_entry(rg, head, link)
391                 if (f <= rg->to)
392                         break;
393
394         /* If we are below the current region then a new region is required.
395          * Subtle, allocate a new region at the position but make it zero
396          * size such that we can guarantee to record the reservation. */
397         if (&rg->link == head || t < rg->from) {
398                 if (!nrg) {
399                         resv->adds_in_progress--;
400                         spin_unlock(&resv->lock);
401                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
402                         if (!nrg)
403                                 return -ENOMEM;
404
405                         nrg->from = f;
406                         nrg->to   = f;
407                         INIT_LIST_HEAD(&nrg->link);
408                         goto retry;
409                 }
410
411                 list_add(&nrg->link, rg->link.prev);
412                 chg = t - f;
413                 goto out_nrg;
414         }
415
416         /* Round our left edge to the current segment if it encloses us. */
417         if (f > rg->from)
418                 f = rg->from;
419         chg = t - f;
420
421         /* Check for and consume any regions we now overlap with. */
422         list_for_each_entry(rg, rg->link.prev, link) {
423                 if (&rg->link == head)
424                         break;
425                 if (rg->from > t)
426                         goto out;
427
428                 /* We overlap with this area, if it extends further than
429                  * us then we must extend ourselves.  Account for its
430                  * existing reservation. */
431                 if (rg->to > t) {
432                         chg += rg->to - t;
433                         t = rg->to;
434                 }
435                 chg -= rg->to - rg->from;
436         }
437
438 out:
439         spin_unlock(&resv->lock);
440         /*  We already know we raced and no longer need the new region */
441         kfree(nrg);
442         return chg;
443 out_nrg:
444         spin_unlock(&resv->lock);
445         return chg;
446 }
447
448 /*
449  * Abort the in progress add operation.  The adds_in_progress field
450  * of the resv_map keeps track of the operations in progress between
451  * calls to region_chg and region_add.  Operations are sometimes
452  * aborted after the call to region_chg.  In such cases, region_abort
453  * is called to decrement the adds_in_progress counter.
454  *
455  * NOTE: The range arguments [f, t) are not needed or used in this
456  * routine.  They are kept to make reading the calling code easier as
457  * arguments will match the associated region_chg call.
458  */
459 static void region_abort(struct resv_map *resv, long f, long t)
460 {
461         spin_lock(&resv->lock);
462         VM_BUG_ON(!resv->region_cache_count);
463         resv->adds_in_progress--;
464         spin_unlock(&resv->lock);
465 }
466
467 /*
468  * Delete the specified range [f, t) from the reserve map.  If the
469  * t parameter is LONG_MAX, this indicates that ALL regions after f
470  * should be deleted.  Locate the regions which intersect [f, t)
471  * and either trim, delete or split the existing regions.
472  *
473  * Returns the number of huge pages deleted from the reserve map.
474  * In the normal case, the return value is zero or more.  In the
475  * case where a region must be split, a new region descriptor must
476  * be allocated.  If the allocation fails, -ENOMEM will be returned.
477  * NOTE: If the parameter t == LONG_MAX, then we will never split
478  * a region and possibly return -ENOMEM.  Callers specifying
479  * t == LONG_MAX do not need to check for -ENOMEM error.
480  */
481 static long region_del(struct resv_map *resv, long f, long t)
482 {
483         struct list_head *head = &resv->regions;
484         struct file_region *rg, *trg;
485         struct file_region *nrg = NULL;
486         long del = 0;
487
488 retry:
489         spin_lock(&resv->lock);
490         list_for_each_entry_safe(rg, trg, head, link) {
491                 /*
492                  * Skip regions before the range to be deleted.  file_region
493                  * ranges are normally of the form [from, to).  However, there
494                  * may be a "placeholder" entry in the map which is of the form
495                  * (from, to) with from == to.  Check for placeholder entries
496                  * at the beginning of the range to be deleted.
497                  */
498                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
499                         continue;
500
501                 if (rg->from >= t)
502                         break;
503
504                 if (f > rg->from && t < rg->to) { /* Must split region */
505                         /*
506                          * Check for an entry in the cache before dropping
507                          * lock and attempting allocation.
508                          */
509                         if (!nrg &&
510                             resv->region_cache_count > resv->adds_in_progress) {
511                                 nrg = list_first_entry(&resv->region_cache,
512                                                         struct file_region,
513                                                         link);
514                                 list_del(&nrg->link);
515                                 resv->region_cache_count--;
516                         }
517
518                         if (!nrg) {
519                                 spin_unlock(&resv->lock);
520                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
521                                 if (!nrg)
522                                         return -ENOMEM;
523                                 goto retry;
524                         }
525
526                         del += t - f;
527
528                         /* New entry for end of split region */
529                         nrg->from = t;
530                         nrg->to = rg->to;
531                         INIT_LIST_HEAD(&nrg->link);
532
533                         /* Original entry is trimmed */
534                         rg->to = f;
535
536                         list_add(&nrg->link, &rg->link);
537                         nrg = NULL;
538                         break;
539                 }
540
541                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
542                         del += rg->to - rg->from;
543                         list_del(&rg->link);
544                         kfree(rg);
545                         continue;
546                 }
547
548                 if (f <= rg->from) {    /* Trim beginning of region */
549                         del += t - rg->from;
550                         rg->from = t;
551                 } else {                /* Trim end of region */
552                         del += rg->to - f;
553                         rg->to = f;
554                 }
555         }
556
557         spin_unlock(&resv->lock);
558         kfree(nrg);
559         return del;
560 }
561
562 /*
563  * A rare out of memory error was encountered which prevented removal of
564  * the reserve map region for a page.  The huge page itself was free'ed
565  * and removed from the page cache.  This routine will adjust the subpool
566  * usage count, and the global reserve count if needed.  By incrementing
567  * these counts, the reserve map entry which could not be deleted will
568  * appear as a "reserved" entry instead of simply dangling with incorrect
569  * counts.
570  */
571 void hugetlb_fix_reserve_counts(struct inode *inode)
572 {
573         struct hugepage_subpool *spool = subpool_inode(inode);
574         long rsv_adjust;
575
576         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
577         if (rsv_adjust) {
578                 struct hstate *h = hstate_inode(inode);
579
580                 hugetlb_acct_memory(h, 1);
581         }
582 }
583
584 /*
585  * Count and return the number of huge pages in the reserve map
586  * that intersect with the range [f, t).
587  */
588 static long region_count(struct resv_map *resv, long f, long t)
589 {
590         struct list_head *head = &resv->regions;
591         struct file_region *rg;
592         long chg = 0;
593
594         spin_lock(&resv->lock);
595         /* Locate each segment we overlap with, and count that overlap. */
596         list_for_each_entry(rg, head, link) {
597                 long seg_from;
598                 long seg_to;
599
600                 if (rg->to <= f)
601                         continue;
602                 if (rg->from >= t)
603                         break;
604
605                 seg_from = max(rg->from, f);
606                 seg_to = min(rg->to, t);
607
608                 chg += seg_to - seg_from;
609         }
610         spin_unlock(&resv->lock);
611
612         return chg;
613 }
614
615 /*
616  * Convert the address within this vma to the page offset within
617  * the mapping, in pagecache page units; huge pages here.
618  */
619 static pgoff_t vma_hugecache_offset(struct hstate *h,
620                         struct vm_area_struct *vma, unsigned long address)
621 {
622         return ((address - vma->vm_start) >> huge_page_shift(h)) +
623                         (vma->vm_pgoff >> huge_page_order(h));
624 }
625
626 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
627                                      unsigned long address)
628 {
629         return vma_hugecache_offset(hstate_vma(vma), vma, address);
630 }
631 EXPORT_SYMBOL_GPL(linear_hugepage_index);
632
633 /*
634  * Return the size of the pages allocated when backing a VMA. In the majority
635  * cases this will be same size as used by the page table entries.
636  */
637 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
638 {
639         struct hstate *hstate;
640
641         if (!is_vm_hugetlb_page(vma))
642                 return PAGE_SIZE;
643
644         hstate = hstate_vma(vma);
645
646         return 1UL << huge_page_shift(hstate);
647 }
648 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
649
650 /*
651  * Return the page size being used by the MMU to back a VMA. In the majority
652  * of cases, the page size used by the kernel matches the MMU size. On
653  * architectures where it differs, an architecture-specific version of this
654  * function is required.
655  */
656 #ifndef vma_mmu_pagesize
657 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
658 {
659         return vma_kernel_pagesize(vma);
660 }
661 #endif
662
663 /*
664  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
665  * bits of the reservation map pointer, which are always clear due to
666  * alignment.
667  */
668 #define HPAGE_RESV_OWNER    (1UL << 0)
669 #define HPAGE_RESV_UNMAPPED (1UL << 1)
670 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
671
672 /*
673  * These helpers are used to track how many pages are reserved for
674  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
675  * is guaranteed to have their future faults succeed.
676  *
677  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
678  * the reserve counters are updated with the hugetlb_lock held. It is safe
679  * to reset the VMA at fork() time as it is not in use yet and there is no
680  * chance of the global counters getting corrupted as a result of the values.
681  *
682  * The private mapping reservation is represented in a subtly different
683  * manner to a shared mapping.  A shared mapping has a region map associated
684  * with the underlying file, this region map represents the backing file
685  * pages which have ever had a reservation assigned which this persists even
686  * after the page is instantiated.  A private mapping has a region map
687  * associated with the original mmap which is attached to all VMAs which
688  * reference it, this region map represents those offsets which have consumed
689  * reservation ie. where pages have been instantiated.
690  */
691 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
692 {
693         return (unsigned long)vma->vm_private_data;
694 }
695
696 static void set_vma_private_data(struct vm_area_struct *vma,
697                                                         unsigned long value)
698 {
699         vma->vm_private_data = (void *)value;
700 }
701
702 struct resv_map *resv_map_alloc(void)
703 {
704         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
705         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
706
707         if (!resv_map || !rg) {
708                 kfree(resv_map);
709                 kfree(rg);
710                 return NULL;
711         }
712
713         kref_init(&resv_map->refs);
714         spin_lock_init(&resv_map->lock);
715         INIT_LIST_HEAD(&resv_map->regions);
716
717         resv_map->adds_in_progress = 0;
718
719         INIT_LIST_HEAD(&resv_map->region_cache);
720         list_add(&rg->link, &resv_map->region_cache);
721         resv_map->region_cache_count = 1;
722
723         return resv_map;
724 }
725
726 void resv_map_release(struct kref *ref)
727 {
728         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
729         struct list_head *head = &resv_map->region_cache;
730         struct file_region *rg, *trg;
731
732         /* Clear out any active regions before we release the map. */
733         region_del(resv_map, 0, LONG_MAX);
734
735         /* ... and any entries left in the cache */
736         list_for_each_entry_safe(rg, trg, head, link) {
737                 list_del(&rg->link);
738                 kfree(rg);
739         }
740
741         VM_BUG_ON(resv_map->adds_in_progress);
742
743         kfree(resv_map);
744 }
745
746 static inline struct resv_map *inode_resv_map(struct inode *inode)
747 {
748         return inode->i_mapping->private_data;
749 }
750
751 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
752 {
753         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
754         if (vma->vm_flags & VM_MAYSHARE) {
755                 struct address_space *mapping = vma->vm_file->f_mapping;
756                 struct inode *inode = mapping->host;
757
758                 return inode_resv_map(inode);
759
760         } else {
761                 return (struct resv_map *)(get_vma_private_data(vma) &
762                                                         ~HPAGE_RESV_MASK);
763         }
764 }
765
766 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
767 {
768         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
769         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
770
771         set_vma_private_data(vma, (get_vma_private_data(vma) &
772                                 HPAGE_RESV_MASK) | (unsigned long)map);
773 }
774
775 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
776 {
777         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
778         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
779
780         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
781 }
782
783 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
784 {
785         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
786
787         return (get_vma_private_data(vma) & flag) != 0;
788 }
789
790 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
791 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
792 {
793         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
794         if (!(vma->vm_flags & VM_MAYSHARE))
795                 vma->vm_private_data = (void *)0;
796 }
797
798 /* Returns true if the VMA has associated reserve pages */
799 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
800 {
801         if (vma->vm_flags & VM_NORESERVE) {
802                 /*
803                  * This address is already reserved by other process(chg == 0),
804                  * so, we should decrement reserved count. Without decrementing,
805                  * reserve count remains after releasing inode, because this
806                  * allocated page will go into page cache and is regarded as
807                  * coming from reserved pool in releasing step.  Currently, we
808                  * don't have any other solution to deal with this situation
809                  * properly, so add work-around here.
810                  */
811                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
812                         return true;
813                 else
814                         return false;
815         }
816
817         /* Shared mappings always use reserves */
818         if (vma->vm_flags & VM_MAYSHARE) {
819                 /*
820                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
821                  * be a region map for all pages.  The only situation where
822                  * there is no region map is if a hole was punched via
823                  * fallocate.  In this case, there really are no reverves to
824                  * use.  This situation is indicated if chg != 0.
825                  */
826                 if (chg)
827                         return false;
828                 else
829                         return true;
830         }
831
832         /*
833          * Only the process that called mmap() has reserves for
834          * private mappings.
835          */
836         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
837                 /*
838                  * Like the shared case above, a hole punch or truncate
839                  * could have been performed on the private mapping.
840                  * Examine the value of chg to determine if reserves
841                  * actually exist or were previously consumed.
842                  * Very Subtle - The value of chg comes from a previous
843                  * call to vma_needs_reserves().  The reserve map for
844                  * private mappings has different (opposite) semantics
845                  * than that of shared mappings.  vma_needs_reserves()
846                  * has already taken this difference in semantics into
847                  * account.  Therefore, the meaning of chg is the same
848                  * as in the shared case above.  Code could easily be
849                  * combined, but keeping it separate draws attention to
850                  * subtle differences.
851                  */
852                 if (chg)
853                         return false;
854                 else
855                         return true;
856         }
857
858         return false;
859 }
860
861 static void enqueue_huge_page(struct hstate *h, struct page *page)
862 {
863         int nid = page_to_nid(page);
864         list_move(&page->lru, &h->hugepage_freelists[nid]);
865         h->free_huge_pages++;
866         h->free_huge_pages_node[nid]++;
867 }
868
869 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
870 {
871         struct page *page;
872
873         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
874                 if (!PageHWPoison(page))
875                         break;
876         /*
877          * if 'non-isolated free hugepage' not found on the list,
878          * the allocation fails.
879          */
880         if (&h->hugepage_freelists[nid] == &page->lru)
881                 return NULL;
882         list_move(&page->lru, &h->hugepage_activelist);
883         set_page_refcounted(page);
884         h->free_huge_pages--;
885         h->free_huge_pages_node[nid]--;
886         return page;
887 }
888
889 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
890                 nodemask_t *nmask)
891 {
892         unsigned int cpuset_mems_cookie;
893         struct zonelist *zonelist;
894         struct zone *zone;
895         struct zoneref *z;
896         int node = -1;
897
898         zonelist = node_zonelist(nid, gfp_mask);
899
900 retry_cpuset:
901         cpuset_mems_cookie = read_mems_allowed_begin();
902         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
903                 struct page *page;
904
905                 if (!cpuset_zone_allowed(zone, gfp_mask))
906                         continue;
907                 /*
908                  * no need to ask again on the same node. Pool is node rather than
909                  * zone aware
910                  */
911                 if (zone_to_nid(zone) == node)
912                         continue;
913                 node = zone_to_nid(zone);
914
915                 page = dequeue_huge_page_node_exact(h, node);
916                 if (page)
917                         return page;
918         }
919         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
920                 goto retry_cpuset;
921
922         return NULL;
923 }
924
925 /* Movability of hugepages depends on migration support. */
926 static inline gfp_t htlb_alloc_mask(struct hstate *h)
927 {
928         if (hugepage_migration_supported(h))
929                 return GFP_HIGHUSER_MOVABLE;
930         else
931                 return GFP_HIGHUSER;
932 }
933
934 static struct page *dequeue_huge_page_vma(struct hstate *h,
935                                 struct vm_area_struct *vma,
936                                 unsigned long address, int avoid_reserve,
937                                 long chg)
938 {
939         struct page *page;
940         struct mempolicy *mpol;
941         gfp_t gfp_mask;
942         nodemask_t *nodemask;
943         int nid;
944
945         /*
946          * A child process with MAP_PRIVATE mappings created by their parent
947          * have no page reserves. This check ensures that reservations are
948          * not "stolen". The child may still get SIGKILLed
949          */
950         if (!vma_has_reserves(vma, chg) &&
951                         h->free_huge_pages - h->resv_huge_pages == 0)
952                 goto err;
953
954         /* If reserves cannot be used, ensure enough pages are in the pool */
955         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
956                 goto err;
957
958         gfp_mask = htlb_alloc_mask(h);
959         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
960         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
961         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
962                 SetPagePrivate(page);
963                 h->resv_huge_pages--;
964         }
965
966         mpol_cond_put(mpol);
967         return page;
968
969 err:
970         return NULL;
971 }
972
973 /*
974  * common helper functions for hstate_next_node_to_{alloc|free}.
975  * We may have allocated or freed a huge page based on a different
976  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
977  * be outside of *nodes_allowed.  Ensure that we use an allowed
978  * node for alloc or free.
979  */
980 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
981 {
982         nid = next_node_in(nid, *nodes_allowed);
983         VM_BUG_ON(nid >= MAX_NUMNODES);
984
985         return nid;
986 }
987
988 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
989 {
990         if (!node_isset(nid, *nodes_allowed))
991                 nid = next_node_allowed(nid, nodes_allowed);
992         return nid;
993 }
994
995 /*
996  * returns the previously saved node ["this node"] from which to
997  * allocate a persistent huge page for the pool and advance the
998  * next node from which to allocate, handling wrap at end of node
999  * mask.
1000  */
1001 static int hstate_next_node_to_alloc(struct hstate *h,
1002                                         nodemask_t *nodes_allowed)
1003 {
1004         int nid;
1005
1006         VM_BUG_ON(!nodes_allowed);
1007
1008         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1009         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1010
1011         return nid;
1012 }
1013
1014 /*
1015  * helper for free_pool_huge_page() - return the previously saved
1016  * node ["this node"] from which to free a huge page.  Advance the
1017  * next node id whether or not we find a free huge page to free so
1018  * that the next attempt to free addresses the next node.
1019  */
1020 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1021 {
1022         int nid;
1023
1024         VM_BUG_ON(!nodes_allowed);
1025
1026         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1027         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1028
1029         return nid;
1030 }
1031
1032 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1033         for (nr_nodes = nodes_weight(*mask);                            \
1034                 nr_nodes > 0 &&                                         \
1035                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1036                 nr_nodes--)
1037
1038 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1039         for (nr_nodes = nodes_weight(*mask);                            \
1040                 nr_nodes > 0 &&                                         \
1041                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1042                 nr_nodes--)
1043
1044 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1045 static void destroy_compound_gigantic_page(struct page *page,
1046                                         unsigned int order)
1047 {
1048         int i;
1049         int nr_pages = 1 << order;
1050         struct page *p = page + 1;
1051
1052         atomic_set(compound_mapcount_ptr(page), 0);
1053         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1054                 clear_compound_head(p);
1055                 set_page_refcounted(p);
1056         }
1057
1058         set_compound_order(page, 0);
1059         __ClearPageHead(page);
1060 }
1061
1062 static void free_gigantic_page(struct page *page, unsigned int order)
1063 {
1064         free_contig_range(page_to_pfn(page), 1 << order);
1065 }
1066
1067 static int __alloc_gigantic_page(unsigned long start_pfn,
1068                                 unsigned long nr_pages, gfp_t gfp_mask)
1069 {
1070         unsigned long end_pfn = start_pfn + nr_pages;
1071         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1072                                   gfp_mask);
1073 }
1074
1075 static bool pfn_range_valid_gigantic(struct zone *z,
1076                         unsigned long start_pfn, unsigned long nr_pages)
1077 {
1078         unsigned long i, end_pfn = start_pfn + nr_pages;
1079         struct page *page;
1080
1081         for (i = start_pfn; i < end_pfn; i++) {
1082                 if (!pfn_valid(i))
1083                         return false;
1084
1085                 page = pfn_to_page(i);
1086
1087                 if (page_zone(page) != z)
1088                         return false;
1089
1090                 if (PageReserved(page))
1091                         return false;
1092
1093                 if (page_count(page) > 0)
1094                         return false;
1095
1096                 if (PageHuge(page))
1097                         return false;
1098         }
1099
1100         return true;
1101 }
1102
1103 static bool zone_spans_last_pfn(const struct zone *zone,
1104                         unsigned long start_pfn, unsigned long nr_pages)
1105 {
1106         unsigned long last_pfn = start_pfn + nr_pages - 1;
1107         return zone_spans_pfn(zone, last_pfn);
1108 }
1109
1110 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1111                 int nid, nodemask_t *nodemask)
1112 {
1113         unsigned int order = huge_page_order(h);
1114         unsigned long nr_pages = 1 << order;
1115         unsigned long ret, pfn, flags;
1116         struct zonelist *zonelist;
1117         struct zone *zone;
1118         struct zoneref *z;
1119
1120         zonelist = node_zonelist(nid, gfp_mask);
1121         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1122                 spin_lock_irqsave(&zone->lock, flags);
1123
1124                 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1125                 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1126                         if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1127                                 /*
1128                                  * We release the zone lock here because
1129                                  * alloc_contig_range() will also lock the zone
1130                                  * at some point. If there's an allocation
1131                                  * spinning on this lock, it may win the race
1132                                  * and cause alloc_contig_range() to fail...
1133                                  */
1134                                 spin_unlock_irqrestore(&zone->lock, flags);
1135                                 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1136                                 if (!ret)
1137                                         return pfn_to_page(pfn);
1138                                 spin_lock_irqsave(&zone->lock, flags);
1139                         }
1140                         pfn += nr_pages;
1141                 }
1142
1143                 spin_unlock_irqrestore(&zone->lock, flags);
1144         }
1145
1146         return NULL;
1147 }
1148
1149 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1150 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1151
1152 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1153 static inline bool gigantic_page_supported(void) { return false; }
1154 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1155                 int nid, nodemask_t *nodemask) { return NULL; }
1156 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1157 static inline void destroy_compound_gigantic_page(struct page *page,
1158                                                 unsigned int order) { }
1159 #endif
1160
1161 static void update_and_free_page(struct hstate *h, struct page *page)
1162 {
1163         int i;
1164
1165         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1166                 return;
1167
1168         h->nr_huge_pages--;
1169         h->nr_huge_pages_node[page_to_nid(page)]--;
1170         for (i = 0; i < pages_per_huge_page(h); i++) {
1171                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1172                                 1 << PG_referenced | 1 << PG_dirty |
1173                                 1 << PG_active | 1 << PG_private |
1174                                 1 << PG_writeback);
1175         }
1176         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1177         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1178         set_page_refcounted(page);
1179         if (hstate_is_gigantic(h)) {
1180                 destroy_compound_gigantic_page(page, huge_page_order(h));
1181                 free_gigantic_page(page, huge_page_order(h));
1182         } else {
1183                 __free_pages(page, huge_page_order(h));
1184         }
1185 }
1186
1187 struct hstate *size_to_hstate(unsigned long size)
1188 {
1189         struct hstate *h;
1190
1191         for_each_hstate(h) {
1192                 if (huge_page_size(h) == size)
1193                         return h;
1194         }
1195         return NULL;
1196 }
1197
1198 /*
1199  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1200  * to hstate->hugepage_activelist.)
1201  *
1202  * This function can be called for tail pages, but never returns true for them.
1203  */
1204 bool page_huge_active(struct page *page)
1205 {
1206         VM_BUG_ON_PAGE(!PageHuge(page), page);
1207         return PageHead(page) && PagePrivate(&page[1]);
1208 }
1209
1210 /* never called for tail page */
1211 static void set_page_huge_active(struct page *page)
1212 {
1213         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1214         SetPagePrivate(&page[1]);
1215 }
1216
1217 static void clear_page_huge_active(struct page *page)
1218 {
1219         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1220         ClearPagePrivate(&page[1]);
1221 }
1222
1223 /*
1224  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1225  * code
1226  */
1227 static inline bool PageHugeTemporary(struct page *page)
1228 {
1229         if (!PageHuge(page))
1230                 return false;
1231
1232         return (unsigned long)page[2].mapping == -1U;
1233 }
1234
1235 static inline void SetPageHugeTemporary(struct page *page)
1236 {
1237         page[2].mapping = (void *)-1U;
1238 }
1239
1240 static inline void ClearPageHugeTemporary(struct page *page)
1241 {
1242         page[2].mapping = NULL;
1243 }
1244
1245 void free_huge_page(struct page *page)
1246 {
1247         /*
1248          * Can't pass hstate in here because it is called from the
1249          * compound page destructor.
1250          */
1251         struct hstate *h = page_hstate(page);
1252         int nid = page_to_nid(page);
1253         struct hugepage_subpool *spool =
1254                 (struct hugepage_subpool *)page_private(page);
1255         bool restore_reserve;
1256
1257         set_page_private(page, 0);
1258         page->mapping = NULL;
1259         VM_BUG_ON_PAGE(page_count(page), page);
1260         VM_BUG_ON_PAGE(page_mapcount(page), page);
1261         restore_reserve = PagePrivate(page);
1262         ClearPagePrivate(page);
1263
1264         /*
1265          * A return code of zero implies that the subpool will be under its
1266          * minimum size if the reservation is not restored after page is free.
1267          * Therefore, force restore_reserve operation.
1268          */
1269         if (hugepage_subpool_put_pages(spool, 1) == 0)
1270                 restore_reserve = true;
1271
1272         spin_lock(&hugetlb_lock);
1273         clear_page_huge_active(page);
1274         hugetlb_cgroup_uncharge_page(hstate_index(h),
1275                                      pages_per_huge_page(h), page);
1276         if (restore_reserve)
1277                 h->resv_huge_pages++;
1278
1279         if (PageHugeTemporary(page)) {
1280                 list_del(&page->lru);
1281                 ClearPageHugeTemporary(page);
1282                 update_and_free_page(h, page);
1283         } else if (h->surplus_huge_pages_node[nid]) {
1284                 /* remove the page from active list */
1285                 list_del(&page->lru);
1286                 update_and_free_page(h, page);
1287                 h->surplus_huge_pages--;
1288                 h->surplus_huge_pages_node[nid]--;
1289         } else {
1290                 arch_clear_hugepage_flags(page);
1291                 enqueue_huge_page(h, page);
1292         }
1293         spin_unlock(&hugetlb_lock);
1294 }
1295
1296 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1297 {
1298         INIT_LIST_HEAD(&page->lru);
1299         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1300         spin_lock(&hugetlb_lock);
1301         set_hugetlb_cgroup(page, NULL);
1302         h->nr_huge_pages++;
1303         h->nr_huge_pages_node[nid]++;
1304         spin_unlock(&hugetlb_lock);
1305 }
1306
1307 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1308 {
1309         int i;
1310         int nr_pages = 1 << order;
1311         struct page *p = page + 1;
1312
1313         /* we rely on prep_new_huge_page to set the destructor */
1314         set_compound_order(page, order);
1315         __ClearPageReserved(page);
1316         __SetPageHead(page);
1317         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1318                 /*
1319                  * For gigantic hugepages allocated through bootmem at
1320                  * boot, it's safer to be consistent with the not-gigantic
1321                  * hugepages and clear the PG_reserved bit from all tail pages
1322                  * too.  Otherwse drivers using get_user_pages() to access tail
1323                  * pages may get the reference counting wrong if they see
1324                  * PG_reserved set on a tail page (despite the head page not
1325                  * having PG_reserved set).  Enforcing this consistency between
1326                  * head and tail pages allows drivers to optimize away a check
1327                  * on the head page when they need know if put_page() is needed
1328                  * after get_user_pages().
1329                  */
1330                 __ClearPageReserved(p);
1331                 set_page_count(p, 0);
1332                 set_compound_head(p, page);
1333         }
1334         atomic_set(compound_mapcount_ptr(page), -1);
1335 }
1336
1337 /*
1338  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1339  * transparent huge pages.  See the PageTransHuge() documentation for more
1340  * details.
1341  */
1342 int PageHuge(struct page *page)
1343 {
1344         if (!PageCompound(page))
1345                 return 0;
1346
1347         page = compound_head(page);
1348         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1349 }
1350 EXPORT_SYMBOL_GPL(PageHuge);
1351
1352 /*
1353  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1354  * normal or transparent huge pages.
1355  */
1356 int PageHeadHuge(struct page *page_head)
1357 {
1358         if (!PageHead(page_head))
1359                 return 0;
1360
1361         return get_compound_page_dtor(page_head) == free_huge_page;
1362 }
1363
1364 pgoff_t __basepage_index(struct page *page)
1365 {
1366         struct page *page_head = compound_head(page);
1367         pgoff_t index = page_index(page_head);
1368         unsigned long compound_idx;
1369
1370         if (!PageHuge(page_head))
1371                 return page_index(page);
1372
1373         if (compound_order(page_head) >= MAX_ORDER)
1374                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1375         else
1376                 compound_idx = page - page_head;
1377
1378         return (index << compound_order(page_head)) + compound_idx;
1379 }
1380
1381 static struct page *alloc_buddy_huge_page(struct hstate *h,
1382                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1383 {
1384         int order = huge_page_order(h);
1385         struct page *page;
1386
1387         gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1388         if (nid == NUMA_NO_NODE)
1389                 nid = numa_mem_id();
1390         page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1391         if (page)
1392                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1393         else
1394                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1395
1396         return page;
1397 }
1398
1399 /*
1400  * Common helper to allocate a fresh hugetlb page. All specific allocators
1401  * should use this function to get new hugetlb pages
1402  */
1403 static struct page *alloc_fresh_huge_page(struct hstate *h,
1404                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1405 {
1406         struct page *page;
1407
1408         if (hstate_is_gigantic(h))
1409                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1410         else
1411                 page = alloc_buddy_huge_page(h, gfp_mask,
1412                                 nid, nmask);
1413         if (!page)
1414                 return NULL;
1415
1416         if (hstate_is_gigantic(h))
1417                 prep_compound_gigantic_page(page, huge_page_order(h));
1418         prep_new_huge_page(h, page, page_to_nid(page));
1419
1420         return page;
1421 }
1422
1423 /*
1424  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1425  * manner.
1426  */
1427 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1428 {
1429         struct page *page;
1430         int nr_nodes, node;
1431         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1432
1433         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1434                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1435                 if (page)
1436                         break;
1437         }
1438
1439         if (!page)
1440                 return 0;
1441
1442         put_page(page); /* free it into the hugepage allocator */
1443
1444         return 1;
1445 }
1446
1447 /*
1448  * Free huge page from pool from next node to free.
1449  * Attempt to keep persistent huge pages more or less
1450  * balanced over allowed nodes.
1451  * Called with hugetlb_lock locked.
1452  */
1453 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1454                                                          bool acct_surplus)
1455 {
1456         int nr_nodes, node;
1457         int ret = 0;
1458
1459         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1460                 /*
1461                  * If we're returning unused surplus pages, only examine
1462                  * nodes with surplus pages.
1463                  */
1464                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1465                     !list_empty(&h->hugepage_freelists[node])) {
1466                         struct page *page =
1467                                 list_entry(h->hugepage_freelists[node].next,
1468                                           struct page, lru);
1469                         list_del(&page->lru);
1470                         h->free_huge_pages--;
1471                         h->free_huge_pages_node[node]--;
1472                         if (acct_surplus) {
1473                                 h->surplus_huge_pages--;
1474                                 h->surplus_huge_pages_node[node]--;
1475                         }
1476                         update_and_free_page(h, page);
1477                         ret = 1;
1478                         break;
1479                 }
1480         }
1481
1482         return ret;
1483 }
1484
1485 /*
1486  * Dissolve a given free hugepage into free buddy pages. This function does
1487  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1488  * number of free hugepages would be reduced below the number of reserved
1489  * hugepages.
1490  */
1491 int dissolve_free_huge_page(struct page *page)
1492 {
1493         int rc = 0;
1494
1495         spin_lock(&hugetlb_lock);
1496         if (PageHuge(page) && !page_count(page)) {
1497                 struct page *head = compound_head(page);
1498                 struct hstate *h = page_hstate(head);
1499                 int nid = page_to_nid(head);
1500                 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1501                         rc = -EBUSY;
1502                         goto out;
1503                 }
1504                 /*
1505                  * Move PageHWPoison flag from head page to the raw error page,
1506                  * which makes any subpages rather than the error page reusable.
1507                  */
1508                 if (PageHWPoison(head) && page != head) {
1509                         SetPageHWPoison(page);
1510                         ClearPageHWPoison(head);
1511                 }
1512                 list_del(&head->lru);
1513                 h->free_huge_pages--;
1514                 h->free_huge_pages_node[nid]--;
1515                 h->max_huge_pages--;
1516                 update_and_free_page(h, head);
1517         }
1518 out:
1519         spin_unlock(&hugetlb_lock);
1520         return rc;
1521 }
1522
1523 /*
1524  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1525  * make specified memory blocks removable from the system.
1526  * Note that this will dissolve a free gigantic hugepage completely, if any
1527  * part of it lies within the given range.
1528  * Also note that if dissolve_free_huge_page() returns with an error, all
1529  * free hugepages that were dissolved before that error are lost.
1530  */
1531 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1532 {
1533         unsigned long pfn;
1534         struct page *page;
1535         int rc = 0;
1536
1537         if (!hugepages_supported())
1538                 return rc;
1539
1540         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1541                 page = pfn_to_page(pfn);
1542                 if (PageHuge(page) && !page_count(page)) {
1543                         rc = dissolve_free_huge_page(page);
1544                         if (rc)
1545                                 break;
1546                 }
1547         }
1548
1549         return rc;
1550 }
1551
1552 /*
1553  * Allocates a fresh surplus page from the page allocator.
1554  */
1555 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1556                 int nid, nodemask_t *nmask)
1557 {
1558         struct page *page = NULL;
1559
1560         if (hstate_is_gigantic(h))
1561                 return NULL;
1562
1563         spin_lock(&hugetlb_lock);
1564         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1565                 goto out_unlock;
1566         spin_unlock(&hugetlb_lock);
1567
1568         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1569         if (!page)
1570                 return NULL;
1571
1572         spin_lock(&hugetlb_lock);
1573         /*
1574          * We could have raced with the pool size change.
1575          * Double check that and simply deallocate the new page
1576          * if we would end up overcommiting the surpluses. Abuse
1577          * temporary page to workaround the nasty free_huge_page
1578          * codeflow
1579          */
1580         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1581                 SetPageHugeTemporary(page);
1582                 put_page(page);
1583                 page = NULL;
1584         } else {
1585                 h->surplus_huge_pages++;
1586                 h->nr_huge_pages_node[page_to_nid(page)]++;
1587         }
1588
1589 out_unlock:
1590         spin_unlock(&hugetlb_lock);
1591
1592         return page;
1593 }
1594
1595 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1596                 int nid, nodemask_t *nmask)
1597 {
1598         struct page *page;
1599
1600         if (hstate_is_gigantic(h))
1601                 return NULL;
1602
1603         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1604         if (!page)
1605                 return NULL;
1606
1607         /*
1608          * We do not account these pages as surplus because they are only
1609          * temporary and will be released properly on the last reference
1610          */
1611         SetPageHugeTemporary(page);
1612
1613         return page;
1614 }
1615
1616 /*
1617  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1618  */
1619 static
1620 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1621                 struct vm_area_struct *vma, unsigned long addr)
1622 {
1623         struct page *page;
1624         struct mempolicy *mpol;
1625         gfp_t gfp_mask = htlb_alloc_mask(h);
1626         int nid;
1627         nodemask_t *nodemask;
1628
1629         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1630         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1631         mpol_cond_put(mpol);
1632
1633         return page;
1634 }
1635
1636 /* page migration callback function */
1637 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1638 {
1639         gfp_t gfp_mask = htlb_alloc_mask(h);
1640         struct page *page = NULL;
1641
1642         if (nid != NUMA_NO_NODE)
1643                 gfp_mask |= __GFP_THISNODE;
1644
1645         spin_lock(&hugetlb_lock);
1646         if (h->free_huge_pages - h->resv_huge_pages > 0)
1647                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1648         spin_unlock(&hugetlb_lock);
1649
1650         if (!page)
1651                 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1652
1653         return page;
1654 }
1655
1656 /* page migration callback function */
1657 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1658                 nodemask_t *nmask)
1659 {
1660         gfp_t gfp_mask = htlb_alloc_mask(h);
1661
1662         spin_lock(&hugetlb_lock);
1663         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1664                 struct page *page;
1665
1666                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1667                 if (page) {
1668                         spin_unlock(&hugetlb_lock);
1669                         return page;
1670                 }
1671         }
1672         spin_unlock(&hugetlb_lock);
1673
1674         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1675 }
1676
1677 /* mempolicy aware migration callback */
1678 struct page *alloc_huge_page_vma(struct vm_area_struct *vma, unsigned long address)
1679 {
1680         struct mempolicy *mpol;
1681         nodemask_t *nodemask;
1682         struct page *page;
1683         struct hstate *h;
1684         gfp_t gfp_mask;
1685         int node;
1686
1687         h = hstate_vma(vma);
1688         gfp_mask = htlb_alloc_mask(h);
1689         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1690         page = alloc_huge_page_nodemask(h, node, nodemask);
1691         mpol_cond_put(mpol);
1692
1693         return page;
1694 }
1695
1696 /*
1697  * Increase the hugetlb pool such that it can accommodate a reservation
1698  * of size 'delta'.
1699  */
1700 static int gather_surplus_pages(struct hstate *h, int delta)
1701 {
1702         struct list_head surplus_list;
1703         struct page *page, *tmp;
1704         int ret, i;
1705         int needed, allocated;
1706         bool alloc_ok = true;
1707
1708         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1709         if (needed <= 0) {
1710                 h->resv_huge_pages += delta;
1711                 return 0;
1712         }
1713
1714         allocated = 0;
1715         INIT_LIST_HEAD(&surplus_list);
1716
1717         ret = -ENOMEM;
1718 retry:
1719         spin_unlock(&hugetlb_lock);
1720         for (i = 0; i < needed; i++) {
1721                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1722                                 NUMA_NO_NODE, NULL);
1723                 if (!page) {
1724                         alloc_ok = false;
1725                         break;
1726                 }
1727                 list_add(&page->lru, &surplus_list);
1728                 cond_resched();
1729         }
1730         allocated += i;
1731
1732         /*
1733          * After retaking hugetlb_lock, we need to recalculate 'needed'
1734          * because either resv_huge_pages or free_huge_pages may have changed.
1735          */
1736         spin_lock(&hugetlb_lock);
1737         needed = (h->resv_huge_pages + delta) -
1738                         (h->free_huge_pages + allocated);
1739         if (needed > 0) {
1740                 if (alloc_ok)
1741                         goto retry;
1742                 /*
1743                  * We were not able to allocate enough pages to
1744                  * satisfy the entire reservation so we free what
1745                  * we've allocated so far.
1746                  */
1747                 goto free;
1748         }
1749         /*
1750          * The surplus_list now contains _at_least_ the number of extra pages
1751          * needed to accommodate the reservation.  Add the appropriate number
1752          * of pages to the hugetlb pool and free the extras back to the buddy
1753          * allocator.  Commit the entire reservation here to prevent another
1754          * process from stealing the pages as they are added to the pool but
1755          * before they are reserved.
1756          */
1757         needed += allocated;
1758         h->resv_huge_pages += delta;
1759         ret = 0;
1760
1761         /* Free the needed pages to the hugetlb pool */
1762         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1763                 if ((--needed) < 0)
1764                         break;
1765                 /*
1766                  * This page is now managed by the hugetlb allocator and has
1767                  * no users -- drop the buddy allocator's reference.
1768                  */
1769                 put_page_testzero(page);
1770                 VM_BUG_ON_PAGE(page_count(page), page);
1771                 enqueue_huge_page(h, page);
1772         }
1773 free:
1774         spin_unlock(&hugetlb_lock);
1775
1776         /* Free unnecessary surplus pages to the buddy allocator */
1777         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1778                 put_page(page);
1779         spin_lock(&hugetlb_lock);
1780
1781         return ret;
1782 }
1783
1784 /*
1785  * This routine has two main purposes:
1786  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1787  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1788  *    to the associated reservation map.
1789  * 2) Free any unused surplus pages that may have been allocated to satisfy
1790  *    the reservation.  As many as unused_resv_pages may be freed.
1791  *
1792  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1793  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1794  * we must make sure nobody else can claim pages we are in the process of
1795  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1796  * number of huge pages we plan to free when dropping the lock.
1797  */
1798 static void return_unused_surplus_pages(struct hstate *h,
1799                                         unsigned long unused_resv_pages)
1800 {
1801         unsigned long nr_pages;
1802
1803         /* Cannot return gigantic pages currently */
1804         if (hstate_is_gigantic(h))
1805                 goto out;
1806
1807         /*
1808          * Part (or even all) of the reservation could have been backed
1809          * by pre-allocated pages. Only free surplus pages.
1810          */
1811         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1812
1813         /*
1814          * We want to release as many surplus pages as possible, spread
1815          * evenly across all nodes with memory. Iterate across these nodes
1816          * until we can no longer free unreserved surplus pages. This occurs
1817          * when the nodes with surplus pages have no free pages.
1818          * free_pool_huge_page() will balance the the freed pages across the
1819          * on-line nodes with memory and will handle the hstate accounting.
1820          *
1821          * Note that we decrement resv_huge_pages as we free the pages.  If
1822          * we drop the lock, resv_huge_pages will still be sufficiently large
1823          * to cover subsequent pages we may free.
1824          */
1825         while (nr_pages--) {
1826                 h->resv_huge_pages--;
1827                 unused_resv_pages--;
1828                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1829                         goto out;
1830                 cond_resched_lock(&hugetlb_lock);
1831         }
1832
1833 out:
1834         /* Fully uncommit the reservation */
1835         h->resv_huge_pages -= unused_resv_pages;
1836 }
1837
1838
1839 /*
1840  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1841  * are used by the huge page allocation routines to manage reservations.
1842  *
1843  * vma_needs_reservation is called to determine if the huge page at addr
1844  * within the vma has an associated reservation.  If a reservation is
1845  * needed, the value 1 is returned.  The caller is then responsible for
1846  * managing the global reservation and subpool usage counts.  After
1847  * the huge page has been allocated, vma_commit_reservation is called
1848  * to add the page to the reservation map.  If the page allocation fails,
1849  * the reservation must be ended instead of committed.  vma_end_reservation
1850  * is called in such cases.
1851  *
1852  * In the normal case, vma_commit_reservation returns the same value
1853  * as the preceding vma_needs_reservation call.  The only time this
1854  * is not the case is if a reserve map was changed between calls.  It
1855  * is the responsibility of the caller to notice the difference and
1856  * take appropriate action.
1857  *
1858  * vma_add_reservation is used in error paths where a reservation must
1859  * be restored when a newly allocated huge page must be freed.  It is
1860  * to be called after calling vma_needs_reservation to determine if a
1861  * reservation exists.
1862  */
1863 enum vma_resv_mode {
1864         VMA_NEEDS_RESV,
1865         VMA_COMMIT_RESV,
1866         VMA_END_RESV,
1867         VMA_ADD_RESV,
1868 };
1869 static long __vma_reservation_common(struct hstate *h,
1870                                 struct vm_area_struct *vma, unsigned long addr,
1871                                 enum vma_resv_mode mode)
1872 {
1873         struct resv_map *resv;
1874         pgoff_t idx;
1875         long ret;
1876
1877         resv = vma_resv_map(vma);
1878         if (!resv)
1879                 return 1;
1880
1881         idx = vma_hugecache_offset(h, vma, addr);
1882         switch (mode) {
1883         case VMA_NEEDS_RESV:
1884                 ret = region_chg(resv, idx, idx + 1);
1885                 break;
1886         case VMA_COMMIT_RESV:
1887                 ret = region_add(resv, idx, idx + 1);
1888                 break;
1889         case VMA_END_RESV:
1890                 region_abort(resv, idx, idx + 1);
1891                 ret = 0;
1892                 break;
1893         case VMA_ADD_RESV:
1894                 if (vma->vm_flags & VM_MAYSHARE)
1895                         ret = region_add(resv, idx, idx + 1);
1896                 else {
1897                         region_abort(resv, idx, idx + 1);
1898                         ret = region_del(resv, idx, idx + 1);
1899                 }
1900                 break;
1901         default:
1902                 BUG();
1903         }
1904
1905         if (vma->vm_flags & VM_MAYSHARE)
1906                 return ret;
1907         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1908                 /*
1909                  * In most cases, reserves always exist for private mappings.
1910                  * However, a file associated with mapping could have been
1911                  * hole punched or truncated after reserves were consumed.
1912                  * As subsequent fault on such a range will not use reserves.
1913                  * Subtle - The reserve map for private mappings has the
1914                  * opposite meaning than that of shared mappings.  If NO
1915                  * entry is in the reserve map, it means a reservation exists.
1916                  * If an entry exists in the reserve map, it means the
1917                  * reservation has already been consumed.  As a result, the
1918                  * return value of this routine is the opposite of the
1919                  * value returned from reserve map manipulation routines above.
1920                  */
1921                 if (ret)
1922                         return 0;
1923                 else
1924                         return 1;
1925         }
1926         else
1927                 return ret < 0 ? ret : 0;
1928 }
1929
1930 static long vma_needs_reservation(struct hstate *h,
1931                         struct vm_area_struct *vma, unsigned long addr)
1932 {
1933         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1934 }
1935
1936 static long vma_commit_reservation(struct hstate *h,
1937                         struct vm_area_struct *vma, unsigned long addr)
1938 {
1939         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1940 }
1941
1942 static void vma_end_reservation(struct hstate *h,
1943                         struct vm_area_struct *vma, unsigned long addr)
1944 {
1945         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1946 }
1947
1948 static long vma_add_reservation(struct hstate *h,
1949                         struct vm_area_struct *vma, unsigned long addr)
1950 {
1951         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1952 }
1953
1954 /*
1955  * This routine is called to restore a reservation on error paths.  In the
1956  * specific error paths, a huge page was allocated (via alloc_huge_page)
1957  * and is about to be freed.  If a reservation for the page existed,
1958  * alloc_huge_page would have consumed the reservation and set PagePrivate
1959  * in the newly allocated page.  When the page is freed via free_huge_page,
1960  * the global reservation count will be incremented if PagePrivate is set.
1961  * However, free_huge_page can not adjust the reserve map.  Adjust the
1962  * reserve map here to be consistent with global reserve count adjustments
1963  * to be made by free_huge_page.
1964  */
1965 static void restore_reserve_on_error(struct hstate *h,
1966                         struct vm_area_struct *vma, unsigned long address,
1967                         struct page *page)
1968 {
1969         if (unlikely(PagePrivate(page))) {
1970                 long rc = vma_needs_reservation(h, vma, address);
1971
1972                 if (unlikely(rc < 0)) {
1973                         /*
1974                          * Rare out of memory condition in reserve map
1975                          * manipulation.  Clear PagePrivate so that
1976                          * global reserve count will not be incremented
1977                          * by free_huge_page.  This will make it appear
1978                          * as though the reservation for this page was
1979                          * consumed.  This may prevent the task from
1980                          * faulting in the page at a later time.  This
1981                          * is better than inconsistent global huge page
1982                          * accounting of reserve counts.
1983                          */
1984                         ClearPagePrivate(page);
1985                 } else if (rc) {
1986                         rc = vma_add_reservation(h, vma, address);
1987                         if (unlikely(rc < 0))
1988                                 /*
1989                                  * See above comment about rare out of
1990                                  * memory condition.
1991                                  */
1992                                 ClearPagePrivate(page);
1993                 } else
1994                         vma_end_reservation(h, vma, address);
1995         }
1996 }
1997
1998 struct page *alloc_huge_page(struct vm_area_struct *vma,
1999                                     unsigned long addr, int avoid_reserve)
2000 {
2001         struct hugepage_subpool *spool = subpool_vma(vma);
2002         struct hstate *h = hstate_vma(vma);
2003         struct page *page;
2004         long map_chg, map_commit;
2005         long gbl_chg;
2006         int ret, idx;
2007         struct hugetlb_cgroup *h_cg;
2008
2009         idx = hstate_index(h);
2010         /*
2011          * Examine the region/reserve map to determine if the process
2012          * has a reservation for the page to be allocated.  A return
2013          * code of zero indicates a reservation exists (no change).
2014          */
2015         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2016         if (map_chg < 0)
2017                 return ERR_PTR(-ENOMEM);
2018
2019         /*
2020          * Processes that did not create the mapping will have no
2021          * reserves as indicated by the region/reserve map. Check
2022          * that the allocation will not exceed the subpool limit.
2023          * Allocations for MAP_NORESERVE mappings also need to be
2024          * checked against any subpool limit.
2025          */
2026         if (map_chg || avoid_reserve) {
2027                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2028                 if (gbl_chg < 0) {
2029                         vma_end_reservation(h, vma, addr);
2030                         return ERR_PTR(-ENOSPC);
2031                 }
2032
2033                 /*
2034                  * Even though there was no reservation in the region/reserve
2035                  * map, there could be reservations associated with the
2036                  * subpool that can be used.  This would be indicated if the
2037                  * return value of hugepage_subpool_get_pages() is zero.
2038                  * However, if avoid_reserve is specified we still avoid even
2039                  * the subpool reservations.
2040                  */
2041                 if (avoid_reserve)
2042                         gbl_chg = 1;
2043         }
2044
2045         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2046         if (ret)
2047                 goto out_subpool_put;
2048
2049         spin_lock(&hugetlb_lock);
2050         /*
2051          * glb_chg is passed to indicate whether or not a page must be taken
2052          * from the global free pool (global change).  gbl_chg == 0 indicates
2053          * a reservation exists for the allocation.
2054          */
2055         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2056         if (!page) {
2057                 spin_unlock(&hugetlb_lock);
2058                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2059                 if (!page)
2060                         goto out_uncharge_cgroup;
2061                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2062                         SetPagePrivate(page);
2063                         h->resv_huge_pages--;
2064                 }
2065                 spin_lock(&hugetlb_lock);
2066                 list_move(&page->lru, &h->hugepage_activelist);
2067                 /* Fall through */
2068         }
2069         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2070         spin_unlock(&hugetlb_lock);
2071
2072         set_page_private(page, (unsigned long)spool);
2073
2074         map_commit = vma_commit_reservation(h, vma, addr);
2075         if (unlikely(map_chg > map_commit)) {
2076                 /*
2077                  * The page was added to the reservation map between
2078                  * vma_needs_reservation and vma_commit_reservation.
2079                  * This indicates a race with hugetlb_reserve_pages.
2080                  * Adjust for the subpool count incremented above AND
2081                  * in hugetlb_reserve_pages for the same page.  Also,
2082                  * the reservation count added in hugetlb_reserve_pages
2083                  * no longer applies.
2084                  */
2085                 long rsv_adjust;
2086
2087                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2088                 hugetlb_acct_memory(h, -rsv_adjust);
2089         }
2090         return page;
2091
2092 out_uncharge_cgroup:
2093         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2094 out_subpool_put:
2095         if (map_chg || avoid_reserve)
2096                 hugepage_subpool_put_pages(spool, 1);
2097         vma_end_reservation(h, vma, addr);
2098         return ERR_PTR(-ENOSPC);
2099 }
2100
2101 int alloc_bootmem_huge_page(struct hstate *h)
2102         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2103 int __alloc_bootmem_huge_page(struct hstate *h)
2104 {
2105         struct huge_bootmem_page *m;
2106         int nr_nodes, node;
2107
2108         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2109                 void *addr;
2110
2111                 addr = memblock_virt_alloc_try_nid_nopanic(
2112                                 huge_page_size(h), huge_page_size(h),
2113                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2114                 if (addr) {
2115                         /*
2116                          * Use the beginning of the huge page to store the
2117                          * huge_bootmem_page struct (until gather_bootmem
2118                          * puts them into the mem_map).
2119                          */
2120                         m = addr;
2121                         goto found;
2122                 }
2123         }
2124         return 0;
2125
2126 found:
2127         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2128         /* Put them into a private list first because mem_map is not up yet */
2129         list_add(&m->list, &huge_boot_pages);
2130         m->hstate = h;
2131         return 1;
2132 }
2133
2134 static void __init prep_compound_huge_page(struct page *page,
2135                 unsigned int order)
2136 {
2137         if (unlikely(order > (MAX_ORDER - 1)))
2138                 prep_compound_gigantic_page(page, order);
2139         else
2140                 prep_compound_page(page, order);
2141 }
2142
2143 /* Put bootmem huge pages into the standard lists after mem_map is up */
2144 static void __init gather_bootmem_prealloc(void)
2145 {
2146         struct huge_bootmem_page *m;
2147
2148         list_for_each_entry(m, &huge_boot_pages, list) {
2149                 struct hstate *h = m->hstate;
2150                 struct page *page;
2151
2152 #ifdef CONFIG_HIGHMEM
2153                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2154                 memblock_free_late(__pa(m),
2155                                    sizeof(struct huge_bootmem_page));
2156 #else
2157                 page = virt_to_page(m);
2158 #endif
2159                 WARN_ON(page_count(page) != 1);
2160                 prep_compound_huge_page(page, h->order);
2161                 WARN_ON(PageReserved(page));
2162                 prep_new_huge_page(h, page, page_to_nid(page));
2163                 put_page(page); /* free it into the hugepage allocator */
2164
2165                 /*
2166                  * If we had gigantic hugepages allocated at boot time, we need
2167                  * to restore the 'stolen' pages to totalram_pages in order to
2168                  * fix confusing memory reports from free(1) and another
2169                  * side-effects, like CommitLimit going negative.
2170                  */
2171                 if (hstate_is_gigantic(h))
2172                         adjust_managed_page_count(page, 1 << h->order);
2173         }
2174 }
2175
2176 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2177 {
2178         unsigned long i;
2179
2180         for (i = 0; i < h->max_huge_pages; ++i) {
2181                 if (hstate_is_gigantic(h)) {
2182                         if (!alloc_bootmem_huge_page(h))
2183                                 break;
2184                 } else if (!alloc_pool_huge_page(h,
2185                                          &node_states[N_MEMORY]))
2186                         break;
2187                 cond_resched();
2188         }
2189         if (i < h->max_huge_pages) {
2190                 char buf[32];
2191
2192                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2193                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2194                         h->max_huge_pages, buf, i);
2195                 h->max_huge_pages = i;
2196         }
2197 }
2198
2199 static void __init hugetlb_init_hstates(void)
2200 {
2201         struct hstate *h;
2202
2203         for_each_hstate(h) {
2204                 if (minimum_order > huge_page_order(h))
2205                         minimum_order = huge_page_order(h);
2206
2207                 /* oversize hugepages were init'ed in early boot */
2208                 if (!hstate_is_gigantic(h))
2209                         hugetlb_hstate_alloc_pages(h);
2210         }
2211         VM_BUG_ON(minimum_order == UINT_MAX);
2212 }
2213
2214 static void __init report_hugepages(void)
2215 {
2216         struct hstate *h;
2217
2218         for_each_hstate(h) {
2219                 char buf[32];
2220
2221                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2222                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2223                         buf, h->free_huge_pages);
2224         }
2225 }
2226
2227 #ifdef CONFIG_HIGHMEM
2228 static void try_to_free_low(struct hstate *h, unsigned long count,
2229                                                 nodemask_t *nodes_allowed)
2230 {
2231         int i;
2232
2233         if (hstate_is_gigantic(h))
2234                 return;
2235
2236         for_each_node_mask(i, *nodes_allowed) {
2237                 struct page *page, *next;
2238                 struct list_head *freel = &h->hugepage_freelists[i];
2239                 list_for_each_entry_safe(page, next, freel, lru) {
2240                         if (count >= h->nr_huge_pages)
2241                                 return;
2242                         if (PageHighMem(page))
2243                                 continue;
2244                         list_del(&page->lru);
2245                         update_and_free_page(h, page);
2246                         h->free_huge_pages--;
2247                         h->free_huge_pages_node[page_to_nid(page)]--;
2248                 }
2249         }
2250 }
2251 #else
2252 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2253                                                 nodemask_t *nodes_allowed)
2254 {
2255 }
2256 #endif
2257
2258 /*
2259  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2260  * balanced by operating on them in a round-robin fashion.
2261  * Returns 1 if an adjustment was made.
2262  */
2263 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2264                                 int delta)
2265 {
2266         int nr_nodes, node;
2267
2268         VM_BUG_ON(delta != -1 && delta != 1);
2269
2270         if (delta < 0) {
2271                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2272                         if (h->surplus_huge_pages_node[node])
2273                                 goto found;
2274                 }
2275         } else {
2276                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2277                         if (h->surplus_huge_pages_node[node] <
2278                                         h->nr_huge_pages_node[node])
2279                                 goto found;
2280                 }
2281         }
2282         return 0;
2283
2284 found:
2285         h->surplus_huge_pages += delta;
2286         h->surplus_huge_pages_node[node] += delta;
2287         return 1;
2288 }
2289
2290 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2291 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2292                                                 nodemask_t *nodes_allowed)
2293 {
2294         unsigned long min_count, ret;
2295
2296         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2297                 return h->max_huge_pages;
2298
2299         /*
2300          * Increase the pool size
2301          * First take pages out of surplus state.  Then make up the
2302          * remaining difference by allocating fresh huge pages.
2303          *
2304          * We might race with alloc_surplus_huge_page() here and be unable
2305          * to convert a surplus huge page to a normal huge page. That is
2306          * not critical, though, it just means the overall size of the
2307          * pool might be one hugepage larger than it needs to be, but
2308          * within all the constraints specified by the sysctls.
2309          */
2310         spin_lock(&hugetlb_lock);
2311         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2312                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2313                         break;
2314         }
2315
2316         while (count > persistent_huge_pages(h)) {
2317                 /*
2318                  * If this allocation races such that we no longer need the
2319                  * page, free_huge_page will handle it by freeing the page
2320                  * and reducing the surplus.
2321                  */
2322                 spin_unlock(&hugetlb_lock);
2323
2324                 /* yield cpu to avoid soft lockup */
2325                 cond_resched();
2326
2327                 ret = alloc_pool_huge_page(h, nodes_allowed);
2328                 spin_lock(&hugetlb_lock);
2329                 if (!ret)
2330                         goto out;
2331
2332                 /* Bail for signals. Probably ctrl-c from user */
2333                 if (signal_pending(current))
2334                         goto out;
2335         }
2336
2337         /*
2338          * Decrease the pool size
2339          * First return free pages to the buddy allocator (being careful
2340          * to keep enough around to satisfy reservations).  Then place
2341          * pages into surplus state as needed so the pool will shrink
2342          * to the desired size as pages become free.
2343          *
2344          * By placing pages into the surplus state independent of the
2345          * overcommit value, we are allowing the surplus pool size to
2346          * exceed overcommit. There are few sane options here. Since
2347          * alloc_surplus_huge_page() is checking the global counter,
2348          * though, we'll note that we're not allowed to exceed surplus
2349          * and won't grow the pool anywhere else. Not until one of the
2350          * sysctls are changed, or the surplus pages go out of use.
2351          */
2352         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2353         min_count = max(count, min_count);
2354         try_to_free_low(h, min_count, nodes_allowed);
2355         while (min_count < persistent_huge_pages(h)) {
2356                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2357                         break;
2358                 cond_resched_lock(&hugetlb_lock);
2359         }
2360         while (count < persistent_huge_pages(h)) {
2361                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2362                         break;
2363         }
2364 out:
2365         ret = persistent_huge_pages(h);
2366         spin_unlock(&hugetlb_lock);
2367         return ret;
2368 }
2369
2370 #define HSTATE_ATTR_RO(_name) \
2371         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2372
2373 #define HSTATE_ATTR(_name) \
2374         static struct kobj_attribute _name##_attr = \
2375                 __ATTR(_name, 0644, _name##_show, _name##_store)
2376
2377 static struct kobject *hugepages_kobj;
2378 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2379
2380 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2381
2382 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2383 {
2384         int i;
2385
2386         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2387                 if (hstate_kobjs[i] == kobj) {
2388                         if (nidp)
2389                                 *nidp = NUMA_NO_NODE;
2390                         return &hstates[i];
2391                 }
2392
2393         return kobj_to_node_hstate(kobj, nidp);
2394 }
2395
2396 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2397                                         struct kobj_attribute *attr, char *buf)
2398 {
2399         struct hstate *h;
2400         unsigned long nr_huge_pages;
2401         int nid;
2402
2403         h = kobj_to_hstate(kobj, &nid);
2404         if (nid == NUMA_NO_NODE)
2405                 nr_huge_pages = h->nr_huge_pages;
2406         else
2407                 nr_huge_pages = h->nr_huge_pages_node[nid];
2408
2409         return sprintf(buf, "%lu\n", nr_huge_pages);
2410 }
2411
2412 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2413                                            struct hstate *h, int nid,
2414                                            unsigned long count, size_t len)
2415 {
2416         int err;
2417         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2418
2419         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2420                 err = -EINVAL;
2421                 goto out;
2422         }
2423
2424         if (nid == NUMA_NO_NODE) {
2425                 /*
2426                  * global hstate attribute
2427                  */
2428                 if (!(obey_mempolicy &&
2429                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2430                         NODEMASK_FREE(nodes_allowed);
2431                         nodes_allowed = &node_states[N_MEMORY];
2432                 }
2433         } else if (nodes_allowed) {
2434                 /*
2435                  * per node hstate attribute: adjust count to global,
2436                  * but restrict alloc/free to the specified node.
2437                  */
2438                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2439                 init_nodemask_of_node(nodes_allowed, nid);
2440         } else
2441                 nodes_allowed = &node_states[N_MEMORY];
2442
2443         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2444
2445         if (nodes_allowed != &node_states[N_MEMORY])
2446                 NODEMASK_FREE(nodes_allowed);
2447
2448         return len;
2449 out:
2450         NODEMASK_FREE(nodes_allowed);
2451         return err;
2452 }
2453
2454 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2455                                          struct kobject *kobj, const char *buf,
2456                                          size_t len)
2457 {
2458         struct hstate *h;
2459         unsigned long count;
2460         int nid;
2461         int err;
2462
2463         err = kstrtoul(buf, 10, &count);
2464         if (err)
2465                 return err;
2466
2467         h = kobj_to_hstate(kobj, &nid);
2468         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2469 }
2470
2471 static ssize_t nr_hugepages_show(struct kobject *kobj,
2472                                        struct kobj_attribute *attr, char *buf)
2473 {
2474         return nr_hugepages_show_common(kobj, attr, buf);
2475 }
2476
2477 static ssize_t nr_hugepages_store(struct kobject *kobj,
2478                struct kobj_attribute *attr, const char *buf, size_t len)
2479 {
2480         return nr_hugepages_store_common(false, kobj, buf, len);
2481 }
2482 HSTATE_ATTR(nr_hugepages);
2483
2484 #ifdef CONFIG_NUMA
2485
2486 /*
2487  * hstate attribute for optionally mempolicy-based constraint on persistent
2488  * huge page alloc/free.
2489  */
2490 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2491                                        struct kobj_attribute *attr, char *buf)
2492 {
2493         return nr_hugepages_show_common(kobj, attr, buf);
2494 }
2495
2496 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2497                struct kobj_attribute *attr, const char *buf, size_t len)
2498 {
2499         return nr_hugepages_store_common(true, kobj, buf, len);
2500 }
2501 HSTATE_ATTR(nr_hugepages_mempolicy);
2502 #endif
2503
2504
2505 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2506                                         struct kobj_attribute *attr, char *buf)
2507 {
2508         struct hstate *h = kobj_to_hstate(kobj, NULL);
2509         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2510 }
2511
2512 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2513                 struct kobj_attribute *attr, const char *buf, size_t count)
2514 {
2515         int err;
2516         unsigned long input;
2517         struct hstate *h = kobj_to_hstate(kobj, NULL);
2518
2519         if (hstate_is_gigantic(h))
2520                 return -EINVAL;
2521
2522         err = kstrtoul(buf, 10, &input);
2523         if (err)
2524                 return err;
2525
2526         spin_lock(&hugetlb_lock);
2527         h->nr_overcommit_huge_pages = input;
2528         spin_unlock(&hugetlb_lock);
2529
2530         return count;
2531 }
2532 HSTATE_ATTR(nr_overcommit_hugepages);
2533
2534 static ssize_t free_hugepages_show(struct kobject *kobj,
2535                                         struct kobj_attribute *attr, char *buf)
2536 {
2537         struct hstate *h;
2538         unsigned long free_huge_pages;
2539         int nid;
2540
2541         h = kobj_to_hstate(kobj, &nid);
2542         if (nid == NUMA_NO_NODE)
2543                 free_huge_pages = h->free_huge_pages;
2544         else
2545                 free_huge_pages = h->free_huge_pages_node[nid];
2546
2547         return sprintf(buf, "%lu\n", free_huge_pages);
2548 }
2549 HSTATE_ATTR_RO(free_hugepages);
2550
2551 static ssize_t resv_hugepages_show(struct kobject *kobj,
2552                                         struct kobj_attribute *attr, char *buf)
2553 {
2554         struct hstate *h = kobj_to_hstate(kobj, NULL);
2555         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2556 }
2557 HSTATE_ATTR_RO(resv_hugepages);
2558
2559 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2560                                         struct kobj_attribute *attr, char *buf)
2561 {
2562         struct hstate *h;
2563         unsigned long surplus_huge_pages;
2564         int nid;
2565
2566         h = kobj_to_hstate(kobj, &nid);
2567         if (nid == NUMA_NO_NODE)
2568                 surplus_huge_pages = h->surplus_huge_pages;
2569         else
2570                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2571
2572         return sprintf(buf, "%lu\n", surplus_huge_pages);
2573 }
2574 HSTATE_ATTR_RO(surplus_hugepages);
2575
2576 static struct attribute *hstate_attrs[] = {
2577         &nr_hugepages_attr.attr,
2578         &nr_overcommit_hugepages_attr.attr,
2579         &free_hugepages_attr.attr,
2580         &resv_hugepages_attr.attr,
2581         &surplus_hugepages_attr.attr,
2582 #ifdef CONFIG_NUMA
2583         &nr_hugepages_mempolicy_attr.attr,
2584 #endif
2585         NULL,
2586 };
2587
2588 static const struct attribute_group hstate_attr_group = {
2589         .attrs = hstate_attrs,
2590 };
2591
2592 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2593                                     struct kobject **hstate_kobjs,
2594                                     const struct attribute_group *hstate_attr_group)
2595 {
2596         int retval;
2597         int hi = hstate_index(h);
2598
2599         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2600         if (!hstate_kobjs[hi])
2601                 return -ENOMEM;
2602
2603         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2604         if (retval)
2605                 kobject_put(hstate_kobjs[hi]);
2606
2607         return retval;
2608 }
2609
2610 static void __init hugetlb_sysfs_init(void)
2611 {
2612         struct hstate *h;
2613         int err;
2614
2615         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2616         if (!hugepages_kobj)
2617                 return;
2618
2619         for_each_hstate(h) {
2620                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2621                                          hstate_kobjs, &hstate_attr_group);
2622                 if (err)
2623                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2624         }
2625 }
2626
2627 #ifdef CONFIG_NUMA
2628
2629 /*
2630  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2631  * with node devices in node_devices[] using a parallel array.  The array
2632  * index of a node device or _hstate == node id.
2633  * This is here to avoid any static dependency of the node device driver, in
2634  * the base kernel, on the hugetlb module.
2635  */
2636 struct node_hstate {
2637         struct kobject          *hugepages_kobj;
2638         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2639 };
2640 static struct node_hstate node_hstates[MAX_NUMNODES];
2641
2642 /*
2643  * A subset of global hstate attributes for node devices
2644  */
2645 static struct attribute *per_node_hstate_attrs[] = {
2646         &nr_hugepages_attr.attr,
2647         &free_hugepages_attr.attr,
2648         &surplus_hugepages_attr.attr,
2649         NULL,
2650 };
2651
2652 static const struct attribute_group per_node_hstate_attr_group = {
2653         .attrs = per_node_hstate_attrs,
2654 };
2655
2656 /*
2657  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2658  * Returns node id via non-NULL nidp.
2659  */
2660 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2661 {
2662         int nid;
2663
2664         for (nid = 0; nid < nr_node_ids; nid++) {
2665                 struct node_hstate *nhs = &node_hstates[nid];
2666                 int i;
2667                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2668                         if (nhs->hstate_kobjs[i] == kobj) {
2669                                 if (nidp)
2670                                         *nidp = nid;
2671                                 return &hstates[i];
2672                         }
2673         }
2674
2675         BUG();
2676         return NULL;
2677 }
2678
2679 /*
2680  * Unregister hstate attributes from a single node device.
2681  * No-op if no hstate attributes attached.
2682  */
2683 static void hugetlb_unregister_node(struct node *node)
2684 {
2685         struct hstate *h;
2686         struct node_hstate *nhs = &node_hstates[node->dev.id];
2687
2688         if (!nhs->hugepages_kobj)
2689                 return;         /* no hstate attributes */
2690
2691         for_each_hstate(h) {
2692                 int idx = hstate_index(h);
2693                 if (nhs->hstate_kobjs[idx]) {
2694                         kobject_put(nhs->hstate_kobjs[idx]);
2695                         nhs->hstate_kobjs[idx] = NULL;
2696                 }
2697         }
2698
2699         kobject_put(nhs->hugepages_kobj);
2700         nhs->hugepages_kobj = NULL;
2701 }
2702
2703
2704 /*
2705  * Register hstate attributes for a single node device.
2706  * No-op if attributes already registered.
2707  */
2708 static void hugetlb_register_node(struct node *node)
2709 {
2710         struct hstate *h;
2711         struct node_hstate *nhs = &node_hstates[node->dev.id];
2712         int err;
2713
2714         if (nhs->hugepages_kobj)
2715                 return;         /* already allocated */
2716
2717         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2718                                                         &node->dev.kobj);
2719         if (!nhs->hugepages_kobj)
2720                 return;
2721
2722         for_each_hstate(h) {
2723                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2724                                                 nhs->hstate_kobjs,
2725                                                 &per_node_hstate_attr_group);
2726                 if (err) {
2727                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2728                                 h->name, node->dev.id);
2729                         hugetlb_unregister_node(node);
2730                         break;
2731                 }
2732         }
2733 }
2734
2735 /*
2736  * hugetlb init time:  register hstate attributes for all registered node
2737  * devices of nodes that have memory.  All on-line nodes should have
2738  * registered their associated device by this time.
2739  */
2740 static void __init hugetlb_register_all_nodes(void)
2741 {
2742         int nid;
2743
2744         for_each_node_state(nid, N_MEMORY) {
2745                 struct node *node = node_devices[nid];
2746                 if (node->dev.id == nid)
2747                         hugetlb_register_node(node);
2748         }
2749
2750         /*
2751          * Let the node device driver know we're here so it can
2752          * [un]register hstate attributes on node hotplug.
2753          */
2754         register_hugetlbfs_with_node(hugetlb_register_node,
2755                                      hugetlb_unregister_node);
2756 }
2757 #else   /* !CONFIG_NUMA */
2758
2759 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2760 {
2761         BUG();
2762         if (nidp)
2763                 *nidp = -1;
2764         return NULL;
2765 }
2766
2767 static void hugetlb_register_all_nodes(void) { }
2768
2769 #endif
2770
2771 static int __init hugetlb_init(void)
2772 {
2773         int i;
2774
2775         if (!hugepages_supported())
2776                 return 0;
2777
2778         if (!size_to_hstate(default_hstate_size)) {
2779                 if (default_hstate_size != 0) {
2780                         pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2781                                default_hstate_size, HPAGE_SIZE);
2782                 }
2783
2784                 default_hstate_size = HPAGE_SIZE;
2785                 if (!size_to_hstate(default_hstate_size))
2786                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2787         }
2788         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2789         if (default_hstate_max_huge_pages) {
2790                 if (!default_hstate.max_huge_pages)
2791                         default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2792         }
2793
2794         hugetlb_init_hstates();
2795         gather_bootmem_prealloc();
2796         report_hugepages();
2797
2798         hugetlb_sysfs_init();
2799         hugetlb_register_all_nodes();
2800         hugetlb_cgroup_file_init();
2801
2802 #ifdef CONFIG_SMP
2803         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2804 #else
2805         num_fault_mutexes = 1;
2806 #endif
2807         hugetlb_fault_mutex_table =
2808                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2809         BUG_ON(!hugetlb_fault_mutex_table);
2810
2811         for (i = 0; i < num_fault_mutexes; i++)
2812                 mutex_init(&hugetlb_fault_mutex_table[i]);
2813         return 0;
2814 }
2815 subsys_initcall(hugetlb_init);
2816
2817 /* Should be called on processing a hugepagesz=... option */
2818 void __init hugetlb_bad_size(void)
2819 {
2820         parsed_valid_hugepagesz = false;
2821 }
2822
2823 void __init hugetlb_add_hstate(unsigned int order)
2824 {
2825         struct hstate *h;
2826         unsigned long i;
2827
2828         if (size_to_hstate(PAGE_SIZE << order)) {
2829                 pr_warn("hugepagesz= specified twice, ignoring\n");
2830                 return;
2831         }
2832         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2833         BUG_ON(order == 0);
2834         h = &hstates[hugetlb_max_hstate++];
2835         h->order = order;
2836         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2837         h->nr_huge_pages = 0;
2838         h->free_huge_pages = 0;
2839         for (i = 0; i < MAX_NUMNODES; ++i)
2840                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2841         INIT_LIST_HEAD(&h->hugepage_activelist);
2842         h->next_nid_to_alloc = first_memory_node;
2843         h->next_nid_to_free = first_memory_node;
2844         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2845                                         huge_page_size(h)/1024);
2846
2847         parsed_hstate = h;
2848 }
2849
2850 static int __init hugetlb_nrpages_setup(char *s)
2851 {
2852         unsigned long *mhp;
2853         static unsigned long *last_mhp;
2854
2855         if (!parsed_valid_hugepagesz) {
2856                 pr_warn("hugepages = %s preceded by "
2857                         "an unsupported hugepagesz, ignoring\n", s);
2858                 parsed_valid_hugepagesz = true;
2859                 return 1;
2860         }
2861         /*
2862          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2863          * so this hugepages= parameter goes to the "default hstate".
2864          */
2865         else if (!hugetlb_max_hstate)
2866                 mhp = &default_hstate_max_huge_pages;
2867         else
2868                 mhp = &parsed_hstate->max_huge_pages;
2869
2870         if (mhp == last_mhp) {
2871                 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2872                 return 1;
2873         }
2874
2875         if (sscanf(s, "%lu", mhp) <= 0)
2876                 *mhp = 0;
2877
2878         /*
2879          * Global state is always initialized later in hugetlb_init.
2880          * But we need to allocate >= MAX_ORDER hstates here early to still
2881          * use the bootmem allocator.
2882          */
2883         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2884                 hugetlb_hstate_alloc_pages(parsed_hstate);
2885
2886         last_mhp = mhp;
2887
2888         return 1;
2889 }
2890 __setup("hugepages=", hugetlb_nrpages_setup);
2891
2892 static int __init hugetlb_default_setup(char *s)
2893 {
2894         default_hstate_size = memparse(s, &s);
2895         return 1;
2896 }
2897 __setup("default_hugepagesz=", hugetlb_default_setup);
2898
2899 static unsigned int cpuset_mems_nr(unsigned int *array)
2900 {
2901         int node;
2902         unsigned int nr = 0;
2903
2904         for_each_node_mask(node, cpuset_current_mems_allowed)
2905                 nr += array[node];
2906
2907         return nr;
2908 }
2909
2910 #ifdef CONFIG_SYSCTL
2911 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2912                          struct ctl_table *table, int write,
2913                          void __user *buffer, size_t *length, loff_t *ppos)
2914 {
2915         struct hstate *h = &default_hstate;
2916         unsigned long tmp = h->max_huge_pages;
2917         int ret;
2918
2919         if (!hugepages_supported())
2920                 return -EOPNOTSUPP;
2921
2922         table->data = &tmp;
2923         table->maxlen = sizeof(unsigned long);
2924         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2925         if (ret)
2926                 goto out;
2927
2928         if (write)
2929                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2930                                                   NUMA_NO_NODE, tmp, *length);
2931 out:
2932         return ret;
2933 }
2934
2935 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2936                           void __user *buffer, size_t *length, loff_t *ppos)
2937 {
2938
2939         return hugetlb_sysctl_handler_common(false, table, write,
2940                                                         buffer, length, ppos);
2941 }
2942
2943 #ifdef CONFIG_NUMA
2944 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2945                           void __user *buffer, size_t *length, loff_t *ppos)
2946 {
2947         return hugetlb_sysctl_handler_common(true, table, write,
2948                                                         buffer, length, ppos);
2949 }
2950 #endif /* CONFIG_NUMA */
2951
2952 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2953                         void __user *buffer,
2954                         size_t *length, loff_t *ppos)
2955 {
2956         struct hstate *h = &default_hstate;
2957         unsigned long tmp;
2958         int ret;
2959
2960         if (!hugepages_supported())
2961                 return -EOPNOTSUPP;
2962
2963         tmp = h->nr_overcommit_huge_pages;
2964
2965         if (write && hstate_is_gigantic(h))
2966                 return -EINVAL;
2967
2968         table->data = &tmp;
2969         table->maxlen = sizeof(unsigned long);
2970         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2971         if (ret)
2972                 goto out;
2973
2974         if (write) {
2975                 spin_lock(&hugetlb_lock);
2976                 h->nr_overcommit_huge_pages = tmp;
2977                 spin_unlock(&hugetlb_lock);
2978         }
2979 out:
2980         return ret;
2981 }
2982
2983 #endif /* CONFIG_SYSCTL */
2984
2985 void hugetlb_report_meminfo(struct seq_file *m)
2986 {
2987         struct hstate *h;
2988         unsigned long total = 0;
2989
2990         if (!hugepages_supported())
2991                 return;
2992
2993         for_each_hstate(h) {
2994                 unsigned long count = h->nr_huge_pages;
2995
2996                 total += (PAGE_SIZE << huge_page_order(h)) * count;
2997
2998                 if (h == &default_hstate)
2999                         seq_printf(m,
3000                                    "HugePages_Total:   %5lu\n"
3001                                    "HugePages_Free:    %5lu\n"
3002                                    "HugePages_Rsvd:    %5lu\n"
3003                                    "HugePages_Surp:    %5lu\n"
3004                                    "Hugepagesize:   %8lu kB\n",
3005                                    count,
3006                                    h->free_huge_pages,
3007                                    h->resv_huge_pages,
3008                                    h->surplus_huge_pages,
3009                                    (PAGE_SIZE << huge_page_order(h)) / 1024);
3010         }
3011
3012         seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3013 }
3014
3015 int hugetlb_report_node_meminfo(int nid, char *buf)
3016 {
3017         struct hstate *h = &default_hstate;
3018         if (!hugepages_supported())
3019                 return 0;
3020         return sprintf(buf,
3021                 "Node %d HugePages_Total: %5u\n"
3022                 "Node %d HugePages_Free:  %5u\n"
3023                 "Node %d HugePages_Surp:  %5u\n",
3024                 nid, h->nr_huge_pages_node[nid],
3025                 nid, h->free_huge_pages_node[nid],
3026                 nid, h->surplus_huge_pages_node[nid]);
3027 }
3028
3029 void hugetlb_show_meminfo(void)
3030 {
3031         struct hstate *h;
3032         int nid;
3033
3034         if (!hugepages_supported())
3035                 return;
3036
3037         for_each_node_state(nid, N_MEMORY)
3038                 for_each_hstate(h)
3039                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3040                                 nid,
3041                                 h->nr_huge_pages_node[nid],
3042                                 h->free_huge_pages_node[nid],
3043                                 h->surplus_huge_pages_node[nid],
3044                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3045 }
3046
3047 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3048 {
3049         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3050                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3051 }
3052
3053 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3054 unsigned long hugetlb_total_pages(void)
3055 {
3056         struct hstate *h;
3057         unsigned long nr_total_pages = 0;
3058
3059         for_each_hstate(h)
3060                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3061         return nr_total_pages;
3062 }
3063
3064 static int hugetlb_acct_memory(struct hstate *h, long delta)
3065 {
3066         int ret = -ENOMEM;
3067
3068         spin_lock(&hugetlb_lock);
3069         /*
3070          * When cpuset is configured, it breaks the strict hugetlb page
3071          * reservation as the accounting is done on a global variable. Such
3072          * reservation is completely rubbish in the presence of cpuset because
3073          * the reservation is not checked against page availability for the
3074          * current cpuset. Application can still potentially OOM'ed by kernel
3075          * with lack of free htlb page in cpuset that the task is in.
3076          * Attempt to enforce strict accounting with cpuset is almost
3077          * impossible (or too ugly) because cpuset is too fluid that
3078          * task or memory node can be dynamically moved between cpusets.
3079          *
3080          * The change of semantics for shared hugetlb mapping with cpuset is
3081          * undesirable. However, in order to preserve some of the semantics,
3082          * we fall back to check against current free page availability as
3083          * a best attempt and hopefully to minimize the impact of changing
3084          * semantics that cpuset has.
3085          */
3086         if (delta > 0) {
3087                 if (gather_surplus_pages(h, delta) < 0)
3088                         goto out;
3089
3090                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3091                         return_unused_surplus_pages(h, delta);
3092                         goto out;
3093                 }
3094         }
3095
3096         ret = 0;
3097         if (delta < 0)
3098                 return_unused_surplus_pages(h, (unsigned long) -delta);
3099
3100 out:
3101         spin_unlock(&hugetlb_lock);
3102         return ret;
3103 }
3104
3105 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3106 {
3107         struct resv_map *resv = vma_resv_map(vma);
3108
3109         /*
3110          * This new VMA should share its siblings reservation map if present.
3111          * The VMA will only ever have a valid reservation map pointer where
3112          * it is being copied for another still existing VMA.  As that VMA
3113          * has a reference to the reservation map it cannot disappear until
3114          * after this open call completes.  It is therefore safe to take a
3115          * new reference here without additional locking.
3116          */
3117         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3118                 kref_get(&resv->refs);
3119 }
3120
3121 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3122 {
3123         struct hstate *h = hstate_vma(vma);
3124         struct resv_map *resv = vma_resv_map(vma);
3125         struct hugepage_subpool *spool = subpool_vma(vma);
3126         unsigned long reserve, start, end;
3127         long gbl_reserve;
3128
3129         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3130                 return;
3131
3132         start = vma_hugecache_offset(h, vma, vma->vm_start);
3133         end = vma_hugecache_offset(h, vma, vma->vm_end);
3134
3135         reserve = (end - start) - region_count(resv, start, end);
3136
3137         kref_put(&resv->refs, resv_map_release);
3138
3139         if (reserve) {
3140                 /*
3141                  * Decrement reserve counts.  The global reserve count may be
3142                  * adjusted if the subpool has a minimum size.
3143                  */
3144                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3145                 hugetlb_acct_memory(h, -gbl_reserve);
3146         }
3147 }
3148
3149 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3150 {
3151         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3152                 return -EINVAL;
3153         return 0;
3154 }
3155
3156 /*
3157  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3158  * handle_mm_fault() to try to instantiate regular-sized pages in the
3159  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3160  * this far.
3161  */
3162 static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3163 {
3164         BUG();
3165         return 0;
3166 }
3167
3168 const struct vm_operations_struct hugetlb_vm_ops = {
3169         .fault = hugetlb_vm_op_fault,
3170         .open = hugetlb_vm_op_open,
3171         .close = hugetlb_vm_op_close,
3172         .split = hugetlb_vm_op_split,
3173 };
3174
3175 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3176                                 int writable)
3177 {
3178         pte_t entry;
3179
3180         if (writable) {
3181                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3182                                          vma->vm_page_prot)));
3183         } else {
3184                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3185                                            vma->vm_page_prot));
3186         }
3187         entry = pte_mkyoung(entry);
3188         entry = pte_mkhuge(entry);
3189         entry = arch_make_huge_pte(entry, vma, page, writable);
3190
3191         return entry;
3192 }
3193
3194 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3195                                    unsigned long address, pte_t *ptep)
3196 {
3197         pte_t entry;
3198
3199         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3200         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3201                 update_mmu_cache(vma, address, ptep);
3202 }
3203
3204 bool is_hugetlb_entry_migration(pte_t pte)
3205 {
3206         swp_entry_t swp;
3207
3208         if (huge_pte_none(pte) || pte_present(pte))
3209                 return false;
3210         swp = pte_to_swp_entry(pte);
3211         if (non_swap_entry(swp) && is_migration_entry(swp))
3212                 return true;
3213         else
3214                 return false;
3215 }
3216
3217 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3218 {
3219         swp_entry_t swp;
3220
3221         if (huge_pte_none(pte) || pte_present(pte))
3222                 return 0;
3223         swp = pte_to_swp_entry(pte);
3224         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3225                 return 1;
3226         else
3227                 return 0;
3228 }
3229
3230 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3231                             struct vm_area_struct *vma)
3232 {
3233         pte_t *src_pte, *dst_pte, entry;
3234         struct page *ptepage;
3235         unsigned long addr;
3236         int cow;
3237         struct hstate *h = hstate_vma(vma);
3238         unsigned long sz = huge_page_size(h);
3239         unsigned long mmun_start;       /* For mmu_notifiers */
3240         unsigned long mmun_end;         /* For mmu_notifiers */
3241         int ret = 0;
3242
3243         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3244
3245         mmun_start = vma->vm_start;
3246         mmun_end = vma->vm_end;
3247         if (cow)
3248                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3249
3250         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3251                 spinlock_t *src_ptl, *dst_ptl;
3252                 src_pte = huge_pte_offset(src, addr, sz);
3253                 if (!src_pte)
3254                         continue;
3255                 dst_pte = huge_pte_alloc(dst, addr, sz);
3256                 if (!dst_pte) {
3257                         ret = -ENOMEM;
3258                         break;
3259                 }
3260
3261                 /* If the pagetables are shared don't copy or take references */
3262                 if (dst_pte == src_pte)
3263                         continue;
3264
3265                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3266                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3267                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3268                 entry = huge_ptep_get(src_pte);
3269                 if (huge_pte_none(entry)) { /* skip none entry */
3270                         ;
3271                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3272                                     is_hugetlb_entry_hwpoisoned(entry))) {
3273                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3274
3275                         if (is_write_migration_entry(swp_entry) && cow) {
3276                                 /*
3277                                  * COW mappings require pages in both
3278                                  * parent and child to be set to read.
3279                                  */
3280                                 make_migration_entry_read(&swp_entry);
3281                                 entry = swp_entry_to_pte(swp_entry);
3282                                 set_huge_swap_pte_at(src, addr, src_pte,
3283                                                      entry, sz);
3284                         }
3285                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3286                 } else {
3287                         if (cow) {
3288                                 /*
3289                                  * No need to notify as we are downgrading page
3290                                  * table protection not changing it to point
3291                                  * to a new page.
3292                                  *
3293                                  * See Documentation/vm/mmu_notifier.txt
3294                                  */
3295                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3296                         }
3297                         entry = huge_ptep_get(src_pte);
3298                         ptepage = pte_page(entry);
3299                         get_page(ptepage);
3300                         page_dup_rmap(ptepage, true);
3301                         set_huge_pte_at(dst, addr, dst_pte, entry);
3302                         hugetlb_count_add(pages_per_huge_page(h), dst);
3303                 }
3304                 spin_unlock(src_ptl);
3305                 spin_unlock(dst_ptl);
3306         }
3307
3308         if (cow)
3309                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3310
3311         return ret;
3312 }
3313
3314 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3315                             unsigned long start, unsigned long end,
3316                             struct page *ref_page)
3317 {
3318         struct mm_struct *mm = vma->vm_mm;
3319         unsigned long address;
3320         pte_t *ptep;
3321         pte_t pte;
3322         spinlock_t *ptl;
3323         struct page *page;
3324         struct hstate *h = hstate_vma(vma);
3325         unsigned long sz = huge_page_size(h);
3326         const unsigned long mmun_start = start; /* For mmu_notifiers */
3327         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
3328
3329         WARN_ON(!is_vm_hugetlb_page(vma));
3330         BUG_ON(start & ~huge_page_mask(h));
3331         BUG_ON(end & ~huge_page_mask(h));
3332
3333         /*
3334          * This is a hugetlb vma, all the pte entries should point
3335          * to huge page.
3336          */
3337         tlb_remove_check_page_size_change(tlb, sz);
3338         tlb_start_vma(tlb, vma);
3339         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3340         address = start;
3341         for (; address < end; address += sz) {
3342                 ptep = huge_pte_offset(mm, address, sz);
3343                 if (!ptep)
3344                         continue;
3345
3346                 ptl = huge_pte_lock(h, mm, ptep);
3347                 if (huge_pmd_unshare(mm, &address, ptep)) {
3348                         spin_unlock(ptl);
3349                         continue;
3350                 }
3351
3352                 pte = huge_ptep_get(ptep);
3353                 if (huge_pte_none(pte)) {
3354                         spin_unlock(ptl);
3355                         continue;
3356                 }
3357
3358                 /*
3359                  * Migrating hugepage or HWPoisoned hugepage is already
3360                  * unmapped and its refcount is dropped, so just clear pte here.
3361                  */
3362                 if (unlikely(!pte_present(pte))) {
3363                         huge_pte_clear(mm, address, ptep, sz);
3364                         spin_unlock(ptl);
3365                         continue;
3366                 }
3367
3368                 page = pte_page(pte);
3369                 /*
3370                  * If a reference page is supplied, it is because a specific
3371                  * page is being unmapped, not a range. Ensure the page we
3372                  * are about to unmap is the actual page of interest.
3373                  */
3374                 if (ref_page) {
3375                         if (page != ref_page) {
3376                                 spin_unlock(ptl);
3377                                 continue;
3378                         }
3379                         /*
3380                          * Mark the VMA as having unmapped its page so that
3381                          * future faults in this VMA will fail rather than
3382                          * looking like data was lost
3383                          */
3384                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3385                 }
3386
3387                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3388                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3389                 if (huge_pte_dirty(pte))
3390                         set_page_dirty(page);
3391
3392                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3393                 page_remove_rmap(page, true);
3394
3395                 spin_unlock(ptl);
3396                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3397                 /*
3398                  * Bail out after unmapping reference page if supplied
3399                  */
3400                 if (ref_page)
3401                         break;
3402         }
3403         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3404         tlb_end_vma(tlb, vma);
3405 }
3406
3407 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3408                           struct vm_area_struct *vma, unsigned long start,
3409                           unsigned long end, struct page *ref_page)
3410 {
3411         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3412
3413         /*
3414          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3415          * test will fail on a vma being torn down, and not grab a page table
3416          * on its way out.  We're lucky that the flag has such an appropriate
3417          * name, and can in fact be safely cleared here. We could clear it
3418          * before the __unmap_hugepage_range above, but all that's necessary
3419          * is to clear it before releasing the i_mmap_rwsem. This works
3420          * because in the context this is called, the VMA is about to be
3421          * destroyed and the i_mmap_rwsem is held.
3422          */
3423         vma->vm_flags &= ~VM_MAYSHARE;
3424 }
3425
3426 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3427                           unsigned long end, struct page *ref_page)
3428 {
3429         struct mm_struct *mm;
3430         struct mmu_gather tlb;
3431
3432         mm = vma->vm_mm;
3433
3434         tlb_gather_mmu(&tlb, mm, start, end);
3435         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3436         tlb_finish_mmu(&tlb, start, end);
3437 }
3438
3439 /*
3440  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3441  * mappping it owns the reserve page for. The intention is to unmap the page
3442  * from other VMAs and let the children be SIGKILLed if they are faulting the
3443  * same region.
3444  */
3445 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3446                               struct page *page, unsigned long address)
3447 {
3448         struct hstate *h = hstate_vma(vma);
3449         struct vm_area_struct *iter_vma;
3450         struct address_space *mapping;
3451         pgoff_t pgoff;
3452
3453         /*
3454          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3455          * from page cache lookup which is in HPAGE_SIZE units.
3456          */
3457         address = address & huge_page_mask(h);
3458         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3459                         vma->vm_pgoff;
3460         mapping = vma->vm_file->f_mapping;
3461
3462         /*
3463          * Take the mapping lock for the duration of the table walk. As
3464          * this mapping should be shared between all the VMAs,
3465          * __unmap_hugepage_range() is called as the lock is already held
3466          */
3467         i_mmap_lock_write(mapping);
3468         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3469                 /* Do not unmap the current VMA */
3470                 if (iter_vma == vma)
3471                         continue;
3472
3473                 /*
3474                  * Shared VMAs have their own reserves and do not affect
3475                  * MAP_PRIVATE accounting but it is possible that a shared
3476                  * VMA is using the same page so check and skip such VMAs.
3477                  */
3478                 if (iter_vma->vm_flags & VM_MAYSHARE)
3479                         continue;
3480
3481                 /*
3482                  * Unmap the page from other VMAs without their own reserves.
3483                  * They get marked to be SIGKILLed if they fault in these
3484                  * areas. This is because a future no-page fault on this VMA
3485                  * could insert a zeroed page instead of the data existing
3486                  * from the time of fork. This would look like data corruption
3487                  */
3488                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3489                         unmap_hugepage_range(iter_vma, address,
3490                                              address + huge_page_size(h), page);
3491         }
3492         i_mmap_unlock_write(mapping);
3493 }
3494
3495 /*
3496  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3497  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3498  * cannot race with other handlers or page migration.
3499  * Keep the pte_same checks anyway to make transition from the mutex easier.
3500  */
3501 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3502                        unsigned long address, pte_t *ptep,
3503                        struct page *pagecache_page, spinlock_t *ptl)
3504 {
3505         pte_t pte;
3506         struct hstate *h = hstate_vma(vma);
3507         struct page *old_page, *new_page;
3508         int ret = 0, outside_reserve = 0;
3509         unsigned long mmun_start;       /* For mmu_notifiers */
3510         unsigned long mmun_end;         /* For mmu_notifiers */
3511
3512         pte = huge_ptep_get(ptep);
3513         old_page = pte_page(pte);
3514
3515 retry_avoidcopy:
3516         /* If no-one else is actually using this page, avoid the copy
3517          * and just make the page writable */
3518         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3519                 page_move_anon_rmap(old_page, vma);
3520                 set_huge_ptep_writable(vma, address, ptep);
3521                 return 0;
3522         }
3523
3524         /*
3525          * If the process that created a MAP_PRIVATE mapping is about to
3526          * perform a COW due to a shared page count, attempt to satisfy
3527          * the allocation without using the existing reserves. The pagecache
3528          * page is used to determine if the reserve at this address was
3529          * consumed or not. If reserves were used, a partial faulted mapping
3530          * at the time of fork() could consume its reserves on COW instead
3531          * of the full address range.
3532          */
3533         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3534                         old_page != pagecache_page)
3535                 outside_reserve = 1;
3536
3537         get_page(old_page);
3538
3539         /*
3540          * Drop page table lock as buddy allocator may be called. It will
3541          * be acquired again before returning to the caller, as expected.
3542          */
3543         spin_unlock(ptl);
3544         new_page = alloc_huge_page(vma, address, outside_reserve);
3545
3546         if (IS_ERR(new_page)) {
3547                 /*
3548                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3549                  * it is due to references held by a child and an insufficient
3550                  * huge page pool. To guarantee the original mappers
3551                  * reliability, unmap the page from child processes. The child
3552                  * may get SIGKILLed if it later faults.
3553                  */
3554                 if (outside_reserve) {
3555                         put_page(old_page);
3556                         BUG_ON(huge_pte_none(pte));
3557                         unmap_ref_private(mm, vma, old_page, address);
3558                         BUG_ON(huge_pte_none(pte));
3559                         spin_lock(ptl);
3560                         ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3561                                                huge_page_size(h));
3562                         if (likely(ptep &&
3563                                    pte_same(huge_ptep_get(ptep), pte)))
3564                                 goto retry_avoidcopy;
3565                         /*
3566                          * race occurs while re-acquiring page table
3567                          * lock, and our job is done.
3568                          */
3569                         return 0;
3570                 }
3571
3572                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3573                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3574                 goto out_release_old;
3575         }
3576
3577         /*
3578          * When the original hugepage is shared one, it does not have
3579          * anon_vma prepared.
3580          */
3581         if (unlikely(anon_vma_prepare(vma))) {
3582                 ret = VM_FAULT_OOM;
3583                 goto out_release_all;
3584         }
3585
3586         copy_user_huge_page(new_page, old_page, address, vma,
3587                             pages_per_huge_page(h));
3588         __SetPageUptodate(new_page);
3589         set_page_huge_active(new_page);
3590
3591         mmun_start = address & huge_page_mask(h);
3592         mmun_end = mmun_start + huge_page_size(h);
3593         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3594
3595         /*
3596          * Retake the page table lock to check for racing updates
3597          * before the page tables are altered
3598          */
3599         spin_lock(ptl);
3600         ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3601                                huge_page_size(h));
3602         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3603                 ClearPagePrivate(new_page);
3604
3605                 /* Break COW */
3606                 huge_ptep_clear_flush(vma, address, ptep);
3607                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3608                 set_huge_pte_at(mm, address, ptep,
3609                                 make_huge_pte(vma, new_page, 1));
3610                 page_remove_rmap(old_page, true);
3611                 hugepage_add_new_anon_rmap(new_page, vma, address);
3612                 /* Make the old page be freed below */
3613                 new_page = old_page;
3614         }
3615         spin_unlock(ptl);
3616         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3617 out_release_all:
3618         restore_reserve_on_error(h, vma, address, new_page);
3619         put_page(new_page);
3620 out_release_old:
3621         put_page(old_page);
3622
3623         spin_lock(ptl); /* Caller expects lock to be held */
3624         return ret;
3625 }
3626
3627 /* Return the pagecache page at a given address within a VMA */
3628 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3629                         struct vm_area_struct *vma, unsigned long address)
3630 {
3631         struct address_space *mapping;
3632         pgoff_t idx;
3633
3634         mapping = vma->vm_file->f_mapping;
3635         idx = vma_hugecache_offset(h, vma, address);
3636
3637         return find_lock_page(mapping, idx);
3638 }
3639
3640 /*
3641  * Return whether there is a pagecache page to back given address within VMA.
3642  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3643  */
3644 static bool hugetlbfs_pagecache_present(struct hstate *h,
3645                         struct vm_area_struct *vma, unsigned long address)
3646 {
3647         struct address_space *mapping;
3648         pgoff_t idx;
3649         struct page *page;
3650
3651         mapping = vma->vm_file->f_mapping;
3652         idx = vma_hugecache_offset(h, vma, address);
3653
3654         page = find_get_page(mapping, idx);
3655         if (page)
3656                 put_page(page);
3657         return page != NULL;
3658 }
3659
3660 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3661                            pgoff_t idx)
3662 {
3663         struct inode *inode = mapping->host;
3664         struct hstate *h = hstate_inode(inode);
3665         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3666
3667         if (err)
3668                 return err;
3669         ClearPagePrivate(page);
3670
3671         spin_lock(&inode->i_lock);
3672         inode->i_blocks += blocks_per_huge_page(h);
3673         spin_unlock(&inode->i_lock);
3674         return 0;
3675 }
3676
3677 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3678                            struct address_space *mapping, pgoff_t idx,
3679                            unsigned long address, pte_t *ptep, unsigned int flags)
3680 {
3681         struct hstate *h = hstate_vma(vma);
3682         int ret = VM_FAULT_SIGBUS;
3683         int anon_rmap = 0;
3684         unsigned long size;
3685         struct page *page;
3686         pte_t new_pte;
3687         spinlock_t *ptl;
3688
3689         /*
3690          * Currently, we are forced to kill the process in the event the
3691          * original mapper has unmapped pages from the child due to a failed
3692          * COW. Warn that such a situation has occurred as it may not be obvious
3693          */
3694         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3695                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3696                            current->pid);
3697                 return ret;
3698         }
3699
3700         /*
3701          * Use page lock to guard against racing truncation
3702          * before we get page_table_lock.
3703          */
3704 retry:
3705         page = find_lock_page(mapping, idx);
3706         if (!page) {
3707                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3708                 if (idx >= size)
3709                         goto out;
3710
3711                 /*
3712                  * Check for page in userfault range
3713                  */
3714                 if (userfaultfd_missing(vma)) {
3715                         u32 hash;
3716                         struct vm_fault vmf = {
3717                                 .vma = vma,
3718                                 .address = address,
3719                                 .flags = flags,
3720                                 /*
3721                                  * Hard to debug if it ends up being
3722                                  * used by a callee that assumes
3723                                  * something about the other
3724                                  * uninitialized fields... same as in
3725                                  * memory.c
3726                                  */
3727                         };
3728
3729                         /*
3730                          * hugetlb_fault_mutex must be dropped before
3731                          * handling userfault.  Reacquire after handling
3732                          * fault to make calling code simpler.
3733                          */
3734                         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3735                                                         idx, address);
3736                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3737                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3738                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3739                         goto out;
3740                 }
3741
3742                 page = alloc_huge_page(vma, address, 0);
3743                 if (IS_ERR(page)) {
3744                         ret = PTR_ERR(page);
3745                         if (ret == -ENOMEM)
3746                                 ret = VM_FAULT_OOM;
3747                         else
3748                                 ret = VM_FAULT_SIGBUS;
3749                         goto out;
3750                 }
3751                 clear_huge_page(page, address, pages_per_huge_page(h));
3752                 __SetPageUptodate(page);
3753                 set_page_huge_active(page);
3754
3755                 if (vma->vm_flags & VM_MAYSHARE) {
3756                         int err = huge_add_to_page_cache(page, mapping, idx);
3757                         if (err) {
3758                                 put_page(page);
3759                                 if (err == -EEXIST)
3760                                         goto retry;
3761                                 goto out;
3762                         }
3763                 } else {
3764                         lock_page(page);
3765                         if (unlikely(anon_vma_prepare(vma))) {
3766                                 ret = VM_FAULT_OOM;
3767                                 goto backout_unlocked;
3768                         }
3769                         anon_rmap = 1;
3770                 }
3771         } else {
3772                 /*
3773                  * If memory error occurs between mmap() and fault, some process
3774                  * don't have hwpoisoned swap entry for errored virtual address.
3775                  * So we need to block hugepage fault by PG_hwpoison bit check.
3776                  */
3777                 if (unlikely(PageHWPoison(page))) {
3778                         ret = VM_FAULT_HWPOISON |
3779                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3780                         goto backout_unlocked;
3781                 }
3782         }
3783
3784         /*
3785          * If we are going to COW a private mapping later, we examine the
3786          * pending reservations for this page now. This will ensure that
3787          * any allocations necessary to record that reservation occur outside
3788          * the spinlock.
3789          */
3790         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3791                 if (vma_needs_reservation(h, vma, address) < 0) {
3792                         ret = VM_FAULT_OOM;
3793                         goto backout_unlocked;
3794                 }
3795                 /* Just decrements count, does not deallocate */
3796                 vma_end_reservation(h, vma, address);
3797         }
3798
3799         ptl = huge_pte_lock(h, mm, ptep);
3800         size = i_size_read(mapping->host) >> huge_page_shift(h);
3801         if (idx >= size)
3802                 goto backout;
3803
3804         ret = 0;
3805         if (!huge_pte_none(huge_ptep_get(ptep)))
3806                 goto backout;
3807
3808         if (anon_rmap) {
3809                 ClearPagePrivate(page);
3810                 hugepage_add_new_anon_rmap(page, vma, address);
3811         } else
3812                 page_dup_rmap(page, true);
3813         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3814                                 && (vma->vm_flags & VM_SHARED)));
3815         set_huge_pte_at(mm, address, ptep, new_pte);
3816
3817         hugetlb_count_add(pages_per_huge_page(h), mm);
3818         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3819                 /* Optimization, do the COW without a second fault */
3820                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3821         }
3822
3823         spin_unlock(ptl);
3824         unlock_page(page);
3825 out:
3826         return ret;
3827
3828 backout:
3829         spin_unlock(ptl);
3830 backout_unlocked:
3831         unlock_page(page);
3832         restore_reserve_on_error(h, vma, address, page);
3833         put_page(page);
3834         goto out;
3835 }
3836
3837 #ifdef CONFIG_SMP
3838 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3839                             struct vm_area_struct *vma,
3840                             struct address_space *mapping,
3841                             pgoff_t idx, unsigned long address)
3842 {
3843         unsigned long key[2];
3844         u32 hash;
3845
3846         if (vma->vm_flags & VM_SHARED) {
3847                 key[0] = (unsigned long) mapping;
3848                 key[1] = idx;
3849         } else {
3850                 key[0] = (unsigned long) mm;
3851                 key[1] = address >> huge_page_shift(h);
3852         }
3853
3854         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3855
3856         return hash & (num_fault_mutexes - 1);
3857 }
3858 #else
3859 /*
3860  * For uniprocesor systems we always use a single mutex, so just
3861  * return 0 and avoid the hashing overhead.
3862  */
3863 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3864                             struct vm_area_struct *vma,
3865                             struct address_space *mapping,
3866                             pgoff_t idx, unsigned long address)
3867 {
3868         return 0;
3869 }
3870 #endif
3871
3872 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3873                         unsigned long address, unsigned int flags)
3874 {
3875         pte_t *ptep, entry;
3876         spinlock_t *ptl;
3877         int ret;
3878         u32 hash;
3879         pgoff_t idx;
3880         struct page *page = NULL;
3881         struct page *pagecache_page = NULL;
3882         struct hstate *h = hstate_vma(vma);
3883         struct address_space *mapping;
3884         int need_wait_lock = 0;
3885
3886         address &= huge_page_mask(h);
3887
3888         ptep = huge_pte_offset(mm, address, huge_page_size(h));
3889         if (ptep) {
3890                 entry = huge_ptep_get(ptep);
3891                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3892                         migration_entry_wait_huge(vma, mm, ptep);
3893                         return 0;
3894                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3895                         return VM_FAULT_HWPOISON_LARGE |
3896                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3897         } else {
3898                 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3899                 if (!ptep)
3900                         return VM_FAULT_OOM;
3901         }
3902
3903         mapping = vma->vm_file->f_mapping;
3904         idx = vma_hugecache_offset(h, vma, address);
3905
3906         /*
3907          * Serialize hugepage allocation and instantiation, so that we don't
3908          * get spurious allocation failures if two CPUs race to instantiate
3909          * the same page in the page cache.
3910          */
3911         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3912         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3913
3914         entry = huge_ptep_get(ptep);
3915         if (huge_pte_none(entry)) {
3916                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3917                 goto out_mutex;
3918         }
3919
3920         ret = 0;
3921
3922         /*
3923          * entry could be a migration/hwpoison entry at this point, so this
3924          * check prevents the kernel from going below assuming that we have
3925          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3926          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3927          * handle it.
3928          */
3929         if (!pte_present(entry))
3930                 goto out_mutex;
3931
3932         /*
3933          * If we are going to COW the mapping later, we examine the pending
3934          * reservations for this page now. This will ensure that any
3935          * allocations necessary to record that reservation occur outside the
3936          * spinlock. For private mappings, we also lookup the pagecache
3937          * page now as it is used to determine if a reservation has been
3938          * consumed.
3939          */
3940         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3941                 if (vma_needs_reservation(h, vma, address) < 0) {
3942                         ret = VM_FAULT_OOM;
3943                         goto out_mutex;
3944                 }
3945                 /* Just decrements count, does not deallocate */
3946                 vma_end_reservation(h, vma, address);
3947
3948                 if (!(vma->vm_flags & VM_MAYSHARE))
3949                         pagecache_page = hugetlbfs_pagecache_page(h,
3950                                                                 vma, address);
3951         }
3952
3953         ptl = huge_pte_lock(h, mm, ptep);
3954
3955         /* Check for a racing update before calling hugetlb_cow */
3956         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3957                 goto out_ptl;
3958
3959         /*
3960          * hugetlb_cow() requires page locks of pte_page(entry) and
3961          * pagecache_page, so here we need take the former one
3962          * when page != pagecache_page or !pagecache_page.
3963          */
3964         page = pte_page(entry);
3965         if (page != pagecache_page)
3966                 if (!trylock_page(page)) {
3967                         need_wait_lock = 1;
3968                         goto out_ptl;
3969                 }
3970
3971         get_page(page);
3972
3973         if (flags & FAULT_FLAG_WRITE) {
3974                 if (!huge_pte_write(entry)) {
3975                         ret = hugetlb_cow(mm, vma, address, ptep,
3976                                           pagecache_page, ptl);
3977                         goto out_put_page;
3978                 }
3979                 entry = huge_pte_mkdirty(entry);
3980         }
3981         entry = pte_mkyoung(entry);
3982         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3983                                                 flags & FAULT_FLAG_WRITE))
3984                 update_mmu_cache(vma, address, ptep);
3985 out_put_page:
3986         if (page != pagecache_page)
3987                 unlock_page(page);
3988         put_page(page);
3989 out_ptl:
3990         spin_unlock(ptl);
3991
3992         if (pagecache_page) {
3993                 unlock_page(pagecache_page);
3994                 put_page(pagecache_page);
3995         }
3996 out_mutex:
3997         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3998         /*
3999          * Generally it's safe to hold refcount during waiting page lock. But
4000          * here we just wait to defer the next page fault to avoid busy loop and
4001          * the page is not used after unlocked before returning from the current
4002          * page fault. So we are safe from accessing freed page, even if we wait
4003          * here without taking refcount.
4004          */
4005         if (need_wait_lock)
4006                 wait_on_page_locked(page);
4007         return ret;
4008 }
4009
4010 /*
4011  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4012  * modifications for huge pages.
4013  */
4014 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4015                             pte_t *dst_pte,
4016                             struct vm_area_struct *dst_vma,
4017                             unsigned long dst_addr,
4018                             unsigned long src_addr,
4019                             struct page **pagep)
4020 {
4021         struct address_space *mapping;
4022         pgoff_t idx;
4023         unsigned long size;
4024         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4025         struct hstate *h = hstate_vma(dst_vma);
4026         pte_t _dst_pte;
4027         spinlock_t *ptl;
4028         int ret;
4029         struct page *page;
4030
4031         if (!*pagep) {
4032                 ret = -ENOMEM;
4033                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4034                 if (IS_ERR(page))
4035                         goto out;
4036
4037                 ret = copy_huge_page_from_user(page,
4038                                                 (const void __user *) src_addr,
4039                                                 pages_per_huge_page(h), false);
4040
4041                 /* fallback to copy_from_user outside mmap_sem */
4042                 if (unlikely(ret)) {
4043                         ret = -EFAULT;
4044                         *pagep = page;
4045                         /* don't free the page */
4046                         goto out;
4047                 }
4048         } else {
4049                 page = *pagep;
4050                 *pagep = NULL;
4051         }
4052
4053         /*
4054          * The memory barrier inside __SetPageUptodate makes sure that
4055          * preceding stores to the page contents become visible before
4056          * the set_pte_at() write.
4057          */
4058         __SetPageUptodate(page);
4059         set_page_huge_active(page);
4060
4061         mapping = dst_vma->vm_file->f_mapping;
4062         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4063
4064         /*
4065          * If shared, add to page cache
4066          */
4067         if (vm_shared) {
4068                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4069                 ret = -EFAULT;
4070                 if (idx >= size)
4071                         goto out_release_nounlock;
4072
4073                 /*
4074                  * Serialization between remove_inode_hugepages() and
4075                  * huge_add_to_page_cache() below happens through the
4076                  * hugetlb_fault_mutex_table that here must be hold by
4077                  * the caller.
4078                  */
4079                 ret = huge_add_to_page_cache(page, mapping, idx);
4080                 if (ret)
4081                         goto out_release_nounlock;
4082         }
4083
4084         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4085         spin_lock(ptl);
4086
4087         /*
4088          * Recheck the i_size after holding PT lock to make sure not
4089          * to leave any page mapped (as page_mapped()) beyond the end
4090          * of the i_size (remove_inode_hugepages() is strict about
4091          * enforcing that). If we bail out here, we'll also leave a
4092          * page in the radix tree in the vm_shared case beyond the end
4093          * of the i_size, but remove_inode_hugepages() will take care
4094          * of it as soon as we drop the hugetlb_fault_mutex_table.
4095          */
4096         size = i_size_read(mapping->host) >> huge_page_shift(h);
4097         ret = -EFAULT;
4098         if (idx >= size)
4099                 goto out_release_unlock;
4100
4101         ret = -EEXIST;
4102         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4103                 goto out_release_unlock;
4104
4105         if (vm_shared) {
4106                 page_dup_rmap(page, true);
4107         } else {
4108                 ClearPagePrivate(page);
4109                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4110         }
4111
4112         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4113         if (dst_vma->vm_flags & VM_WRITE)
4114                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4115         _dst_pte = pte_mkyoung(_dst_pte);
4116
4117         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4118
4119         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4120                                         dst_vma->vm_flags & VM_WRITE);
4121         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4122
4123         /* No need to invalidate - it was non-present before */
4124         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4125
4126         spin_unlock(ptl);
4127         if (vm_shared)
4128                 unlock_page(page);
4129         ret = 0;
4130 out:
4131         return ret;
4132 out_release_unlock:
4133         spin_unlock(ptl);
4134         if (vm_shared)
4135                 unlock_page(page);
4136 out_release_nounlock:
4137         put_page(page);
4138         goto out;
4139 }
4140
4141 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4142                          struct page **pages, struct vm_area_struct **vmas,
4143                          unsigned long *position, unsigned long *nr_pages,
4144                          long i, unsigned int flags, int *nonblocking)
4145 {
4146         unsigned long pfn_offset;
4147         unsigned long vaddr = *position;
4148         unsigned long remainder = *nr_pages;
4149         struct hstate *h = hstate_vma(vma);
4150         int err = -EFAULT;
4151
4152         while (vaddr < vma->vm_end && remainder) {
4153                 pte_t *pte;
4154                 spinlock_t *ptl = NULL;
4155                 int absent;
4156                 struct page *page;
4157
4158                 /*
4159                  * If we have a pending SIGKILL, don't keep faulting pages and
4160                  * potentially allocating memory.
4161                  */
4162                 if (unlikely(fatal_signal_pending(current))) {
4163                         remainder = 0;
4164                         break;
4165                 }
4166
4167                 /*
4168                  * Some archs (sparc64, sh*) have multiple pte_ts to
4169                  * each hugepage.  We have to make sure we get the
4170                  * first, for the page indexing below to work.
4171                  *
4172                  * Note that page table lock is not held when pte is null.
4173                  */
4174                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4175                                       huge_page_size(h));
4176                 if (pte)
4177                         ptl = huge_pte_lock(h, mm, pte);
4178                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4179
4180                 /*
4181                  * When coredumping, it suits get_dump_page if we just return
4182                  * an error where there's an empty slot with no huge pagecache
4183                  * to back it.  This way, we avoid allocating a hugepage, and
4184                  * the sparse dumpfile avoids allocating disk blocks, but its
4185                  * huge holes still show up with zeroes where they need to be.
4186                  */
4187                 if (absent && (flags & FOLL_DUMP) &&
4188                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4189                         if (pte)
4190                                 spin_unlock(ptl);
4191                         remainder = 0;
4192                         break;
4193                 }
4194
4195                 /*
4196                  * We need call hugetlb_fault for both hugepages under migration
4197                  * (in which case hugetlb_fault waits for the migration,) and
4198                  * hwpoisoned hugepages (in which case we need to prevent the
4199                  * caller from accessing to them.) In order to do this, we use
4200                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4201                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4202                  * both cases, and because we can't follow correct pages
4203                  * directly from any kind of swap entries.
4204                  */
4205                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4206                     ((flags & FOLL_WRITE) &&
4207                       !huge_pte_write(huge_ptep_get(pte)))) {
4208                         int ret;
4209                         unsigned int fault_flags = 0;
4210
4211                         if (pte)
4212                                 spin_unlock(ptl);
4213                         if (flags & FOLL_WRITE)
4214                                 fault_flags |= FAULT_FLAG_WRITE;
4215                         if (nonblocking)
4216                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4217                         if (flags & FOLL_NOWAIT)
4218                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4219                                         FAULT_FLAG_RETRY_NOWAIT;
4220                         if (flags & FOLL_TRIED) {
4221                                 VM_WARN_ON_ONCE(fault_flags &
4222                                                 FAULT_FLAG_ALLOW_RETRY);
4223                                 fault_flags |= FAULT_FLAG_TRIED;
4224                         }
4225                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4226                         if (ret & VM_FAULT_ERROR) {
4227                                 err = vm_fault_to_errno(ret, flags);
4228                                 remainder = 0;
4229                                 break;
4230                         }
4231                         if (ret & VM_FAULT_RETRY) {
4232                                 if (nonblocking)
4233                                         *nonblocking = 0;
4234                                 *nr_pages = 0;
4235                                 /*
4236                                  * VM_FAULT_RETRY must not return an
4237                                  * error, it will return zero
4238                                  * instead.
4239                                  *
4240                                  * No need to update "position" as the
4241                                  * caller will not check it after
4242                                  * *nr_pages is set to 0.
4243                                  */
4244                                 return i;
4245                         }
4246                         continue;
4247                 }
4248
4249                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4250                 page = pte_page(huge_ptep_get(pte));
4251 same_page:
4252                 if (pages) {
4253                         pages[i] = mem_map_offset(page, pfn_offset);
4254                         get_page(pages[i]);
4255                 }
4256
4257                 if (vmas)
4258                         vmas[i] = vma;
4259
4260                 vaddr += PAGE_SIZE;
4261                 ++pfn_offset;
4262                 --remainder;
4263                 ++i;
4264                 if (vaddr < vma->vm_end && remainder &&
4265                                 pfn_offset < pages_per_huge_page(h)) {
4266                         /*
4267                          * We use pfn_offset to avoid touching the pageframes
4268                          * of this compound page.
4269                          */
4270                         goto same_page;
4271                 }
4272                 spin_unlock(ptl);
4273         }
4274         *nr_pages = remainder;
4275         /*
4276          * setting position is actually required only if remainder is
4277          * not zero but it's faster not to add a "if (remainder)"
4278          * branch.
4279          */
4280         *position = vaddr;
4281
4282         return i ? i : err;
4283 }
4284
4285 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4286 /*
4287  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4288  * implement this.
4289  */
4290 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4291 #endif
4292
4293 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4294                 unsigned long address, unsigned long end, pgprot_t newprot)
4295 {
4296         struct mm_struct *mm = vma->vm_mm;
4297         unsigned long start = address;
4298         pte_t *ptep;
4299         pte_t pte;
4300         struct hstate *h = hstate_vma(vma);
4301         unsigned long pages = 0;
4302
4303         BUG_ON(address >= end);
4304         flush_cache_range(vma, address, end);
4305
4306         mmu_notifier_invalidate_range_start(mm, start, end);
4307         i_mmap_lock_write(vma->vm_file->f_mapping);
4308         for (; address < end; address += huge_page_size(h)) {
4309                 spinlock_t *ptl;
4310                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4311                 if (!ptep)
4312                         continue;
4313                 ptl = huge_pte_lock(h, mm, ptep);
4314                 if (huge_pmd_unshare(mm, &address, ptep)) {
4315                         pages++;
4316                         spin_unlock(ptl);
4317                         continue;
4318                 }
4319                 pte = huge_ptep_get(ptep);
4320                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4321                         spin_unlock(ptl);
4322                         continue;
4323                 }
4324                 if (unlikely(is_hugetlb_entry_migration(pte))) {
4325                         swp_entry_t entry = pte_to_swp_entry(pte);
4326
4327                         if (is_write_migration_entry(entry)) {
4328                                 pte_t newpte;
4329
4330                                 make_migration_entry_read(&entry);
4331                                 newpte = swp_entry_to_pte(entry);
4332                                 set_huge_swap_pte_at(mm, address, ptep,
4333                                                      newpte, huge_page_size(h));
4334                                 pages++;
4335                         }
4336                         spin_unlock(ptl);
4337                         continue;
4338                 }
4339                 if (!huge_pte_none(pte)) {
4340                         pte = huge_ptep_get_and_clear(mm, address, ptep);
4341                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4342                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
4343                         set_huge_pte_at(mm, address, ptep, pte);
4344                         pages++;
4345                 }
4346                 spin_unlock(ptl);
4347         }
4348         /*
4349          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4350          * may have cleared our pud entry and done put_page on the page table:
4351          * once we release i_mmap_rwsem, another task can do the final put_page
4352          * and that page table be reused and filled with junk.
4353          */
4354         flush_hugetlb_tlb_range(vma, start, end);
4355         /*
4356          * No need to call mmu_notifier_invalidate_range() we are downgrading
4357          * page table protection not changing it to point to a new page.
4358          *
4359          * See Documentation/vm/mmu_notifier.txt
4360          */
4361         i_mmap_unlock_write(vma->vm_file->f_mapping);
4362         mmu_notifier_invalidate_range_end(mm, start, end);
4363
4364         return pages << h->order;
4365 }
4366
4367 int hugetlb_reserve_pages(struct inode *inode,
4368                                         long from, long to,
4369                                         struct vm_area_struct *vma,
4370                                         vm_flags_t vm_flags)
4371 {
4372         long ret, chg;
4373         struct hstate *h = hstate_inode(inode);
4374         struct hugepage_subpool *spool = subpool_inode(inode);
4375         struct resv_map *resv_map;
4376         long gbl_reserve;
4377
4378         /*
4379          * Only apply hugepage reservation if asked. At fault time, an
4380          * attempt will be made for VM_NORESERVE to allocate a page
4381          * without using reserves
4382          */
4383         if (vm_flags & VM_NORESERVE)
4384                 return 0;
4385
4386         /*
4387          * Shared mappings base their reservation on the number of pages that
4388          * are already allocated on behalf of the file. Private mappings need
4389          * to reserve the full area even if read-only as mprotect() may be
4390          * called to make the mapping read-write. Assume !vma is a shm mapping
4391          */
4392         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4393                 resv_map = inode_resv_map(inode);
4394
4395                 chg = region_chg(resv_map, from, to);
4396
4397         } else {
4398                 resv_map = resv_map_alloc();
4399                 if (!resv_map)
4400                         return -ENOMEM;
4401
4402                 chg = to - from;
4403
4404                 set_vma_resv_map(vma, resv_map);
4405                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4406         }
4407
4408         if (chg < 0) {
4409                 ret = chg;
4410                 goto out_err;
4411         }
4412
4413         /*
4414          * There must be enough pages in the subpool for the mapping. If
4415          * the subpool has a minimum size, there may be some global
4416          * reservations already in place (gbl_reserve).
4417          */
4418         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4419         if (gbl_reserve < 0) {
4420                 ret = -ENOSPC;
4421                 goto out_err;
4422         }
4423
4424         /*
4425          * Check enough hugepages are available for the reservation.
4426          * Hand the pages back to the subpool if there are not
4427          */
4428         ret = hugetlb_acct_memory(h, gbl_reserve);
4429         if (ret < 0) {
4430                 /* put back original number of pages, chg */
4431                 (void)hugepage_subpool_put_pages(spool, chg);
4432                 goto out_err;
4433         }
4434
4435         /*
4436          * Account for the reservations made. Shared mappings record regions
4437          * that have reservations as they are shared by multiple VMAs.
4438          * When the last VMA disappears, the region map says how much
4439          * the reservation was and the page cache tells how much of
4440          * the reservation was consumed. Private mappings are per-VMA and
4441          * only the consumed reservations are tracked. When the VMA
4442          * disappears, the original reservation is the VMA size and the
4443          * consumed reservations are stored in the map. Hence, nothing
4444          * else has to be done for private mappings here
4445          */
4446         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4447                 long add = region_add(resv_map, from, to);
4448
4449                 if (unlikely(chg > add)) {
4450                         /*
4451                          * pages in this range were added to the reserve
4452                          * map between region_chg and region_add.  This
4453                          * indicates a race with alloc_huge_page.  Adjust
4454                          * the subpool and reserve counts modified above
4455                          * based on the difference.
4456                          */
4457                         long rsv_adjust;
4458
4459                         rsv_adjust = hugepage_subpool_put_pages(spool,
4460                                                                 chg - add);
4461                         hugetlb_acct_memory(h, -rsv_adjust);
4462                 }
4463         }
4464         return 0;
4465 out_err:
4466         if (!vma || vma->vm_flags & VM_MAYSHARE)
4467                 /* Don't call region_abort if region_chg failed */
4468                 if (chg >= 0)
4469                         region_abort(resv_map, from, to);
4470         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4471                 kref_put(&resv_map->refs, resv_map_release);
4472         return ret;
4473 }
4474
4475 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4476                                                                 long freed)
4477 {
4478         struct hstate *h = hstate_inode(inode);
4479         struct resv_map *resv_map = inode_resv_map(inode);
4480         long chg = 0;
4481         struct hugepage_subpool *spool = subpool_inode(inode);
4482         long gbl_reserve;
4483
4484         if (resv_map) {
4485                 chg = region_del(resv_map, start, end);
4486                 /*
4487                  * region_del() can fail in the rare case where a region
4488                  * must be split and another region descriptor can not be
4489                  * allocated.  If end == LONG_MAX, it will not fail.
4490                  */
4491                 if (chg < 0)
4492                         return chg;
4493         }
4494
4495         spin_lock(&inode->i_lock);
4496         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4497         spin_unlock(&inode->i_lock);
4498
4499         /*
4500          * If the subpool has a minimum size, the number of global
4501          * reservations to be released may be adjusted.
4502          */
4503         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4504         hugetlb_acct_memory(h, -gbl_reserve);
4505
4506         return 0;
4507 }
4508
4509 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4510 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4511                                 struct vm_area_struct *vma,
4512                                 unsigned long addr, pgoff_t idx)
4513 {
4514         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4515                                 svma->vm_start;
4516         unsigned long sbase = saddr & PUD_MASK;
4517         unsigned long s_end = sbase + PUD_SIZE;
4518
4519         /* Allow segments to share if only one is marked locked */
4520         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4521         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4522
4523         /*
4524          * match the virtual addresses, permission and the alignment of the
4525          * page table page.
4526          */
4527         if (pmd_index(addr) != pmd_index(saddr) ||
4528             vm_flags != svm_flags ||
4529             sbase < svma->vm_start || svma->vm_end < s_end)
4530                 return 0;
4531
4532         return saddr;
4533 }
4534
4535 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4536 {
4537         unsigned long base = addr & PUD_MASK;
4538         unsigned long end = base + PUD_SIZE;
4539
4540         /*
4541          * check on proper vm_flags and page table alignment
4542          */
4543         if (vma->vm_flags & VM_MAYSHARE &&
4544             vma->vm_start <= base && end <= vma->vm_end)
4545                 return true;
4546         return false;
4547 }
4548
4549 /*
4550  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4551  * and returns the corresponding pte. While this is not necessary for the
4552  * !shared pmd case because we can allocate the pmd later as well, it makes the
4553  * code much cleaner. pmd allocation is essential for the shared case because
4554  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4555  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4556  * bad pmd for sharing.
4557  */
4558 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4559 {
4560         struct vm_area_struct *vma = find_vma(mm, addr);
4561         struct address_space *mapping = vma->vm_file->f_mapping;
4562         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4563                         vma->vm_pgoff;
4564         struct vm_area_struct *svma;
4565         unsigned long saddr;
4566         pte_t *spte = NULL;
4567         pte_t *pte;
4568         spinlock_t *ptl;
4569
4570         if (!vma_shareable(vma, addr))
4571                 return (pte_t *)pmd_alloc(mm, pud, addr);
4572
4573         i_mmap_lock_write(mapping);
4574         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4575                 if (svma == vma)
4576                         continue;
4577
4578                 saddr = page_table_shareable(svma, vma, addr, idx);
4579                 if (saddr) {
4580                         spte = huge_pte_offset(svma->vm_mm, saddr,
4581                                                vma_mmu_pagesize(svma));
4582                         if (spte) {
4583                                 get_page(virt_to_page(spte));
4584                                 break;
4585                         }
4586                 }
4587         }
4588
4589         if (!spte)
4590                 goto out;
4591
4592         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4593         if (pud_none(*pud)) {
4594                 pud_populate(mm, pud,
4595                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4596                 mm_inc_nr_pmds(mm);
4597         } else {
4598                 put_page(virt_to_page(spte));
4599         }
4600         spin_unlock(ptl);
4601 out:
4602         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4603         i_mmap_unlock_write(mapping);
4604         return pte;
4605 }
4606
4607 /*
4608  * unmap huge page backed by shared pte.
4609  *
4610  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4611  * indicated by page_count > 1, unmap is achieved by clearing pud and
4612  * decrementing the ref count. If count == 1, the pte page is not shared.
4613  *
4614  * called with page table lock held.
4615  *
4616  * returns: 1 successfully unmapped a shared pte page
4617  *          0 the underlying pte page is not shared, or it is the last user
4618  */
4619 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4620 {
4621         pgd_t *pgd = pgd_offset(mm, *addr);
4622         p4d_t *p4d = p4d_offset(pgd, *addr);
4623         pud_t *pud = pud_offset(p4d, *addr);
4624
4625         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4626         if (page_count(virt_to_page(ptep)) == 1)
4627                 return 0;
4628
4629         pud_clear(pud);
4630         put_page(virt_to_page(ptep));
4631         mm_dec_nr_pmds(mm);
4632         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4633         return 1;
4634 }
4635 #define want_pmd_share()        (1)
4636 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4637 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4638 {
4639         return NULL;
4640 }
4641
4642 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4643 {
4644         return 0;
4645 }
4646 #define want_pmd_share()        (0)
4647 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4648
4649 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4650 pte_t *huge_pte_alloc(struct mm_struct *mm,
4651                         unsigned long addr, unsigned long sz)
4652 {
4653         pgd_t *pgd;
4654         p4d_t *p4d;
4655         pud_t *pud;
4656         pte_t *pte = NULL;
4657
4658         pgd = pgd_offset(mm, addr);
4659         p4d = p4d_alloc(mm, pgd, addr);
4660         if (!p4d)
4661                 return NULL;
4662         pud = pud_alloc(mm, p4d, addr);
4663         if (pud) {
4664                 if (sz == PUD_SIZE) {
4665                         pte = (pte_t *)pud;
4666                 } else {
4667                         BUG_ON(sz != PMD_SIZE);
4668                         if (want_pmd_share() && pud_none(*pud))
4669                                 pte = huge_pmd_share(mm, addr, pud);
4670                         else
4671                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4672                 }
4673         }
4674         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4675
4676         return pte;
4677 }
4678
4679 /*
4680  * huge_pte_offset() - Walk the page table to resolve the hugepage
4681  * entry at address @addr
4682  *
4683  * Return: Pointer to page table or swap entry (PUD or PMD) for
4684  * address @addr, or NULL if a p*d_none() entry is encountered and the
4685  * size @sz doesn't match the hugepage size at this level of the page
4686  * table.
4687  */
4688 pte_t *huge_pte_offset(struct mm_struct *mm,
4689                        unsigned long addr, unsigned long sz)
4690 {
4691         pgd_t *pgd;
4692         p4d_t *p4d;
4693         pud_t *pud;
4694         pmd_t *pmd;
4695
4696         pgd = pgd_offset(mm, addr);
4697         if (!pgd_present(*pgd))
4698                 return NULL;
4699         p4d = p4d_offset(pgd, addr);
4700         if (!p4d_present(*p4d))
4701                 return NULL;
4702
4703         pud = pud_offset(p4d, addr);
4704         if (sz != PUD_SIZE && pud_none(*pud))
4705                 return NULL;
4706         /* hugepage or swap? */
4707         if (pud_huge(*pud) || !pud_present(*pud))
4708                 return (pte_t *)pud;
4709
4710         pmd = pmd_offset(pud, addr);
4711         if (sz != PMD_SIZE && pmd_none(*pmd))
4712                 return NULL;
4713         /* hugepage or swap? */
4714         if (pmd_huge(*pmd) || !pmd_present(*pmd))
4715                 return (pte_t *)pmd;
4716
4717         return NULL;
4718 }
4719
4720 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4721
4722 /*
4723  * These functions are overwritable if your architecture needs its own
4724  * behavior.
4725  */
4726 struct page * __weak
4727 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4728                               int write)
4729 {
4730         return ERR_PTR(-EINVAL);
4731 }
4732
4733 struct page * __weak
4734 follow_huge_pd(struct vm_area_struct *vma,
4735                unsigned long address, hugepd_t hpd, int flags, int pdshift)
4736 {
4737         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4738         return NULL;
4739 }
4740
4741 struct page * __weak
4742 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4743                 pmd_t *pmd, int flags)
4744 {
4745         struct page *page = NULL;
4746         spinlock_t *ptl;
4747         pte_t pte;
4748 retry:
4749         ptl = pmd_lockptr(mm, pmd);
4750         spin_lock(ptl);
4751         /*
4752          * make sure that the address range covered by this pmd is not
4753          * unmapped from other threads.
4754          */
4755         if (!pmd_huge(*pmd))
4756                 goto out;
4757         pte = huge_ptep_get((pte_t *)pmd);
4758         if (pte_present(pte)) {
4759                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4760                 if (flags & FOLL_GET)
4761                         get_page(page);
4762         } else {
4763                 if (is_hugetlb_entry_migration(pte)) {
4764                         spin_unlock(ptl);
4765                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4766                         goto retry;
4767                 }
4768                 /*
4769                  * hwpoisoned entry is treated as no_page_table in
4770                  * follow_page_mask().
4771                  */
4772         }
4773 out:
4774         spin_unlock(ptl);
4775         return page;
4776 }
4777
4778 struct page * __weak
4779 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4780                 pud_t *pud, int flags)
4781 {
4782         if (flags & FOLL_GET)
4783                 return NULL;
4784
4785         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4786 }
4787
4788 struct page * __weak
4789 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4790 {
4791         if (flags & FOLL_GET)
4792                 return NULL;
4793
4794         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4795 }
4796
4797 bool isolate_huge_page(struct page *page, struct list_head *list)
4798 {
4799         bool ret = true;
4800
4801         VM_BUG_ON_PAGE(!PageHead(page), page);
4802         spin_lock(&hugetlb_lock);
4803         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4804                 ret = false;
4805                 goto unlock;
4806         }
4807         clear_page_huge_active(page);
4808         list_move_tail(&page->lru, list);
4809 unlock:
4810         spin_unlock(&hugetlb_lock);
4811         return ret;
4812 }
4813
4814 void putback_active_hugepage(struct page *page)
4815 {
4816         VM_BUG_ON_PAGE(!PageHead(page), page);
4817         spin_lock(&hugetlb_lock);
4818         set_page_huge_active(page);
4819         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4820         spin_unlock(&hugetlb_lock);
4821         put_page(page);
4822 }
4823
4824 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4825 {
4826         struct hstate *h = page_hstate(oldpage);
4827
4828         hugetlb_cgroup_migrate(oldpage, newpage);
4829         set_page_owner_migrate_reason(newpage, reason);
4830
4831         /*
4832          * transfer temporary state of the new huge page. This is
4833          * reverse to other transitions because the newpage is going to
4834          * be final while the old one will be freed so it takes over
4835          * the temporary status.
4836          *
4837          * Also note that we have to transfer the per-node surplus state
4838          * here as well otherwise the global surplus count will not match
4839          * the per-node's.
4840          */
4841         if (PageHugeTemporary(newpage)) {
4842                 int old_nid = page_to_nid(oldpage);
4843                 int new_nid = page_to_nid(newpage);
4844
4845                 SetPageHugeTemporary(oldpage);
4846                 ClearPageHugeTemporary(newpage);
4847
4848                 spin_lock(&hugetlb_lock);
4849                 if (h->surplus_huge_pages_node[old_nid]) {
4850                         h->surplus_huge_pages_node[old_nid]--;
4851                         h->surplus_huge_pages_node[new_nid]++;
4852                 }
4853                 spin_unlock(&hugetlb_lock);
4854         }
4855 }