]> asedeno.scripts.mit.edu Git - linux.git/blob - mm/hugetlb.c
hugetlbfs: fix potential over/underflow setting node specific nr_hugepages
[linux.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/memblock.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/mmdebug.h>
22 #include <linux/sched/signal.h>
23 #include <linux/rmap.h>
24 #include <linux/string_helpers.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/jhash.h>
28 #include <linux/numa.h>
29
30 #include <asm/page.h>
31 #include <asm/pgtable.h>
32 #include <asm/tlb.h>
33
34 #include <linux/io.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/node.h>
38 #include <linux/userfaultfd_k.h>
39 #include <linux/page_owner.h>
40 #include "internal.h"
41
42 int hugetlb_max_hstate __read_mostly;
43 unsigned int default_hstate_idx;
44 struct hstate hstates[HUGE_MAX_HSTATE];
45 /*
46  * Minimum page order among possible hugepage sizes, set to a proper value
47  * at boot time.
48  */
49 static unsigned int minimum_order __read_mostly = UINT_MAX;
50
51 __initdata LIST_HEAD(huge_boot_pages);
52
53 /* for command line parsing */
54 static struct hstate * __initdata parsed_hstate;
55 static unsigned long __initdata default_hstate_max_huge_pages;
56 static unsigned long __initdata default_hstate_size;
57 static bool __initdata parsed_valid_hugepagesz = true;
58
59 /*
60  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
61  * free_huge_pages, and surplus_huge_pages.
62  */
63 DEFINE_SPINLOCK(hugetlb_lock);
64
65 /*
66  * Serializes faults on the same logical page.  This is used to
67  * prevent spurious OOMs when the hugepage pool is fully utilized.
68  */
69 static int num_fault_mutexes;
70 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
71
72 /* Forward declaration */
73 static int hugetlb_acct_memory(struct hstate *h, long delta);
74
75 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
76 {
77         bool free = (spool->count == 0) && (spool->used_hpages == 0);
78
79         spin_unlock(&spool->lock);
80
81         /* If no pages are used, and no other handles to the subpool
82          * remain, give up any reservations mased on minimum size and
83          * free the subpool */
84         if (free) {
85                 if (spool->min_hpages != -1)
86                         hugetlb_acct_memory(spool->hstate,
87                                                 -spool->min_hpages);
88                 kfree(spool);
89         }
90 }
91
92 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
93                                                 long min_hpages)
94 {
95         struct hugepage_subpool *spool;
96
97         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
98         if (!spool)
99                 return NULL;
100
101         spin_lock_init(&spool->lock);
102         spool->count = 1;
103         spool->max_hpages = max_hpages;
104         spool->hstate = h;
105         spool->min_hpages = min_hpages;
106
107         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
108                 kfree(spool);
109                 return NULL;
110         }
111         spool->rsv_hpages = min_hpages;
112
113         return spool;
114 }
115
116 void hugepage_put_subpool(struct hugepage_subpool *spool)
117 {
118         spin_lock(&spool->lock);
119         BUG_ON(!spool->count);
120         spool->count--;
121         unlock_or_release_subpool(spool);
122 }
123
124 /*
125  * Subpool accounting for allocating and reserving pages.
126  * Return -ENOMEM if there are not enough resources to satisfy the
127  * the request.  Otherwise, return the number of pages by which the
128  * global pools must be adjusted (upward).  The returned value may
129  * only be different than the passed value (delta) in the case where
130  * a subpool minimum size must be manitained.
131  */
132 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
133                                       long delta)
134 {
135         long ret = delta;
136
137         if (!spool)
138                 return ret;
139
140         spin_lock(&spool->lock);
141
142         if (spool->max_hpages != -1) {          /* maximum size accounting */
143                 if ((spool->used_hpages + delta) <= spool->max_hpages)
144                         spool->used_hpages += delta;
145                 else {
146                         ret = -ENOMEM;
147                         goto unlock_ret;
148                 }
149         }
150
151         /* minimum size accounting */
152         if (spool->min_hpages != -1 && spool->rsv_hpages) {
153                 if (delta > spool->rsv_hpages) {
154                         /*
155                          * Asking for more reserves than those already taken on
156                          * behalf of subpool.  Return difference.
157                          */
158                         ret = delta - spool->rsv_hpages;
159                         spool->rsv_hpages = 0;
160                 } else {
161                         ret = 0;        /* reserves already accounted for */
162                         spool->rsv_hpages -= delta;
163                 }
164         }
165
166 unlock_ret:
167         spin_unlock(&spool->lock);
168         return ret;
169 }
170
171 /*
172  * Subpool accounting for freeing and unreserving pages.
173  * Return the number of global page reservations that must be dropped.
174  * The return value may only be different than the passed value (delta)
175  * in the case where a subpool minimum size must be maintained.
176  */
177 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
178                                        long delta)
179 {
180         long ret = delta;
181
182         if (!spool)
183                 return delta;
184
185         spin_lock(&spool->lock);
186
187         if (spool->max_hpages != -1)            /* maximum size accounting */
188                 spool->used_hpages -= delta;
189
190          /* minimum size accounting */
191         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
192                 if (spool->rsv_hpages + delta <= spool->min_hpages)
193                         ret = 0;
194                 else
195                         ret = spool->rsv_hpages + delta - spool->min_hpages;
196
197                 spool->rsv_hpages += delta;
198                 if (spool->rsv_hpages > spool->min_hpages)
199                         spool->rsv_hpages = spool->min_hpages;
200         }
201
202         /*
203          * If hugetlbfs_put_super couldn't free spool due to an outstanding
204          * quota reference, free it now.
205          */
206         unlock_or_release_subpool(spool);
207
208         return ret;
209 }
210
211 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
212 {
213         return HUGETLBFS_SB(inode->i_sb)->spool;
214 }
215
216 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
217 {
218         return subpool_inode(file_inode(vma->vm_file));
219 }
220
221 /*
222  * Region tracking -- allows tracking of reservations and instantiated pages
223  *                    across the pages in a mapping.
224  *
225  * The region data structures are embedded into a resv_map and protected
226  * by a resv_map's lock.  The set of regions within the resv_map represent
227  * reservations for huge pages, or huge pages that have already been
228  * instantiated within the map.  The from and to elements are huge page
229  * indicies into the associated mapping.  from indicates the starting index
230  * of the region.  to represents the first index past the end of  the region.
231  *
232  * For example, a file region structure with from == 0 and to == 4 represents
233  * four huge pages in a mapping.  It is important to note that the to element
234  * represents the first element past the end of the region. This is used in
235  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
236  *
237  * Interval notation of the form [from, to) will be used to indicate that
238  * the endpoint from is inclusive and to is exclusive.
239  */
240 struct file_region {
241         struct list_head link;
242         long from;
243         long to;
244 };
245
246 /*
247  * Add the huge page range represented by [f, t) to the reserve
248  * map.  In the normal case, existing regions will be expanded
249  * to accommodate the specified range.  Sufficient regions should
250  * exist for expansion due to the previous call to region_chg
251  * with the same range.  However, it is possible that region_del
252  * could have been called after region_chg and modifed the map
253  * in such a way that no region exists to be expanded.  In this
254  * case, pull a region descriptor from the cache associated with
255  * the map and use that for the new range.
256  *
257  * Return the number of new huge pages added to the map.  This
258  * number is greater than or equal to zero.
259  */
260 static long region_add(struct resv_map *resv, long f, long t)
261 {
262         struct list_head *head = &resv->regions;
263         struct file_region *rg, *nrg, *trg;
264         long add = 0;
265
266         spin_lock(&resv->lock);
267         /* Locate the region we are either in or before. */
268         list_for_each_entry(rg, head, link)
269                 if (f <= rg->to)
270                         break;
271
272         /*
273          * If no region exists which can be expanded to include the
274          * specified range, the list must have been modified by an
275          * interleving call to region_del().  Pull a region descriptor
276          * from the cache and use it for this range.
277          */
278         if (&rg->link == head || t < rg->from) {
279                 VM_BUG_ON(resv->region_cache_count <= 0);
280
281                 resv->region_cache_count--;
282                 nrg = list_first_entry(&resv->region_cache, struct file_region,
283                                         link);
284                 list_del(&nrg->link);
285
286                 nrg->from = f;
287                 nrg->to = t;
288                 list_add(&nrg->link, rg->link.prev);
289
290                 add += t - f;
291                 goto out_locked;
292         }
293
294         /* Round our left edge to the current segment if it encloses us. */
295         if (f > rg->from)
296                 f = rg->from;
297
298         /* Check for and consume any regions we now overlap with. */
299         nrg = rg;
300         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
301                 if (&rg->link == head)
302                         break;
303                 if (rg->from > t)
304                         break;
305
306                 /* If this area reaches higher then extend our area to
307                  * include it completely.  If this is not the first area
308                  * which we intend to reuse, free it. */
309                 if (rg->to > t)
310                         t = rg->to;
311                 if (rg != nrg) {
312                         /* Decrement return value by the deleted range.
313                          * Another range will span this area so that by
314                          * end of routine add will be >= zero
315                          */
316                         add -= (rg->to - rg->from);
317                         list_del(&rg->link);
318                         kfree(rg);
319                 }
320         }
321
322         add += (nrg->from - f);         /* Added to beginning of region */
323         nrg->from = f;
324         add += t - nrg->to;             /* Added to end of region */
325         nrg->to = t;
326
327 out_locked:
328         resv->adds_in_progress--;
329         spin_unlock(&resv->lock);
330         VM_BUG_ON(add < 0);
331         return add;
332 }
333
334 /*
335  * Examine the existing reserve map and determine how many
336  * huge pages in the specified range [f, t) are NOT currently
337  * represented.  This routine is called before a subsequent
338  * call to region_add that will actually modify the reserve
339  * map to add the specified range [f, t).  region_chg does
340  * not change the number of huge pages represented by the
341  * map.  However, if the existing regions in the map can not
342  * be expanded to represent the new range, a new file_region
343  * structure is added to the map as a placeholder.  This is
344  * so that the subsequent region_add call will have all the
345  * regions it needs and will not fail.
346  *
347  * Upon entry, region_chg will also examine the cache of region descriptors
348  * associated with the map.  If there are not enough descriptors cached, one
349  * will be allocated for the in progress add operation.
350  *
351  * Returns the number of huge pages that need to be added to the existing
352  * reservation map for the range [f, t).  This number is greater or equal to
353  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
354  * is needed and can not be allocated.
355  */
356 static long region_chg(struct resv_map *resv, long f, long t)
357 {
358         struct list_head *head = &resv->regions;
359         struct file_region *rg, *nrg = NULL;
360         long chg = 0;
361
362 retry:
363         spin_lock(&resv->lock);
364 retry_locked:
365         resv->adds_in_progress++;
366
367         /*
368          * Check for sufficient descriptors in the cache to accommodate
369          * the number of in progress add operations.
370          */
371         if (resv->adds_in_progress > resv->region_cache_count) {
372                 struct file_region *trg;
373
374                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
375                 /* Must drop lock to allocate a new descriptor. */
376                 resv->adds_in_progress--;
377                 spin_unlock(&resv->lock);
378
379                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
380                 if (!trg) {
381                         kfree(nrg);
382                         return -ENOMEM;
383                 }
384
385                 spin_lock(&resv->lock);
386                 list_add(&trg->link, &resv->region_cache);
387                 resv->region_cache_count++;
388                 goto retry_locked;
389         }
390
391         /* Locate the region we are before or in. */
392         list_for_each_entry(rg, head, link)
393                 if (f <= rg->to)
394                         break;
395
396         /* If we are below the current region then a new region is required.
397          * Subtle, allocate a new region at the position but make it zero
398          * size such that we can guarantee to record the reservation. */
399         if (&rg->link == head || t < rg->from) {
400                 if (!nrg) {
401                         resv->adds_in_progress--;
402                         spin_unlock(&resv->lock);
403                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
404                         if (!nrg)
405                                 return -ENOMEM;
406
407                         nrg->from = f;
408                         nrg->to   = f;
409                         INIT_LIST_HEAD(&nrg->link);
410                         goto retry;
411                 }
412
413                 list_add(&nrg->link, rg->link.prev);
414                 chg = t - f;
415                 goto out_nrg;
416         }
417
418         /* Round our left edge to the current segment if it encloses us. */
419         if (f > rg->from)
420                 f = rg->from;
421         chg = t - f;
422
423         /* Check for and consume any regions we now overlap with. */
424         list_for_each_entry(rg, rg->link.prev, link) {
425                 if (&rg->link == head)
426                         break;
427                 if (rg->from > t)
428                         goto out;
429
430                 /* We overlap with this area, if it extends further than
431                  * us then we must extend ourselves.  Account for its
432                  * existing reservation. */
433                 if (rg->to > t) {
434                         chg += rg->to - t;
435                         t = rg->to;
436                 }
437                 chg -= rg->to - rg->from;
438         }
439
440 out:
441         spin_unlock(&resv->lock);
442         /*  We already know we raced and no longer need the new region */
443         kfree(nrg);
444         return chg;
445 out_nrg:
446         spin_unlock(&resv->lock);
447         return chg;
448 }
449
450 /*
451  * Abort the in progress add operation.  The adds_in_progress field
452  * of the resv_map keeps track of the operations in progress between
453  * calls to region_chg and region_add.  Operations are sometimes
454  * aborted after the call to region_chg.  In such cases, region_abort
455  * is called to decrement the adds_in_progress counter.
456  *
457  * NOTE: The range arguments [f, t) are not needed or used in this
458  * routine.  They are kept to make reading the calling code easier as
459  * arguments will match the associated region_chg call.
460  */
461 static void region_abort(struct resv_map *resv, long f, long t)
462 {
463         spin_lock(&resv->lock);
464         VM_BUG_ON(!resv->region_cache_count);
465         resv->adds_in_progress--;
466         spin_unlock(&resv->lock);
467 }
468
469 /*
470  * Delete the specified range [f, t) from the reserve map.  If the
471  * t parameter is LONG_MAX, this indicates that ALL regions after f
472  * should be deleted.  Locate the regions which intersect [f, t)
473  * and either trim, delete or split the existing regions.
474  *
475  * Returns the number of huge pages deleted from the reserve map.
476  * In the normal case, the return value is zero or more.  In the
477  * case where a region must be split, a new region descriptor must
478  * be allocated.  If the allocation fails, -ENOMEM will be returned.
479  * NOTE: If the parameter t == LONG_MAX, then we will never split
480  * a region and possibly return -ENOMEM.  Callers specifying
481  * t == LONG_MAX do not need to check for -ENOMEM error.
482  */
483 static long region_del(struct resv_map *resv, long f, long t)
484 {
485         struct list_head *head = &resv->regions;
486         struct file_region *rg, *trg;
487         struct file_region *nrg = NULL;
488         long del = 0;
489
490 retry:
491         spin_lock(&resv->lock);
492         list_for_each_entry_safe(rg, trg, head, link) {
493                 /*
494                  * Skip regions before the range to be deleted.  file_region
495                  * ranges are normally of the form [from, to).  However, there
496                  * may be a "placeholder" entry in the map which is of the form
497                  * (from, to) with from == to.  Check for placeholder entries
498                  * at the beginning of the range to be deleted.
499                  */
500                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
501                         continue;
502
503                 if (rg->from >= t)
504                         break;
505
506                 if (f > rg->from && t < rg->to) { /* Must split region */
507                         /*
508                          * Check for an entry in the cache before dropping
509                          * lock and attempting allocation.
510                          */
511                         if (!nrg &&
512                             resv->region_cache_count > resv->adds_in_progress) {
513                                 nrg = list_first_entry(&resv->region_cache,
514                                                         struct file_region,
515                                                         link);
516                                 list_del(&nrg->link);
517                                 resv->region_cache_count--;
518                         }
519
520                         if (!nrg) {
521                                 spin_unlock(&resv->lock);
522                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
523                                 if (!nrg)
524                                         return -ENOMEM;
525                                 goto retry;
526                         }
527
528                         del += t - f;
529
530                         /* New entry for end of split region */
531                         nrg->from = t;
532                         nrg->to = rg->to;
533                         INIT_LIST_HEAD(&nrg->link);
534
535                         /* Original entry is trimmed */
536                         rg->to = f;
537
538                         list_add(&nrg->link, &rg->link);
539                         nrg = NULL;
540                         break;
541                 }
542
543                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
544                         del += rg->to - rg->from;
545                         list_del(&rg->link);
546                         kfree(rg);
547                         continue;
548                 }
549
550                 if (f <= rg->from) {    /* Trim beginning of region */
551                         del += t - rg->from;
552                         rg->from = t;
553                 } else {                /* Trim end of region */
554                         del += rg->to - f;
555                         rg->to = f;
556                 }
557         }
558
559         spin_unlock(&resv->lock);
560         kfree(nrg);
561         return del;
562 }
563
564 /*
565  * A rare out of memory error was encountered which prevented removal of
566  * the reserve map region for a page.  The huge page itself was free'ed
567  * and removed from the page cache.  This routine will adjust the subpool
568  * usage count, and the global reserve count if needed.  By incrementing
569  * these counts, the reserve map entry which could not be deleted will
570  * appear as a "reserved" entry instead of simply dangling with incorrect
571  * counts.
572  */
573 void hugetlb_fix_reserve_counts(struct inode *inode)
574 {
575         struct hugepage_subpool *spool = subpool_inode(inode);
576         long rsv_adjust;
577
578         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
579         if (rsv_adjust) {
580                 struct hstate *h = hstate_inode(inode);
581
582                 hugetlb_acct_memory(h, 1);
583         }
584 }
585
586 /*
587  * Count and return the number of huge pages in the reserve map
588  * that intersect with the range [f, t).
589  */
590 static long region_count(struct resv_map *resv, long f, long t)
591 {
592         struct list_head *head = &resv->regions;
593         struct file_region *rg;
594         long chg = 0;
595
596         spin_lock(&resv->lock);
597         /* Locate each segment we overlap with, and count that overlap. */
598         list_for_each_entry(rg, head, link) {
599                 long seg_from;
600                 long seg_to;
601
602                 if (rg->to <= f)
603                         continue;
604                 if (rg->from >= t)
605                         break;
606
607                 seg_from = max(rg->from, f);
608                 seg_to = min(rg->to, t);
609
610                 chg += seg_to - seg_from;
611         }
612         spin_unlock(&resv->lock);
613
614         return chg;
615 }
616
617 /*
618  * Convert the address within this vma to the page offset within
619  * the mapping, in pagecache page units; huge pages here.
620  */
621 static pgoff_t vma_hugecache_offset(struct hstate *h,
622                         struct vm_area_struct *vma, unsigned long address)
623 {
624         return ((address - vma->vm_start) >> huge_page_shift(h)) +
625                         (vma->vm_pgoff >> huge_page_order(h));
626 }
627
628 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
629                                      unsigned long address)
630 {
631         return vma_hugecache_offset(hstate_vma(vma), vma, address);
632 }
633 EXPORT_SYMBOL_GPL(linear_hugepage_index);
634
635 /*
636  * Return the size of the pages allocated when backing a VMA. In the majority
637  * cases this will be same size as used by the page table entries.
638  */
639 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
640 {
641         if (vma->vm_ops && vma->vm_ops->pagesize)
642                 return vma->vm_ops->pagesize(vma);
643         return PAGE_SIZE;
644 }
645 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
646
647 /*
648  * Return the page size being used by the MMU to back a VMA. In the majority
649  * of cases, the page size used by the kernel matches the MMU size. On
650  * architectures where it differs, an architecture-specific 'strong'
651  * version of this symbol is required.
652  */
653 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
654 {
655         return vma_kernel_pagesize(vma);
656 }
657
658 /*
659  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
660  * bits of the reservation map pointer, which are always clear due to
661  * alignment.
662  */
663 #define HPAGE_RESV_OWNER    (1UL << 0)
664 #define HPAGE_RESV_UNMAPPED (1UL << 1)
665 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
666
667 /*
668  * These helpers are used to track how many pages are reserved for
669  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
670  * is guaranteed to have their future faults succeed.
671  *
672  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
673  * the reserve counters are updated with the hugetlb_lock held. It is safe
674  * to reset the VMA at fork() time as it is not in use yet and there is no
675  * chance of the global counters getting corrupted as a result of the values.
676  *
677  * The private mapping reservation is represented in a subtly different
678  * manner to a shared mapping.  A shared mapping has a region map associated
679  * with the underlying file, this region map represents the backing file
680  * pages which have ever had a reservation assigned which this persists even
681  * after the page is instantiated.  A private mapping has a region map
682  * associated with the original mmap which is attached to all VMAs which
683  * reference it, this region map represents those offsets which have consumed
684  * reservation ie. where pages have been instantiated.
685  */
686 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
687 {
688         return (unsigned long)vma->vm_private_data;
689 }
690
691 static void set_vma_private_data(struct vm_area_struct *vma,
692                                                         unsigned long value)
693 {
694         vma->vm_private_data = (void *)value;
695 }
696
697 struct resv_map *resv_map_alloc(void)
698 {
699         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
700         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
701
702         if (!resv_map || !rg) {
703                 kfree(resv_map);
704                 kfree(rg);
705                 return NULL;
706         }
707
708         kref_init(&resv_map->refs);
709         spin_lock_init(&resv_map->lock);
710         INIT_LIST_HEAD(&resv_map->regions);
711
712         resv_map->adds_in_progress = 0;
713
714         INIT_LIST_HEAD(&resv_map->region_cache);
715         list_add(&rg->link, &resv_map->region_cache);
716         resv_map->region_cache_count = 1;
717
718         return resv_map;
719 }
720
721 void resv_map_release(struct kref *ref)
722 {
723         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
724         struct list_head *head = &resv_map->region_cache;
725         struct file_region *rg, *trg;
726
727         /* Clear out any active regions before we release the map. */
728         region_del(resv_map, 0, LONG_MAX);
729
730         /* ... and any entries left in the cache */
731         list_for_each_entry_safe(rg, trg, head, link) {
732                 list_del(&rg->link);
733                 kfree(rg);
734         }
735
736         VM_BUG_ON(resv_map->adds_in_progress);
737
738         kfree(resv_map);
739 }
740
741 static inline struct resv_map *inode_resv_map(struct inode *inode)
742 {
743         return inode->i_mapping->private_data;
744 }
745
746 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
747 {
748         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
749         if (vma->vm_flags & VM_MAYSHARE) {
750                 struct address_space *mapping = vma->vm_file->f_mapping;
751                 struct inode *inode = mapping->host;
752
753                 return inode_resv_map(inode);
754
755         } else {
756                 return (struct resv_map *)(get_vma_private_data(vma) &
757                                                         ~HPAGE_RESV_MASK);
758         }
759 }
760
761 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
762 {
763         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
764         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765
766         set_vma_private_data(vma, (get_vma_private_data(vma) &
767                                 HPAGE_RESV_MASK) | (unsigned long)map);
768 }
769
770 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
771 {
772         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
773         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
774
775         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
776 }
777
778 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
779 {
780         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
781
782         return (get_vma_private_data(vma) & flag) != 0;
783 }
784
785 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
786 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
787 {
788         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
789         if (!(vma->vm_flags & VM_MAYSHARE))
790                 vma->vm_private_data = (void *)0;
791 }
792
793 /* Returns true if the VMA has associated reserve pages */
794 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
795 {
796         if (vma->vm_flags & VM_NORESERVE) {
797                 /*
798                  * This address is already reserved by other process(chg == 0),
799                  * so, we should decrement reserved count. Without decrementing,
800                  * reserve count remains after releasing inode, because this
801                  * allocated page will go into page cache and is regarded as
802                  * coming from reserved pool in releasing step.  Currently, we
803                  * don't have any other solution to deal with this situation
804                  * properly, so add work-around here.
805                  */
806                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
807                         return true;
808                 else
809                         return false;
810         }
811
812         /* Shared mappings always use reserves */
813         if (vma->vm_flags & VM_MAYSHARE) {
814                 /*
815                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
816                  * be a region map for all pages.  The only situation where
817                  * there is no region map is if a hole was punched via
818                  * fallocate.  In this case, there really are no reverves to
819                  * use.  This situation is indicated if chg != 0.
820                  */
821                 if (chg)
822                         return false;
823                 else
824                         return true;
825         }
826
827         /*
828          * Only the process that called mmap() has reserves for
829          * private mappings.
830          */
831         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
832                 /*
833                  * Like the shared case above, a hole punch or truncate
834                  * could have been performed on the private mapping.
835                  * Examine the value of chg to determine if reserves
836                  * actually exist or were previously consumed.
837                  * Very Subtle - The value of chg comes from a previous
838                  * call to vma_needs_reserves().  The reserve map for
839                  * private mappings has different (opposite) semantics
840                  * than that of shared mappings.  vma_needs_reserves()
841                  * has already taken this difference in semantics into
842                  * account.  Therefore, the meaning of chg is the same
843                  * as in the shared case above.  Code could easily be
844                  * combined, but keeping it separate draws attention to
845                  * subtle differences.
846                  */
847                 if (chg)
848                         return false;
849                 else
850                         return true;
851         }
852
853         return false;
854 }
855
856 static void enqueue_huge_page(struct hstate *h, struct page *page)
857 {
858         int nid = page_to_nid(page);
859         list_move(&page->lru, &h->hugepage_freelists[nid]);
860         h->free_huge_pages++;
861         h->free_huge_pages_node[nid]++;
862 }
863
864 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
865 {
866         struct page *page;
867
868         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
869                 if (!PageHWPoison(page))
870                         break;
871         /*
872          * if 'non-isolated free hugepage' not found on the list,
873          * the allocation fails.
874          */
875         if (&h->hugepage_freelists[nid] == &page->lru)
876                 return NULL;
877         list_move(&page->lru, &h->hugepage_activelist);
878         set_page_refcounted(page);
879         h->free_huge_pages--;
880         h->free_huge_pages_node[nid]--;
881         return page;
882 }
883
884 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
885                 nodemask_t *nmask)
886 {
887         unsigned int cpuset_mems_cookie;
888         struct zonelist *zonelist;
889         struct zone *zone;
890         struct zoneref *z;
891         int node = NUMA_NO_NODE;
892
893         zonelist = node_zonelist(nid, gfp_mask);
894
895 retry_cpuset:
896         cpuset_mems_cookie = read_mems_allowed_begin();
897         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
898                 struct page *page;
899
900                 if (!cpuset_zone_allowed(zone, gfp_mask))
901                         continue;
902                 /*
903                  * no need to ask again on the same node. Pool is node rather than
904                  * zone aware
905                  */
906                 if (zone_to_nid(zone) == node)
907                         continue;
908                 node = zone_to_nid(zone);
909
910                 page = dequeue_huge_page_node_exact(h, node);
911                 if (page)
912                         return page;
913         }
914         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
915                 goto retry_cpuset;
916
917         return NULL;
918 }
919
920 /* Movability of hugepages depends on migration support. */
921 static inline gfp_t htlb_alloc_mask(struct hstate *h)
922 {
923         if (hugepage_movable_supported(h))
924                 return GFP_HIGHUSER_MOVABLE;
925         else
926                 return GFP_HIGHUSER;
927 }
928
929 static struct page *dequeue_huge_page_vma(struct hstate *h,
930                                 struct vm_area_struct *vma,
931                                 unsigned long address, int avoid_reserve,
932                                 long chg)
933 {
934         struct page *page;
935         struct mempolicy *mpol;
936         gfp_t gfp_mask;
937         nodemask_t *nodemask;
938         int nid;
939
940         /*
941          * A child process with MAP_PRIVATE mappings created by their parent
942          * have no page reserves. This check ensures that reservations are
943          * not "stolen". The child may still get SIGKILLed
944          */
945         if (!vma_has_reserves(vma, chg) &&
946                         h->free_huge_pages - h->resv_huge_pages == 0)
947                 goto err;
948
949         /* If reserves cannot be used, ensure enough pages are in the pool */
950         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
951                 goto err;
952
953         gfp_mask = htlb_alloc_mask(h);
954         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
955         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
956         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
957                 SetPagePrivate(page);
958                 h->resv_huge_pages--;
959         }
960
961         mpol_cond_put(mpol);
962         return page;
963
964 err:
965         return NULL;
966 }
967
968 /*
969  * common helper functions for hstate_next_node_to_{alloc|free}.
970  * We may have allocated or freed a huge page based on a different
971  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
972  * be outside of *nodes_allowed.  Ensure that we use an allowed
973  * node for alloc or free.
974  */
975 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
976 {
977         nid = next_node_in(nid, *nodes_allowed);
978         VM_BUG_ON(nid >= MAX_NUMNODES);
979
980         return nid;
981 }
982
983 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
984 {
985         if (!node_isset(nid, *nodes_allowed))
986                 nid = next_node_allowed(nid, nodes_allowed);
987         return nid;
988 }
989
990 /*
991  * returns the previously saved node ["this node"] from which to
992  * allocate a persistent huge page for the pool and advance the
993  * next node from which to allocate, handling wrap at end of node
994  * mask.
995  */
996 static int hstate_next_node_to_alloc(struct hstate *h,
997                                         nodemask_t *nodes_allowed)
998 {
999         int nid;
1000
1001         VM_BUG_ON(!nodes_allowed);
1002
1003         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1004         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1005
1006         return nid;
1007 }
1008
1009 /*
1010  * helper for free_pool_huge_page() - return the previously saved
1011  * node ["this node"] from which to free a huge page.  Advance the
1012  * next node id whether or not we find a free huge page to free so
1013  * that the next attempt to free addresses the next node.
1014  */
1015 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1016 {
1017         int nid;
1018
1019         VM_BUG_ON(!nodes_allowed);
1020
1021         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1022         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1023
1024         return nid;
1025 }
1026
1027 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1028         for (nr_nodes = nodes_weight(*mask);                            \
1029                 nr_nodes > 0 &&                                         \
1030                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1031                 nr_nodes--)
1032
1033 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1034         for (nr_nodes = nodes_weight(*mask);                            \
1035                 nr_nodes > 0 &&                                         \
1036                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1037                 nr_nodes--)
1038
1039 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1040 static void destroy_compound_gigantic_page(struct page *page,
1041                                         unsigned int order)
1042 {
1043         int i;
1044         int nr_pages = 1 << order;
1045         struct page *p = page + 1;
1046
1047         atomic_set(compound_mapcount_ptr(page), 0);
1048         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1049                 clear_compound_head(p);
1050                 set_page_refcounted(p);
1051         }
1052
1053         set_compound_order(page, 0);
1054         __ClearPageHead(page);
1055 }
1056
1057 static void free_gigantic_page(struct page *page, unsigned int order)
1058 {
1059         free_contig_range(page_to_pfn(page), 1 << order);
1060 }
1061
1062 #ifdef CONFIG_CONTIG_ALLOC
1063 static int __alloc_gigantic_page(unsigned long start_pfn,
1064                                 unsigned long nr_pages, gfp_t gfp_mask)
1065 {
1066         unsigned long end_pfn = start_pfn + nr_pages;
1067         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1068                                   gfp_mask);
1069 }
1070
1071 static bool pfn_range_valid_gigantic(struct zone *z,
1072                         unsigned long start_pfn, unsigned long nr_pages)
1073 {
1074         unsigned long i, end_pfn = start_pfn + nr_pages;
1075         struct page *page;
1076
1077         for (i = start_pfn; i < end_pfn; i++) {
1078                 if (!pfn_valid(i))
1079                         return false;
1080
1081                 page = pfn_to_page(i);
1082
1083                 if (page_zone(page) != z)
1084                         return false;
1085
1086                 if (PageReserved(page))
1087                         return false;
1088
1089                 if (page_count(page) > 0)
1090                         return false;
1091
1092                 if (PageHuge(page))
1093                         return false;
1094         }
1095
1096         return true;
1097 }
1098
1099 static bool zone_spans_last_pfn(const struct zone *zone,
1100                         unsigned long start_pfn, unsigned long nr_pages)
1101 {
1102         unsigned long last_pfn = start_pfn + nr_pages - 1;
1103         return zone_spans_pfn(zone, last_pfn);
1104 }
1105
1106 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1107                 int nid, nodemask_t *nodemask)
1108 {
1109         unsigned int order = huge_page_order(h);
1110         unsigned long nr_pages = 1 << order;
1111         unsigned long ret, pfn, flags;
1112         struct zonelist *zonelist;
1113         struct zone *zone;
1114         struct zoneref *z;
1115
1116         zonelist = node_zonelist(nid, gfp_mask);
1117         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1118                 spin_lock_irqsave(&zone->lock, flags);
1119
1120                 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1121                 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1122                         if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1123                                 /*
1124                                  * We release the zone lock here because
1125                                  * alloc_contig_range() will also lock the zone
1126                                  * at some point. If there's an allocation
1127                                  * spinning on this lock, it may win the race
1128                                  * and cause alloc_contig_range() to fail...
1129                                  */
1130                                 spin_unlock_irqrestore(&zone->lock, flags);
1131                                 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1132                                 if (!ret)
1133                                         return pfn_to_page(pfn);
1134                                 spin_lock_irqsave(&zone->lock, flags);
1135                         }
1136                         pfn += nr_pages;
1137                 }
1138
1139                 spin_unlock_irqrestore(&zone->lock, flags);
1140         }
1141
1142         return NULL;
1143 }
1144
1145 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1146 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1147 #else /* !CONFIG_CONTIG_ALLOC */
1148 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1149                                         int nid, nodemask_t *nodemask)
1150 {
1151         return NULL;
1152 }
1153 #endif /* CONFIG_CONTIG_ALLOC */
1154
1155 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1156 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1157                                         int nid, nodemask_t *nodemask)
1158 {
1159         return NULL;
1160 }
1161 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1162 static inline void destroy_compound_gigantic_page(struct page *page,
1163                                                 unsigned int order) { }
1164 #endif
1165
1166 static void update_and_free_page(struct hstate *h, struct page *page)
1167 {
1168         int i;
1169
1170         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1171                 return;
1172
1173         h->nr_huge_pages--;
1174         h->nr_huge_pages_node[page_to_nid(page)]--;
1175         for (i = 0; i < pages_per_huge_page(h); i++) {
1176                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1177                                 1 << PG_referenced | 1 << PG_dirty |
1178                                 1 << PG_active | 1 << PG_private |
1179                                 1 << PG_writeback);
1180         }
1181         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1182         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1183         set_page_refcounted(page);
1184         if (hstate_is_gigantic(h)) {
1185                 destroy_compound_gigantic_page(page, huge_page_order(h));
1186                 free_gigantic_page(page, huge_page_order(h));
1187         } else {
1188                 __free_pages(page, huge_page_order(h));
1189         }
1190 }
1191
1192 struct hstate *size_to_hstate(unsigned long size)
1193 {
1194         struct hstate *h;
1195
1196         for_each_hstate(h) {
1197                 if (huge_page_size(h) == size)
1198                         return h;
1199         }
1200         return NULL;
1201 }
1202
1203 /*
1204  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1205  * to hstate->hugepage_activelist.)
1206  *
1207  * This function can be called for tail pages, but never returns true for them.
1208  */
1209 bool page_huge_active(struct page *page)
1210 {
1211         VM_BUG_ON_PAGE(!PageHuge(page), page);
1212         return PageHead(page) && PagePrivate(&page[1]);
1213 }
1214
1215 /* never called for tail page */
1216 static void set_page_huge_active(struct page *page)
1217 {
1218         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1219         SetPagePrivate(&page[1]);
1220 }
1221
1222 static void clear_page_huge_active(struct page *page)
1223 {
1224         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1225         ClearPagePrivate(&page[1]);
1226 }
1227
1228 /*
1229  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1230  * code
1231  */
1232 static inline bool PageHugeTemporary(struct page *page)
1233 {
1234         if (!PageHuge(page))
1235                 return false;
1236
1237         return (unsigned long)page[2].mapping == -1U;
1238 }
1239
1240 static inline void SetPageHugeTemporary(struct page *page)
1241 {
1242         page[2].mapping = (void *)-1U;
1243 }
1244
1245 static inline void ClearPageHugeTemporary(struct page *page)
1246 {
1247         page[2].mapping = NULL;
1248 }
1249
1250 void free_huge_page(struct page *page)
1251 {
1252         /*
1253          * Can't pass hstate in here because it is called from the
1254          * compound page destructor.
1255          */
1256         struct hstate *h = page_hstate(page);
1257         int nid = page_to_nid(page);
1258         struct hugepage_subpool *spool =
1259                 (struct hugepage_subpool *)page_private(page);
1260         bool restore_reserve;
1261
1262         VM_BUG_ON_PAGE(page_count(page), page);
1263         VM_BUG_ON_PAGE(page_mapcount(page), page);
1264
1265         set_page_private(page, 0);
1266         page->mapping = NULL;
1267         restore_reserve = PagePrivate(page);
1268         ClearPagePrivate(page);
1269
1270         /*
1271          * A return code of zero implies that the subpool will be under its
1272          * minimum size if the reservation is not restored after page is free.
1273          * Therefore, force restore_reserve operation.
1274          */
1275         if (hugepage_subpool_put_pages(spool, 1) == 0)
1276                 restore_reserve = true;
1277
1278         spin_lock(&hugetlb_lock);
1279         clear_page_huge_active(page);
1280         hugetlb_cgroup_uncharge_page(hstate_index(h),
1281                                      pages_per_huge_page(h), page);
1282         if (restore_reserve)
1283                 h->resv_huge_pages++;
1284
1285         if (PageHugeTemporary(page)) {
1286                 list_del(&page->lru);
1287                 ClearPageHugeTemporary(page);
1288                 update_and_free_page(h, page);
1289         } else if (h->surplus_huge_pages_node[nid]) {
1290                 /* remove the page from active list */
1291                 list_del(&page->lru);
1292                 update_and_free_page(h, page);
1293                 h->surplus_huge_pages--;
1294                 h->surplus_huge_pages_node[nid]--;
1295         } else {
1296                 arch_clear_hugepage_flags(page);
1297                 enqueue_huge_page(h, page);
1298         }
1299         spin_unlock(&hugetlb_lock);
1300 }
1301
1302 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1303 {
1304         INIT_LIST_HEAD(&page->lru);
1305         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1306         spin_lock(&hugetlb_lock);
1307         set_hugetlb_cgroup(page, NULL);
1308         h->nr_huge_pages++;
1309         h->nr_huge_pages_node[nid]++;
1310         spin_unlock(&hugetlb_lock);
1311 }
1312
1313 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1314 {
1315         int i;
1316         int nr_pages = 1 << order;
1317         struct page *p = page + 1;
1318
1319         /* we rely on prep_new_huge_page to set the destructor */
1320         set_compound_order(page, order);
1321         __ClearPageReserved(page);
1322         __SetPageHead(page);
1323         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1324                 /*
1325                  * For gigantic hugepages allocated through bootmem at
1326                  * boot, it's safer to be consistent with the not-gigantic
1327                  * hugepages and clear the PG_reserved bit from all tail pages
1328                  * too.  Otherwse drivers using get_user_pages() to access tail
1329                  * pages may get the reference counting wrong if they see
1330                  * PG_reserved set on a tail page (despite the head page not
1331                  * having PG_reserved set).  Enforcing this consistency between
1332                  * head and tail pages allows drivers to optimize away a check
1333                  * on the head page when they need know if put_page() is needed
1334                  * after get_user_pages().
1335                  */
1336                 __ClearPageReserved(p);
1337                 set_page_count(p, 0);
1338                 set_compound_head(p, page);
1339         }
1340         atomic_set(compound_mapcount_ptr(page), -1);
1341 }
1342
1343 /*
1344  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1345  * transparent huge pages.  See the PageTransHuge() documentation for more
1346  * details.
1347  */
1348 int PageHuge(struct page *page)
1349 {
1350         if (!PageCompound(page))
1351                 return 0;
1352
1353         page = compound_head(page);
1354         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1355 }
1356 EXPORT_SYMBOL_GPL(PageHuge);
1357
1358 /*
1359  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1360  * normal or transparent huge pages.
1361  */
1362 int PageHeadHuge(struct page *page_head)
1363 {
1364         if (!PageHead(page_head))
1365                 return 0;
1366
1367         return get_compound_page_dtor(page_head) == free_huge_page;
1368 }
1369
1370 pgoff_t __basepage_index(struct page *page)
1371 {
1372         struct page *page_head = compound_head(page);
1373         pgoff_t index = page_index(page_head);
1374         unsigned long compound_idx;
1375
1376         if (!PageHuge(page_head))
1377                 return page_index(page);
1378
1379         if (compound_order(page_head) >= MAX_ORDER)
1380                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1381         else
1382                 compound_idx = page - page_head;
1383
1384         return (index << compound_order(page_head)) + compound_idx;
1385 }
1386
1387 static struct page *alloc_buddy_huge_page(struct hstate *h,
1388                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1389 {
1390         int order = huge_page_order(h);
1391         struct page *page;
1392
1393         gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1394         if (nid == NUMA_NO_NODE)
1395                 nid = numa_mem_id();
1396         page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1397         if (page)
1398                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1399         else
1400                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1401
1402         return page;
1403 }
1404
1405 /*
1406  * Common helper to allocate a fresh hugetlb page. All specific allocators
1407  * should use this function to get new hugetlb pages
1408  */
1409 static struct page *alloc_fresh_huge_page(struct hstate *h,
1410                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1411 {
1412         struct page *page;
1413
1414         if (hstate_is_gigantic(h))
1415                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1416         else
1417                 page = alloc_buddy_huge_page(h, gfp_mask,
1418                                 nid, nmask);
1419         if (!page)
1420                 return NULL;
1421
1422         if (hstate_is_gigantic(h))
1423                 prep_compound_gigantic_page(page, huge_page_order(h));
1424         prep_new_huge_page(h, page, page_to_nid(page));
1425
1426         return page;
1427 }
1428
1429 /*
1430  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1431  * manner.
1432  */
1433 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1434 {
1435         struct page *page;
1436         int nr_nodes, node;
1437         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1438
1439         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1440                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1441                 if (page)
1442                         break;
1443         }
1444
1445         if (!page)
1446                 return 0;
1447
1448         put_page(page); /* free it into the hugepage allocator */
1449
1450         return 1;
1451 }
1452
1453 /*
1454  * Free huge page from pool from next node to free.
1455  * Attempt to keep persistent huge pages more or less
1456  * balanced over allowed nodes.
1457  * Called with hugetlb_lock locked.
1458  */
1459 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1460                                                          bool acct_surplus)
1461 {
1462         int nr_nodes, node;
1463         int ret = 0;
1464
1465         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1466                 /*
1467                  * If we're returning unused surplus pages, only examine
1468                  * nodes with surplus pages.
1469                  */
1470                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1471                     !list_empty(&h->hugepage_freelists[node])) {
1472                         struct page *page =
1473                                 list_entry(h->hugepage_freelists[node].next,
1474                                           struct page, lru);
1475                         list_del(&page->lru);
1476                         h->free_huge_pages--;
1477                         h->free_huge_pages_node[node]--;
1478                         if (acct_surplus) {
1479                                 h->surplus_huge_pages--;
1480                                 h->surplus_huge_pages_node[node]--;
1481                         }
1482                         update_and_free_page(h, page);
1483                         ret = 1;
1484                         break;
1485                 }
1486         }
1487
1488         return ret;
1489 }
1490
1491 /*
1492  * Dissolve a given free hugepage into free buddy pages. This function does
1493  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1494  * dissolution fails because a give page is not a free hugepage, or because
1495  * free hugepages are fully reserved.
1496  */
1497 int dissolve_free_huge_page(struct page *page)
1498 {
1499         int rc = -EBUSY;
1500
1501         spin_lock(&hugetlb_lock);
1502         if (PageHuge(page) && !page_count(page)) {
1503                 struct page *head = compound_head(page);
1504                 struct hstate *h = page_hstate(head);
1505                 int nid = page_to_nid(head);
1506                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1507                         goto out;
1508                 /*
1509                  * Move PageHWPoison flag from head page to the raw error page,
1510                  * which makes any subpages rather than the error page reusable.
1511                  */
1512                 if (PageHWPoison(head) && page != head) {
1513                         SetPageHWPoison(page);
1514                         ClearPageHWPoison(head);
1515                 }
1516                 list_del(&head->lru);
1517                 h->free_huge_pages--;
1518                 h->free_huge_pages_node[nid]--;
1519                 h->max_huge_pages--;
1520                 update_and_free_page(h, head);
1521                 rc = 0;
1522         }
1523 out:
1524         spin_unlock(&hugetlb_lock);
1525         return rc;
1526 }
1527
1528 /*
1529  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1530  * make specified memory blocks removable from the system.
1531  * Note that this will dissolve a free gigantic hugepage completely, if any
1532  * part of it lies within the given range.
1533  * Also note that if dissolve_free_huge_page() returns with an error, all
1534  * free hugepages that were dissolved before that error are lost.
1535  */
1536 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1537 {
1538         unsigned long pfn;
1539         struct page *page;
1540         int rc = 0;
1541
1542         if (!hugepages_supported())
1543                 return rc;
1544
1545         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1546                 page = pfn_to_page(pfn);
1547                 if (PageHuge(page) && !page_count(page)) {
1548                         rc = dissolve_free_huge_page(page);
1549                         if (rc)
1550                                 break;
1551                 }
1552         }
1553
1554         return rc;
1555 }
1556
1557 /*
1558  * Allocates a fresh surplus page from the page allocator.
1559  */
1560 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1561                 int nid, nodemask_t *nmask)
1562 {
1563         struct page *page = NULL;
1564
1565         if (hstate_is_gigantic(h))
1566                 return NULL;
1567
1568         spin_lock(&hugetlb_lock);
1569         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1570                 goto out_unlock;
1571         spin_unlock(&hugetlb_lock);
1572
1573         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1574         if (!page)
1575                 return NULL;
1576
1577         spin_lock(&hugetlb_lock);
1578         /*
1579          * We could have raced with the pool size change.
1580          * Double check that and simply deallocate the new page
1581          * if we would end up overcommiting the surpluses. Abuse
1582          * temporary page to workaround the nasty free_huge_page
1583          * codeflow
1584          */
1585         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1586                 SetPageHugeTemporary(page);
1587                 spin_unlock(&hugetlb_lock);
1588                 put_page(page);
1589                 return NULL;
1590         } else {
1591                 h->surplus_huge_pages++;
1592                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1593         }
1594
1595 out_unlock:
1596         spin_unlock(&hugetlb_lock);
1597
1598         return page;
1599 }
1600
1601 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1602                                      int nid, nodemask_t *nmask)
1603 {
1604         struct page *page;
1605
1606         if (hstate_is_gigantic(h))
1607                 return NULL;
1608
1609         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1610         if (!page)
1611                 return NULL;
1612
1613         /*
1614          * We do not account these pages as surplus because they are only
1615          * temporary and will be released properly on the last reference
1616          */
1617         SetPageHugeTemporary(page);
1618
1619         return page;
1620 }
1621
1622 /*
1623  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1624  */
1625 static
1626 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1627                 struct vm_area_struct *vma, unsigned long addr)
1628 {
1629         struct page *page;
1630         struct mempolicy *mpol;
1631         gfp_t gfp_mask = htlb_alloc_mask(h);
1632         int nid;
1633         nodemask_t *nodemask;
1634
1635         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1636         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1637         mpol_cond_put(mpol);
1638
1639         return page;
1640 }
1641
1642 /* page migration callback function */
1643 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1644 {
1645         gfp_t gfp_mask = htlb_alloc_mask(h);
1646         struct page *page = NULL;
1647
1648         if (nid != NUMA_NO_NODE)
1649                 gfp_mask |= __GFP_THISNODE;
1650
1651         spin_lock(&hugetlb_lock);
1652         if (h->free_huge_pages - h->resv_huge_pages > 0)
1653                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1654         spin_unlock(&hugetlb_lock);
1655
1656         if (!page)
1657                 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1658
1659         return page;
1660 }
1661
1662 /* page migration callback function */
1663 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1664                 nodemask_t *nmask)
1665 {
1666         gfp_t gfp_mask = htlb_alloc_mask(h);
1667
1668         spin_lock(&hugetlb_lock);
1669         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1670                 struct page *page;
1671
1672                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1673                 if (page) {
1674                         spin_unlock(&hugetlb_lock);
1675                         return page;
1676                 }
1677         }
1678         spin_unlock(&hugetlb_lock);
1679
1680         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1681 }
1682
1683 /* mempolicy aware migration callback */
1684 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1685                 unsigned long address)
1686 {
1687         struct mempolicy *mpol;
1688         nodemask_t *nodemask;
1689         struct page *page;
1690         gfp_t gfp_mask;
1691         int node;
1692
1693         gfp_mask = htlb_alloc_mask(h);
1694         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1695         page = alloc_huge_page_nodemask(h, node, nodemask);
1696         mpol_cond_put(mpol);
1697
1698         return page;
1699 }
1700
1701 /*
1702  * Increase the hugetlb pool such that it can accommodate a reservation
1703  * of size 'delta'.
1704  */
1705 static int gather_surplus_pages(struct hstate *h, int delta)
1706 {
1707         struct list_head surplus_list;
1708         struct page *page, *tmp;
1709         int ret, i;
1710         int needed, allocated;
1711         bool alloc_ok = true;
1712
1713         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1714         if (needed <= 0) {
1715                 h->resv_huge_pages += delta;
1716                 return 0;
1717         }
1718
1719         allocated = 0;
1720         INIT_LIST_HEAD(&surplus_list);
1721
1722         ret = -ENOMEM;
1723 retry:
1724         spin_unlock(&hugetlb_lock);
1725         for (i = 0; i < needed; i++) {
1726                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1727                                 NUMA_NO_NODE, NULL);
1728                 if (!page) {
1729                         alloc_ok = false;
1730                         break;
1731                 }
1732                 list_add(&page->lru, &surplus_list);
1733                 cond_resched();
1734         }
1735         allocated += i;
1736
1737         /*
1738          * After retaking hugetlb_lock, we need to recalculate 'needed'
1739          * because either resv_huge_pages or free_huge_pages may have changed.
1740          */
1741         spin_lock(&hugetlb_lock);
1742         needed = (h->resv_huge_pages + delta) -
1743                         (h->free_huge_pages + allocated);
1744         if (needed > 0) {
1745                 if (alloc_ok)
1746                         goto retry;
1747                 /*
1748                  * We were not able to allocate enough pages to
1749                  * satisfy the entire reservation so we free what
1750                  * we've allocated so far.
1751                  */
1752                 goto free;
1753         }
1754         /*
1755          * The surplus_list now contains _at_least_ the number of extra pages
1756          * needed to accommodate the reservation.  Add the appropriate number
1757          * of pages to the hugetlb pool and free the extras back to the buddy
1758          * allocator.  Commit the entire reservation here to prevent another
1759          * process from stealing the pages as they are added to the pool but
1760          * before they are reserved.
1761          */
1762         needed += allocated;
1763         h->resv_huge_pages += delta;
1764         ret = 0;
1765
1766         /* Free the needed pages to the hugetlb pool */
1767         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1768                 if ((--needed) < 0)
1769                         break;
1770                 /*
1771                  * This page is now managed by the hugetlb allocator and has
1772                  * no users -- drop the buddy allocator's reference.
1773                  */
1774                 put_page_testzero(page);
1775                 VM_BUG_ON_PAGE(page_count(page), page);
1776                 enqueue_huge_page(h, page);
1777         }
1778 free:
1779         spin_unlock(&hugetlb_lock);
1780
1781         /* Free unnecessary surplus pages to the buddy allocator */
1782         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1783                 put_page(page);
1784         spin_lock(&hugetlb_lock);
1785
1786         return ret;
1787 }
1788
1789 /*
1790  * This routine has two main purposes:
1791  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1792  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1793  *    to the associated reservation map.
1794  * 2) Free any unused surplus pages that may have been allocated to satisfy
1795  *    the reservation.  As many as unused_resv_pages may be freed.
1796  *
1797  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1798  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1799  * we must make sure nobody else can claim pages we are in the process of
1800  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1801  * number of huge pages we plan to free when dropping the lock.
1802  */
1803 static void return_unused_surplus_pages(struct hstate *h,
1804                                         unsigned long unused_resv_pages)
1805 {
1806         unsigned long nr_pages;
1807
1808         /* Cannot return gigantic pages currently */
1809         if (hstate_is_gigantic(h))
1810                 goto out;
1811
1812         /*
1813          * Part (or even all) of the reservation could have been backed
1814          * by pre-allocated pages. Only free surplus pages.
1815          */
1816         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1817
1818         /*
1819          * We want to release as many surplus pages as possible, spread
1820          * evenly across all nodes with memory. Iterate across these nodes
1821          * until we can no longer free unreserved surplus pages. This occurs
1822          * when the nodes with surplus pages have no free pages.
1823          * free_pool_huge_page() will balance the the freed pages across the
1824          * on-line nodes with memory and will handle the hstate accounting.
1825          *
1826          * Note that we decrement resv_huge_pages as we free the pages.  If
1827          * we drop the lock, resv_huge_pages will still be sufficiently large
1828          * to cover subsequent pages we may free.
1829          */
1830         while (nr_pages--) {
1831                 h->resv_huge_pages--;
1832                 unused_resv_pages--;
1833                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1834                         goto out;
1835                 cond_resched_lock(&hugetlb_lock);
1836         }
1837
1838 out:
1839         /* Fully uncommit the reservation */
1840         h->resv_huge_pages -= unused_resv_pages;
1841 }
1842
1843
1844 /*
1845  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1846  * are used by the huge page allocation routines to manage reservations.
1847  *
1848  * vma_needs_reservation is called to determine if the huge page at addr
1849  * within the vma has an associated reservation.  If a reservation is
1850  * needed, the value 1 is returned.  The caller is then responsible for
1851  * managing the global reservation and subpool usage counts.  After
1852  * the huge page has been allocated, vma_commit_reservation is called
1853  * to add the page to the reservation map.  If the page allocation fails,
1854  * the reservation must be ended instead of committed.  vma_end_reservation
1855  * is called in such cases.
1856  *
1857  * In the normal case, vma_commit_reservation returns the same value
1858  * as the preceding vma_needs_reservation call.  The only time this
1859  * is not the case is if a reserve map was changed between calls.  It
1860  * is the responsibility of the caller to notice the difference and
1861  * take appropriate action.
1862  *
1863  * vma_add_reservation is used in error paths where a reservation must
1864  * be restored when a newly allocated huge page must be freed.  It is
1865  * to be called after calling vma_needs_reservation to determine if a
1866  * reservation exists.
1867  */
1868 enum vma_resv_mode {
1869         VMA_NEEDS_RESV,
1870         VMA_COMMIT_RESV,
1871         VMA_END_RESV,
1872         VMA_ADD_RESV,
1873 };
1874 static long __vma_reservation_common(struct hstate *h,
1875                                 struct vm_area_struct *vma, unsigned long addr,
1876                                 enum vma_resv_mode mode)
1877 {
1878         struct resv_map *resv;
1879         pgoff_t idx;
1880         long ret;
1881
1882         resv = vma_resv_map(vma);
1883         if (!resv)
1884                 return 1;
1885
1886         idx = vma_hugecache_offset(h, vma, addr);
1887         switch (mode) {
1888         case VMA_NEEDS_RESV:
1889                 ret = region_chg(resv, idx, idx + 1);
1890                 break;
1891         case VMA_COMMIT_RESV:
1892                 ret = region_add(resv, idx, idx + 1);
1893                 break;
1894         case VMA_END_RESV:
1895                 region_abort(resv, idx, idx + 1);
1896                 ret = 0;
1897                 break;
1898         case VMA_ADD_RESV:
1899                 if (vma->vm_flags & VM_MAYSHARE)
1900                         ret = region_add(resv, idx, idx + 1);
1901                 else {
1902                         region_abort(resv, idx, idx + 1);
1903                         ret = region_del(resv, idx, idx + 1);
1904                 }
1905                 break;
1906         default:
1907                 BUG();
1908         }
1909
1910         if (vma->vm_flags & VM_MAYSHARE)
1911                 return ret;
1912         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1913                 /*
1914                  * In most cases, reserves always exist for private mappings.
1915                  * However, a file associated with mapping could have been
1916                  * hole punched or truncated after reserves were consumed.
1917                  * As subsequent fault on such a range will not use reserves.
1918                  * Subtle - The reserve map for private mappings has the
1919                  * opposite meaning than that of shared mappings.  If NO
1920                  * entry is in the reserve map, it means a reservation exists.
1921                  * If an entry exists in the reserve map, it means the
1922                  * reservation has already been consumed.  As a result, the
1923                  * return value of this routine is the opposite of the
1924                  * value returned from reserve map manipulation routines above.
1925                  */
1926                 if (ret)
1927                         return 0;
1928                 else
1929                         return 1;
1930         }
1931         else
1932                 return ret < 0 ? ret : 0;
1933 }
1934
1935 static long vma_needs_reservation(struct hstate *h,
1936                         struct vm_area_struct *vma, unsigned long addr)
1937 {
1938         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1939 }
1940
1941 static long vma_commit_reservation(struct hstate *h,
1942                         struct vm_area_struct *vma, unsigned long addr)
1943 {
1944         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1945 }
1946
1947 static void vma_end_reservation(struct hstate *h,
1948                         struct vm_area_struct *vma, unsigned long addr)
1949 {
1950         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1951 }
1952
1953 static long vma_add_reservation(struct hstate *h,
1954                         struct vm_area_struct *vma, unsigned long addr)
1955 {
1956         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1957 }
1958
1959 /*
1960  * This routine is called to restore a reservation on error paths.  In the
1961  * specific error paths, a huge page was allocated (via alloc_huge_page)
1962  * and is about to be freed.  If a reservation for the page existed,
1963  * alloc_huge_page would have consumed the reservation and set PagePrivate
1964  * in the newly allocated page.  When the page is freed via free_huge_page,
1965  * the global reservation count will be incremented if PagePrivate is set.
1966  * However, free_huge_page can not adjust the reserve map.  Adjust the
1967  * reserve map here to be consistent with global reserve count adjustments
1968  * to be made by free_huge_page.
1969  */
1970 static void restore_reserve_on_error(struct hstate *h,
1971                         struct vm_area_struct *vma, unsigned long address,
1972                         struct page *page)
1973 {
1974         if (unlikely(PagePrivate(page))) {
1975                 long rc = vma_needs_reservation(h, vma, address);
1976
1977                 if (unlikely(rc < 0)) {
1978                         /*
1979                          * Rare out of memory condition in reserve map
1980                          * manipulation.  Clear PagePrivate so that
1981                          * global reserve count will not be incremented
1982                          * by free_huge_page.  This will make it appear
1983                          * as though the reservation for this page was
1984                          * consumed.  This may prevent the task from
1985                          * faulting in the page at a later time.  This
1986                          * is better than inconsistent global huge page
1987                          * accounting of reserve counts.
1988                          */
1989                         ClearPagePrivate(page);
1990                 } else if (rc) {
1991                         rc = vma_add_reservation(h, vma, address);
1992                         if (unlikely(rc < 0))
1993                                 /*
1994                                  * See above comment about rare out of
1995                                  * memory condition.
1996                                  */
1997                                 ClearPagePrivate(page);
1998                 } else
1999                         vma_end_reservation(h, vma, address);
2000         }
2001 }
2002
2003 struct page *alloc_huge_page(struct vm_area_struct *vma,
2004                                     unsigned long addr, int avoid_reserve)
2005 {
2006         struct hugepage_subpool *spool = subpool_vma(vma);
2007         struct hstate *h = hstate_vma(vma);
2008         struct page *page;
2009         long map_chg, map_commit;
2010         long gbl_chg;
2011         int ret, idx;
2012         struct hugetlb_cgroup *h_cg;
2013
2014         idx = hstate_index(h);
2015         /*
2016          * Examine the region/reserve map to determine if the process
2017          * has a reservation for the page to be allocated.  A return
2018          * code of zero indicates a reservation exists (no change).
2019          */
2020         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2021         if (map_chg < 0)
2022                 return ERR_PTR(-ENOMEM);
2023
2024         /*
2025          * Processes that did not create the mapping will have no
2026          * reserves as indicated by the region/reserve map. Check
2027          * that the allocation will not exceed the subpool limit.
2028          * Allocations for MAP_NORESERVE mappings also need to be
2029          * checked against any subpool limit.
2030          */
2031         if (map_chg || avoid_reserve) {
2032                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2033                 if (gbl_chg < 0) {
2034                         vma_end_reservation(h, vma, addr);
2035                         return ERR_PTR(-ENOSPC);
2036                 }
2037
2038                 /*
2039                  * Even though there was no reservation in the region/reserve
2040                  * map, there could be reservations associated with the
2041                  * subpool that can be used.  This would be indicated if the
2042                  * return value of hugepage_subpool_get_pages() is zero.
2043                  * However, if avoid_reserve is specified we still avoid even
2044                  * the subpool reservations.
2045                  */
2046                 if (avoid_reserve)
2047                         gbl_chg = 1;
2048         }
2049
2050         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2051         if (ret)
2052                 goto out_subpool_put;
2053
2054         spin_lock(&hugetlb_lock);
2055         /*
2056          * glb_chg is passed to indicate whether or not a page must be taken
2057          * from the global free pool (global change).  gbl_chg == 0 indicates
2058          * a reservation exists for the allocation.
2059          */
2060         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2061         if (!page) {
2062                 spin_unlock(&hugetlb_lock);
2063                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2064                 if (!page)
2065                         goto out_uncharge_cgroup;
2066                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2067                         SetPagePrivate(page);
2068                         h->resv_huge_pages--;
2069                 }
2070                 spin_lock(&hugetlb_lock);
2071                 list_move(&page->lru, &h->hugepage_activelist);
2072                 /* Fall through */
2073         }
2074         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2075         spin_unlock(&hugetlb_lock);
2076
2077         set_page_private(page, (unsigned long)spool);
2078
2079         map_commit = vma_commit_reservation(h, vma, addr);
2080         if (unlikely(map_chg > map_commit)) {
2081                 /*
2082                  * The page was added to the reservation map between
2083                  * vma_needs_reservation and vma_commit_reservation.
2084                  * This indicates a race with hugetlb_reserve_pages.
2085                  * Adjust for the subpool count incremented above AND
2086                  * in hugetlb_reserve_pages for the same page.  Also,
2087                  * the reservation count added in hugetlb_reserve_pages
2088                  * no longer applies.
2089                  */
2090                 long rsv_adjust;
2091
2092                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2093                 hugetlb_acct_memory(h, -rsv_adjust);
2094         }
2095         return page;
2096
2097 out_uncharge_cgroup:
2098         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2099 out_subpool_put:
2100         if (map_chg || avoid_reserve)
2101                 hugepage_subpool_put_pages(spool, 1);
2102         vma_end_reservation(h, vma, addr);
2103         return ERR_PTR(-ENOSPC);
2104 }
2105
2106 int alloc_bootmem_huge_page(struct hstate *h)
2107         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2108 int __alloc_bootmem_huge_page(struct hstate *h)
2109 {
2110         struct huge_bootmem_page *m;
2111         int nr_nodes, node;
2112
2113         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2114                 void *addr;
2115
2116                 addr = memblock_alloc_try_nid_raw(
2117                                 huge_page_size(h), huge_page_size(h),
2118                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2119                 if (addr) {
2120                         /*
2121                          * Use the beginning of the huge page to store the
2122                          * huge_bootmem_page struct (until gather_bootmem
2123                          * puts them into the mem_map).
2124                          */
2125                         m = addr;
2126                         goto found;
2127                 }
2128         }
2129         return 0;
2130
2131 found:
2132         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2133         /* Put them into a private list first because mem_map is not up yet */
2134         INIT_LIST_HEAD(&m->list);
2135         list_add(&m->list, &huge_boot_pages);
2136         m->hstate = h;
2137         return 1;
2138 }
2139
2140 static void __init prep_compound_huge_page(struct page *page,
2141                 unsigned int order)
2142 {
2143         if (unlikely(order > (MAX_ORDER - 1)))
2144                 prep_compound_gigantic_page(page, order);
2145         else
2146                 prep_compound_page(page, order);
2147 }
2148
2149 /* Put bootmem huge pages into the standard lists after mem_map is up */
2150 static void __init gather_bootmem_prealloc(void)
2151 {
2152         struct huge_bootmem_page *m;
2153
2154         list_for_each_entry(m, &huge_boot_pages, list) {
2155                 struct page *page = virt_to_page(m);
2156                 struct hstate *h = m->hstate;
2157
2158                 WARN_ON(page_count(page) != 1);
2159                 prep_compound_huge_page(page, h->order);
2160                 WARN_ON(PageReserved(page));
2161                 prep_new_huge_page(h, page, page_to_nid(page));
2162                 put_page(page); /* free it into the hugepage allocator */
2163
2164                 /*
2165                  * If we had gigantic hugepages allocated at boot time, we need
2166                  * to restore the 'stolen' pages to totalram_pages in order to
2167                  * fix confusing memory reports from free(1) and another
2168                  * side-effects, like CommitLimit going negative.
2169                  */
2170                 if (hstate_is_gigantic(h))
2171                         adjust_managed_page_count(page, 1 << h->order);
2172                 cond_resched();
2173         }
2174 }
2175
2176 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2177 {
2178         unsigned long i;
2179
2180         for (i = 0; i < h->max_huge_pages; ++i) {
2181                 if (hstate_is_gigantic(h)) {
2182                         if (!alloc_bootmem_huge_page(h))
2183                                 break;
2184                 } else if (!alloc_pool_huge_page(h,
2185                                          &node_states[N_MEMORY]))
2186                         break;
2187                 cond_resched();
2188         }
2189         if (i < h->max_huge_pages) {
2190                 char buf[32];
2191
2192                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2193                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2194                         h->max_huge_pages, buf, i);
2195                 h->max_huge_pages = i;
2196         }
2197 }
2198
2199 static void __init hugetlb_init_hstates(void)
2200 {
2201         struct hstate *h;
2202
2203         for_each_hstate(h) {
2204                 if (minimum_order > huge_page_order(h))
2205                         minimum_order = huge_page_order(h);
2206
2207                 /* oversize hugepages were init'ed in early boot */
2208                 if (!hstate_is_gigantic(h))
2209                         hugetlb_hstate_alloc_pages(h);
2210         }
2211         VM_BUG_ON(minimum_order == UINT_MAX);
2212 }
2213
2214 static void __init report_hugepages(void)
2215 {
2216         struct hstate *h;
2217
2218         for_each_hstate(h) {
2219                 char buf[32];
2220
2221                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2222                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2223                         buf, h->free_huge_pages);
2224         }
2225 }
2226
2227 #ifdef CONFIG_HIGHMEM
2228 static void try_to_free_low(struct hstate *h, unsigned long count,
2229                                                 nodemask_t *nodes_allowed)
2230 {
2231         int i;
2232
2233         if (hstate_is_gigantic(h))
2234                 return;
2235
2236         for_each_node_mask(i, *nodes_allowed) {
2237                 struct page *page, *next;
2238                 struct list_head *freel = &h->hugepage_freelists[i];
2239                 list_for_each_entry_safe(page, next, freel, lru) {
2240                         if (count >= h->nr_huge_pages)
2241                                 return;
2242                         if (PageHighMem(page))
2243                                 continue;
2244                         list_del(&page->lru);
2245                         update_and_free_page(h, page);
2246                         h->free_huge_pages--;
2247                         h->free_huge_pages_node[page_to_nid(page)]--;
2248                 }
2249         }
2250 }
2251 #else
2252 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2253                                                 nodemask_t *nodes_allowed)
2254 {
2255 }
2256 #endif
2257
2258 /*
2259  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2260  * balanced by operating on them in a round-robin fashion.
2261  * Returns 1 if an adjustment was made.
2262  */
2263 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2264                                 int delta)
2265 {
2266         int nr_nodes, node;
2267
2268         VM_BUG_ON(delta != -1 && delta != 1);
2269
2270         if (delta < 0) {
2271                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2272                         if (h->surplus_huge_pages_node[node])
2273                                 goto found;
2274                 }
2275         } else {
2276                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2277                         if (h->surplus_huge_pages_node[node] <
2278                                         h->nr_huge_pages_node[node])
2279                                 goto found;
2280                 }
2281         }
2282         return 0;
2283
2284 found:
2285         h->surplus_huge_pages += delta;
2286         h->surplus_huge_pages_node[node] += delta;
2287         return 1;
2288 }
2289
2290 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2291 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2292                               nodemask_t *nodes_allowed)
2293 {
2294         unsigned long min_count, ret;
2295
2296         spin_lock(&hugetlb_lock);
2297
2298         /*
2299          * Check for a node specific request.
2300          * Changing node specific huge page count may require a corresponding
2301          * change to the global count.  In any case, the passed node mask
2302          * (nodes_allowed) will restrict alloc/free to the specified node.
2303          */
2304         if (nid != NUMA_NO_NODE) {
2305                 unsigned long old_count = count;
2306
2307                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2308                 /*
2309                  * User may have specified a large count value which caused the
2310                  * above calculation to overflow.  In this case, they wanted
2311                  * to allocate as many huge pages as possible.  Set count to
2312                  * largest possible value to align with their intention.
2313                  */
2314                 if (count < old_count)
2315                         count = ULONG_MAX;
2316         }
2317
2318         /*
2319          * Gigantic pages runtime allocation depend on the capability for large
2320          * page range allocation.
2321          * If the system does not provide this feature, return an error when
2322          * the user tries to allocate gigantic pages but let the user free the
2323          * boottime allocated gigantic pages.
2324          */
2325         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2326                 if (count > persistent_huge_pages(h)) {
2327                         spin_unlock(&hugetlb_lock);
2328                         return -EINVAL;
2329                 }
2330                 /* Fall through to decrease pool */
2331         }
2332
2333         /*
2334          * Increase the pool size
2335          * First take pages out of surplus state.  Then make up the
2336          * remaining difference by allocating fresh huge pages.
2337          *
2338          * We might race with alloc_surplus_huge_page() here and be unable
2339          * to convert a surplus huge page to a normal huge page. That is
2340          * not critical, though, it just means the overall size of the
2341          * pool might be one hugepage larger than it needs to be, but
2342          * within all the constraints specified by the sysctls.
2343          */
2344         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2345                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2346                         break;
2347         }
2348
2349         while (count > persistent_huge_pages(h)) {
2350                 /*
2351                  * If this allocation races such that we no longer need the
2352                  * page, free_huge_page will handle it by freeing the page
2353                  * and reducing the surplus.
2354                  */
2355                 spin_unlock(&hugetlb_lock);
2356
2357                 /* yield cpu to avoid soft lockup */
2358                 cond_resched();
2359
2360                 ret = alloc_pool_huge_page(h, nodes_allowed);
2361                 spin_lock(&hugetlb_lock);
2362                 if (!ret)
2363                         goto out;
2364
2365                 /* Bail for signals. Probably ctrl-c from user */
2366                 if (signal_pending(current))
2367                         goto out;
2368         }
2369
2370         /*
2371          * Decrease the pool size
2372          * First return free pages to the buddy allocator (being careful
2373          * to keep enough around to satisfy reservations).  Then place
2374          * pages into surplus state as needed so the pool will shrink
2375          * to the desired size as pages become free.
2376          *
2377          * By placing pages into the surplus state independent of the
2378          * overcommit value, we are allowing the surplus pool size to
2379          * exceed overcommit. There are few sane options here. Since
2380          * alloc_surplus_huge_page() is checking the global counter,
2381          * though, we'll note that we're not allowed to exceed surplus
2382          * and won't grow the pool anywhere else. Not until one of the
2383          * sysctls are changed, or the surplus pages go out of use.
2384          */
2385         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2386         min_count = max(count, min_count);
2387         try_to_free_low(h, min_count, nodes_allowed);
2388         while (min_count < persistent_huge_pages(h)) {
2389                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2390                         break;
2391                 cond_resched_lock(&hugetlb_lock);
2392         }
2393         while (count < persistent_huge_pages(h)) {
2394                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2395                         break;
2396         }
2397 out:
2398         h->max_huge_pages = persistent_huge_pages(h);
2399         spin_unlock(&hugetlb_lock);
2400
2401         return 0;
2402 }
2403
2404 #define HSTATE_ATTR_RO(_name) \
2405         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2406
2407 #define HSTATE_ATTR(_name) \
2408         static struct kobj_attribute _name##_attr = \
2409                 __ATTR(_name, 0644, _name##_show, _name##_store)
2410
2411 static struct kobject *hugepages_kobj;
2412 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2413
2414 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2415
2416 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2417 {
2418         int i;
2419
2420         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2421                 if (hstate_kobjs[i] == kobj) {
2422                         if (nidp)
2423                                 *nidp = NUMA_NO_NODE;
2424                         return &hstates[i];
2425                 }
2426
2427         return kobj_to_node_hstate(kobj, nidp);
2428 }
2429
2430 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2431                                         struct kobj_attribute *attr, char *buf)
2432 {
2433         struct hstate *h;
2434         unsigned long nr_huge_pages;
2435         int nid;
2436
2437         h = kobj_to_hstate(kobj, &nid);
2438         if (nid == NUMA_NO_NODE)
2439                 nr_huge_pages = h->nr_huge_pages;
2440         else
2441                 nr_huge_pages = h->nr_huge_pages_node[nid];
2442
2443         return sprintf(buf, "%lu\n", nr_huge_pages);
2444 }
2445
2446 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2447                                            struct hstate *h, int nid,
2448                                            unsigned long count, size_t len)
2449 {
2450         int err;
2451         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2452
2453         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) {
2454                 err = -EINVAL;
2455                 goto out;
2456         }
2457
2458         if (nid == NUMA_NO_NODE) {
2459                 /*
2460                  * global hstate attribute
2461                  */
2462                 if (!(obey_mempolicy &&
2463                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2464                         NODEMASK_FREE(nodes_allowed);
2465                         nodes_allowed = &node_states[N_MEMORY];
2466                 }
2467         } else if (nodes_allowed) {
2468                 /*
2469                  * Node specific request.  count adjustment happens in
2470                  * set_max_huge_pages() after acquiring hugetlb_lock.
2471                  */
2472                 init_nodemask_of_node(nodes_allowed, nid);
2473         } else {
2474                 /*
2475                  * Node specific request, but we could not allocate the few
2476                  * words required for a node mask.  We are unlikely to hit
2477                  * this condition.  Since we can not pass down the appropriate
2478                  * node mask, just return ENOMEM.
2479                  */
2480                 err = -ENOMEM;
2481                 goto out;
2482         }
2483
2484         err = set_max_huge_pages(h, count, nid, nodes_allowed);
2485
2486 out:
2487         if (nodes_allowed != &node_states[N_MEMORY])
2488                 NODEMASK_FREE(nodes_allowed);
2489
2490         return err ? err : len;
2491 }
2492
2493 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2494                                          struct kobject *kobj, const char *buf,
2495                                          size_t len)
2496 {
2497         struct hstate *h;
2498         unsigned long count;
2499         int nid;
2500         int err;
2501
2502         err = kstrtoul(buf, 10, &count);
2503         if (err)
2504                 return err;
2505
2506         h = kobj_to_hstate(kobj, &nid);
2507         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2508 }
2509
2510 static ssize_t nr_hugepages_show(struct kobject *kobj,
2511                                        struct kobj_attribute *attr, char *buf)
2512 {
2513         return nr_hugepages_show_common(kobj, attr, buf);
2514 }
2515
2516 static ssize_t nr_hugepages_store(struct kobject *kobj,
2517                struct kobj_attribute *attr, const char *buf, size_t len)
2518 {
2519         return nr_hugepages_store_common(false, kobj, buf, len);
2520 }
2521 HSTATE_ATTR(nr_hugepages);
2522
2523 #ifdef CONFIG_NUMA
2524
2525 /*
2526  * hstate attribute for optionally mempolicy-based constraint on persistent
2527  * huge page alloc/free.
2528  */
2529 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2530                                        struct kobj_attribute *attr, char *buf)
2531 {
2532         return nr_hugepages_show_common(kobj, attr, buf);
2533 }
2534
2535 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2536                struct kobj_attribute *attr, const char *buf, size_t len)
2537 {
2538         return nr_hugepages_store_common(true, kobj, buf, len);
2539 }
2540 HSTATE_ATTR(nr_hugepages_mempolicy);
2541 #endif
2542
2543
2544 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2545                                         struct kobj_attribute *attr, char *buf)
2546 {
2547         struct hstate *h = kobj_to_hstate(kobj, NULL);
2548         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2549 }
2550
2551 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2552                 struct kobj_attribute *attr, const char *buf, size_t count)
2553 {
2554         int err;
2555         unsigned long input;
2556         struct hstate *h = kobj_to_hstate(kobj, NULL);
2557
2558         if (hstate_is_gigantic(h))
2559                 return -EINVAL;
2560
2561         err = kstrtoul(buf, 10, &input);
2562         if (err)
2563                 return err;
2564
2565         spin_lock(&hugetlb_lock);
2566         h->nr_overcommit_huge_pages = input;
2567         spin_unlock(&hugetlb_lock);
2568
2569         return count;
2570 }
2571 HSTATE_ATTR(nr_overcommit_hugepages);
2572
2573 static ssize_t free_hugepages_show(struct kobject *kobj,
2574                                         struct kobj_attribute *attr, char *buf)
2575 {
2576         struct hstate *h;
2577         unsigned long free_huge_pages;
2578         int nid;
2579
2580         h = kobj_to_hstate(kobj, &nid);
2581         if (nid == NUMA_NO_NODE)
2582                 free_huge_pages = h->free_huge_pages;
2583         else
2584                 free_huge_pages = h->free_huge_pages_node[nid];
2585
2586         return sprintf(buf, "%lu\n", free_huge_pages);
2587 }
2588 HSTATE_ATTR_RO(free_hugepages);
2589
2590 static ssize_t resv_hugepages_show(struct kobject *kobj,
2591                                         struct kobj_attribute *attr, char *buf)
2592 {
2593         struct hstate *h = kobj_to_hstate(kobj, NULL);
2594         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2595 }
2596 HSTATE_ATTR_RO(resv_hugepages);
2597
2598 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2599                                         struct kobj_attribute *attr, char *buf)
2600 {
2601         struct hstate *h;
2602         unsigned long surplus_huge_pages;
2603         int nid;
2604
2605         h = kobj_to_hstate(kobj, &nid);
2606         if (nid == NUMA_NO_NODE)
2607                 surplus_huge_pages = h->surplus_huge_pages;
2608         else
2609                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2610
2611         return sprintf(buf, "%lu\n", surplus_huge_pages);
2612 }
2613 HSTATE_ATTR_RO(surplus_hugepages);
2614
2615 static struct attribute *hstate_attrs[] = {
2616         &nr_hugepages_attr.attr,
2617         &nr_overcommit_hugepages_attr.attr,
2618         &free_hugepages_attr.attr,
2619         &resv_hugepages_attr.attr,
2620         &surplus_hugepages_attr.attr,
2621 #ifdef CONFIG_NUMA
2622         &nr_hugepages_mempolicy_attr.attr,
2623 #endif
2624         NULL,
2625 };
2626
2627 static const struct attribute_group hstate_attr_group = {
2628         .attrs = hstate_attrs,
2629 };
2630
2631 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2632                                     struct kobject **hstate_kobjs,
2633                                     const struct attribute_group *hstate_attr_group)
2634 {
2635         int retval;
2636         int hi = hstate_index(h);
2637
2638         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2639         if (!hstate_kobjs[hi])
2640                 return -ENOMEM;
2641
2642         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2643         if (retval)
2644                 kobject_put(hstate_kobjs[hi]);
2645
2646         return retval;
2647 }
2648
2649 static void __init hugetlb_sysfs_init(void)
2650 {
2651         struct hstate *h;
2652         int err;
2653
2654         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2655         if (!hugepages_kobj)
2656                 return;
2657
2658         for_each_hstate(h) {
2659                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2660                                          hstate_kobjs, &hstate_attr_group);
2661                 if (err)
2662                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2663         }
2664 }
2665
2666 #ifdef CONFIG_NUMA
2667
2668 /*
2669  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2670  * with node devices in node_devices[] using a parallel array.  The array
2671  * index of a node device or _hstate == node id.
2672  * This is here to avoid any static dependency of the node device driver, in
2673  * the base kernel, on the hugetlb module.
2674  */
2675 struct node_hstate {
2676         struct kobject          *hugepages_kobj;
2677         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2678 };
2679 static struct node_hstate node_hstates[MAX_NUMNODES];
2680
2681 /*
2682  * A subset of global hstate attributes for node devices
2683  */
2684 static struct attribute *per_node_hstate_attrs[] = {
2685         &nr_hugepages_attr.attr,
2686         &free_hugepages_attr.attr,
2687         &surplus_hugepages_attr.attr,
2688         NULL,
2689 };
2690
2691 static const struct attribute_group per_node_hstate_attr_group = {
2692         .attrs = per_node_hstate_attrs,
2693 };
2694
2695 /*
2696  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2697  * Returns node id via non-NULL nidp.
2698  */
2699 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2700 {
2701         int nid;
2702
2703         for (nid = 0; nid < nr_node_ids; nid++) {
2704                 struct node_hstate *nhs = &node_hstates[nid];
2705                 int i;
2706                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2707                         if (nhs->hstate_kobjs[i] == kobj) {
2708                                 if (nidp)
2709                                         *nidp = nid;
2710                                 return &hstates[i];
2711                         }
2712         }
2713
2714         BUG();
2715         return NULL;
2716 }
2717
2718 /*
2719  * Unregister hstate attributes from a single node device.
2720  * No-op if no hstate attributes attached.
2721  */
2722 static void hugetlb_unregister_node(struct node *node)
2723 {
2724         struct hstate *h;
2725         struct node_hstate *nhs = &node_hstates[node->dev.id];
2726
2727         if (!nhs->hugepages_kobj)
2728                 return;         /* no hstate attributes */
2729
2730         for_each_hstate(h) {
2731                 int idx = hstate_index(h);
2732                 if (nhs->hstate_kobjs[idx]) {
2733                         kobject_put(nhs->hstate_kobjs[idx]);
2734                         nhs->hstate_kobjs[idx] = NULL;
2735                 }
2736         }
2737
2738         kobject_put(nhs->hugepages_kobj);
2739         nhs->hugepages_kobj = NULL;
2740 }
2741
2742
2743 /*
2744  * Register hstate attributes for a single node device.
2745  * No-op if attributes already registered.
2746  */
2747 static void hugetlb_register_node(struct node *node)
2748 {
2749         struct hstate *h;
2750         struct node_hstate *nhs = &node_hstates[node->dev.id];
2751         int err;
2752
2753         if (nhs->hugepages_kobj)
2754                 return;         /* already allocated */
2755
2756         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2757                                                         &node->dev.kobj);
2758         if (!nhs->hugepages_kobj)
2759                 return;
2760
2761         for_each_hstate(h) {
2762                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2763                                                 nhs->hstate_kobjs,
2764                                                 &per_node_hstate_attr_group);
2765                 if (err) {
2766                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2767                                 h->name, node->dev.id);
2768                         hugetlb_unregister_node(node);
2769                         break;
2770                 }
2771         }
2772 }
2773
2774 /*
2775  * hugetlb init time:  register hstate attributes for all registered node
2776  * devices of nodes that have memory.  All on-line nodes should have
2777  * registered their associated device by this time.
2778  */
2779 static void __init hugetlb_register_all_nodes(void)
2780 {
2781         int nid;
2782
2783         for_each_node_state(nid, N_MEMORY) {
2784                 struct node *node = node_devices[nid];
2785                 if (node->dev.id == nid)
2786                         hugetlb_register_node(node);
2787         }
2788
2789         /*
2790          * Let the node device driver know we're here so it can
2791          * [un]register hstate attributes on node hotplug.
2792          */
2793         register_hugetlbfs_with_node(hugetlb_register_node,
2794                                      hugetlb_unregister_node);
2795 }
2796 #else   /* !CONFIG_NUMA */
2797
2798 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2799 {
2800         BUG();
2801         if (nidp)
2802                 *nidp = -1;
2803         return NULL;
2804 }
2805
2806 static void hugetlb_register_all_nodes(void) { }
2807
2808 #endif
2809
2810 static int __init hugetlb_init(void)
2811 {
2812         int i;
2813
2814         if (!hugepages_supported())
2815                 return 0;
2816
2817         if (!size_to_hstate(default_hstate_size)) {
2818                 if (default_hstate_size != 0) {
2819                         pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2820                                default_hstate_size, HPAGE_SIZE);
2821                 }
2822
2823                 default_hstate_size = HPAGE_SIZE;
2824                 if (!size_to_hstate(default_hstate_size))
2825                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2826         }
2827         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2828         if (default_hstate_max_huge_pages) {
2829                 if (!default_hstate.max_huge_pages)
2830                         default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2831         }
2832
2833         hugetlb_init_hstates();
2834         gather_bootmem_prealloc();
2835         report_hugepages();
2836
2837         hugetlb_sysfs_init();
2838         hugetlb_register_all_nodes();
2839         hugetlb_cgroup_file_init();
2840
2841 #ifdef CONFIG_SMP
2842         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2843 #else
2844         num_fault_mutexes = 1;
2845 #endif
2846         hugetlb_fault_mutex_table =
2847                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2848                               GFP_KERNEL);
2849         BUG_ON(!hugetlb_fault_mutex_table);
2850
2851         for (i = 0; i < num_fault_mutexes; i++)
2852                 mutex_init(&hugetlb_fault_mutex_table[i]);
2853         return 0;
2854 }
2855 subsys_initcall(hugetlb_init);
2856
2857 /* Should be called on processing a hugepagesz=... option */
2858 void __init hugetlb_bad_size(void)
2859 {
2860         parsed_valid_hugepagesz = false;
2861 }
2862
2863 void __init hugetlb_add_hstate(unsigned int order)
2864 {
2865         struct hstate *h;
2866         unsigned long i;
2867
2868         if (size_to_hstate(PAGE_SIZE << order)) {
2869                 pr_warn("hugepagesz= specified twice, ignoring\n");
2870                 return;
2871         }
2872         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2873         BUG_ON(order == 0);
2874         h = &hstates[hugetlb_max_hstate++];
2875         h->order = order;
2876         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2877         h->nr_huge_pages = 0;
2878         h->free_huge_pages = 0;
2879         for (i = 0; i < MAX_NUMNODES; ++i)
2880                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2881         INIT_LIST_HEAD(&h->hugepage_activelist);
2882         h->next_nid_to_alloc = first_memory_node;
2883         h->next_nid_to_free = first_memory_node;
2884         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2885                                         huge_page_size(h)/1024);
2886
2887         parsed_hstate = h;
2888 }
2889
2890 static int __init hugetlb_nrpages_setup(char *s)
2891 {
2892         unsigned long *mhp;
2893         static unsigned long *last_mhp;
2894
2895         if (!parsed_valid_hugepagesz) {
2896                 pr_warn("hugepages = %s preceded by "
2897                         "an unsupported hugepagesz, ignoring\n", s);
2898                 parsed_valid_hugepagesz = true;
2899                 return 1;
2900         }
2901         /*
2902          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2903          * so this hugepages= parameter goes to the "default hstate".
2904          */
2905         else if (!hugetlb_max_hstate)
2906                 mhp = &default_hstate_max_huge_pages;
2907         else
2908                 mhp = &parsed_hstate->max_huge_pages;
2909
2910         if (mhp == last_mhp) {
2911                 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2912                 return 1;
2913         }
2914
2915         if (sscanf(s, "%lu", mhp) <= 0)
2916                 *mhp = 0;
2917
2918         /*
2919          * Global state is always initialized later in hugetlb_init.
2920          * But we need to allocate >= MAX_ORDER hstates here early to still
2921          * use the bootmem allocator.
2922          */
2923         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2924                 hugetlb_hstate_alloc_pages(parsed_hstate);
2925
2926         last_mhp = mhp;
2927
2928         return 1;
2929 }
2930 __setup("hugepages=", hugetlb_nrpages_setup);
2931
2932 static int __init hugetlb_default_setup(char *s)
2933 {
2934         default_hstate_size = memparse(s, &s);
2935         return 1;
2936 }
2937 __setup("default_hugepagesz=", hugetlb_default_setup);
2938
2939 static unsigned int cpuset_mems_nr(unsigned int *array)
2940 {
2941         int node;
2942         unsigned int nr = 0;
2943
2944         for_each_node_mask(node, cpuset_current_mems_allowed)
2945                 nr += array[node];
2946
2947         return nr;
2948 }
2949
2950 #ifdef CONFIG_SYSCTL
2951 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2952                          struct ctl_table *table, int write,
2953                          void __user *buffer, size_t *length, loff_t *ppos)
2954 {
2955         struct hstate *h = &default_hstate;
2956         unsigned long tmp = h->max_huge_pages;
2957         int ret;
2958
2959         if (!hugepages_supported())
2960                 return -EOPNOTSUPP;
2961
2962         table->data = &tmp;
2963         table->maxlen = sizeof(unsigned long);
2964         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2965         if (ret)
2966                 goto out;
2967
2968         if (write)
2969                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2970                                                   NUMA_NO_NODE, tmp, *length);
2971 out:
2972         return ret;
2973 }
2974
2975 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2976                           void __user *buffer, size_t *length, loff_t *ppos)
2977 {
2978
2979         return hugetlb_sysctl_handler_common(false, table, write,
2980                                                         buffer, length, ppos);
2981 }
2982
2983 #ifdef CONFIG_NUMA
2984 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2985                           void __user *buffer, size_t *length, loff_t *ppos)
2986 {
2987         return hugetlb_sysctl_handler_common(true, table, write,
2988                                                         buffer, length, ppos);
2989 }
2990 #endif /* CONFIG_NUMA */
2991
2992 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2993                         void __user *buffer,
2994                         size_t *length, loff_t *ppos)
2995 {
2996         struct hstate *h = &default_hstate;
2997         unsigned long tmp;
2998         int ret;
2999
3000         if (!hugepages_supported())
3001                 return -EOPNOTSUPP;
3002
3003         tmp = h->nr_overcommit_huge_pages;
3004
3005         if (write && hstate_is_gigantic(h))
3006                 return -EINVAL;
3007
3008         table->data = &tmp;
3009         table->maxlen = sizeof(unsigned long);
3010         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3011         if (ret)
3012                 goto out;
3013
3014         if (write) {
3015                 spin_lock(&hugetlb_lock);
3016                 h->nr_overcommit_huge_pages = tmp;
3017                 spin_unlock(&hugetlb_lock);
3018         }
3019 out:
3020         return ret;
3021 }
3022
3023 #endif /* CONFIG_SYSCTL */
3024
3025 void hugetlb_report_meminfo(struct seq_file *m)
3026 {
3027         struct hstate *h;
3028         unsigned long total = 0;
3029
3030         if (!hugepages_supported())
3031                 return;
3032
3033         for_each_hstate(h) {
3034                 unsigned long count = h->nr_huge_pages;
3035
3036                 total += (PAGE_SIZE << huge_page_order(h)) * count;
3037
3038                 if (h == &default_hstate)
3039                         seq_printf(m,
3040                                    "HugePages_Total:   %5lu\n"
3041                                    "HugePages_Free:    %5lu\n"
3042                                    "HugePages_Rsvd:    %5lu\n"
3043                                    "HugePages_Surp:    %5lu\n"
3044                                    "Hugepagesize:   %8lu kB\n",
3045                                    count,
3046                                    h->free_huge_pages,
3047                                    h->resv_huge_pages,
3048                                    h->surplus_huge_pages,
3049                                    (PAGE_SIZE << huge_page_order(h)) / 1024);
3050         }
3051
3052         seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3053 }
3054
3055 int hugetlb_report_node_meminfo(int nid, char *buf)
3056 {
3057         struct hstate *h = &default_hstate;
3058         if (!hugepages_supported())
3059                 return 0;
3060         return sprintf(buf,
3061                 "Node %d HugePages_Total: %5u\n"
3062                 "Node %d HugePages_Free:  %5u\n"
3063                 "Node %d HugePages_Surp:  %5u\n",
3064                 nid, h->nr_huge_pages_node[nid],
3065                 nid, h->free_huge_pages_node[nid],
3066                 nid, h->surplus_huge_pages_node[nid]);
3067 }
3068
3069 void hugetlb_show_meminfo(void)
3070 {
3071         struct hstate *h;
3072         int nid;
3073
3074         if (!hugepages_supported())
3075                 return;
3076
3077         for_each_node_state(nid, N_MEMORY)
3078                 for_each_hstate(h)
3079                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3080                                 nid,
3081                                 h->nr_huge_pages_node[nid],
3082                                 h->free_huge_pages_node[nid],
3083                                 h->surplus_huge_pages_node[nid],
3084                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3085 }
3086
3087 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3088 {
3089         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3090                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3091 }
3092
3093 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3094 unsigned long hugetlb_total_pages(void)
3095 {
3096         struct hstate *h;
3097         unsigned long nr_total_pages = 0;
3098
3099         for_each_hstate(h)
3100                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3101         return nr_total_pages;
3102 }
3103
3104 static int hugetlb_acct_memory(struct hstate *h, long delta)
3105 {
3106         int ret = -ENOMEM;
3107
3108         spin_lock(&hugetlb_lock);
3109         /*
3110          * When cpuset is configured, it breaks the strict hugetlb page
3111          * reservation as the accounting is done on a global variable. Such
3112          * reservation is completely rubbish in the presence of cpuset because
3113          * the reservation is not checked against page availability for the
3114          * current cpuset. Application can still potentially OOM'ed by kernel
3115          * with lack of free htlb page in cpuset that the task is in.
3116          * Attempt to enforce strict accounting with cpuset is almost
3117          * impossible (or too ugly) because cpuset is too fluid that
3118          * task or memory node can be dynamically moved between cpusets.
3119          *
3120          * The change of semantics for shared hugetlb mapping with cpuset is
3121          * undesirable. However, in order to preserve some of the semantics,
3122          * we fall back to check against current free page availability as
3123          * a best attempt and hopefully to minimize the impact of changing
3124          * semantics that cpuset has.
3125          */
3126         if (delta > 0) {
3127                 if (gather_surplus_pages(h, delta) < 0)
3128                         goto out;
3129
3130                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3131                         return_unused_surplus_pages(h, delta);
3132                         goto out;
3133                 }
3134         }
3135
3136         ret = 0;
3137         if (delta < 0)
3138                 return_unused_surplus_pages(h, (unsigned long) -delta);
3139
3140 out:
3141         spin_unlock(&hugetlb_lock);
3142         return ret;
3143 }
3144
3145 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3146 {
3147         struct resv_map *resv = vma_resv_map(vma);
3148
3149         /*
3150          * This new VMA should share its siblings reservation map if present.
3151          * The VMA will only ever have a valid reservation map pointer where
3152          * it is being copied for another still existing VMA.  As that VMA
3153          * has a reference to the reservation map it cannot disappear until
3154          * after this open call completes.  It is therefore safe to take a
3155          * new reference here without additional locking.
3156          */
3157         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3158                 kref_get(&resv->refs);
3159 }
3160
3161 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3162 {
3163         struct hstate *h = hstate_vma(vma);
3164         struct resv_map *resv = vma_resv_map(vma);
3165         struct hugepage_subpool *spool = subpool_vma(vma);
3166         unsigned long reserve, start, end;
3167         long gbl_reserve;
3168
3169         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3170                 return;
3171
3172         start = vma_hugecache_offset(h, vma, vma->vm_start);
3173         end = vma_hugecache_offset(h, vma, vma->vm_end);
3174
3175         reserve = (end - start) - region_count(resv, start, end);
3176
3177         kref_put(&resv->refs, resv_map_release);
3178
3179         if (reserve) {
3180                 /*
3181                  * Decrement reserve counts.  The global reserve count may be
3182                  * adjusted if the subpool has a minimum size.
3183                  */
3184                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3185                 hugetlb_acct_memory(h, -gbl_reserve);
3186         }
3187 }
3188
3189 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3190 {
3191         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3192                 return -EINVAL;
3193         return 0;
3194 }
3195
3196 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3197 {
3198         struct hstate *hstate = hstate_vma(vma);
3199
3200         return 1UL << huge_page_shift(hstate);
3201 }
3202
3203 /*
3204  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3205  * handle_mm_fault() to try to instantiate regular-sized pages in the
3206  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3207  * this far.
3208  */
3209 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3210 {
3211         BUG();
3212         return 0;
3213 }
3214
3215 /*
3216  * When a new function is introduced to vm_operations_struct and added
3217  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3218  * This is because under System V memory model, mappings created via
3219  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3220  * their original vm_ops are overwritten with shm_vm_ops.
3221  */
3222 const struct vm_operations_struct hugetlb_vm_ops = {
3223         .fault = hugetlb_vm_op_fault,
3224         .open = hugetlb_vm_op_open,
3225         .close = hugetlb_vm_op_close,
3226         .split = hugetlb_vm_op_split,
3227         .pagesize = hugetlb_vm_op_pagesize,
3228 };
3229
3230 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3231                                 int writable)
3232 {
3233         pte_t entry;
3234
3235         if (writable) {
3236                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3237                                          vma->vm_page_prot)));
3238         } else {
3239                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3240                                            vma->vm_page_prot));
3241         }
3242         entry = pte_mkyoung(entry);
3243         entry = pte_mkhuge(entry);
3244         entry = arch_make_huge_pte(entry, vma, page, writable);
3245
3246         return entry;
3247 }
3248
3249 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3250                                    unsigned long address, pte_t *ptep)
3251 {
3252         pte_t entry;
3253
3254         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3255         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3256                 update_mmu_cache(vma, address, ptep);
3257 }
3258
3259 bool is_hugetlb_entry_migration(pte_t pte)
3260 {
3261         swp_entry_t swp;
3262
3263         if (huge_pte_none(pte) || pte_present(pte))
3264                 return false;
3265         swp = pte_to_swp_entry(pte);
3266         if (non_swap_entry(swp) && is_migration_entry(swp))
3267                 return true;
3268         else
3269                 return false;
3270 }
3271
3272 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3273 {
3274         swp_entry_t swp;
3275
3276         if (huge_pte_none(pte) || pte_present(pte))
3277                 return 0;
3278         swp = pte_to_swp_entry(pte);
3279         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3280                 return 1;
3281         else
3282                 return 0;
3283 }
3284
3285 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3286                             struct vm_area_struct *vma)
3287 {
3288         pte_t *src_pte, *dst_pte, entry, dst_entry;
3289         struct page *ptepage;
3290         unsigned long addr;
3291         int cow;
3292         struct hstate *h = hstate_vma(vma);
3293         unsigned long sz = huge_page_size(h);
3294         struct mmu_notifier_range range;
3295         int ret = 0;
3296
3297         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3298
3299         if (cow) {
3300                 mmu_notifier_range_init(&range, src, vma->vm_start,
3301                                         vma->vm_end);
3302                 mmu_notifier_invalidate_range_start(&range);
3303         }
3304
3305         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3306                 spinlock_t *src_ptl, *dst_ptl;
3307                 src_pte = huge_pte_offset(src, addr, sz);
3308                 if (!src_pte)
3309                         continue;
3310                 dst_pte = huge_pte_alloc(dst, addr, sz);
3311                 if (!dst_pte) {
3312                         ret = -ENOMEM;
3313                         break;
3314                 }
3315
3316                 /*
3317                  * If the pagetables are shared don't copy or take references.
3318                  * dst_pte == src_pte is the common case of src/dest sharing.
3319                  *
3320                  * However, src could have 'unshared' and dst shares with
3321                  * another vma.  If dst_pte !none, this implies sharing.
3322                  * Check here before taking page table lock, and once again
3323                  * after taking the lock below.
3324                  */
3325                 dst_entry = huge_ptep_get(dst_pte);
3326                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3327                         continue;
3328
3329                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3330                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3331                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3332                 entry = huge_ptep_get(src_pte);
3333                 dst_entry = huge_ptep_get(dst_pte);
3334                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3335                         /*
3336                          * Skip if src entry none.  Also, skip in the
3337                          * unlikely case dst entry !none as this implies
3338                          * sharing with another vma.
3339                          */
3340                         ;
3341                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3342                                     is_hugetlb_entry_hwpoisoned(entry))) {
3343                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3344
3345                         if (is_write_migration_entry(swp_entry) && cow) {
3346                                 /*
3347                                  * COW mappings require pages in both
3348                                  * parent and child to be set to read.
3349                                  */
3350                                 make_migration_entry_read(&swp_entry);
3351                                 entry = swp_entry_to_pte(swp_entry);
3352                                 set_huge_swap_pte_at(src, addr, src_pte,
3353                                                      entry, sz);
3354                         }
3355                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3356                 } else {
3357                         if (cow) {
3358                                 /*
3359                                  * No need to notify as we are downgrading page
3360                                  * table protection not changing it to point
3361                                  * to a new page.
3362                                  *
3363                                  * See Documentation/vm/mmu_notifier.rst
3364                                  */
3365                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3366                         }
3367                         entry = huge_ptep_get(src_pte);
3368                         ptepage = pte_page(entry);
3369                         get_page(ptepage);
3370                         page_dup_rmap(ptepage, true);
3371                         set_huge_pte_at(dst, addr, dst_pte, entry);
3372                         hugetlb_count_add(pages_per_huge_page(h), dst);
3373                 }
3374                 spin_unlock(src_ptl);
3375                 spin_unlock(dst_ptl);
3376         }
3377
3378         if (cow)
3379                 mmu_notifier_invalidate_range_end(&range);
3380
3381         return ret;
3382 }
3383
3384 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3385                             unsigned long start, unsigned long end,
3386                             struct page *ref_page)
3387 {
3388         struct mm_struct *mm = vma->vm_mm;
3389         unsigned long address;
3390         pte_t *ptep;
3391         pte_t pte;
3392         spinlock_t *ptl;
3393         struct page *page;
3394         struct hstate *h = hstate_vma(vma);
3395         unsigned long sz = huge_page_size(h);
3396         struct mmu_notifier_range range;
3397
3398         WARN_ON(!is_vm_hugetlb_page(vma));
3399         BUG_ON(start & ~huge_page_mask(h));
3400         BUG_ON(end & ~huge_page_mask(h));
3401
3402         /*
3403          * This is a hugetlb vma, all the pte entries should point
3404          * to huge page.
3405          */
3406         tlb_change_page_size(tlb, sz);
3407         tlb_start_vma(tlb, vma);
3408
3409         /*
3410          * If sharing possible, alert mmu notifiers of worst case.
3411          */
3412         mmu_notifier_range_init(&range, mm, start, end);
3413         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3414         mmu_notifier_invalidate_range_start(&range);
3415         address = start;
3416         for (; address < end; address += sz) {
3417                 ptep = huge_pte_offset(mm, address, sz);
3418                 if (!ptep)
3419                         continue;
3420
3421                 ptl = huge_pte_lock(h, mm, ptep);
3422                 if (huge_pmd_unshare(mm, &address, ptep)) {
3423                         spin_unlock(ptl);
3424                         /*
3425                          * We just unmapped a page of PMDs by clearing a PUD.
3426                          * The caller's TLB flush range should cover this area.
3427                          */
3428                         continue;
3429                 }
3430
3431                 pte = huge_ptep_get(ptep);
3432                 if (huge_pte_none(pte)) {
3433                         spin_unlock(ptl);
3434                         continue;
3435                 }
3436
3437                 /*
3438                  * Migrating hugepage or HWPoisoned hugepage is already
3439                  * unmapped and its refcount is dropped, so just clear pte here.
3440                  */
3441                 if (unlikely(!pte_present(pte))) {
3442                         huge_pte_clear(mm, address, ptep, sz);
3443                         spin_unlock(ptl);
3444                         continue;
3445                 }
3446
3447                 page = pte_page(pte);
3448                 /*
3449                  * If a reference page is supplied, it is because a specific
3450                  * page is being unmapped, not a range. Ensure the page we
3451                  * are about to unmap is the actual page of interest.
3452                  */
3453                 if (ref_page) {
3454                         if (page != ref_page) {
3455                                 spin_unlock(ptl);
3456                                 continue;
3457                         }
3458                         /*
3459                          * Mark the VMA as having unmapped its page so that
3460                          * future faults in this VMA will fail rather than
3461                          * looking like data was lost
3462                          */
3463                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3464                 }
3465
3466                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3467                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3468                 if (huge_pte_dirty(pte))
3469                         set_page_dirty(page);
3470
3471                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3472                 page_remove_rmap(page, true);
3473
3474                 spin_unlock(ptl);
3475                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3476                 /*
3477                  * Bail out after unmapping reference page if supplied
3478                  */
3479                 if (ref_page)
3480                         break;
3481         }
3482         mmu_notifier_invalidate_range_end(&range);
3483         tlb_end_vma(tlb, vma);
3484 }
3485
3486 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3487                           struct vm_area_struct *vma, unsigned long start,
3488                           unsigned long end, struct page *ref_page)
3489 {
3490         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3491
3492         /*
3493          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3494          * test will fail on a vma being torn down, and not grab a page table
3495          * on its way out.  We're lucky that the flag has such an appropriate
3496          * name, and can in fact be safely cleared here. We could clear it
3497          * before the __unmap_hugepage_range above, but all that's necessary
3498          * is to clear it before releasing the i_mmap_rwsem. This works
3499          * because in the context this is called, the VMA is about to be
3500          * destroyed and the i_mmap_rwsem is held.
3501          */
3502         vma->vm_flags &= ~VM_MAYSHARE;
3503 }
3504
3505 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3506                           unsigned long end, struct page *ref_page)
3507 {
3508         struct mm_struct *mm;
3509         struct mmu_gather tlb;
3510         unsigned long tlb_start = start;
3511         unsigned long tlb_end = end;
3512
3513         /*
3514          * If shared PMDs were possibly used within this vma range, adjust
3515          * start/end for worst case tlb flushing.
3516          * Note that we can not be sure if PMDs are shared until we try to
3517          * unmap pages.  However, we want to make sure TLB flushing covers
3518          * the largest possible range.
3519          */
3520         adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3521
3522         mm = vma->vm_mm;
3523
3524         tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3525         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3526         tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3527 }
3528
3529 /*
3530  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3531  * mappping it owns the reserve page for. The intention is to unmap the page
3532  * from other VMAs and let the children be SIGKILLed if they are faulting the
3533  * same region.
3534  */
3535 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3536                               struct page *page, unsigned long address)
3537 {
3538         struct hstate *h = hstate_vma(vma);
3539         struct vm_area_struct *iter_vma;
3540         struct address_space *mapping;
3541         pgoff_t pgoff;
3542
3543         /*
3544          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3545          * from page cache lookup which is in HPAGE_SIZE units.
3546          */
3547         address = address & huge_page_mask(h);
3548         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3549                         vma->vm_pgoff;
3550         mapping = vma->vm_file->f_mapping;
3551
3552         /*
3553          * Take the mapping lock for the duration of the table walk. As
3554          * this mapping should be shared between all the VMAs,
3555          * __unmap_hugepage_range() is called as the lock is already held
3556          */
3557         i_mmap_lock_write(mapping);
3558         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3559                 /* Do not unmap the current VMA */
3560                 if (iter_vma == vma)
3561                         continue;
3562
3563                 /*
3564                  * Shared VMAs have their own reserves and do not affect
3565                  * MAP_PRIVATE accounting but it is possible that a shared
3566                  * VMA is using the same page so check and skip such VMAs.
3567                  */
3568                 if (iter_vma->vm_flags & VM_MAYSHARE)
3569                         continue;
3570
3571                 /*
3572                  * Unmap the page from other VMAs without their own reserves.
3573                  * They get marked to be SIGKILLed if they fault in these
3574                  * areas. This is because a future no-page fault on this VMA
3575                  * could insert a zeroed page instead of the data existing
3576                  * from the time of fork. This would look like data corruption
3577                  */
3578                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3579                         unmap_hugepage_range(iter_vma, address,
3580                                              address + huge_page_size(h), page);
3581         }
3582         i_mmap_unlock_write(mapping);
3583 }
3584
3585 /*
3586  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3587  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3588  * cannot race with other handlers or page migration.
3589  * Keep the pte_same checks anyway to make transition from the mutex easier.
3590  */
3591 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3592                        unsigned long address, pte_t *ptep,
3593                        struct page *pagecache_page, spinlock_t *ptl)
3594 {
3595         pte_t pte;
3596         struct hstate *h = hstate_vma(vma);
3597         struct page *old_page, *new_page;
3598         int outside_reserve = 0;
3599         vm_fault_t ret = 0;
3600         unsigned long haddr = address & huge_page_mask(h);
3601         struct mmu_notifier_range range;
3602
3603         pte = huge_ptep_get(ptep);
3604         old_page = pte_page(pte);
3605
3606 retry_avoidcopy:
3607         /* If no-one else is actually using this page, avoid the copy
3608          * and just make the page writable */
3609         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3610                 page_move_anon_rmap(old_page, vma);
3611                 set_huge_ptep_writable(vma, haddr, ptep);
3612                 return 0;
3613         }
3614
3615         /*
3616          * If the process that created a MAP_PRIVATE mapping is about to
3617          * perform a COW due to a shared page count, attempt to satisfy
3618          * the allocation without using the existing reserves. The pagecache
3619          * page is used to determine if the reserve at this address was
3620          * consumed or not. If reserves were used, a partial faulted mapping
3621          * at the time of fork() could consume its reserves on COW instead
3622          * of the full address range.
3623          */
3624         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3625                         old_page != pagecache_page)
3626                 outside_reserve = 1;
3627
3628         get_page(old_page);
3629
3630         /*
3631          * Drop page table lock as buddy allocator may be called. It will
3632          * be acquired again before returning to the caller, as expected.
3633          */
3634         spin_unlock(ptl);
3635         new_page = alloc_huge_page(vma, haddr, outside_reserve);
3636
3637         if (IS_ERR(new_page)) {
3638                 /*
3639                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3640                  * it is due to references held by a child and an insufficient
3641                  * huge page pool. To guarantee the original mappers
3642                  * reliability, unmap the page from child processes. The child
3643                  * may get SIGKILLed if it later faults.
3644                  */
3645                 if (outside_reserve) {
3646                         put_page(old_page);
3647                         BUG_ON(huge_pte_none(pte));
3648                         unmap_ref_private(mm, vma, old_page, haddr);
3649                         BUG_ON(huge_pte_none(pte));
3650                         spin_lock(ptl);
3651                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3652                         if (likely(ptep &&
3653                                    pte_same(huge_ptep_get(ptep), pte)))
3654                                 goto retry_avoidcopy;
3655                         /*
3656                          * race occurs while re-acquiring page table
3657                          * lock, and our job is done.
3658                          */
3659                         return 0;
3660                 }
3661
3662                 ret = vmf_error(PTR_ERR(new_page));
3663                 goto out_release_old;
3664         }
3665
3666         /*
3667          * When the original hugepage is shared one, it does not have
3668          * anon_vma prepared.
3669          */
3670         if (unlikely(anon_vma_prepare(vma))) {
3671                 ret = VM_FAULT_OOM;
3672                 goto out_release_all;
3673         }
3674
3675         copy_user_huge_page(new_page, old_page, address, vma,
3676                             pages_per_huge_page(h));
3677         __SetPageUptodate(new_page);
3678
3679         mmu_notifier_range_init(&range, mm, haddr, haddr + huge_page_size(h));
3680         mmu_notifier_invalidate_range_start(&range);
3681
3682         /*
3683          * Retake the page table lock to check for racing updates
3684          * before the page tables are altered
3685          */
3686         spin_lock(ptl);
3687         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3688         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3689                 ClearPagePrivate(new_page);
3690
3691                 /* Break COW */
3692                 huge_ptep_clear_flush(vma, haddr, ptep);
3693                 mmu_notifier_invalidate_range(mm, range.start, range.end);
3694                 set_huge_pte_at(mm, haddr, ptep,
3695                                 make_huge_pte(vma, new_page, 1));
3696                 page_remove_rmap(old_page, true);
3697                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
3698                 set_page_huge_active(new_page);
3699                 /* Make the old page be freed below */
3700                 new_page = old_page;
3701         }
3702         spin_unlock(ptl);
3703         mmu_notifier_invalidate_range_end(&range);
3704 out_release_all:
3705         restore_reserve_on_error(h, vma, haddr, new_page);
3706         put_page(new_page);
3707 out_release_old:
3708         put_page(old_page);
3709
3710         spin_lock(ptl); /* Caller expects lock to be held */
3711         return ret;
3712 }
3713
3714 /* Return the pagecache page at a given address within a VMA */
3715 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3716                         struct vm_area_struct *vma, unsigned long address)
3717 {
3718         struct address_space *mapping;
3719         pgoff_t idx;
3720
3721         mapping = vma->vm_file->f_mapping;
3722         idx = vma_hugecache_offset(h, vma, address);
3723
3724         return find_lock_page(mapping, idx);
3725 }
3726
3727 /*
3728  * Return whether there is a pagecache page to back given address within VMA.
3729  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3730  */
3731 static bool hugetlbfs_pagecache_present(struct hstate *h,
3732                         struct vm_area_struct *vma, unsigned long address)
3733 {
3734         struct address_space *mapping;
3735         pgoff_t idx;
3736         struct page *page;
3737
3738         mapping = vma->vm_file->f_mapping;
3739         idx = vma_hugecache_offset(h, vma, address);
3740
3741         page = find_get_page(mapping, idx);
3742         if (page)
3743                 put_page(page);
3744         return page != NULL;
3745 }
3746
3747 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3748                            pgoff_t idx)
3749 {
3750         struct inode *inode = mapping->host;
3751         struct hstate *h = hstate_inode(inode);
3752         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3753
3754         if (err)
3755                 return err;
3756         ClearPagePrivate(page);
3757
3758         /*
3759          * set page dirty so that it will not be removed from cache/file
3760          * by non-hugetlbfs specific code paths.
3761          */
3762         set_page_dirty(page);
3763
3764         spin_lock(&inode->i_lock);
3765         inode->i_blocks += blocks_per_huge_page(h);
3766         spin_unlock(&inode->i_lock);
3767         return 0;
3768 }
3769
3770 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3771                         struct vm_area_struct *vma,
3772                         struct address_space *mapping, pgoff_t idx,
3773                         unsigned long address, pte_t *ptep, unsigned int flags)
3774 {
3775         struct hstate *h = hstate_vma(vma);
3776         vm_fault_t ret = VM_FAULT_SIGBUS;
3777         int anon_rmap = 0;
3778         unsigned long size;
3779         struct page *page;
3780         pte_t new_pte;
3781         spinlock_t *ptl;
3782         unsigned long haddr = address & huge_page_mask(h);
3783         bool new_page = false;
3784
3785         /*
3786          * Currently, we are forced to kill the process in the event the
3787          * original mapper has unmapped pages from the child due to a failed
3788          * COW. Warn that such a situation has occurred as it may not be obvious
3789          */
3790         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3791                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3792                            current->pid);
3793                 return ret;
3794         }
3795
3796         /*
3797          * Use page lock to guard against racing truncation
3798          * before we get page_table_lock.
3799          */
3800 retry:
3801         page = find_lock_page(mapping, idx);
3802         if (!page) {
3803                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3804                 if (idx >= size)
3805                         goto out;
3806
3807                 /*
3808                  * Check for page in userfault range
3809                  */
3810                 if (userfaultfd_missing(vma)) {
3811                         u32 hash;
3812                         struct vm_fault vmf = {
3813                                 .vma = vma,
3814                                 .address = haddr,
3815                                 .flags = flags,
3816                                 /*
3817                                  * Hard to debug if it ends up being
3818                                  * used by a callee that assumes
3819                                  * something about the other
3820                                  * uninitialized fields... same as in
3821                                  * memory.c
3822                                  */
3823                         };
3824
3825                         /*
3826                          * hugetlb_fault_mutex must be dropped before
3827                          * handling userfault.  Reacquire after handling
3828                          * fault to make calling code simpler.
3829                          */
3830                         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3831                                                         idx, haddr);
3832                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3833                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3834                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3835                         goto out;
3836                 }
3837
3838                 page = alloc_huge_page(vma, haddr, 0);
3839                 if (IS_ERR(page)) {
3840                         ret = vmf_error(PTR_ERR(page));
3841                         goto out;
3842                 }
3843                 clear_huge_page(page, address, pages_per_huge_page(h));
3844                 __SetPageUptodate(page);
3845                 new_page = true;
3846
3847                 if (vma->vm_flags & VM_MAYSHARE) {
3848                         int err = huge_add_to_page_cache(page, mapping, idx);
3849                         if (err) {
3850                                 put_page(page);
3851                                 if (err == -EEXIST)
3852                                         goto retry;
3853                                 goto out;
3854                         }
3855                 } else {
3856                         lock_page(page);
3857                         if (unlikely(anon_vma_prepare(vma))) {
3858                                 ret = VM_FAULT_OOM;
3859                                 goto backout_unlocked;
3860                         }
3861                         anon_rmap = 1;
3862                 }
3863         } else {
3864                 /*
3865                  * If memory error occurs between mmap() and fault, some process
3866                  * don't have hwpoisoned swap entry for errored virtual address.
3867                  * So we need to block hugepage fault by PG_hwpoison bit check.
3868                  */
3869                 if (unlikely(PageHWPoison(page))) {
3870                         ret = VM_FAULT_HWPOISON |
3871                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3872                         goto backout_unlocked;
3873                 }
3874         }
3875
3876         /*
3877          * If we are going to COW a private mapping later, we examine the
3878          * pending reservations for this page now. This will ensure that
3879          * any allocations necessary to record that reservation occur outside
3880          * the spinlock.
3881          */
3882         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3883                 if (vma_needs_reservation(h, vma, haddr) < 0) {
3884                         ret = VM_FAULT_OOM;
3885                         goto backout_unlocked;
3886                 }
3887                 /* Just decrements count, does not deallocate */
3888                 vma_end_reservation(h, vma, haddr);
3889         }
3890
3891         ptl = huge_pte_lock(h, mm, ptep);
3892         size = i_size_read(mapping->host) >> huge_page_shift(h);
3893         if (idx >= size)
3894                 goto backout;
3895
3896         ret = 0;
3897         if (!huge_pte_none(huge_ptep_get(ptep)))
3898                 goto backout;
3899
3900         if (anon_rmap) {
3901                 ClearPagePrivate(page);
3902                 hugepage_add_new_anon_rmap(page, vma, haddr);
3903         } else
3904                 page_dup_rmap(page, true);
3905         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3906                                 && (vma->vm_flags & VM_SHARED)));
3907         set_huge_pte_at(mm, haddr, ptep, new_pte);
3908
3909         hugetlb_count_add(pages_per_huge_page(h), mm);
3910         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3911                 /* Optimization, do the COW without a second fault */
3912                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3913         }
3914
3915         spin_unlock(ptl);
3916
3917         /*
3918          * Only make newly allocated pages active.  Existing pages found
3919          * in the pagecache could be !page_huge_active() if they have been
3920          * isolated for migration.
3921          */
3922         if (new_page)
3923                 set_page_huge_active(page);
3924
3925         unlock_page(page);
3926 out:
3927         return ret;
3928
3929 backout:
3930         spin_unlock(ptl);
3931 backout_unlocked:
3932         unlock_page(page);
3933         restore_reserve_on_error(h, vma, haddr, page);
3934         put_page(page);
3935         goto out;
3936 }
3937
3938 #ifdef CONFIG_SMP
3939 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3940                             struct vm_area_struct *vma,
3941                             struct address_space *mapping,
3942                             pgoff_t idx, unsigned long address)
3943 {
3944         unsigned long key[2];
3945         u32 hash;
3946
3947         if (vma->vm_flags & VM_SHARED) {
3948                 key[0] = (unsigned long) mapping;
3949                 key[1] = idx;
3950         } else {
3951                 key[0] = (unsigned long) mm;
3952                 key[1] = address >> huge_page_shift(h);
3953         }
3954
3955         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3956
3957         return hash & (num_fault_mutexes - 1);
3958 }
3959 #else
3960 /*
3961  * For uniprocesor systems we always use a single mutex, so just
3962  * return 0 and avoid the hashing overhead.
3963  */
3964 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3965                             struct vm_area_struct *vma,
3966                             struct address_space *mapping,
3967                             pgoff_t idx, unsigned long address)
3968 {
3969         return 0;
3970 }
3971 #endif
3972
3973 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3974                         unsigned long address, unsigned int flags)
3975 {
3976         pte_t *ptep, entry;
3977         spinlock_t *ptl;
3978         vm_fault_t ret;
3979         u32 hash;
3980         pgoff_t idx;
3981         struct page *page = NULL;
3982         struct page *pagecache_page = NULL;
3983         struct hstate *h = hstate_vma(vma);
3984         struct address_space *mapping;
3985         int need_wait_lock = 0;
3986         unsigned long haddr = address & huge_page_mask(h);
3987
3988         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3989         if (ptep) {
3990                 entry = huge_ptep_get(ptep);
3991                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3992                         migration_entry_wait_huge(vma, mm, ptep);
3993                         return 0;
3994                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3995                         return VM_FAULT_HWPOISON_LARGE |
3996                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3997         } else {
3998                 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3999                 if (!ptep)
4000                         return VM_FAULT_OOM;
4001         }
4002
4003         mapping = vma->vm_file->f_mapping;
4004         idx = vma_hugecache_offset(h, vma, haddr);
4005
4006         /*
4007          * Serialize hugepage allocation and instantiation, so that we don't
4008          * get spurious allocation failures if two CPUs race to instantiate
4009          * the same page in the page cache.
4010          */
4011         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr);
4012         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4013
4014         entry = huge_ptep_get(ptep);
4015         if (huge_pte_none(entry)) {
4016                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4017                 goto out_mutex;
4018         }
4019
4020         ret = 0;
4021
4022         /*
4023          * entry could be a migration/hwpoison entry at this point, so this
4024          * check prevents the kernel from going below assuming that we have
4025          * a active hugepage in pagecache. This goto expects the 2nd page fault,
4026          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4027          * handle it.
4028          */
4029         if (!pte_present(entry))
4030                 goto out_mutex;
4031
4032         /*
4033          * If we are going to COW the mapping later, we examine the pending
4034          * reservations for this page now. This will ensure that any
4035          * allocations necessary to record that reservation occur outside the
4036          * spinlock. For private mappings, we also lookup the pagecache
4037          * page now as it is used to determine if a reservation has been
4038          * consumed.
4039          */
4040         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4041                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4042                         ret = VM_FAULT_OOM;
4043                         goto out_mutex;
4044                 }
4045                 /* Just decrements count, does not deallocate */
4046                 vma_end_reservation(h, vma, haddr);
4047
4048                 if (!(vma->vm_flags & VM_MAYSHARE))
4049                         pagecache_page = hugetlbfs_pagecache_page(h,
4050                                                                 vma, haddr);
4051         }
4052
4053         ptl = huge_pte_lock(h, mm, ptep);
4054
4055         /* Check for a racing update before calling hugetlb_cow */
4056         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4057                 goto out_ptl;
4058
4059         /*
4060          * hugetlb_cow() requires page locks of pte_page(entry) and
4061          * pagecache_page, so here we need take the former one
4062          * when page != pagecache_page or !pagecache_page.
4063          */
4064         page = pte_page(entry);
4065         if (page != pagecache_page)
4066                 if (!trylock_page(page)) {
4067                         need_wait_lock = 1;
4068                         goto out_ptl;
4069                 }
4070
4071         get_page(page);
4072
4073         if (flags & FAULT_FLAG_WRITE) {
4074                 if (!huge_pte_write(entry)) {
4075                         ret = hugetlb_cow(mm, vma, address, ptep,
4076                                           pagecache_page, ptl);
4077                         goto out_put_page;
4078                 }
4079                 entry = huge_pte_mkdirty(entry);
4080         }
4081         entry = pte_mkyoung(entry);
4082         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4083                                                 flags & FAULT_FLAG_WRITE))
4084                 update_mmu_cache(vma, haddr, ptep);
4085 out_put_page:
4086         if (page != pagecache_page)
4087                 unlock_page(page);
4088         put_page(page);
4089 out_ptl:
4090         spin_unlock(ptl);
4091
4092         if (pagecache_page) {
4093                 unlock_page(pagecache_page);
4094                 put_page(pagecache_page);
4095         }
4096 out_mutex:
4097         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4098         /*
4099          * Generally it's safe to hold refcount during waiting page lock. But
4100          * here we just wait to defer the next page fault to avoid busy loop and
4101          * the page is not used after unlocked before returning from the current
4102          * page fault. So we are safe from accessing freed page, even if we wait
4103          * here without taking refcount.
4104          */
4105         if (need_wait_lock)
4106                 wait_on_page_locked(page);
4107         return ret;
4108 }
4109
4110 /*
4111  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4112  * modifications for huge pages.
4113  */
4114 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4115                             pte_t *dst_pte,
4116                             struct vm_area_struct *dst_vma,
4117                             unsigned long dst_addr,
4118                             unsigned long src_addr,
4119                             struct page **pagep)
4120 {
4121         struct address_space *mapping;
4122         pgoff_t idx;
4123         unsigned long size;
4124         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4125         struct hstate *h = hstate_vma(dst_vma);
4126         pte_t _dst_pte;
4127         spinlock_t *ptl;
4128         int ret;
4129         struct page *page;
4130
4131         if (!*pagep) {
4132                 ret = -ENOMEM;
4133                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4134                 if (IS_ERR(page))
4135                         goto out;
4136
4137                 ret = copy_huge_page_from_user(page,
4138                                                 (const void __user *) src_addr,
4139                                                 pages_per_huge_page(h), false);
4140
4141                 /* fallback to copy_from_user outside mmap_sem */
4142                 if (unlikely(ret)) {
4143                         ret = -ENOENT;
4144                         *pagep = page;
4145                         /* don't free the page */
4146                         goto out;
4147                 }
4148         } else {
4149                 page = *pagep;
4150                 *pagep = NULL;
4151         }
4152
4153         /*
4154          * The memory barrier inside __SetPageUptodate makes sure that
4155          * preceding stores to the page contents become visible before
4156          * the set_pte_at() write.
4157          */
4158         __SetPageUptodate(page);
4159
4160         mapping = dst_vma->vm_file->f_mapping;
4161         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4162
4163         /*
4164          * If shared, add to page cache
4165          */
4166         if (vm_shared) {
4167                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4168                 ret = -EFAULT;
4169                 if (idx >= size)
4170                         goto out_release_nounlock;
4171
4172                 /*
4173                  * Serialization between remove_inode_hugepages() and
4174                  * huge_add_to_page_cache() below happens through the
4175                  * hugetlb_fault_mutex_table that here must be hold by
4176                  * the caller.
4177                  */
4178                 ret = huge_add_to_page_cache(page, mapping, idx);
4179                 if (ret)
4180                         goto out_release_nounlock;
4181         }
4182
4183         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4184         spin_lock(ptl);
4185
4186         /*
4187          * Recheck the i_size after holding PT lock to make sure not
4188          * to leave any page mapped (as page_mapped()) beyond the end
4189          * of the i_size (remove_inode_hugepages() is strict about
4190          * enforcing that). If we bail out here, we'll also leave a
4191          * page in the radix tree in the vm_shared case beyond the end
4192          * of the i_size, but remove_inode_hugepages() will take care
4193          * of it as soon as we drop the hugetlb_fault_mutex_table.
4194          */
4195         size = i_size_read(mapping->host) >> huge_page_shift(h);
4196         ret = -EFAULT;
4197         if (idx >= size)
4198                 goto out_release_unlock;
4199
4200         ret = -EEXIST;
4201         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4202                 goto out_release_unlock;
4203
4204         if (vm_shared) {
4205                 page_dup_rmap(page, true);
4206         } else {
4207                 ClearPagePrivate(page);
4208                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4209         }
4210
4211         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4212         if (dst_vma->vm_flags & VM_WRITE)
4213                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4214         _dst_pte = pte_mkyoung(_dst_pte);
4215
4216         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4217
4218         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4219                                         dst_vma->vm_flags & VM_WRITE);
4220         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4221
4222         /* No need to invalidate - it was non-present before */
4223         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4224
4225         spin_unlock(ptl);
4226         set_page_huge_active(page);
4227         if (vm_shared)
4228                 unlock_page(page);
4229         ret = 0;
4230 out:
4231         return ret;
4232 out_release_unlock:
4233         spin_unlock(ptl);
4234         if (vm_shared)
4235                 unlock_page(page);
4236 out_release_nounlock:
4237         put_page(page);
4238         goto out;
4239 }
4240
4241 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4242                          struct page **pages, struct vm_area_struct **vmas,
4243                          unsigned long *position, unsigned long *nr_pages,
4244                          long i, unsigned int flags, int *nonblocking)
4245 {
4246         unsigned long pfn_offset;
4247         unsigned long vaddr = *position;
4248         unsigned long remainder = *nr_pages;
4249         struct hstate *h = hstate_vma(vma);
4250         int err = -EFAULT;
4251
4252         while (vaddr < vma->vm_end && remainder) {
4253                 pte_t *pte;
4254                 spinlock_t *ptl = NULL;
4255                 int absent;
4256                 struct page *page;
4257
4258                 /*
4259                  * If we have a pending SIGKILL, don't keep faulting pages and
4260                  * potentially allocating memory.
4261                  */
4262                 if (fatal_signal_pending(current)) {
4263                         remainder = 0;
4264                         break;
4265                 }
4266
4267                 /*
4268                  * Some archs (sparc64, sh*) have multiple pte_ts to
4269                  * each hugepage.  We have to make sure we get the
4270                  * first, for the page indexing below to work.
4271                  *
4272                  * Note that page table lock is not held when pte is null.
4273                  */
4274                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4275                                       huge_page_size(h));
4276                 if (pte)
4277                         ptl = huge_pte_lock(h, mm, pte);
4278                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4279
4280                 /*
4281                  * When coredumping, it suits get_dump_page if we just return
4282                  * an error where there's an empty slot with no huge pagecache
4283                  * to back it.  This way, we avoid allocating a hugepage, and
4284                  * the sparse dumpfile avoids allocating disk blocks, but its
4285                  * huge holes still show up with zeroes where they need to be.
4286                  */
4287                 if (absent && (flags & FOLL_DUMP) &&
4288                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4289                         if (pte)
4290                                 spin_unlock(ptl);
4291                         remainder = 0;
4292                         break;
4293                 }
4294
4295                 /*
4296                  * We need call hugetlb_fault for both hugepages under migration
4297                  * (in which case hugetlb_fault waits for the migration,) and
4298                  * hwpoisoned hugepages (in which case we need to prevent the
4299                  * caller from accessing to them.) In order to do this, we use
4300                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4301                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4302                  * both cases, and because we can't follow correct pages
4303                  * directly from any kind of swap entries.
4304                  */
4305                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4306                     ((flags & FOLL_WRITE) &&
4307                       !huge_pte_write(huge_ptep_get(pte)))) {
4308                         vm_fault_t ret;
4309                         unsigned int fault_flags = 0;
4310
4311                         if (pte)
4312                                 spin_unlock(ptl);
4313                         if (flags & FOLL_WRITE)
4314                                 fault_flags |= FAULT_FLAG_WRITE;
4315                         if (nonblocking)
4316                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4317                         if (flags & FOLL_NOWAIT)
4318                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4319                                         FAULT_FLAG_RETRY_NOWAIT;
4320                         if (flags & FOLL_TRIED) {
4321                                 VM_WARN_ON_ONCE(fault_flags &
4322                                                 FAULT_FLAG_ALLOW_RETRY);
4323                                 fault_flags |= FAULT_FLAG_TRIED;
4324                         }
4325                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4326                         if (ret & VM_FAULT_ERROR) {
4327                                 err = vm_fault_to_errno(ret, flags);
4328                                 remainder = 0;
4329                                 break;
4330                         }
4331                         if (ret & VM_FAULT_RETRY) {
4332                                 if (nonblocking &&
4333                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4334                                         *nonblocking = 0;
4335                                 *nr_pages = 0;
4336                                 /*
4337                                  * VM_FAULT_RETRY must not return an
4338                                  * error, it will return zero
4339                                  * instead.
4340                                  *
4341                                  * No need to update "position" as the
4342                                  * caller will not check it after
4343                                  * *nr_pages is set to 0.
4344                                  */
4345                                 return i;
4346                         }
4347                         continue;
4348                 }
4349
4350                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4351                 page = pte_page(huge_ptep_get(pte));
4352
4353                 /*
4354                  * Instead of doing 'try_get_page()' below in the same_page
4355                  * loop, just check the count once here.
4356                  */
4357                 if (unlikely(page_count(page) <= 0)) {
4358                         if (pages) {
4359                                 spin_unlock(ptl);
4360                                 remainder = 0;
4361                                 err = -ENOMEM;
4362                                 break;
4363                         }
4364                 }
4365 same_page:
4366                 if (pages) {
4367                         pages[i] = mem_map_offset(page, pfn_offset);
4368                         get_page(pages[i]);
4369                 }
4370
4371                 if (vmas)
4372                         vmas[i] = vma;
4373
4374                 vaddr += PAGE_SIZE;
4375                 ++pfn_offset;
4376                 --remainder;
4377                 ++i;
4378                 if (vaddr < vma->vm_end && remainder &&
4379                                 pfn_offset < pages_per_huge_page(h)) {
4380                         /*
4381                          * We use pfn_offset to avoid touching the pageframes
4382                          * of this compound page.
4383                          */
4384                         goto same_page;
4385                 }
4386                 spin_unlock(ptl);
4387         }
4388         *nr_pages = remainder;
4389         /*
4390          * setting position is actually required only if remainder is
4391          * not zero but it's faster not to add a "if (remainder)"
4392          * branch.
4393          */
4394         *position = vaddr;
4395
4396         return i ? i : err;
4397 }
4398
4399 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4400 /*
4401  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4402  * implement this.
4403  */
4404 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4405 #endif
4406
4407 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4408                 unsigned long address, unsigned long end, pgprot_t newprot)
4409 {
4410         struct mm_struct *mm = vma->vm_mm;
4411         unsigned long start = address;
4412         pte_t *ptep;
4413         pte_t pte;
4414         struct hstate *h = hstate_vma(vma);
4415         unsigned long pages = 0;
4416         bool shared_pmd = false;
4417         struct mmu_notifier_range range;
4418
4419         /*
4420          * In the case of shared PMDs, the area to flush could be beyond
4421          * start/end.  Set range.start/range.end to cover the maximum possible
4422          * range if PMD sharing is possible.
4423          */
4424         mmu_notifier_range_init(&range, mm, start, end);
4425         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4426
4427         BUG_ON(address >= end);
4428         flush_cache_range(vma, range.start, range.end);
4429
4430         mmu_notifier_invalidate_range_start(&range);
4431         i_mmap_lock_write(vma->vm_file->f_mapping);
4432         for (; address < end; address += huge_page_size(h)) {
4433                 spinlock_t *ptl;
4434                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4435                 if (!ptep)
4436                         continue;
4437                 ptl = huge_pte_lock(h, mm, ptep);
4438                 if (huge_pmd_unshare(mm, &address, ptep)) {
4439                         pages++;
4440                         spin_unlock(ptl);
4441                         shared_pmd = true;
4442                         continue;
4443                 }
4444                 pte = huge_ptep_get(ptep);
4445                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4446                         spin_unlock(ptl);
4447                         continue;
4448                 }
4449                 if (unlikely(is_hugetlb_entry_migration(pte))) {
4450                         swp_entry_t entry = pte_to_swp_entry(pte);
4451
4452                         if (is_write_migration_entry(entry)) {
4453                                 pte_t newpte;
4454
4455                                 make_migration_entry_read(&entry);
4456                                 newpte = swp_entry_to_pte(entry);
4457                                 set_huge_swap_pte_at(mm, address, ptep,
4458                                                      newpte, huge_page_size(h));
4459                                 pages++;
4460                         }
4461                         spin_unlock(ptl);
4462                         continue;
4463                 }
4464                 if (!huge_pte_none(pte)) {
4465                         pte_t old_pte;
4466
4467                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4468                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4469                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
4470                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4471                         pages++;
4472                 }
4473                 spin_unlock(ptl);
4474         }
4475         /*
4476          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4477          * may have cleared our pud entry and done put_page on the page table:
4478          * once we release i_mmap_rwsem, another task can do the final put_page
4479          * and that page table be reused and filled with junk.  If we actually
4480          * did unshare a page of pmds, flush the range corresponding to the pud.
4481          */
4482         if (shared_pmd)
4483                 flush_hugetlb_tlb_range(vma, range.start, range.end);
4484         else
4485                 flush_hugetlb_tlb_range(vma, start, end);
4486         /*
4487          * No need to call mmu_notifier_invalidate_range() we are downgrading
4488          * page table protection not changing it to point to a new page.
4489          *
4490          * See Documentation/vm/mmu_notifier.rst
4491          */
4492         i_mmap_unlock_write(vma->vm_file->f_mapping);
4493         mmu_notifier_invalidate_range_end(&range);
4494
4495         return pages << h->order;
4496 }
4497
4498 int hugetlb_reserve_pages(struct inode *inode,
4499                                         long from, long to,
4500                                         struct vm_area_struct *vma,
4501                                         vm_flags_t vm_flags)
4502 {
4503         long ret, chg;
4504         struct hstate *h = hstate_inode(inode);
4505         struct hugepage_subpool *spool = subpool_inode(inode);
4506         struct resv_map *resv_map;
4507         long gbl_reserve;
4508
4509         /* This should never happen */
4510         if (from > to) {
4511                 VM_WARN(1, "%s called with a negative range\n", __func__);
4512                 return -EINVAL;
4513         }
4514
4515         /*
4516          * Only apply hugepage reservation if asked. At fault time, an
4517          * attempt will be made for VM_NORESERVE to allocate a page
4518          * without using reserves
4519          */
4520         if (vm_flags & VM_NORESERVE)
4521                 return 0;
4522
4523         /*
4524          * Shared mappings base their reservation on the number of pages that
4525          * are already allocated on behalf of the file. Private mappings need
4526          * to reserve the full area even if read-only as mprotect() may be
4527          * called to make the mapping read-write. Assume !vma is a shm mapping
4528          */
4529         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4530                 resv_map = inode_resv_map(inode);
4531
4532                 chg = region_chg(resv_map, from, to);
4533
4534         } else {
4535                 resv_map = resv_map_alloc();
4536                 if (!resv_map)
4537                         return -ENOMEM;
4538
4539                 chg = to - from;
4540
4541                 set_vma_resv_map(vma, resv_map);
4542                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4543         }
4544
4545         if (chg < 0) {
4546                 ret = chg;
4547                 goto out_err;
4548         }
4549
4550         /*
4551          * There must be enough pages in the subpool for the mapping. If
4552          * the subpool has a minimum size, there may be some global
4553          * reservations already in place (gbl_reserve).
4554          */
4555         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4556         if (gbl_reserve < 0) {
4557                 ret = -ENOSPC;
4558                 goto out_err;
4559         }
4560
4561         /*
4562          * Check enough hugepages are available for the reservation.
4563          * Hand the pages back to the subpool if there are not
4564          */
4565         ret = hugetlb_acct_memory(h, gbl_reserve);
4566         if (ret < 0) {
4567                 /* put back original number of pages, chg */
4568                 (void)hugepage_subpool_put_pages(spool, chg);
4569                 goto out_err;
4570         }
4571
4572         /*
4573          * Account for the reservations made. Shared mappings record regions
4574          * that have reservations as they are shared by multiple VMAs.
4575          * When the last VMA disappears, the region map says how much
4576          * the reservation was and the page cache tells how much of
4577          * the reservation was consumed. Private mappings are per-VMA and
4578          * only the consumed reservations are tracked. When the VMA
4579          * disappears, the original reservation is the VMA size and the
4580          * consumed reservations are stored in the map. Hence, nothing
4581          * else has to be done for private mappings here
4582          */
4583         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4584                 long add = region_add(resv_map, from, to);
4585
4586                 if (unlikely(chg > add)) {
4587                         /*
4588                          * pages in this range were added to the reserve
4589                          * map between region_chg and region_add.  This
4590                          * indicates a race with alloc_huge_page.  Adjust
4591                          * the subpool and reserve counts modified above
4592                          * based on the difference.
4593                          */
4594                         long rsv_adjust;
4595
4596                         rsv_adjust = hugepage_subpool_put_pages(spool,
4597                                                                 chg - add);
4598                         hugetlb_acct_memory(h, -rsv_adjust);
4599                 }
4600         }
4601         return 0;
4602 out_err:
4603         if (!vma || vma->vm_flags & VM_MAYSHARE)
4604                 /* Don't call region_abort if region_chg failed */
4605                 if (chg >= 0)
4606                         region_abort(resv_map, from, to);
4607         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4608                 kref_put(&resv_map->refs, resv_map_release);
4609         return ret;
4610 }
4611
4612 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4613                                                                 long freed)
4614 {
4615         struct hstate *h = hstate_inode(inode);
4616         struct resv_map *resv_map = inode_resv_map(inode);
4617         long chg = 0;
4618         struct hugepage_subpool *spool = subpool_inode(inode);
4619         long gbl_reserve;
4620
4621         if (resv_map) {
4622                 chg = region_del(resv_map, start, end);
4623                 /*
4624                  * region_del() can fail in the rare case where a region
4625                  * must be split and another region descriptor can not be
4626                  * allocated.  If end == LONG_MAX, it will not fail.
4627                  */
4628                 if (chg < 0)
4629                         return chg;
4630         }
4631
4632         spin_lock(&inode->i_lock);
4633         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4634         spin_unlock(&inode->i_lock);
4635
4636         /*
4637          * If the subpool has a minimum size, the number of global
4638          * reservations to be released may be adjusted.
4639          */
4640         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4641         hugetlb_acct_memory(h, -gbl_reserve);
4642
4643         return 0;
4644 }
4645
4646 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4647 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4648                                 struct vm_area_struct *vma,
4649                                 unsigned long addr, pgoff_t idx)
4650 {
4651         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4652                                 svma->vm_start;
4653         unsigned long sbase = saddr & PUD_MASK;
4654         unsigned long s_end = sbase + PUD_SIZE;
4655
4656         /* Allow segments to share if only one is marked locked */
4657         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4658         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4659
4660         /*
4661          * match the virtual addresses, permission and the alignment of the
4662          * page table page.
4663          */
4664         if (pmd_index(addr) != pmd_index(saddr) ||
4665             vm_flags != svm_flags ||
4666             sbase < svma->vm_start || svma->vm_end < s_end)
4667                 return 0;
4668
4669         return saddr;
4670 }
4671
4672 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4673 {
4674         unsigned long base = addr & PUD_MASK;
4675         unsigned long end = base + PUD_SIZE;
4676
4677         /*
4678          * check on proper vm_flags and page table alignment
4679          */
4680         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4681                 return true;
4682         return false;
4683 }
4684
4685 /*
4686  * Determine if start,end range within vma could be mapped by shared pmd.
4687  * If yes, adjust start and end to cover range associated with possible
4688  * shared pmd mappings.
4689  */
4690 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4691                                 unsigned long *start, unsigned long *end)
4692 {
4693         unsigned long check_addr = *start;
4694
4695         if (!(vma->vm_flags & VM_MAYSHARE))
4696                 return;
4697
4698         for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4699                 unsigned long a_start = check_addr & PUD_MASK;
4700                 unsigned long a_end = a_start + PUD_SIZE;
4701
4702                 /*
4703                  * If sharing is possible, adjust start/end if necessary.
4704                  */
4705                 if (range_in_vma(vma, a_start, a_end)) {
4706                         if (a_start < *start)
4707                                 *start = a_start;
4708                         if (a_end > *end)
4709                                 *end = a_end;
4710                 }
4711         }
4712 }
4713
4714 /*
4715  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4716  * and returns the corresponding pte. While this is not necessary for the
4717  * !shared pmd case because we can allocate the pmd later as well, it makes the
4718  * code much cleaner. pmd allocation is essential for the shared case because
4719  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4720  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4721  * bad pmd for sharing.
4722  */
4723 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4724 {
4725         struct vm_area_struct *vma = find_vma(mm, addr);
4726         struct address_space *mapping = vma->vm_file->f_mapping;
4727         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4728                         vma->vm_pgoff;
4729         struct vm_area_struct *svma;
4730         unsigned long saddr;
4731         pte_t *spte = NULL;
4732         pte_t *pte;
4733         spinlock_t *ptl;
4734
4735         if (!vma_shareable(vma, addr))
4736                 return (pte_t *)pmd_alloc(mm, pud, addr);
4737
4738         i_mmap_lock_write(mapping);
4739         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4740                 if (svma == vma)
4741                         continue;
4742
4743                 saddr = page_table_shareable(svma, vma, addr, idx);
4744                 if (saddr) {
4745                         spte = huge_pte_offset(svma->vm_mm, saddr,
4746                                                vma_mmu_pagesize(svma));
4747                         if (spte) {
4748                                 get_page(virt_to_page(spte));
4749                                 break;
4750                         }
4751                 }
4752         }
4753
4754         if (!spte)
4755                 goto out;
4756
4757         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4758         if (pud_none(*pud)) {
4759                 pud_populate(mm, pud,
4760                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4761                 mm_inc_nr_pmds(mm);
4762         } else {
4763                 put_page(virt_to_page(spte));
4764         }
4765         spin_unlock(ptl);
4766 out:
4767         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4768         i_mmap_unlock_write(mapping);
4769         return pte;
4770 }
4771
4772 /*
4773  * unmap huge page backed by shared pte.
4774  *
4775  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4776  * indicated by page_count > 1, unmap is achieved by clearing pud and
4777  * decrementing the ref count. If count == 1, the pte page is not shared.
4778  *
4779  * called with page table lock held.
4780  *
4781  * returns: 1 successfully unmapped a shared pte page
4782  *          0 the underlying pte page is not shared, or it is the last user
4783  */
4784 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4785 {
4786         pgd_t *pgd = pgd_offset(mm, *addr);
4787         p4d_t *p4d = p4d_offset(pgd, *addr);
4788         pud_t *pud = pud_offset(p4d, *addr);
4789
4790         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4791         if (page_count(virt_to_page(ptep)) == 1)
4792                 return 0;
4793
4794         pud_clear(pud);
4795         put_page(virt_to_page(ptep));
4796         mm_dec_nr_pmds(mm);
4797         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4798         return 1;
4799 }
4800 #define want_pmd_share()        (1)
4801 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4802 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4803 {
4804         return NULL;
4805 }
4806
4807 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4808 {
4809         return 0;
4810 }
4811
4812 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4813                                 unsigned long *start, unsigned long *end)
4814 {
4815 }
4816 #define want_pmd_share()        (0)
4817 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4818
4819 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4820 pte_t *huge_pte_alloc(struct mm_struct *mm,
4821                         unsigned long addr, unsigned long sz)
4822 {
4823         pgd_t *pgd;
4824         p4d_t *p4d;
4825         pud_t *pud;
4826         pte_t *pte = NULL;
4827
4828         pgd = pgd_offset(mm, addr);
4829         p4d = p4d_alloc(mm, pgd, addr);
4830         if (!p4d)
4831                 return NULL;
4832         pud = pud_alloc(mm, p4d, addr);
4833         if (pud) {
4834                 if (sz == PUD_SIZE) {
4835                         pte = (pte_t *)pud;
4836                 } else {
4837                         BUG_ON(sz != PMD_SIZE);
4838                         if (want_pmd_share() && pud_none(*pud))
4839                                 pte = huge_pmd_share(mm, addr, pud);
4840                         else
4841                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4842                 }
4843         }
4844         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4845
4846         return pte;
4847 }
4848
4849 /*
4850  * huge_pte_offset() - Walk the page table to resolve the hugepage
4851  * entry at address @addr
4852  *
4853  * Return: Pointer to page table or swap entry (PUD or PMD) for
4854  * address @addr, or NULL if a p*d_none() entry is encountered and the
4855  * size @sz doesn't match the hugepage size at this level of the page
4856  * table.
4857  */
4858 pte_t *huge_pte_offset(struct mm_struct *mm,
4859                        unsigned long addr, unsigned long sz)
4860 {
4861         pgd_t *pgd;
4862         p4d_t *p4d;
4863         pud_t *pud;
4864         pmd_t *pmd;
4865
4866         pgd = pgd_offset(mm, addr);
4867         if (!pgd_present(*pgd))
4868                 return NULL;
4869         p4d = p4d_offset(pgd, addr);
4870         if (!p4d_present(*p4d))
4871                 return NULL;
4872
4873         pud = pud_offset(p4d, addr);
4874         if (sz != PUD_SIZE && pud_none(*pud))
4875                 return NULL;
4876         /* hugepage or swap? */
4877         if (pud_huge(*pud) || !pud_present(*pud))
4878                 return (pte_t *)pud;
4879
4880         pmd = pmd_offset(pud, addr);
4881         if (sz != PMD_SIZE && pmd_none(*pmd))
4882                 return NULL;
4883         /* hugepage or swap? */
4884         if (pmd_huge(*pmd) || !pmd_present(*pmd))
4885                 return (pte_t *)pmd;
4886
4887         return NULL;
4888 }
4889
4890 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4891
4892 /*
4893  * These functions are overwritable if your architecture needs its own
4894  * behavior.
4895  */
4896 struct page * __weak
4897 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4898                               int write)
4899 {
4900         return ERR_PTR(-EINVAL);
4901 }
4902
4903 struct page * __weak
4904 follow_huge_pd(struct vm_area_struct *vma,
4905                unsigned long address, hugepd_t hpd, int flags, int pdshift)
4906 {
4907         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4908         return NULL;
4909 }
4910
4911 struct page * __weak
4912 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4913                 pmd_t *pmd, int flags)
4914 {
4915         struct page *page = NULL;
4916         spinlock_t *ptl;
4917         pte_t pte;
4918 retry:
4919         ptl = pmd_lockptr(mm, pmd);
4920         spin_lock(ptl);
4921         /*
4922          * make sure that the address range covered by this pmd is not
4923          * unmapped from other threads.
4924          */
4925         if (!pmd_huge(*pmd))
4926                 goto out;
4927         pte = huge_ptep_get((pte_t *)pmd);
4928         if (pte_present(pte)) {
4929                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4930                 if (flags & FOLL_GET)
4931                         get_page(page);
4932         } else {
4933                 if (is_hugetlb_entry_migration(pte)) {
4934                         spin_unlock(ptl);
4935                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4936                         goto retry;
4937                 }
4938                 /*
4939                  * hwpoisoned entry is treated as no_page_table in
4940                  * follow_page_mask().
4941                  */
4942         }
4943 out:
4944         spin_unlock(ptl);
4945         return page;
4946 }
4947
4948 struct page * __weak
4949 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4950                 pud_t *pud, int flags)
4951 {
4952         if (flags & FOLL_GET)
4953                 return NULL;
4954
4955         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4956 }
4957
4958 struct page * __weak
4959 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4960 {
4961         if (flags & FOLL_GET)
4962                 return NULL;
4963
4964         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4965 }
4966
4967 bool isolate_huge_page(struct page *page, struct list_head *list)
4968 {
4969         bool ret = true;
4970
4971         VM_BUG_ON_PAGE(!PageHead(page), page);
4972         spin_lock(&hugetlb_lock);
4973         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4974                 ret = false;
4975                 goto unlock;
4976         }
4977         clear_page_huge_active(page);
4978         list_move_tail(&page->lru, list);
4979 unlock:
4980         spin_unlock(&hugetlb_lock);
4981         return ret;
4982 }
4983
4984 void putback_active_hugepage(struct page *page)
4985 {
4986         VM_BUG_ON_PAGE(!PageHead(page), page);
4987         spin_lock(&hugetlb_lock);
4988         set_page_huge_active(page);
4989         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4990         spin_unlock(&hugetlb_lock);
4991         put_page(page);
4992 }
4993
4994 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4995 {
4996         struct hstate *h = page_hstate(oldpage);
4997
4998         hugetlb_cgroup_migrate(oldpage, newpage);
4999         set_page_owner_migrate_reason(newpage, reason);
5000
5001         /*
5002          * transfer temporary state of the new huge page. This is
5003          * reverse to other transitions because the newpage is going to
5004          * be final while the old one will be freed so it takes over
5005          * the temporary status.
5006          *
5007          * Also note that we have to transfer the per-node surplus state
5008          * here as well otherwise the global surplus count will not match
5009          * the per-node's.
5010          */
5011         if (PageHugeTemporary(newpage)) {
5012                 int old_nid = page_to_nid(oldpage);
5013                 int new_nid = page_to_nid(newpage);
5014
5015                 SetPageHugeTemporary(oldpage);
5016                 ClearPageHugeTemporary(newpage);
5017
5018                 spin_lock(&hugetlb_lock);
5019                 if (h->surplus_huge_pages_node[old_nid]) {
5020                         h->surplus_huge_pages_node[old_nid]--;
5021                         h->surplus_huge_pages_node[new_nid]++;
5022                 }
5023                 spin_unlock(&hugetlb_lock);
5024         }
5025 }