]> asedeno.scripts.mit.edu Git - linux.git/blob - mm/kasan/common.c
Merge branch 'akpm' (patches from Andrew)
[linux.git] / mm / kasan / common.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains common generic and tag-based KASAN code.
4  *
5  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  *
8  * Some code borrowed from https://github.com/xairy/kasan-prototype by
9  *        Andrey Konovalov <andreyknvl@gmail.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  *
15  */
16
17 #include <linux/export.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/kasan.h>
21 #include <linux/kernel.h>
22 #include <linux/kmemleak.h>
23 #include <linux/linkage.h>
24 #include <linux/memblock.h>
25 #include <linux/memory.h>
26 #include <linux/mm.h>
27 #include <linux/module.h>
28 #include <linux/printk.h>
29 #include <linux/sched.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/slab.h>
32 #include <linux/stacktrace.h>
33 #include <linux/string.h>
34 #include <linux/types.h>
35 #include <linux/vmalloc.h>
36 #include <linux/bug.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
41
42 #include "kasan.h"
43 #include "../slab.h"
44
45 static inline int in_irqentry_text(unsigned long ptr)
46 {
47         return (ptr >= (unsigned long)&__irqentry_text_start &&
48                 ptr < (unsigned long)&__irqentry_text_end) ||
49                 (ptr >= (unsigned long)&__softirqentry_text_start &&
50                  ptr < (unsigned long)&__softirqentry_text_end);
51 }
52
53 static inline unsigned int filter_irq_stacks(unsigned long *entries,
54                                              unsigned int nr_entries)
55 {
56         unsigned int i;
57
58         for (i = 0; i < nr_entries; i++) {
59                 if (in_irqentry_text(entries[i])) {
60                         /* Include the irqentry function into the stack. */
61                         return i + 1;
62                 }
63         }
64         return nr_entries;
65 }
66
67 static inline depot_stack_handle_t save_stack(gfp_t flags)
68 {
69         unsigned long entries[KASAN_STACK_DEPTH];
70         unsigned int nr_entries;
71
72         nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
73         nr_entries = filter_irq_stacks(entries, nr_entries);
74         return stack_depot_save(entries, nr_entries, flags);
75 }
76
77 static inline void set_track(struct kasan_track *track, gfp_t flags)
78 {
79         track->pid = current->pid;
80         track->stack = save_stack(flags);
81 }
82
83 void kasan_enable_current(void)
84 {
85         current->kasan_depth++;
86 }
87
88 void kasan_disable_current(void)
89 {
90         current->kasan_depth--;
91 }
92
93 bool __kasan_check_read(const volatile void *p, unsigned int size)
94 {
95         return check_memory_region((unsigned long)p, size, false, _RET_IP_);
96 }
97 EXPORT_SYMBOL(__kasan_check_read);
98
99 bool __kasan_check_write(const volatile void *p, unsigned int size)
100 {
101         return check_memory_region((unsigned long)p, size, true, _RET_IP_);
102 }
103 EXPORT_SYMBOL(__kasan_check_write);
104
105 #undef memset
106 void *memset(void *addr, int c, size_t len)
107 {
108         check_memory_region((unsigned long)addr, len, true, _RET_IP_);
109
110         return __memset(addr, c, len);
111 }
112
113 #ifdef __HAVE_ARCH_MEMMOVE
114 #undef memmove
115 void *memmove(void *dest, const void *src, size_t len)
116 {
117         check_memory_region((unsigned long)src, len, false, _RET_IP_);
118         check_memory_region((unsigned long)dest, len, true, _RET_IP_);
119
120         return __memmove(dest, src, len);
121 }
122 #endif
123
124 #undef memcpy
125 void *memcpy(void *dest, const void *src, size_t len)
126 {
127         check_memory_region((unsigned long)src, len, false, _RET_IP_);
128         check_memory_region((unsigned long)dest, len, true, _RET_IP_);
129
130         return __memcpy(dest, src, len);
131 }
132
133 /*
134  * Poisons the shadow memory for 'size' bytes starting from 'addr'.
135  * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
136  */
137 void kasan_poison_shadow(const void *address, size_t size, u8 value)
138 {
139         void *shadow_start, *shadow_end;
140
141         /*
142          * Perform shadow offset calculation based on untagged address, as
143          * some of the callers (e.g. kasan_poison_object_data) pass tagged
144          * addresses to this function.
145          */
146         address = reset_tag(address);
147
148         shadow_start = kasan_mem_to_shadow(address);
149         shadow_end = kasan_mem_to_shadow(address + size);
150
151         __memset(shadow_start, value, shadow_end - shadow_start);
152 }
153
154 void kasan_unpoison_shadow(const void *address, size_t size)
155 {
156         u8 tag = get_tag(address);
157
158         /*
159          * Perform shadow offset calculation based on untagged address, as
160          * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
161          * addresses to this function.
162          */
163         address = reset_tag(address);
164
165         kasan_poison_shadow(address, size, tag);
166
167         if (size & KASAN_SHADOW_MASK) {
168                 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
169
170                 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
171                         *shadow = tag;
172                 else
173                         *shadow = size & KASAN_SHADOW_MASK;
174         }
175 }
176
177 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
178 {
179         void *base = task_stack_page(task);
180         size_t size = sp - base;
181
182         kasan_unpoison_shadow(base, size);
183 }
184
185 /* Unpoison the entire stack for a task. */
186 void kasan_unpoison_task_stack(struct task_struct *task)
187 {
188         __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
189 }
190
191 /* Unpoison the stack for the current task beyond a watermark sp value. */
192 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
193 {
194         /*
195          * Calculate the task stack base address.  Avoid using 'current'
196          * because this function is called by early resume code which hasn't
197          * yet set up the percpu register (%gs).
198          */
199         void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
200
201         kasan_unpoison_shadow(base, watermark - base);
202 }
203
204 /*
205  * Clear all poison for the region between the current SP and a provided
206  * watermark value, as is sometimes required prior to hand-crafted asm function
207  * returns in the middle of functions.
208  */
209 void kasan_unpoison_stack_above_sp_to(const void *watermark)
210 {
211         const void *sp = __builtin_frame_address(0);
212         size_t size = watermark - sp;
213
214         if (WARN_ON(sp > watermark))
215                 return;
216         kasan_unpoison_shadow(sp, size);
217 }
218
219 void kasan_alloc_pages(struct page *page, unsigned int order)
220 {
221         u8 tag;
222         unsigned long i;
223
224         if (unlikely(PageHighMem(page)))
225                 return;
226
227         tag = random_tag();
228         for (i = 0; i < (1 << order); i++)
229                 page_kasan_tag_set(page + i, tag);
230         kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
231 }
232
233 void kasan_free_pages(struct page *page, unsigned int order)
234 {
235         if (likely(!PageHighMem(page)))
236                 kasan_poison_shadow(page_address(page),
237                                 PAGE_SIZE << order,
238                                 KASAN_FREE_PAGE);
239 }
240
241 /*
242  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
243  * For larger allocations larger redzones are used.
244  */
245 static inline unsigned int optimal_redzone(unsigned int object_size)
246 {
247         if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
248                 return 0;
249
250         return
251                 object_size <= 64        - 16   ? 16 :
252                 object_size <= 128       - 32   ? 32 :
253                 object_size <= 512       - 64   ? 64 :
254                 object_size <= 4096      - 128  ? 128 :
255                 object_size <= (1 << 14) - 256  ? 256 :
256                 object_size <= (1 << 15) - 512  ? 512 :
257                 object_size <= (1 << 16) - 1024 ? 1024 : 2048;
258 }
259
260 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
261                         slab_flags_t *flags)
262 {
263         unsigned int orig_size = *size;
264         unsigned int redzone_size;
265         int redzone_adjust;
266
267         /* Add alloc meta. */
268         cache->kasan_info.alloc_meta_offset = *size;
269         *size += sizeof(struct kasan_alloc_meta);
270
271         /* Add free meta. */
272         if (IS_ENABLED(CONFIG_KASAN_GENERIC) &&
273             (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
274              cache->object_size < sizeof(struct kasan_free_meta))) {
275                 cache->kasan_info.free_meta_offset = *size;
276                 *size += sizeof(struct kasan_free_meta);
277         }
278
279         redzone_size = optimal_redzone(cache->object_size);
280         redzone_adjust = redzone_size - (*size - cache->object_size);
281         if (redzone_adjust > 0)
282                 *size += redzone_adjust;
283
284         *size = min_t(unsigned int, KMALLOC_MAX_SIZE,
285                         max(*size, cache->object_size + redzone_size));
286
287         /*
288          * If the metadata doesn't fit, don't enable KASAN at all.
289          */
290         if (*size <= cache->kasan_info.alloc_meta_offset ||
291                         *size <= cache->kasan_info.free_meta_offset) {
292                 cache->kasan_info.alloc_meta_offset = 0;
293                 cache->kasan_info.free_meta_offset = 0;
294                 *size = orig_size;
295                 return;
296         }
297
298         *flags |= SLAB_KASAN;
299 }
300
301 size_t kasan_metadata_size(struct kmem_cache *cache)
302 {
303         return (cache->kasan_info.alloc_meta_offset ?
304                 sizeof(struct kasan_alloc_meta) : 0) +
305                 (cache->kasan_info.free_meta_offset ?
306                 sizeof(struct kasan_free_meta) : 0);
307 }
308
309 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
310                                         const void *object)
311 {
312         return (void *)object + cache->kasan_info.alloc_meta_offset;
313 }
314
315 struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
316                                       const void *object)
317 {
318         BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
319         return (void *)object + cache->kasan_info.free_meta_offset;
320 }
321
322
323 static void kasan_set_free_info(struct kmem_cache *cache,
324                 void *object, u8 tag)
325 {
326         struct kasan_alloc_meta *alloc_meta;
327         u8 idx = 0;
328
329         alloc_meta = get_alloc_info(cache, object);
330
331 #ifdef CONFIG_KASAN_SW_TAGS_IDENTIFY
332         idx = alloc_meta->free_track_idx;
333         alloc_meta->free_pointer_tag[idx] = tag;
334         alloc_meta->free_track_idx = (idx + 1) % KASAN_NR_FREE_STACKS;
335 #endif
336
337         set_track(&alloc_meta->free_track[idx], GFP_NOWAIT);
338 }
339
340 void kasan_poison_slab(struct page *page)
341 {
342         unsigned long i;
343
344         for (i = 0; i < compound_nr(page); i++)
345                 page_kasan_tag_reset(page + i);
346         kasan_poison_shadow(page_address(page), page_size(page),
347                         KASAN_KMALLOC_REDZONE);
348 }
349
350 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
351 {
352         kasan_unpoison_shadow(object, cache->object_size);
353 }
354
355 void kasan_poison_object_data(struct kmem_cache *cache, void *object)
356 {
357         kasan_poison_shadow(object,
358                         round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
359                         KASAN_KMALLOC_REDZONE);
360 }
361
362 /*
363  * This function assigns a tag to an object considering the following:
364  * 1. A cache might have a constructor, which might save a pointer to a slab
365  *    object somewhere (e.g. in the object itself). We preassign a tag for
366  *    each object in caches with constructors during slab creation and reuse
367  *    the same tag each time a particular object is allocated.
368  * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
369  *    accessed after being freed. We preassign tags for objects in these
370  *    caches as well.
371  * 3. For SLAB allocator we can't preassign tags randomly since the freelist
372  *    is stored as an array of indexes instead of a linked list. Assign tags
373  *    based on objects indexes, so that objects that are next to each other
374  *    get different tags.
375  */
376 static u8 assign_tag(struct kmem_cache *cache, const void *object,
377                         bool init, bool keep_tag)
378 {
379         /*
380          * 1. When an object is kmalloc()'ed, two hooks are called:
381          *    kasan_slab_alloc() and kasan_kmalloc(). We assign the
382          *    tag only in the first one.
383          * 2. We reuse the same tag for krealloc'ed objects.
384          */
385         if (keep_tag)
386                 return get_tag(object);
387
388         /*
389          * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
390          * set, assign a tag when the object is being allocated (init == false).
391          */
392         if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
393                 return init ? KASAN_TAG_KERNEL : random_tag();
394
395         /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
396 #ifdef CONFIG_SLAB
397         /* For SLAB assign tags based on the object index in the freelist. */
398         return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
399 #else
400         /*
401          * For SLUB assign a random tag during slab creation, otherwise reuse
402          * the already assigned tag.
403          */
404         return init ? random_tag() : get_tag(object);
405 #endif
406 }
407
408 void * __must_check kasan_init_slab_obj(struct kmem_cache *cache,
409                                                 const void *object)
410 {
411         struct kasan_alloc_meta *alloc_info;
412
413         if (!(cache->flags & SLAB_KASAN))
414                 return (void *)object;
415
416         alloc_info = get_alloc_info(cache, object);
417         __memset(alloc_info, 0, sizeof(*alloc_info));
418
419         if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
420                 object = set_tag(object,
421                                 assign_tag(cache, object, true, false));
422
423         return (void *)object;
424 }
425
426 static inline bool shadow_invalid(u8 tag, s8 shadow_byte)
427 {
428         if (IS_ENABLED(CONFIG_KASAN_GENERIC))
429                 return shadow_byte < 0 ||
430                         shadow_byte >= KASAN_SHADOW_SCALE_SIZE;
431
432         /* else CONFIG_KASAN_SW_TAGS: */
433         if ((u8)shadow_byte == KASAN_TAG_INVALID)
434                 return true;
435         if ((tag != KASAN_TAG_KERNEL) && (tag != (u8)shadow_byte))
436                 return true;
437
438         return false;
439 }
440
441 static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
442                               unsigned long ip, bool quarantine)
443 {
444         s8 shadow_byte;
445         u8 tag;
446         void *tagged_object;
447         unsigned long rounded_up_size;
448
449         tag = get_tag(object);
450         tagged_object = object;
451         object = reset_tag(object);
452
453         if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
454             object)) {
455                 kasan_report_invalid_free(tagged_object, ip);
456                 return true;
457         }
458
459         /* RCU slabs could be legally used after free within the RCU period */
460         if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
461                 return false;
462
463         shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
464         if (shadow_invalid(tag, shadow_byte)) {
465                 kasan_report_invalid_free(tagged_object, ip);
466                 return true;
467         }
468
469         rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
470         kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
471
472         if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) ||
473                         unlikely(!(cache->flags & SLAB_KASAN)))
474                 return false;
475
476         kasan_set_free_info(cache, object, tag);
477
478         quarantine_put(get_free_info(cache, object), cache);
479
480         return IS_ENABLED(CONFIG_KASAN_GENERIC);
481 }
482
483 bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
484 {
485         return __kasan_slab_free(cache, object, ip, true);
486 }
487
488 static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object,
489                                 size_t size, gfp_t flags, bool keep_tag)
490 {
491         unsigned long redzone_start;
492         unsigned long redzone_end;
493         u8 tag = 0xff;
494
495         if (gfpflags_allow_blocking(flags))
496                 quarantine_reduce();
497
498         if (unlikely(object == NULL))
499                 return NULL;
500
501         redzone_start = round_up((unsigned long)(object + size),
502                                 KASAN_SHADOW_SCALE_SIZE);
503         redzone_end = round_up((unsigned long)object + cache->object_size,
504                                 KASAN_SHADOW_SCALE_SIZE);
505
506         if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
507                 tag = assign_tag(cache, object, false, keep_tag);
508
509         /* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */
510         kasan_unpoison_shadow(set_tag(object, tag), size);
511         kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
512                 KASAN_KMALLOC_REDZONE);
513
514         if (cache->flags & SLAB_KASAN)
515                 set_track(&get_alloc_info(cache, object)->alloc_track, flags);
516
517         return set_tag(object, tag);
518 }
519
520 void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object,
521                                         gfp_t flags)
522 {
523         return __kasan_kmalloc(cache, object, cache->object_size, flags, false);
524 }
525
526 void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object,
527                                 size_t size, gfp_t flags)
528 {
529         return __kasan_kmalloc(cache, object, size, flags, true);
530 }
531 EXPORT_SYMBOL(kasan_kmalloc);
532
533 void * __must_check kasan_kmalloc_large(const void *ptr, size_t size,
534                                                 gfp_t flags)
535 {
536         struct page *page;
537         unsigned long redzone_start;
538         unsigned long redzone_end;
539
540         if (gfpflags_allow_blocking(flags))
541                 quarantine_reduce();
542
543         if (unlikely(ptr == NULL))
544                 return NULL;
545
546         page = virt_to_page(ptr);
547         redzone_start = round_up((unsigned long)(ptr + size),
548                                 KASAN_SHADOW_SCALE_SIZE);
549         redzone_end = (unsigned long)ptr + page_size(page);
550
551         kasan_unpoison_shadow(ptr, size);
552         kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
553                 KASAN_PAGE_REDZONE);
554
555         return (void *)ptr;
556 }
557
558 void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags)
559 {
560         struct page *page;
561
562         if (unlikely(object == ZERO_SIZE_PTR))
563                 return (void *)object;
564
565         page = virt_to_head_page(object);
566
567         if (unlikely(!PageSlab(page)))
568                 return kasan_kmalloc_large(object, size, flags);
569         else
570                 return __kasan_kmalloc(page->slab_cache, object, size,
571                                                 flags, true);
572 }
573
574 void kasan_poison_kfree(void *ptr, unsigned long ip)
575 {
576         struct page *page;
577
578         page = virt_to_head_page(ptr);
579
580         if (unlikely(!PageSlab(page))) {
581                 if (ptr != page_address(page)) {
582                         kasan_report_invalid_free(ptr, ip);
583                         return;
584                 }
585                 kasan_poison_shadow(ptr, page_size(page), KASAN_FREE_PAGE);
586         } else {
587                 __kasan_slab_free(page->slab_cache, ptr, ip, false);
588         }
589 }
590
591 void kasan_kfree_large(void *ptr, unsigned long ip)
592 {
593         if (ptr != page_address(virt_to_head_page(ptr)))
594                 kasan_report_invalid_free(ptr, ip);
595         /* The object will be poisoned by page_alloc. */
596 }
597
598 #ifndef CONFIG_KASAN_VMALLOC
599 int kasan_module_alloc(void *addr, size_t size)
600 {
601         void *ret;
602         size_t scaled_size;
603         size_t shadow_size;
604         unsigned long shadow_start;
605
606         shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
607         scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
608         shadow_size = round_up(scaled_size, PAGE_SIZE);
609
610         if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
611                 return -EINVAL;
612
613         ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
614                         shadow_start + shadow_size,
615                         GFP_KERNEL,
616                         PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
617                         __builtin_return_address(0));
618
619         if (ret) {
620                 __memset(ret, KASAN_SHADOW_INIT, shadow_size);
621                 find_vm_area(addr)->flags |= VM_KASAN;
622                 kmemleak_ignore(ret);
623                 return 0;
624         }
625
626         return -ENOMEM;
627 }
628
629 void kasan_free_shadow(const struct vm_struct *vm)
630 {
631         if (vm->flags & VM_KASAN)
632                 vfree(kasan_mem_to_shadow(vm->addr));
633 }
634 #endif
635
636 extern void __kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip);
637
638 void kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip)
639 {
640         unsigned long flags = user_access_save();
641         __kasan_report(addr, size, is_write, ip);
642         user_access_restore(flags);
643 }
644
645 #ifdef CONFIG_MEMORY_HOTPLUG
646 static bool shadow_mapped(unsigned long addr)
647 {
648         pgd_t *pgd = pgd_offset_k(addr);
649         p4d_t *p4d;
650         pud_t *pud;
651         pmd_t *pmd;
652         pte_t *pte;
653
654         if (pgd_none(*pgd))
655                 return false;
656         p4d = p4d_offset(pgd, addr);
657         if (p4d_none(*p4d))
658                 return false;
659         pud = pud_offset(p4d, addr);
660         if (pud_none(*pud))
661                 return false;
662
663         /*
664          * We can't use pud_large() or pud_huge(), the first one is
665          * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
666          * pud_bad(), if pud is bad then it's bad because it's huge.
667          */
668         if (pud_bad(*pud))
669                 return true;
670         pmd = pmd_offset(pud, addr);
671         if (pmd_none(*pmd))
672                 return false;
673
674         if (pmd_bad(*pmd))
675                 return true;
676         pte = pte_offset_kernel(pmd, addr);
677         return !pte_none(*pte);
678 }
679
680 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
681                         unsigned long action, void *data)
682 {
683         struct memory_notify *mem_data = data;
684         unsigned long nr_shadow_pages, start_kaddr, shadow_start;
685         unsigned long shadow_end, shadow_size;
686
687         nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
688         start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
689         shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
690         shadow_size = nr_shadow_pages << PAGE_SHIFT;
691         shadow_end = shadow_start + shadow_size;
692
693         if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
694                 WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
695                 return NOTIFY_BAD;
696
697         switch (action) {
698         case MEM_GOING_ONLINE: {
699                 void *ret;
700
701                 /*
702                  * If shadow is mapped already than it must have been mapped
703                  * during the boot. This could happen if we onlining previously
704                  * offlined memory.
705                  */
706                 if (shadow_mapped(shadow_start))
707                         return NOTIFY_OK;
708
709                 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
710                                         shadow_end, GFP_KERNEL,
711                                         PAGE_KERNEL, VM_NO_GUARD,
712                                         pfn_to_nid(mem_data->start_pfn),
713                                         __builtin_return_address(0));
714                 if (!ret)
715                         return NOTIFY_BAD;
716
717                 kmemleak_ignore(ret);
718                 return NOTIFY_OK;
719         }
720         case MEM_CANCEL_ONLINE:
721         case MEM_OFFLINE: {
722                 struct vm_struct *vm;
723
724                 /*
725                  * shadow_start was either mapped during boot by kasan_init()
726                  * or during memory online by __vmalloc_node_range().
727                  * In the latter case we can use vfree() to free shadow.
728                  * Non-NULL result of the find_vm_area() will tell us if
729                  * that was the second case.
730                  *
731                  * Currently it's not possible to free shadow mapped
732                  * during boot by kasan_init(). It's because the code
733                  * to do that hasn't been written yet. So we'll just
734                  * leak the memory.
735                  */
736                 vm = find_vm_area((void *)shadow_start);
737                 if (vm)
738                         vfree((void *)shadow_start);
739         }
740         }
741
742         return NOTIFY_OK;
743 }
744
745 static int __init kasan_memhotplug_init(void)
746 {
747         hotplug_memory_notifier(kasan_mem_notifier, 0);
748
749         return 0;
750 }
751
752 core_initcall(kasan_memhotplug_init);
753 #endif
754
755 #ifdef CONFIG_KASAN_VMALLOC
756 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
757                                       void *unused)
758 {
759         unsigned long page;
760         pte_t pte;
761
762         if (likely(!pte_none(*ptep)))
763                 return 0;
764
765         page = __get_free_page(GFP_KERNEL);
766         if (!page)
767                 return -ENOMEM;
768
769         memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
770         pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
771
772         spin_lock(&init_mm.page_table_lock);
773         if (likely(pte_none(*ptep))) {
774                 set_pte_at(&init_mm, addr, ptep, pte);
775                 page = 0;
776         }
777         spin_unlock(&init_mm.page_table_lock);
778         if (page)
779                 free_page(page);
780         return 0;
781 }
782
783 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
784 {
785         unsigned long shadow_start, shadow_end;
786         int ret;
787
788         if (!is_vmalloc_or_module_addr((void *)addr))
789                 return 0;
790
791         shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
792         shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
793         shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
794         shadow_end = ALIGN(shadow_end, PAGE_SIZE);
795
796         ret = apply_to_page_range(&init_mm, shadow_start,
797                                   shadow_end - shadow_start,
798                                   kasan_populate_vmalloc_pte, NULL);
799         if (ret)
800                 return ret;
801
802         flush_cache_vmap(shadow_start, shadow_end);
803
804         /*
805          * We need to be careful about inter-cpu effects here. Consider:
806          *
807          *   CPU#0                                CPU#1
808          * WRITE_ONCE(p, vmalloc(100));         while (x = READ_ONCE(p)) ;
809          *                                      p[99] = 1;
810          *
811          * With compiler instrumentation, that ends up looking like this:
812          *
813          *   CPU#0                                CPU#1
814          * // vmalloc() allocates memory
815          * // let a = area->addr
816          * // we reach kasan_populate_vmalloc
817          * // and call kasan_unpoison_shadow:
818          * STORE shadow(a), unpoison_val
819          * ...
820          * STORE shadow(a+99), unpoison_val     x = LOAD p
821          * // rest of vmalloc process           <data dependency>
822          * STORE p, a                           LOAD shadow(x+99)
823          *
824          * If there is no barrier between the end of unpoisioning the shadow
825          * and the store of the result to p, the stores could be committed
826          * in a different order by CPU#0, and CPU#1 could erroneously observe
827          * poison in the shadow.
828          *
829          * We need some sort of barrier between the stores.
830          *
831          * In the vmalloc() case, this is provided by a smp_wmb() in
832          * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
833          * get_vm_area() and friends, the caller gets shadow allocated but
834          * doesn't have any pages mapped into the virtual address space that
835          * has been reserved. Mapping those pages in will involve taking and
836          * releasing a page-table lock, which will provide the barrier.
837          */
838
839         return 0;
840 }
841
842 /*
843  * Poison the shadow for a vmalloc region. Called as part of the
844  * freeing process at the time the region is freed.
845  */
846 void kasan_poison_vmalloc(const void *start, unsigned long size)
847 {
848         if (!is_vmalloc_or_module_addr(start))
849                 return;
850
851         size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
852         kasan_poison_shadow(start, size, KASAN_VMALLOC_INVALID);
853 }
854
855 void kasan_unpoison_vmalloc(const void *start, unsigned long size)
856 {
857         if (!is_vmalloc_or_module_addr(start))
858                 return;
859
860         kasan_unpoison_shadow(start, size);
861 }
862
863 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
864                                         void *unused)
865 {
866         unsigned long page;
867
868         page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
869
870         spin_lock(&init_mm.page_table_lock);
871
872         if (likely(!pte_none(*ptep))) {
873                 pte_clear(&init_mm, addr, ptep);
874                 free_page(page);
875         }
876         spin_unlock(&init_mm.page_table_lock);
877
878         return 0;
879 }
880
881 /*
882  * Release the backing for the vmalloc region [start, end), which
883  * lies within the free region [free_region_start, free_region_end).
884  *
885  * This can be run lazily, long after the region was freed. It runs
886  * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
887  * infrastructure.
888  *
889  * How does this work?
890  * -------------------
891  *
892  * We have a region that is page aligned, labelled as A.
893  * That might not map onto the shadow in a way that is page-aligned:
894  *
895  *                    start                     end
896  *                    v                         v
897  * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
898  *  -------- -------- --------          -------- --------
899  *      |        |       |                 |        |
900  *      |        |       |         /-------/        |
901  *      \-------\|/------/         |/---------------/
902  *              |||                ||
903  *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
904  *                 (1)      (2)      (3)
905  *
906  * First we align the start upwards and the end downwards, so that the
907  * shadow of the region aligns with shadow page boundaries. In the
908  * example, this gives us the shadow page (2). This is the shadow entirely
909  * covered by this allocation.
910  *
911  * Then we have the tricky bits. We want to know if we can free the
912  * partially covered shadow pages - (1) and (3) in the example. For this,
913  * we are given the start and end of the free region that contains this
914  * allocation. Extending our previous example, we could have:
915  *
916  *  free_region_start                                    free_region_end
917  *  |                 start                     end      |
918  *  v                 v                         v        v
919  * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
920  *  -------- -------- --------          -------- --------
921  *      |        |       |                 |        |
922  *      |        |       |         /-------/        |
923  *      \-------\|/------/         |/---------------/
924  *              |||                ||
925  *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
926  *                 (1)      (2)      (3)
927  *
928  * Once again, we align the start of the free region up, and the end of
929  * the free region down so that the shadow is page aligned. So we can free
930  * page (1) - we know no allocation currently uses anything in that page,
931  * because all of it is in the vmalloc free region. But we cannot free
932  * page (3), because we can't be sure that the rest of it is unused.
933  *
934  * We only consider pages that contain part of the original region for
935  * freeing: we don't try to free other pages from the free region or we'd
936  * end up trying to free huge chunks of virtual address space.
937  *
938  * Concurrency
939  * -----------
940  *
941  * How do we know that we're not freeing a page that is simultaneously
942  * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
943  *
944  * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
945  * at the same time. While we run under free_vmap_area_lock, the population
946  * code does not.
947  *
948  * free_vmap_area_lock instead operates to ensure that the larger range
949  * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
950  * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
951  * no space identified as free will become used while we are running. This
952  * means that so long as we are careful with alignment and only free shadow
953  * pages entirely covered by the free region, we will not run in to any
954  * trouble - any simultaneous allocations will be for disjoint regions.
955  */
956 void kasan_release_vmalloc(unsigned long start, unsigned long end,
957                            unsigned long free_region_start,
958                            unsigned long free_region_end)
959 {
960         void *shadow_start, *shadow_end;
961         unsigned long region_start, region_end;
962         unsigned long size;
963
964         region_start = ALIGN(start, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
965         region_end = ALIGN_DOWN(end, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
966
967         free_region_start = ALIGN(free_region_start,
968                                   PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
969
970         if (start != region_start &&
971             free_region_start < region_start)
972                 region_start -= PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE;
973
974         free_region_end = ALIGN_DOWN(free_region_end,
975                                      PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
976
977         if (end != region_end &&
978             free_region_end > region_end)
979                 region_end += PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE;
980
981         shadow_start = kasan_mem_to_shadow((void *)region_start);
982         shadow_end = kasan_mem_to_shadow((void *)region_end);
983
984         if (shadow_end > shadow_start) {
985                 size = shadow_end - shadow_start;
986                 apply_to_existing_page_range(&init_mm,
987                                              (unsigned long)shadow_start,
988                                              size, kasan_depopulate_vmalloc_pte,
989                                              NULL);
990                 flush_tlb_kernel_range((unsigned long)shadow_start,
991                                        (unsigned long)shadow_end);
992         }
993 }
994 #endif