]> asedeno.scripts.mit.edu Git - linux.git/blob - mm/khugepaged.c
thp: extract khugepaged from mm/huge_memory.c
[linux.git] / mm / khugepaged.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/mm.h>
4 #include <linux/sched.h>
5 #include <linux/mmu_notifier.h>
6 #include <linux/rmap.h>
7 #include <linux/swap.h>
8 #include <linux/mm_inline.h>
9 #include <linux/kthread.h>
10 #include <linux/khugepaged.h>
11 #include <linux/freezer.h>
12 #include <linux/mman.h>
13 #include <linux/hashtable.h>
14 #include <linux/userfaultfd_k.h>
15 #include <linux/page_idle.h>
16 #include <linux/swapops.h>
17
18 #include <asm/tlb.h>
19 #include <asm/pgalloc.h>
20 #include "internal.h"
21
22 enum scan_result {
23         SCAN_FAIL,
24         SCAN_SUCCEED,
25         SCAN_PMD_NULL,
26         SCAN_EXCEED_NONE_PTE,
27         SCAN_PTE_NON_PRESENT,
28         SCAN_PAGE_RO,
29         SCAN_NO_REFERENCED_PAGE,
30         SCAN_PAGE_NULL,
31         SCAN_SCAN_ABORT,
32         SCAN_PAGE_COUNT,
33         SCAN_PAGE_LRU,
34         SCAN_PAGE_LOCK,
35         SCAN_PAGE_ANON,
36         SCAN_PAGE_COMPOUND,
37         SCAN_ANY_PROCESS,
38         SCAN_VMA_NULL,
39         SCAN_VMA_CHECK,
40         SCAN_ADDRESS_RANGE,
41         SCAN_SWAP_CACHE_PAGE,
42         SCAN_DEL_PAGE_LRU,
43         SCAN_ALLOC_HUGE_PAGE_FAIL,
44         SCAN_CGROUP_CHARGE_FAIL,
45         SCAN_EXCEED_SWAP_PTE
46 };
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/huge_memory.h>
50
51 /* default scan 8*512 pte (or vmas) every 30 second */
52 static unsigned int khugepaged_pages_to_scan __read_mostly;
53 static unsigned int khugepaged_pages_collapsed;
54 static unsigned int khugepaged_full_scans;
55 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
56 /* during fragmentation poll the hugepage allocator once every minute */
57 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
58 static unsigned long khugepaged_sleep_expire;
59 static DEFINE_SPINLOCK(khugepaged_mm_lock);
60 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
61 /*
62  * default collapse hugepages if there is at least one pte mapped like
63  * it would have happened if the vma was large enough during page
64  * fault.
65  */
66 static unsigned int khugepaged_max_ptes_none __read_mostly;
67 static unsigned int khugepaged_max_ptes_swap __read_mostly;
68
69 #define MM_SLOTS_HASH_BITS 10
70 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
71
72 static struct kmem_cache *mm_slot_cache __read_mostly;
73
74 /**
75  * struct mm_slot - hash lookup from mm to mm_slot
76  * @hash: hash collision list
77  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
78  * @mm: the mm that this information is valid for
79  */
80 struct mm_slot {
81         struct hlist_node hash;
82         struct list_head mm_node;
83         struct mm_struct *mm;
84 };
85
86 /**
87  * struct khugepaged_scan - cursor for scanning
88  * @mm_head: the head of the mm list to scan
89  * @mm_slot: the current mm_slot we are scanning
90  * @address: the next address inside that to be scanned
91  *
92  * There is only the one khugepaged_scan instance of this cursor structure.
93  */
94 struct khugepaged_scan {
95         struct list_head mm_head;
96         struct mm_slot *mm_slot;
97         unsigned long address;
98 };
99
100 static struct khugepaged_scan khugepaged_scan = {
101         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
102 };
103
104 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
105                                          struct kobj_attribute *attr,
106                                          char *buf)
107 {
108         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
109 }
110
111 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
112                                           struct kobj_attribute *attr,
113                                           const char *buf, size_t count)
114 {
115         unsigned long msecs;
116         int err;
117
118         err = kstrtoul(buf, 10, &msecs);
119         if (err || msecs > UINT_MAX)
120                 return -EINVAL;
121
122         khugepaged_scan_sleep_millisecs = msecs;
123         khugepaged_sleep_expire = 0;
124         wake_up_interruptible(&khugepaged_wait);
125
126         return count;
127 }
128 static struct kobj_attribute scan_sleep_millisecs_attr =
129         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
130                scan_sleep_millisecs_store);
131
132 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
133                                           struct kobj_attribute *attr,
134                                           char *buf)
135 {
136         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
137 }
138
139 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
140                                            struct kobj_attribute *attr,
141                                            const char *buf, size_t count)
142 {
143         unsigned long msecs;
144         int err;
145
146         err = kstrtoul(buf, 10, &msecs);
147         if (err || msecs > UINT_MAX)
148                 return -EINVAL;
149
150         khugepaged_alloc_sleep_millisecs = msecs;
151         khugepaged_sleep_expire = 0;
152         wake_up_interruptible(&khugepaged_wait);
153
154         return count;
155 }
156 static struct kobj_attribute alloc_sleep_millisecs_attr =
157         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
158                alloc_sleep_millisecs_store);
159
160 static ssize_t pages_to_scan_show(struct kobject *kobj,
161                                   struct kobj_attribute *attr,
162                                   char *buf)
163 {
164         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
165 }
166 static ssize_t pages_to_scan_store(struct kobject *kobj,
167                                    struct kobj_attribute *attr,
168                                    const char *buf, size_t count)
169 {
170         int err;
171         unsigned long pages;
172
173         err = kstrtoul(buf, 10, &pages);
174         if (err || !pages || pages > UINT_MAX)
175                 return -EINVAL;
176
177         khugepaged_pages_to_scan = pages;
178
179         return count;
180 }
181 static struct kobj_attribute pages_to_scan_attr =
182         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
183                pages_to_scan_store);
184
185 static ssize_t pages_collapsed_show(struct kobject *kobj,
186                                     struct kobj_attribute *attr,
187                                     char *buf)
188 {
189         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
190 }
191 static struct kobj_attribute pages_collapsed_attr =
192         __ATTR_RO(pages_collapsed);
193
194 static ssize_t full_scans_show(struct kobject *kobj,
195                                struct kobj_attribute *attr,
196                                char *buf)
197 {
198         return sprintf(buf, "%u\n", khugepaged_full_scans);
199 }
200 static struct kobj_attribute full_scans_attr =
201         __ATTR_RO(full_scans);
202
203 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
204                                       struct kobj_attribute *attr, char *buf)
205 {
206         return single_hugepage_flag_show(kobj, attr, buf,
207                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
208 }
209 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
210                                        struct kobj_attribute *attr,
211                                        const char *buf, size_t count)
212 {
213         return single_hugepage_flag_store(kobj, attr, buf, count,
214                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
215 }
216 static struct kobj_attribute khugepaged_defrag_attr =
217         __ATTR(defrag, 0644, khugepaged_defrag_show,
218                khugepaged_defrag_store);
219
220 /*
221  * max_ptes_none controls if khugepaged should collapse hugepages over
222  * any unmapped ptes in turn potentially increasing the memory
223  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
224  * reduce the available free memory in the system as it
225  * runs. Increasing max_ptes_none will instead potentially reduce the
226  * free memory in the system during the khugepaged scan.
227  */
228 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
229                                              struct kobj_attribute *attr,
230                                              char *buf)
231 {
232         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
233 }
234 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
235                                               struct kobj_attribute *attr,
236                                               const char *buf, size_t count)
237 {
238         int err;
239         unsigned long max_ptes_none;
240
241         err = kstrtoul(buf, 10, &max_ptes_none);
242         if (err || max_ptes_none > HPAGE_PMD_NR-1)
243                 return -EINVAL;
244
245         khugepaged_max_ptes_none = max_ptes_none;
246
247         return count;
248 }
249 static struct kobj_attribute khugepaged_max_ptes_none_attr =
250         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
251                khugepaged_max_ptes_none_store);
252
253 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
254                                              struct kobj_attribute *attr,
255                                              char *buf)
256 {
257         return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
258 }
259
260 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
261                                               struct kobj_attribute *attr,
262                                               const char *buf, size_t count)
263 {
264         int err;
265         unsigned long max_ptes_swap;
266
267         err  = kstrtoul(buf, 10, &max_ptes_swap);
268         if (err || max_ptes_swap > HPAGE_PMD_NR-1)
269                 return -EINVAL;
270
271         khugepaged_max_ptes_swap = max_ptes_swap;
272
273         return count;
274 }
275
276 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
277         __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
278                khugepaged_max_ptes_swap_store);
279
280 static struct attribute *khugepaged_attr[] = {
281         &khugepaged_defrag_attr.attr,
282         &khugepaged_max_ptes_none_attr.attr,
283         &pages_to_scan_attr.attr,
284         &pages_collapsed_attr.attr,
285         &full_scans_attr.attr,
286         &scan_sleep_millisecs_attr.attr,
287         &alloc_sleep_millisecs_attr.attr,
288         &khugepaged_max_ptes_swap_attr.attr,
289         NULL,
290 };
291
292 struct attribute_group khugepaged_attr_group = {
293         .attrs = khugepaged_attr,
294         .name = "khugepaged",
295 };
296
297 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
298
299 int hugepage_madvise(struct vm_area_struct *vma,
300                      unsigned long *vm_flags, int advice)
301 {
302         switch (advice) {
303         case MADV_HUGEPAGE:
304 #ifdef CONFIG_S390
305                 /*
306                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
307                  * can't handle this properly after s390_enable_sie, so we simply
308                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
309                  */
310                 if (mm_has_pgste(vma->vm_mm))
311                         return 0;
312 #endif
313                 *vm_flags &= ~VM_NOHUGEPAGE;
314                 *vm_flags |= VM_HUGEPAGE;
315                 /*
316                  * If the vma become good for khugepaged to scan,
317                  * register it here without waiting a page fault that
318                  * may not happen any time soon.
319                  */
320                 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
321                                 khugepaged_enter_vma_merge(vma, *vm_flags))
322                         return -ENOMEM;
323                 break;
324         case MADV_NOHUGEPAGE:
325                 *vm_flags &= ~VM_HUGEPAGE;
326                 *vm_flags |= VM_NOHUGEPAGE;
327                 /*
328                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
329                  * this vma even if we leave the mm registered in khugepaged if
330                  * it got registered before VM_NOHUGEPAGE was set.
331                  */
332                 break;
333         }
334
335         return 0;
336 }
337
338 int __init khugepaged_init(void)
339 {
340         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
341                                           sizeof(struct mm_slot),
342                                           __alignof__(struct mm_slot), 0, NULL);
343         if (!mm_slot_cache)
344                 return -ENOMEM;
345
346         khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
347         khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
348         khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
349
350         return 0;
351 }
352
353 void __init khugepaged_destroy(void)
354 {
355         kmem_cache_destroy(mm_slot_cache);
356 }
357
358 static inline struct mm_slot *alloc_mm_slot(void)
359 {
360         if (!mm_slot_cache)     /* initialization failed */
361                 return NULL;
362         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
363 }
364
365 static inline void free_mm_slot(struct mm_slot *mm_slot)
366 {
367         kmem_cache_free(mm_slot_cache, mm_slot);
368 }
369
370 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
371 {
372         struct mm_slot *mm_slot;
373
374         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
375                 if (mm == mm_slot->mm)
376                         return mm_slot;
377
378         return NULL;
379 }
380
381 static void insert_to_mm_slots_hash(struct mm_struct *mm,
382                                     struct mm_slot *mm_slot)
383 {
384         mm_slot->mm = mm;
385         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
386 }
387
388 static inline int khugepaged_test_exit(struct mm_struct *mm)
389 {
390         return atomic_read(&mm->mm_users) == 0;
391 }
392
393 int __khugepaged_enter(struct mm_struct *mm)
394 {
395         struct mm_slot *mm_slot;
396         int wakeup;
397
398         mm_slot = alloc_mm_slot();
399         if (!mm_slot)
400                 return -ENOMEM;
401
402         /* __khugepaged_exit() must not run from under us */
403         VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
404         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
405                 free_mm_slot(mm_slot);
406                 return 0;
407         }
408
409         spin_lock(&khugepaged_mm_lock);
410         insert_to_mm_slots_hash(mm, mm_slot);
411         /*
412          * Insert just behind the scanning cursor, to let the area settle
413          * down a little.
414          */
415         wakeup = list_empty(&khugepaged_scan.mm_head);
416         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
417         spin_unlock(&khugepaged_mm_lock);
418
419         atomic_inc(&mm->mm_count);
420         if (wakeup)
421                 wake_up_interruptible(&khugepaged_wait);
422
423         return 0;
424 }
425
426 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
427                                unsigned long vm_flags)
428 {
429         unsigned long hstart, hend;
430         if (!vma->anon_vma)
431                 /*
432                  * Not yet faulted in so we will register later in the
433                  * page fault if needed.
434                  */
435                 return 0;
436         if (vma->vm_ops || (vm_flags & VM_NO_KHUGEPAGED))
437                 /* khugepaged not yet working on file or special mappings */
438                 return 0;
439         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
440         hend = vma->vm_end & HPAGE_PMD_MASK;
441         if (hstart < hend)
442                 return khugepaged_enter(vma, vm_flags);
443         return 0;
444 }
445
446 void __khugepaged_exit(struct mm_struct *mm)
447 {
448         struct mm_slot *mm_slot;
449         int free = 0;
450
451         spin_lock(&khugepaged_mm_lock);
452         mm_slot = get_mm_slot(mm);
453         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
454                 hash_del(&mm_slot->hash);
455                 list_del(&mm_slot->mm_node);
456                 free = 1;
457         }
458         spin_unlock(&khugepaged_mm_lock);
459
460         if (free) {
461                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
462                 free_mm_slot(mm_slot);
463                 mmdrop(mm);
464         } else if (mm_slot) {
465                 /*
466                  * This is required to serialize against
467                  * khugepaged_test_exit() (which is guaranteed to run
468                  * under mmap sem read mode). Stop here (after we
469                  * return all pagetables will be destroyed) until
470                  * khugepaged has finished working on the pagetables
471                  * under the mmap_sem.
472                  */
473                 down_write(&mm->mmap_sem);
474                 up_write(&mm->mmap_sem);
475         }
476 }
477
478 static void release_pte_page(struct page *page)
479 {
480         /* 0 stands for page_is_file_cache(page) == false */
481         dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
482         unlock_page(page);
483         putback_lru_page(page);
484 }
485
486 static void release_pte_pages(pte_t *pte, pte_t *_pte)
487 {
488         while (--_pte >= pte) {
489                 pte_t pteval = *_pte;
490                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
491                         release_pte_page(pte_page(pteval));
492         }
493 }
494
495 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
496                                         unsigned long address,
497                                         pte_t *pte)
498 {
499         struct page *page = NULL;
500         pte_t *_pte;
501         int none_or_zero = 0, result = 0;
502         bool referenced = false, writable = false;
503
504         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
505              _pte++, address += PAGE_SIZE) {
506                 pte_t pteval = *_pte;
507                 if (pte_none(pteval) || (pte_present(pteval) &&
508                                 is_zero_pfn(pte_pfn(pteval)))) {
509                         if (!userfaultfd_armed(vma) &&
510                             ++none_or_zero <= khugepaged_max_ptes_none) {
511                                 continue;
512                         } else {
513                                 result = SCAN_EXCEED_NONE_PTE;
514                                 goto out;
515                         }
516                 }
517                 if (!pte_present(pteval)) {
518                         result = SCAN_PTE_NON_PRESENT;
519                         goto out;
520                 }
521                 page = vm_normal_page(vma, address, pteval);
522                 if (unlikely(!page)) {
523                         result = SCAN_PAGE_NULL;
524                         goto out;
525                 }
526
527                 VM_BUG_ON_PAGE(PageCompound(page), page);
528                 VM_BUG_ON_PAGE(!PageAnon(page), page);
529                 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
530
531                 /*
532                  * We can do it before isolate_lru_page because the
533                  * page can't be freed from under us. NOTE: PG_lock
534                  * is needed to serialize against split_huge_page
535                  * when invoked from the VM.
536                  */
537                 if (!trylock_page(page)) {
538                         result = SCAN_PAGE_LOCK;
539                         goto out;
540                 }
541
542                 /*
543                  * cannot use mapcount: can't collapse if there's a gup pin.
544                  * The page must only be referenced by the scanned process
545                  * and page swap cache.
546                  */
547                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
548                         unlock_page(page);
549                         result = SCAN_PAGE_COUNT;
550                         goto out;
551                 }
552                 if (pte_write(pteval)) {
553                         writable = true;
554                 } else {
555                         if (PageSwapCache(page) &&
556                             !reuse_swap_page(page, NULL)) {
557                                 unlock_page(page);
558                                 result = SCAN_SWAP_CACHE_PAGE;
559                                 goto out;
560                         }
561                         /*
562                          * Page is not in the swap cache. It can be collapsed
563                          * into a THP.
564                          */
565                 }
566
567                 /*
568                  * Isolate the page to avoid collapsing an hugepage
569                  * currently in use by the VM.
570                  */
571                 if (isolate_lru_page(page)) {
572                         unlock_page(page);
573                         result = SCAN_DEL_PAGE_LRU;
574                         goto out;
575                 }
576                 /* 0 stands for page_is_file_cache(page) == false */
577                 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
578                 VM_BUG_ON_PAGE(!PageLocked(page), page);
579                 VM_BUG_ON_PAGE(PageLRU(page), page);
580
581                 /* If there is no mapped pte young don't collapse the page */
582                 if (pte_young(pteval) ||
583                     page_is_young(page) || PageReferenced(page) ||
584                     mmu_notifier_test_young(vma->vm_mm, address))
585                         referenced = true;
586         }
587         if (likely(writable)) {
588                 if (likely(referenced)) {
589                         result = SCAN_SUCCEED;
590                         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
591                                                             referenced, writable, result);
592                         return 1;
593                 }
594         } else {
595                 result = SCAN_PAGE_RO;
596         }
597
598 out:
599         release_pte_pages(pte, _pte);
600         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
601                                             referenced, writable, result);
602         return 0;
603 }
604
605 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
606                                       struct vm_area_struct *vma,
607                                       unsigned long address,
608                                       spinlock_t *ptl)
609 {
610         pte_t *_pte;
611         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
612                 pte_t pteval = *_pte;
613                 struct page *src_page;
614
615                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
616                         clear_user_highpage(page, address);
617                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
618                         if (is_zero_pfn(pte_pfn(pteval))) {
619                                 /*
620                                  * ptl mostly unnecessary.
621                                  */
622                                 spin_lock(ptl);
623                                 /*
624                                  * paravirt calls inside pte_clear here are
625                                  * superfluous.
626                                  */
627                                 pte_clear(vma->vm_mm, address, _pte);
628                                 spin_unlock(ptl);
629                         }
630                 } else {
631                         src_page = pte_page(pteval);
632                         copy_user_highpage(page, src_page, address, vma);
633                         VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
634                         release_pte_page(src_page);
635                         /*
636                          * ptl mostly unnecessary, but preempt has to
637                          * be disabled to update the per-cpu stats
638                          * inside page_remove_rmap().
639                          */
640                         spin_lock(ptl);
641                         /*
642                          * paravirt calls inside pte_clear here are
643                          * superfluous.
644                          */
645                         pte_clear(vma->vm_mm, address, _pte);
646                         page_remove_rmap(src_page, false);
647                         spin_unlock(ptl);
648                         free_page_and_swap_cache(src_page);
649                 }
650
651                 address += PAGE_SIZE;
652                 page++;
653         }
654 }
655
656 static void khugepaged_alloc_sleep(void)
657 {
658         DEFINE_WAIT(wait);
659
660         add_wait_queue(&khugepaged_wait, &wait);
661         freezable_schedule_timeout_interruptible(
662                 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
663         remove_wait_queue(&khugepaged_wait, &wait);
664 }
665
666 static int khugepaged_node_load[MAX_NUMNODES];
667
668 static bool khugepaged_scan_abort(int nid)
669 {
670         int i;
671
672         /*
673          * If zone_reclaim_mode is disabled, then no extra effort is made to
674          * allocate memory locally.
675          */
676         if (!zone_reclaim_mode)
677                 return false;
678
679         /* If there is a count for this node already, it must be acceptable */
680         if (khugepaged_node_load[nid])
681                 return false;
682
683         for (i = 0; i < MAX_NUMNODES; i++) {
684                 if (!khugepaged_node_load[i])
685                         continue;
686                 if (node_distance(nid, i) > RECLAIM_DISTANCE)
687                         return true;
688         }
689         return false;
690 }
691
692 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
693 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
694 {
695         return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
696 }
697
698 #ifdef CONFIG_NUMA
699 static int khugepaged_find_target_node(void)
700 {
701         static int last_khugepaged_target_node = NUMA_NO_NODE;
702         int nid, target_node = 0, max_value = 0;
703
704         /* find first node with max normal pages hit */
705         for (nid = 0; nid < MAX_NUMNODES; nid++)
706                 if (khugepaged_node_load[nid] > max_value) {
707                         max_value = khugepaged_node_load[nid];
708                         target_node = nid;
709                 }
710
711         /* do some balance if several nodes have the same hit record */
712         if (target_node <= last_khugepaged_target_node)
713                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
714                                 nid++)
715                         if (max_value == khugepaged_node_load[nid]) {
716                                 target_node = nid;
717                                 break;
718                         }
719
720         last_khugepaged_target_node = target_node;
721         return target_node;
722 }
723
724 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
725 {
726         if (IS_ERR(*hpage)) {
727                 if (!*wait)
728                         return false;
729
730                 *wait = false;
731                 *hpage = NULL;
732                 khugepaged_alloc_sleep();
733         } else if (*hpage) {
734                 put_page(*hpage);
735                 *hpage = NULL;
736         }
737
738         return true;
739 }
740
741 static struct page *
742 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
743                        unsigned long address, int node)
744 {
745         VM_BUG_ON_PAGE(*hpage, *hpage);
746
747         /*
748          * Before allocating the hugepage, release the mmap_sem read lock.
749          * The allocation can take potentially a long time if it involves
750          * sync compaction, and we do not need to hold the mmap_sem during
751          * that. We will recheck the vma after taking it again in write mode.
752          */
753         up_read(&mm->mmap_sem);
754
755         *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
756         if (unlikely(!*hpage)) {
757                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
758                 *hpage = ERR_PTR(-ENOMEM);
759                 return NULL;
760         }
761
762         prep_transhuge_page(*hpage);
763         count_vm_event(THP_COLLAPSE_ALLOC);
764         return *hpage;
765 }
766 #else
767 static int khugepaged_find_target_node(void)
768 {
769         return 0;
770 }
771
772 static inline struct page *alloc_khugepaged_hugepage(void)
773 {
774         struct page *page;
775
776         page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
777                            HPAGE_PMD_ORDER);
778         if (page)
779                 prep_transhuge_page(page);
780         return page;
781 }
782
783 static struct page *khugepaged_alloc_hugepage(bool *wait)
784 {
785         struct page *hpage;
786
787         do {
788                 hpage = alloc_khugepaged_hugepage();
789                 if (!hpage) {
790                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
791                         if (!*wait)
792                                 return NULL;
793
794                         *wait = false;
795                         khugepaged_alloc_sleep();
796                 } else
797                         count_vm_event(THP_COLLAPSE_ALLOC);
798         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
799
800         return hpage;
801 }
802
803 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
804 {
805         if (!*hpage)
806                 *hpage = khugepaged_alloc_hugepage(wait);
807
808         if (unlikely(!*hpage))
809                 return false;
810
811         return true;
812 }
813
814 static struct page *
815 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
816                        unsigned long address, int node)
817 {
818         up_read(&mm->mmap_sem);
819         VM_BUG_ON(!*hpage);
820
821         return  *hpage;
822 }
823 #endif
824
825 static bool hugepage_vma_check(struct vm_area_struct *vma)
826 {
827         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
828             (vma->vm_flags & VM_NOHUGEPAGE))
829                 return false;
830         if (!vma->anon_vma || vma->vm_ops)
831                 return false;
832         if (is_vma_temporary_stack(vma))
833                 return false;
834         return !(vma->vm_flags & VM_NO_KHUGEPAGED);
835 }
836
837 /*
838  * If mmap_sem temporarily dropped, revalidate vma
839  * before taking mmap_sem.
840  * Return 0 if succeeds, otherwise return none-zero
841  * value (scan code).
842  */
843
844 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address)
845 {
846         struct vm_area_struct *vma;
847         unsigned long hstart, hend;
848
849         if (unlikely(khugepaged_test_exit(mm)))
850                 return SCAN_ANY_PROCESS;
851
852         vma = find_vma(mm, address);
853         if (!vma)
854                 return SCAN_VMA_NULL;
855
856         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
857         hend = vma->vm_end & HPAGE_PMD_MASK;
858         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
859                 return SCAN_ADDRESS_RANGE;
860         if (!hugepage_vma_check(vma))
861                 return SCAN_VMA_CHECK;
862         return 0;
863 }
864
865 /*
866  * Bring missing pages in from swap, to complete THP collapse.
867  * Only done if khugepaged_scan_pmd believes it is worthwhile.
868  *
869  * Called and returns without pte mapped or spinlocks held,
870  * but with mmap_sem held to protect against vma changes.
871  */
872
873 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
874                                         struct vm_area_struct *vma,
875                                         unsigned long address, pmd_t *pmd)
876 {
877         pte_t pteval;
878         int swapped_in = 0, ret = 0;
879         struct fault_env fe = {
880                 .vma = vma,
881                 .address = address,
882                 .flags = FAULT_FLAG_ALLOW_RETRY,
883                 .pmd = pmd,
884         };
885
886         fe.pte = pte_offset_map(pmd, address);
887         for (; fe.address < address + HPAGE_PMD_NR*PAGE_SIZE;
888                         fe.pte++, fe.address += PAGE_SIZE) {
889                 pteval = *fe.pte;
890                 if (!is_swap_pte(pteval))
891                         continue;
892                 swapped_in++;
893                 ret = do_swap_page(&fe, pteval);
894                 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
895                 if (ret & VM_FAULT_RETRY) {
896                         down_read(&mm->mmap_sem);
897                         /* vma is no longer available, don't continue to swapin */
898                         if (hugepage_vma_revalidate(mm, address))
899                                 return false;
900                         /* check if the pmd is still valid */
901                         if (mm_find_pmd(mm, address) != pmd)
902                                 return false;
903                 }
904                 if (ret & VM_FAULT_ERROR) {
905                         trace_mm_collapse_huge_page_swapin(mm, swapped_in, 0);
906                         return false;
907                 }
908                 /* pte is unmapped now, we need to map it */
909                 fe.pte = pte_offset_map(pmd, fe.address);
910         }
911         fe.pte--;
912         pte_unmap(fe.pte);
913         trace_mm_collapse_huge_page_swapin(mm, swapped_in, 1);
914         return true;
915 }
916
917 static void collapse_huge_page(struct mm_struct *mm,
918                                    unsigned long address,
919                                    struct page **hpage,
920                                    struct vm_area_struct *vma,
921                                    int node)
922 {
923         pmd_t *pmd, _pmd;
924         pte_t *pte;
925         pgtable_t pgtable;
926         struct page *new_page;
927         spinlock_t *pmd_ptl, *pte_ptl;
928         int isolated = 0, result = 0;
929         struct mem_cgroup *memcg;
930         unsigned long mmun_start;       /* For mmu_notifiers */
931         unsigned long mmun_end;         /* For mmu_notifiers */
932         gfp_t gfp;
933
934         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
935
936         /* Only allocate from the target node */
937         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
938
939         /* release the mmap_sem read lock. */
940         new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
941         if (!new_page) {
942                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
943                 goto out_nolock;
944         }
945
946         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
947                 result = SCAN_CGROUP_CHARGE_FAIL;
948                 goto out_nolock;
949         }
950
951         down_read(&mm->mmap_sem);
952         result = hugepage_vma_revalidate(mm, address);
953         if (result) {
954                 mem_cgroup_cancel_charge(new_page, memcg, true);
955                 up_read(&mm->mmap_sem);
956                 goto out_nolock;
957         }
958
959         pmd = mm_find_pmd(mm, address);
960         if (!pmd) {
961                 result = SCAN_PMD_NULL;
962                 mem_cgroup_cancel_charge(new_page, memcg, true);
963                 up_read(&mm->mmap_sem);
964                 goto out_nolock;
965         }
966
967         /*
968          * __collapse_huge_page_swapin always returns with mmap_sem locked.
969          * If it fails, release mmap_sem and jump directly out.
970          * Continuing to collapse causes inconsistency.
971          */
972         if (!__collapse_huge_page_swapin(mm, vma, address, pmd)) {
973                 mem_cgroup_cancel_charge(new_page, memcg, true);
974                 up_read(&mm->mmap_sem);
975                 goto out_nolock;
976         }
977
978         up_read(&mm->mmap_sem);
979         /*
980          * Prevent all access to pagetables with the exception of
981          * gup_fast later handled by the ptep_clear_flush and the VM
982          * handled by the anon_vma lock + PG_lock.
983          */
984         down_write(&mm->mmap_sem);
985         result = hugepage_vma_revalidate(mm, address);
986         if (result)
987                 goto out;
988         /* check if the pmd is still valid */
989         if (mm_find_pmd(mm, address) != pmd)
990                 goto out;
991
992         anon_vma_lock_write(vma->anon_vma);
993
994         pte = pte_offset_map(pmd, address);
995         pte_ptl = pte_lockptr(mm, pmd);
996
997         mmun_start = address;
998         mmun_end   = address + HPAGE_PMD_SIZE;
999         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1000         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1001         /*
1002          * After this gup_fast can't run anymore. This also removes
1003          * any huge TLB entry from the CPU so we won't allow
1004          * huge and small TLB entries for the same virtual address
1005          * to avoid the risk of CPU bugs in that area.
1006          */
1007         _pmd = pmdp_collapse_flush(vma, address, pmd);
1008         spin_unlock(pmd_ptl);
1009         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1010
1011         spin_lock(pte_ptl);
1012         isolated = __collapse_huge_page_isolate(vma, address, pte);
1013         spin_unlock(pte_ptl);
1014
1015         if (unlikely(!isolated)) {
1016                 pte_unmap(pte);
1017                 spin_lock(pmd_ptl);
1018                 BUG_ON(!pmd_none(*pmd));
1019                 /*
1020                  * We can only use set_pmd_at when establishing
1021                  * hugepmds and never for establishing regular pmds that
1022                  * points to regular pagetables. Use pmd_populate for that
1023                  */
1024                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1025                 spin_unlock(pmd_ptl);
1026                 anon_vma_unlock_write(vma->anon_vma);
1027                 result = SCAN_FAIL;
1028                 goto out;
1029         }
1030
1031         /*
1032          * All pages are isolated and locked so anon_vma rmap
1033          * can't run anymore.
1034          */
1035         anon_vma_unlock_write(vma->anon_vma);
1036
1037         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1038         pte_unmap(pte);
1039         __SetPageUptodate(new_page);
1040         pgtable = pmd_pgtable(_pmd);
1041
1042         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1043         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1044
1045         /*
1046          * spin_lock() below is not the equivalent of smp_wmb(), so
1047          * this is needed to avoid the copy_huge_page writes to become
1048          * visible after the set_pmd_at() write.
1049          */
1050         smp_wmb();
1051
1052         spin_lock(pmd_ptl);
1053         BUG_ON(!pmd_none(*pmd));
1054         page_add_new_anon_rmap(new_page, vma, address, true);
1055         mem_cgroup_commit_charge(new_page, memcg, false, true);
1056         lru_cache_add_active_or_unevictable(new_page, vma);
1057         pgtable_trans_huge_deposit(mm, pmd, pgtable);
1058         set_pmd_at(mm, address, pmd, _pmd);
1059         update_mmu_cache_pmd(vma, address, pmd);
1060         spin_unlock(pmd_ptl);
1061
1062         *hpage = NULL;
1063
1064         khugepaged_pages_collapsed++;
1065         result = SCAN_SUCCEED;
1066 out_up_write:
1067         up_write(&mm->mmap_sem);
1068 out_nolock:
1069         trace_mm_collapse_huge_page(mm, isolated, result);
1070         return;
1071 out:
1072         mem_cgroup_cancel_charge(new_page, memcg, true);
1073         goto out_up_write;
1074 }
1075
1076 static int khugepaged_scan_pmd(struct mm_struct *mm,
1077                                struct vm_area_struct *vma,
1078                                unsigned long address,
1079                                struct page **hpage)
1080 {
1081         pmd_t *pmd;
1082         pte_t *pte, *_pte;
1083         int ret = 0, none_or_zero = 0, result = 0;
1084         struct page *page = NULL;
1085         unsigned long _address;
1086         spinlock_t *ptl;
1087         int node = NUMA_NO_NODE, unmapped = 0;
1088         bool writable = false, referenced = false;
1089
1090         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1091
1092         pmd = mm_find_pmd(mm, address);
1093         if (!pmd) {
1094                 result = SCAN_PMD_NULL;
1095                 goto out;
1096         }
1097
1098         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1099         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1100         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1101              _pte++, _address += PAGE_SIZE) {
1102                 pte_t pteval = *_pte;
1103                 if (is_swap_pte(pteval)) {
1104                         if (++unmapped <= khugepaged_max_ptes_swap) {
1105                                 continue;
1106                         } else {
1107                                 result = SCAN_EXCEED_SWAP_PTE;
1108                                 goto out_unmap;
1109                         }
1110                 }
1111                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1112                         if (!userfaultfd_armed(vma) &&
1113                             ++none_or_zero <= khugepaged_max_ptes_none) {
1114                                 continue;
1115                         } else {
1116                                 result = SCAN_EXCEED_NONE_PTE;
1117                                 goto out_unmap;
1118                         }
1119                 }
1120                 if (!pte_present(pteval)) {
1121                         result = SCAN_PTE_NON_PRESENT;
1122                         goto out_unmap;
1123                 }
1124                 if (pte_write(pteval))
1125                         writable = true;
1126
1127                 page = vm_normal_page(vma, _address, pteval);
1128                 if (unlikely(!page)) {
1129                         result = SCAN_PAGE_NULL;
1130                         goto out_unmap;
1131                 }
1132
1133                 /* TODO: teach khugepaged to collapse THP mapped with pte */
1134                 if (PageCompound(page)) {
1135                         result = SCAN_PAGE_COMPOUND;
1136                         goto out_unmap;
1137                 }
1138
1139                 /*
1140                  * Record which node the original page is from and save this
1141                  * information to khugepaged_node_load[].
1142                  * Khupaged will allocate hugepage from the node has the max
1143                  * hit record.
1144                  */
1145                 node = page_to_nid(page);
1146                 if (khugepaged_scan_abort(node)) {
1147                         result = SCAN_SCAN_ABORT;
1148                         goto out_unmap;
1149                 }
1150                 khugepaged_node_load[node]++;
1151                 if (!PageLRU(page)) {
1152                         result = SCAN_PAGE_LRU;
1153                         goto out_unmap;
1154                 }
1155                 if (PageLocked(page)) {
1156                         result = SCAN_PAGE_LOCK;
1157                         goto out_unmap;
1158                 }
1159                 if (!PageAnon(page)) {
1160                         result = SCAN_PAGE_ANON;
1161                         goto out_unmap;
1162                 }
1163
1164                 /*
1165                  * cannot use mapcount: can't collapse if there's a gup pin.
1166                  * The page must only be referenced by the scanned process
1167                  * and page swap cache.
1168                  */
1169                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
1170                         result = SCAN_PAGE_COUNT;
1171                         goto out_unmap;
1172                 }
1173                 if (pte_young(pteval) ||
1174                     page_is_young(page) || PageReferenced(page) ||
1175                     mmu_notifier_test_young(vma->vm_mm, address))
1176                         referenced = true;
1177         }
1178         if (writable) {
1179                 if (referenced) {
1180                         result = SCAN_SUCCEED;
1181                         ret = 1;
1182                 } else {
1183                         result = SCAN_NO_REFERENCED_PAGE;
1184                 }
1185         } else {
1186                 result = SCAN_PAGE_RO;
1187         }
1188 out_unmap:
1189         pte_unmap_unlock(pte, ptl);
1190         if (ret) {
1191                 node = khugepaged_find_target_node();
1192                 /* collapse_huge_page will return with the mmap_sem released */
1193                 collapse_huge_page(mm, address, hpage, vma, node);
1194         }
1195 out:
1196         trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1197                                      none_or_zero, result, unmapped);
1198         return ret;
1199 }
1200
1201 static void collect_mm_slot(struct mm_slot *mm_slot)
1202 {
1203         struct mm_struct *mm = mm_slot->mm;
1204
1205         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1206
1207         if (khugepaged_test_exit(mm)) {
1208                 /* free mm_slot */
1209                 hash_del(&mm_slot->hash);
1210                 list_del(&mm_slot->mm_node);
1211
1212                 /*
1213                  * Not strictly needed because the mm exited already.
1214                  *
1215                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1216                  */
1217
1218                 /* khugepaged_mm_lock actually not necessary for the below */
1219                 free_mm_slot(mm_slot);
1220                 mmdrop(mm);
1221         }
1222 }
1223
1224 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1225                                             struct page **hpage)
1226         __releases(&khugepaged_mm_lock)
1227         __acquires(&khugepaged_mm_lock)
1228 {
1229         struct mm_slot *mm_slot;
1230         struct mm_struct *mm;
1231         struct vm_area_struct *vma;
1232         int progress = 0;
1233
1234         VM_BUG_ON(!pages);
1235         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1236
1237         if (khugepaged_scan.mm_slot)
1238                 mm_slot = khugepaged_scan.mm_slot;
1239         else {
1240                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
1241                                      struct mm_slot, mm_node);
1242                 khugepaged_scan.address = 0;
1243                 khugepaged_scan.mm_slot = mm_slot;
1244         }
1245         spin_unlock(&khugepaged_mm_lock);
1246
1247         mm = mm_slot->mm;
1248         down_read(&mm->mmap_sem);
1249         if (unlikely(khugepaged_test_exit(mm)))
1250                 vma = NULL;
1251         else
1252                 vma = find_vma(mm, khugepaged_scan.address);
1253
1254         progress++;
1255         for (; vma; vma = vma->vm_next) {
1256                 unsigned long hstart, hend;
1257
1258                 cond_resched();
1259                 if (unlikely(khugepaged_test_exit(mm))) {
1260                         progress++;
1261                         break;
1262                 }
1263                 if (!hugepage_vma_check(vma)) {
1264 skip:
1265                         progress++;
1266                         continue;
1267                 }
1268                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1269                 hend = vma->vm_end & HPAGE_PMD_MASK;
1270                 if (hstart >= hend)
1271                         goto skip;
1272                 if (khugepaged_scan.address > hend)
1273                         goto skip;
1274                 if (khugepaged_scan.address < hstart)
1275                         khugepaged_scan.address = hstart;
1276                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1277
1278                 while (khugepaged_scan.address < hend) {
1279                         int ret;
1280                         cond_resched();
1281                         if (unlikely(khugepaged_test_exit(mm)))
1282                                 goto breakouterloop;
1283
1284                         VM_BUG_ON(khugepaged_scan.address < hstart ||
1285                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
1286                                   hend);
1287                         ret = khugepaged_scan_pmd(mm, vma,
1288                                                   khugepaged_scan.address,
1289                                                   hpage);
1290                         /* move to next address */
1291                         khugepaged_scan.address += HPAGE_PMD_SIZE;
1292                         progress += HPAGE_PMD_NR;
1293                         if (ret)
1294                                 /* we released mmap_sem so break loop */
1295                                 goto breakouterloop_mmap_sem;
1296                         if (progress >= pages)
1297                                 goto breakouterloop;
1298                 }
1299         }
1300 breakouterloop:
1301         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
1302 breakouterloop_mmap_sem:
1303
1304         spin_lock(&khugepaged_mm_lock);
1305         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
1306         /*
1307          * Release the current mm_slot if this mm is about to die, or
1308          * if we scanned all vmas of this mm.
1309          */
1310         if (khugepaged_test_exit(mm) || !vma) {
1311                 /*
1312                  * Make sure that if mm_users is reaching zero while
1313                  * khugepaged runs here, khugepaged_exit will find
1314                  * mm_slot not pointing to the exiting mm.
1315                  */
1316                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
1317                         khugepaged_scan.mm_slot = list_entry(
1318                                 mm_slot->mm_node.next,
1319                                 struct mm_slot, mm_node);
1320                         khugepaged_scan.address = 0;
1321                 } else {
1322                         khugepaged_scan.mm_slot = NULL;
1323                         khugepaged_full_scans++;
1324                 }
1325
1326                 collect_mm_slot(mm_slot);
1327         }
1328
1329         return progress;
1330 }
1331
1332 static int khugepaged_has_work(void)
1333 {
1334         return !list_empty(&khugepaged_scan.mm_head) &&
1335                 khugepaged_enabled();
1336 }
1337
1338 static int khugepaged_wait_event(void)
1339 {
1340         return !list_empty(&khugepaged_scan.mm_head) ||
1341                 kthread_should_stop();
1342 }
1343
1344 static void khugepaged_do_scan(void)
1345 {
1346         struct page *hpage = NULL;
1347         unsigned int progress = 0, pass_through_head = 0;
1348         unsigned int pages = khugepaged_pages_to_scan;
1349         bool wait = true;
1350
1351         barrier(); /* write khugepaged_pages_to_scan to local stack */
1352
1353         while (progress < pages) {
1354                 if (!khugepaged_prealloc_page(&hpage, &wait))
1355                         break;
1356
1357                 cond_resched();
1358
1359                 if (unlikely(kthread_should_stop() || try_to_freeze()))
1360                         break;
1361
1362                 spin_lock(&khugepaged_mm_lock);
1363                 if (!khugepaged_scan.mm_slot)
1364                         pass_through_head++;
1365                 if (khugepaged_has_work() &&
1366                     pass_through_head < 2)
1367                         progress += khugepaged_scan_mm_slot(pages - progress,
1368                                                             &hpage);
1369                 else
1370                         progress = pages;
1371                 spin_unlock(&khugepaged_mm_lock);
1372         }
1373
1374         if (!IS_ERR_OR_NULL(hpage))
1375                 put_page(hpage);
1376 }
1377
1378 static bool khugepaged_should_wakeup(void)
1379 {
1380         return kthread_should_stop() ||
1381                time_after_eq(jiffies, khugepaged_sleep_expire);
1382 }
1383
1384 static void khugepaged_wait_work(void)
1385 {
1386         if (khugepaged_has_work()) {
1387                 const unsigned long scan_sleep_jiffies =
1388                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
1389
1390                 if (!scan_sleep_jiffies)
1391                         return;
1392
1393                 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
1394                 wait_event_freezable_timeout(khugepaged_wait,
1395                                              khugepaged_should_wakeup(),
1396                                              scan_sleep_jiffies);
1397                 return;
1398         }
1399
1400         if (khugepaged_enabled())
1401                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
1402 }
1403
1404 static int khugepaged(void *none)
1405 {
1406         struct mm_slot *mm_slot;
1407
1408         set_freezable();
1409         set_user_nice(current, MAX_NICE);
1410
1411         while (!kthread_should_stop()) {
1412                 khugepaged_do_scan();
1413                 khugepaged_wait_work();
1414         }
1415
1416         spin_lock(&khugepaged_mm_lock);
1417         mm_slot = khugepaged_scan.mm_slot;
1418         khugepaged_scan.mm_slot = NULL;
1419         if (mm_slot)
1420                 collect_mm_slot(mm_slot);
1421         spin_unlock(&khugepaged_mm_lock);
1422         return 0;
1423 }
1424
1425 static void set_recommended_min_free_kbytes(void)
1426 {
1427         struct zone *zone;
1428         int nr_zones = 0;
1429         unsigned long recommended_min;
1430
1431         for_each_populated_zone(zone)
1432                 nr_zones++;
1433
1434         /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
1435         recommended_min = pageblock_nr_pages * nr_zones * 2;
1436
1437         /*
1438          * Make sure that on average at least two pageblocks are almost free
1439          * of another type, one for a migratetype to fall back to and a
1440          * second to avoid subsequent fallbacks of other types There are 3
1441          * MIGRATE_TYPES we care about.
1442          */
1443         recommended_min += pageblock_nr_pages * nr_zones *
1444                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
1445
1446         /* don't ever allow to reserve more than 5% of the lowmem */
1447         recommended_min = min(recommended_min,
1448                               (unsigned long) nr_free_buffer_pages() / 20);
1449         recommended_min <<= (PAGE_SHIFT-10);
1450
1451         if (recommended_min > min_free_kbytes) {
1452                 if (user_min_free_kbytes >= 0)
1453                         pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
1454                                 min_free_kbytes, recommended_min);
1455
1456                 min_free_kbytes = recommended_min;
1457         }
1458         setup_per_zone_wmarks();
1459 }
1460
1461 int start_stop_khugepaged(void)
1462 {
1463         static struct task_struct *khugepaged_thread __read_mostly;
1464         static DEFINE_MUTEX(khugepaged_mutex);
1465         int err = 0;
1466
1467         mutex_lock(&khugepaged_mutex);
1468         if (khugepaged_enabled()) {
1469                 if (!khugepaged_thread)
1470                         khugepaged_thread = kthread_run(khugepaged, NULL,
1471                                                         "khugepaged");
1472                 if (IS_ERR(khugepaged_thread)) {
1473                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
1474                         err = PTR_ERR(khugepaged_thread);
1475                         khugepaged_thread = NULL;
1476                         goto fail;
1477                 }
1478
1479                 if (!list_empty(&khugepaged_scan.mm_head))
1480                         wake_up_interruptible(&khugepaged_wait);
1481
1482                 set_recommended_min_free_kbytes();
1483         } else if (khugepaged_thread) {
1484                 kthread_stop(khugepaged_thread);
1485                 khugepaged_thread = NULL;
1486         }
1487 fail:
1488         mutex_unlock(&khugepaged_mutex);
1489         return err;
1490 }