]> asedeno.scripts.mit.edu Git - linux.git/blob - mm/khugepaged.c
mm,thp: avoid writes to file with THP in pagecache
[linux.git] / mm / khugepaged.c
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
21
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
25
26 enum scan_result {
27         SCAN_FAIL,
28         SCAN_SUCCEED,
29         SCAN_PMD_NULL,
30         SCAN_EXCEED_NONE_PTE,
31         SCAN_PTE_NON_PRESENT,
32         SCAN_PAGE_RO,
33         SCAN_LACK_REFERENCED_PAGE,
34         SCAN_PAGE_NULL,
35         SCAN_SCAN_ABORT,
36         SCAN_PAGE_COUNT,
37         SCAN_PAGE_LRU,
38         SCAN_PAGE_LOCK,
39         SCAN_PAGE_ANON,
40         SCAN_PAGE_COMPOUND,
41         SCAN_ANY_PROCESS,
42         SCAN_VMA_NULL,
43         SCAN_VMA_CHECK,
44         SCAN_ADDRESS_RANGE,
45         SCAN_SWAP_CACHE_PAGE,
46         SCAN_DEL_PAGE_LRU,
47         SCAN_ALLOC_HUGE_PAGE_FAIL,
48         SCAN_CGROUP_CHARGE_FAIL,
49         SCAN_EXCEED_SWAP_PTE,
50         SCAN_TRUNCATED,
51         SCAN_PAGE_HAS_PRIVATE,
52 };
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/huge_memory.h>
56
57 /* default scan 8*512 pte (or vmas) every 30 second */
58 static unsigned int khugepaged_pages_to_scan __read_mostly;
59 static unsigned int khugepaged_pages_collapsed;
60 static unsigned int khugepaged_full_scans;
61 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
62 /* during fragmentation poll the hugepage allocator once every minute */
63 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
64 static unsigned long khugepaged_sleep_expire;
65 static DEFINE_SPINLOCK(khugepaged_mm_lock);
66 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
67 /*
68  * default collapse hugepages if there is at least one pte mapped like
69  * it would have happened if the vma was large enough during page
70  * fault.
71  */
72 static unsigned int khugepaged_max_ptes_none __read_mostly;
73 static unsigned int khugepaged_max_ptes_swap __read_mostly;
74
75 #define MM_SLOTS_HASH_BITS 10
76 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
77
78 static struct kmem_cache *mm_slot_cache __read_mostly;
79
80 /**
81  * struct mm_slot - hash lookup from mm to mm_slot
82  * @hash: hash collision list
83  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
84  * @mm: the mm that this information is valid for
85  */
86 struct mm_slot {
87         struct hlist_node hash;
88         struct list_head mm_node;
89         struct mm_struct *mm;
90 };
91
92 /**
93  * struct khugepaged_scan - cursor for scanning
94  * @mm_head: the head of the mm list to scan
95  * @mm_slot: the current mm_slot we are scanning
96  * @address: the next address inside that to be scanned
97  *
98  * There is only the one khugepaged_scan instance of this cursor structure.
99  */
100 struct khugepaged_scan {
101         struct list_head mm_head;
102         struct mm_slot *mm_slot;
103         unsigned long address;
104 };
105
106 static struct khugepaged_scan khugepaged_scan = {
107         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
108 };
109
110 #ifdef CONFIG_SYSFS
111 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
112                                          struct kobj_attribute *attr,
113                                          char *buf)
114 {
115         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
116 }
117
118 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
119                                           struct kobj_attribute *attr,
120                                           const char *buf, size_t count)
121 {
122         unsigned long msecs;
123         int err;
124
125         err = kstrtoul(buf, 10, &msecs);
126         if (err || msecs > UINT_MAX)
127                 return -EINVAL;
128
129         khugepaged_scan_sleep_millisecs = msecs;
130         khugepaged_sleep_expire = 0;
131         wake_up_interruptible(&khugepaged_wait);
132
133         return count;
134 }
135 static struct kobj_attribute scan_sleep_millisecs_attr =
136         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
137                scan_sleep_millisecs_store);
138
139 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
140                                           struct kobj_attribute *attr,
141                                           char *buf)
142 {
143         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
144 }
145
146 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
147                                            struct kobj_attribute *attr,
148                                            const char *buf, size_t count)
149 {
150         unsigned long msecs;
151         int err;
152
153         err = kstrtoul(buf, 10, &msecs);
154         if (err || msecs > UINT_MAX)
155                 return -EINVAL;
156
157         khugepaged_alloc_sleep_millisecs = msecs;
158         khugepaged_sleep_expire = 0;
159         wake_up_interruptible(&khugepaged_wait);
160
161         return count;
162 }
163 static struct kobj_attribute alloc_sleep_millisecs_attr =
164         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
165                alloc_sleep_millisecs_store);
166
167 static ssize_t pages_to_scan_show(struct kobject *kobj,
168                                   struct kobj_attribute *attr,
169                                   char *buf)
170 {
171         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
172 }
173 static ssize_t pages_to_scan_store(struct kobject *kobj,
174                                    struct kobj_attribute *attr,
175                                    const char *buf, size_t count)
176 {
177         int err;
178         unsigned long pages;
179
180         err = kstrtoul(buf, 10, &pages);
181         if (err || !pages || pages > UINT_MAX)
182                 return -EINVAL;
183
184         khugepaged_pages_to_scan = pages;
185
186         return count;
187 }
188 static struct kobj_attribute pages_to_scan_attr =
189         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
190                pages_to_scan_store);
191
192 static ssize_t pages_collapsed_show(struct kobject *kobj,
193                                     struct kobj_attribute *attr,
194                                     char *buf)
195 {
196         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
197 }
198 static struct kobj_attribute pages_collapsed_attr =
199         __ATTR_RO(pages_collapsed);
200
201 static ssize_t full_scans_show(struct kobject *kobj,
202                                struct kobj_attribute *attr,
203                                char *buf)
204 {
205         return sprintf(buf, "%u\n", khugepaged_full_scans);
206 }
207 static struct kobj_attribute full_scans_attr =
208         __ATTR_RO(full_scans);
209
210 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
211                                       struct kobj_attribute *attr, char *buf)
212 {
213         return single_hugepage_flag_show(kobj, attr, buf,
214                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
215 }
216 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
217                                        struct kobj_attribute *attr,
218                                        const char *buf, size_t count)
219 {
220         return single_hugepage_flag_store(kobj, attr, buf, count,
221                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
222 }
223 static struct kobj_attribute khugepaged_defrag_attr =
224         __ATTR(defrag, 0644, khugepaged_defrag_show,
225                khugepaged_defrag_store);
226
227 /*
228  * max_ptes_none controls if khugepaged should collapse hugepages over
229  * any unmapped ptes in turn potentially increasing the memory
230  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
231  * reduce the available free memory in the system as it
232  * runs. Increasing max_ptes_none will instead potentially reduce the
233  * free memory in the system during the khugepaged scan.
234  */
235 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
236                                              struct kobj_attribute *attr,
237                                              char *buf)
238 {
239         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
240 }
241 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
242                                               struct kobj_attribute *attr,
243                                               const char *buf, size_t count)
244 {
245         int err;
246         unsigned long max_ptes_none;
247
248         err = kstrtoul(buf, 10, &max_ptes_none);
249         if (err || max_ptes_none > HPAGE_PMD_NR-1)
250                 return -EINVAL;
251
252         khugepaged_max_ptes_none = max_ptes_none;
253
254         return count;
255 }
256 static struct kobj_attribute khugepaged_max_ptes_none_attr =
257         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
258                khugepaged_max_ptes_none_store);
259
260 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
261                                              struct kobj_attribute *attr,
262                                              char *buf)
263 {
264         return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
265 }
266
267 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
268                                               struct kobj_attribute *attr,
269                                               const char *buf, size_t count)
270 {
271         int err;
272         unsigned long max_ptes_swap;
273
274         err  = kstrtoul(buf, 10, &max_ptes_swap);
275         if (err || max_ptes_swap > HPAGE_PMD_NR-1)
276                 return -EINVAL;
277
278         khugepaged_max_ptes_swap = max_ptes_swap;
279
280         return count;
281 }
282
283 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
284         __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
285                khugepaged_max_ptes_swap_store);
286
287 static struct attribute *khugepaged_attr[] = {
288         &khugepaged_defrag_attr.attr,
289         &khugepaged_max_ptes_none_attr.attr,
290         &pages_to_scan_attr.attr,
291         &pages_collapsed_attr.attr,
292         &full_scans_attr.attr,
293         &scan_sleep_millisecs_attr.attr,
294         &alloc_sleep_millisecs_attr.attr,
295         &khugepaged_max_ptes_swap_attr.attr,
296         NULL,
297 };
298
299 struct attribute_group khugepaged_attr_group = {
300         .attrs = khugepaged_attr,
301         .name = "khugepaged",
302 };
303 #endif /* CONFIG_SYSFS */
304
305 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
306
307 int hugepage_madvise(struct vm_area_struct *vma,
308                      unsigned long *vm_flags, int advice)
309 {
310         switch (advice) {
311         case MADV_HUGEPAGE:
312 #ifdef CONFIG_S390
313                 /*
314                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
315                  * can't handle this properly after s390_enable_sie, so we simply
316                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
317                  */
318                 if (mm_has_pgste(vma->vm_mm))
319                         return 0;
320 #endif
321                 *vm_flags &= ~VM_NOHUGEPAGE;
322                 *vm_flags |= VM_HUGEPAGE;
323                 /*
324                  * If the vma become good for khugepaged to scan,
325                  * register it here without waiting a page fault that
326                  * may not happen any time soon.
327                  */
328                 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
329                                 khugepaged_enter_vma_merge(vma, *vm_flags))
330                         return -ENOMEM;
331                 break;
332         case MADV_NOHUGEPAGE:
333                 *vm_flags &= ~VM_HUGEPAGE;
334                 *vm_flags |= VM_NOHUGEPAGE;
335                 /*
336                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
337                  * this vma even if we leave the mm registered in khugepaged if
338                  * it got registered before VM_NOHUGEPAGE was set.
339                  */
340                 break;
341         }
342
343         return 0;
344 }
345
346 int __init khugepaged_init(void)
347 {
348         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
349                                           sizeof(struct mm_slot),
350                                           __alignof__(struct mm_slot), 0, NULL);
351         if (!mm_slot_cache)
352                 return -ENOMEM;
353
354         khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
355         khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
356         khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
357
358         return 0;
359 }
360
361 void __init khugepaged_destroy(void)
362 {
363         kmem_cache_destroy(mm_slot_cache);
364 }
365
366 static inline struct mm_slot *alloc_mm_slot(void)
367 {
368         if (!mm_slot_cache)     /* initialization failed */
369                 return NULL;
370         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
371 }
372
373 static inline void free_mm_slot(struct mm_slot *mm_slot)
374 {
375         kmem_cache_free(mm_slot_cache, mm_slot);
376 }
377
378 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
379 {
380         struct mm_slot *mm_slot;
381
382         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
383                 if (mm == mm_slot->mm)
384                         return mm_slot;
385
386         return NULL;
387 }
388
389 static void insert_to_mm_slots_hash(struct mm_struct *mm,
390                                     struct mm_slot *mm_slot)
391 {
392         mm_slot->mm = mm;
393         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
394 }
395
396 static inline int khugepaged_test_exit(struct mm_struct *mm)
397 {
398         return atomic_read(&mm->mm_users) == 0;
399 }
400
401 static bool hugepage_vma_check(struct vm_area_struct *vma,
402                                unsigned long vm_flags)
403 {
404         if ((!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
405             (vm_flags & VM_NOHUGEPAGE) ||
406             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
407                 return false;
408
409         if (shmem_file(vma->vm_file) ||
410             (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
411              vma->vm_file &&
412              (vm_flags & VM_DENYWRITE))) {
413                 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
414                         return false;
415                 return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
416                                 HPAGE_PMD_NR);
417         }
418         if (!vma->anon_vma || vma->vm_ops)
419                 return false;
420         if (is_vma_temporary_stack(vma))
421                 return false;
422         return !(vm_flags & VM_NO_KHUGEPAGED);
423 }
424
425 int __khugepaged_enter(struct mm_struct *mm)
426 {
427         struct mm_slot *mm_slot;
428         int wakeup;
429
430         mm_slot = alloc_mm_slot();
431         if (!mm_slot)
432                 return -ENOMEM;
433
434         /* __khugepaged_exit() must not run from under us */
435         VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
436         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
437                 free_mm_slot(mm_slot);
438                 return 0;
439         }
440
441         spin_lock(&khugepaged_mm_lock);
442         insert_to_mm_slots_hash(mm, mm_slot);
443         /*
444          * Insert just behind the scanning cursor, to let the area settle
445          * down a little.
446          */
447         wakeup = list_empty(&khugepaged_scan.mm_head);
448         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
449         spin_unlock(&khugepaged_mm_lock);
450
451         mmgrab(mm);
452         if (wakeup)
453                 wake_up_interruptible(&khugepaged_wait);
454
455         return 0;
456 }
457
458 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
459                                unsigned long vm_flags)
460 {
461         unsigned long hstart, hend;
462
463         /*
464          * khugepaged only supports read-only files for non-shmem files.
465          * khugepaged does not yet work on special mappings. And
466          * file-private shmem THP is not supported.
467          */
468         if (!hugepage_vma_check(vma, vm_flags))
469                 return 0;
470
471         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
472         hend = vma->vm_end & HPAGE_PMD_MASK;
473         if (hstart < hend)
474                 return khugepaged_enter(vma, vm_flags);
475         return 0;
476 }
477
478 void __khugepaged_exit(struct mm_struct *mm)
479 {
480         struct mm_slot *mm_slot;
481         int free = 0;
482
483         spin_lock(&khugepaged_mm_lock);
484         mm_slot = get_mm_slot(mm);
485         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
486                 hash_del(&mm_slot->hash);
487                 list_del(&mm_slot->mm_node);
488                 free = 1;
489         }
490         spin_unlock(&khugepaged_mm_lock);
491
492         if (free) {
493                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
494                 free_mm_slot(mm_slot);
495                 mmdrop(mm);
496         } else if (mm_slot) {
497                 /*
498                  * This is required to serialize against
499                  * khugepaged_test_exit() (which is guaranteed to run
500                  * under mmap sem read mode). Stop here (after we
501                  * return all pagetables will be destroyed) until
502                  * khugepaged has finished working on the pagetables
503                  * under the mmap_sem.
504                  */
505                 down_write(&mm->mmap_sem);
506                 up_write(&mm->mmap_sem);
507         }
508 }
509
510 static void release_pte_page(struct page *page)
511 {
512         dec_node_page_state(page, NR_ISOLATED_ANON + page_is_file_cache(page));
513         unlock_page(page);
514         putback_lru_page(page);
515 }
516
517 static void release_pte_pages(pte_t *pte, pte_t *_pte)
518 {
519         while (--_pte >= pte) {
520                 pte_t pteval = *_pte;
521                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
522                         release_pte_page(pte_page(pteval));
523         }
524 }
525
526 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
527                                         unsigned long address,
528                                         pte_t *pte)
529 {
530         struct page *page = NULL;
531         pte_t *_pte;
532         int none_or_zero = 0, result = 0, referenced = 0;
533         bool writable = false;
534
535         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
536              _pte++, address += PAGE_SIZE) {
537                 pte_t pteval = *_pte;
538                 if (pte_none(pteval) || (pte_present(pteval) &&
539                                 is_zero_pfn(pte_pfn(pteval)))) {
540                         if (!userfaultfd_armed(vma) &&
541                             ++none_or_zero <= khugepaged_max_ptes_none) {
542                                 continue;
543                         } else {
544                                 result = SCAN_EXCEED_NONE_PTE;
545                                 goto out;
546                         }
547                 }
548                 if (!pte_present(pteval)) {
549                         result = SCAN_PTE_NON_PRESENT;
550                         goto out;
551                 }
552                 page = vm_normal_page(vma, address, pteval);
553                 if (unlikely(!page)) {
554                         result = SCAN_PAGE_NULL;
555                         goto out;
556                 }
557
558                 /* TODO: teach khugepaged to collapse THP mapped with pte */
559                 if (PageCompound(page)) {
560                         result = SCAN_PAGE_COMPOUND;
561                         goto out;
562                 }
563
564                 VM_BUG_ON_PAGE(!PageAnon(page), page);
565
566                 /*
567                  * We can do it before isolate_lru_page because the
568                  * page can't be freed from under us. NOTE: PG_lock
569                  * is needed to serialize against split_huge_page
570                  * when invoked from the VM.
571                  */
572                 if (!trylock_page(page)) {
573                         result = SCAN_PAGE_LOCK;
574                         goto out;
575                 }
576
577                 /*
578                  * cannot use mapcount: can't collapse if there's a gup pin.
579                  * The page must only be referenced by the scanned process
580                  * and page swap cache.
581                  */
582                 if (page_count(page) != 1 + PageSwapCache(page)) {
583                         unlock_page(page);
584                         result = SCAN_PAGE_COUNT;
585                         goto out;
586                 }
587                 if (pte_write(pteval)) {
588                         writable = true;
589                 } else {
590                         if (PageSwapCache(page) &&
591                             !reuse_swap_page(page, NULL)) {
592                                 unlock_page(page);
593                                 result = SCAN_SWAP_CACHE_PAGE;
594                                 goto out;
595                         }
596                         /*
597                          * Page is not in the swap cache. It can be collapsed
598                          * into a THP.
599                          */
600                 }
601
602                 /*
603                  * Isolate the page to avoid collapsing an hugepage
604                  * currently in use by the VM.
605                  */
606                 if (isolate_lru_page(page)) {
607                         unlock_page(page);
608                         result = SCAN_DEL_PAGE_LRU;
609                         goto out;
610                 }
611                 inc_node_page_state(page,
612                                 NR_ISOLATED_ANON + page_is_file_cache(page));
613                 VM_BUG_ON_PAGE(!PageLocked(page), page);
614                 VM_BUG_ON_PAGE(PageLRU(page), page);
615
616                 /* There should be enough young pte to collapse the page */
617                 if (pte_young(pteval) ||
618                     page_is_young(page) || PageReferenced(page) ||
619                     mmu_notifier_test_young(vma->vm_mm, address))
620                         referenced++;
621         }
622         if (likely(writable)) {
623                 if (likely(referenced)) {
624                         result = SCAN_SUCCEED;
625                         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
626                                                             referenced, writable, result);
627                         return 1;
628                 }
629         } else {
630                 result = SCAN_PAGE_RO;
631         }
632
633 out:
634         release_pte_pages(pte, _pte);
635         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
636                                             referenced, writable, result);
637         return 0;
638 }
639
640 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
641                                       struct vm_area_struct *vma,
642                                       unsigned long address,
643                                       spinlock_t *ptl)
644 {
645         pte_t *_pte;
646         for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
647                                 _pte++, page++, address += PAGE_SIZE) {
648                 pte_t pteval = *_pte;
649                 struct page *src_page;
650
651                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
652                         clear_user_highpage(page, address);
653                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
654                         if (is_zero_pfn(pte_pfn(pteval))) {
655                                 /*
656                                  * ptl mostly unnecessary.
657                                  */
658                                 spin_lock(ptl);
659                                 /*
660                                  * paravirt calls inside pte_clear here are
661                                  * superfluous.
662                                  */
663                                 pte_clear(vma->vm_mm, address, _pte);
664                                 spin_unlock(ptl);
665                         }
666                 } else {
667                         src_page = pte_page(pteval);
668                         copy_user_highpage(page, src_page, address, vma);
669                         VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
670                         release_pte_page(src_page);
671                         /*
672                          * ptl mostly unnecessary, but preempt has to
673                          * be disabled to update the per-cpu stats
674                          * inside page_remove_rmap().
675                          */
676                         spin_lock(ptl);
677                         /*
678                          * paravirt calls inside pte_clear here are
679                          * superfluous.
680                          */
681                         pte_clear(vma->vm_mm, address, _pte);
682                         page_remove_rmap(src_page, false);
683                         spin_unlock(ptl);
684                         free_page_and_swap_cache(src_page);
685                 }
686         }
687 }
688
689 static void khugepaged_alloc_sleep(void)
690 {
691         DEFINE_WAIT(wait);
692
693         add_wait_queue(&khugepaged_wait, &wait);
694         freezable_schedule_timeout_interruptible(
695                 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
696         remove_wait_queue(&khugepaged_wait, &wait);
697 }
698
699 static int khugepaged_node_load[MAX_NUMNODES];
700
701 static bool khugepaged_scan_abort(int nid)
702 {
703         int i;
704
705         /*
706          * If node_reclaim_mode is disabled, then no extra effort is made to
707          * allocate memory locally.
708          */
709         if (!node_reclaim_mode)
710                 return false;
711
712         /* If there is a count for this node already, it must be acceptable */
713         if (khugepaged_node_load[nid])
714                 return false;
715
716         for (i = 0; i < MAX_NUMNODES; i++) {
717                 if (!khugepaged_node_load[i])
718                         continue;
719                 if (node_distance(nid, i) > node_reclaim_distance)
720                         return true;
721         }
722         return false;
723 }
724
725 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
726 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
727 {
728         return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
729 }
730
731 #ifdef CONFIG_NUMA
732 static int khugepaged_find_target_node(void)
733 {
734         static int last_khugepaged_target_node = NUMA_NO_NODE;
735         int nid, target_node = 0, max_value = 0;
736
737         /* find first node with max normal pages hit */
738         for (nid = 0; nid < MAX_NUMNODES; nid++)
739                 if (khugepaged_node_load[nid] > max_value) {
740                         max_value = khugepaged_node_load[nid];
741                         target_node = nid;
742                 }
743
744         /* do some balance if several nodes have the same hit record */
745         if (target_node <= last_khugepaged_target_node)
746                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
747                                 nid++)
748                         if (max_value == khugepaged_node_load[nid]) {
749                                 target_node = nid;
750                                 break;
751                         }
752
753         last_khugepaged_target_node = target_node;
754         return target_node;
755 }
756
757 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
758 {
759         if (IS_ERR(*hpage)) {
760                 if (!*wait)
761                         return false;
762
763                 *wait = false;
764                 *hpage = NULL;
765                 khugepaged_alloc_sleep();
766         } else if (*hpage) {
767                 put_page(*hpage);
768                 *hpage = NULL;
769         }
770
771         return true;
772 }
773
774 static struct page *
775 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
776 {
777         VM_BUG_ON_PAGE(*hpage, *hpage);
778
779         *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
780         if (unlikely(!*hpage)) {
781                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
782                 *hpage = ERR_PTR(-ENOMEM);
783                 return NULL;
784         }
785
786         prep_transhuge_page(*hpage);
787         count_vm_event(THP_COLLAPSE_ALLOC);
788         return *hpage;
789 }
790 #else
791 static int khugepaged_find_target_node(void)
792 {
793         return 0;
794 }
795
796 static inline struct page *alloc_khugepaged_hugepage(void)
797 {
798         struct page *page;
799
800         page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
801                            HPAGE_PMD_ORDER);
802         if (page)
803                 prep_transhuge_page(page);
804         return page;
805 }
806
807 static struct page *khugepaged_alloc_hugepage(bool *wait)
808 {
809         struct page *hpage;
810
811         do {
812                 hpage = alloc_khugepaged_hugepage();
813                 if (!hpage) {
814                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
815                         if (!*wait)
816                                 return NULL;
817
818                         *wait = false;
819                         khugepaged_alloc_sleep();
820                 } else
821                         count_vm_event(THP_COLLAPSE_ALLOC);
822         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
823
824         return hpage;
825 }
826
827 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
828 {
829         if (!*hpage)
830                 *hpage = khugepaged_alloc_hugepage(wait);
831
832         if (unlikely(!*hpage))
833                 return false;
834
835         return true;
836 }
837
838 static struct page *
839 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
840 {
841         VM_BUG_ON(!*hpage);
842
843         return  *hpage;
844 }
845 #endif
846
847 /*
848  * If mmap_sem temporarily dropped, revalidate vma
849  * before taking mmap_sem.
850  * Return 0 if succeeds, otherwise return none-zero
851  * value (scan code).
852  */
853
854 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
855                 struct vm_area_struct **vmap)
856 {
857         struct vm_area_struct *vma;
858         unsigned long hstart, hend;
859
860         if (unlikely(khugepaged_test_exit(mm)))
861                 return SCAN_ANY_PROCESS;
862
863         *vmap = vma = find_vma(mm, address);
864         if (!vma)
865                 return SCAN_VMA_NULL;
866
867         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
868         hend = vma->vm_end & HPAGE_PMD_MASK;
869         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
870                 return SCAN_ADDRESS_RANGE;
871         if (!hugepage_vma_check(vma, vma->vm_flags))
872                 return SCAN_VMA_CHECK;
873         return 0;
874 }
875
876 /*
877  * Bring missing pages in from swap, to complete THP collapse.
878  * Only done if khugepaged_scan_pmd believes it is worthwhile.
879  *
880  * Called and returns without pte mapped or spinlocks held,
881  * but with mmap_sem held to protect against vma changes.
882  */
883
884 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
885                                         struct vm_area_struct *vma,
886                                         unsigned long address, pmd_t *pmd,
887                                         int referenced)
888 {
889         int swapped_in = 0;
890         vm_fault_t ret = 0;
891         struct vm_fault vmf = {
892                 .vma = vma,
893                 .address = address,
894                 .flags = FAULT_FLAG_ALLOW_RETRY,
895                 .pmd = pmd,
896                 .pgoff = linear_page_index(vma, address),
897         };
898
899         /* we only decide to swapin, if there is enough young ptes */
900         if (referenced < HPAGE_PMD_NR/2) {
901                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
902                 return false;
903         }
904         vmf.pte = pte_offset_map(pmd, address);
905         for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
906                         vmf.pte++, vmf.address += PAGE_SIZE) {
907                 vmf.orig_pte = *vmf.pte;
908                 if (!is_swap_pte(vmf.orig_pte))
909                         continue;
910                 swapped_in++;
911                 ret = do_swap_page(&vmf);
912
913                 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
914                 if (ret & VM_FAULT_RETRY) {
915                         down_read(&mm->mmap_sem);
916                         if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
917                                 /* vma is no longer available, don't continue to swapin */
918                                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
919                                 return false;
920                         }
921                         /* check if the pmd is still valid */
922                         if (mm_find_pmd(mm, address) != pmd) {
923                                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
924                                 return false;
925                         }
926                 }
927                 if (ret & VM_FAULT_ERROR) {
928                         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
929                         return false;
930                 }
931                 /* pte is unmapped now, we need to map it */
932                 vmf.pte = pte_offset_map(pmd, vmf.address);
933         }
934         vmf.pte--;
935         pte_unmap(vmf.pte);
936         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
937         return true;
938 }
939
940 static void collapse_huge_page(struct mm_struct *mm,
941                                    unsigned long address,
942                                    struct page **hpage,
943                                    int node, int referenced)
944 {
945         pmd_t *pmd, _pmd;
946         pte_t *pte;
947         pgtable_t pgtable;
948         struct page *new_page;
949         spinlock_t *pmd_ptl, *pte_ptl;
950         int isolated = 0, result = 0;
951         struct mem_cgroup *memcg;
952         struct vm_area_struct *vma;
953         struct mmu_notifier_range range;
954         gfp_t gfp;
955
956         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
957
958         /* Only allocate from the target node */
959         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
960
961         /*
962          * Before allocating the hugepage, release the mmap_sem read lock.
963          * The allocation can take potentially a long time if it involves
964          * sync compaction, and we do not need to hold the mmap_sem during
965          * that. We will recheck the vma after taking it again in write mode.
966          */
967         up_read(&mm->mmap_sem);
968         new_page = khugepaged_alloc_page(hpage, gfp, node);
969         if (!new_page) {
970                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
971                 goto out_nolock;
972         }
973
974         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
975                 result = SCAN_CGROUP_CHARGE_FAIL;
976                 goto out_nolock;
977         }
978
979         down_read(&mm->mmap_sem);
980         result = hugepage_vma_revalidate(mm, address, &vma);
981         if (result) {
982                 mem_cgroup_cancel_charge(new_page, memcg, true);
983                 up_read(&mm->mmap_sem);
984                 goto out_nolock;
985         }
986
987         pmd = mm_find_pmd(mm, address);
988         if (!pmd) {
989                 result = SCAN_PMD_NULL;
990                 mem_cgroup_cancel_charge(new_page, memcg, true);
991                 up_read(&mm->mmap_sem);
992                 goto out_nolock;
993         }
994
995         /*
996          * __collapse_huge_page_swapin always returns with mmap_sem locked.
997          * If it fails, we release mmap_sem and jump out_nolock.
998          * Continuing to collapse causes inconsistency.
999          */
1000         if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
1001                 mem_cgroup_cancel_charge(new_page, memcg, true);
1002                 up_read(&mm->mmap_sem);
1003                 goto out_nolock;
1004         }
1005
1006         up_read(&mm->mmap_sem);
1007         /*
1008          * Prevent all access to pagetables with the exception of
1009          * gup_fast later handled by the ptep_clear_flush and the VM
1010          * handled by the anon_vma lock + PG_lock.
1011          */
1012         down_write(&mm->mmap_sem);
1013         result = SCAN_ANY_PROCESS;
1014         if (!mmget_still_valid(mm))
1015                 goto out;
1016         result = hugepage_vma_revalidate(mm, address, &vma);
1017         if (result)
1018                 goto out;
1019         /* check if the pmd is still valid */
1020         if (mm_find_pmd(mm, address) != pmd)
1021                 goto out;
1022
1023         anon_vma_lock_write(vma->anon_vma);
1024
1025         pte = pte_offset_map(pmd, address);
1026         pte_ptl = pte_lockptr(mm, pmd);
1027
1028         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1029                                 address, address + HPAGE_PMD_SIZE);
1030         mmu_notifier_invalidate_range_start(&range);
1031         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1032         /*
1033          * After this gup_fast can't run anymore. This also removes
1034          * any huge TLB entry from the CPU so we won't allow
1035          * huge and small TLB entries for the same virtual address
1036          * to avoid the risk of CPU bugs in that area.
1037          */
1038         _pmd = pmdp_collapse_flush(vma, address, pmd);
1039         spin_unlock(pmd_ptl);
1040         mmu_notifier_invalidate_range_end(&range);
1041
1042         spin_lock(pte_ptl);
1043         isolated = __collapse_huge_page_isolate(vma, address, pte);
1044         spin_unlock(pte_ptl);
1045
1046         if (unlikely(!isolated)) {
1047                 pte_unmap(pte);
1048                 spin_lock(pmd_ptl);
1049                 BUG_ON(!pmd_none(*pmd));
1050                 /*
1051                  * We can only use set_pmd_at when establishing
1052                  * hugepmds and never for establishing regular pmds that
1053                  * points to regular pagetables. Use pmd_populate for that
1054                  */
1055                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1056                 spin_unlock(pmd_ptl);
1057                 anon_vma_unlock_write(vma->anon_vma);
1058                 result = SCAN_FAIL;
1059                 goto out;
1060         }
1061
1062         /*
1063          * All pages are isolated and locked so anon_vma rmap
1064          * can't run anymore.
1065          */
1066         anon_vma_unlock_write(vma->anon_vma);
1067
1068         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1069         pte_unmap(pte);
1070         __SetPageUptodate(new_page);
1071         pgtable = pmd_pgtable(_pmd);
1072
1073         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1074         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1075
1076         /*
1077          * spin_lock() below is not the equivalent of smp_wmb(), so
1078          * this is needed to avoid the copy_huge_page writes to become
1079          * visible after the set_pmd_at() write.
1080          */
1081         smp_wmb();
1082
1083         spin_lock(pmd_ptl);
1084         BUG_ON(!pmd_none(*pmd));
1085         page_add_new_anon_rmap(new_page, vma, address, true);
1086         mem_cgroup_commit_charge(new_page, memcg, false, true);
1087         count_memcg_events(memcg, THP_COLLAPSE_ALLOC, 1);
1088         lru_cache_add_active_or_unevictable(new_page, vma);
1089         pgtable_trans_huge_deposit(mm, pmd, pgtable);
1090         set_pmd_at(mm, address, pmd, _pmd);
1091         update_mmu_cache_pmd(vma, address, pmd);
1092         spin_unlock(pmd_ptl);
1093
1094         *hpage = NULL;
1095
1096         khugepaged_pages_collapsed++;
1097         result = SCAN_SUCCEED;
1098 out_up_write:
1099         up_write(&mm->mmap_sem);
1100 out_nolock:
1101         trace_mm_collapse_huge_page(mm, isolated, result);
1102         return;
1103 out:
1104         mem_cgroup_cancel_charge(new_page, memcg, true);
1105         goto out_up_write;
1106 }
1107
1108 static int khugepaged_scan_pmd(struct mm_struct *mm,
1109                                struct vm_area_struct *vma,
1110                                unsigned long address,
1111                                struct page **hpage)
1112 {
1113         pmd_t *pmd;
1114         pte_t *pte, *_pte;
1115         int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
1116         struct page *page = NULL;
1117         unsigned long _address;
1118         spinlock_t *ptl;
1119         int node = NUMA_NO_NODE, unmapped = 0;
1120         bool writable = false;
1121
1122         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1123
1124         pmd = mm_find_pmd(mm, address);
1125         if (!pmd) {
1126                 result = SCAN_PMD_NULL;
1127                 goto out;
1128         }
1129
1130         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1131         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1132         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1133              _pte++, _address += PAGE_SIZE) {
1134                 pte_t pteval = *_pte;
1135                 if (is_swap_pte(pteval)) {
1136                         if (++unmapped <= khugepaged_max_ptes_swap) {
1137                                 continue;
1138                         } else {
1139                                 result = SCAN_EXCEED_SWAP_PTE;
1140                                 goto out_unmap;
1141                         }
1142                 }
1143                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1144                         if (!userfaultfd_armed(vma) &&
1145                             ++none_or_zero <= khugepaged_max_ptes_none) {
1146                                 continue;
1147                         } else {
1148                                 result = SCAN_EXCEED_NONE_PTE;
1149                                 goto out_unmap;
1150                         }
1151                 }
1152                 if (!pte_present(pteval)) {
1153                         result = SCAN_PTE_NON_PRESENT;
1154                         goto out_unmap;
1155                 }
1156                 if (pte_write(pteval))
1157                         writable = true;
1158
1159                 page = vm_normal_page(vma, _address, pteval);
1160                 if (unlikely(!page)) {
1161                         result = SCAN_PAGE_NULL;
1162                         goto out_unmap;
1163                 }
1164
1165                 /* TODO: teach khugepaged to collapse THP mapped with pte */
1166                 if (PageCompound(page)) {
1167                         result = SCAN_PAGE_COMPOUND;
1168                         goto out_unmap;
1169                 }
1170
1171                 /*
1172                  * Record which node the original page is from and save this
1173                  * information to khugepaged_node_load[].
1174                  * Khupaged will allocate hugepage from the node has the max
1175                  * hit record.
1176                  */
1177                 node = page_to_nid(page);
1178                 if (khugepaged_scan_abort(node)) {
1179                         result = SCAN_SCAN_ABORT;
1180                         goto out_unmap;
1181                 }
1182                 khugepaged_node_load[node]++;
1183                 if (!PageLRU(page)) {
1184                         result = SCAN_PAGE_LRU;
1185                         goto out_unmap;
1186                 }
1187                 if (PageLocked(page)) {
1188                         result = SCAN_PAGE_LOCK;
1189                         goto out_unmap;
1190                 }
1191                 if (!PageAnon(page)) {
1192                         result = SCAN_PAGE_ANON;
1193                         goto out_unmap;
1194                 }
1195
1196                 /*
1197                  * cannot use mapcount: can't collapse if there's a gup pin.
1198                  * The page must only be referenced by the scanned process
1199                  * and page swap cache.
1200                  */
1201                 if (page_count(page) != 1 + PageSwapCache(page)) {
1202                         result = SCAN_PAGE_COUNT;
1203                         goto out_unmap;
1204                 }
1205                 if (pte_young(pteval) ||
1206                     page_is_young(page) || PageReferenced(page) ||
1207                     mmu_notifier_test_young(vma->vm_mm, address))
1208                         referenced++;
1209         }
1210         if (writable) {
1211                 if (referenced) {
1212                         result = SCAN_SUCCEED;
1213                         ret = 1;
1214                 } else {
1215                         result = SCAN_LACK_REFERENCED_PAGE;
1216                 }
1217         } else {
1218                 result = SCAN_PAGE_RO;
1219         }
1220 out_unmap:
1221         pte_unmap_unlock(pte, ptl);
1222         if (ret) {
1223                 node = khugepaged_find_target_node();
1224                 /* collapse_huge_page will return with the mmap_sem released */
1225                 collapse_huge_page(mm, address, hpage, node, referenced);
1226         }
1227 out:
1228         trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1229                                      none_or_zero, result, unmapped);
1230         return ret;
1231 }
1232
1233 static void collect_mm_slot(struct mm_slot *mm_slot)
1234 {
1235         struct mm_struct *mm = mm_slot->mm;
1236
1237         lockdep_assert_held(&khugepaged_mm_lock);
1238
1239         if (khugepaged_test_exit(mm)) {
1240                 /* free mm_slot */
1241                 hash_del(&mm_slot->hash);
1242                 list_del(&mm_slot->mm_node);
1243
1244                 /*
1245                  * Not strictly needed because the mm exited already.
1246                  *
1247                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1248                  */
1249
1250                 /* khugepaged_mm_lock actually not necessary for the below */
1251                 free_mm_slot(mm_slot);
1252                 mmdrop(mm);
1253         }
1254 }
1255
1256 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1257 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1258 {
1259         struct vm_area_struct *vma;
1260         unsigned long addr;
1261         pmd_t *pmd, _pmd;
1262
1263         i_mmap_lock_write(mapping);
1264         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1265                 /* probably overkill */
1266                 if (vma->anon_vma)
1267                         continue;
1268                 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1269                 if (addr & ~HPAGE_PMD_MASK)
1270                         continue;
1271                 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1272                         continue;
1273                 pmd = mm_find_pmd(vma->vm_mm, addr);
1274                 if (!pmd)
1275                         continue;
1276                 /*
1277                  * We need exclusive mmap_sem to retract page table.
1278                  * If trylock fails we would end up with pte-mapped THP after
1279                  * re-fault. Not ideal, but it's more important to not disturb
1280                  * the system too much.
1281                  */
1282                 if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
1283                         spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
1284                         /* assume page table is clear */
1285                         _pmd = pmdp_collapse_flush(vma, addr, pmd);
1286                         spin_unlock(ptl);
1287                         up_write(&vma->vm_mm->mmap_sem);
1288                         mm_dec_nr_ptes(vma->vm_mm);
1289                         pte_free(vma->vm_mm, pmd_pgtable(_pmd));
1290                 }
1291         }
1292         i_mmap_unlock_write(mapping);
1293 }
1294
1295 /**
1296  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1297  *
1298  * Basic scheme is simple, details are more complex:
1299  *  - allocate and lock a new huge page;
1300  *  - scan page cache replacing old pages with the new one
1301  *    + swap/gup in pages if necessary;
1302  *    + fill in gaps;
1303  *    + keep old pages around in case rollback is required;
1304  *  - if replacing succeeds:
1305  *    + copy data over;
1306  *    + free old pages;
1307  *    + unlock huge page;
1308  *  - if replacing failed;
1309  *    + put all pages back and unfreeze them;
1310  *    + restore gaps in the page cache;
1311  *    + unlock and free huge page;
1312  */
1313 static void collapse_file(struct mm_struct *mm,
1314                 struct file *file, pgoff_t start,
1315                 struct page **hpage, int node)
1316 {
1317         struct address_space *mapping = file->f_mapping;
1318         gfp_t gfp;
1319         struct page *new_page;
1320         struct mem_cgroup *memcg;
1321         pgoff_t index, end = start + HPAGE_PMD_NR;
1322         LIST_HEAD(pagelist);
1323         XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1324         int nr_none = 0, result = SCAN_SUCCEED;
1325         bool is_shmem = shmem_file(file);
1326
1327         VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1328         VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1329
1330         /* Only allocate from the target node */
1331         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1332
1333         new_page = khugepaged_alloc_page(hpage, gfp, node);
1334         if (!new_page) {
1335                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1336                 goto out;
1337         }
1338
1339         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
1340                 result = SCAN_CGROUP_CHARGE_FAIL;
1341                 goto out;
1342         }
1343
1344         /* This will be less messy when we use multi-index entries */
1345         do {
1346                 xas_lock_irq(&xas);
1347                 xas_create_range(&xas);
1348                 if (!xas_error(&xas))
1349                         break;
1350                 xas_unlock_irq(&xas);
1351                 if (!xas_nomem(&xas, GFP_KERNEL)) {
1352                         mem_cgroup_cancel_charge(new_page, memcg, true);
1353                         result = SCAN_FAIL;
1354                         goto out;
1355                 }
1356         } while (1);
1357
1358         __SetPageLocked(new_page);
1359         if (is_shmem)
1360                 __SetPageSwapBacked(new_page);
1361         new_page->index = start;
1362         new_page->mapping = mapping;
1363
1364         /*
1365          * At this point the new_page is locked and not up-to-date.
1366          * It's safe to insert it into the page cache, because nobody would
1367          * be able to map it or use it in another way until we unlock it.
1368          */
1369
1370         xas_set(&xas, start);
1371         for (index = start; index < end; index++) {
1372                 struct page *page = xas_next(&xas);
1373
1374                 VM_BUG_ON(index != xas.xa_index);
1375                 if (is_shmem) {
1376                         if (!page) {
1377                                 /*
1378                                  * Stop if extent has been truncated or
1379                                  * hole-punched, and is now completely
1380                                  * empty.
1381                                  */
1382                                 if (index == start) {
1383                                         if (!xas_next_entry(&xas, end - 1)) {
1384                                                 result = SCAN_TRUNCATED;
1385                                                 goto xa_locked;
1386                                         }
1387                                         xas_set(&xas, index);
1388                                 }
1389                                 if (!shmem_charge(mapping->host, 1)) {
1390                                         result = SCAN_FAIL;
1391                                         goto xa_locked;
1392                                 }
1393                                 xas_store(&xas, new_page);
1394                                 nr_none++;
1395                                 continue;
1396                         }
1397
1398                         if (xa_is_value(page) || !PageUptodate(page)) {
1399                                 xas_unlock_irq(&xas);
1400                                 /* swap in or instantiate fallocated page */
1401                                 if (shmem_getpage(mapping->host, index, &page,
1402                                                   SGP_NOHUGE)) {
1403                                         result = SCAN_FAIL;
1404                                         goto xa_unlocked;
1405                                 }
1406                         } else if (trylock_page(page)) {
1407                                 get_page(page);
1408                                 xas_unlock_irq(&xas);
1409                         } else {
1410                                 result = SCAN_PAGE_LOCK;
1411                                 goto xa_locked;
1412                         }
1413                 } else {        /* !is_shmem */
1414                         if (!page || xa_is_value(page)) {
1415                                 xas_unlock_irq(&xas);
1416                                 page_cache_sync_readahead(mapping, &file->f_ra,
1417                                                           file, index,
1418                                                           PAGE_SIZE);
1419                                 /* drain pagevecs to help isolate_lru_page() */
1420                                 lru_add_drain();
1421                                 page = find_lock_page(mapping, index);
1422                                 if (unlikely(page == NULL)) {
1423                                         result = SCAN_FAIL;
1424                                         goto xa_unlocked;
1425                                 }
1426                         } else if (!PageUptodate(page)) {
1427                                 xas_unlock_irq(&xas);
1428                                 wait_on_page_locked(page);
1429                                 if (!trylock_page(page)) {
1430                                         result = SCAN_PAGE_LOCK;
1431                                         goto xa_unlocked;
1432                                 }
1433                                 get_page(page);
1434                         } else if (PageDirty(page)) {
1435                                 result = SCAN_FAIL;
1436                                 goto xa_locked;
1437                         } else if (trylock_page(page)) {
1438                                 get_page(page);
1439                                 xas_unlock_irq(&xas);
1440                         } else {
1441                                 result = SCAN_PAGE_LOCK;
1442                                 goto xa_locked;
1443                         }
1444                 }
1445
1446                 /*
1447                  * The page must be locked, so we can drop the i_pages lock
1448                  * without racing with truncate.
1449                  */
1450                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1451                 VM_BUG_ON_PAGE(!PageUptodate(page), page);
1452
1453                 /*
1454                  * If file was truncated then extended, or hole-punched, before
1455                  * we locked the first page, then a THP might be there already.
1456                  */
1457                 if (PageTransCompound(page)) {
1458                         result = SCAN_PAGE_COMPOUND;
1459                         goto out_unlock;
1460                 }
1461
1462                 if (page_mapping(page) != mapping) {
1463                         result = SCAN_TRUNCATED;
1464                         goto out_unlock;
1465                 }
1466
1467                 if (isolate_lru_page(page)) {
1468                         result = SCAN_DEL_PAGE_LRU;
1469                         goto out_unlock;
1470                 }
1471
1472                 if (page_has_private(page) &&
1473                     !try_to_release_page(page, GFP_KERNEL)) {
1474                         result = SCAN_PAGE_HAS_PRIVATE;
1475                         goto out_unlock;
1476                 }
1477
1478                 if (page_mapped(page))
1479                         unmap_mapping_pages(mapping, index, 1, false);
1480
1481                 xas_lock_irq(&xas);
1482                 xas_set(&xas, index);
1483
1484                 VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1485                 VM_BUG_ON_PAGE(page_mapped(page), page);
1486
1487                 /*
1488                  * The page is expected to have page_count() == 3:
1489                  *  - we hold a pin on it;
1490                  *  - one reference from page cache;
1491                  *  - one from isolate_lru_page;
1492                  */
1493                 if (!page_ref_freeze(page, 3)) {
1494                         result = SCAN_PAGE_COUNT;
1495                         xas_unlock_irq(&xas);
1496                         putback_lru_page(page);
1497                         goto out_unlock;
1498                 }
1499
1500                 /*
1501                  * Add the page to the list to be able to undo the collapse if
1502                  * something go wrong.
1503                  */
1504                 list_add_tail(&page->lru, &pagelist);
1505
1506                 /* Finally, replace with the new page. */
1507                 xas_store(&xas, new_page);
1508                 continue;
1509 out_unlock:
1510                 unlock_page(page);
1511                 put_page(page);
1512                 goto xa_unlocked;
1513         }
1514
1515         if (is_shmem)
1516                 __inc_node_page_state(new_page, NR_SHMEM_THPS);
1517         else {
1518                 __inc_node_page_state(new_page, NR_FILE_THPS);
1519                 filemap_nr_thps_inc(mapping);
1520         }
1521
1522         if (nr_none) {
1523                 struct zone *zone = page_zone(new_page);
1524
1525                 __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1526                 if (is_shmem)
1527                         __mod_node_page_state(zone->zone_pgdat,
1528                                               NR_SHMEM, nr_none);
1529         }
1530
1531 xa_locked:
1532         xas_unlock_irq(&xas);
1533 xa_unlocked:
1534
1535         if (result == SCAN_SUCCEED) {
1536                 struct page *page, *tmp;
1537
1538                 /*
1539                  * Replacing old pages with new one has succeeded, now we
1540                  * need to copy the content and free the old pages.
1541                  */
1542                 index = start;
1543                 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1544                         while (index < page->index) {
1545                                 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1546                                 index++;
1547                         }
1548                         copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1549                                         page);
1550                         list_del(&page->lru);
1551                         page->mapping = NULL;
1552                         page_ref_unfreeze(page, 1);
1553                         ClearPageActive(page);
1554                         ClearPageUnevictable(page);
1555                         unlock_page(page);
1556                         put_page(page);
1557                         index++;
1558                 }
1559                 while (index < end) {
1560                         clear_highpage(new_page + (index % HPAGE_PMD_NR));
1561                         index++;
1562                 }
1563
1564                 SetPageUptodate(new_page);
1565                 page_ref_add(new_page, HPAGE_PMD_NR - 1);
1566                 mem_cgroup_commit_charge(new_page, memcg, false, true);
1567
1568                 if (is_shmem) {
1569                         set_page_dirty(new_page);
1570                         lru_cache_add_anon(new_page);
1571                 } else {
1572                         lru_cache_add_file(new_page);
1573                 }
1574                 count_memcg_events(memcg, THP_COLLAPSE_ALLOC, 1);
1575
1576                 /*
1577                  * Remove pte page tables, so we can re-fault the page as huge.
1578                  */
1579                 retract_page_tables(mapping, start);
1580                 *hpage = NULL;
1581
1582                 khugepaged_pages_collapsed++;
1583         } else {
1584                 struct page *page;
1585
1586                 /* Something went wrong: roll back page cache changes */
1587                 xas_lock_irq(&xas);
1588                 mapping->nrpages -= nr_none;
1589
1590                 if (is_shmem)
1591                         shmem_uncharge(mapping->host, nr_none);
1592
1593                 xas_set(&xas, start);
1594                 xas_for_each(&xas, page, end - 1) {
1595                         page = list_first_entry_or_null(&pagelist,
1596                                         struct page, lru);
1597                         if (!page || xas.xa_index < page->index) {
1598                                 if (!nr_none)
1599                                         break;
1600                                 nr_none--;
1601                                 /* Put holes back where they were */
1602                                 xas_store(&xas, NULL);
1603                                 continue;
1604                         }
1605
1606                         VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1607
1608                         /* Unfreeze the page. */
1609                         list_del(&page->lru);
1610                         page_ref_unfreeze(page, 2);
1611                         xas_store(&xas, page);
1612                         xas_pause(&xas);
1613                         xas_unlock_irq(&xas);
1614                         unlock_page(page);
1615                         putback_lru_page(page);
1616                         xas_lock_irq(&xas);
1617                 }
1618                 VM_BUG_ON(nr_none);
1619                 xas_unlock_irq(&xas);
1620
1621                 mem_cgroup_cancel_charge(new_page, memcg, true);
1622                 new_page->mapping = NULL;
1623         }
1624
1625         unlock_page(new_page);
1626 out:
1627         VM_BUG_ON(!list_empty(&pagelist));
1628         /* TODO: tracepoints */
1629 }
1630
1631 static void khugepaged_scan_file(struct mm_struct *mm,
1632                 struct file *file, pgoff_t start, struct page **hpage)
1633 {
1634         struct page *page = NULL;
1635         struct address_space *mapping = file->f_mapping;
1636         XA_STATE(xas, &mapping->i_pages, start);
1637         int present, swap;
1638         int node = NUMA_NO_NODE;
1639         int result = SCAN_SUCCEED;
1640
1641         present = 0;
1642         swap = 0;
1643         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1644         rcu_read_lock();
1645         xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
1646                 if (xas_retry(&xas, page))
1647                         continue;
1648
1649                 if (xa_is_value(page)) {
1650                         if (++swap > khugepaged_max_ptes_swap) {
1651                                 result = SCAN_EXCEED_SWAP_PTE;
1652                                 break;
1653                         }
1654                         continue;
1655                 }
1656
1657                 if (PageTransCompound(page)) {
1658                         result = SCAN_PAGE_COMPOUND;
1659                         break;
1660                 }
1661
1662                 node = page_to_nid(page);
1663                 if (khugepaged_scan_abort(node)) {
1664                         result = SCAN_SCAN_ABORT;
1665                         break;
1666                 }
1667                 khugepaged_node_load[node]++;
1668
1669                 if (!PageLRU(page)) {
1670                         result = SCAN_PAGE_LRU;
1671                         break;
1672                 }
1673
1674                 if (page_count(page) !=
1675                     1 + page_mapcount(page) + page_has_private(page)) {
1676                         result = SCAN_PAGE_COUNT;
1677                         break;
1678                 }
1679
1680                 /*
1681                  * We probably should check if the page is referenced here, but
1682                  * nobody would transfer pte_young() to PageReferenced() for us.
1683                  * And rmap walk here is just too costly...
1684                  */
1685
1686                 present++;
1687
1688                 if (need_resched()) {
1689                         xas_pause(&xas);
1690                         cond_resched_rcu();
1691                 }
1692         }
1693         rcu_read_unlock();
1694
1695         if (result == SCAN_SUCCEED) {
1696                 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1697                         result = SCAN_EXCEED_NONE_PTE;
1698                 } else {
1699                         node = khugepaged_find_target_node();
1700                         collapse_file(mm, file, start, hpage, node);
1701                 }
1702         }
1703
1704         /* TODO: tracepoints */
1705 }
1706 #else
1707 static void khugepaged_scan_file(struct mm_struct *mm,
1708                 struct file *file, pgoff_t start, struct page **hpage)
1709 {
1710         BUILD_BUG();
1711 }
1712 #endif
1713
1714 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1715                                             struct page **hpage)
1716         __releases(&khugepaged_mm_lock)
1717         __acquires(&khugepaged_mm_lock)
1718 {
1719         struct mm_slot *mm_slot;
1720         struct mm_struct *mm;
1721         struct vm_area_struct *vma;
1722         int progress = 0;
1723
1724         VM_BUG_ON(!pages);
1725         lockdep_assert_held(&khugepaged_mm_lock);
1726
1727         if (khugepaged_scan.mm_slot)
1728                 mm_slot = khugepaged_scan.mm_slot;
1729         else {
1730                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
1731                                      struct mm_slot, mm_node);
1732                 khugepaged_scan.address = 0;
1733                 khugepaged_scan.mm_slot = mm_slot;
1734         }
1735         spin_unlock(&khugepaged_mm_lock);
1736
1737         mm = mm_slot->mm;
1738         /*
1739          * Don't wait for semaphore (to avoid long wait times).  Just move to
1740          * the next mm on the list.
1741          */
1742         vma = NULL;
1743         if (unlikely(!down_read_trylock(&mm->mmap_sem)))
1744                 goto breakouterloop_mmap_sem;
1745         if (likely(!khugepaged_test_exit(mm)))
1746                 vma = find_vma(mm, khugepaged_scan.address);
1747
1748         progress++;
1749         for (; vma; vma = vma->vm_next) {
1750                 unsigned long hstart, hend;
1751
1752                 cond_resched();
1753                 if (unlikely(khugepaged_test_exit(mm))) {
1754                         progress++;
1755                         break;
1756                 }
1757                 if (!hugepage_vma_check(vma, vma->vm_flags)) {
1758 skip:
1759                         progress++;
1760                         continue;
1761                 }
1762                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1763                 hend = vma->vm_end & HPAGE_PMD_MASK;
1764                 if (hstart >= hend)
1765                         goto skip;
1766                 if (khugepaged_scan.address > hend)
1767                         goto skip;
1768                 if (khugepaged_scan.address < hstart)
1769                         khugepaged_scan.address = hstart;
1770                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1771
1772                 while (khugepaged_scan.address < hend) {
1773                         int ret;
1774                         cond_resched();
1775                         if (unlikely(khugepaged_test_exit(mm)))
1776                                 goto breakouterloop;
1777
1778                         VM_BUG_ON(khugepaged_scan.address < hstart ||
1779                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
1780                                   hend);
1781                         if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
1782                                 struct file *file;
1783                                 pgoff_t pgoff = linear_page_index(vma,
1784                                                 khugepaged_scan.address);
1785
1786                                 if (shmem_file(vma->vm_file)
1787                                     && !shmem_huge_enabled(vma))
1788                                         goto skip;
1789                                 file = get_file(vma->vm_file);
1790                                 up_read(&mm->mmap_sem);
1791                                 ret = 1;
1792                                 khugepaged_scan_file(mm, file, pgoff, hpage);
1793                                 fput(file);
1794                         } else {
1795                                 ret = khugepaged_scan_pmd(mm, vma,
1796                                                 khugepaged_scan.address,
1797                                                 hpage);
1798                         }
1799                         /* move to next address */
1800                         khugepaged_scan.address += HPAGE_PMD_SIZE;
1801                         progress += HPAGE_PMD_NR;
1802                         if (ret)
1803                                 /* we released mmap_sem so break loop */
1804                                 goto breakouterloop_mmap_sem;
1805                         if (progress >= pages)
1806                                 goto breakouterloop;
1807                 }
1808         }
1809 breakouterloop:
1810         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
1811 breakouterloop_mmap_sem:
1812
1813         spin_lock(&khugepaged_mm_lock);
1814         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
1815         /*
1816          * Release the current mm_slot if this mm is about to die, or
1817          * if we scanned all vmas of this mm.
1818          */
1819         if (khugepaged_test_exit(mm) || !vma) {
1820                 /*
1821                  * Make sure that if mm_users is reaching zero while
1822                  * khugepaged runs here, khugepaged_exit will find
1823                  * mm_slot not pointing to the exiting mm.
1824                  */
1825                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
1826                         khugepaged_scan.mm_slot = list_entry(
1827                                 mm_slot->mm_node.next,
1828                                 struct mm_slot, mm_node);
1829                         khugepaged_scan.address = 0;
1830                 } else {
1831                         khugepaged_scan.mm_slot = NULL;
1832                         khugepaged_full_scans++;
1833                 }
1834
1835                 collect_mm_slot(mm_slot);
1836         }
1837
1838         return progress;
1839 }
1840
1841 static int khugepaged_has_work(void)
1842 {
1843         return !list_empty(&khugepaged_scan.mm_head) &&
1844                 khugepaged_enabled();
1845 }
1846
1847 static int khugepaged_wait_event(void)
1848 {
1849         return !list_empty(&khugepaged_scan.mm_head) ||
1850                 kthread_should_stop();
1851 }
1852
1853 static void khugepaged_do_scan(void)
1854 {
1855         struct page *hpage = NULL;
1856         unsigned int progress = 0, pass_through_head = 0;
1857         unsigned int pages = khugepaged_pages_to_scan;
1858         bool wait = true;
1859
1860         barrier(); /* write khugepaged_pages_to_scan to local stack */
1861
1862         while (progress < pages) {
1863                 if (!khugepaged_prealloc_page(&hpage, &wait))
1864                         break;
1865
1866                 cond_resched();
1867
1868                 if (unlikely(kthread_should_stop() || try_to_freeze()))
1869                         break;
1870
1871                 spin_lock(&khugepaged_mm_lock);
1872                 if (!khugepaged_scan.mm_slot)
1873                         pass_through_head++;
1874                 if (khugepaged_has_work() &&
1875                     pass_through_head < 2)
1876                         progress += khugepaged_scan_mm_slot(pages - progress,
1877                                                             &hpage);
1878                 else
1879                         progress = pages;
1880                 spin_unlock(&khugepaged_mm_lock);
1881         }
1882
1883         if (!IS_ERR_OR_NULL(hpage))
1884                 put_page(hpage);
1885 }
1886
1887 static bool khugepaged_should_wakeup(void)
1888 {
1889         return kthread_should_stop() ||
1890                time_after_eq(jiffies, khugepaged_sleep_expire);
1891 }
1892
1893 static void khugepaged_wait_work(void)
1894 {
1895         if (khugepaged_has_work()) {
1896                 const unsigned long scan_sleep_jiffies =
1897                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
1898
1899                 if (!scan_sleep_jiffies)
1900                         return;
1901
1902                 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
1903                 wait_event_freezable_timeout(khugepaged_wait,
1904                                              khugepaged_should_wakeup(),
1905                                              scan_sleep_jiffies);
1906                 return;
1907         }
1908
1909         if (khugepaged_enabled())
1910                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
1911 }
1912
1913 static int khugepaged(void *none)
1914 {
1915         struct mm_slot *mm_slot;
1916
1917         set_freezable();
1918         set_user_nice(current, MAX_NICE);
1919
1920         while (!kthread_should_stop()) {
1921                 khugepaged_do_scan();
1922                 khugepaged_wait_work();
1923         }
1924
1925         spin_lock(&khugepaged_mm_lock);
1926         mm_slot = khugepaged_scan.mm_slot;
1927         khugepaged_scan.mm_slot = NULL;
1928         if (mm_slot)
1929                 collect_mm_slot(mm_slot);
1930         spin_unlock(&khugepaged_mm_lock);
1931         return 0;
1932 }
1933
1934 static void set_recommended_min_free_kbytes(void)
1935 {
1936         struct zone *zone;
1937         int nr_zones = 0;
1938         unsigned long recommended_min;
1939
1940         for_each_populated_zone(zone) {
1941                 /*
1942                  * We don't need to worry about fragmentation of
1943                  * ZONE_MOVABLE since it only has movable pages.
1944                  */
1945                 if (zone_idx(zone) > gfp_zone(GFP_USER))
1946                         continue;
1947
1948                 nr_zones++;
1949         }
1950
1951         /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
1952         recommended_min = pageblock_nr_pages * nr_zones * 2;
1953
1954         /*
1955          * Make sure that on average at least two pageblocks are almost free
1956          * of another type, one for a migratetype to fall back to and a
1957          * second to avoid subsequent fallbacks of other types There are 3
1958          * MIGRATE_TYPES we care about.
1959          */
1960         recommended_min += pageblock_nr_pages * nr_zones *
1961                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
1962
1963         /* don't ever allow to reserve more than 5% of the lowmem */
1964         recommended_min = min(recommended_min,
1965                               (unsigned long) nr_free_buffer_pages() / 20);
1966         recommended_min <<= (PAGE_SHIFT-10);
1967
1968         if (recommended_min > min_free_kbytes) {
1969                 if (user_min_free_kbytes >= 0)
1970                         pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
1971                                 min_free_kbytes, recommended_min);
1972
1973                 min_free_kbytes = recommended_min;
1974         }
1975         setup_per_zone_wmarks();
1976 }
1977
1978 int start_stop_khugepaged(void)
1979 {
1980         static struct task_struct *khugepaged_thread __read_mostly;
1981         static DEFINE_MUTEX(khugepaged_mutex);
1982         int err = 0;
1983
1984         mutex_lock(&khugepaged_mutex);
1985         if (khugepaged_enabled()) {
1986                 if (!khugepaged_thread)
1987                         khugepaged_thread = kthread_run(khugepaged, NULL,
1988                                                         "khugepaged");
1989                 if (IS_ERR(khugepaged_thread)) {
1990                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
1991                         err = PTR_ERR(khugepaged_thread);
1992                         khugepaged_thread = NULL;
1993                         goto fail;
1994                 }
1995
1996                 if (!list_empty(&khugepaged_scan.mm_head))
1997                         wake_up_interruptible(&khugepaged_wait);
1998
1999                 set_recommended_min_free_kbytes();
2000         } else if (khugepaged_thread) {
2001                 kthread_stop(khugepaged_thread);
2002                 khugepaged_thread = NULL;
2003         }
2004 fail:
2005         mutex_unlock(&khugepaged_mutex);
2006         return err;
2007 }